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1. INTRODUCTION

In order to accurately approximate the Riemann-Stieltjes integral, S S Dragomir and I. Fedotov introduced in [9]
the following error functionaD (f;u) := f;’ f(t)du(t) —[u(a) —u(b)]- 5 ( )dt provided the Riemann-Stieltjes
integralf(.;J f (t)du(t) and the Riemann integrﬁf f (t)dt exist. In the same paper, the authors have shown that

|D<f;u>|s§L<M—m>(b—a>, 1)

provided thatu is L—Lipschitzian, i.e.Ju(t) —u(s)| < L|t —s| for anyt,s € [a,b] and f is Riemann integrable and
bounded below byn and above byM. The constan% is best possible in the sense that it cannot be replaced by a
smaller quantity. In the follow-up paper [10], the same authors established a different result, namely
1 b
D(f;u)| < SK(b-a)\/_(u), )
provided thau is of bounded variation anflis K—Lipschitzian with a constar > 0. Here% is also best possible.
In [7], by the use of the following representation

b
D(fiu) = [ dut)df (), ®)
where 1 :
Py (t) = El[(t—a)u(b)Jr(b—t)u(a)] —u(t), telahb, (4)
the author has established the following inequality as well:
ID(;u)] < 2L (b—a) [u(b) ~u(a) ~K (u)] < L(b—a) u(b) ~u(a)], (5)
whereK (u) := 27 Ja ( aJ’b) u(t)dt(> 0), uis monotonic nondecreasing aids L—Lipschitzian, and
ID(f:0)] < [u(b) —u(@) - Qu)]- /2 () < [ulb) —u(@)] - \/- (), (6)
whereQ(u) := p= afa (t)sgn(t — %b) dt(>0), and f is of bounded variation, The consta%nn (5) and the first

inequality in (6) are sharp.

The main aim of the present paper is to provide other bound®f{dru) in the case where the integratoris
(I,L) —Lipschitzian (see Definition 1). Natural applications for thebySev functional that complement the classical
results due t@:ebysev Gruss, Ostrowski and Lupas are also given.

2. SHARP BOUNDS FOR(I,L)-LIPSCHITZIAN INTEGRATORS

We say that a function: [a,b] — R is K—Lipschitzian withK > 0 if |v(t) —v(s)| < K|t —g| for anyt,s € [a,b]. The
following lemma may be stated:

Lemma 1l Letu: [a,b] — R and |,L € R with L > |. The following statements are equivalent:
(i) The function u- '%’- -e,where dt) =t,t € [a,b] is % (L —1) —Lipschitzian;



(i) We have the inequalities
t)— .
< w <L foreach tse[ab] with t#s @)
(iii) We have the inequalities
[(t—s)<u(t)—u(s)<L(t—s) foreach tse[ab] witht>s (8)
Following [13], we can introduce the definition @f L)-Lipschitzian functions:
Definition 1 The function u [a,b] — R which satisfies one of the equivalent conditions (i) — (iii) from Lemma 1 is
said to be(l,L)-Lipschitzian onja,b]. If L > 0 and | = —L, then(—L,L) —Lipschitzian means L-Lipschitzian in the
classical sense.
Theorem 1 If u: [a,b] — R is (I,L)-Lipschitzian ora, b], then
@y ()] < == (E:;) (t=3) _ %(L—I) (b—a) for eachte [a,b]. ©)
The inequalities are sharp and the constéris best possible.

