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ABSTRACT The main aim of this book is to present recent results con-
cerning inequalities for continuous functions of selfadjoint operators on
complex Hilbert spaces. It is intended for use by both researchers in various
�elds of Linear Operator Theory and Mathematical Inequalities, domains
which have grown exponentially in the last decade, as well as by postgrad-
uate students and scientists applying inequalities in their speci�c areas.
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Preface

Linear Operator Theory in Hilbert spaces plays a central role in contempo-
rary mathematics with numerous applications for Partial Di¤erential Equa-
tions, in Approximation Theory, Optimization Theory, Numerical Analysis,
Probability Theory & Statistics and other �elds.
The main aim of this book is to present recent results concerning inequal-

ities for continuous functions of bounded selfadjoint operators on complex
Hilbert spaces.
The book is intended for use by both researchers in various �elds of

Linear Operator Theory and Mathematical Inequalities, domains which
have grown exponentially in the last decade, as well as by postgraduate
students and scientists applying inequalities in their speci�c areas.
In the �rst chapter we recall some fundamental facts concerning bounded

selfadjoint operators on complex Hilbert spaces. The generalized Schwarz�s
inequality for positive selfadjoint operators as well as some results for the
spectrum of this class of operators are presented. Then we introduce and
explore the fundamental results for polynomials in a linear operator, con-
tinuous functions of selfadjoint operators as well as the step functions of
selfadjoint operators. By the use of these results we then introduce the
spectral decomposition of selfadjoint operators (the Spectral Representa-
tion Theorem) that will play a central role in the rest of the book. This
result is used as a key tool in obtaining various new inequalities for con-
tinuous functions of selfadjoint operators, functions which are of bounded
variation, Lipschitzian, monotonic or absolutely continuous. Another tool
that will greatly simplify the error bounds provided in the book is the Total
Variation Schwarz�s Inequality for which a simple proof is o¤ered.
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The chapter is concluded with some well known operator inequalities
of Jensen�s type for convex and operator convex functions. Finally, some
Grüss�type inequalities obtained in 1993 by Mond & Peµcaríc are also pre-
sented.
Jensen�s type inequalities in their various settings ranging from discrete

to continuous case play an important role in di¤erent branches of Modern
Mathematics. A simple search in theMathSciNet database of the American
Mathematical Society with the key words "jensen" and "inequality" in the
title reveals more than 300 items intimately devoted to this famous result.
However, the number of papers where this inequality is applied is a lot
larger and far more di¢ cult to �nd.
In the second chapter we present some recent results obtained by the

author that deal with di¤erent aspects of this well research inequality than
those recently reported in the book [20]. They include but are not restricted
to the operator version of the Dragomir-Ionescu inequality, Slater�s type
inequalities for operators and its inverses, Jensen�s inequality for twice dif-
ferentiable functions whose second derivatives satisfy some upper and lower
bounds conditions, Jensen�s type inequalities for log-convex functions and
for di¤erentiable log-convex functions and their applications to Ky Fan�s
inequality. Finally, some Hermite-Hadamard�s type inequalities for convex
functions and Hermite-Hadamard�s type inequalities for operator convex
functions are presented as well.
The third chapter is devoted to µCeby�ev and Grüss�type inequalities.
The µCeby�ev, or in a di¤erent spelling - Chebyshev, inequality which com-

pares the integral/discrete mean of the product with the product of the
integral/discrete means is famous in the literature devoted to Mathemat-
ical Inequalities. It has been extended, generalized, re�ned etc...by many
authors during the last century. A simple search utilizing either spellings
and the key word "inequality" in the title in the comprehensiveMathSciNet
database produces more than 200 research articles devoted to this result.
The sister inequality due to Grüss which provides error bounds for the

magnitude of the di¤erence between the integral mean of the product and
the product of the integral means has also attracted much interest since
it has been discovered in 1935 with more than 180 papers published, as a
simple search in the same database reveals. Far more publications have been
devoted to the applications of these inequalities and an accurate picture of
the impacted results in various �elds of Modern Mathematics is di¢ cult to
provide.
In this chapter, however, we present only some recent results due to

the author for the corresponding operator versions of these two famous
inequalities. Applications for particular functions of selfadjoint operators
such as the power, logarithmic and exponential functions are provided as
well.
The next chapter is devoted to the Ostrowski�s type inequalities. They

provide sharp error estimates in approximating the value of a function
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by its integral mean and can be utilized to obtain a priory error bounds
for di¤erent quadrature rules in approximating the Riemann integral by
di¤erent Riemann sums. They also shows, in general, that the mid-point
rule provides the best approximation in the class of all Riemann sums
sampled in the interior points of a given partition.
As revealed by a simple search in MathSciNet with the key words "Os-

trowski" and "inequality" in the title, an exponential evolution of research
papers devoted to this result has been registered in the last decade. There
are now at least 280 papers that can be found by performing the above
search. Numerous extensions, generalizations in both the integral and dis-
crete case have been discovered. More general versions for n-time di¤er-
entiable functions, the corresponding versions on time scales, for vector
valued functions or multiple integrals have been established as well. Nu-
merous applications in Numerical Analysis, Probability Theory and other
�elds have been also given.
In this chapter we present some recent results obtained by the author in

extending Ostrowski inequality in various directions for continuous func-
tions of selfadjoint operators in complex Hilbert spaces. Applications for
mid-point inequalities and some elementary functions of operators such as
the power function, the logarithmic and exponential functions are provided
as well.
From a complementary viewpoint to Ostrowski/mid-point inequalities,

trapezoidal type inequality provide a priory error bounds in approximating
the Riemann integral by a (generalized) trapezoidal formula.
Just like in the case of Ostrowski�s inequality the development of these

kind of results have registered a sharp growth in the last decade with more
than 50 papers published, as one can easily asses this by performing a
search with the key word "trapezoid" and "inequality" in the title of the
papers reviewed by MathSciNet.
Numerous extensions, generalizations in both the integral and discrete

case have been discovered. More general versions for n-time di¤erentiable
functions, the corresponding versions on time scales, for vector valued func-
tions or multiple integrals have been established as well. Numerous appli-
cations in Numerical Analysis, Probability Theory and other �elds have
been also given.
In chapter �ve we present some recent results obtained by the author in

extending trapezoidal type inequality in various directions for continuous
functions of selfadjoint operators in complex Hilbert spaces. Applications
for some elementary functions of operators are provided as well.
In approximating n-time di¤erentiable functions around a point, perhaps

the classical Taylor�s expansion is one of the simplest and most convenient
and elegant methods that has been employed in the development of Math-
ematics for the last three centuries.
In the sixth and last chapter of the book, we present some error bounds

in approximating n-time di¤erentiable functions of selfadjoint operators by
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the use of operator Taylor�s type expansions around a point or two points
from its spectrum for which the remainder is known in an integral form.
Some applications for elementary functions including the exponential and
logarithmic functions are provided as well.
For the sake of completeness, all the results presented are completely

proved and the original references where they have been �rstly obtained are
mentioned. The chapters are followed by the list of references used therein
and therefore are relatively independent and can be read separately.

The Author�
1

1� This book is dedicated to my beloved children Sergiu & Camelia and granddaughter
Sienna Clarisse.
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1
Functions of Selfadjoint Operators in
Hilbert Spaces

1.1 Introduction

In this introductory chapter we recall some fundamental facts concerning
bounded selfadjoint operators on complex Hilbert spaces. Since all the op-
erators considered in this book are supposed to be bounded, we no longer
mention this but understand it implicitly.
The generalized Schwarz�s inequality for positive selfadjoint operators as

well as some results for the spectrum of this class of operators are presented.
Then we introduce and explore the fundamental results for polynomials in a
linear operator, continuous functions of selfadjoint operators as well as the
step functions of selfadjoint operators. By the use of these results we then
introduce the spectral decomposition of selfadjoint operators (the Spectral
Representation Theorem) that will play a central role in the rest of the
book. This result is used as a key tool in obtaining various new inequali-
ties for continuous functions of selfadjoint operators which are of bounded
variation, Lipschitzian, monotonic or absolutely continuous. Another tool
that will greatly simplify the error bounds provided in the book is the Total
Variation Schwarz�s Inequality for which a simple proof is o¤ered.
The chapter is concluded with some well known operator inequalities of

Jensen�s type for convex and operator convex functions. More results in
this spirit can be found in the recent book [1].
Finally, some Grüss� type inequalities obtained in 1993 by Mond &

Peµcaríc are also presented. They are developed extensively in a special
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chapter later in the book where some applications in relation with classical
power operator inequalities are provided as well.

1.2 Bounded Selfadjoint Operators

1.2.1 Operator Order

Let (H; h:; :i) be a Hilbert space over the complex numbers �eld C:
A bounded linear operator A de�ned on H is selfadjoint, i.e., A = A� if

and only if hAx; xi 2 R for all x 2 H and if A is selfadjoint, then

kAk = sup
kxk=1

jhAx; xij = sup
kxk=kyk=1

jhAx; yij : (1.1)

We assume in what follows that all operators are bounded on de�ned on
the whole Hilbert space H: We denote by B (H) the Banach algebra of all
bounded linear operators de�ned on H:

De�nition 1 Let A and B be selfadjoint operators on H: Then A � B (A
is less or equal to B) or, equivalently, B � A if hAx; xi � hBx; xi for all
x 2 H: In particular, A is called positive if A � 0:

It is well known that for any operator A 2 B (H) the composite opera-
tors A�A and AA� are positive selfadjoint operators on H. However, the
operators A�A and AA� are not comparable with each other in general.
The following result concerning the operator order holds (see for instance

[2, p. 220]):

Theorem 2 Let A;B;C 2 B (H) be selfadjoint operators and let �; � 2 R.
Then

1. A � A;

2. If A � B and B � C, then A � C;

3. If A � B and B � A, then A = B;

4. If A � B and � � 0; then

A+ C � B + C;�A � �B;�A � �B;

5. If � � �; then �A � �A:

The following generalization of Schwarz�s inequality for positive selfad-
joint operators A holds:

jhAx; yij2 � hAx; xi hAy; yi (1.2)

for any x; y 2 H:
The following inequality is of interest as well, see [2, p. 221]
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Theorem 3 Let A be a positive selfadjoint operator on H: Then

kAxk2 � kAk hAx; xi (1.3)

for any x 2 H:

Theorem 4 Let An; B 2 B (H) with n � 1 be selfadjoint operators with
the property that

A1 � A2 � ::: � An � ::: � B:

Then there exists a bounded selfadjoint operator A de�ned on H such that

An � A � B for all n � 1

and
lim
n!1

Anx = Ax for all x 2 H:

An analogous assertion holds if the sequence fAng1n=1 is decreasing and
bounded below.

De�nition 5 We say that a sequence fAng1n=1 � B (H) converges strongly
to an operator A 2 B (H) ; called the strong limit of the sequence fAng1n=1
and we denote this by (s) limn!1An = A; if limn!1Anx = Ax for all
x 2 H:

The convergence in norm, i.e. limn!1 kAn �Ak = 0 will be called
the "uniform convergence" as opposed to strong convergence. We denote
limn!1An = A for the convergence in norm. From the inequality

kAmx�Anxk � kAm �Ank kxk

that holds for all n;m and x 2 H it follows that uniform convergence of
the sequence fAng1n=1 to A implies strong convergence of fAng1n=1 to A:
However, the converse of this assertion is false.
It is also possible to introduce yet another concept of "weak convergence"

in B (H) by de�ning (w) limn!1An = A if and only if limn!1 hAnx; yi =
hAx; yi for all x; y 2 H:
The following result holds (see [2, p. 225]):

Theorem 6 Let A be a bounded selfadjoint operator on H: Then

�1 : = inf
kxk=1

hAx; xi = max f� 2 R j�I � Ag ;

�2 : = sup
kxk=1

hAx; xi = min f� 2 R jA � �I g ;

and
kAk = max fj�1j ; j�2jg :

Moreover, if Sp (A) denotes the spectrum of A; then �1; �2 2 Sp (A) and
Sp (A) � [�1; �2] :
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Remark 7 We remark that, if A;�1; �2 are as above, then obviously

�1 = min f� j� 2 Sp (A)g =: minSp (A) ;
�2 = max f� j� 2 Sp (A)g =: maxSp (A) ;
kAk = max fj�j j� 2 Sp (A)g :

We also observe that

1. A is positive i¤ �1 � 0;

2. A is positive and invertible i¤ �1 > 0;

3. If �1 > 0; then A�1 is a positive selfadjoint operator and minSp
�
A�1

�
=

��12 ;maxSp
�
A�1

�
= ��11 :

1.3 Continuous Functions of Selfadjoint Operators

1.3.1 Polynomials in a Bounded Operator

For two functions '; : C! C we adhere to the canonical notation:

('+  ) (s) := ' (s) +  (s) ;

(�') (s) := �' (s) ;

(' ) (s) := ' (s) (s)

for sum, scalar multiple and product of these functions. We denote by �' (s)
the complex conjugate of ' (s) :
As a �rst class of functions we consider the algebra P of all polynomials

in one variable with complex coe¢ cients, namely

P :=
(
' (s) :=

nX
k=0

�ks
k jn � 0; �k 2 C,0 � k � n

)
:

Theorem 8 Let A 2 B (H) and for ' (s) :=
Pn
k=0 �ks

k 2 P de�ne
' (A) :=

Pn
k=0 �kA

k 2 B (H)
�
A0 = I

�
and �' (A) :=

Pn
k=0 ��k (A

�)
k 2

B (H) : Then the mapping ' (s)! ' (A) has the following properties

a) ('+  ) (A) = ' (A) +  (A) ;

b) (�') (A) = �' (A) ;

c) (' ) (A) = ' (A) (A) ;

d) [' (A)]� = �' (A) :
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Note that ' (A) (A) =  (A)' (A) and the constant polynomial ' (s) =
�0 is mapped into the operator.
Recall that, a mapping a ! a0 of an algebra U into an algebra U 0 is

called a homomorphism if it has the properties

a) (a+ b)0 = a0 + b0;

b) (�')0 = �a0;

c) (ab)0 = a0b0:

With this terminology, Theorem 8 asserts that the mapping which asso-
ciates with any polynomial ' (s) the operator ' (A) is a homomorphism of
P into B (H) satisfying the additional property d).
The following result provides a connection between the spectrum of A

and the spectrum of the operator ' (A) :

Theorem 9 If A 2 B (H) and ' 2 P, then Sp (' (A)) = ' (Sp (A)) :

Corollary 10 If A 2 B (H) is selfadjoint and the polynomial ' (s) 2 P
has real coe¢ cients, then ' (A) is selfadjoint and

k' (A)k = max fj' (�)j ; � 2 Sp (A)g : (1.4)

Remark 11 If A 2 B (H) and ' 2 P, then

1. ' (A) is invertible i¤ ' (�) 6= 0 for all � 2 Sp (A) ;

2. If ' (A) is invertible, then Sp
�
' (A)

�1
�
=
n
' (�)

�1
; � 2 Sp (A)

o
:

1.3.2 Continuous Functions of Selfadjoint Operators

Assume that A is a bounded selfadjoint operator on the Hilbert space H:
If ' is any function de�ned on R we de�ne

k'kA = sup fj' (�)j ; � 2 Sp (A)g :

If ' is continuous, in particular if ' is a polynomial, then the supremum
is actually assumed for some points in Sp (A) which is compact. Therefore
the supremum may then be written as a maximum and the formula (1.4)
can be written in the form k' (A)k = k'kA :
Consider C (R) the algebra of all continuous complex valued functions

de�ned on R. The following fundamental result for continuous functional
calculus holds, see for instance [2, p. 232]:

Theorem 12 If A is a bounded selfadjoint operator on the Hilbert space
H and ' 2 C (R), then there exists a unique operator ' (A) 2 B (H) with
the property that whenever f'ng

1
n=1 � P such that limn!1 k'� 'nkA = 0;
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then ' (A) = limn!1 'n (A) : The mapping '! ' (A) is a homomorphism
of the algebra C (R) into B (H) with the additional properties [' (A)]� =
�' (A) and k' (A)k � 2 k'kA : Moreover, ' (A) is a normal operator, i.e.
[' (A)]

�
' (A) = ' (A) [' (A)]

�
: If ' is real-valued, then ' (A) is selfadjoint.

As examples we notice that, if A 2 B (H) is selfadjoint and ' (s) =
eis; s 2 R then

eiA =
1X
k=0

1

k!
(iA)

k
:

Moreover, eiA is a unitary operator and its inverse is the operator

�
eiA
��
= e�iA =

1X
k=0

1

k!
(�iA)k :

Now, if � 2 C n R, A 2 B (H) is selfadjoint and ' (s) = 1
s�� 2 C (R) ;

then ' (A) = (A� �I)�1 :
If the selfadjoint operator A 2 B (H) and the functions '; 2 C (R) are

given, then we obtain the commutativity property ' (A) (A) =  (A)' (A) :
This property can be extended for another operator as follows, see for in-
stance [2, p. 235]:

Theorem 13 Assume that A 2 B (H) and the function ' 2 C (R) are
given. If B 2 B (H) is such that AB = BA; then ' (A)B = B' (A) :

The next result extends Theorem 9 to the case of continuous functions,
see for instance [2, p. 235]:

Theorem 14 If A is abounded selfadjoint operator on the Hilbert space H
and ' is continuous, then Sp (' (A)) = ' (Sp (A)) :

As a consequence of this result we have:

Corollary 15 With the assumptions in Theorem 14 we have:

a) The operator ' (A) is selfadjoint i¤ ' (�) 2 R for all � 2 Sp (A) ;

b) The operator ' (A) is unitary i¤ j' (�)j = 1 for all � 2 Sp (A) ;

c) The operator ' (A) is invertible i¤ ' (�) 6= 0 for all � 2 Sp (A) ;

d) If ' (A) is selfadjoint, then k' (A)k = k'kA :

In order to develop inequalities for functions of selfadjoint operators we
need the following result, see for instance [2, p. 240]:
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Theorem 16 Let A be a bounded selfadjoint operator on the Hilbert space
H: The homomorphism '! ' (A) of C (R) into B (H) is order preserving,
meaning that, if '; 2 C (R) are real valued on Sp (A) and ' (�) �  (�)
for any � 2 Sp (A) ; then

' (A) �  (A) in the operator order of B (H) : (P)

The "square root" of a positive bounded selfadjoint operator on H can
be de�ned as follows, see for instance [2, p. 240]:

Theorem 17 If the operator A 2 B (H) is selfadjoint and positive, then
there exists a unique positive selfadjoint operator B :=

p
A 2 B (H) such

that B2 = A: If A is invertible, then so is B:

If A 2 B (H) ; then the operator A�A is selfadjoint and positive. De�ne
the "absolute value" operator by jAj :=

p
A�A:

Analogously to the familiar factorization of a complex number

� = j�j ei arg �

a bounded normal operator onH may be written as a commutative product
of a positive selfadjoint operator, representing its absolute value, and a
unitary operator, representing the factor of absolute value one.
In fact, the following more general result holds, see for instance [2, p.

241]:

Theorem 18 For every bounded linear operator A on H; there exists a
positive selfadjoint operator B = jAj 2 B (H) and an isometric operator C
with the domain DC = B (H) and range RC = C (DC) = A (H) such that
A = CB:

In particular, we have:

Corollary 19 If the operator A 2 B (H) is normal, then there exists a
positive selfadjoint operator B = jAj 2 B (H) and a unitary operator C
such that A = BC = CB: Moreover, if A is invertible, then B and C are
uniquely determined by these requirements.

Remark 20 Now, suppose that A = CB where B 2 B (H) is a positive
selfadjoint operator and C is an isometric operator. Then

a) B =
p
A�A; consequently B is uniquely determined by the stated

requirements;

b) C is uniquely determined by the stated requirements i¤ A is one-to-
one.
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1.4 Step Functions of Selfadjoint Operators

Let A be a bonded selfadjoint operator on the Hilbert space H: We intend
to extend the order preserving homomorphism ' ! ' (A) of the algebra
C (R) of continuous functions ' de�ned on R into B (H) ; restricted now to
real-valued functions, to a larger domain, namely an algebra of functions
containing the "step functions" '�; � 2 R, de�ned by

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:

Observe that '� (s) = '� (s) and '
2
� (s) = '� (s) which will imply that

['� (A)]
�
= '� (A) and ['� (A)]

2
= '� (A) ; i.e. '� (A) will then be a pro-

jection. However, since the function '� cannot be approximated uniformly
by continuous functions on any interval containing �; then, in general,
there is no way to de�ne an operator '� (A) as a uniform limit of operators
'�;n (A) with '�;n 2 C (R) :
The uniform limit of operators can be relaxed to the concept of strong

limit of operators (see De�nition 5) in order to de�ne the operator '� (A) :
In order to do that, observe that the function '� may be obtained as a
pointwise limit of a decreasing sequence of real-valued continuous functions
'�;n de�ned by

'� (s) :=

8>>>><>>>>:
1; for �1 < s � �;

1� n (s� �) ; for � � s � �+ 1=n

0; for � < s < +1:

By Theorem 4 we observe that the sequence of corresponding selfadjoint
operators '�;n (A) is nondecreasing and bounded below by zero in the
operator order of B (H) : It therefore converges strongly to some bounded
selfadjoint operator '� (A) on H; see [2, p. 244].
To provide a formal presentation of the above, we need the following

de�nition.

De�nition 21 A real-valued function ' on R is called upper semi-continuous
if it is a pointwise limit of a non-increasing sequence of continuous real-
valued functions on R.

We observe that it can be shown that a real-valued functions ' on R is
upper semi-continuous i¤ for every s0 2 R and for every " > 0 there exists
a � > 0 such that

' (s) < ' (s0) + " for all s 2 (s0 � �; s0 + �) :
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We can introduce now the operator ' (A) as follows, see for instance [2,
p. 245]:

Theorem 22 Let A be a bonded selfadjoint operator on the Hilbert space
H and let ' be a nonnegative upper semi-continuous function on R. Then
there exists a unique positive selfadjoint operator ' (A) such that whenever
f'ng

1
n=1 is any non-increasing sequence of non-negative functions in C (R) ;

pointwise converging to ' on Sp (A) ; then ' (A) = (s) lim'n (A) :

If ' is continuous, then the operator ' (A) de�ned by Theorem 12 coin-
cides with the one de�ned by Theorem 22.

Theorem 23 Let A 2 B (H) be selfadjoint, let ' and  be non-negative
upper semi-continuous functions on R, and let � > 0 be given. Then
the functions ' +  ; �' and ' are non-negative upper semi-continuous
and ('+  ) (A) = ' (A) +  (A) ; (�') (A) = �' (A) and (' ) (A) =
' (A) (A) : Moreover, if ' (s) �  (s) for all s 2 Sp (A) then ' (A) �
 (A) :

We enlarge the class of non-negative upper semi-continuous functions to
an algebra by de�ning R (R) as the set of all functions ' = '1 � '2 where
'1; '2 are nonnegative and upper semi-continuous functions de�ned on R.
It is easy to see that R (R) endowed with pointwise sum, scalar multiple
and product is an algebra.
The following result concerning functions of operators ' (A) with ' 2

R (R) can be stated, see for instance [2, p. 249-p. 250]:

Theorem 24 Let A 2 B (H) be selfadjoint and let ' 2 R (R) : Then there
exists a unique selfadjoint operator ' (A) 2 B (H) such that if ' = '1�'2
where '1; '2 are nonnegative and upper semi-continuous functions de�ned
on R, then ' (A) = '1 (A)�'2 (A) : The mapping '! ' (A) is a homomor-
phism of R (R) into B (H) which is order preserving in the following sense:
if '; 2 R (R) with the property that ' (s) �  (s) for any s 2 Sp (A) ;
then ' (A) �  (A) : Moreover, if B 2 B (H) satis�es the commutativity
condition AB = BA; then ' (A)B = B' (A) :

1.5 The Spectral Decomposition of Selfadjoint
Operators

Let A 2 B (H) be selfadjoint and let '� de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:



10 1. Functions of Selfadjoint Operators in Hilbert Spaces

Then for every � 2 R the operator

E� := '� (A) (1.5)

is a projection which reduces A:
The properties of these projections are summed up in the following funda-

mental result concerning the spectral decomposition of bounded selfadjoint
operators in Hilbert spaces, see for instance [2, p. 256]

Theorem 25 (Spectral Representation Theorem) Let A be a bonded
selfadjoint operator on the Hilbert space H and letm = min f� j� 2 Sp (A)g =:
minSp (A) and M = max f� j� 2 Sp (A)g =: maxSp (A) : Then there ex-
ists a family of projections fE�g�2R, called the spectral family of A; with
the following properties

a) E� � E�0 for � � �0;

b) Em�0 = 0; EM = I and E�+0 = E� for all � 2 R;

c) We have the representation

A =

Z M

m�0
�dE�: (1.6)

More generally, for every continuous complex-valued function ' de�ned
on R and for every " > 0 there exists a � > 0 such that




' (A)�

nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � " (1.7)

whenever 8>>>><>>>>:
�0 < m = �1 < ::: < �n�1 < �n =M;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n

(1.8)

this means that

' (A) =

Z M

m�0
' (�) dE�; (1.9)

where the integral is of Riemann-Stieltjes type.

Corollary 26 With the assumptions of Theorem 25 for A;E� and ' we
have the representations

' (A)x =

Z M

m�0
' (�) dE�x for all x 2 H (1.10)
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and

h' (A)x; yi =
Z M

m�0
' (�) d hE�x; y i for all x; y 2 H: (1.11)

In particular,

h' (A)x; xi =
Z M

m�0
' (�) d hE�x; x i for all x 2 H: (1.12)

Moreover, we have the equality

k' (A)xk2 =
Z M

m�0
j' (�)j2 d kE�xk2 for all x 2 H: (1.13)

The next result shows that it is legitimate to talk about "the" spectral
family of the bounded selfadjoint operator A since it is uniquely determined
by the requirements a), b) and c) in Theorem 25, see for instance [2, p. 258]:

Theorem 27 Let A be a bonded selfadjoint operator on the Hilbert space
H and let m = minSp (A) and M = maxSp (A) : If fF�g�2R is a family of
projections satisfying the requirements a), b) and c) in Theorem 25, then
F� = E� for all � 2 R where E� is de�ned by (1.5).

By the above two theorems, the spectral family fE�g�2R uniquely de-
termines and in turn is uniquely determined by the bounded selfadjoint
operator A: The spectral family also re�ects in a direct way the properties
of the operator A as follows, see [2, p. 263-p.266]

Theorem 28 Let fE�g�2R be the spectral family of the bounded selfadjoint
operator A: If B is a bounded linear operator on H, then AB = BA i¤
E�B = BE� for all � 2 R. In particular E�A = AE� for all � 2 R.

Theorem 29 Let fE�g�2R be the spectral family of the bounded selfadjoint
operator A and � 2 R. Then

a) � is a regular value of A;i.e., A � �I is invertible i¤ there exists a
� > 0 such that E��� = E�+�;

b) � 2 Sp (A) i¤ E��� < E�+� for all � > 0;

c) � is an eigenvalue of A i¤ E��0 < E�:

The following result will play a key role in many results concerning in-
equalities for bounded selfadjoint operators in Hilbert spaces. Since we were
not able to locate it in the literature, we will provide here a complete proof:
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Theorem 30 (Total Variation Schwarz�s Inequality) Let fE�g�2R be
the spectral family of the bounded selfadjoint operator A and let m =
minSp (A) and M = maxSp (A) : Then for any x; y 2 H the function
�! hE�x; yi is of bounded variation on [m� s;M ] ; for any s > 0 and we
have the inequality

M_
m�0

�

E(�)x; y

��
� kxk kyk ; (TVSI)

where
M_
m�0

�

E(�)x; y

��
denotes the limit lims!0+

M_
m�s

�

E(�)x; y

��
:

Proof. If P is a nonnegative selfadjoint operator on H; i.e., hPx; xi � 0 for
any x 2 H; then the following inequality is a generalization of the Schwarz
inequality in H

jhPx; yij2 � hPx; xi hPy; yi ; (1.14)

for any x; y 2 H:
Now, if d : m � s = t0 < t1 < ::: < tn�1 < tn = M; where s > 0 is an

arbitrary partition of the interval [m� s;M ] ; then we have by Schwarz�s
inequality for nonnegative operators (1.14) that

M_
m�s

�

E(�)x; y

��
(1.15)

= sup
d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= I:

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real num-
bers we also have that

I � sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

(1.16)

� sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2
sup
d

"
n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

=

"
M_
m�s

�

E(�)x; x

��#1=2 " M_
m�s

�

E(�)y; y

��#1=2

=
h
kxk2 � hEm�sx; xi

i1=2 h
kyk2 � hEm�sy; yi

i1=2
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for any x; y 2 H:
On making use of (1.15) and (1.16) and letting s ! 0+ we deduce the

desired result (TVSI).

