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Abstract. An analytic approach is introduced for the determination ofrigorous lower bounds for the critical probability of
bond percolation in an oriented lattice. This is illustrated by an example, the oriented square lattice in two dimensions.
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1. INTRODUCTION

Percolation problems on infinite lattices are the subject ofa large mathematical literature, including several books.
See, for example, the consolidated accounts of Smythe and Wierman [19], Kesten [15], Durrett [8], Hughes [13, 14],
Grimmett [9, 10] and Bollobás and Riordan [4].

The literature relates to bond graphs and also to site and mixed bond-and-site graph processes. With bond graphs,
each bond is, independently of every other, open with probability p and closed with probability 1� p. When there
exists a connected path of open bonds from the origin to infinity, percolation is said to occur. The probabilityθ

�
p� of

percolation is a non-decreasing function ofp.
A common phenomenon is for there to exist a critical valuep � pcb � �

0�1� such that

θ
�
p�

� � 0 for 0� p � pcb	 0 for pcb � p � 1 

When this phenomenon occurs, the process is said to undergo aphase transition atp � pcb. The exact determination

of the critical probabilitypcb is usually difficult and has been achieved for relatively fewgraph configurations. Much
effort has gone into finding good upper and lower bounds for critical probabilities: see, for example, [1], [5], [17],
[20], [21], [22]. Work in this area is characterized by subtle and intricate probabilistic arguments and sometimes also
heavy computation.

The problem has proved more difficult in oriented graphs. In the bond case, each bond has an orientation and paths
are required to proceed in the direction of that orientationon each link. For a discussion of oriented percolation see [7]
and [11].

The graph��2, the single-quadrant oriented square lattice in two dimensions, is considered in an oriented bond or site
percolation model by Durrett [7], Liggett [16] and Balister, Bollobas and Stacey [1]. Durrett [7] derived the rigorous
upper boundpcb � 0
84 for the critical probability. Balister, Bollóbas and Stacey improved this topcb � 0
6863 in
1993 [1] and topcb � 0
6735 in 1994 [2]. In 1995 Liggett [16] derivedpcb � 2
3, currently the best published upper
bound. The arguments involved are quite involved.

There are few published rigorous results available for lower bounds. Hammersley [12] derivedpcb � 0
5176 in 1957
and Dhar [6]pcb � 0
6298 in 1982.

An elegant analytic approach was introduced by Bishir in 1963 [3] to derive a lower bound for the critical probability
for site percolation on the oriented lattice��2. The ideas have been taken up by Pearce and Fletcher [18], andused very
recently to give a considerable improvement on known exact results for site percolation on the related lattice��2

alt .
In this article we provide an example, that of��2, showing how a modification of this approach may be used to

derive a rigorous lower bound for critical probabilities ina bond-percolation setting. Given the effort researchers have
expended on this problem, it would be remarkable if we obtained the best result to date and we do not. However the
bound, 2� �2 � 0
586, is surprisingly good considering the relative simplicity of the derivation.
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