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Abstract. An iterative approach is used to represent multidimensional integrals in terms of lower dimensional integrals
and function evaluations. The procedure is quite general utilising one dimensional identities as thegeneratorto procure
multidimensional identities. Bounds are obtained from the identities. Both weighted and unweighted integrals are considered.
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1. INTRODUCTION

We firstly present one-dimensional identities which may be used asgeneratorsfor higher dimensional results.
For f : [a,b]→ R we define the Ostrowski and Trapezoidal functionals by

S ( f ;c,x,d) := f (x)−M ( f ;c,d) (1)

and
T ( f ;c,x,d) :=

(
x−c
d−c

)
f (c)+

(
d−x
d−c

)
f (d)−M ( f ;c,d) , (2)

respectively, where

M ( f ;c,d) :=
1

d−c

∫ d

c
f (u)du, the integral mean. (3)

The following identities may be easily shown to hold forf of bounded variation, by an integration by parts argument
of the Riemann-Stieltjes integrals and so

S ( f ;c,x,d) =
∫ d

c
p(x, t,c,d)d f (t) , p(x, t,c,d) =


t−c
d−c, t ∈ [c,x]

t−d
d−c, t ∈ (x,d]

(4)

and
T ( f ;c,x,d) =

∫ d

c
q(x, t,c,d)d f (t) , q(x, t,c,d) =

t−x
d−c

, x, t ∈ [c,d] . (5)

The book [10] is devoted to Ostrowski type results involving (1) and numerous generalisations. See also [1], [11]
and [14].

Further, define the three point functionalT( f ;a,α,x,β ,b) which involves the difference between the integral
mean and, a weighted combination of a function evaluated at the end points and an interior point. Namely, for
a≤ α < x < β ≤ b,

T( f ;a,α,x,β ,b) :=
(

α −a
b−a

)
f (a)+

(
β −α

b−a

)
f (x)+

(
b−β

b−a

)
f (b)−M ( f ;a,b) , (6)

which for f of bounded variation, the identity

T( f ;a,α,x,β ,b) =
∫ b

a
r (x, t)d f (t) , r (x, t) =


t−α

b−a , t ∈ [a,x]

t−β

b−a, t ∈ (x,b]
(7)

may easily be shown to be valid.



Further, if f (t) is assumed to be absolutely continuous fort over its respective interval, thend f (t) = f ′ (t)dt and
the Riemann-Stieltjes integrals in (4), (5) and (7) are equivalent to Riemann integrals.

In the current work, weightedgeneratorsare used to obtain identities involving multidimensional integrals. The
identities allowa priori bounds on the error. Ostrowski generators are utilised to procure multidimensional results. For
applications to weighted trapezoidal and three point generators, the reader is referred to the full paper, [6]. The results
of Cerone [3] and [4] are recaptured if the weights are taken to be identically one.

2. WEIGHTED MULTIDIMENSIONAL OSTROWSKI IDENTITIES AND BOUNDS
FROM AN ITERATIVE APPROACH

The following theorem uses an iterative approach to extend a weighted Ostrowski functional identity to multidimen-
sions. Firstly, we will require some notation.

Let In = ∏n
i=1 [ai ,bi ] = [a1,b1]× [a2,b2]× ·· · × [an,bn] . Further, let f : In → R and define operatorsFi ( f ) and

λi,wi ( f ) by
Fi ( f ) := f (t1, . . . , ti−1,xi , ti+1, . . . , tn) wherexi ∈ [ai ,bi ] (8)

and
λi,wi ( f ) :=

1
Wi

∫ bi

ai

wi (ti) f (t1, . . . , ti−1, ti , ti+1, . . . , tn)dti , (9)

wherewi (ti) are positive weight functions forti ∈ [ai ,bi ] , i = 1,2, . . . ,n satisfying

Wi =
∫ bi

ai

wi (ti)dti > 0. (10)

That is,Fi ( f ) evaluatesf (·) in the ith variable atxi ∈ [ai ,bi ] andλi,wi ( f ) is the weighted integral mean off (·) in the
ith variable. Assuming thatf (·) is absolutely continuous in theith variableti ∈ [ai ,bi ] , we have

Li,wi ( f ) =
1

Wi

∫ bi

ai

Pi (xi , ti)
∂ f
∂ ti

dti = (Fi −λi,wi )( f ) , (11)

for i = 1,2, . . . ,n, where

Pi (xi , ti)
Wi

=


∫ ti
ai wi(s)ds

Wi
, ti ∈ [ai ,xi ]

−
∫ bi
ti

wi(s)ds

Wi
, ti ∈ (xi ,bi ] .

(12)

Thus (11) – (12) is ostensibly equivalent to a weighted Montgomery identity which reduces to (4) forwi (ti) ≡ 1
and f (t1, . . . , ti−1, ti,ti+1, . . . , tn) absolutely continuous withti ∈ [ai ,bi ] .

Theorem 1 Let f : In → R be absolutely continuous in such a manner that the partial derivatives of order one with
respect to every variable exist. Then

En ( f ) = f (x1,x2, . . . ,xn)−
n

∑
i=1

1
Wi

∫ bi

ai

wi (ti) f (x1,x2, . . . ,xi−1, ti ,xi+1, . . . ,xn)dti (13)

+
n

∑
i< j

1
WiWj

∫ b j

a j

∫ bi

ai

wi (ti)w j (t j) f (x1, . . . ,xi−1, ti ,xi+1, . . . , t j , . . . ,xn)dtidt j

−·· ·− (−1)n

W∗

∫ bn

an

· · ·
∫ b1

a1

n

∏
i=1

wi (ti) f (t1, . . . , tn)dt1 . . .dtn := τn (a,x,b) ,

where

En ( f ) =
1

W∗

∫ bn

an

· · ·
∫ b1

a1

n

∏
i=1

Pi (xi , ti)
∂ n f

∂ tn . . .∂ t1
dt1 . . .dtn, (14)

W∗ =
n

∏
i=1

Wi , (15)

with Wi given by (10) and Pi (xi , ti) is given by (12).