1.6 Jensen�s Type Inequalities

1.6.1 Jensen�s Inequality.

The following result that provides an operator version for the Jensen in-
equality is due to Mond & Peµcaríc [5] (see also [1, p. 5]):

Theorem 31 (Mond- Peµcaríc, 1993, [5]) Let A be a selfadjoint oper-
ator on the Hilbert space H and assume that Sp (A) � [m;M ] for some
scalars m;M with m < M: If f is a convex function on [m;M ] ; then

f (hAx; xi) � hf (A)x; xi (MP)

for each x 2 H with kxk = 1:

As a special case of Theorem 31 we have the following Hölder-McCarthy
inequality :

Theorem 32 (Hölder-McCarthy, 1967, [3]) Let A be a selfadjoint pos-
itive operator on a Hilbert space H. Then
(i) hArx; xi � hAx; xir for all r > 1 and x 2 H with kxk = 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1 and x 2 H with kxk = 1;
(iii) If A is invertible, then hArx; xi � hAx; xir for all r < 0 and x 2 H

with kxk = 1:

The following theorem is a multiple operator version of Theorem 31 (see
for instance [1, p. 5]):

Theorem 33 (Furuta-Mícíc-Peµcaríc-Seo, 2005, [1]) Let Aj be selfad-
joint operators with Sp (Aj) � [m;M ], j 2 f1; : : : ; ng for some scalars
m < M and xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1. If f is a convex

function on [m;M ], then

f

0@ nX
j=1

hAjxj ; xji

1A �
nX
j=1

hf (Aj)xj ; xji : (1.17)

The following particular case is of interest.

Corollary 34 Let Aj be selfadjoint operators with Sp (Aj) � [m;M ], j 2
f1; : : : ; ng for some scalarsm < M: If pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj =

1; then

f

0@* nX
j=1

pjAjx; x

+1A �
*

nX
j=1

pjf (Aj)x; x

+
; (1.18)
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for any x 2 H with kxk = 1:

Proof. Follows from Theorem 33 by choosing xj =
p
pj � x; j 2 f1; : : : ; ng

where x 2 H with kxk = 1:

Remark 35 The above inequality can be used to produce some norm in-
equalities for the sum of positive operators in the case when the convex
function f is nonnegative and monotonic nondecreasing on [0;M ] : Namely,
we have:

f

0@






nX
j=1

pjAj








1A �








nX
j=1

pjf (Aj)







 : (1.19)

The inequality (1.19) reverses if the function is concave on [0;M ].
As particular cases we can state the following inequalities:







nX
j=1

pjAj








p

�








nX
j=1

pjA
p
j







 ; (1.20)

for p � 1 and 






nX
j=1

pjAj








p

�








nX
j=1

pjA
p
j







 (1.21)

for 0 < p < 1:
If Aj are positive de�nite for each j 2 f1; : : : ; ng then (1.20) also holds

for p < 0:
If one uses the inequality (1.19) for the exponential function, that one

obtains the inequality

exp

0@






nX
j=1

pjAj








1A �








nX
j=1

pj exp (Aj)







 ; (1.22)

where Aj are positive operators for each j 2 f1; : : : ; ng :

1.6.2 Reverses of Jensen�s Inequality

In Section 2.4 of the monograph [1] there are numerous interesting converses
of the Jensen�s type inequality (1.17) from which we would like to mention
only two of the simplest.
The following result is an operator version of the well known Lah-Ribaríc�s

reverse of the Jensen inequality for real functions of a real variable, see for
instance [1]:

Theorem 36 Let Aj be selfadjoint operators with Sp (Aj) � [m;M ], j 2
f1; : : : ; ng for some scalars m < M and xj 2 H; j 2 f1; : : : ; ng with
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j=1 kxjk

2
= 1. If f is a continuous convex function de�ned on [m;M ] ;

then
nX
j=1

hf (Aj)xj ; xji (1.23)

� 1

M �m

24f (M) nX
j=1

h(Aj �mI)xj ; xji+ f (m)
nX
j=1

h(MI �Aj)xj ; xji

35 :
Theorem 37 (Mícíc-Seo-Takahasi-Tominaga, 1999, [4]) Let Aj be self-
adjoint operators with Sp (Aj) � [m;M ], j 2 f1; : : : ; ng for some scalars
m < M and xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1. If f is a strictly

convex function twice di¤erentiable on [m;M ], then for any positive real
number � we have

nX
j=1

hf (Aj)xj ; xji � �f

0@ nX
j=1

hAjxj ; xji

1A+ �; (1.24)

where

� = �f t0 + �f � �f (t0) ;

�f =
f (M)� f (m)

M �m ; �f =
Mf (m)�mf (M)

M �m
and

t0 =

8>>>><>>>>:
f 0�1

��f
�

�
if m < f 0�1

��f
�

�
< M

M if M � f 0�1
��f
�

�
m if f 0�1

��f
�

�
� m:

The case of equality was also analyzed, see [1, p. 61] but will be not
stated in here.

1.6.3 Operator Monotone and Operator Convex Functions

We say that a real valued continuous function f de�ned on an interval I is
said to be operator monotone if it is monotone with respect to the operator
order, i.e. if A and B are bounded selfadjoint operators with A � B and
Sp (A) ; Sp (A) � I; then f (A) � f (B) : The function is said to be operator
convex (operator concave) if for any A, B bounded selfadjoint operators
with Sp (A) ; Sp (A) � I; we have

f [(1� �)A+ �B] � (�) (1� �) f (A) + �f (B) (1.25)

for any � 2 [0; 1] :
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Example 38 The following examples are well know in the literature and
can be found for instance in [1, p. 7-p. 9] where simple proofs were also
provided.

1. The a¢ ne function f (t) = � + �t is operator monotone on every
interval for all � 2 R and � � 0: It is operator convex for all �; � 2 R;

2. If f; g are operator monotone, and if �; � � 0 then the linear com-
bination �f + �g is also operator monotone. If the functions fn are
operator monotone and fn (t) ! f (t) as n ! 1; then f is also
operator monotone;

3. The function f (t) = t2 is operator convex on every interval, however
it is not operator monotone on [0;1) even though it is monotonic
nondecreasing on this interval;

4. The function f (t) = t3 is not operator convex on [0;1) even though
it is a convex function on this interval;

5. The function f (t) = 1
t is operator convex on (0;1) and f (t) = �

1
t

is operator monotone on (0;1) ;

6. The function f (t) = ln t is operator monotone and operator concave
on (0;1) ;

7. The entropy function f (t) = �t ln t is operator concave on (0;1) ;

8. The exponential function f (t) = et is neither operator convex nor
operator monotone on any interval of R.

The following monotonicity property for the function f (t) = tr with
r 2 [0; 1] is well known in the literature as the Löwner-Heinz inequality
and was established essentially in 1934:

Theorem 39 (Löwner-Heinz Inequality) Let A and B be positive op-
erators on a Hilbert space H: If A � B � 0; then Ar � Br for all r 2 [0; 1] :

The following characterization of operator convexity holds, see [1, p. 10]

Theorem 40 (Jensen�s Operator Inequality) Let H and K be Hilbert
spaces. Let f be a real valued continuous function on an interval J: Let A
and Aj be selfadjoint operators on H with spectra contained in J; for each
j = 1; 2; :::; k: Then the following conditions are mutually equivalent:

(i) f is operator convex on J ;

(ii) f (C�AC) � C�f (A)C for every selfadjoint operator A : H ! H
and isometry C : K ! H; i:e:; C�C = 1K ;
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(iii) f (C�AC) � C�f (A)C for every selfadjoint operator A : H ! H
and isometry C : H ! H;

(iv) f
�Pk

j=1 C
�
jAjCj

�
�
Pk
j=1 C

�
j f (Aj)Cj for every selfadjoint opera-

tor Aj : H ! H and bounded linear operators Cj : K ! H; withPk
j=1 C

�
jCj = 1K (j = 1; :::; k) ;

(v) f
�Pk

j=1 C
�
jAjCj

�
�
Pk
j=1 C

�
j f (Aj)Cj for every selfadjoint opera-

tor Aj : H ! H and bounded linear operators Cj : H ! H; withPk
j=1 C

�
jCj = 1H (j = 1; :::; k) ;

(vi) f
�Pk

j=1 PjAjPj

�
�
Pk
j=1 Pjf (Aj)Pj for every selfadjoint opera-

tor Aj : H ! H and projection Pj : H ! H; with
Pk
j=1 Pj =

1H (j = 1; :::; k) :

The following well known result due to Hansen & Pedersen also holds:

Theorem 41 (Hansen-Pedersen-Jensen�s Inequality) Let J be an in-
terval containing 0 and let f be a real valued continuous function de�ned
on J: Let A and Aj be selfadjoint operators on H with spectra contained
in J; for each j = 1; 2; :::; k: Then the following conditions are mutually
equivalent:

(i) f is operator convex on J and f (0) � 0;

(ii) f (C�AC) � C�f (A)C for every selfadjoint operator A : H ! H
and contraction C : H ! H; i:e:; C�C � 1H ;

(iii) f
�Pk

j=1 C
�
jAjCj

�
�
Pk
j=1 C

�
j f (Aj)Cj for every selfadjoint opera-

tor Aj : H ! H and bounded linear operators Cj : H ! H; withPk
j=1 C

�
jCj � 1H (j = 1; :::; k) ;

(iv) f (PAP ) � Pf (A)P for every selfadjoint operator A : H ! H and
projection P:

The case of continuous and negative functions is as follows, [1, p. 13]:

Theorem 42 Let f be continuous on [0;1): If f (t) � 0 for all t 2 [0;1);
then each of the conditions (i)-(vi) from Theorem 40 is equivalent with

(vii) �f is an operator monotone function.

Corollary 43 Let f be a real valued continuous function mapping the pos-
itive half line [0;1) into itself. Then f is operator monotone if and only if
f is operator concave.

The following result may be stated as well [1, p. 14]:
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Theorem 44 Let f be continuous on the interval [0; r) with r � 1: Then
the following conditions are mutually equivalent:

(i) f is operator convex and f (0) � 0;

(ii) The function t 7! f(t)
t is operator monotone on (0; r) :

As a particular case of interest, we can state that [1, p. 15]:

Corollary 45 Let f be continuous on [0;1) and taking positive values.
The function f is operator monotone if and only if the function t 7! t

f(t)
is operator monotone.

Finally we recall the following result as well [1, p. 16]:

Theorem 46 Let f be a real valued continuous function on the interval
J = [�;1) and bounded below, i.e., there exists m 2 R such that m � f (t)
for all t 2 J: Then the following conditions are mutually equivalent:

(i) f is operator concave on J ;

(ii) f is operator monotone on J:

As a particular case of this result we note that, the function f (t) = tr

is operator monotone on [0;1) if and only if 0 � r � 1: The function
f (t) = tr is operator convex on (0;1) if either 1 � r � 2 or �1 � r � 0
and is operator concave on (0;1) if 0 � r � 1:

1.7 Grüss�Type Inequalities

The following operator version of the Grüss inequality was obtained by
Mond & Peµcaríc in [6]:

Theorem 47 (Mond-Peµcaríc, 1993, [6]) Let Cj ; j 2 f1; : : : ; ng be self-
adjoint operators on the Hilbert space (H; h:; :i) and such that mj � 1H �
Cj � Mj � 1H for j 2 f1; : : : ; ng ; where 1H is the identity operator on H:
Further, let gj ; hj : [mj ;Mj]! R, j 2 f1; : : : ; ng be functions such that

' � 1H � gj (Cj) � � � 1H and 
 � 1H � hj (Cj) � � � 1H (1.26)

for each j 2 f1; : : : ; ng :
If xj 2 H; j 2 f1; : : : ; ng are such that

Pn
j=1 kxjk

2
= 1; then������

nX
j=1

hgj (Cj)hj (Cj)xj ; xji �
nX
j=1

hgj (Cj)xj ; xji �
nX
j=1

hhj (Cj)xj ; xji

������
(1.27)

� 1

4
(�� ') (�� 
) :
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If Cj ; j 2 f1; : : : ; ng are selfadjoint operators such that Sp (Cj) � [m;M ]
for j 2 f1; : : : ; ng and for some scalars m < M and if g; h : [m;M ] �! R
are continuous then by the Mond-Peµcaríc inequality we deduce the following
version of the Grüss inequality for operators������

nX
j=1

hg (Cj)h (Cj)xj ; xji �
nX
j=1

hg (Cj)xj ; xji �
nX
j=1

hh (Cj)xj ; xji

������ (1.28)
� 1

4
(�� ') (�� 
) ;

where xj 2 H; j 2 f1; : : : ; ng are such that
Pn
j=1 kxjk

2
= 1 and ' =

mint2[m;M ] g (t) ; � = maxt2[m;M ] g (t) ; 
 = mint2[m;M ] h (t) and � =
maxt2[m;M ] h (t) :
In particular, if the selfadjoint operator C satisfy the condition Sp (C) �

[m;M ] for some scalars m < M , then

jhg (C)h (C)x; xi � hg (C)x; xi � hh (C)x; xij � 1

4
(�� ') (�� 
) ; (1.29)

for any x 2 H with kxk = 1:
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2
Inequalities for Convex Functions

2.1 Introduction

Jensen�s type inequalities in their various settings ranging from discrete
to continuous case play an important role in di¤erent branches of Modern
Mathematics. A simple search in theMathSciNet database of the American
Mathematical Society with the key words "jensen" and "inequality" in the
title reveals more than 300 items intimately devoted to this famous result.
However, the number of papers where this inequality is applied is a lot
larger and far more di¢ cult to �nd. It can be a good project in itself for
someone to write a monograph devoted to Jensen�s inequality in its di¤erent
forms and its applications across Mathematics.
In the introductory chapter we have recalled a number of Jensen�s type

inequalities for convex and operator convex functions of selfadjoint opera-
tors in Hilbert spaces. In this chapter we present some recent results ob-
tained by the author that deal with di¤erent aspects of this well research in-
equality than those recently reported in the book [20]. They include but are
not restricted to the operator version of the Dragomir-Ionescu inequality,
Slater�s type inequalities for operators and its inverses, Jensen�s inequality
for twice di¤erentiable functions whose second derivatives satisfy some up-
per and lower bounds conditions, Jensen�s type inequalities for log-convex
functions and for di¤erentiable log-convex functions and their applications
to Ky Fan�s inequality.
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Finally, some Hermite-Hadamard�s type inequalities for convex functions
and Hermite-Hadamard�s type inequalities for operator convex functions
are presented as well.
All the above results are exempli�ed for some classes of elementary func-

tions of interest such as the power function and the logarithmic function.

2.2 Reverses of the Jensen Inequality

2.2.1 An Operator Version of the Dragomir-Ionescu
Inequality

The following result holds:

Theorem 48 (Dragomir, 2008, [9]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I : If A is a selfadjoint operators on the
Hilbert space H with Sp (A) � [m;M ] �°I; then

(0 �) hf (A)x; xi�f (hAx; xi) � hf 0 (A)Ax; xi�hAx; xi�hf 0 (A)x; xi (2.1)

for any x 2 H with kxk = 1:

Proof. Since f is convex and di¤erentiable, we have that

f (t)� f (s) � f 0 (t) � (t� s)

for any t; s 2 [m;M ] :
Now, if we chose in this inequality s = hAx; xi 2 [m;M ] for any x 2 H

with kxk = 1 since Sp (A) � [m;M ] ; then we have

f (t)� f (hAx; xi) � f 0 (t) � (t� hAx; xi) (2.2)

for any t 2 [m;M ] any x 2 H with kxk = 1:
If we �x x 2 H with kxk = 1 in (2.2) and apply the property (P) then

we get

h[f (A)� f (hAx; xi) 1H ]x; xi � hf 0 (A) � (A� hAx; xi 1H)x; xi

for each x 2 H with kxk = 1; which is clearly equivalent to the desired
inequality (2.1).

Corollary 49 (Dragomir, 2008, [9]) Assume that f is as in the The-
orem 48. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
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f1; : : : ; ng and xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1, then

(0 �)
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A (2.3)

�
nX
j=1

hf 0 (Aj)Ajxj ; xji �
nX
j=1

hAjxj ; xji �
nX
j=1

hf 0 (Aj)xj ; xji :

Proof. As in [20, p. 6], if we put

eA :=
0B@ A1 � � � 0

...
. . .

...
0 � � � An

1CA and ex =
0B@ x1

...
xn

1CA
then we have Sp

� eA� � [m;M ] ; kexk = 1;
D
f
� eA� ex; exE = nX

j=1

hf (Aj)xj ; xji ;
D eAex; exE = nX

j=1

hAjxj ; xji

and so on:
Applying Theorem 48 for eA and ex we deduce the desired result (2.3).

Corollary 50 (Dragomir, 2008, [9]) Assume that f is as in the The-
orem 48. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
f1; : : : ; ng and pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1; then

(0 �)
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A (2.4)

�
*

nX
j=1

pjf
0 (Aj)Ajx; x

+
�
*

nX
j=1

pjAjx; x

+
�
*

nX
j=1

pjf
0 (Aj)x; x

+
:

for each x 2 H with kxk = 1:

Remark 51 The inequality (2.4), in the scalar case, namely

(0 �)
nX
j=1

pjf (xj)� f

0@ nX
j=1

pjxj

1A (2.5)

�
nX
j=1

pjf
0 (xj)xj �

nX
j=1

pjxj �
nX
j=1

pjf
0 (xj) ;

where xj 2°I, j 2 f1; : : : ; ng ; has been obtained by the �rst time in 1994 by
Dragomir & Ionescu, see [17].
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The following particular cases are of interest:

Example 52 a. Let A be a positive de�nite operator on the Hilbert space
H: Then we have the following inequality:

(0 �) ln (hAx; xi)� hln (A)x; xi � hAx; xi �


A�1x; x

�
� 1; (2.6)

for each x 2 H with kxk = 1:
b. If A is a selfadjoint operator on H, then we have the inequality:

(0 �) hexp (A)x; xi � exp (hAx; xi) (2.7)

� hA exp (A)x; xi � hAx; xi � hexp (A)x; xi ;

for each x 2 H with kxk = 1:
c. If p � 1 and A is a positive operator on H, then

(0 �) hApx; xi � hAx; xip � p
�
hApx; xi � hAx; xi �



Ap�1x; x

��
; (2.8)

for each x 2 H with kxk = 1: If A is positive de�nite, then the inequality
(2.8) also holds for p < 0:
If 0 < p < 1 and A is a positive de�nite operator then the reverse in-

equality also holds

hApx; xi � hAx; xip � p
�
hApx; xi � hAx; xi �



Ap�1x; x

��
� 0; (2.9)

for each x 2 H with kxk = 1:

Similar results can be stated for sequences of operators, however the
details are omitted.

2.2.2 Further Reverses

In applications would be perhaps more useful to �nd upper bounds for the
quantity

hf (A)x; xi � f (hAx; xi) ; x 2 H with kxk = 1;

that are in terms of the spectrum margins m;M and of the function f .
The following result may be stated:

Theorem 53 (Dragomir, 2008, [9]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on°I: If A is a selfadjoint operator on the Hilbert
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space H with Sp (A) � [m;M ] �°I; then

(0 �) hf (A)x; xi � f (hAx; xi) (2.10)

�

8>>><>>>:
1
2 � (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
1
2 � (f

0 (M)� f 0 (m))
h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
We also have the inequality

(0 �) hf (A)x; xi � f (hAx; xi) (2.11)

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

���
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
Moreover, if m > 0 and f 0 (m) > 0; then we also have

(0 �) hf (A)x; xi � f (hAx; xi) (2.12)

�

8><>:
1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

hAx; xi hf 0 (A)x; xi ;�p
M �

p
m
��p

f 0 (M)�
p
f 0 (m)

�
[hAx; xi hf 0 (A)x; xi]

1
2 ;

for any x 2 H with kxk = 1:

Proof. We use the following Grüss�type result we obtained in [6]:
Let A be a selfadjoint operator on the Hilbert space (H; h:; :i) and assume

that Sp (A) � [m;M ] for some scalars m < M: If hand g are continuous
on [m;M ] and 
 := mint2[m;M ] h (t) and � := maxt2[m;M ] h (t) ; then

jhh (A) g (A)x; xi � hh (A)x; xi � hg (A)x; xij (2.13)

� 1

2
� (�� 
)

h
kg (A)xk2 � hg (A)x; xi2

i1=2
�
� 1

4
(�� 
) (�� �)

�
for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � :=
maxt2[m;M ] g (t) :
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Therefore, we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi (2.14)

� 1

2
� (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m))

and

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi (2.15)

� 1

2
� (f 0 (M)� f 0 (m))

h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m))

for each x 2 H with kxk = 1; which together with (2.1) provide the desired
result (2.10).
On making use of the inequality obtained in [7]:

jhh (A) g (A)x; xi � hh (A)x; xi hg (A)x; xij (2.16)

� 1

4
� (�� 
) (�� �)

�

8><>:
[h�x� h (A)x; f (A)x� 
xi h�x� g (A)x; g (A)x� �xi]

1
2 ;���hh (A)x; xi � �+


2

��� ��hg (A)x; xi � �+�
2

�� ;
for each x 2 H with kxk = 1; we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

��� :
for each x 2 H with kxk = 1; which together with (2.1) provide the desired
result (2.11).
Further, in order to prove the third inequality, we make use of the fol-

lowing result of Grüss type obtained in [7]:
If 
 and � are positive, then

jhh (A) g (A)x; xi � hh (A)x; xi hg (A)x; xij (2.17)

�

8><>:
1
4 �

(��
)(���)p
�
��

hh (A)x; xi hg (A)x; xi ;�p
��p


��p
��

p
�
�
[hh (A)x; xi hg (A)x; xi]

1
2 :
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for each x 2 H with kxk = 1:
Now, on making use of (2.17) we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi

�

8>><>>:
1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

hAx; xi hf 0 (A)x; xi ;

�p
M �

p
m
��p

f 0 (M)�
p
f 0 (m)

�
[hAx; xi hf 0 (A)x; xi]

1
2 :

for each x 2 H with kxk = 1; which together with (2.1) provide the desired
result (2.12).

Corollary 54 (Dragomir, 2008, [9]) Assume that f is as in the The-
orem 53. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
f1; : : : ; ng, then

(0 �)
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A (2.18)

�

8>>>>><>>>>>:
1
2 � (M �m)

�Pn
j=1 kf 0 (Aj)xjk

2 �
�Pn

j=1 hf 0 (Aj)xj ; xji
�2�1=2

;

1
2 � (f

0 (M)� f 0 (m))
�Pn

j=1 kAjxjk
2 �

�Pn
j=1 hAjxj ; xji

�2�1=2
;

� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

We also have the inequality

(0 �)
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A (2.19)

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

"
nP
j=1

hMxj �Ajx;Ajxj �mxji
# 1
2

�
"
nP
j=1

hf 0 (M)xj � f 0 (Aj)xj ; f 0 (Aj)xj � f 0 (m)xji
#1=2

;

����� nPj=1 hAjxj ; xji � M+m
2

�����
����� nPj=1 hf 0 (Aj)xj ; xji � f 0(M)+f 0(m)

2

�����
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;



30 2. Inequalities for Convex Functions

for any xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Moreover, if m > 0 and f 0 (m) > 0; then we also have

(0 �)
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A (2.20)

�

8>>>>>><>>>>>>:

1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

Pn
j=1 hAjxj ; xji

Pn
j=1 hf 0 (Aj)xj ; xji ;�p

M �
p
m
��p

f 0 (M)�
p
f 0 (m)

�
�
hPn

j=1 hAjxj ; xji
Pn
j=1 hf 0 (Aj)xj ; xji

i 1
2

;

for any xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

The following corollary also holds:

Corollary 55 (Dragomir, 2008, [9]) Assume that f is as in the The-
orem 48. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
f1; : : : ; ng and pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1; then

(0 �)
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A (2.21)

�

8>>>>>>>>><>>>>>>>>>:

1
2 � (M �m)

24 nP
j=1

pj kf 0 (Aj)xk2 �
*

nP
j=1

pjf
0 (Aj)x; x

+2351=2 ;

1
2 � (f

0 (M)� f 0 (m))

24 nP
j=1

pj kAjxk2 �
*

nP
j=1

pjAjx; x

+2351=2 ;
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
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We also have the inequality

(0 �)
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A (2.22)

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

"
nP
j=1

pj hMx�Ajx;Ajx�mxi
# 1
2

�
"
nP
j=1

pj hf 0 (M)x� f 0 (Aj)x; f 0 (Aj)x� f 0 (m)xi
#1=2

;

�����
*

nP
j=1

pjAjx; x

+
� M+m

2

�����
�����
*

nP
j=1

pjf
0 (Aj)x; x

+
� f 0(M)+f 0(m)

2

�����
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
Moreover, if m > 0 and f 0 (m) > 0; then we also have

(0 �)
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A (2.23)

�

8>>>>>><>>>>>>:

1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

DPn
j=1 pjAjx; x

EDPn
j=1 pjf

0 (Aj)x; x
E
;

�p
M �

p
m
��p

f 0 (M)�
p
f 0 (m)

�
�
hDPn

j=1 pjAjx; x
EDPn

j=1 pjf
0 (Aj)x; x

Ei 1
2

;

for any x 2 H with kxk = 1:

Remark 56 Some of the inequalities in Corollary 55 can be used to pro-
duce reverse norm inequalities for the sum of positive operators in the case
when the convex function f is nonnegative and monotonic nondecreasing
on [0;M ] :
For instance, if we use the inequality (2.21), then we have

(0 �)








nX
j=1

pjf (Aj)







� f
0@







nX
j=1

pjAj








1A � 1

4
(M �m) (f 0 (M)� f 0 (m)) :

(2.24)



32 2. Inequalities for Convex Functions

Moreover, if we use the inequality (2.23), then we obtain

(0 �)








nX
j=1

pjf (Aj)







� f
0@







nX
j=1

pjAj








1A (2.25)

�

8>>>><>>>>:
1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)






 nP
j=1

pjAj












 nP
j=1

pjf
0 (Aj)






 ;�p
M�

p
m
��p

f 0 (M)�
p
f 0 (m)

�"




 nP
j=1

pjAj












 nP
j=1

pjf
0 (Aj)







# 1
2

:

2.2.3 Some Particular Inequalities of Interest

1. Consider the convex function f : (0;1) ! R, f (x) = � lnx: On utilis-
ing the inequality (2.10), then for any positive de�nite operator A on the
Hilbert space H; we have the inequality

(0 �) ln (hAx; xi)� hln (A)x; xi (2.26)

�

8>>><>>>:
1
2 � (M �m)

h

A�1x

2 � 
A�1x; x�2i1=2
1
2 �

M�m
mM

h
kAxk2 � hAx; xi2

i1=2
 
� 1

4
� (M �m)2

mM

!

for any x 2 H with kxk = 1:
However, if we use the inequality (2.11), then we have the following result

as well

(0 �) ln (hAx; xi)� hln (A)x; xi (2.27)

� 1

4
� (M �m)2

mM

�

8<:
�
hMx�Ax;Ax�mxi



M�1x�A�1x;A�1x�m�1x

�� 1
2 ;��hAx; xi � M+m

2

�� ��
A�1x; x�� M+m
2mM

�� 
� 1

4
� (M �m)2

mM

!

for any x 2 H with kxk = 1:
2. Now consider the convex function f : (0;1) ! R, f (x) = x lnx: On

utilising the inequality (2.10), then for any positive de�nite operator A on
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the Hilbert space H; we have the inequality

