On the Comparison of Cauchy Mean Values

László Losonczi

Suppose that $ x_1\le\dots\le x_n$ and $ f^{(n-1)}, g^{(n-1)}$ exist, with $ g^{(n-1)}\ne 0,$ on $ [x_1,x_n]$. Then there is a $ t\in [x_1,x_n] $ (moreover $ t\in (x_1,x_n) $ if $ x_1<x_n$) such that

$\displaystyle \displaystyle{\frac{[x_1,\dots,x_n]_f}{[x_1,\dots,x_n]_g}}=\displaystyle{\frac{f^{(n-1)}(t)}{g^{(n-1)}(t) }}
$
where $ [x_1,\dots,x_n]_f$ denotes the divided difference of $ f$ at the points $ x_1,\dots,x_n$. This is the Cauchy Mean Value Theorem for divided differences (see e.g. E. Leach and M. Sholander, Multi-variable extended mean values, J. Math. Anal. Appl., 104 1984, 390-407).

If the function $ \displaystyle{\frac{f^{(n-1)}}{g^{(n-1)}}}$ is invertible then

$\displaystyle t=\( \displaystyle{\frac{f^{(n-1)}}{g^{(n-1)}}}\)^{-1}
\( \displaystyle{\frac{[x_1,\dots,x_n]_f}{[x_1,\dots,x_n]_g}}\)$
is a mean value of $ x_1,\dots,x_n$. It is called the Cauchy mean of the numbers $ x_1,\dots,x_n$ and will be denoted by $ D_{fg}(x_1,\dots,x_n)$ .

Here we completely solve the comparison problem of Cauchy means

$\displaystyle D_{fg}(x_1,x_2,\dots,x_n)\le D_{FG}(x_1,x_2,\dots,x_n)
$
where $ x_1,x_2,\dots,x_n\in I, n\ge 2$ is fixed, in the special cases $ g=G$, $ f=F$ and $ \displaystyle{\frac{f^{(n-1)}}{g^{(n-1)}}}=\displaystyle{\frac{F^{(n-1)}}{G^{(n-1)}}}$. In the general case we find necessary conditions (which are not sufficient) and also sufficient conditions (which are not necessary).