On some inequalities for polynomial functions

Ioan Gavrea^{*}

Abstract

Let Π_n denote the class of algebraic polynomials of degree no bigger than n. Let $P(x) = \sum_{k=0}^n a_k x^k$

and $||P||_{d\sigma} = \left(\int_{R} |P(x)|^2 d\sigma(x)\right)^{1/2}$, where $d\sigma(x)$ is a non-negative measure on \mathbb{R} . G. Milovanovic determined best constants C_{nk} such that

$$|a_k| \leq C_{nk} ||P||_{d\sigma}$$
, for $k = 0, 1, ..., n$.

In the present work, we will propose a new way of proofing the above inequality, which will lead us in finding the optimal constant C, such that

$$\|P\|_{\infty} \le C \|P\|_{d\sigma},$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm on [0,1].

^{*}Department of Mathematics, Technical University of Cluj-Napoca, Str. Gheorghe Baritiu nr. 26-28, Cluj-Napoca, Romania (Ioan.Gavrea@math.utcluj.ro)