(0 �) hA ln (A)x; xi � hAx; xi ln (hAx; xi) (2.28)

�

8>>><>>>:
1
2 � (M �m)

h
kln (eA)xk2 � hln (eA)x; xi2

i1=2
ln
q

M
m �

h
kAxk2 � hAx; xi2

i1=2
 
� 1

2
(M �m) ln

r
M

m

!

for any x 2 H with kxk = 1:
If we now apply the inequality (2.11), then we have the following result

as well

(0 �) hA ln (A)x; xi � hAx; xi ln (hAx; xi) (2.29)

� 1

2
(M �m) ln

r
M

m

�

8><>:
[hMx�Ax;Ax�mxi hln (M)x�ln (A)x; ln (A)x�ln (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hln (A)x; xi � lnpmM ��� 
� 1

2
(M �m) ln

r
M

m

!

for any x 2 H with kxk = 1:
Moreover, if we assume that m > e�1; then, by utilising the inequality

(2.12) we can state the inequality

(0 �) hA ln (A)x; xi � hAx; xi ln (hAx; xi) (2.30)

�

8>><>>:
1
2 �

(M�m) ln
p

M
mp

Mm ln(eM) ln(em)
hAx; xi hln (eA)x; xi ;

�p
M �

p
m
��p

ln (eM)�
p
ln (em)

�
[hAx; xi hln (eA)x; xi]

1
2 ;

for any x 2 H with kxk = 1:
3. Consider now the following convex function f : R ! (0;1) ; f (x) =

exp (�x) with � > 0: If we apply the inequalities (2.10), (2.11) and (2.12)
for f (x) = exp (�x) and for a selfadjoint operator A; then we get the
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following results

(0 �) hexp (�A)x; xi � exp (� hAx; xi) (2.31)

�

8>>><>>>:
1
2 � � (M �m)

h
kexp (�A)xk2 � hexp (�A)x; xi2

i1=2
1
2 � � (exp (�M)� exp (�m))

h
kAxk2 � hAx; xi2

i1=2
�
� 1

4
� (M �m) (exp (�M)� exp (�m))

�
;

and

(0 �) hexp (�A)x; xi � exp (� hAx; xi) (2.32)

� 1

4
� (M �m) (exp (�M)� exp (�m))

� �

8>>><>>>:
[hMx�Ax;Ax�mxi]1=2

� [hexp (�M)x� exp (�A)x; exp (�A)x� exp (�m)xi]
1
2 ;��hAx; xi � M+m

2

�� ���hexp (�A)x; xi � exp(�M)+exp(�m)
2

����
� 1

4
� (M �m) (exp (�M)� exp (�m))

�
and

(0 �) hexp (�A)x; xi � exp (� hAx; xi) (2.33)

� ��

8>>>><>>>>:
1
4 �

(M�m)(exp(�M)�exp(�m))p
Mm exp[�(M+m)

2 ]
hAx; xi hexp (�A)x; xi ;

�p
M �

p
m
� �
exp

�
�M
2

�
� exp

�
�m
2

��
� [hAx; xi hexp (�A)x; xi]

1
2

for any x 2 H with kxk = 1; respectively.
Now, consider the convex function f : R ! (0;1) ; f (x) = exp (��x)

with � > 0. If we apply the inequalities (2.10) and (2.11) for f (x) =
exp (��x) and for a selfadjoint operator A; then we get the following results

(0 �) hexp (��A)x; xi � exp (�� hAx; xi) (2.34)

� � �

8>>><>>>:
1
2 � (M �m)

h
kexp (��A)xk2 � hexp (��A)x; xi2

i1=2
1
2 � (exp (��m)� exp (��M))

h
kAxk2 � hAx; xi2

i1=2
�
� 1

4
� (M �m) (exp (��m)� exp (��M))

�
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and

(0 �) hexp (��A)x; xi � exp (�� hAx; xi) (2.35)

� 1

4
� (M �m) (exp (��m)� exp (��M))

� �

8>>><>>>:
[hMx�Ax;Ax�mxi]1=2

� [hexp (��M)x� exp (��A)x; exp (��A)x� exp (��m)xi]
1
2 ;��hAx; xi � M+m

2

�� ���hexp (��A)x; xi � exp(��M)+exp(��m)
2

����
� 1

4
� (M �m) (exp (��m)� exp (��M))

�

for any x 2 H with kxk = 1; respectively.
4. Finally, if we consider the convex function f : [0;1)! [0;1) ; f (x) =

xp with p � 1; then on applying the inequalities (2.10) and (2.11) for the
positive operator A we have the inequalities

(0 �) hApx; xi � hAx; xip (2.36)

� p�

8>>><>>>:
1
2 � (M �m)

h

Ap�1x

2 � 
Ap�1x; x�2i1=2
1
2 �
�
Mp�1 �mp�1� hkAxk2 � hAx; xi2i1=2�

� 1

4
p (M �m)

�
Mp�1 �mp�1��

and

(0 �) hApx; xi � hAx; xip (2.37)

� 1

4
p (M �m)

�
Mp�1 �mp�1�

� p

8><>:
�
hMx�Ax;Ax�mxi



Mp�1x�Ap�1x;Ap�1x�mp�1x

�� 1
2 ;��hAx; xi � M+m

2

�� ���
Ap�1x; x�� Mp�1+mp�1

2

����
� 1

4
p (M �m)

�
Mp�1 �mp�1��

for any x 2 H with kxk = 1; respectively.
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If the operator A is positive de�nite (m > 0) then, by utilising the in-
equality (2.12), we have

(0 �) hApx; xi � hAx; xip (2.38)

� p�

8>><>>:
1
4 �

(M�m)(Mp�1�mp�1)
Mp=2mp=2 hAx; xi



Ap�1x; x

�
;�p

M �
p
m
� �
M (p�1)=2 �m(p�1)=2� �hAx; xi 
Ap�1x; x�� 12 ;

for any x 2 H with kxk = 1:
Now, if we consider the convex function f : [0;1)! [0;1) ; f (x) = �xp

with p 2 (0; 1) ; then from the inequalities (2.10) and (2.11) and for the
positive de�nite operator A we have the inequalities

(0 �) hAx; xip � hApx; xi (2.39)

� p�

8>>><>>>:
1
2 � (M �m)

h

Ap�1x

2 � 
Ap�1x; x�2i1=2
1
2 �
�
mp�1 �Mp�1� hkAxk2 � hAx; xi2i1=2�

� 1

4
p (M �m)

�
mp�1 �Mp�1��

and

(0 �) hAx; xip � hApx; xi (2.40)

� 1

4
p (M �m)

�
mp�1 �Mp�1�

� p

8><>:
�
hMx�Ax;Ax�mxi



Mp�1x�Ap�1x;Ap�1x�mp�1x

�� 1
2 ;��hAx; xi � M+m

2

�� ���
Ap�1x; x�� Mp�1+mp�1

2

����
� 1

4
p (M �m)

�
mp�1 �Mp�1��

for any x 2 H with kxk = 1; respectively.
Similar results may be stated for the convex function f : (0;1) !

(0;1) ; f (x) = xp with p < 0: However the details are left to the interested
reader.
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2.3 Some Slater Type Inequalities

2.3.1 Slater Type Inequalities for Functions of Real Variables

Suppose that I is an interval of real numbers with interior°I and f : I ! R
is a convex function on I. Then f is continuous on°I and has �nite left and
right derivatives at each point of °I. Moreover, if x; y 2°I and x < y; then
f 0� (x) � f 0+ (x) � f 0� (y) � f 0+ (y) which shows that both f

0
� and f

0
+ are

nondecreasing function on °I. It is also known that a convex function must
be di¤erentiable except for at most countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f

is the set of all functions ' : I ! [�1;1] such that '
�
°I
�
� R and

f (x) � f (a) + (x� a)' (a) for any x; a 2 I:

It is also well known that if f is convex on I; then @f is nonempty, f 0�,
f 0+ 2 @f and if ' 2 @f , then

f 0� (x) � ' (x) � f 0+ (x) for any x 2°I.

In particular, ' is a nondecreasing function.
If f is di¤erentiable and convex on °I, then @f = ff 0g :
The following result is well known in the literature as the Slater inequal-

ity:

Theorem 57 (Slater, 1981, [37]) If f : I ! R is a nonincreasing (non-
decreasing) convex function, xi 2 I; pi � 0 with Pn :=

Pn
i=1 pi > 0 andPn

i=1 pi' (xi) 6= 0; where ' 2 @f; then

1

Pn

nX
i=1

pif (xi) � f

�Pn
i=1 pixi' (xi)Pn
i=1 pi' (xi)

�
: (2.41)

As pointed out in [5, p. 208], the monotonicity assumption for the deriv-
ative ' can be replaced with the conditionPn

i=1 pixi' (xi)Pn
i=1 pi' (xi)

2 I; (2.42)

which is more general and can hold for suitable points in I and for not
necessarily monotonic functions.

2.3.2 Some Slater Type Inequalities for Operators

The following result holds:

Theorem 58 (Dragomir, 2008, [10]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
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derivative f 0 is continuous on°I: If A is a selfadjoint operator on the Hilbert
space H with Sp (A) � [m;M ] �°I and f 0 (A) is a positive de�nite operator
on H then

0 � f

�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.43)

� f 0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

��
hAf 0 (A)x; xi � hAx; xi hf 0 (A)x; xi

hf 0 (A)x; xi

�
;

for any x 2 H with kxk = 1:

Proof. Since f is convex and di¤erentiable on °I, then we have that

f 0 (s) � (t� s) � f (t)� f (s) � f 0 (t) � (t� s) (2.44)

for any t; s 2 [m;M ] :
Now, if we �x t 2 [m;M ] and apply the property (P) for the operator A;

then for any x 2 H with kxk = 1 we have

hf 0 (A) � (t � 1H �A)x; xi � h[f (t) � 1H � f (A)]x; xi (2.45)

� hf 0 (t) � (t � 1H �A)x; xi

for any t 2 [m;M ] and any x 2 H with kxk = 1:
The inequality (2.45) is equivalent with

t hf 0 (A)x; xi� hf 0 (A)Ax; xi � f (t)�hf (A)x; xi � f 0 (t) t� f 0 (t) hAx; xi
(2.46)

for any t 2 [m;M ] any x 2 H with kxk = 1:
Now, since A is selfadjoint with mI � A � MI and f 0 (A) is posi-

tive de�nite, then mf 0 (A) � Af 0 (A) � Mf 0 (A) ; i.e., m hf 0 (A)x; xi �
hAf 0 (A)x; xi � M hf 0 (A)x; xi for any x 2 H with kxk = 1; which shows
that

t0 :=
hAf 0 (A)x; xi
hf 0 (A)x; xi 2 [m;M ] for any x 2 H with kxk = 1:

Finally, if we put t = t0 in the equation (2.46), then we get the desired
result (2.43).

Remark 59 It is important to observe that, the condition that f 0 (A) is
a positive de�nite operator on H can be replaced with the more general
assumption that

hAf 0 (A)x; xi
hf 0 (A)x; xi 2°I for any x 2 H with kxk = 1; (2.47)

which may be easily veri�ed for particular convex functions f:



2.3 Some Slater Type Inequalities 39

Remark 60 Now, if the functions is concave on°I and the condition (2.47)
holds, then we have the inequality

0 � hf (A)x; xi � f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
(2.48)

� f 0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

��
hAx; xi hf 0 (A)x; xi � hAf 0 (A)x; xi

hf 0 (A)x; xi

�
;

for any x 2 H with kxk = 1:

The following examples are of interest:

Example 61 If A is a positive de�nite operator on H, then

(0 �) hlnAx; xi � ln
�

A�1x; x

��1� � hAx; xi � 
A�1x; x�� 1; (2.49)

for any x 2 H with kxk = 1:

Indeed, we observe that if we consider the concave function f : (0;1)!
R, f (t) = ln t; then

hAf 0 (A)x; xi
hf 0 (A)x; xi =

1

hA�1x; xi 2 (0;1) ; for any x 2 H with kxk = 1

and by the inequality (2.48) we deduce the desired result (2.49).
The following example concerning powers of operators is of interest as

well:

Example 62 If A is a positive de�nite operator on H; then for any x 2 H
with kxk = 1 we have

0 � hApx; xip�1 �


Ap�1x; x

�p
(2.50)

� p hApx; xip�2
�
hApx; xi � hAx; xi



Ap�1x; x

��
for p � 1;

0 �


Ap�1x; x

�p � hApx; xip�1 (2.51)

� p hApx; xip�2
�
hAx; xi



Ap�1x; x

�
� hApx; xi

�
for 0 < p < 1; and

0 � hApx; xip�1 �


Ap�1x; x

�p
(2.52)

� (�p) hApx; xip�2
�
hAx; xi



Ap�1x; x

�
� hApx; xi

�
for p < 0:

The proof follows from the inequalities (2.43) and (2.48) for the convex
(concave) function f (t) = tp; p 2 (�1; 0) [ [1;1) (p 2 (0; 1)) by perform-
ing the required calculation. The details are omitted.
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2.3.3 Further Reverses

The following results that provide perhaps more useful upper bounds for
the nonnegative quantity

f

�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi for x 2 H with kxk = 1;

can be stated:

Theorem 63 (Dragomir, 2008, [10]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: Assume that A is a selfadjoint operator
on the Hilbert space H with Sp (A) � [m;M ] �°I and f 0 (A) is a positive
de�nite operator on H: If we de�ne

B (f 0; A;x) :=
1

hf 0 (A)x; xi � f
0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
then

(0 �)f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.53)

� B (f 0; A;x)�

8>><>>:
1
2 � (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
1
2 � (f

0 (M)� f 0 (m))
h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m))B (f 0; A;x)

and

(0 �)f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.54)

� B (f 0; A;x)�
�
1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

���
375

� 1

4
(M �m) (f 0 (M)� f 0 (m))B (f 0; A;x) ;

for any x 2 H with kxk = 1; respectively.



2.3 Some Slater Type Inequalities 41

Moreover, if A is a positive de�nite operator, then

(0 �)f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.55)

� B(f 0; A;x)

�

8><>:
1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

hAx; xi hf 0 (A)x; xi ;�p
M�

p
m
��p

f 0 (M)�
p
f 0 (m)

�
[hAx; xihf 0 (A)x; xi]

1
2 ;

for any x 2 H with kxk = 1:

Proof. We use the following Grüss�type result we obtained in [6]:
Let A be a selfadjoint operator on the Hilbert space (H; h:; :i) and assume

that Sp (A) � [m;M ] for some scalars m < M: If h and g are continuous
on [m;M ] and 
 := mint2[m;M ] h (t) and � := maxt2[m;M ] h (t) ; then

jhh (A) g (A)x; xi � hh (A)x; xi � hg (A)x; xij (2.56)

� 1

2
� (�� 
)

h
kg (A)xk2 � hg (A)x; xi2

i1=2
�
� 1

4
(�� 
) (�� �)

�
;

for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � :=
maxt2[m;M ] g (t) :
Therefore, we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi (2.57)

� 1

2
� (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m))

and

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi (2.58)

� 1

2
� (f 0 (M)� f 0 (m))

h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for each x 2 H with kxk = 1; which together with (2.43) provide the desired
result (2.53).
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On making use of the inequality obtained in [7]

jhh (A) g (A)x; xi � hh (A)x; xi hg (A)x; xij (2.59)

� 1

4
� (�� 
) (�� �)

�

8><>:
[h�x� h (A)x; f (A)x� 
xi h�x� g (A)x; g (A)x� �xi]

1
2 ;���hh (A)x; xi � �+


2

��� ��hg (A)x; xi � �+�
2

�� ;
for each x 2 H with kxk = 1; we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

��� ;
for each x 2 H with kxk = 1; which together with (2.43) provide the desired
result (2.54).
Further, in order to prove the third inequality, we make use of the fol-

lowing result of Grüss type obtained in [7]:
If 
 and � are positive, then

jhh (A) g (A)x; xi � hh (A)x; xi hg (A)x; xij (2.60)

�

8><>:
1
4 �

(��
)(���)p
�
��

hh (A)x; xi hg (A)x; xi ;�p
��p


��p
��

p
�
�
[hh (A)x; xi hg (A)x; xi]

1
2 ;

for each x 2 H with kxk = 1:
Now, on making use of (2.60) we can state that

hAf 0 (A)x; xi � hAx; xi � hf 0 (A)x; xi (2.61)

�

8>><>>:
1
4 �

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

hAx; xi hf 0 (A)x; xi ;

�p
M �

p
m
��p

f 0 (M)�
p
f 0 (m)

�
[hAx; xi hf 0 (A)x; xi]

1
2 ;

for each x 2 H with kxk = 1; which together with (2.43) provide the desired
result (2.55).

Remark 64 We observe, from the �rst inequality in (2.55), that

(1 �) hAf 0 (A)x; xi
hAx; xi hf 0 (A)x; xi �

1

4
� (M �m) (f 0 (M)� f 0 (m))p

Mmf 0 (M) f 0 (m)
+ 1
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which implies that

f 0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� f 0

 "
1

4
� (M �m) (f 0 (M)� f 0 (m))p

Mmf 0 (M) f 0 (m)
+ 1

#
hAx; xi

!
;

for each x 2 H with kxk = 1; since f 0 is monotonic nondecreasing and A
is positive de�nite.
Now, the �rst inequality in (2.55) implies the following result

(0 �)f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.62)

� 1

4
� (M �m) (f 0 (M)� f 0 (m))p

Mmf 0 (M) f 0 (m)

� f 0
 "
1

4
� (M �m) (f 0 (M)� f 0 (m))p

Mmf 0 (M) f 0 (m)
+ 1

#
hAx; xi

!
hAx; xi ;

for each x 2 H with kxk = 1:
From the second inequality in (2.55) we also have

(0 �)f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi (2.63)

�
�p

M �
p
m
��p

f 0 (M)�
p
f 0 (m)

�
� f 0

 "
1

4
� (M �m) (f 0 (M)� f 0 (m))p

Mmf 0 (M) f 0 (m)
+ 1

#
hAx; xi

!�
hAx; xi

hf 0 (A)x; xi

� 1
2

;

for each x 2 H with kxk = 1:

Remark 65 If the condition that f 0 (A) is a positive de�nite operator on
H from the Theorem 63 is replaced by the condition (2.47), then the in-
equalities (2.53) and (2.56) will still hold. Similar inequalities for concave
functions can be stated. However, the details are not provided here.

2.3.4 Multivariate Versions

The following result for sequences of operators can be stated.

Theorem 66 (Dragomir, 2008, [10]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If Aj ; j 2 f1; : : : ; ng are selfadjoint oper-
ators on the Hilbert space H with Sp (Aj) � [m;M ] �°I andPn

j=1 hAjf 0 (Aj)xj ; xjiPn
j=1 hf 0 (Aj)xj ; xji

2°I (2.64)
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for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1; then

0 � f

 Pn
j=1 hAjf 0 (Aj)xj ; xjiPn
j=1 hf 0 (Aj)xj ; xji

!
�

nX
j=1

hf (Aj)xj ; xji (2.65)

� f 0

 Pn
j=1 hAjf 0 (Aj)xj ; xjiPn
j=1 hf 0 (Aj)xj ; xji

!

�
"Pn

j=1 hAjf 0 (Aj)xj ; xji �
Pn
j=1 hAjxj ; xji

Pn
j=1 hf 0 (Aj)xj ; xjiPn

j=1 hf 0 (Aj)xj ; xji

#
;

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Proof. Follows from Theorem 58. The details are omitted.
The following particular case is of interest

Corollary 67 (Dragomir, 2008, [10]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If Aj ; j 2 f1; : : : ; ng are selfadjoint opera-
tors on the Hilbert space H with Sp (Aj) � [m;M ] �°I and for pj � 0 withPn
j=1 pj = 1 if we also assume thatDPn

j=1 pjAjf
0 (Aj)x; x

E
DPn

j=1 pjf
0 (Aj)x; x

E 2°I (2.66)

for each x 2 H with kxk = 1; then

0 � f

0@
DPn

j=1 pjAjf
0 (Aj)x; x

E
DPn

j=1 pjf
0 (Aj)x; x

E
1A�* nX

j=1

pjf (Aj)x; x

+
(2.67)

� f 0

0@
DPn

j=1 pjAjf
0 (Aj)x; x

E
DPn

j=1 pjf
0 (Aj)x; x

E
1A

�

24
DPn

j=1 pjAjf
0 (Aj)x; x

E
�
DPn

j=1 pjAjx; x
EDPn

j=1 pjf
0 (Aj)x; x

E
DPn

j=1 pjf
0 (Aj)x; x

E
35 ;

for each x 2 H with kxk = 1:

Proof. Follows from Theorem 66 on choosing xj =
p
pj �x; j 2 f1; : : : ; ng ;

where pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1: The

details are omitted.
The following examples are interesting in themselves:
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Example 68 If Aj, j 2 f1; : : : ; ng are positive de�nite operators on H,
then

(0 �)
nX
j=1

hlnAjxj ; xji � ln

264
0@ nX
j=1



A�1j xj ; xj

�1A�1
375 (2.68)

�
nX
j=1

hAjxj ; xji �
nX
j=1



A�1j xj ; xj

�
� 1;

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

If pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj = 1; then we also have the in-

equality

(0 �)
*

nX
j=1

pj lnAjx; x

+
� ln

264
0@* nX

j=1

pjA
�1
j x; x

+1A�1
375 (2.69)

�
*

nX
j=1

pjAjx; x

+
�
*

nX
j=1

pjA
�1
j x; x

+
� 1;

for each x 2 H with kxk = 1:

2.4 Other Inequalities for Convex Functions

2.4.1 Some Inequalities for Two Operators

The following result holds:

Theorem 69 (Dragomir, 2008, [11]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If A and B are selfadjoint operators on
the Hilbert space H with Sp (A) ; Sp (B) � [m;M ] �°I; then

hf 0 (A)x; xi hBy; yi � hf 0 (A)Ax; xi � hf (B) y; yi � hf (A)x; xi (2.70)

� hf 0 (B)By; yi � hAx; xi hf 0 (B) y; yi

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

hf 0 (A)x; xi hAy; yi � hf 0 (A)Ax; xi � hf (A) y; yi � hf (A)x; xi (2.71)

� hf 0 (A)Ay; yi � hAx; xi hf 0 (A) y; yi

for any x; y 2 H with kxk = kyk = 1 and

hf 0 (A)x; xi hBx; xi � hf 0 (A)Ax; xi � hf (B)x; xi � hf (A)x; xi (2.72)

� hf 0 (B)Bx; xi � hAx; xi hf 0 (B)x; xi
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for any x 2 H with kxk = 1:

Proof. Since f is convex and di¤erentiable on °I, then we have that

f 0 (s) � (t� s) � f (t)� f (s) � f 0 (t) � (t� s) (2.73)

for any t; s 2 [m;M ] :
Now, if we �x t 2 [m;M ] and apply the property (P) for the operator A;

then for any x 2 H with kxk = 1 we have

hf 0 (A) � (t � 1H �A)x; xi � h[f (t) � 1H � f (A)]x; xi (2.74)

� hf 0 (t) � (t � 1H �A)x; xi

for any t 2 [m;M ] and any x 2 H with kxk = 1:
The inequality (2.74) is equivalent with

t hf 0 (A)x; xi� hf 0 (A)Ax; xi � f (t)�hf (A)x; xi � f 0 (t) t� f 0 (t) hAx; xi
(2.75)

for any t 2 [m;M ] and any x 2 H with kxk = 1:
If we �x x 2 H with kxk = 1 in (2.75) and apply the property (P) for

the operator B; then we get

h[hf 0 (A)x; xiB � hf 0 (A)Ax; xi 1H ] y; yi � h[f (B)� hf (A)x; xi 1H ] y; yi
� h[f 0 (B)B � hAx; xi f 0 (B)] y; yi

for each y 2 H with kyk = 1; which is clearly equivalent to the desired
inequality (2.70).

Remark 70 If we �x x 2 H with kxk = 1 and choose B = hAx; xi � 1H ;
then we obtain from the �rst inequality in (2.70) the reverse of the Mond-
Peµcaríc inequality obtained by the author in [9]. The second inequality will
provide the Mond-Peµcaríc inequality for convex functions whose derivatives
are continuous.

The following corollary is of interest:

Corollary 71 Let I be an interval and f : I ! R be a convex and di¤er-
entiable function on °I whose derivative f 0 is continuous on °I: Also, sup-
pose that A is a selfadjoint operator on the Hilbert space H with Sp (A) �
[m;M ] �°I: If g is nonincreasing and continuous on [m;M ] and

f 0 (A) [g (A)�A] � 0 (2.76)

in the operator order of B (H) ; then

(f � g) (A) � f (A) (2.77)

in the operator order of B (H) :



2.4 Other Inequalities for Convex Functions 47

Proof. If we apply the �rst inequality from (2.72) for B = g (A) we have

hf 0 (A)x; xi hg (A)x; xi � hf 0 (A)Ax; xi � hf (g (A))x; xi � hf (A)x; xi
(2.78)

any x 2 H with kxk = 1:
We use the following µCeby�ev type inequality for functions of operators

established by the author in [8]:
Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real

numbers m < M: If h; g : [m;M ] �! R are continuous and synchronous
(asynchronous) on [m;M ] ; then

hh (A) g (A)x; xi � (�) hh (A)x; xi � hg (A)x; xi (2.79)

for any x 2 H with kxk = 1:
Now, since f 0 and g are continuous and are asynchronous on [m;M ] ;

then by (2.79) we have the inequality

hf 0 (A) g (A)x; xi � hf 0 (A)x; xi � hg (A)x; xi (2.80)

for any x 2 H with kxk = 1:
Subtracting from both sides of (2.80) the quantity hf 0 (A)Ax; xi and

taking into account, by (2.76), that hf 0 (A) [g (A)�A]x; xi � 0 for any
x 2 H with kxk = 1; we then have

0 � hf 0 (A) [g (A)�A]x; xi
= hf 0 (A) g (A)x; xi � hf 0 (A)Ax; xi
� hf 0 (A)x; xi � hg (A)x; xi � hf 0 (A)Ax; xi

which together with (2.78) will produce the desired result (2.77).
We provide now some particular inequalities of interest that can be de-

rived from Theorem 69:

Example 72 a. Let A;B two positive de�nite operators on H: Then we
have the inequalities

1�


A�1x; x

�
hBy; yi � hlnAx; xi � hlnBy; yi � hAx; xi



B�1y; y

�
� 1
(2.81)

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

1�


A�1x; x

�
hAy; yi � hlnAx; xi � hlnAy; yi � hAx; xi



A�1y; y

�
� 1
(2.82)

for any x; y 2 H with kxk = kyk = 1 and

1�


A�1x; x

�
hBx; xi � hlnAx; xi � hlnBx; xi � hAx; xi



B�1x; x

�
� 1
(2.83)

for any x 2 H with kxk = 1:
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b. With the same assumption for A and B we have the inequalities

hBy; yi � hAx; xi � hB lnBy; yi � hlnAx; xi hBy; yi (2.84)

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

hAy; yi � hAx; xi � hA lnAy; yi � hlnAx; xi hAy; yi (2.85)

for any x; y 2 H with kxk = kyk = 1 and

hBx; xi � hAx; xi � hB lnBx; xi � hlnAx; xi hBx; xi (2.86)

for any x 2 H with kxk = 1:

The proof of Example a follows from Theorem 69 for the convex function
f (x) = � lnx while the proof of the second example follows by the same
theorem applied for the convex function f (x) = x lnx and performing the
required calculations. The details are omitted.
The following result may be stated as well:

Theorem 73 (Dragomir, 2008, [11]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If A and B are selfadjoint operators on
the Hilbert space H with Sp (A) ; Sp (B) � [m;M ] �°I; then

f 0 (hAx; xi) (hBy; yi � hAx; xi) � hf (B) y; yi � f (hAx; xi) (2.87)

� hf 0 (B)By; yi � hAx; xi hf 0 (B) y; yi

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

f 0 (hAx; xi) (hAy; yi � hAx; xi) � hf (A) y; yi � f (hAx; xi) (2.88)

� hf 0 (A)Ay; yi � hAx; xi hf 0 (A) y; yi

for any x; y 2 H with kxk = kyk = 1 and

f 0 (hAx; xi) (hBx; xi � hAx; xi) � hf (B)x; xi � f (hAx; xi) (2.89)

� hf 0 (B)Bx; xi � hAx; xi hf 0 (B)x; xi

for any x 2 H with kxk = 1:

Proof. Since f is convex and di¤erentiable on °I, then we have that

f 0 (s) � (t� s) � f (t)� f (s) � f 0 (t) � (t� s) (2.90)

for any t; s 2 [m;M ] :
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If we choose s = hAx; xi 2 [m;M ] ; with a �x x 2 H with kxk = 1; then
we have

f 0 (hAx; xi)�(t� hAx; xi) � f (t)�f (hAx; xi) � f 0 (t)�(t� hAx; xi) (2.91)

for any t 2 [m;M ] :
Now, if we apply the property (P) to the inequality (2.91) and the oper-

ator B, then we get

hf 0 (hAx; xi) � (B � hAx; xi � 1H) y; yi � h[f (B)� f (hAx; xi) � 1H ] y; yi
(2.92)

� hf 0 (B) � (B � hAx; xi � 1H) y; yi

for any x; y 2 H with kxk = kyk = 1; which is equivalent with the desired
result (2.87).

