Accurate Approximations of the Riemann-Stieltjes Integral with (l, L)-Lipschitzian Integrators

Sever S. Dragomir
School of Comp. Sci. \& Math., Victoria University, PO Box 14428, Melbourne City, VIC 8001, Australia.

Abstract

Grüss-type inequalities for the Riemann-Stieltjes integral with (l, L)-Lipschitzian integrators and applications for the Čebyšev functional are given. Sharp inequalities complementing results of Čebyšev, Grüss, Ostrowski and Lupaş are given. Keywords: Riemann-Stieltjes integral, (l, L)-Lipschitzian functions, Integral inequalities, Čebyšev, Grüss, Ostrowski and Lupaş type inequalities. PACS: 02.60.-x

1. INTRODUCTION

In order to accurately approximate the Riemann-Stieltjes integral, S.S. Dragomir and I. Fedotov introduced in [9] the following error functional $D(f ; u):=\int_{a}^{b} f(t) d u(t)-[u(a)-u(b)] \cdot \frac{1}{b-a} \int_{a}^{b} f(t) d t$ provided the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ and the Riemann integral $\int_{a}^{b} f(t) d t$ exist. In the same paper, the authors have shown that

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{2} \cdot L(M-m)(b-a) \tag{1}
\end{equation*}
$$

provided that u is L-Lipschitzian, i.e., $|u(t)-u(s)| \leq L|t-s|$ for any $t, s \in[a, b]$ and f is Riemann integrable and bounded below by m and above by M. The constant $\frac{1}{2}$ is best possible in the sense that it cannot be replaced by a smaller quantity. In the follow-up paper [10], the same authors established a different result, namely

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{2} K(b-a) \bigvee_{a}^{b}(u), \tag{2}
\end{equation*}
$$

provided that u is of bounded variation and f is K-Lipschitzian with a constant $K>0$. Here $\frac{1}{2}$ is also best possible.
In [7], by the use of the following representation

$$
\begin{equation*}
D(f ; u)=\int_{a}^{b} \Phi_{u}(t) d f(t) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{u}(t):=\frac{1}{. b-. a}[(t-a) u(b)+(b-t) u(a)]-u(t), \quad t \in[a, b], \tag{4}
\end{equation*}
$$

the author has established the following inequality as well:

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{2} L(b-a)[u(b)-u(a)-K(u)] \leq \frac{1}{2} L(b-a)[u(b)-u(a)] \tag{5}
\end{equation*}
$$

where $K(u):=\frac{4}{(b-a)^{2}} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) u(t) d t(\geq 0), u$ is monotonic nondecreasing and f is L-Lipschitzian, and

$$
\begin{equation*}
|D(f ; u)| \leq[u(b)-u(a)-Q(u)] \cdot \bigvee_{a}^{b}(f) \leq[u(b)-u(a)] \cdot \bigvee_{a}^{b}(f) \tag{6}
\end{equation*}
$$

where $Q(u):=\frac{1}{b-a} \int_{a}^{b} u(t) \operatorname{sgn}\left(t-\frac{a+b}{2}\right) d t(\geq 0)$, and f is of bounded variation, The constant $\frac{1}{2}$ in (5) and the first inequality in (6) are sharp.

The main aim of the present paper is to provide other bounds for $D(f ; u)$ in the case where the integrator u is (l, L)-Lipschitzian (see Definition 1). Natural applications for the Cebyšev functional that complement the classical results due to Čebyšev, Grüss, Ostrowski and Lupaş are also given.

