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Abstract: A self-affine tile in Rn is a compact set T ⊂ Rn such that there

are an expanding n×n real matrix M with |det(M)| = m integer and a finite

set D ⊂ Rn such that the set MT is tiled by the family T + dd∈D. The latter

set D is called a digit set. A compact set ⊂ Rn is called lattice tiling in Rn if

there is a point lattice L ⊂ Rn such that Rn is tiled by the family C + uu∈L.

Given a point lattice Λ ⊂ Rn, the finite set S ⊂ Λ is called a discrete lattice

tiling in Λ, if there is a point lattice L ⊂ Λ such that Λ is tiled by the family

S + uu∈L. The talk is devoted to the study of relations among the above

three phenomena and their relation to the geometry of numbers. Our main

tools are the new methods of papers [6]-[12] (based on a new ”inequality

approach”), where many refinements of basic results of geometry of numbers

have been proved for any discrete subgroup L of Rn and any bounded set

A ⊂ Rn. (As concern self-affine tiles and digit sets, see, e.g., [1]-[5].)
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