Remark 74 We observe that if we choose B = A in (2.89) or y = x in
(2.88) then we recapture the Mond-Peµcaríc inequality and its reverse from
(2.1).

The following particular case of interest follows from Theorem 73

Corollary 75 (Dragomir, 2008, [11]) Assume that f;A and B are as
in Theorem 73. If, either f is increasing on [m;M ] and B � A in the
operator order of B (H) or f is decreasing and B � A; then we have the
Jensen�s type inequality

hf (B)x; xi � f (hAx; xi) (2.93)

for any x 2 H with kxk = 1:

The proof is obvious by the �rst inequality in (2.89) and the details are
omitted.
We provide now some particular inequalities of interest that can be de-

rived from Theorem 73:

Example 76 a. Let A;B be two positive de�nite operators on H: Then we
have the inequalities

1� hAx; xi�1 hBy; yi � ln (hAx; xi)� hlnBy; yi � hAx; xi


B�1y; y

�
� 1
(2.94)

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

1� hAx; xi�1 hAy; yi � ln (hAx; xi)� hlnAy; yi � hAx; xi


A�1y; y

�
� 1
(2.95)

for any x; y 2 H with kxk = kyk = 1 and

1� hAx; xi�1 hBx; xi � ln (hAx; xi)� hlnBx; xi � hAx; xi


B�1x; x

�
� 1
(2.96)
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for any x 2 H with kxk = 1:
b. With the same assumption for A and B; we have the inequalities

hBy; yi � hAx; xi � hB lnBy; yi � hBy; yi ln (hAx; xi) (2.97)

for any x; y 2 H with kxk = kyk = 1:
In particular, we have

hAy; yi � hAx; xi � hA lnAy; yi � hAy; yi ln (hAx; xi) (2.98)

for any x; y 2 H with kxk = kyk = 1 and

hBx; xi � hAx; xi � hB lnBx; xi � hBx; xi ln (hAx; xi) (2.99)

for any x 2 H with kxk = 1:

2.4.2 Inequalities for Two Sequences of Operators

The following result may be stated:

Theorem 77 (Dragomir, 2008, [11]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If Aj and Bj are selfadjoint operators
on the Hilbert space H with Sp (Aj) ; Sp (Bj) � [m;M ] �°I for any j 2
f1; : : : ; ng ; then

nX
j=1

hf 0 (Aj)xj ; xji
nX
j=1

hBjyj ; yji �
nX
j=1

hf 0 (Aj)Ajxj ; xji (2.100)

�
nX
j=1

hf (Bj) yj ; yji �
nX
j=1

hf (Aj)xj ; xji

�
nX
j=1

hf 0 (Bj)Bjyj ; yji �
nX
j=1

hAjxj ; xji
nX
j=1

hf 0 (Bj) yj ; yji

for any xj ; yj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
=
Pn
j=1 kyjk

2
= 1:

In particular, we have

nX
j=1

hf 0 (Aj)xj ; xji
nX
j=1

hAjyj ; yji �
nX
j=1

hf 0 (Aj)Ajxj ; xji (2.101)

�
nX
j=1

hf (Aj) yj ; yji �
nX
j=1

hf (Aj)xj ; xji

�
nX
j=1

hf 0 (Aj)Ajyj ; yji �
nX
j=1

hAjxj ; xji
nX
j=1

hf 0 (Aj) yj ; yji
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for any xj ; yj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
=
Pn
j=1 kyjk

2
= 1 and

nX
j=1

hf 0 (Aj)xj ; xji
nX
j=1

hBjxj ; xji �
nX
j=1

hf 0 (Aj)Ajxj ; xji (2.102)

�
nX
j=1

hf (Bj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji

�
nX
j=1

hf 0 (Bj)Bjxj ; xji �
nX
j=1

hAjxj ; xji
nX
j=1

hf 0 (Bj)xj ; xji

for any xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Proof. Follows from Theorem 69 and the details are omitted.
The following particular case may be of interest:

Corollary 78 (Dragomir, 2008, [11]) Let I be an interval and f : I !
R be a convex and di¤erentiable function on °I (the interior of I) whose
derivative f 0 is continuous on °I: If Aj and Bj are selfadjoint operators
on the Hilbert space H with Sp (Aj) ; Sp (Bj) � [m;M ] �°I for any j 2
f1; : : : ; ng ; then for any pj ; qj � 0 with

Pn
j=1 pj =

Pn
j=1 qj = 1; we have

the inequalities*
nX
j=1

pjf
0 (Aj)x; x

+*
nX
j=1

qjBjy; y

+
�
*

nX
j=1

pjf
0 (Aj)Ajx; x

+
(2.103)

�
*

nX
j=1

qjf (Bj) y; y

+
�
*

nX
j=1

pjf (Aj)x; x

+

�
*

nX
j=1

qjf
0 (Bj)Bjy; y

+
�
*

nX
j=1

pjAjx; x

+*
nX
j=1

qjf
0 (Bj) y; y

+

for any x; y 2 H with kxk = kyk = 1:
In particular, we have*

nX
j=1

pjf
0 (Aj)x; x

+*
nX
j=1

qjAjy; y

+
�
*

nX
j=1

pjf
0 (Aj)Ajx; x

+
(2.104)

�
*

nX
j=1

qjf (Aj) y; y

+
�
*

nX
j=1

pjf (Aj)x; x

+

�
*

nX
j=1

qjf
0 (Aj)Bjy; y

+
�
*

nX
j=1

pjAjx; x

+*
nX
j=1

qjf
0 (Aj) y; y

+



52 2. Inequalities for Convex Functions

for any x; y 2 H with kxk = kyk = 1 and*
nX
j=1

pjf
0 (Aj)x; x

+*
nX
j=1

pjBjx; x

+
�
*

nX
j=1

pjf
0 (Aj)Ajx; x

+
(2.105)

�
*

nX
j=1

pjf (Bj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+

�
*

nX
j=1

pjf
0 (Bj)Bjx; x

+
�
*

nX
j=1

pjAjx; x

+*
nX
j=1

pjf
0 (Bj)x; x

+

for any x 2 H with kxk = 1:

Proof. Follows from Theorem 77 on choosing xj =
p
pj � x; yj =

p
qj � y;

j 2 f1; : : : ; ng ; where pj ; qj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj =

Pn
j=1 qj = 1

and x; y 2 H; with kxk = kyk = 1: The details are omitted.

Example 79 a. Let Aj ; Bj ; j 2 f1; : : : ; ng ; be two sequences of positive
de�nite operators on H: Then we have the inequalities

1�
nX
j=1



A�1j xj ; xj

� nX
j=1

hBjyj ; yji �
nX
j=1

hlnAjxj ; xji �
nX
j=1

hlnBjyj ; yji

(2.106)

�
nX
j=1

hAjxj ; xji
nX
j=1



B�1j yj ; yj

�
� 1

for any xj ; yj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
=
Pn
j=1 kyjk

2
= 1:

b. With the same assumption for Aj and Bj we have the inequalities

nX
j=1

hBjyj ; yji �
nX
j=1

hAjxj ; xji (2.107)

�
nX
j=1

hBj lnBjyj ; yji �
nX
j=1

hlnAjxj ; xji
nX
j=1

hBjyj ; yji

for any xj ; yj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
=
Pn
j=1 kyjk

2
= 1:

Finally, we have

Example 80 a. Let Aj ; Bj ; j 2 f1; : : : ; ng ; be two sequences of positive
de�nite operators on H: Then for any pj ; qj � 0 with

Pn
j=1 pj =

Pn
j=1 qj =
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1; we have the inequalities

1�
*

nX
j=1

pjA
�1
j x; x

+*
nX
j=1

qjBjy; y

+
(2.108)

�
*

nX
j=1

pj lnAjx; x

+
�
*

nX
j=1

qj lnBjy; y

+

�
*

nX
j=1

pjAjx; x

+*
nX
j=1

qjB
�1
j y; y

+
� 1

for any x; y 2 H with kxk = kyk = 1:
b. With the same assumption for Aj, Bj ; pj and qj ; we have the inequal-

ities *
nX
j=1

qjBjy; y

+
�
*

nX
j=1

pjAjx; x

+
(2.109)

�
*

nX
j=1

qjBj lnBjy; y

+
�
*

nX
j=1

pj lnAjx; x

+*
nX
j=1

qjBjy; y

+

for any x; y 2 H with kxk = kyk = 1:

Remark 81 We observe that all the other inequalities for two operators
obtained in Subsection 3.1 can be extended for two sequences of operators
in a similar way. However, the details are left to the interested reader.

2.5 Some Jensen Type Inequalities for Twice
Di¤erentiable Functions

2.5.1 Jensen�s Inequality for Twice Di¤erentiable Functions

The following result may be stated:

Theorem 82 (Dragomir, 2008, [12]) Let A be a positive de�nite oper-
ator on the Hilbert space H and assume that Sp (A) � [m;M ] for some
scalars m;M with 0 < m < M: If f is a twice di¤erentiable function on
(m;M) and for p 2 (�1; 0) [ (1;1) we have for some 
 < � that


 � t2�p

p (p� 1) � f
00 (t) � � for any t 2 (m;M) ; (2.110)

then


 (hApx; xi � hAx; xip) � hf (A)x; xi � f (hAx; xi) (2.111)

� � (hApx; xi � hAx; xip)
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for each x 2 H with kxk = 1:
If

� � t2�p

p (1� p) � f
00 (t) � � for any t 2 (m;M) (2.112)

and for some � < �; where p 2 (0; 1), then

� (hAx; xip � hApx; xi) � hf (A)x; xi � f (hAx; xi) (2.113)

� �(hAx; xip � hApx; xi)

for each x 2 H with kxk = 1:

Proof. Consider the function g
;p : (m;M)! R given by g
;p (t) = f (t)�

tp where p 2 (�1; 0) [ (1;1) : The function g
;p is twice di¤erentiable,

g00
;p (t) = f 00 (t)� 
p (p� 1) tp�2

for any t 2 (m;M) and by (2.110) we deduce that g
;p is convex on (m;M) :
Now, applying the Mond & Peµcaríc inequality for g
;p we have

0 � h(f (A)� 
Ap)x; xi � [f (hAx; xi)� 
 hAx; xip]
= hf (A)x; xi � f (hAx; xi)� 
 [hApx; xi � hAx; xip]

which is equivalent with the �rst inequality in (2.111).
By de�ning the function g�;p : (m;M)! R given by g�;p (t) = �tp�f (t)

and applying the same argument we deduce the second part of (2.111).
The rest goes likewise and the details are omitted.

Remark 83 We observe that if f is a twice di¤erentiable function on
(m;M) and ' := inft2(m;M) f

00 (t) ;� := supt2(m;M) f
00 (t) ; then by (2.111)

we get the inequality

1

2
'
h

A2x; x

�
� hAx; xi2

i
� hf (A)x; xi � f (hAx; xi) (2.114)

� 1

2
�
h

A2x; x

�
� hAx; xi2

i
for each x 2 H with kxk = 1:
We observe that the inequality (2.114) holds for selfadjoint operators that

are not necessarily positive.

The following version for sequences of operators can be stated:

Corollary 84 (Dragomir, 2008, [11]) Let Aj be positive de�nite oper-
ators with Sp (Aj) � [m;M ] � (0;1) j 2 f1; : : : ; ng. If f is a twice
di¤erentiable function on (m;M) and for p 2 (�1; 0)[ (1;1) we have the
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condition (2.110), then




24 nX
j=1



Apjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Ap35 (2.115)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

24 nX
j=1



Apjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Ap35
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1.

If we have the condition (2.112) for p 2 (0; 1), then

�

240@ nX
j=1

hAjxj ; xji

1Ap

�
nX
j=1



Apjxj ; xj

�35 (2.116)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

240@ nX
j=1

hAjxj ; xji

1Ap

�
nX
j=1



Apjxj ; xj

�35
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1.

Proof. Follows from Theorem 82.

Corollary 85 (Dragomir, 2008, [11]) Let Aj be positive de�nite oper-
ators with Sp (Aj) � [m;M ] � (0;1) j 2 f1; : : : ; ng and pj � 0; j 2
f1; : : : ; ng with

Pn
j=1 pj = 1. If f is a twice di¤erentiable function on

(m;M) and for p 2 (�1; 0) [ (1;1) we have the condition (2.110), then




24* nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjAjx; x

+p35 (2.117)

�
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A
� �

24* nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjAjx; x

+p35
for each x 2 H with kxk = 1.
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If we have the condition (2.112) for p 2 (0; 1), then

�

24* nX
j=1

pjAjx; x

+p
�
*

nX
j=1

pjA
p
jx; x

+35 (2.118)

�
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A
� �

24* nX
j=1

pjAjx; x

+p
�
*

nX
j=1

pjA
p
jx; x

+35
for each x 2 H with kxk = 1.

Proof. Follows from Corollary 84 on choosing xj =
p
pj �x; j 2 f1; : : : ; ng ;

where pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1: The

details are omitted.

Remark 86 We observe that if f is a twice di¤erentiable function on
(m;M) with �1 < m < M < 1, Sp (Aj) � [m;M ] ; j 2 f1; : : : ; ng
and ' := inft2(m;M) f

00 (t) ;� := supt2(m;M) f
00 (t) ; then

'

264 nX
j=1



A2jxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1A2
375 (2.119)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

264 nX
j=1



A2jxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1A2
375

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1.

Also, if pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj = 1; then

'

24* nX
j=1

pjA
2
jx; x

+
�
*

nX
j=1

pjAjx; x

+235 (2.120)

�
*

nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A
� �

24* nX
j=1

pjA
2
jx; x

+
�
*

nX
j=1

pjAjx; x

+235
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The next result provides some inequalities for the function f which re-
place the cases p = 0 and p = 1 that were not allowed in Theorem 82:

Theorem 87 (Dragomir, 2008, [11]) Let A be a positive de�nite oper-
ator on the Hilbert space H and assume that Sp (A) � [m;M ] for some
scalars m;M with 0 < m < M: If f is a twice di¤erentiable function on
(m;M) and we have for some 
 < � that


 � t2 � f 00 (t) � � for any t 2 (m;M) ; (2.121)

then


 (ln (hAx; xi)� hlnAx; xi) � hf (A)x; xi � f (hAx; xi) (2.122)

� � (ln (hAx; xi)� hlnAx; xi)

for each x 2 H with kxk = 1:
If

� � t � f 00 (t) � � for any t 2 (m;M) (2.123)

for some � < �, then

� (hA lnAx; xi � hAx; xi ln (hAx; xi)) � hf (A)x; xi � f (hAx; xi) (2.124)
� �(hA lnAx; xi � hAx; xi ln (hAx; xi))

for each x 2 H with kxk = 1:

Proof. Consider the function g
;0 : (m;M)! R given by g
;0 (t) = f (t)+

 ln t: The function g
;0 is twice di¤erentiable,

g00
;p (t) = f 00 (t)� 
t�2

for any t 2 (m;M) and by (2.121) we deduce that g
;0 is convex on (m;M) :
Now, applying the Mond & Peµcaríc inequality for g
;0 we have

0 � h(f (A) + 
 lnA)x; xi � [f (hAx; xi) + 
 ln (hAx; xi)]
= hf (A)x; xi � f (hAx; xi)� 
 [ln (hAx; xi)� hlnAx; xi]

which is equivalent with the �rst inequality in (2.122).
By de�ning the function g�;0 : (m;M)! R given by g�;0 (t) = �� ln t�

f (t) and applying the same argument we deduce the second part of (2.122).
The rest goes likewise for the functions

g�;1 (t) = f (t)� �t ln t and g�;0 (t) = �t ln t� f (t)

and the details are omitted.
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Corollary 88 (Dragomir, 2008, [11]) Let Aj be positive de�nite oper-
ators with Sp (Aj) � [m;M ] � (0;1) j 2 f1; : : : ; ng. If f is a twice
di¤erentiable function on (m;M) and we have the condition (2.121), then




0@ln
0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

hlnAjxj ; xji

1A (2.125)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

0@ln
0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

hlnAjxj ; xji

1A
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1.

If we have the condition (2.123), then

�

0@ nX
j=1

hAj lnAjxj ; xji �
nX
j=1

hAjxj ; xji ln

0@ nX
j=1

hAjxj ; xji

1A1A (2.126)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

0@ nX
j=1

hAj lnAjxj ; xji �
nX
j=1

hAjxj ; xji ln

0@ nX
j=1

hAjxj ; xji

1A1A
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1.

The following particular case also holds:

Corollary 89 (Dragomir, 2008, [11]) Let Aj be positive de�nite oper-
ators with Sp (Aj) � [m;M ] � (0;1) j 2 f1; : : : ; ng and pj � 0; j 2
f1; : : : ; ng with

Pn
j=1 pj = 1. If f is a twice di¤erentiable function on

(m;M) and we have the condition (2.121), then




0@ln
0@* nX

j=1

pjAjx; x

+1A�* nX
j=1

pj lnAjx; x

+1A (2.127)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

0@ln
0@* nX

j=1

pjAjx; x

+1A�* nX
j=1

pj lnAjx; x

+1A
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for each x 2 H with kxk = 1.
If we have the condition (2.123), then

�

0@* nX
j=1

pjAj lnAjx; x

+
�
*

nX
j=1

pjAjx; x

+
ln

0@* nX
j=1

pjAjx; x

+1A1A
(2.128)

�
nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A
� �

0@* nX
j=1

pjAj lnAjx; x

+
�
*

nX
j=1

pjAjx; x

+
ln

0@* nX
j=1

pjAjx; x

+1A1A
for each x 2 H with kxk = 1.

2.5.2 Applications

It is clear that the results from the previous section can be applied for
various particular functions which are twice di¤erentiable and the second
derivatives satisfy the boundedness conditions from the statements of the
Theorems 82, 87 and the Remark 83.
We point out here only some simple examples that are, in our opinion,

of large interest.
1. For a given � > 0; consider the function f (t) = exp (�t) ; t 2 R. We

have f 00 (t) = �2 exp (�t) and for a selfadjoint operator A with Sp (A) �
[m;M ] (for some real numbers m < M) we also have

' := inf
t2(m;M)

f 00 (t) = �2 exp (�m) and � := sup
t2(m;M)

f 00 (t) = �2 exp (�M) :

Utilising the inequality (2.114) we get

1

2
�2 exp (�m)

h

A2x; x

�
�hAx; xi2

i
�hexp (�A)x; xi � exp (h�Ax; xi)

(2.129)

� 1
2
�2 exp (�M)

h

A2x; x

�
�hAx; xi2

i
;

for each x 2 H with kxk = 1.
Now, if � > 0, then we also have

1

2
�2 exp(��M)

h

A2x; x

�
�hAx; xi2

i
�hexp(��A)x; xi�exp (�h�Ax; xi)

(2.130)

� 1
2
�2 exp(��m)

h

A2x; x

�
�hAx; xi2

i
;
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for each x 2 H with kxk = 1.
2. Now, assume that 0 < m < M and the operator A satis�es the

condition m � 1H � A � M � 1H : If we consider the function f : (0;1) !
(0;1) de�ned by f (t) = tp with p 2 (�1; 0) [ (0; 1) [ (1;1) : Then
f 00 (t) = p (p� 1) tp�2 and if we consider ' := inft2(m;M) f

00 (t) and � :=
supt2(m;M) f

00 (t) ; then we have

' = p (p� 1)mp�2;� = p (p� 1)Mp�2 for p 2 [2;1);

' = p (p� 1)Mp�2;� = p (p� 1)mp�2 for p 2 (1; 2) ;

' = p (p� 1)mp�2;� = p (p� 1)Mp�2 for p 2 (0; 1) ;

and

' = p (p� 1)Mp�2;� = p (p� 1)mp�2 for p 2 (�1; 0) :

Utilising the inequality (2.114) we then get the following re�nements an
reverses of Hölder-McCarthy�s inequalities:

1

2
p (p� 1)mp�2

h

A2x; x

�
� hAx; xi2

i
(2.131)

� hApx; xi � hAx; xip

� 1

2
p (p� 1)Mp�2

h

A2x; x

�
� hAx; xi2

i
for p 2 [2;1);

1

2
p (p� 1)Mp�2

h

A2x; x

�
� hAx; xi2

i
(2.132)

� hApx; xi � hAx; xip

� 1

2
p (p� 1)mp�2

h

A2x; x

�
� hAx; xi2

i
for p 2 (1; 2) ;

1

2
p (1� p)Mp�2

h

A2x; x

�
� hAx; xi2

i
(2.133)

� hAx; xip � hApx; xi

� 1

2
p (1� p)mp�2

h

A2x; x

�
� hAx; xi2

i
for p 2 (0; 1)

and

1

2
p (p� 1)Mp�2

h

A2x; x

�
� hAx; xi2

i
(2.134)

� hApx; xi � hAx; xip

� 1

2
p (p� 1)mp�2

h

A2x; x

�
� hAx; xi2

i
for p 2 (�1; 0) ;
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for each x 2 H with kxk = 1.
3. Now, if we consider the function f : (0;1) ! R, f (t) = � ln t;

then f 00 (t) = t�2 which gives that ' = M�2 and � = m�2: Utilising the
inequality (2.114) we then deduce the bounds

1

2
M�2

h

A2x; x

�
� hAx; xi2

i
(2.135)

� ln (hAx; xi)� hlnAx; xi

� 1

2
m�2

h

A2x; x

�
� hAx; xi2

i
for each x 2 H with kxk = 1.
Moreover, if we consider the function f : (0;1) ! R, f (t) = t ln t;

then f 00 (t) = t�1 which gives that ' = M�1 and � = m�1: Utilising the
inequality (2.114) we then deduce the bounds

1

2
M�1

h

A2x; x

�
� hAx; xi2

i
(2.136)

� hA lnAx; xi � hAx; xi ln (hAx; xi)

� 1

2
m�1

h

A2x; x

�
� hAx; xi2

i
for each x 2 H with kxk = 1:

Remark 90 Utilising Theorem 82 for the particular value of p = �1 we
can state the inequality

1

2
 
�

A�1x; x

�
� hAx; xi�1

�
� hf (A)x; xi � f (hAx; xi) (2.137)

� 1

2
	
�

A�1x; x

�
� hAx; xi�1

�
for each x 2 H with kxk = 1; provided that f is twice di¤erentiable on
(m;M) � (0;1) and

 = inf
t2(m;M)

t3f 00 (t) while 	 = sup
t2(m;M)

t3f 00 (t)

are assumed to be �nite.
We observe that, by utilising the inequality (2.137) instead of the in-

equality (2.114) we may obtain similar results in terms of the quantity

A�1x; x

�
�hAx; xi�1, x 2 H with kxk = 1: However the details are left to

the interested reader.
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2.6 Some Jensen�s Type Inequalities for
Log-convex Functions

2.6.1 Preliminary Results

The following result that provides an operator version for the Jensen in-
equality for convex functions is due to Mond and Peµcaríc [32] (see also [20,
p. 5]):

Theorem 91 (Mond-Peµcaríc, 1993, [32]) Let A be a selfadjoint oper-
ator on the Hilbert space H and assume that Sp (A) � [m;M ] for some
scalars m;M with m < M: If f is a convex function on [m;M ] ; then

f (hAx; xi) � hf (A)x; xi (MP)

for each x 2 H with kxk = 1:

Taking into account the above result and its applications for various con-
crete examples of convex functions, it is therefore natural to investigate the
corresponding results for the case of log-convex functions, namely functions
f : I ! (0;1) for which ln f is convex.
We observe that such functions satisfy the elementary inequality

f ((1� t) a+ tb) � [f (a)]1�t [f (b)]t (2.138)

for any a; b 2 I and t 2 [0; 1] : Also, due to the fact that the weighted
geometric mean is less than the weighted arithmetic mean, it follows that
any log-convex function is a convex functions. However, obviously, there
are functions that are convex but not log-convex.
As an immediate consequence of the Mond-Peµcaríc inequality above we

can provide the following result:

Theorem 92 (Dragomir, 2010, [15]) Let A be a selfadjoint operator on
the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M: If g : [m;M ]! (0;1) is log-convex, then

g (hAx; xi) � exp hln g (A)x; xi � hg (A)x; xi (2.139)

for each x 2 H with kxk = 1:

Proof. Consider the function f := ln g; which is convex on [m;M ] :Writing
(MP) for f we get ln [g (hAx; xi)] � hln g (A)x; xi ; for each x 2 H with
kxk = 1; which, by taking the exponential, produces the �rst inequality in
(2.139).
If we also use (MP) for the exponential function, we get

exp hln g (A)x; xi � hexp [ln g (A)]x; xi = hg (A)x; xi
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for each x 2 H with kxk = 1 and the proof is complete.
The case of sequences of operators may be of interest and is embodied

in the following corollary:

Corollary 93 (Dragomir, 2010, [15]) Assume that g is as in the Theo-
rem 92. If Aj are selfadjoint operators with Sp (Aj) � [m;M ], j 2 f1; :::; ng
and xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

g

0@ nX
j=1

hAjxj ; xji

1A � exp
*

nX
j=1

ln g (Aj)xj ; xj

+
�
*

nX
j=1

g (Aj)xj ; xj

+
:

(2.140)

Proof. Follows from Theorem 92and we omit the details.
In particular we have:

Corollary 94 (Dragomir, 2010, [15]) Assume that g is as in the The-
orem 92. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
f1; :::; ng and pj � 0; j 2 f1; :::; ng with

Pn
j=1 pj = 1; then

g

0@* nX
j=1

pjAjx; x

+1A �
*

nY
j=1

[g (Aj)]
pj x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
(2.141)

for each x 2 H with kxk = 1:

Proof. Follows from Corollary 93 by choosing xj =
p
pj � x; j 2 f1; :::; ng

where x 2 H with kxk = 1:
It is also important to observe that, as a special case of Theorem 91 we

have the following important inequality in Operator Theory that is well
known as the Hölder-McCarthy inequality:

Theorem 95 (Hölder-McCarthy, 1967, [26]) Let A be a selfadjoint pos-
itive operator on a Hilbert space H. Then
(i) hArx; xi � hAx; xir for all r > 1 and x 2 H with kxk = 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1 and x 2 H with kxk = 1;
(iii) If A is invertible, then hA�rx; xi � hAx; xi�r for all r > 0 and

x 2 H with kxk = 1:

Since the function g (t) = t�r for r > 0 is log-convex, we can improve
the Hölder-McCarthy inequality as follows:

Proposition 96 Let A be a selfadjoint positive operator on a Hilbert space
H: If A is invertible, then

hAx; xi�r � exp


ln
�
A�r

�
x; x

�
�


A�rx; x

�
(2.142)

for all r > 0 and x 2 H with kxk = 1:
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The following reverse for the Mond-Peµcaríc inequality that generalizes
the scalar Lah-Ribaríc inequality for convex functions is well known, see
for instance [20, p. 57]:

Theorem 97 Let A be a selfadjoint operator on the Hilbert space H and
assume that Sp (A) � [m;M ] for some scalars m;M with m < M: If f is
a convex function on [m;M ] ; then

hf (A)x; xi � M � hAx; xi
M �m � f (m) + hAx; xi �m

M �m � f (M) (2.143)

for each x 2 H with kxk = 1:

This result can be improved for log-convex functions as follows:

Theorem 98 (Dragomir, 2010, [15]) Let A be a selfadjoint operator on
the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M: If g : [m;M ]! (0;1) is log-convex, then

hg (A)x; xi �
Dh
[g (m)]

M1H�A
M�m [g (M)]

A�m1H
M�m

i
x; x

E
(2.144)

� M � hAx; xi
M �m � g (m) + hAx; xi �m

M �m � g (M)

and

g (hAx; xi) � [g (m)]
M�hAx;xi

M�m [g (M)]
hAx;xi�m
M�m (2.145)

�
Dh
[g (m)]

M1H�A
M�m [g (M)]

A�m1H
M�m

i
x; x

E
for each x 2 H with kxk = 1:

Proof. Observe that, by the log-convexity of g; we have

g (t) = g

�
M � t
M �m �m+

t�m
M �m �M

�
� [g (m)]

M�t
M�m [g (M)]

t�m
M�m

(2.146)
for any t 2 [m;M ] :
Applying the property (P) for the operator A, we have that

hg (A)x; xi � h	(A)x; xi

for each x 2 H with kxk = 1; where 	(t) := [g (m)]
M�t
M�m [g (M)]

t�m
M�m ;

t 2 [m;M ] : This proves the �rst inequality in (2.144).
Now, observe that, by the weighted arithmetic mean-geometric mean

inequality we have

[g (m)]
M�t
M�m [g (M)]

t�m
M�m � M � t

M �m � g (m) + t�m
M �m � g (M)
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for any t 2 [m;M ] :
Applying the property (P) for the operator A we deduce the second

inequality in (2.144).
Further on, if we use the inequality (2.146) for t = hAx; xi 2 [m;M ] then

we deduce the �rst part of (2.145).
Now, observe that the function 	 introduced above can be rearranged

to read as

	(t) = g (m)

�
g (M)

g (m)

� t�m
M�m

; t 2 [m;M ]

showing that 	 is a convex function on [m;M ] :
Applying Mond-Peµcaríc�s inequality for 	 we deduce the second part of

(2.145) and the proof is complete.
The case of sequences of operators is as follows:

Corollary 99 (Dragomir, 2010, [15]) Assume that g is as in the Theo-
rem 92. If Aj are selfadjoint operators with Sp (Aj) � [m;M ], j 2 f1; :::; ng
and xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

nX
j=1

hg (Aj)xj ; xji (2.147)

�
*

nX
j=1

�
[g (m)]

M1H�Aj
M�m [g (M)]

Aj�m1H
M�m

�
xj ; xj

+

�
M �

Pn
j=1 hAjxj ; xji
M �m � g (m) +

Pn
j=1 hAjxj ; xji �m

M �m � g (M)

and

g

0@ nX
j=1

hAjxj ; xji

1A (2.148)

� [g (m)]
M�

Pn
j=1hAjxj;xji
M�m [g (M)]

Pn
j=1hAjxj;xji�m

M�m

�
*

nX
j=1

�
[g (m)]

M1H�Aj
M�m [g (M)]

Aj�m1H
M�m

�
xj ; xj

+
:

In particular we have:

Corollary 100 (Dragomir, 2010, [15]) Assume that g is as in the The-
orem 92. If Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°I, j 2
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f1; :::; ng and pj � 0; j 2 f1; :::; ng with
Pn
j=1 pj = 1; then*

nX
j=1

pjg (Aj)x; x

+
(2.149)

�
*

nX
j=1

pj [g (m)]
M1H�Aj
M�m [g (M)]

Aj�m1H
M�m x; x

+

�
M �

DPn
j=1 pjAjx; x

E
M �m � g (m) +

DPn
j=1 pjAjx; x

E
�m

M �m � g (M)

and

g

0@* nX
j=1

pjAjx; x

+1A (2.150)

� [g (m)]
M�hPn

j=1 pjAjx;xi
M�m [g (M)]

hPn
j=1 pjAjx;xi�m

M�m

�
*

nX
j=1

pj [g (m)]
M1H�Aj
M�m [g (M)]

Aj�m1H
M�m x; x

+
:

The above result from Theorem 98 can be utilized to produce the follow-
ing reverse inequality for negative powers of operators:

Proposition 101 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible and Sp (A) � [m;M ] (0 < m < M) ; then



A�rx; x

�
�
�h
m

M1H�A
M�m M

A�m1H
M�m

i�r
x; x

�
(2.151)

� M � hAx; xi
M �m �m�r +

hAx; xi �m
M �m �M�r

and

hAx; xi�r �
h
g (m)

M�hAx;xi
M�m g (M)

hAx;xi�m
M�m

i�r
(2.152)

�
�h
m

M1H�A
M�m M

A�m1H
M�m

i�r
x; x

�
for all r > 0 and x 2 H with kxk = 1:

2.6.2 Jensen�s Inequality for Di¤erentiable Log-convex
Functions

The following result provides a reverse for the Jensen type inequality (MP):
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Theorem 102 (Dragomir, 2008, [9]) Let J be an interval and f : J !
R be a convex and di¤erentiable function on °J (the interior of J) whose
derivative f 0 is continuous on °J: If A is a selfadjoint operators on the
Hilbert space H with Sp (A) � [m;M ] � °J; then

(0 �) hf (A)x; xi � f (hAx; xi) � hf 0 (A)Ax; xi � hAx; xi � hf 0 (A)x; xi
(2.153)

for any x 2 H with kxk = 1:

The following result may be stated:

Proposition 103 (Dragomir, 2010, [15]) Let J be an interval and g :
J ! R be a di¤erentiable log-convex function on °J whose derivative g0 is
continuous on °J. If A is a selfadjoint operator on the Hilbert space H with
Sp (A) � [m;M ] � °J; then

(1 �) exp hln g (A)x; xi
g (hAx; xi) (2.154)

� exp
hD
g0 (A) [g (A)]

�1
Ax; x

E
� hAx; xi �

D
g0 (A) [g (A)]

�1
x; x

Ei
for each x 2 H with kxk = 1:

Proof. It follows by the inequality (2.153) written for the convex function
f = ln g that

hln g (A)x; xi � ln g (hAx; xi)

+
D
g0 (A) [g (A)]

�1
Ax; x

E
� hAx; xi �

D
g0 (A) [g (A)]

�1
x; x

E
for each x 2 H with kxk = 1:
Now, taking the exponential and dividing by g (hAx; xi) > 0 for each

x 2 H with kxk = 1; we deduce the desired result (2.154).

Corollary 104 (Dragomir, 2010, [15]) Assume that g is as in the Propo-
sition 103 and Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°J,
j 2 f1; :::; ng :
If and xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

(1 �)
exp

DPn
j=1 ln g (Aj)xj ; xj

E
g
�Pn

j=1 hAjx; xji
� (2.155)

� exp

24* nX
j=1

g0 (Aj) [g (Aj)]
�1
Ajxj ; xj

+

�
nX
j=1

hAjxj ; xji �
nX
j=1

D
g0 (Aj) [g (Aj)]

�1
xj ; xj

E35 :
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If pj � 0; j 2 f1; :::; ng with
Pn
j=1 pj = 1; then

(1 �)

DQn
j=1 [g (Aj)]

pj x; x
E

g
�DPn

j=1 pjAjx; x
E� (2.156)

� exp

24* nX
j=1

pjg
0 (Aj) [g (Aj)]

�1
Ajx; x

+

�
nX
j=1

pj hAjx; xi �
nX
j=1

pj

D
g0 (Aj) [g (Aj)]

�1
x; x

E35
for each x 2 H with kxk = 1:

Remark 105 Let A be a selfadjoint positive operator on a Hilbert space
H: If A is invertible, then

(1 �) hAx; xir exp


ln
�
A�r

�
x; x

�
� exp

�
r
�
hAx; xi �



A�1x; x

�
� 1
��

(2.157)
for all r > 0 and x 2 H with kxk = 1:

The following result that provides both a re�nement and a reverse of the
multiplicative version of Jensen�s inequality can be stated as well:

Theorem 106 (Dragomir, 2010, [15]) Let J be an interval and g : J !
R be a log-convex di¤erentiable function on °J whose derivative g0 is con-
tinuous on °J. If A is a selfadjoint operators on the Hilbert space H with
Sp (A) � [m;M ] � °J; then

1 �
�
exp

�
g0 (hAx; xi)
g (hAx; xi) (A� hAx; xi 1H)

�
x; x

�
(2.158)

� hg (A)x; xi
g (hAx; xi) �

D
exp

h
g0 (A) [g (A)]

�1
(A� hAx; xi 1H)

i
x; x

E
for each x 2 H with kxk = 1; where 1H denotes the identity operator on
H:

Proof. It is well known that if h : J ! R is a convex di¤erentiable function
on °J, then the following gradient inequality holds

h (t)� h (s) � h0 (s) (t� s)

for any t; s 2°J.
Now, if we write this inequality for the convex function h = ln g; then

we get

ln g (t)� ln g (s) � g0 (s)

g (s)
(t� s) (2.159)
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which is equivalent with

g (t) � g (s) exp

�
g0 (s)

g (s)
(t� s)

�
(2.160)

for any t; s 2°J.
Further, if we take s := hAx; xi 2 [m;M ] � °J; for a �xed x 2 H with

kxk = 1; in the inequality (2.160), then we get

g (t) � g (hAx; xi) exp
�
g0 (hAx; xi)
g (hAx; xi) (t� hAx; xi)

�
for any t 2°J.
Utilising the property (P) for the operator A and the Mond-Peµcaríc in-

equality for the exponential function, we can state the following inequality
that is of interest in itself as well:

hg (A) y; yi � g (hAx; xi)
�
exp

�
g0 (hAx; xi)
g (hAx; xi) (A� hAx; xi 1H)

�
y; y

�
(2.161)

� g (hAx; xi) exp
�
g0 (hAx; xi)
g (hAx; xi) (hAy; yi � hAx; xi)

�
for each x; y 2 H with kxk = kyk = 1:
Further, if we put y = x in (2.161), then we deduce the �rst and the

second inequality in (2.158).
Now, if we replace s with t in (2.160) we can also write the inequality

g (t) exp

�
g0 (t)

g (t)
(s� t)

�
� g (s)

which is equivalent with

g (t) � g (s) exp

�
g0 (t)

g (t)
(t� s)

�
(2.162)

for any t; s 2°J.
Further, if we take s := hAx; xi 2 [m;M ] � °J; for a �xed x 2 H with

kxk = 1; in the inequality (2.162), then we get

g (t) � g (hAx; xi) exp
�
g0 (t)

g (t)
(t� hAx; xi)

�
for any t 2°J.
Utilising the property (P) for the operator A, then we can state the

following inequality that is of interest in itself as well:

hg (A) y; yi � g (hAx; xi)
D
exp

h
g0 (A) [g (A)]

�1
(A� hAx; xi 1H)

i
y; y
E

(2.163)
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for each x; y 2 H with kxk = kyk = 1:
Finally, if we put y = x in (2.163), then we deduce the last inequality in

(2.158).
The case of operator sequences is embodied in the following corollary:

Corollary 107 (Dragomir, 2010, [15]) Assume that g is as in the Propo-
sition 103 and Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°J,
j 2 f1; :::; ng :
If and xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

1 �
*

nX
j=1

exp

24g0
�Pn

j=1 hAjxj ; xji
�

g
�Pn

j=1 hAjxj ; xji
�
0@Aj � nX

j=1

hAjxj ; xji 1H

1A35xj ; xj+
(2.164)

�
Pn
j=1 hg (Aj)xj ; xji

g
�Pn

j=1 hAjxj ; xji
�

�
*

nX
j=1

exp

24g0 (Aj) [g (Aj)]�1
0@Aj � nX

j=1

hAjxj ; xji 1H

1A35xj ; xj+ :
If pj � 0; j 2 f1; :::; ng with

Pn
j=1 pj = 1; then for each x 2 H with

kxk = 1

1 �
*

nX
j=1

pj exp

24g0
�DPn

j=1 pjAjx; x
E�

g
�DPn

j=1 pjAjx; x
E� (2.165)

�

0@Aj �* nX
j=1

pjAjx; x

+
1H

1A35x; x+

�

DPn
j=1 pjg (Aj)x; x

E
g
�DPn

j=1 pjAjx; x
E�

�
*

nX
j=1

pj exp

24g0 (Aj) [g (Aj)]�1
0@Aj �* nX

j=1

pjAjx; x

+
1H

1A35x; x+ :
Remark 108 Let A be a selfadjoint positive operator on a Hilbert space
H: If A is invertible, then

1 �
D
exp

h
r
�
1H � hAx; xi�1A

�i
x; x

E
(2.166)

�


A�rx; x

�
hAx; xir �



exp

�
r
�
1H � hAx; xiA�1

��
x; x

�
for all r > 0 and x 2 H with kxk = 1:
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The following reverse inequality may be proven as well:

Theorem 109 (Dragomir, 2010, [15]) Let J be an interval and g : J !
R be a log-convex di¤erentiable function on °J whose derivative g0 is con-
tinuous on °J. If A is a selfadjoint operators on the Hilbert space H with
Sp (A) � [m;M ] � °J; then

(1 �)

D
[g (M)]

A�m1H
M�m [g (m)]

M1H�A
M�m x; x

E
hg (A)x; xi (2.167)

�

D
g (A) exp

h
(M1H�A)(A�m1H)

M�m

�
g0(M)
g(M) �

g0(m)
g(m)

�i
x; x

E
hg (A)x; xi

� exp
�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
for each x 2 H with kxk = 1:

Proof. Utilising the inequality (2.159) we have successively

g ((1� �) t+ �s)
g (s)

� exp
�
(1� �) g

0 (s)

g (s)
(t� s)

�
(2.168)

and
g ((1� �) t+ �s)

g (t)
� exp

�
��g

0 (t)

g (t)
(t� s)

�
(2.169)

for any t; s 2°J and any � 2 [0; 1] :
Now, if we take the power � in the inequality (2.168) and the power 1��

in (2.169) and multiply the obtained inequalities, we deduce

[g (t)]
1��

[g (s)]
�

g ((1� �) t+ �s) (2.170)

� exp
�
(1� �)�

�
g0 (t)

g (t)
� g0 (s)

g (s)

�
(t� s)

�
for any t; s 2°J and any � 2 [0; 1] :
Further on, if we choose in (2.170) t = M; s = m and � = M�u

M�m ; then,
from (2.170) we get the inequality

[g (M)]
u�m
M�m [g (m)]

M�u
M�m

g (u)
(2.171)

� exp
�
(M � u) (u�m)

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
which, together with the inequality

(M � u) (u�m)
M �m � 1

4
(M �m)



72 2. Inequalities for Convex Functions

produce

[g (M)]
u�m
M�m [g (m)]

M�u
M�m (2.172)

� g (u) exp

�
(M � u) (u�m)

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
� g (u) exp

�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��

for any u 2 [m;M ] :
If we apply the property (P) to the inequality (2.172) and for the operator

A we deduce the desired result.

Corollary 110 (Dragomir, 2010, [15]) Assume that g is as in the The-
orem 109 and Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°J,
j 2 f1; :::; ng :
If xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

(1 �)

Pn
j=1

�
[g (M)]

Aj�m1H
M�m [g (m)]

M1H�Aj
M�m xj ; xj

�
Pn
j=1 hg (Aj)xj ; xji

(2.173)

�

Pn
j=1

D
g (Aj) exp

h
(M1H�Aj)(Aj�m1H)

M�m

�
g0(M)
g(M) �

g0(m)
g(m)

�i
xj ; xj

E
Pn
j=1 hg (Aj)xj ; xji

� exp
�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
:

If pj � 0; j 2 f1; :::; ng with
Pn
j=1 pj = 1; then for each x 2 H with

kxk = 1

(1 �)

�Pn
j=1 pj [g (M)]

Aj�m1H
M�m [g (m)]

M1H�Aj
M�m x; x

�
DPn

j=1 pjg (Aj)x; x
E (2.174)

�

DPn
j=1 pjg (Aj) exp

h
(M1H�Aj)(Aj�m1H)

M�m

�
g0(M)
g(M) �

g0(m)
g(m)

�i
x; x

E
DPn

j=1 pjg (Aj)x; x
E

� exp
�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
:
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Remark 111 Let A be a selfadjoint positive operator on a Hilbert space
H: If A is invertible and Sp (A) � [m;M ] (0 < m < M) ; then

(1 �)

�
[g (M)]

r(m1H�A)
M�m [g (m)]

r(A�M1H)
M�m x; x

�
hA�rx; xi (2.175)

�

D
A�r exp

h
r(M1H�A)(A�m1H)

Mm

i
x; x

E
hA�rx; xi � exp

"
1

4
r
(M �m)2

mM

#

2.6.3 Applications for Ky Fan�s Inequality

Consider the function g : (0; 1) ! R, g (t) =
�
1�t
t

�r
; r > 0: Observe that

for the new function f : (0; 1)! R, f (t) = ln g (t) we have

f 0 (t) =
�r

t (1� t) and f
00 (t) =

2r
�
1
2 � t

�
t2 (1� t)2

for t 2 (0; 1)

showing that the function g is log-convex on the interval
�
0; 12
�
:

If pi > 0 for i 2 f1; :::; ng with
Pn
i=1 pi = 1 and ti 2

�
0; 12
�
for i 2

f1; :::; ng ; then by applying the Jensen inequality for the convex function
f (with r = 1) on the interval

�
0; 12
�
we getPn

i=1 piti
1�

Pn
i=1 piti

�
nY
i=1

�
ti

1� ti

�pi
; (2.176)

which is the weighted version of the celebrated Ky Fan�s inequality, see [3,
p. 3].
This inequality is equivalent with

nY
i=1

�
1� ti
ti

�pi
� 1�

Pn
i=1 pitiPn

i=1 piti
;

where pi > 0 for i 2 f1; :::; ng with
Pn
i=1 pi = 1 and ti 2

�
0; 12
�
for

i 2 f1; :::; ng :
By the weighted arithmetic mean - geometric mean inequality we also

have that
nX
i=1

pi (1� ti) t�1i �
nY
i=1

�
1� ti
ti

�pi
giving the double inequality

nX
i=1

pi (1� ti) t�1i �
nY
i=1

�
(1� ti) t�1i

�pi � nX
i=1

pi (1� ti)
 

nX
i=1

piti

!�1
:

(2.177)
The following operator inequalities generalizing (2.177) may be stated:
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Proposition 112 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible and Sp (A) �

�
0; 12
�
; thenD�

A�1 (1H �A)
�r
x; x

E
� exp

D
ln
�
A�1 (1H �A)

�r
x; x

E
(2.178)

�
�
h(1H �A)x; xi hAx; xi�1

�r
for each x 2 H with kxk = 1 and r > 0:
In particular,


A�1 (1H �A)x; x
�
� exp



ln
�
A�1 (1H �A)

�
x; x

�
(2.179)

� h(1H �A)x; xi hAx; xi�1

for each x 2 H with kxk = 1.

The proof follows by Theorem 92 applied for the log-convex function
g (t) =

�
1�t
t

�r
; r > 0; t 2

�
0; 12
�
:

Proposition 113 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible and Sp (A) � [m;M ] �

�
0; 12
�
; thenD�

(1H �A)A�1
�r
x; x

E
(2.180)

�
*24�1�m

m

� r(M1H�A)
M�m

�
1�M
M

� r(A�m1H)
M�m

35x; x+

� M � hAx; xi
M �m �

�
1�m
m

�r
+
hAx; xi �m
M �m �

�
1�M
M

�r
and �

1� hAx; xi
hAx; xi

�r
(2.181)

�
�
1�m
m

� r(M�hAx;xi)
M�m

�
1�M
M

� r(hAx;xi�m)
M�m

�
*24�1�m

m

� r(M1H�A)
M�m

�
1�M
M

� r(A�m1H)
M�m

35x; x+

for each x 2 H with kxk = 1 and r > 0:

The proof follows by Theorem 98 applied for the log-convex function
g (t) =

�
1�t
t

�r
; r > 0; t 2

�
0; 12
�
:

Finally we have:



2.6 Some Jensen�s Type Inequalities for Log-convex Functions 75

Proposition 114 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible and Sp (A) �

�
0; 12
�
; then

(1 �)
exp



ln
�
(1H �A)A�1

�r
x; x

��
(1� hAx; xi) hAx; xi�1

�r (2.182)

� exp
h
r
�
hAx; xi �

D
A�1 (1H �A)�1 x; x

E
�
D
(1H �A)�1 x; x

E�i
and

1 �
D
exp

h
r (1� hAx; xi)�1

�
1H � hAx; xi�1A

�i
x; x

E
(2.183)

�

�
(1H �A)A�1

�r
x; x

��
(1� hAx; xi) hAx; xi�1

�r
�
D
exp

h
r (1H �A)�1

�
hAx; xiA�1 � 1H

�i
x; x

E
for each x 2 H with kxk = 1 and r > 0:

The proof follows by Proposition 103 and Theorem 106 applied for the
log-convex function g (t) =

�
1�t
t

�r
; r > 0; t 2

�
0; 12
�
: The details are omit-

ted.

2.6.4 More Inequalities for Di¤erentiable Log-convex
Functions

The following results providing companion inequalities for the Jensen in-
equality for di¤erentiable log-convex functions obtained above hold:

Theorem 115 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
on the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M: If g : J ! (0;1) is a di¤erentiable log-convex function
with the derivative continuous on �J and [m;M ] � �J , then

exp

�
hg0 (A)Ax; xi
hg (A)x; xi � hg (A)Ax; xihg (A)x; xi �

hg0 (A)x; xi
hg (A)x; xi

�
(2.184)

�
exp

h
hg(A) ln g(A)x;xi

hg(A)x;xi

i
g
�
hg(A)Ax;xi
hg(A)x;xi

� � 1

for each x 2 H with kxk = 1:
If

hg0 (A)Ax; xi
hg0 (A)x; xi 2 �J for each x 2 H with kxk = 1; (C)
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then

exp

2664g
0
�
hg0(A)Ax;xi
hg0(A)x;xi

�
g
�
hg0(A)Ax;xi
hg0(A)x;xi

� �
hg0 (A)Ax; xi
hg0 (A)x; xi �

hAg (A)x; xi
hg (A)x; xi

�3775 (2.185)

�
g

�
hg0(A)Ax;xi
hg0(A)x;xi

�
exp

�
hg(A) ln g(A)x;xi

hg(A)x;xi

� � 1;
for each x 2 H with kxk = 1:

Proof. By the gradient inequality for the convex function ln g we have

g0 (t)

g (t)
(t� s) � ln g (t)� ln g (s) � g0 (s)

g (s)
(t� s) (2.186)

for any t; s 2 �J , which by multiplication with g (t) > 0 is equivalent with

g0 (t) (t� s) � g (t) ln g (t)� g (t) ln g (s) � g0 (s)

g (s)
(tg (t)� sg (t)) (2.187)

for any t; s 2 �J:
Fix s 2 �J and apply the property (P) to get that

hg0 (A)Ax; xi � s hg0 (A)x; xi � hg (A) ln g (A)x; xi � hg (A)x; xi ln g (s)

(2.188)

� g0 (s)

g (s)
(hAg (A)x; xi � s hg (A)x; xi)

for any x 2 H with kxk = 1; which is an inequality of interest in itself as
well.
Since

hg (A)Ax; xi
hg (A)x; xi 2 [m;M ] for any x 2 H with kxk = 1

then on choosing s := hg(A)Ax;xi
hg(A)x;xi in (2.188) we get

hg0 (A)Ax; xi � hg (A)Ax; xihg (A)x; xi hg
0 (A)x; xi

� hg (A) ln g (A)x; xi � hg (A)x; xi ln g
�
hg (A)Ax; xi
hg (A)x; xi

�
� 0;
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which, by division with hg (A)x; xi > 0; produces

hg0 (A)Ax; xi
hg (A)x; xi � hg (A)Ax; xihg (A)x; xi �

hg0 (A)x; xi
hg (A)x; xi (2.189)

� hg (A) ln g (A)x; xi
hg (A)x; xi � ln g

�
hg (A)Ax; xi
hg (A)x; xi

�
� 0

for any x 2 H with kxk = 1:
Taking the exponential in (2.189) we deduce the desired inequality (2.184).
Now, assuming that the condition (C) holds, then by choosing s :=

hg0(A)Ax;xi
hg0(A)x;xi in (2.188) we get

0 � hg (A) ln g (A)x; xi � hg (A)x; xi ln g
�
hg0 (A)Ax; xi
hg0 (A)x; xi

�

�
g0
�
hg0(A)Ax;xi
hg0(A)x;xi

�
g
�
hg0(A)Ax;xi
hg0(A)x;xi

� �
hAg (A)x; xi � hg

0 (A)Ax; xi
hg0 (A)x; xi hg (A)x; xi

�

which, by dividing with hg (A)x; xi > 0 and rearranging, is equivalent with

g0
�
hg0(A)Ax;xi
hg0(A)x;xi

�
g
�
hg0(A)Ax;xi
hg0(A)x;xi

� �
hg0 (A)Ax; xi
hg0 (A)x; xi �

hAg (A)x; xi
hg (A)x; xi

�
(2.190)

� ln g
�
hg0 (A)Ax; xi
hg0 (A)x; xi

�
� hg (A) ln g (A)x; xihg (A)x; xi � 0

for any x 2 H with kxk = 1:
Finally, on taking the exponential in (2.190) we deduce the desired in-

equality (2.185).

Remark 116 We observe that a su¢ cient condition for (C) to hold is that
either g0 (A) or �g0 (A) is a positive de�nite operator on H:

Corollary 117 (Dragomir, 2010, [16]) Assume that A and g are as in
Theorem 115. If the condition (C) holds, then we have the double inequality

ln g

�
hg0 (A)Ax; xi
hg0 (A)x; xi

�
� hg (A) ln g (A)x; xi

hg (A)x; xi � ln g
�
hg (A)Ax; xi
hg (A)x; xi

�
;

(2.191)
for any x 2 H with kxk = 1:

Remark 118 Assume that A is a positive de�nite operator on H: Since
for r > 0 the function g (t) = t�r is log-convex on (0;1) and

hg0 (A)Ax; xi
hg0 (A)x; xi =

hA�rx; xi
hA�r�1x; xi > 0
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for any x 2 H with kxk = 1; then on applying the inequality (2.191) we
deduce the following interesting result

ln

�
hA�rx; xi
hA�r�1x; xi

�
� hA�r lnAx; xi

hA�rx; xi � ln
 


A�r+1x; x
�

hA�rx; xi

!
(2.192)

for any x 2 H with kxk = 1:
The details of the proof are left to the interested reader.