2. SHARP BOUNDS FOR (l, L)-LIPSCHITZIAN INTEGRATORS

We say that a function $v:[a, b] \rightarrow \mathbb{R}$ is $K-\operatorname{Lipschitzian~with~} K>0$ if $|v(t)-v(s)| \leq K|t-s|$ for any $t, s \in[a, b]$. The following lemma may be stated:
Lemma 1 Let $u:[a, b] \rightarrow \mathbb{R}$ and $l, L \in \mathbb{R}$ with $L>l$. The following statements are equivalent:
(i) The function $u-\frac{l+L}{2} \cdot e$, where $e(t)=t, t \in[a, b]$ is $\frac{1}{2}(L-l)$-Lipschitzian;
(ii) We have the inequalities

$$
\begin{equation*}
l \leq \frac{u(t)-u(s)}{t-s} \leq L \quad \text { for each } t, s \in[a, b] \quad \text { with } t \neq s \tag{7}
\end{equation*}
$$

(iii) We have the inequalities

$$
\begin{equation*}
l(t-s) \leq u(t)-u(s) \leq L(t-s) \quad \text { for each } t, s \in[a, b] \quad \text { with } t>s \tag{8}
\end{equation*}
$$

Following [13], we can introduce the definition of (l, L)-Lipschitzian functions:
Definition 1 The function $u:[a, b] \rightarrow \mathbb{R}$ which satisfies one of the equivalent conditions (i) - (iii) from Lemma 1 is said to be (l, L)-Lipschitzian on $[a, b]$. If $L>0$ and $l=-L$, then $(-L, L)$-Lipschitzian means L-Lipschitzian in the classical sense.
Theorem 1 If $u:[a, b] \rightarrow \mathbb{R}$ is (l, L)-Lipschitzian on $[a, b]$, then

$$
\begin{equation*}
\left|\Phi_{u}(t)\right| \leq \frac{(L-l)(b-t)(t-a)}{b-a} \leq \frac{1}{4}(L-l)(b-a) \text { for each } t \in[a, b] . \tag{9}
\end{equation*}
$$

The inequalities are sharp and the constant $\frac{1}{4}$ is best possible.
Proof: First of all, let us observe that

$$
\begin{equation*}
\Phi_{u}(t)=\Phi_{u-\frac{l+L}{2} e}(t) \quad \text { for each } t \in[a, b] \tag{10}
\end{equation*}
$$

Now, if $v:[a, b] \rightarrow \mathbb{R}$ is K-Lipschitzian, then by the definition of Φ_{v} we have

$$
\begin{equation*}
\left|\Phi_{v}(t)\right| \leq \frac{(b-t)|v(t)-v(a)|+(t-a)|v(b)-v(t)|}{b-a} \leq \frac{2 K(b-t)(t-a)}{b-a}, \text { for any } t \in[a, b] . \tag{11}
\end{equation*}
$$

Now, applying (11) for $v=u-\frac{l+L}{2} e$ which is $\frac{1}{2}(L-l)-$ Lipschitzian, we deduce $\left|\Phi_{u-\frac{l+L}{2} e}(t)\right| \leq \frac{(L-l)(b-t)(t-a)}{b-a}, t \in$ $[a, b]$ which together with (10) produces the first inequality in (9). The second inequality in (9) is obvious.
Consider the function $u:[a, b] \rightarrow \mathbb{R}, u(t)=\left|t-\frac{a+b}{2}\right|$. Then u is $(-1,1)-\operatorname{Lipschitzian}, u(a)=u(b)=\frac{b-a}{2}$, $u\left(\frac{a+b}{2}\right)=0$ and introducing these values in (9) for $t=\frac{a+b}{2}$, we obtain an equality with both terms $\frac{1}{2}(b-a)$.
Corollary 1 With the assumptions of Theorem 1, we have the inequality:

$$
\begin{equation*}
\left|\frac{u(a)+u(b)}{2}-u\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{4}(L-l)(b-a) . \tag{12}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible.
Theorem 2 Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is (l,L)-Lipschitzian and f is of bounded variation, then

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{4}(L-l)(b-a) \bigvee_{a}^{b}(f) \tag{13}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (13).
Proof: We use the following representation of the Grüss type functional $D(f ; u)$ obtained in [7] (see also [5]):

$$
\begin{equation*}
D(f ; u)=\int_{a}^{b} \Phi_{u}(t) d f(t) \tag{14}
\end{equation*}
$$

