Schur Convexity and Schur-Geometrically Concavity of Seiffert's Mean

Da-Mao Li and Huan-Nan Shi Jian Zhang

Department of Electronic information, Teacher's College of Beijing Union University, Beijing 100011, China

> Abstract. The Schur- concavity and Schur-geometrically convexity of the Seiffert's mean with two positive numbers a, b in R_{++}^{2} are discussed. Besides, some new inequalities are obtained.

Keywords: Seiffert's mean, Schur- convexity, Schur-geometrically concavity, inequality
2000 Mathematics Subject Classification Primary: 26D15, 26A51

§1 Introduction

Seiffert's mean ${ }^{[1, \mathrm{p} .43]}$ of two positive numbers a and b is defined as follows

$$
P=P(a, b)=\left\{\begin{array}{cc}
\frac{a-b}{4 \arctan \sqrt{a / b}-\pi} & a \neq b \\
a & a=b
\end{array}\right.
$$

In recent years, some further generalizations and applications about Seiffert's mean have been obtained in [2-5] and the references therein.

In this paper, the Schur-concavity and Schur-geometrically convexity of the Seiffert's mean with two positive numbers a, b in $R_{++}^{2}:=(0,+\infty) \times(0,+\infty)$ are discussed. Besides, some new inequalities are obtained.

§ 2 Main Results

Theorem 1. $P(a, b)$ is Schur-concave with (a, b) in R_{++}^{2}.
Theorem 2. $P(a, b)$ is Schur- geometrically convex with (a, b) in R_{++}^{2}.

§ 3 Applications

Theorem 3. For $(a, b) \in R_{++}^{2}$, with $a \leq b$, we have

$$
G(a, b) \leq P\left(a^{\frac{3}{4}} b^{\frac{1}{4}}, a^{\frac{1}{4}} b^{\frac{3}{4}}\right) \leq P(a, b) \leq P\left(\frac{3 a+b}{4}, \frac{a+3 b}{4}\right) \leq A(a, b),
$$

where $G(a, b)$ and $A(a, b)$ is the arithmetic-mean and the geometry respectively.
Theorem 4. Let $0<a<b, c \geq 0$. Then

$$
(a+b+2 c)\left(\arctan \sqrt{\frac{a+c}{b+c}}\right)-(a+b)\left(\arctan \sqrt{\frac{a}{b}}\right) \geq \frac{c \pi}{2}
$$

REFERENCES

[1] H.-J.Seffert, Problem 887, Nieuw Arch. Wisk. (Ser 4) 11, 176 (1993)
[2] A.A.Jagers, Solution of Problem 887 ,Nieuw Arch. Wisk.(4)12,230-231(1994)
[3] P.A.Hasto, A monotonity property of ratios of symmetric homogeneous means, JIPAM, J. Inequal. Pure Appl. Math. 3, No.5, Paper No.71, 23 p., electronic only (2002).
ttp://www.emis.de/journals/JIPAM/article223.html?sid=223
[4] J.Sandor, On certain inequalities for means. III. Arch. Math. (Basel) 76 (2001), no. 1, 34--40.
[5] M.Bencze, About Seiffert's Mean, RGMIA Research Report Collection Volume 3, Number 4, $2000 \mathrm{http}: / /$ rgmia.vu.edu.au/v3n4.html