The case of sequences of operators is embodied in the following corollary:

Corollary 119 (Dragomir, 2010, [16]) Let Aj, j 2 f1; :::; ng be selfad-
joint operators on the Hilbert space H and assume that Sp (Aj) � [m;M ]
for some scalars m;M with m < M and each j 2 f1; :::; ng : If g : J !
(0;1) is a di¤erentiable log-convex function with the derivative continuous
on �J and [m;M ] � �J , then

exp

"Pn
j=1 hg0 (Aj)Ajxj ; xjiPn
j=1 hg (Aj)xj ; xji

(2.193)

�
Pn
j=1 hg (Aj)Ajxj ; xjiPn
j=1 hg (Aj)xj ; xji

�
Pn
j=1 hg0 (Aj)xj ; xjiPn
j=1 hg (Aj)xj ; xji

#

�
exp

hPn
j=1hg(Aj) ln g(Aj)xj ;xjiPn

j=1hg(Aj)xj ;xji

i
g
�Pn

j=1hg(Aj)Ajxj ;xjiPn
j=1hg(Aj)xj ;xji

� � 1

for each xj 2 H; j 2 f1; :::; ng with
Pn
j=1 kxjk

2
= 1:

If Pn
j=1 hg0 (Aj)Ajxj ; xjiPn
j=1 hg0 (Aj)xj ; xji

2 �J (2.194)

for each xj 2 H; j 2 f1; :::; ng with
Pn
j=1 kxjk

2
= 1; then

exp

2664g
0
�Pn

j=1hg0(Aj)Ajxj ;xjiPn
j=1hg0(Aj)xj ;xji

�
g
�Pn

j=1hg0(Aj)Ajxj ;xjiPn
j=1hg0(Aj)xj ;xji

� (2.195)

�
 Pn

j=1 hg0 (Aj)Ajxj ; xjiPn
j=1 hg0 (Aj)xj ; xji

�
Pn
j=1 hAjg (Aj)xj ; xjiPn
j=1 hg (Aj)xj ; xji

!#

�
g

�Pn
j=1hg0(Aj)Ajxj ;xjiPn
j=1hg0(Aj)xj ;xji

�
exp

�Pn
j=1hg(Aj) ln g(Aj)xj ;xjiPn

j=1hg(Aj)xj ;xji

� � 1;
for each xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1:
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The following particular case for sequences of operators also holds:

Corollary 120 (Dragomir, 2010, [16]) With the assumptions of Corol-
lary 119 and if pj � 0; j 2 f1; :::; ng with

Pn
j=1 pj = 1; then

exp

24
DPn

j=1 pjg
0 (Aj)Ajx; x

E
DPn

j=1 pjg (Aj)x; x
E (2.196)

�

DPn
j=1 pjg (Aj)Ajx; x

E
DPn

j=1 pjg (Aj)x; x
E �

DPn
j=1 pjg

0 (Aj)x; x
E

DPn
j=1 pjg (Aj)x; x

E
35

�
exp

�
hPn

j=1 pjg(Aj) ln g(Aj)x;xi
hPn

j=1 pjg(Aj)x;xi

�
g

�
hPn

j=1 pjg(Aj)Ajx;xi
hPn

j=1 pjg(Aj)x;xi

� � 1

for each x 2 H; with kxk = 1:
If DPn

j=1 pjg
0 (Aj)Ajx; x

E
DPn

j=1 pjg
0 (Aj)x; x

E 2 �J (2.197)

for each x 2 H; with kxk = 1; then

exp

2664g
0
�
hPn

j=1 pjg
0(Aj)Ajx;xi

hPn
j=1 pjg

0(Aj)x;xi

�
g

�
hPn

j=1 pjg
0(Aj)Ajx;xi

hPn
j=1 pjg

0(Aj)x;xi

� (2.198)

�

0@
DPn

j=1 pjg
0 (Aj)Ajx; x

E
DPn

j=1 pjg
0 (Aj)x; x

E �

DPn
j=1 pjAjg (Aj)x; x

E
DPn

j=1 pjg (Aj)x; x
E
1A35

�
g

�
hPn

j=1 pjg
0(Aj)Ajx;xi

hPn
j=1 pjg

0(Aj)x;xi

�
exp

�
hPn

j=1 pjg(Aj) ln g(Aj)x;xi
hPn

j=1 pjg(Aj)x;xi

� � 1;
for each x 2 H; with kxk = 1:

Proof. Follows from Corollary 119 by choosing xj =
p
pj � x; j 2 f1; :::; ng

where x 2 H with kxk = 1:
The following result providing di¤erent inequalities also holds:

Theorem 121 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
on the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
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m;M with m < M: If g : J ! (0;1) is a di¤erentiable log-convex function
with the derivative continuous on �J and [m;M ] � �J , then�

exp

�
g0 (A)

�
A� hg (A)Ax; xihg (A)x; xi 1H

��
x; x

�
(2.199)

�
*0@ g (A)

g
�
hg(A)Ax;xi
hg(A)x;xi

�
1Ag(A)

x; x

+

�
*
exp

24g0
�
hg(A)Ax;xi
hg(A)x;xi

�
g
�
hg(A)Ax;xi
hg(A)x;xi

� �Ag (A)� hg (A)Ax; xihg (A)x; xi g (A)
�35x; x+ � 1

for each x 2 H with kxk = 1:
If the condition (C) from Theorem 115 holds, then

*
exp

2664g
0
�
hg0(A)Ax;xi
hg0(A)x;xi

�
g
�
hg0(A)Ax;xi
hg0(A)x;xi

� �
hg0 (A)Ax; xi
hg0 (A)x; xi g (A)�Ag (A)

�3775x; x
+

(2.200)

�
*�

g

�
hg0 (A)Ax; xi
hg0 (A)x; xi

�
[g (A)]

�1
�g(A)

x; x

+

�
�
exp

�
g0 (A)

�
hg0 (A)Ax; xi
hg0 (A)x; xi 1H �A

��
x; x

�
� 1

for each x 2 H with kxk = 1:

Proof. By taking the exponential in (2.187) we have the following inequal-
ity

exp [g0 (t) (t� s)] �
�
g (t)

g (s)

�g(t)
� exp

�
g0 (s)

g (s)
(tg (t)� sg (t))

�
(2.201)

for any t; s 2 �J:
If we �x s 2 �J and apply the property (P) to the inequality (2.201), we

deduce

hexp [g0 (A) (A� s1H)]x; xi �
*�

g (A)

g (s)

�g(A)
x; x

+
(2.202)

�
�
exp

�
g0 (s)

g (s)
(Ag (A)� sg (A))

�
x; x

�
for each x 2 H with kxk = 1; where 1H is the identity operator on H:
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By Mond-Peµcaríc�s inequality applied for the convex function exp we also
have �

exp

�
g0 (s)

g (s)
(Ag (A)� sg (A))

�
x; x

�
(2.203)

� exp
�
g0 (s)

g (s)
(hAg (A)x; xi � s hg (A)x; xi)

�
for each s 2 �J and x 2 H with kxk = 1:
Now, if we choose s := hg(A)Ax;xi

hg(A)x;xi 2 [m;M ] in (2.202) and (2.203) we
deduce the desired result (2.199).
Observe that, the inequality (2.201) is equivalent with

exp

�
g0 (s)

g (s)
(sg (t)� tg (t))

�
�
�
g (s)

g (t)

�g(t)
� exp [g0 (t) (s� t)] (2.204)

for any t; s 2 �J:
If we �x s 2 �J and apply the property (P) to the inequality (2.204) we

deduce�
exp

�
g0 (s)

g (s)
(sg (A)�Ag (A))

�
x; x

�
�
��

g (s) [g (A)]
�1
�g(A)

x; x

�
(2.205)

� hexp [g0 (A) (s1H �A)]x; xi

for each x 2 H with kxk = 1:
By Mond-Peµcaríc�s inequality we also have

hexp [g0 (A) (s1H �A)]x; xi � exp [s hg0 (A)x; xi � hg0 (A)Ax; xi] (2.206)

for each s 2 �J and x 2 H with kxk = 1:
Taking into account that the condition (C) is valid, then we can choose

in (2.205) and (2.206) s := hg0(A)Ax;xi
hg0(A)x;xi to get the desired result (2.200).

Remark 122 If we apply, for instance, the inequality (2.199) for the log-
convex function g (t) = t�1; t > 0; then, after simple calculations, we get
the inequality*
exp

 
A�2 �



A�1x; x

�
A�1

A�2 � hA�1x; xi

!
x; x

+
�
��


A�1x; x
�
A�1

�A�1

x; x

�
(2.207)

�
*
exp

 
A�1 �



A�1x; x

�
1H

hA�1x; xi2

!
x; x

+
� 1
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for each x 2 H with kxk = 1:
Other similar results can be obtained from the inequality (2.200), however

the details are left to the interested reader.

2.6.5 A Reverse Inequality

The following reverse inequality is also of interest:

Theorem 123 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
on the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M: If g : J ! (0;1) is a di¤erentiable log-convex function
with the derivative continuous on �J and [m;M ] � �J , then

(1 �) [g (m)]
M�hAx;xi

M�m [g (M)]
hAx;xi�m
M�m

exp hln g (A)x; xi (2.208)

� exp
�
h(M1H �A) (A�m1H)x; xi

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
� exp

�
(M � hAx; xi) (hAx; xi �m)

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
� exp

�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
for each x 2 H with kxk = 1:

Proof. Utilising the inequality (2.186) we have successively

ln g ((1� �) t+ �s)� ln g (s) � (1� �) g
0 (s)

g (s)
(t� s) (2.209)

and

ln g ((1� �) t+ �s)� ln g (t) � ��g
0 (t)

g (t)
(t� s) (2.210)

for any t; s 2°J and any � 2 [0; 1] :
Now, if we multiply (2.209) by � and (2.210) by 1 � � and sum the

obtained inequalities, we deduce

(1� �) ln g (t) + � ln g (s)� ln g ((1� �) t+ �s) (2.211)

� (1� �)�
��

g0 (t)

g (t)
� g0 (s)

g (s)

�
(t� s)

�

for any t; s 2°J and any � 2 [0; 1] :
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Now, if we choose � := M�u
M�m ; s := m and t :=M in (2.211) then we get

the inequality

u�m
M �m ln g (M) +

M � u
M �m ln g (m)� ln g (u) (2.212)

�
�
(M � u) (u�m)

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
for any u 2 [m;M ] :
If we use the property (P) for the operator A we get

hAx; xi �m
M �m ln g (M) +

M � hAx; xi
M �m ln g (m)� hln g (A)x; xi (2.213)

�
�
h(M1H �A) (A�m1H)x; xi

M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
for each x 2 H with kxk = 1:
Taking the exponential in (2.213) we deduce the �rst inequality in (2.208).
Now, consider the function h : [m;M ] ! R, h (t) = (M � t) (t�m) :

This function is concave in [m;M ] and by Mond-Peµcaríc�s inequality we
have

h(M1H �A) (A�m1H)x; xi � (M � hAx; xi) (hAx; xi �m)

for each x 2 H with kxk = 1; which proves the second inequality in (2.208).
For the last inequality, we observe that

(M � hAx; xi) (hAx; xi �m) � 1

4
(M �m)2 ;

and the proof is complete.

Corollary 124 (Dragomir, 2010, [16]) Assume that g is as in Theo-
rem 123 and Aj are selfadjoint operators with Sp (Aj) � [m;M ] �°J,
j 2 f1; :::; ng :
If and xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1, then

(1 �) [g (m)]
M�

Pn
j=1hAjxj;xji
M�m [g (M)]

Pn
j=1hAjxj;xji�m

M�m

exp
�Pn

j hln g (Aj)xj ; xji
� (2.214)

� exp
"Pn

j=1 h(M1H �Aj) (Aj �m1H)xj ; xji
M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

�#

� exp

24
�
M �

Pn
j=1 hAjxj ; xji

��Pn
j=1 hAjxj ; xji �m

�
M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

�35
� exp

�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
:
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If pj � 0; j 2 f1; :::; ng with
Pn
j=1 pj = 1; then

(1 �) [g (m)]
M�hPn

j=1 pjAjx;xi
M�m [g (M)]

hPn
j=1 pjAjx;xi�m

M�mDQn
j=1 [g (Aj)]

pj x; x
E (2.215)

� exp
"Pn

j=1 pj h(M1H �Aj) (Aj �m1H)xj ; xji
M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

�#

� exp

24
�
M �

DPn
j=1 pjAjx; x

E��DPn
j=1 pjAjx; x

E
�m

�
M �m

�
g0 (M)

g (M)
� g0 (m)

g (m)

�35
� exp

�
1

4
(M �m)

�
g0 (M)

g (M)
� g0 (m)

g (m)

��
for each x 2 H with kxk = 1:

Remark 125 Let A be a selfadjoint positive operator on a Hilbert space
H: If A is invertible, then

(1 �) m
hAx;xi�M

M�m M
m�hAx;xi
M�m

exp hlnA�1x; xi � exp
�
h(M1H �A) (A�m1H)x; xi

Mm

�
(2.216)

� exp
�
(M � hAx; xi) (hAx; xi �m)

Mm

�
� exp

"
1

4

(M �m)2

mM

#
for all x 2 H with kxk = 1:

2.7 Hermite-Hadamard�s Type Inequalities

2.7.1 Scalar Case

If f : I ! R is a convex function on the interval I; then for any a; b 2 I
with a 6= b we have the following double inequality

f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
: (HH)

This remarkable result is well known in the literature as the Hermite-
Hadamard inequality [29].
For various generalizations, extensions, reverses and related inequalities,

see [1], [2], [19], [21], [24], [25], [27], [29] the monograph [18] and the refer-
ences therein.
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2.7.2 Some Inequalities for Convex Functions

The following inequality related to the Mond-Peµcaríc result also holds:

Theorem 126 (Dragomir, 2010, [14]) Let A be a selfadjoint operator
on the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M:
If f is a convex function on [m;M ] ; then

f (m) + f (M)

2
�
�
f (A) + f ((m+M) 1H �A)

2
x; x

�
(2.217)

� f (hAx; xi) + f (m+M � hAx; xi)
2

� f

�
m+M

2

�
for each x 2 H with kxk = 1:
In addition, if x 2 H with kxk = 1 and hAx; xi 6= m+M

2 ; then also

f (hAx; xi) + f (m+M � hAx; xi)
2

(2.218)

� 2
m+M
2 � hAx; xi

Z m+M�hAx;xi

hAx;xi
f (u) du � f

�
m+M

2

�
:

Proof. Since f is convex on [m;M ] then for each u 2 [m;M ] we have the
inequalities

M � u
M �mf (m) +

u�m
M �mf (M) � f

�
M � u
M �mm+

u�m
M �mM

�
= f (u)

(2.219)
and

M � u
M �mf (M) +

u�m
M �mf (m) � f

�
M � u
M �mM +

u�m
M �mm

�
(2.220)

= f (M +m� u) :

If we add these two inequalities we get

f (m) + f (M) � f (u) + f (M +m� u)

for any u 2 [m;M ] ; which, by the property (P) applied for the operator A;
produces the �rst inequality in (2.217).
By the Mond-Peµcaríc inequality we have

hf ((m+M) 1H �A)x; xi � f (m+M � hAx; xi) ;

which together with the same inequality produces the second inequality in
(2.217).
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The third part follows by the convexity of f:
In order to prove (2.218), we use the Hermite-Hadamard inequality (HH)

for the convex functions f and the choices a = hAx; xi and b = m +M �
hAx; xi :
The proof is complete.

Remark 127 We observe that, from the inequality (2.217) we have the
following inequality in the operator order of B (H)

�
f (m) + f (M)

2

�
1H �

f (A) + f ((m+M) 1H �A)
2

� f

�
m+M

2

�
1H ;

(2.221)
where f is a convex function on [m;M ] and A a selfadjoint operator on the
Hilbert space H with Sp (A) � [m;M ] for some scalars m;M with m < M:

The case of log-convex functions may be of interest for applications and
therefore is stated in:

Corollary 128 (Dragomir, 2010, [14]) If g is a log-convex function on
[m;M ] ; then

p
g (m) g (M) � exp

D
ln [g (A) g ((m+M) 1H �A)]1=2 x; x

E
(2.222)

�
p
g (hAx; xi) g (m+M � hAx; xi)

� g

�
m+M

2

�

for each x 2 H with kxk = 1:
In addition, if x 2 H with kxk = 1 and hAx; xi 6= m+M

2 ; then also

p
g (hAx; xi) g (m+M � hAx; xi) (2.223)

� exp
"

2
m+M
2 � hAx; xi

Z m+M�hAx;xi

hAx;xi
ln g (u) du

#

� g

�
m+M

2

�
:

The following result also holds

Theorem 129 (Dragomir, 2010, [14]) Let A and B selfadjoint opera-
tors on the Hilbert space H and assume that Sp (A) ; Sp (B) � [m;M ] for
some scalars m;M with m < M:
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If f is a convex function on [m;M ] ; then

f

��
A+B

2
x; x

��
(2.224)

� 1

2
[f ((1� t) hAx; xi+ t hBx; xi) + f (t hAx; xi+ (1� t) hBx; xi)]

�
�
1

2
[f ((1� t)A+ tB) + f (tA+ (1� t)B)]x; x

�
�
M �



A+B
2 x; x

�
M �m f (m) +



A+B
2 x; x

�
�m

M �m f (M)

for any t 2 [0; 1] and each x 2 H with kxk = 1:
Moreover, we have the Hermite-Hadamard�s type inequalities:

f

��
A+B

2
x; x

��
(2.225)

�
Z 1

0

f ((1� t) hAx; xi+ t hBx; xi) dt

�
��Z 1

0

f ((1� t)A+ tB) dt
�
x; x

�
�
M �



A+B
2 x; x

�
M �m f (m) +



A+B
2 x; x

�
�m

M �m f (M)

each x 2 H with kxk = 1:
In addition, if we assume that B�A is a positive de�nite operator, then

f

��
A+B

2
x; x

��
h(B �A)x; xi (2.226)

�
Z hBx;xi

hAx;xi
f (u) du � h(B �A)x; xi

��Z 1

0

f ((1� t)A+ tB) dt
�
x; x

�
� h(B �A)x; xi

"
M �



A+B
2 x; x

�
M �m f (m) +



A+B
2 x; x

�
�m

M �m f (M)

#
:

Proof. It is obvious that for any t 2 [0; 1] we have Sp ((1� t)A+ tB) ; Sp (tA+ (1� t)B) �
[m;M ] :
On making use of the Mond-Peµcaríc inequality we have

f ((1� t) hAx; xi+ t hBx; xi) � hf ((1� t)A+ tB)x; xi (2.227)

and

f (t hAx; xi+ (1� t) hBx; xi) � hf (tA+ (1� t)B)x; xi (2.228)

for any t 2 [0; 1] and each x 2 H with kxk = 1:
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Adding (2.227) with (2.228) and utilising the convexity of f we deduce
the �rst two inequalities in (2.224).
By the Lah-Ribaríc inequality (2.143) we also have

hf ((1� t)A+ tB)x; xi � M � (1� t) hAx; xi � t hBx; xi
M �m � f (m) (2.229)

+
(1� t) hAx; xi+ t hBx; xi �m

M �m � f (M)

and

hf (tA+ (1� t)B)x; xi � M � t hAx; xi � (1� t) hBx; xi
M �m � f (m) (2.230)

+
t hAx; xi+ (1� t) hBx; xi �m

M �m � f (M)

for any t 2 [0; 1] and each x 2 H with kxk = 1:
Now, if we add the inequalities (2.229) with (2.230) and divide by two,

we deduce the last part in (2.224).
Integrating the inequality over t 2 [0; 1], utilising the continuity property

of the inner product and the properties of the integral of operator-valued
functions we have

f

��
A+B

2
x; x

��
(2.231)

� 1

2

�Z 1

0

f ((1� t) hAx; xi+ t hBx; xi) dt+
Z 1

0

f (t hAx; xi+ (1� t) hBx; xi) dt
�

�
�
1

2

�Z 1

0

f ((1� t)A+ tB) dt+
Z 1

0

f (tA+ (1� t)B) dt
�
x; x

�
�
M �



A+B
2 x; x

�
M �m f (m) +



A+B
2 x; x

�
�m

M �m f (M) :

SinceZ 1

0

f ((1� t) hAx; xi+ t hBx; xi) dt =
Z 1

0

f (t hAx; xi+ (1� t) hBx; xi) dt

and Z 1

0

f ((1� t)A+ tB) dt =
Z 1

0

f (tA+ (1� t)B) dt

then, by (2.231), we deduce the inequality (2.225).
The inequality (2.226) follows from (2.225) by observing that for hBx; xi >

hAx; xi we haveZ 1

0

f ((1� t) hAx; xi+ t hBx; xi) dt = 1

hBx; xi � hAx; xi

Z hBx;xi

hAx;xi
f (u) du

for each x 2 H with kxk = 1:
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Remark 130 We observe that, from the inequalities (2.224) and (2.225)
we have the following inequalities in the operator order of B (H)

1

2
[f ((1� t)A+ tB) + f (tA+ (1� t)B)] (2.232)

� f (m)
M1H � A+B

2

M �m + f (M)
A+B
2 �m1H
M �m ;

where f is a convex function on [m;M ] and A;B are selfadjoint operator on
the Hilbert space H with Sp (A) ; Sp (B) � [m;M ] for some scalars m;M
with m < M:

The case of log-convex functions is as follows:

Corollary 131 (Dragomir, 2010, [14]) If g is a log-convex function on
[m;M ] ; then

g

��
A+B

2
x; x

��
(2.233)

�
p
g ((1� t) hAx; xi+ t hBx; xi) g (t hAx; xi+ (1� t) hBx; xi)

� exp
�
1

2
[ln g ((1� t)A+ tB) + ln g (tA+ (1� t)B)]x; x

�
� g (m)

M�hA+B2 x;xi
M�m g (M)

hA+B2 x;xi�m
M�m

for any t 2 [0; 1] and each x 2 H with kxk = 1:
Moreover, we have the Hermite-Hadamard�s type inequalities:

g

��
A+B

2
x; x

��
(2.234)

� exp
�Z 1

0

ln g ((1� t) hAx; xi+ t hBx; xi) dt
�

� exp
��Z 1

0

ln g ((1� t)A+ tB) dt
�
x; x

�
� g (m)

M�hA+B2 x;xi
M�m g (M)

hA+B2 x;xi�m
M�m

for each x 2 H with kxk = 1:
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In addition, if we assume that B�A is a positive de�nite operator, then

g

��
A+B

2
x; x

��h(B�A)x;xi
(2.235)

� exp
"Z hBx;xi

hAx;xi
ln g (u) du

#

� exp
�
h(B �A)x; xi

��Z 1

0

ln g ((1� t)A+ tB) dt
�
x; x

��

�
"
g (m)

M�hA+B2 x;xi
M�m g (M)

hA+B2 x;xi�m
M�m

#h(B�A)x;xi
for each x 2 H with kxk = 1:

From a di¤erent perspective we have the following result as well:

Theorem 132 (Dragomir, 2010, [14]) Let A and B selfadjoint opera-
tors on the Hilbert space H and assume that Sp (A) ; Sp (B) � [m;M ] for
some scalars m;M with m < M: If f is a convex function on [m;M ] ; then

f

�
hAx; xi+ hBy; yi

2

�
(2.236)

�
Z 1

0

f ((1� t) hAx; xi+ t hBy; yi) dt

�
��Z 1

0

f ((1� t)A+ t hBy; yi 1H) dt
�
x; x

�
� 1

2
[hf (A)x; xi+ f (hBy; yi)]

� 1

2
[hf (A)x; xi+ hf (B) y; yi]

and

f

�
hAx; xi+ hBy; yi

2

�
�
�
f

�
A+ hBy; yi 1H

2

�
x; x

�
(2.237)

�
��Z 1

0

f ((1� t)A+ t hBy; yi 1H) dt
�
x; x

�
for each x; y 2 H with kxk = kyk = 1:

Proof. For a convex function f and any u; v 2 [m;M ] and t 2 [0; 1] we
have the double inequality:

f

�
u+ v

2

�
� 1

2
[f ((1� t)u+ tv) + f (tu+ (1� t) v)] (2.238)

� 1

2
[f (u) + f (v)] :
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Utilising the second inequality in (2.238) we have

1

2
[f ((1� t)u+ t hBy; yi) + f (tu+ (1� t) hBy; yi)] (2.239)

� 1

2
[f (u) + f (hBy; yi)]

for any u 2 [m;M ], t 2 [0; 1] and y 2 H with kyk = 1:
Now, on applying the property (P) to the inequality (2.239) for the op-

erator A we have
1

2
[hf ((1� t)A+ t hBy; yi)x; xi+ hf (tA+ (1� t) hBy; yi)x; xi] (2.240)

� 1

2
[hf (A)x; xi+ f (hBy; yi)]

for any t 2 [0; 1] and x; y 2 H with kxk = kyk = 1:
On applying the Mond-Peµcaríc inequality we also have

1

2
[f ((1� t) hAx; xi+ t hBy; yi) + f (t hAx; xi+ (1� t) hBy; yi)] (2.241)

� 1

2
[hf ((1� t)A+ t hBy; yi 1H)x; xi+ hf (tA+ (1� t) hBy; yi 1H)x; xi]

for any t 2 [0; 1] and x; y 2 H with kxk = kyk = 1:
Now, integrating over t on [0; 1] the inequalities (2.240) and (2.241) and

taking into account thatZ 1

0

hf ((1� t)A+ t hBy; yi 1H)x; xi dt

=

Z 1

0

hf (tA+ (1� t) hBy; yi 1H)x; xi dt

=

��Z 1

0

f ((1� t)A+ t hBy; yi 1H) dt
�
x; x

�
andZ 1

0

f ((1� t) hAx; xi+ t hBy; yi) dt =
Z 1

0

f (t hAx; xi+ (1� t) hBy; yi) dt;

we obtain the second and the third inequality in (2.236).
Further, on applying the Jensen integral inequality for the convex func-

tion f we also haveZ 1

0

f ((1� t) hAx; xi+ t hBy; yi) dt

� f

�Z 1

0

[(1� t) hAx; xi+ t hBy; yi] dt
�

= f

�
hAx; xi+ hBy; yi

2

�
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for each x; y 2 H with kxk = kyk = 1, proving the �rst part of (2.236).
Now, on utilising the �rst part of (2.238) we can also state that

f

�
u+ hBy; yi

2

�
� 1

2
[f ((1� t)u+ t hBy; yi) + f (tu+ (1� t) hBy; yi)]

(2.242)
for any u 2 [m;M ], t 2 [0; 1] and y 2 H with kyk = 1:
Further, on applying the property (P) to the inequality (2.242) and for

the operator A we get�
f

�
A+ hBy; yi 1H

2

�
x; x

�
� 1

2
[hf ((1� t)A+ t hBy; yi 1H)x; xi+ hf (tA+ (1� t) hBy; yi 1H)x; xi]

for each x; y 2 H with kxk = kyk = 1; which, by integration over t in [0; 1]
produces the second inequality in (2.237). The �rst inequality is obvious.

Remark 133 It is important to remark that, from the inequalities (2.236)
and (2.237) we have the following Hermite-Hadamard�s type results in the
operator order of B (H) and for the convex function f : [m;M ]! R

f

�
A+ hBy; yi 1H

2

�
�
Z 1

0

f ((1� t)A+ t hBy; yi 1H) dt (2.243)

� 1

2
[f (A) + f (hBy; yi) 1H ]

for any y 2 H with kyk = 1 and any selfadjoint operators A;B with spectra
in [m;M ] :
In particular, we have from (2.243)

f

�
A+ hAy; yi 1H

2

�
�
Z 1

0

f ((1� t)A+ t hAy; yi 1H) dt (2.244)

� 1

2
[f (A) + f (hAy; yi) 1H ]

for any y 2 H with kyk = 1 and

f

�
A+ s1H

2

�
�
Z 1

0

f ((1� t)A+ ts1H) dt �
1

2
[f (A) + f (s) 1H ]

(2.245)
for any s 2 [m;M ] :

As a particular case of the above theorem we have the following re�ne-
ment of the Mond-Peµcaríc inequality:
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Corollary 134 (Dragomir, 2010, [14]) Let A be a selfadjoint operator
on the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars
m;M with m < M: If f is a convex function on [m;M ] ; then

f (hAx; xi) �
�
f

�
A+ hAx; xi 1H

2

�
x; x

�
(2.246)

�
��Z 1

0

f ((1� t)A+ t hAx; xi 1H) dt
�
x; x

�
� 1

2
[hf (A)x; xi+ f (hAx; xi)] � hf (A)x; xi :

Finally, the case of log-convex functions is as follows:

Corollary 135 (Dragomir, 2010, [14]) If g is a log-convex function on
[m;M ] ; then

g

�
hAx; xi+ hBy; yi

2

�
(2.247)

� exp
�Z 1

0

ln g ((1� t) hAx; xi+ t hBy; yi) dt
�

� exp
��Z 1

0

ln g ((1� t)A+ t hBy; yi 1H) dt
�
x; x

�
� exp

�
1

2
[hln g (A)x; xi+ ln g (hBy; yi)]

�
� exp

�
1

2
[hln g (A)x; xi+ hln g (B) y; yi]

�
and

g

�
hAx; xi+ hBy; yi

2

�
� exp

�
ln g

�
A+ hBy; yi 1H

2

�
x; x

�
(2.248)

� exp
��Z 1

0

ln g ((1� t)A+ t hBy; yi 1H) dt
�
x; x

�
and

g (hAx; xi) � exp
�
ln g

�
A+ hAx; xi 1H

2

�
x; x

�
(2.249)

� exp
��Z 1

0

ln g ((1� t)A+ t hAx; xi 1H) dt
�
x; x

�
� exp

�
1

2
[hln g (A)x; xi+ ln g (hAx; xi)]

�
� exp hln g (A)x; xi

respectively, for each x 2 H with kxk = 1 and A;B selfadjoint operators
with spectra in [m;M ] :
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It is obvious that all the above inequalities can be applied for particular
convex or log-convex functions of interest. However, we will restrict our-
selves to only a few examples that are connected with famous results such
as the Hölder-McCarthy inequality or the Ky Fan inequality.