Remark 1 The result given by (13) may be utilised to approximate the weighted n− dimensional integral in terms of
lower dimensional integrals and a function evaluation f(x1,x2, . . . ,xn) where xi ∈ [ai ,bi ] , i = 1,2, . . . ,n. Specifically,
there are

(n
0

)
function evaluations,

(n
1

)
single integral evaluations in each of the axes,

(n
2

)
double integral evaluations

and so on, and, of course,
(n

n

)
n−dimensional integral evaluations. This results from the fact that from (8) – (11)

En ( f ) =

(
n

∏
i=1

Li,wi

)
( f ) =

(
n

∏
i=1

(Fi −λi,wi )

)
( f ) . (16)

The above procedure of utilising a one-dimensional identity as thegeneratorto recursively obtain a multidimen-
sional identity which is quite general, may be extended to utilising other one-dimensional identities.

Theorem 2 Let f : In →R be absolutely continuous in a manner that the partial derivatives of order one with respect
to every variable exist. Then

W∗ |τn (a,x,b)| ≤



n
∏
i=1

(∫ bi
ai
|xi − ti |wi (ti)dti

)∥∥∥ ∂ n f
∂ tn...∂ t1

∥∥∥
∞

, ∂ n f
∂ tn...∂ t1

∈ L∞ [In] ;(
n
∏
i=1

Pi (q)
) 1

q ∥∥∥ ∂ n f
∂ tn...∂ t1

∥∥∥
p
, ∂ n f

∂ tn...∂ t1
∈ Lp [In] ,

p > 1, 1
p + 1

q = 1;
n
∏
i=1

θi

∥∥∥ ∂ n f
∂ tn...∂ t1

∥∥∥
1
, ∂ n f

∂ tn...∂ t1
∈ L1 [In] ,

(17)

whereτn (a,x,b) is as defined by (13),

Pi (q) =
∫ xi

ai

(∫ ti

ai

wi (s)ds

)q

dti +
∫ bi

xi

(∫ bi

ti
wi (s)ds

)q

dti , (18)

θi =
1
2

∫ bi

ai

wi (s)ds+
1
2

∣∣∣∣∫ xi

ai

wi (s)ds−
∫ bi

xi

wi (s)ds

∣∣∣∣ . (19)

Remark 2 The expression forτn (a,x,b) may be written in a less explicit form which is perhaps more appealing.
Namely,

τn (a,x,b) = f (x1,x2, . . . ,xn)+
n−1

∑
k=1

(−1)k∑
k

Mk +(−1)nMn, (20)

whereMk represents the integral means in k variables with the remainder being evaluated at their respective interior
point and∑kMk is a sum over all

(n
k

)
, k−dimensional integral means. Here

Mn =
1

W∗

∫ bn

an

· · ·
∫ b1

a1

n

∏
i=1

wi (ti) f (t1, . . . , tn)dt1 . . .dtn

and

∑
1

M1 =
1

W1

∫ b1

a1

w1 (t1) f (t1,x2, . . . ,xn)dt1 +
1

W2

∫ b2

a2

w2 (t2) f (x1, t2,x3, . . . ,xn)dt2

+ · · ·+ 1
Wn

∫ bn

an

wn (tn) f (x1,x2, . . . ,xn−1, tn)dtn.

It should be noted that (20) may be written as

τn (a,x,b) =
n

∑
k=0

(−1)k∑
k

Mk (21)

if we define the degenerate 0th integral meanM0 = f (x1,x2, . . . ,xn) .

Remark 3 For proofs of the above results, the reader is referred to Cerone [6]. Cerone [3] using an iterative approach
from using the Montgomery identity as ageneratorobtained an unweighted version of the results in Theorems 1 and



2 for which the tightest bounds occur when we choose to sample at the mid-points of the respective intervals, namely,
for xi = ai+bi

2 . This is not the case for the weighted results depicted in Theorem 2. If we let

m(c,d) =
∫ d

c
w(s)ds and M(c,d) =

∫ d

c
sw(s)ds.

then we observe that, for example,∫ b

a
|x− t|w(t)dt =

∫ x

a
(x− t)w(t)dt+

∫ b

x
(t−x)w(t)dt = x[m(a,x)−m(x,b)]+M (x,b)−M (a,x) .

Thus we see that the bound is simplified, although not necessarily globally minimised, at the median x= x∗, where
m(a,x∗) = m(x∗,b) .

In Cerone [6], the bounds resulting from multidimensional integrals using weighted trapezoidal generators are
shown to be similar to those presented in Theorem 2 above, emanating from Ostrowski. This was shown to be true in
general for one dimensional integrals in Cerone [5].

3. CONCLUDING REMARKS

Weighted rules of Ostrowski type have been investigated in the current work as generators for multidimensional
integration. This results in product form weight functions in the multidimensional integral. The current Ostrowski-
based generators may be developed for weighted trapezoidal and three point generators and the reader is referred to
Cerone [6] for futher details. The procedure developed in [3] and [4] may also be used to include higher order formulae
involving the behaviour of higher derivatives for its bounds. Multidimensional results based on anm branched Peano
kernel producing function evaluations atm+ 1 points are also possible using the methodology. Finally, we are not
restricted to using the same identity in each of the directions but may use different ones as long as we are able to
justify this.
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