It is well known that if $p:[\alpha, \beta] \rightarrow \mathbb{R}$ is continuous and $v:[\alpha, \beta] \rightarrow \mathbb{R}$ is of bounded variation, then the RiemannStieljtes integral $\int_{\alpha}^{\beta} p(t) d v(t)$ exists and $\left|\int_{\alpha}^{\beta} p(t) d v(t)\right| \leq \sup _{t \in[\alpha, \beta]}|p(t)| \bigvee_{\alpha}^{\beta}(v)$. Applying this property we then have $|D(f ; u)|=\left|\int_{a}^{b} \Phi_{u}(t) d f(t)\right| \leq \sup _{t \in[a, b]}\left|\Phi_{u}(t)\right| \bigvee_{a}^{b}(f) \leq \frac{1}{4}(L-l)(b-a) \bigvee_{a}^{b}(f)$ and (13) is obtained.

The sharpness of the constant $\frac{1}{4}$, can be proved on choosing $u, f:[a, b] \rightarrow \mathbb{R}, u(t)=\left|t-\frac{a+b}{2}\right|$ and $f(t)=$ $\operatorname{sgn}\left(t-\frac{a+b}{2}\right)$. The details are omitted.
Theorem 3 Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is (l, L)-Lipschitzian and f is K-Lipschitzian on $[a, b]$, then

$$
\begin{equation*}
|D(f ; u)| \leq \frac{1}{6} K(L-l)(b-a)^{2} \tag{15}
\end{equation*}
$$

Proof: It is known that, if $p:[\alpha, \beta] \rightarrow \mathbb{R}$ is Riemann integrable and $v:[a, b] \rightarrow \mathbb{R}$ is L-Lipschitzian, then the RiemannStieltjes integral $\int_{\alpha}^{\beta} p(t) d v(t)$ exists and $\left|\int_{\alpha}^{\beta} p(t) d v(t)\right| \leq L \int_{a}^{b}|v(t)| d t$. If we apply this property to the integral $\int_{a}^{b} \Phi_{u}(t) d f(t)$ and use the identity (14), we then have

$$
|D(f ; u)|=\left|\int_{a}^{b} \Phi_{u}(t) d f(t)\right| \leq K \int_{a}^{b}\left|\Phi_{u}(t)\right| d t \leq \frac{K(L-l)}{b-a} \int_{a}^{b}(b-t)(t-a) d t=\frac{1}{6} K(L-l)(b-a)^{2}
$$

and the inequality (15) is proved.
Remark 1 It is an open problem whether or not the constant $\frac{1}{6}$ is the best possible constant in (15).

Theorem 4 Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is (l, L)-Lipschitzian and f is monotonic nondecreasing, then

$$
|D(f ; u)| \leq 2 \cdot \frac{L-l}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \leq\left\{\begin{array}{l}
\frac{1}{2}(L-l) \max \{|f(a)|,|f(b)|\}(b-a) \tag{16}\\
\frac{1}{(q+1)^{\frac{1}{q}}}(L-l)\|f\|_{p}(b-a)^{\frac{1}{q}} \quad \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
(L-l)\|f\|_{1}
\end{array}\right.
$$

where $\|f\|_{p}:=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}, p \geq 1$ are the Lebesgue norms. The constants 2 and $\frac{1}{2}$ are best possible in (16).
Proof: It is well known that if $p:[\alpha, \beta] \rightarrow \mathbb{R}$ is continuous and $v:[\alpha, \beta] \rightarrow \mathbb{R}$ is monotonic nondecreasing, then the Riemann-Stieltjes integral $\int_{\alpha}^{\beta} p(t) d v(t)$ exists and $\left|\int_{\alpha}^{\beta} p(t) d v(t)\right| \leq \int_{\alpha}^{\beta}|p(t)| d v(t)$. Then, on applying this property for the integral $\int_{a}^{b} \Phi_{u}(t) d f(t)$, we have

$$
\begin{equation*}
|D(f ; u)|=\left|\int_{a}^{b} \Phi_{u}(t) d f(t)\right| \leq \int_{a}^{b}\left|\Phi_{u}(t)\right| d f(t) \leq \frac{L-l}{b-a} \int_{a}^{b}(b-t)(t-a) d f(t) \tag{17}
\end{equation*}
$$

where, for the last inequality, we have used the inequality (9).
Integrating by parts in the Riemann-Stieltjes integral, we have $\int_{a}^{b}(b-t)(t-a) d f(t)=2 \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t$, which together with (17) produces the first inequality in (16).