2.7.3 Applications for Hölder-McCarthy�s Inequality

We can improve the Hölder-McCarthy�s inequality above as follows:

Proposition 136 Let A be a selfadjoint positive operator on a Hilbert
space H.
If r > 1; then

hAx; xir �
��

A+ hAx; xi 1H
2

�r
x; x

�
(2.250)

�
��Z 1

0

((1� t)A+ t hAx; xi 1H)r dt
�
x; x

�
� 1

2
[hArx; xi+ hAx; xir] � hArx; xi

for any x 2 H with kxk = 1:
If 0 < r < 1; then the inequalities reverse in (2.250).
If A is invertible and r > 0; then

hAx; xi�r �
*�

A+ hAx; xi 1H
2

��r
x; x

+
(2.251)

�
��Z 1

0

((1� t)A+ t hAx; xi 1H)�r dt
�
x; x

�
� 1

2

h

A�rx; x

�
+ hAx; xi�r

i
�


A�rx; x

�
for any x 2 H with kxk = 1:

Follows from the inequality (2.247) applied for the power function.
Since the function g (t) = t�r for r > 0 is log-convex, then by utilising

the inequality (2.249) we can improve the Hölder-McCarthy inequality as
follows:
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Proposition 137 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible, then

hAx; xi�r � exp
*
ln

�
A+ hAx; xi 1H

2

��r
x; x

+
(2.252)

� exp
��Z 1

0

ln ((1� t)A+ t hAx; xi 1H)�r dt
�
x; x

�
� exp

�
1

2

h

lnA�rx; x

�
+ ln hAx; xi�r

i�
� exp



lnA�rx; x

�
for all r > 0 and x 2 H with kxk = 1:

Now, from a di¤erent perspective, we can state the following operator
power inequalities:

Proposition 138 Let A be a selfadjoint operator with Sp (A) � [m;M ] �
[0;1); then

mr +Mr

2
�
�
Ar + ((m+M) 1H �A)r

2
x; x

�
(2.253)

� hAx; xir + (m+M � hAx; xi)r

2
�
�
m+M

2

�r
for each x 2 H with kxk = 1 and r > 1:
If 0 < r < 1 then the inequalities reverse in (2.253).
If A is positive de�nite and r > 0; then

m�r +M�r

2
�
*
A�r + ((m+M) 1H �A)�r

2
x; x

+
(2.254)

� hAx; xi�r + (m+M � hAx; xi)�r

2
�
�
m+M

2

��r
for each x 2 H with kxk = 1:

The proof follows by the inequality (2.217).
Finally we have:

Proposition 139 Assume that A and B are selfadjoint operators with
spectra in [m;M ] � [0;1) and x 2 H with kxk = 1 and such that
hAx; xi 6= hBx; xi :
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If r > 1 or r 2 (1;�1) [ (�1; 0) then we have��
A+B

2

�
x; x

�r
� 1

r + 1
� hAx; xi

r+1 � hBx; xir+1

hAx; xi � hBx; xi (2.255)

�
��Z 1

0

((1� t)A+ tB)r dt
�
x; x

�
�
M �



A+B
2 x; x

�
M �m mr +



A+B
2 x; x

�
�m

M �m Mr:

If 0 < r < 1; then the inequalities reverse in (2.255).
If A and B are positive de�nite, then��

A+B

2

�
x; x

��1
� ln hBx; xi � ln hAx; xi

hBx; xi � hAx; xi (2.256)

�
��Z 1

0

((1� t)A+ tB)�1 dt
�
x; x

�
�
M �



A+B
2 x; x

�
(M �m)m +



A+B
2 x; x

�
�m

(M �m)M :

2.7.4 Applications for Ky Fan�s Inequality

The following results related to the Ky Fan inequality may be stated as
well:

Proposition 140 Let A be a selfadjoint positive operator on a Hilbert
space H: If A is invertible and Sp (A) �

�
0; 12
�
; then�

h(1H �A)x; xi hAx; xi�1
�r

(2.257)

� exp
D
ln
�
[1H �A+ h(1H �A)x; xi 1H ] (A+ hAx; xi 1H)�1

�r
x; x

E
�
�
exp

�Z 1

0

[ln ((1� t) (1H �A) + t h(1H �A)x; xi 1H)

� ((1� t)A+ t hAx; xi 1H)�1
ir
dt
i
x; x

E
� exp

�
1

2

hD
ln
�
(1H �A)A�1

�r
x; x

E
+ ln

�
h(1H �A)x; xi hAx; xi�1

�ri�
� exp

D
ln
�
(1H �A)A�1

�r
x; x

E
for any x 2 H with kxk = 1:

It follows from the inequality (2.249) applied for the log-convex function
g : (0; 1)! R, g (t) =

�
1�t
t

�r
; r > 0:



2.8 Hermite-Hadamard�s Type Inequalities for Operator Convex Functions 97

Proposition 141 Assume that A is a selfadjoint operator with Sp (A) ��
0; 12
�
and s 2

�
0; 12
�
: Then we have the following inequality in the operator

order of B (H):

ln
h
[(2� s) 1H �A] (A+ s1H)�1

i
(2.258)

�
Z 1

0

ln
�
[(1� ts) 1H � (1� t)A] ((1� t)A+ ts1H)�1

�
dt

� 1

2

�
ln
�
(1H �A)A�1

�r
+ ln

�
1� s
s

�r
1H

�
:

If follows from the inequality (2.245) applied for the log-convex function
g : (0; 1)! R, g (t) =

�
1�t
t

�r
; r > 0:

2.8 Hermite-Hadamard�s Type Inequalities for
Operator Convex Functions

2.8.1 Introduction

The following inequality holds for any convex function f de�ned on R

(b� a)f
�
a+ b

2

�
<

Z b

a

f(x)dx < (b� a)f(a) + f(b)
2

; a; b 2 R: (2.259)

It was �rstly discovered by Ch. Hermite in 1881 in the journalMathesis (see
[29]). But this result was nowhere mentioned in the mathematical literature
and was not widely known as Hermite�s result [36].
E.F. Beckenbach, a leading expert on the history and the theory of con-

vex functions, wrote that this inequality was proven by J. Hadamard in
1893 [3]. In 1974, D.S. Mitrinovíc found Hermite�s note in Mathesis [29].
Since (2.259) was known as Hadamard�s inequality, the inequality is now
commonly referred as the Hermite-Hadamard inequality [36].
Let X be a vector space, x; y 2 X; x 6= y. De�ne the segment

[x; y] := f(1� t)x+ ty; t 2 [0; 1]g:

We consider the function f : [x; y]! R and the associated function

g(x; y) : [0; 1]! R; g(x; y)(t) := f [(1� t)x+ ty]; t 2 [0; 1]:

Note that f is convex on [x; y] if and only if g(x; y) is convex on [0; 1].
For any convex function de�ned on a segment [x:y] � X, we have the

Hermite-Hadamard integral inequality (see [4, p. 2])

f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty]dt � f(x) + f(y)

2
; (2.260)
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which can be derived from the classical Hermite-Hadamard inequality (2.259)
for the convex function g(x; y) : [0; 1]! R.
Since f(x) = kxkp (x 2 X and 1 � p <1) is a convex function, we have

the following norm inequality from (2.260) (see [35, p. 106])





x+ y2




p � Z 1

0

k(1� t)x+ tykpdt � kxkp + kykp
2

; (2.261)

for any x; y 2 X.
Motivated by the above results we investigate in this paper the operator

version of the Hermite-Hadamard inequality for operator convex functions.
The operator quasilinearity of some associated functionals are also pro-
vided.
A real valued continuous function f on an interval I is said to be operator

convex (operator concave) if

f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B) (OC)

in the operator order, for all � 2 [0; 1] and for every selfadjoint operator A
and B on a Hilbert space H whose spectra are contained in I: Notice that
a function f is operator concave if �f is operator convex.
A real valued continuous function f on an interval I is said to be operator

monotone if it is monotone with respect to the operator order, i.e., A � B
with Sp (A) ; Sp (B) � I imply f (A) � f (B) :
For some fundamental results on operator convex (operator concave) and

operator monotone functions, see [20] and the references therein.
As examples of such functions, we note that f (t) = tr is operator

monotone on [0;1) if and only if 0 � r � 1: The function f (t) = tr

is operator convex on (0;1) if either 1 � r � 2 or �1 � r � 0 and
is operator concave on (0;1) if 0 � r � 1: The logarithmic function
f (t) = ln t is operator monotone and operator concave on (0;1): The en-
tropy function f (t) = �t ln t is operator concave on (0;1): The exponential
functionf (t) = et is neither operator convex nor operator monotone.

2.8.2 Some Hermite-Hadamard�s Type Inequalities

We start with the following result:

Theorem 142 (Dragomir, 2010, [13]) Let f : I ! R be an operator
convex function on the interval I: Then for any selfadjoint operators A
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and B with spectra in I we have the inequality�
f

�
A+B

2

�
�
�
1

2

�
f

�
3A+B

4

�
+ f

�
A+ 3B

4

��
(2.262)

�
Z 1

0

f ((1� t)A+ tB) dt

� 1

2

�
f

�
A+B

2

�
+
f (A) + f (B)

2

��
� f (A) + f (B)

2

�
:

Proof. First of all, since the function f is continuos, the operator valued
integral

R 1
0
f ((1� t)A+ tB) dt exists for any selfadjoint operators A and

B with spectra in I:
We give here two proofs, the �rst using only the de�nition of operator

convex functions and the second using the classical Hermite-Hadamard
inequality for real valued functions.
1. By the de�nition of operator convex functions we have the double

inequality:

f

�
C +D

2

�
� 1

2
[f ((1� t)C + tD) + f ((1� t)D + tC)] (2.263)

� 1

2
[f (C) + f (D)]

for any t 2 [0; 1] and any selfadjoint operators C and D with the spectra
in I:
Integrating the inequality (2.263) over t 2 [0; 1] and taking into account

that Z 1

0

f ((1� t)C + tD) dt =
Z 1

0

f ((1� t)D + tC) dt

then we deduce the Hermite-Hadamard inequality for operator convex func-
tions

f

�
C +D

2

�
�
Z 1

0

f ((1� t)C + tD) dt � 1

2
[f (C) + f (D)] (HHO)

that holds for any selfadjoint operators C and D with the spectra in I:
Now, on making use of the change of variable u = 2t we haveZ 1=2

0

f ((1� t)A+ tB) dt = 1

2

Z 1

0

f

�
(1� u)A+ uA+B

2

�
du

and by the change of variable u = 2t� 1 we haveZ 1

1=2

f ((1� t)A+ tB) dt = 1

2

Z 1

0

f

�
(1� u) A+B

2
+ uB

�
du:
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Utilising the Hermite-Hadamard inequality (HHO) we can write

f

�
3A+B

4

�
�
Z 1

0

f

�
(1� u)A+ uA+B

2

�
du

� 1

2

�
f (A) + f

�
A+B

2

��
and

f

�
A+ 3B

4

�
�
Z 1

0

f

�
(1� u) A+B

2
+ uB

�
du

� 1

2

�
f (A) + f

�
A+B

2

��
;

which by summation and division by two produces the desired result (2.262).
2. Consider now x 2 H; kxk = 1 and two selfadjoint operators A and B

with spectra in I. De�ne the real-valued function 'x;A;B : [0; 1]! R given
by 'x;A;B (t) = hf ((1� t)A+ tB)x; xi :
Since f is operator convex, then for any t1; t2 2 [0; 1] and �; � � 0 with

�+ � = 1 we have

'x;A;B (�t1 + �t2)

= hf ((1� (�t1 + �t2))A+ (�t1 + �t2)B)x; xi
= hf (� [(1� t1)A+ t1B] + � [(1� t2)A+ t2B])x; xi
� � hf ([(1� t1)A+ t1B])x; xi+ � hf ([(1� t2)A+ t2B])x; xi
= �'x;A;B (t1) + �'x;A;B (t2)

showing that 'x;A;B is a convex function on [0; 1] :
Now we use the Hermite-Hadamard inequality for real-valued convex

functions

g

�
a+ b

2

�
� 1

b� a

Z b

a

g (s) ds � g (a) + g (b)

2

to get that

'x;A;B

�
1

4

�
� 2

Z 1=2

0

'x;A;B (t) dt �
'x;A;B (0) + 'x;A;B

�
1
2

�
2

and

'x;A;B

�
3

4

�
� 2

Z 1

1=2

'x;A;B (t) dt �
'x;A;B

�
1
2

�
+ 'x;A;B (1)

2
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which by summation and division by two produces

1

2

��
f

�
3A+B

4

�
+ f

�
A+ 3B

4

��
x; x

�
(2.264)

�
Z 1

0

hf ((1� t)A+ tB)x; xi dt

� 1

2

��
f

�
A+B

2

�
+
f (A) + f (B)

2

�
x; x

�
:

Finally, since by the continuity of the function f we have

Z 1

0

hf ((1� t)A+ tB)x; xi dt =
�Z 1

0

f ((1� t)A+ tB) dtx; x
�

for any x 2 H; kxk = 1 and any two selfadjoint operators A and B with
spectra in I; we deduce from (2.264) the desired result (2.262).
A simple consequence of the above theorem is that the integral is closer

to the left bound than to the right, namely we can state:

Corollary 143 (Dragomir, 2010, [13]) With the assumptions in Theo-
rem 142 we have the inequality

(0 �)
Z 1

0

f ((1� t)A+ tB) dt� f
�
A+B

2

�
(2.265)

� f (A) + f (B)

2
�
Z 1

0

f ((1� t)A+ tB) dt:

Remark 144 Utilising di¤erent examples of operator convex or concave
functions, we can provide inequalities of interest.
If r 2 [�1; 0][ [1; 2] then we have the inequalities for powers of operators

��
A+B

2

�r
�
�
1

2

��
3A+B

4

�r
+

�
A+ 3B

4

�r�
(2.266)

�
Z 1

0

((1� t)A+ tB)r dt

� 1

2

��
A+B

2

�r
+
Ar +Br

2

��
� Ar +Br

2

�

for any two selfadjoint operators A and B with spectra in (0;1) :
If r 2 (0; 1) the inequalities in (2.266) hold with " � " instead of " � ":
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We also have the following inequalities for logarithm�
ln

�
A+B

2

�
�
�
1

2

�
ln

�
3A+B

4

�
+ ln

�
A+ 3B

4

��
(2.267)

�
Z 1

0

ln ((1� t)A+ tB) dt

� 1

2

�
ln

�
A+B

2

�
+
ln (A) + ln (B)

2

��
� ln (A) + ln (B)

2

�
for any two selfadjoint operators A and B with spectra in (0;1) :

2.8.3 Some Operator Quasilinearity Properties

Consider an operator convex function f : I � R ! R de�ned on the
interval I and two distinct selfadjoint operators A;B with the spectra in
I. We denote by [A;B] the closed operator segment de�ned by the family
of operators f(1� t)A+ tB, t 2 [0; 1]g :We also de�ne the operator-valued
functional

�f (A;B; t) := (1� t) f (A) + tf (B)� f ((1� t)A+ tB) � 0 (2.268)

in the operator order, for any t 2 [0; 1] :
The following result concerning an operator quasilinearity property for

the functional �f (�; �; t) may be stated:

Theorem 145 (Dragomir, 2010, [13]) Let f : I � R ! R be an op-
erator convex function on the interval I. Then for each A;B two distinct
selfadjoint operators A;B with the spectra in I and C 2 [A;B] we have

(0 �)�f (A;C; t) + �f (C;B; t) � �f (A;B; t) (2.269)

for each t 2 [0; 1] ; i.e., the functional �f (�; �; t) is operator superadditive
as a function of interval.
If [C;D] � [A;B] ; then

(0 �)�f (C;D; t) � �f (A;B; t) (2.270)

for each t 2 [0; 1] ; i.e., the functional �f (�; �; t) is operator nondecreasing
as a function of interval.

Proof. Let C = (1� s)A+ sB with s 2 (0; 1) : For t 2 (0; 1) we have

�f (C;B; t) = (1� t) f ((1� s)A+ sB) + tf (B)
� f ((1� t) [(1� s)A+ sB] + tB)

and

�f (A;C; t) = (1� t) f (A) + tf ((1� s)A+ sB)
� f ((1� t)A+ t [(1� s)A+ sB])
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giving that

�f (A;C; t) + �f (C;B; t)��f (A;B; t) (2.271)

= f ((1� s)A+ sB) + f ((1� t)A+ tB)
� f ((1� t) (1� s)A+ [(1� t) s+ t]B)� f ((1� ts)A+ tsB) :

Now, for a convex function ' : I � R ! R, where I is an interval,
and any real numbers t1; t2; s1 and s2 from I and with the properties that
t1 � s1 and t2 � s2 we have that

' (t1)� ' (t2)
t1 � t2

� ' (s1)� ' (s2)
s1 � s2

: (2.272)

Indeed, since ' is convex on I then for any a 2 I the function  : In fag !
R

 (t) :=
' (t)� ' (a)

t� a
is monotonic nondecreasing where is de�ned. Utilising this property repeat-
edly we have

' (t1)� ' (t2)
t1 � t2

� ' (s1)� ' (t2)
s1 � t2

=
' (t2)� ' (s1)

t2 � s1

� ' (s2)� ' (s1)
s2 � s1

=
' (s1)� ' (s2)

s1 � s2

which proves the inequality (2.272).
For a vector x 2 H, with kxk = 1; consider the function 'x : [0; 1] ! R

given by 'x (t) := hf ((1� t)A+ tB)x; xi : Since f is operator convex on
I it follows that 'x is convex on [0; 1] : Now, if we consider, for given
t; s 2 (0; 1) ;

t1 := ts < s =: s1 and t2 := t < t+ (1� t) s =: s2;

then we have 'x (t1) = hf ((1� ts)A+ tsB)x; xi and 'x (t2) = hf ((1� t)A+ tB)x; xi
giving that

'x (t1)� 'x (t2)
t1 � t2

=

��
f ((1� ts)A+ tsB)� f ((1� t)A+ tB)

t (s� 1)

�
x; x

�
:

Also 'x (s1) = hf ((1� s)A+ sB)x; xi and 'x (s2) = hf ((1� t) (1� s)A+ [(1� t) s+ t]B)x; xi
giving that

'x (s1)� 'x (s2)
s1 � s2

=

�
f ((1� s)A+ sB)� f ((1� t) (1� s)A+ [(1� t) s+ t]B)

t (s� 1) x; x

�
:
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Utilising the inequality (2.272) and multiplying with t (s� 1) < 0 we de-
duce the following inequality in the operator order

f ((1� ts)A+ tsB)� f ((1� t)A+ tB) (2.273)

� f ((1� s)A+ sB)� f ((1� t) (1� s)A+ [(1� t) s+ t]B) :

Finally, by (2.271) and (2.273) we get the desired result (2.269).
Applying repeatedly the superadditivity property we have for [C;D] �

[A;B] that

�f (A;C; t) + �f (C;D; t) + �f (D;B; t) � �f (A;B; t)

giving that

0 � �f (A;C; t) + �f (D;B; t) � �f (A;B; t)��f (C;D; t)

which proves (2.270).
For t = 1

2 we consider the functional

�f (A;B) := �f

�
A;B;

1

2

�
=
f (A) + f (B)

2
� f

�
A+B

2

�
;

which obviously inherits the superadditivity and monotonicity properties
of the functional �f (�; �; t) : We are able then to state the following

Corollary 146 (Dragomir, 2010, [13]) Let f : I � R ! R be an op-
erator convex function on the interval I. Then for each A;B two distinct
selfadjoint operators A;B with the spectra in I we have the following bounds
in the operator order

inf
C2[A;B]

�
f

�
A+ C

2

�
+ f

�
C +B

2

�
� f (C)

�
= f

�
A+B

2

�
(2.274)

and

sup
C;D2[A;B]

�
f (C) + f (D)

2
� f

�
C +D

2

��
=
f (A) + f (B)

2
� f

�
A+B

2

�
:

(2.275)

Proof. By the superadditivity of the functional �f (�; �) we have for each
C 2 [A;B] that

f (A) + f (B)

2
� f

�
A+B

2

�
� f (A) + f (C)

2
� f

�
A+ C

2

�
+
f (C) + f (B)

2
� f

�
C +B

2

�
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which is equivalent with

f

�
A+ C

2

�
+ f

�
C +B

2

�
� f (C) � f

�
A+B

2

�
: (2.276)

Since the equality case in (2.276) is realized for either C = A or C = B we
get the desired bound (2.274).
The bound (2.275) is obvious by the monotonicity of the functional

�f (�; �) as a function of interval.
Consider now the following functional

�f (A;B; t) := f (A) + f (B)� f ((1� t)A+ tB)� f ((1� t)B + tA) ;

where, as above, f : C � X ! R is a convex function on the convex set C
and A;B 2 C while t 2 [0; 1] :
We notice that

�f (A;B; t) = �f (B;A; t) = �f (A;B; 1� t)

and
�f (A;B; t) = �f (A;B; t) + �f (A;B; 1� t) � 0

for any A;B 2 C and t 2 [0; 1] :
Therefore, we can state the following result as well

Corollary 147 (Dragomir, 2010, [13]) Let f : I � R ! R be an op-
erator convex function on the interval I. Then for each A;B two distinct
selfadjoint operators A;B with the spectra in I; the functional �f (�; �; t) is
operator superadditive and operator nondecreasing as a function of interval.

In particular, if C 2 [A;B] then we have the inequality

1

2
[f ((1� t)A+ tB) + f ((1� t)B + tA)] (2.277)

� 1

2
[f ((1� t)A+ tC) + f ((1� t)C + tA)]

+
1

2
[f ((1� t)C + tB) + f ((1� t)B + tC)]� f (C) :

Also, if C;D 2 [A;B] then we have the inequality

f (A) + f (B)� f ((1� t)A+ tB)� f ((1� t)B + tA) (2.278)

� f (C) + f (D)� f ((1� t)C + tD)� f ((1� t)C + tD)

for any t 2 [0; 1] :
Perhaps the most interesting functional we can consider is the following

one:

�f (A;B) =
f (A) + f (B)

2
�
Z 1

0

f ((1� t)A+ tB) dt: (2.279)
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Notice that, by the second Hermite-Hadamard inequality for operator con-
vex functions we have that �f (A;B) � 0 in the operator order.
We also observe that

�f (A;B) =

Z 1

0

�f (A;B; t) dt =

Z 1

0

�f (A;B; 1� t) dt: (2.280)

Utilising this representation, we can state the following result as well:

Corollary 148 (Dragomir, 2010, [13]) Let f : I � R ! R be an op-
erator convex function on the interval I. Then for each A;B two distinct
selfadjoint operators A;B with the spectra in I; the functional �f (�; �) is
operator superadditive and operator nondecreasing as a function of interval.
Moreover, we have the bounds in the operator order

inf
C2[A;B]

�Z 1

0

[f ((1� t)A+ tC) + f ((1� t)C + tB)] dt� f (C)
�
(2.281)

=

Z 1

0

f ((1� t)A+ tB) dt

and

sup
C;D2[A;B]

�
f (C) + f (D)

2
�
Z 1

0

f ((1� t)C + tD) dt
�

(2.282)

=
f (A) + f (B)

2
�
Z 1

0

f ((1� t)A+ tB) dt:

Remark 149 The above inequalities can be applied to various concrete
operator convex function of interest.
If we choose for instance the inequality (2.282), then we get the following

bounds in the operator order

sup
C;D2[A;B]

�
Cr +Dr

2
�
Z 1

0

((1� t)C + tD)r dt
�

(2.283)

=
Ar +Br

2
�
Z 1

0

((1� t)A+ tB)r dt;

where r 2 [�1; 0] [ [1; 2] and A;B are selfadjoint operators with spectra in
(0;1) :
If r 2 (0; 1) then

sup
C;D2[A;B]

�Z 1

0

((1� t)C + tD)r dt� Cr +Dr

2

�
(2.284)

=

Z 1

0

((1� t)A+ tB)r dt� Ar +Br

2
;
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and A;B are selfadjoint operators with spectra in (0;1) :
We also have the operator bound for the logarithm

sup
C;D2[A;B]

�Z 1

0

ln ((1� t)C + tD) dt� ln (C) + ln (D)
2

�
(2.285)

=

Z 1

0

ln ((1� t)A+ tB) dt� ln (A) + ln (B)
2

;

where A;B are selfadjoint operators with spectra in (0;1) :
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3
Inequalities for the µCeby�ev
Functional

3.1 Introduction

The µCeby�ev, or in a di¤erent spelling, Chebyshev inequality which com-
pares the integral/discrete mean of the product with the product of the
integral/discrete means is famous in the literature devoted to Mathemat-
ical Inequalities. It has been extended, generalised, re�ned etc...by many
authors during the last century. A simple search utilising either spellings
and the key word "inequality" in the title in the comprehensiveMathSciNet
database of the American Mathematical Society produces more than 200
research articles devoted to this result.
The sister result due to Grüss which provides error bounds for the mag-

nitude of the di¤erence between the integral mean of the product and the
product of the integral means has also attracted much interest since it has
been discovered in 1935 with more than 180 papers published, as a simple
search in the same database reveals. Far more publications have been de-
voted to the applications of these inequalities and an accurate picture of
the impacted results in various �elds of Modern Mathematics is di¢ cult to
provide.
In this chapter, however, we present only some recent results due to

the author for the corresponding operator versions of these two famous
inequalities. Applications for particular functions of selfadjoint operators
such as the power, logarithmic and exponential functions are provided as
well.
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3.2 µCeby�ev�s Inequality

3.2.1 µCeby�ev�s Inequality for Real Numbers

First of all, let us recall a number of classical results for sequences of real
numbers concerning the celebrated µCeby�ev inequality.
Consider the real sequences (n� tuples) a = (a1; : : : ; an) ; b = (b1; : : : ; bn)

and the nonnegative sequence p = (p1; : : : ; pn) with Pn :=
Pn
i=1 pi > 0:

De�ne the weighted µCeby�ev�s functional

Tn (p;a;b) :=
1

Pn

nX
i=1

piaibi �
1

Pn

nX
i=1

piai �
1

Pn

nX
i=1

pibi: (3.1)

In 1882 �1883, µCeby�ev [7] and [8] proved that if a and b are monotonic
in the same (opposite) sense, then

Tn (p;a;b) � (�) 0: (3.2)

In the special case p = a � 0, it appears that the inequality (3.2) has
been obtained by Laplace long before µCeby�ev (see for example [51, p.
240]).
The inequality (3.2) was mentioned by Hardy, Littlewood and Pólya in

their book [46] in 1934 in the more general setting of synchronous sequences,
i.e., if a; b are synchronous (asynchronous), this means that

(ai � aj) (bi � bj) � (�) 0 for any i; j 2 f1; : : : ; ng ; (3.3)

then (3.2) holds true as well.
A relaxation of the synchronicity condition was provided by M. Biernacki

in 1951, [5], which showed that, if a; b are monotonic in mean in the same
sense, i.e., for Pk :=

Pk
i=1 pi; k = 1; : : : ; n� 1;

1

Pk

kX
i=1

piai � (�)
1

Pk+1

k+1X
i=1

piai; k 2 f1; : : : ; n� 1g (3.4)

and
1

Pk

kX
i=1

pibi � (�)
1

Pk+1

k+1X
i=1

pibi; k 2 f1; : : : ; n� 1g ; (3.5)

then (3.2) holds with �� �. If if a; b are monotonic in mean in the opposite
sense then (3.2) holds with � � �.
If one would like to drop the assumption of nonnegativity for the compo-

nents of p; then one may state the following inequality obtained by Mitri-
novíc and Peµcaríc in 1991, [50]: If 0 � Pi � Pn for each i 2 f1; : : : ; n� 1g ;
then

Tn (p;a;b) � 0 (3.6)
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provided a and b are sequences with the same monotonicity.
If a and b are monotonic in the opposite sense, the sign of the inequality

(3.6) reverses.
Similar integral inequalities may be stated, however we do not present

them here.
For other recent results on the µCeby�ev inequality in either discrete or

integral form see [6], [19], [20], [26], [39], [40], [51], [49], [52], [57], [58], [59],
and the references therein.
The main aim of the present section is to provide operator versions for the

µCeby�ev inequality in di¤erent settings. Related results and some particular
cases of interest are also given.