Proof: First of all, let us observe that
Py (t) = @u_%e(t) for eacht € [a,b]. (10)
Now, if v: [a,b] — R is K—Lipschitzian, then by the definition @, we have
b—t)|v(t)—v(a)|+(t—a)|v(b) —v(t 2K(b—t)(t—a
|<Dv(t)|§( VO —v(@)[+ (- v(b) —v()] 2K (b-t)({t—2)
b—a b—a
Now, applying (11) fov=u— '*TLe which is % (L —1)—Lipschitzian, we deduc%!buf%e(t)‘ < %,t €
[a, b] which together with (10) produces the first inequality in (9). The second inequality in (9) is obvious.
Consider the functioru : [a,b] — R, u(t) = |t—22|. Thenu is (~1,1)—Lipschitzian,u(a) = u(b) = 22,
u (%b) = 0 and introducing these values in (9) for %b, we obtain an equality with both tern%s(b— a). O
Corollary 1 With the assumptions of Theorem 1, we have the inequality:

“("");“(b)_u<6“5b> <0L-Nb-a). (12)

, foranyt € [a,b]. (11)

The constan% is best possible.
Theorem 2 Let f,u: [a,b] — R be such that u i¢l, L)-Lipschitzian and f is of bounded variation, then

Dt < 5 (L1 (b-a)\/2(1). (13
The constan% is best possible in (13).
Proof: We use the following representation of the Gruss type functibr{dl u) obtained in [7] (see also [5]):
D(f;u):/btbu(t)df(t). (14)
It is well known that ifp: [a, B] — R is continuous afald: [a, B] — R is of bounded variation, then the Riemann-
Stieljtes integralf(f p(t)dv(t) exists and ff p(t)dv(t)’ < SURc(qp] [P (1) Ve (v). Applying this property we then

have|D (f;u)| = [ [, (t)df (t)‘ < SURcpap [Pu(t)|VA(F) < 7 (L—1)(b—a)Va(f) and (13) is obtained.

The sharpness of the consta%;t can be proved on choosing f : [a,b] — R, u(t) = |tf%b] and f (t) =
sgn(t — 252) . The details are omitted. O
Theorem 3 Let f,u: [a,b] — R be such that u i¢l, L) —Lipschitzian and f is K-Lipschitzian or{a,b], then

|D(f;u)|§%K(L—I)(b—a)2. (15)

Proof: It is known that, ifp: [a, B] — R is Riemann integrable and [a, b] — R is L—Lipschitzian, then the Riemann-
Stieltjes integralf‘f p(t)dv(t) exists and f(f p(t)dv(t)‘ < Lj;f\v(t)\dt. If we apply this property to the integral
f: ®, (t)df(t) and use the identity (14), we then have

b b _ b
D(f;u):’/a dbu(t)df(t)’gK/a |¢u(t)|dt§%/a (b—t)(t—a)dt:%K(L—I)(b—a)z

and the inequality (15) is proved. O
Remark 1 Itis an open problem whether or not the consténts the best possible constant in (15).




Theorem 4 Let f,u: [a,b] — R be such that u i§l, L) —Lipschitzian and f is monotonic nondecreasing, then
. 3 (L=hmax{|f ()], | (b)[} (b—a);
D(f;u)] gz.t;;{/ (t_a+b> fat<] Ar-DIflb-a% p>1343=1  qg
- a

2 +1)%

(L=D Il
1
where| f||, := (fa [f(t )\pdt) ® p> lare the Lebesgue norms. The constaasid 5 are best possible in (16).

Proof: It is well known that ifp: [@, f] — R is continuous and : [a, 8] — R is monotonic nondecreasing, then the
Riemann-Stieltjes integr:;ﬂf,3 p(t)dv(t) exists an4f£ p(t) dv(t)‘ < ff [p(t)|dv(t). Then, on applying this property
for the integralf;’ d,(t)df(t), we have

|Dfu|_’/¢u tHdf(t ' /|q>u )dft <7/ (b—t)(t—a)df(t), 17)

where, for the last inequality, we have used the inequality (9).
Integrating by parts in the Riemann-Stieltjes integral, we hﬁj‘/eb—t)(t—a)df(t) = 2\[; (t— %b) f(t)dt,
which together with (17) produces the first inequality in (16).
The last part follows on utilising the Holder inequality, namely
sup [ (t)] [2 |t — 32| dt
labl smax(|f <a>| ()]} (b—a)?;
1
2"