The last part follows on utilising the Hölder inequality, namely

$$
\int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \leq\left\{\begin{array}{c}
\sup _{t \in[a, b]}|f(t)| \int_{a}^{b}\left|t-\frac{a+b}{2}\right| d t \\
\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{q} d t\right)^{\frac{1}{q}} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\sup _{t \in[a, b]}\left|t-\frac{a+b}{2}\right| \int_{a}^{b}|f(t)| d t
\end{array} \leq\left\{\begin{array}{c}
\frac{1}{4} \max \{|f(a)|,|f(b)|\}(b-a)^{2} \\
\frac{1}{2} \cdot \frac{1}{(q+1)^{\frac{1}{q}}}\|f\|_{p}(b-a)^{1+\frac{1}{q}} \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{1}{2}\|f\|_{1}(b-a)
\end{array}\right.\right.
$$

3. APPLICATIONS FOR THE ČEBYŠEV FUNCTIONAL

For two Lebesgue integrable functions, $f, g:[a, b] \rightarrow \mathbb{R}$ with $f g$ an integrable function, consider the Čebyšev functional $C(\cdot, \cdot)$ defined by

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \cdot \frac{1}{b-a} \int_{a}^{b} g(t) d t . \tag{18}
\end{equation*}
$$

In 1934, Grüss [12] showed that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{19}
\end{equation*}
$$

provided m, M, n, N are real numbers with the property

$$
\begin{equation*}
-\infty<m \leq f \leq M<\infty, \quad-\infty<n \leq g \leq N<\infty \quad \text { a.e. on }[a, b] \tag{20}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (18) in the sense that it cannot be replaced by a smaller quantity.
Another lesser known inequality, even though it was derived in 1882 by Čebyšev [1], under the assumption that f^{\prime}, g^{\prime} exist and are continuous in $[a, b]$ is given by

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{21}
\end{equation*}
$$

where $\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$. The constant $\frac{1}{12}$ cannot be improved in the general case. We notice that the Čebyšev inequality (21) also holds if $f, g:[a, b] \rightarrow \mathbb{R}$ are absolutely continuous on $[a, b]$ and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$.

In 1970, Ostrowski [15] proved, amongst others, the following result that is in a sense a combination of the Čebyšev and Grüss results, namely

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{8}(b-a)(M-m)\left\|g^{\prime}\right\|_{\infty} \tag{22}
\end{equation*}
$$

provided f satisfies (20) while g is absolutely continuous and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (22).
Finally, let us recall that in 1973, Lupaş [14], proved the following inequality in terms of the Euclidean norm:

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{\pi^{2}}(b-a)\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2} \tag{23}
\end{equation*}
$$

provided that f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is best possible.
For other results on the Čebyšev functional, see [2], [3], [5], [6], [8] and [11].

Now, assume that $g:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable on $[a, b]$ and $-\infty<m \leq g(t) \leq M<\infty$ for a.e. $t \in[a, b]$. Then the function $u(t):=\int_{a}^{t} g(s) d s$ is (m, M)-Lipschitzian on $[a, b]$ and

$$
\begin{equation*}
\tilde{\Phi}_{g}(t):=\Phi_{u}(t)=\int_{a}^{t} g(s) d s-\frac{t-a}{b-a} \int_{a}^{b} g(s) d s, \quad t \in[a, b] . \tag{24}
\end{equation*}
$$

