Order among Furuta type inequalities

Maebashi Institute of Technology Eizaburo Kamei

ABSTRACT. The order between parametrized Furuta inequality and parametrized grand Furuta inequality is determined as follows: If $A \ge B > 0$ and $\delta \in [0, 1]$, then

$$A^u \sharp_{\frac{\delta-u}{\beta-u}} (A^t \natural_{\frac{\beta-t}{p-t}} B^p) \le A^u \sharp_{\frac{\delta-u}{p-u}} B^p \le B^\delta$$

$$\leq A^{\delta} \leq B^{u} \sharp_{\frac{\delta-u}{p-u}} A^{p} \leq B^{u} \sharp_{\frac{\delta-u}{\beta-u}} (B^{t} \sharp_{\frac{\beta-t}{p-t}} A^{p})$$

for $t \in [0, 1]$, $0 \le t and <math>u \le 0$.

More generally, if $\delta \in [0, p]$ under the above conditions, then

$$A^u \sharp_{\frac{\delta-u}{\beta-u}} (A^t \sharp_{\frac{\beta-t}{p-t}} B^p) \le A^u \sharp_{\frac{\delta-u}{p-u}} B^p \le B^\delta$$

and

$$B^u \sharp_{\frac{\delta-u}{\beta-u}} (B^t \natural_{\frac{\beta-t}{p-t}} A^p) \ge B^u \sharp_{\frac{\delta-u}{p-u}} A^p \ge A^\delta.$$

The case of $\delta = 1$ gives the order between the Furuta inequality and grand Furuta inequality.