1 1 141
b b p b bq q b_a q
a 2 if p>1, 1+7 1; if p>1 l+f 1;
sup [t— 25| [2|f (t)]dt 31fl1(b—a). O
tefab]

3. APPLICATIONS FOR THE CEBYSEV FUNCTIONAL

For two Lebesgue integrable functiorfsg : [a, b] — R with fgan integrable function, consider tBebysev functional

C(-,-) defined by 1 b
Cihi=p— [ 109 t——/f t)dt- —/g (18)
In 1934, Griiss [12] showed that

C(f.g) < 7 (M—m)(N-n), (19)
providedm,M,n,N are real numbers with the property
—o<m<f<M<o, —wo<n<g<N<o ae.onlab. (20)

The constan% is best possible in (18) in the sense that it cannot be replaced by a smaller quantity.
Another lesser known inequality, even though it was derived in 188é¢iyy§ev [1], under the assumption that
f’ d exist and are continuous [g,b] is given by

C(1.9)1 = 55Vl (0 (21)

where|| f'||, == SURcfap [T/ (1)]- The constant}, cannot be improved in the general case. We notice that ey Sev

inequality (21) also holds if,g: [a,b] — R are absolutely continuous d¢a b] andf’, ¢’ € L« [a,b].
In 1970, Ostrowski [15] proved, amongst others, the following result that is in a sense a combmaﬂoﬁ(eibylsev

and Gruss results, namely
IC(f.9)l<3 (b a)(M—m) [, (22)

providedf satisfies (20) whilg is absolutely contlnuous anfd, g € Lo[a,b]. The constan% is best possible in (22).
Finally, let us recall that in 1973, Lupas [14], proved the following inequality in terms of the Euclidean norm:

C(t.9)1 < 25 (b-a) |, |91, @3

provided thatf, g are absolutely continuous arilg’ € Lz[a,b]. The constantﬂl2 is best possible.
For other results on théebyéev functional, see [2], [3], [5], [6], [8] and [11].



Now, assume thag : [a, b] — R is Lebesgue integrable da,b] and—o < m<g(t) <M < « for a.e.t € [a,b].
Then the functionu(t) := [5g(s) dsis (m, M) —Lipschitzian ona, b] and

CDg(t) =dy(t) = /a g(s)ds—ﬁl/a g(s)ds teab]. (24)
On utilising the Theorem 1 we can state the following result that provides a sharp bo@@(f@rin (24).

Proposition 1 If g : [a,b] — R is Lebesgue integrable da,b] and—c < m< g(s) <M < = for a.e. sc [a,b], then

By < MOV 2y b-a), @)

for a.e. te [a,b]. The first inequality is sharp. The constéﬂs best possible.

The inequality is obvious by (13). The sharpness follows on chodsmég—b andg(t) = sgn(t — %b) in (25). The
details are omitted. 5
The following result for theCebysSev functional can be stated:

Proposition 2 If f : [a,b] — R is of bounded variation ofa,b] and g: [a,b] — R is Lebesgue integrable and satisfies

the bounds —oo<m<g<M<ow a.e.onfab, (26)

then 1 b
C(f.gl<zM-m\/ (). (27)
The constan% is best possible.
The following result can be stated as well.

Proposition 3 Assume that g[a,b] — R is as in Proposition 2. If f [a,b] — R is monotonic nondecreasing ¢a b,

then
5(M—m)max{|f a)].|f ()]}

M — b a+b 1 o A\ . 1,1_ 4.

etz MM (-2 fgar< | AgM-miflyo-at i p>1gei=1i o
(M —m) g5 [l

The constant@ and% are best possible.

The proof of the inequalities in (28) are obvious from (16). The sharpness of the constants follows on choosing
f(t)=g(t) =sgn(t— 252),t e [a,b].
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