On utilising the Theorem 1 we can state the following result that provides a sharp bound for $\tilde{\Phi}_{g}(t)$ in (24).
Proposition 1 If $g:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable on $[a, b]$ and $-\infty<m \leq g(s) \leq M<\infty$ for a.e. $s \in[a, b]$, then

$$
\begin{equation*}
\left|\tilde{\Phi}_{g}(t)\right| \leq \frac{(M-m)(b-t)(t-a)}{b-a} \leq \frac{1}{4}(M-m)(b-a) \tag{25}
\end{equation*}
$$

for a.e. $t \in[a, b]$. The first inequality is sharp. The constant $\frac{1}{4}$ is best possible.
The inequality is obvious by (13). The sharpness follows on choosing $t=\frac{a+b}{2}$ and $g(t)=\operatorname{sgn}\left(t-\frac{a+b}{2}\right)$ in (25). The details are omitted.

The following result for the Čebyšev functional can be stated:
Proposition 2 If $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable and satisfies the bounds

$$
\begin{align*}
& -\infty<m \leq g \leq M<\infty \quad \text { a.e. on }[a, b], \tag{26}\\
& |C(f, g)| \leq \frac{1}{4}(M-m) \bigvee_{a}^{b}(f) .
\end{align*}
$$

then
The constant $\frac{1}{4}$ is best possible.
The following result can be stated as well.
Proposition 3 Assume that $g:[a, b] \rightarrow \mathbb{R}$ is as in Proposition 2. If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic nondecreasing on $[a, b]$, then

$$
|C(f, g)| \leq 2 \cdot \frac{(M-m)}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t \leq\left\{\begin{array}{l}
\frac{1}{2}(M-m) \max \{|f(a)|,|f(b)|\} ; \tag{28}\\
\frac{1}{(q+1)^{\frac{1}{q}}}(M-m)\|f\|_{p}(b-a)^{-\frac{1}{p}} \quad \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
(M-m) \frac{1}{b-a}\|f\|_{1} .
\end{array}\right.
$$

The constants 2 and $\frac{1}{2}$ are best possible.
The proof of the inequalities in (28) are obvious from (16). The sharpness of the constants follows on choosing $f(t)=g(t)=\operatorname{sgn}\left(t-\frac{a+b}{2}\right), t \in[a, b]$.

REFERENCES

1. P.L. Čebyšev, Sur les expressions approximatives des intègrals définis par les autres prises entre les nême limits, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
2. P. Cerone and S.S. Dragomir, New bounds for the Čebyšev functional, Appl. Math. Lett., 18 (2005), 603-611.
3. P. Cerone and S.S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. 38(2007), No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Art. 14. [ONLINE http://rgmia.vu.edu. au/v8n2.html].
4. X.-L. Cheng and J. Sun, Note on the perturbed trapezoid inequality, J. Inequal. Pure \& Appl. Math., 3(2) (2002), Art. 21 [ONLINE http://jipam.vu.edu.au/article.php?sid=181].
5. S.S. Dragomir, A generalisation of Cerone's identity and applications, Tamsui Oxford J. Math. Sci., 23(2007), No. 1, 79-90. RGMIA Res. Rep. Coll., 8(2) (2005), Art. 19. [ONLINE: http: / /rgmia.vu. edu. au/v8n2 . html].
6. S.S. Dragomir, A generalisation of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
7. S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004), 89-112.
8. S.S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure and Appl. Math., 31(4) (2000), 397-415.
9. S.S. Dragomir and I. Fedotov, An inequality of Grüss type for Riemann-Stieltjes integral and application for special means, Tamkang J. Math., 29(4) (1998), 287-292.
10. S.S. Dragomir and I. Fedotov, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, Nonlinear Funct. Anal. Appl. (Korea), 6(3) (2001), 415-433.
11. S.S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature results, Comp. \& Math. with Applic., 33(11) (1997), 15-20.
12. G. Grüss, Über das maximum das absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \cdot \int_{a}^{b} g(x) d x$, Math. Z., 39 (1934), 215-226.
13. Zheng Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math., 30(4) (2004), 483-489.
14. A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15(38)(2) (1973), 219-222.
15. A.M. Ostrowski, On an integral inequality, Aequationes Math., 4 (1970), 358-373.
