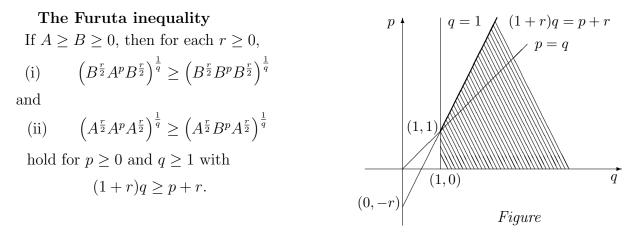
A geometric mean in the Furuta inequality

Masatoshi Fujii Osaka kyoiku University, Japan

First of all, we cite the Furuta inequality [3]:



Afterwards, Ando [1] proposed a variant of the Furuta inequality, which is extended to a two variable version as follows:

For $A, B > 0, A \gg B$, i.e., $\log A \ge \log B$, if and only if

$$\left(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \ge \left(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}$$

It is represented in terms of the monotonicity of an operator function in the following way, [2]

Theorem A For A, B > 0, $A \gg B$ if and only if for each $s \ge 0$, $F(t, r) = A^{-r} \ddagger_{\frac{s+r}{t+r}} B^t$ is an increasing function of both $t \ge s$ and $r \ge 0$, where \ddagger_{α} is the α -geometric mean.

Recently Uchiyama [5] discussed some extensions of the Furuta inequality by using the operator means established by Kubo-Ando. For this, he paid his attention to the Jensen inequality for operator concave functions.

Theorem B If $A \leq B \mid_{\mu} C$ for A, B, C > 0, then

$$B^s \nabla_{\mu} C^s \leq A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t \nabla_{\mu} C^t)$$

for $r \geq 0$ and $t \geq s \geq 0$, where $!_{\mu}$ and ∇_{μ} are μ -harmonic and arithmetic means respectively.

Very recently, we found the following result in [4] which is based on Theorem A.

Theorem C Suppose that A, B, C > 0 and $r, s \ge 0$. If $A^t \ll B^t \nabla_{\mu} C^t$ for all $t \ge 0$, then

$$f(t) = A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t \nabla_{\mu} C^t)$$

is an increasing function of $t \geq s$. On the other hand, if $A^t \ll B^t \mid_{\mu} C^t$ for all $t \geq 0$, then

$$h(t) = A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t !_{\mu} C^t)$$

is a decreasing function of $t \geq s$.

In this talk, we discuss Theorem C and related inequalities. We begin with the following lemma.

Lemma 1 For B, C > 0 and $\mu \in [0, 1]$, $\log(B^t \nabla_{\mu} C^t)^{1/t}$ converges to $\mu \log B + (1 - \mu) \log C$ decreasingly as $t \searrow 0$. Consequently there exists

$$s - \lim(B^t \nabla_{\mu} C^t)^{1/t} = e^{\mu \log B + (1-\mu) \log C}.$$

Definition 1 For B, C > 0 and $\mu \in [0, 1]$,

$$B \diamondsuit_{\mu} C = e^{\mu \log B + (1-\mu) \log C}$$

is said to be the μ -chaotically geometric mean of B and C.

Theorem 2 For B, C > 0 and $\mu \in [0, 1]$, the following statements are mutually equivalent:

- (1) $A \ll B \diamondsuit_{\mu} C$.
- (2) $B^s \nabla_{\mu} C^s \leq A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t \nabla_{\mu} C^t) \text{ for } r \geq 0 \text{ and } t \geq s \geq 0.$

(3) For each $r, s \ge 0$, $f(t) = A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t \nabla_{\mu} C^t)$ is an increasing function of $t \ge s$.

Related to Theorem B, we have the following results.

Theorem 3 Suppose that A, B, C > 0 satisfy $A \ll (B^{t_0} \nabla_{\mu} C^{t_0})^{1/t_0}$ for some t_0 . If $t_0 \ge 0$, then

$$B^s \nabla_{\mu} C^s \leq A^{-r} \sharp_{\frac{s+r}{t+r}} (B^t \nabla_{\mu} C^t)$$

for all $r \ge 0$ and $t \ge s \ge 0$ with $t \ge t_0$. On the other hand, if $t_0 < 0$, then

$$(B^{t} !_{\mu} C^{t})^{\frac{s}{t}} \leq A^{-r} \sharp_{\frac{s+r}{t+r}} (B^{t} !_{\mu} C^{t})$$

for all $r \ge 0$ and $-t_0 \ge t \ge s \ge 0$.

References

- T.ANDO, On some operator inequalities, Math. Ann., 279(1987), 157-159.
- [2] M.FUJII, T.FURUTA and E.KAMEI, Furuta's inequality and application to Ando's theorem, Linear Alg. and Appl., 179(1993), 161-169.
- [3] T.FURUTA, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
- [4] T.FURUTA and E.KAMEI, An extension of Uchiyama's result associated with an order preserving operator inequality, preprint.
- [5] E.KAMEI, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.

[6] M.UCHIYAMA, An operator inequality related to Jensen's inequality, preprint.