3.2.2 A Version of the µCeby�ev Inequality for One Operator

We say that the functions f; g : [a; b] �! R are synchronous (asynchronous)
on the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :

It is obvious that, if f; g are monotonic and have the same monotonicity
on the interval [a; b] ; then they are synchronous on [a; b] while if they have
opposite monotonicity, they are asynchronous.
For some extensions of the discrete µCeby�ev inequality for synchronous

(asynchronous) sequences of vectors in an inner product space, see [42] and
[41].
The following result provides an inequality of µCeby�ev type for functions

of selfadjoint operators.

Theorem 150 (Dragomir, 2008, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f; g : [m;M ] �! R
are continuous and synchronous (asynchronous) on [m;M ] ; then

hf (A) g (A)x; xi � (�) hf (A)x; xi � hg (A)x; xi (3.7)

for any x 2 H with kxk = 1:

Proof.We consider only the case of synchronous functions. In this case we
have then

f (t) g (t) + f (s) g (s) � f (t) g (s) + f (s) g (t) (3.8)

for each t; s 2 [a; b] :
If we �x s 2 [a; b] and apply the property (P) for the inequality (3.8)

then we have for each x 2 H with kxk = 1 that

h(f (A) g (A) + f (s) g (s) 1H)x; xi � h(g (s) f (A) + f (s) g (A))x; xi ;

which is clearly equivalent with

hf (A) g (A)x; xi+ f (s) g (s) � g (s) hf (A)x; xi+ f (s) hg (A)x; xi (3.9)
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for each s 2 [a; b] :
Now, if we apply again the property (P) for the inequality (3.9), then

we have for any y 2 H with kyk = 1 that

h(hf (A) g (A)x; xi 1H + f (A) g (A)) y; yi
� h(hf (A)x; xi g (A) + hg (A)x; xi f (A)) y; yi ;

which is clearly equivalent with

hf (A) g (A)x; xi+ hf (A) g (A) y; yi (3.10)

� hf (A)x; xi hg (A) y; yi+ hf (A) y; yi hg (A)x; xi

for each x; y 2 H with kxk = kyk = 1: This is an inequality of interest in
itself.
Finally, on making y = x in (3.10) we deduce the desired result (3.7).
Some particular cases are of interest for applications. In the �rst instance

we consider the case of power functions.

Example 151 Assume that A is a positive operator on the Hilbert space
H and p; q > 0: Then for each x 2 H with kxk = 1 we have the inequality


Ap+qx; x
�
� hApx; xi � hAqx; xi : (3.11)

If A is positive de�nite then the inequality (3.11) also holds for p; q < 0:
If A is positive de�nite and either p > 0; q < 0 or p < 0; q > 0, then the

reverse inequality holds in (3.11).

Another case of interest for applications is the exponential function.

Example 152 Assume that A is a selfadjoint operator on H: If �; � > 0
or �; � < 0; then

hexp [(�+ �)A]x; xi � hexp (�A)x; xi � hexp (�A)x; xi (3.12)

for each x 2 H with kxk = 1:
If either � > 0; � < 0 or � < 0; � > 0; then the reverse inequality holds

in (3.12).

The following particular cases may be of interest as well:

Example 153 a. Assume that A is positive de�nite and p > 0: Then

hAp logAx; xi � hApx; xi � hlogAx; xi (3.13)

for each x 2 H with kxk = 1: If p < 0 then the reverse inequality holds in
(3.13).
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b. Assume that A is positive de�nite and Sp (A) � (0; 1) : If r; s > 0 or
r; s < 0 then D

(1H �Ar)�1 (1H �As)�1 x; x
E

(3.14)

�
D
(1H �Ar)�1 x; x

E
�
D
(1H �As)�1 x; x

E
for each x 2 H with kxk = 1:
If either r > 0; s < 0 or r < 0; s > 0; then the reverse inequality holds in

(3.14).

Remark 154 We observe, from the proof of the above theorem that, if A
and B are selfadjoint operators and Sp (A) ; Sp (B) � [m;M ] ; then for any
continuous synchronous (asynchronous) functions f; g : [m;M ] �! R we
have the more general result

hf (A) g (A)x; xi+ hf (B) g (B) y; yi (3.15)

� (�) hf (A)x; xi hg (B) y; yi+ hf (B) y; yi hg (A)x; xi

for each x; y 2 H with kxk = kyk = 1:
If f : [m;M ] �! (0;1) is continuous then the functions fp; fq are

synchronous in the case when p; q > 0 or p; q < 0 and asynchronous when
either p > 0; q < 0 or p < 0; q > 0: In this situation if A and B are positive
de�nite operators then we have the inequality


fp+q (A)x; x
�
+


fp+q (B) y; y

�
(3.16)

� hfp (A)x; xi hfq (B) y; yi+ hfp (B) y; yi hfq (A)x; xi

for each x; y 2 H with kxk = kyk = 1 where either p; q > 0 or p; q < 0: If
p > 0; q < 0 or p < 0; q > 0 then the reverse inequality also holds in (3.16).
As particular cases, we should observe that for p = q = 1 and f (t) = t;

we get from (3.16) the inequality

A2x; x

�
+


B2y; y

�
� 2 � hAx; xi hBy; yi (3.17)

for each x; y 2 H with kxk = kyk = 1.
For p = 1 and q = �1 we have from (3.16)

hAx; xi


B�1y; y

�
+ hBy; yi



A�1x; x

�
� 2 (3.18)

for each x; y 2 H with kxk = kyk = 1:

3.2.3 A Version of the µCeby�ev Inequality for n Operators

The following multiple operator version of Theorem 150 holds:
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Theorem 155 (Dragomir, 2008, [30]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
If f; g : [m;M ] �! R are continuous and synchronous (asynchronous) on
[m;M ] ; then

nX
j=1

hf (Aj) g (Aj)xj ; xji � (�)
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji ;

(3.19)
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1:

Proof. As in [44, p. 6], if we put

eA :=
0B@ A1 � � � 0

...
. . .

...
0 � � � An

1CA and ex =
0B@ x1

...
xn

1CA
then we have Sp

� eA� � [m;M ] ; kexk = 1;
D
f
� eA� g � eA� ex; exE = nX

j=1

hf (Aj) g (Aj)xj ; xji ;

D
f
� eA� ex; exE = nX

j=1

hf (Aj)xj ; xji and
D
g
� eA� ex; exE = nX

j=1

hg (Aj)xj ; xji :

Applying Theorem 150 for eA and ex we deduce the desired result (3.19).
The following particular cases may be of interest for applications.

Example 156 Assume that Aj ; j 2 f1; : : : ; ng are positive operators on
the Hilbert space H and p; q > 0: Then for each xj 2 H; j 2 f1; : : : ; ng withPn
j=1 kxjk

2
= 1 we have the inequality*

nX
j=1

Ap+qj xj ; xj

+
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
: (3.20)

If Aj are positive de�nite then the inequality (3.20) also holds for p; q < 0:
If Aj are positive de�nite and either p > 0; q < 0 or p < 0; q > 0, then

the reverse inequality holds in (3.20).

Another case of interest for applications is the exponential function.
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Example 157 Assume that Aj ; j 2 f1; : : : ; ng are selfadjoint operators on
H: If �; � > 0 or �; � < 0; then*

nX
j=1

exp [(�+ �)Aj ]xj ; xj

+
(3.21)

�
nX
j=1

hexp (�Aj)xj ; xji �
nX
j=1

hexp (�Aj)xj ; xji

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

If either � > 0; � < 0 or � < 0; � > 0; then the reverse inequality holds
in (3.21).

The following particular cases may be of interest as well:

Example 158 a. Assume that Aj ; j 2 f1; : : : ; ng are positive de�nite op-
erators and p > 0: Then*

nX
j=1

Apj logAjxj ; xj

+
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1

hlogAjxj ; xji (3.22)

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1: If p < 0 then the

reverse inequality holds in (3.22).
b. If Aj are positive de�nite and Sp (Aj) � (0; 1) for j 2 f1; : : : ; ng then

for r; s > 0 or r; s < 0 we have the inequality*
nX
j=1

�
1H �Arj

��1 �
1H �Asj

��1
xj ; xj

+
(3.23)

�
nX
j=1

D�
1H �Arj

��1
xj ; xj

E
�
nX
j=1

D�
1H �Asj

��1
xj ; xj

E
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1:

If either r > 0; s < 0 or r < 0; s > 0; then the reverse inequality holds in
(3.23).

3.2.4 Another Version of the µCeby�ev Inequality for n
Operators

The following di¤erent version of the µCeby�ev inequality for a sequence of
operators also holds:

Theorem 159 (Dragomir, 2008, [30]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
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If f; g : [m;M ] �! R are continuous and synchronous (asynchronous) on
[m;M ] ; then*

nX
j=1

pjf (Aj) g (Aj)x; x

+
(3.24)

� (�)
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
;

for any pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj = 1 and x 2 H with kxk = 1:

In particular*
1

n

nX
j=1

f (Aj) g (Aj)x; x

+
(3.25)

� (�)
*
1

n

nX
j=1

f (Aj)x; x

+
�
*
1

n

nX
j=1

g (Aj)x; x

+
;

for each x 2 H with kxk = 1:

Proof. We provide here two proofs. The �rst is based on the inequality
(3.15) and generates as a by-product a more general result. The second is
derived from Theorem 155.
1. If we make use of the inequality (3.15), then we can write

hf (Aj) g (Aj)x; xi+ hf (Bk) g (Bk) y; yi (3.26)

� (�) hf (Aj)x; xi hg (Bk) y; yi+ hf (Bk) y; yi hg (Aj)x; xi ;

which holds for anyAj andBk selfadjoint operators with Sp (Aj) ; Sp (Bk) �
[m;M ] ; j; k 2 f1; : : : ; ng and for each x; y 2 H with kxk = kyk = 1:
Now, if pj � 0; qk � 0; j; k 2 f1; : : : ; ng and

Pn
j=1 pj =

Pn
k=1 qk = 1

then, by multiplying (3.26) with pj � 0; qk � 0 and summing over j and k
from 1 to n we deduce the following inequality that is of interest in its own
right: *

nX
j=1

pjf (Aj) g (Aj)x; x

+
+

*
nX
k=1

qkf (Bk) g (Bk) y; y

+
(3.27)

� (�)
*

nX
j=1

pjf (Aj)x; x

+*
nX
k=1

qkg (Bk) y; y

+

+

*
nX
k=1

qkf (Bk) y; y

+*
nX
j=1

pjg (Aj)x; x

+

for each x; y 2 H with kxk = kyk = 1:
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Finally, the choice Bk = Ak; qk = pk and y = x in (3.27) produces the
desired result (3.24).
2. In we choose in Theorem 155 xj =

p
pj � x; j 2 f1; : : : ; ng ; where

pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1 then a

simple calculation shows that the inequality (3.19) becomes (3.24). The
details are omitted.

Remark 160 We remark that the case n = 1 in (3.24) produces the in-
equality (3.7).

The following particular cases are of interest:

Example 161 Assume that Aj ; j 2 f1; : : : ; ng are positive operators on
the Hilbert space H; pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1 and p; q > 0:

Then for each x 2 H with kxk = 1 we have the inequality*
nX
j=1

pjA
p+q
j x; x

+
�
*

nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjA
q
jx; x

+
: (3.28)

If Aj ; j 2 f1; : : : ; ng are positive de�nite then the inequality (3.28) also
holds for p; q < 0:
If Aj ; j 2 f1; : : : ; ng are positive de�nite and either p > 0; q < 0 or

p < 0; q > 0, then the reverse inequality holds in (3.28).

Another case of interest for applications is the exponential function.

Example 162 Assume that Aj ; j 2 f1; : : : ; ng are selfadjoint operators on
H and pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1: If �; � > 0 or �; � < 0;

then *
nX
j=1

pj exp [(�+ �)Aj ]x; x

+
(3.29)

�
*

nX
j=1

pj exp (�Aj)x; x

+
�
*

nX
j=1

pj exp (�Aj)x; x

+

for each x 2 H with kxk = 1:
If either � > 0; � < 0 or � < 0; � > 0; then the reverse inequality holds

in (3.29).

The following particular cases may be of interest as well:

Example 163 a. Assume that Aj ; j 2 f1; : : : ; ng are positive de�nite op-
erators on the Hilbert space H; pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1

and p > 0: Then*
nX
j=1

pjA
p
j logAjx; x

+
�
*

nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pj logAjx; x

+
: (3.30)
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If p < 0 then the reverse inequality holds in (3.30).
b. Assume that Aj ; j 2 f1; : : : ; ng are positive de�nite operators on the

Hilbert space H;Sp (Aj) � (0; 1) and pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj =

1. If r; s > 0 or r; s < 0 then*
nX
j=1

pj
�
1H �Arj

��1 �
1H �Asj

��1
x; x

+
(3.31)

�
*

nX
j=1

pj
�
1H �Arj

��1
x; x

+
�
*

nX
j=1

pj
�
1H �Asj

��1
x; x

+
for each x 2 H with kxk = 1:
If either r > 0; s < 0 or r < 0; s > 0; then the reverse inequality holds in

(3.31).

We remark that the following operator norm inequality can be stated as
well:

Corollary 164 Let Aj be selfadjoint operators with Sp (Aj) � [m;M ] for
j 2 f1; : : : ; ng and for some scalars m < M: If f; g : [m;M ] �! R are
continuous, asynchronous on [m;M ] and for pj � 0; j 2 f1; : : : ; ng withPn
j=1 pj = 1 the operator

Pn
j=1 pjf (Aj) g (Aj) is positive, then







nX
j=1

pjf (Aj) g (Aj)







 �







nX
j=1

pjf (Aj)







 �







nX
j=1

pjg (Aj)







 : (3.32)

Proof. We have from (3.24) that

0 �
*

nX
j=1

pjf (Aj) g (Aj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
for each x 2 H with kxk = 1: Taking the supremum in this inequality over
x 2 H with kxk = 1 we deduce the desired result (3.32).
The above Corollary 164 provides some interesting norm inequalities for

sums of positive operators as follows:

Example 165 a. If Aj ; j 2 f1; : : : ; ng are positive de�nite and either p >
0; q < 0 or p < 0; q > 0, then for pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1

we have the norm inequality:






nX
j=1

pjA
p+q
j







 �







nX
j=1

pjA
p
j







 �







nX
j=1

pjA
q
j







 : (3.33)

In particular

1 �








nX
j=1

pjA
r
j







 �







nX
j=1

pjA
�r
j







 (3.34)



3.2 µCeby�ev�s Inequality 123

for any r > 0:
b. Assume that Aj ; j 2 f1; : : : ; ng are selfadjoint operators on H and

pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj = 1: If either � > 0; � < 0 or � <

0; � > 0; then






nX
j=1

pj exp [(�+ �)Aj ]







 �







nX
j=1

pj exp (�Aj)







 �







nX
j=1

pj exp (�Aj)







 :
(3.35)

In particular

1 �








nX
j=1

pj exp (
Aj)







 �







nX
j=1

pj exp (�
Aj)







 :
for any 
 > 0:

3.2.5 Related Results for One Operator

The following result that is related to the µCeby�ev inequality may be stated:

Theorem 166 (Dragomir, 2008, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f; g : [m;M ] �! R
are continuous and synchronous on [m;M ] ; then

hf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xi (3.36)

� [hf (A)x; xi � f (hAx; xi)] � [g (hAx; xi)� hg (A)x; xi]

for any x 2 H with kxk = 1:
If f; g are asynchronous, then

hf (A)x; xi � hg (A)x; xi � hf (A) g (A)x; xi (3.37)

� [hf (A)x; xi � f (hAx; xi)] � [hg (A)x; xi � g (hAx; xi)]

for any x 2 H with kxk = 1:

Proof. Since f; g are synchronous and m � hAx; xi � M for any x 2 H
with kxk = 1; then we have

[f (t)� f (hAx; xi)] [g (t)� g (hAx; xi)] � 0 (3.38)

for any t 2 [a; b] and x 2 H with kxk = 1:
On utilising the property (P) for the inequality (3.38) we have that

h[f (B)� f (hAx; xi)] [g (B)� g (hAx; xi)] y; yi � 0 (3.39)

for any B a bounded linear operator with Sp (B) � [m;M ] and y 2 H with
kyk = 1:
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Since

h[f (B)� f (hAx; xi)] [g (B)� g (hAx; xi)] y; yi (3.40)

= hf (B) g (B) y; yi+ f (hAx; xi) g (hAx; xi)
� hf (B) y; yi g (hAx; xi)� f (hAx; xi) hg (B) y; yi ;

then from (3.39) we get

hf (B) g (B) y; yi+ f (hAx; xi) g (hAx; xi)
� hf (B) y; yi g (hAx; xi) + f (hAx; xi) hg (B) y; yi

which is clearly equivalent with

hf (B) g (B) y; yi � hf (A) y; yi � hg (A) y; yi (3.41)

� [hf (B) y; yi � f (hAx; xi)] � [g (hAx; xi)� hg (B) y; yi]

for each x; y 2 H with kxk = kyk = 1: This inequality is of interest in its
own right.
Now, if we choose B = A and y = x in (3.41), then we deduce the desired

result (3.36).
The following result which improves the µCeby�ev inequality may be

stated:

Corollary 167 (Dragomir, 2008, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f; g : [m;M ] �! R
are continuous, synchronous and one is convex while the other is concave
on [m;M ] ; then

hf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xi (3.42)

� [hf (A)x; xi � f (hAx; xi)] � [g (hAx; xi)� hg (A)x; xi] � 0

for any x 2 H with kxk = 1:
If f; g are asynchronous and either both of them are convex or both of

them concave on [m;M ], then

hf (A)x; xi � hg (A)x; xi � hf (A) g (A)x; xi (3.43)

� [hf (A)x; xi � f (hAx; xi)] � [hg (A)x; xi � g (hAx; xi)] � 0

for any x 2 H with kxk = 1:

Proof. The second inequality follows by making use of the result due to
Mond & Peµcaríc, see [55], [54] or [44, p. 5]:

hh (A)x; xi � (�)h (hAx; xi) (MP)

for any x 2 H with kxk = 1 provided that A is a selfadjoint operator with
Sp (A) � [m;M ] for some real numbers m < M and h is convex (concave)
on the given interval [m;M ] :
The above Corollary 167 o¤ers the possibility to improve some of the

results established before for power function as follows:
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Example 168 a. Assume that A is a positive operator on the Hilbert space
H: If p 2 (0; 1) and q 2 (1;1) ; then for each x 2 H with kxk = 1 we have
the inequality


Ap+qx; x
�
� hApx; xi � hAqx; xi (3.44)

� [hAqx; xi � hAx; xiq] [hAx; xip � hApx; xi] � 0:

If A is positive de�nite and p > 1; q < 0; then

hApx; xi � hAqx; xi �


Ap+qx; x

�
(3.45)

� [hAqx; xi � hAx; xiq] [hApx; xi � hAx; xip] � 0

for each x 2 H with kxk = 1:
b. Assume that A is positive de�nite and p > 1: Then

hAp logAx; xi � hApx; xi � hlogAx; xi (3.46)

� [hApx; xi � hAx; xip] [log hAx; xi � hlogAx; xi] � 0

for each x 2 H with kxk = 1:

3.2.6 Related Results for n Operators

We can state now the following generalisation of Theorem 166 for n oper-
ators:

Theorem 169 (Dragomir, 2008, [30]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
(i) If f; g : [m;M ] �! R are continuous and synchronous on [m;M ] ;

then

nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji (3.47)

�

24 nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A35
�

24g
0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

hg (Aj)xj ; xji

35
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1: Moreover, if one

function is convex while the other is concave on [m;M ] ; then the right
hand side of (3.47) is nonnegative.
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(ii) If f; g are asynchronous on [m;M ] ; then

nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji �
nX
j=1

hf (Aj) g (Aj)xj ; xji (3.48)

�

24 nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A35
�

24 nX
j=1

hg (Aj)xj ; xji � g

0@ nX
j=1

hAjxj ; xji

1A35
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1: Moreover, if either

both of them are convex or both of them are concave on [m;M ], then the
right hand side of (3.48) is nonnegative as well.

Proof. The argument is similar to the one from the proof of Theorem 155
on utilising the results from one operator obtained in Theorem 166.
The nonnegativity of the right hand sides of the inequalities (3.47) and

(3.48) follows by the use of the Jensen�s type result from [44, p. 5]

nX
j=1

hh (Aj)xj ; xji � (�)h

0@ nX
j=1

hAjxj ; xji

1A (3.49)

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1; which holds provided

that Aj are selfadjoint operators with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M and h is convex (concave) on [m;M ] :
The details are omitted.

Example 170 a. Assume that Aj ; j 2 f1; : : : ; ng are positive operators on
the Hilbert space H: If p 2 (0; 1) and q 2 (1;1) ; then for each xj 2 H; j 2
f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1 we have the inequality

nX
j=1



Ap+qj xj ; xj

�
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
(3.50)

�

24 nX
j=1



Aqjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Aq35
�

240@ nX
j=1

hAjxj ; xji

1Ap

�
nX
j=1



Apjxj ; xj

�35
� 0:
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If Aj are positive de�nite and p > 1; q < 0; then
nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
�

nX
j=1



Ap+qj xj ; xj

�
(3.51)

�

24 nX
j=1



Aqjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Aq35
�

24 nX
j=1



Apjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Ap35
� 0

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

b. Assume that Aj are positive de�nite and p > 1: Then
nX
j=1



Apj logAxj ; xj

�
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1

hlogAjxj ; xji (3.52)

�

24 nX
j=1



Apjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Ap35
�

24 nX
j=1

log hAjxj ; xji � log

0@ nX
j=1

hAjxj ; xji

1A35
� 0

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

The following result may be stated as well:

Theorem 171 (Dragomir, 2008, [30]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
(i) If f; g : [m;M ] �! R are continuous and synchronous on [m;M ] ;

then*
nX
j=1

pjf (Aj) g (Aj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
(3.53)

�

24f
0@* nX

j=1

pjAjx; x

+1A�* nX
j=1

pjf (Aj)x; x

+35
�

24* nX
j=1

pjg (Aj)x; x

+
� g

0@* nX
j=1

pjAjx; x

+1A35
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for any pj � 0; j 2 f1; : : : ; ng with
Pn
j=1 pj = 1 and x 2 H with kxk = 1:

Moreover, if one is convex while the other is concave on [m;M ] ; then the
right hand side of (3.53) is nonnegative.
(ii) If f; g are asynchronous on [m;M ] ; then*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
�
*

nX
j=1

pjf (Aj) g (Aj)x; x

+
(3.54)

�

24* nX
j=1

pjf (Aj)x; x

+
� f

0@* nX
j=1

pjAjx; x

+1A35
�

24* nX
j=1

pjg (Aj)x; x

+
� g

0@* nX
j=1

pjAjx; x

+1A35
for any pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1 and x 2 H with kxk = 1:

Moreover, if either both of them are convex or both of them are concave on
[m;M ], then the right hand side of (3.54) is nonnegative as well.

Proof. Follows from Theorem 169 on choosing xj =
p
pj �x; j 2 f1; : : : ; ng ;

where pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1:

Also, the positivity of the right hand term in (3.53) follows by the
Jensen�s type inequality from the inequality (3.49) for the same choices,
namely xj =

p
pj � x; j 2 f1; : : : ; ng ; where pj � 0; j 2 f1; : : : ; ng ;Pn

j=1 pj = 1 and x 2 H; with kxk = 1. The details are omitted.
Finally, we can list some particular inequalities that may be of interest

for applications. They improve some result obtained above:

Example 172 a. Assume that Aj ; j 2 f1; : : : ; ng are positive operators
on the Hilbert space H and pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1: If

p 2 (0; 1) and q 2 (1;1) ; then for each x 2 H with kxk = 1 we have the
inequality*

nX
j=1

pjA
p+q
j x; x

+
�
*

nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjA
q
jx; x

+
(3.55)

�

24* nX
j=1

pjA
q
jx; x

+
�
*

nX
j=1

pjAjx; x

+q35
�

24* nX
j=1

pjAjx; x

+p
�
*

nX
j=1

pjA
p
jx; x

+35
� 0:
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If Aj ; j 2 f1; : : : ; ng are positive de�nite and p > 1; q < 0; then*
nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjA
q
jx; x

+
�
*

nX
j=1

pjA
p+q
j x; x

+
(3.56)

�

24* nX
j=1

pjA
q
jx; x

+
�
*

nX
j=1

pjAjx; x

+q35
�

24* nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjAjx; x

+p35
� 0

for each x 2 H with kxk = 1:
b. Assume that Aj, j 2 f1; : : : ; ng are positive de�nite and p > 1: Then*

nX
j=1

pjA
p
j logAjx; x

+
�
*

nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pj logAjx; x

+
(3.57)

�

24* nX
j=1

pjA
p
jx; x

+
�
*

nX
j=1

pjAjx; x

+p35
�

24log* nX
j=1

pjAjx; x

+
�
*

nX
j=1

pj logAjx; x

+35
� 0

for each x 2 H with kxk = 1:

3.3 Grüss Inequality

3.3.1 Some Elementary Inequalities of Grüss Type

In 1935, G. Grüss [45] proved the following integral inequality which gives
an approximation of the integral of the product in terms of the product of
the integrals as follows:����� 1

b� a

Z b

a

f (x) g (x) dx� 1

b� a

Z b

a

f (x) dx � 1

b� a

Z b

a

g (x) dx

����� (3.58)

� 1

4
(�� �) (�� 
) ;

where f , g : [a; b]! R are integrable on [a; b] and satisfy the condition

� � f (x) � �, 
 � g (x) � � (3.59)
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for each x 2 [a; b] ; where �;�; 
;� are given real constants.
Moreover, the constant 14 is sharp in the sense that it cannot be replaced

by a smaller one.
In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [51, Chapter X]

established the following discrete version of Grüss�inequality:
Let a = (a1; : : : ; an) ; b = (b1; : : : ; bn) be two n�tuples of real numbers

such that r � ai � R and s � bi � S for i = 1; : : : ; n: Then one has

����� 1n
nX
i=1

aibi �
1

n

nX
i=1

ai �
1

n

nX
i=1

bi

����� � 1

n

hn
2

i�
1� 1

n

hn
2

i�
(R� r) (S � s) ;

(3.60)
where [x] denotes the integer part of x; x 2 R:
For a simple proof of (3.58) as well as for some other integral inequalities

of Grüss type, see Chapter X of the recent book [51]. For other related
results see the papers [1]-[4], [11]-[9], [12]-[13], [15]-[37], [43], [56], [62] and
the references therein.

3.3.2 An Inequality of Grüss�Type for One Operator

The following result may be stated:

Theorem 173 (Dragomir, 2008, [31]) Let A be a selfadjoint operator
on the Hilbert space (H; h:; :i) and assume that Sp (A) � [m;M ] for some
scalarsm < M: If f and g are continuous on [m;M ] and 
 := mint2[m;M ] f (t)
and � := maxt2[m;M ] f (t) then

jhf (A) g (A) y; yi � hf (A) y; yi � hg (A)x; xi (3.61)

�
 + �
2

[hg (A) y; yi � hg (A)x; xi]
����

� 1

2
� (�� 
)

h
kg (A) yk2 + hg (A)x; xi2 � 2 hg (A)x; xi hg (A) y; yi

i1=2
for any x; y 2 H with kxk = kyk = 1:

Proof. First of all, observe that, for each � 2 R and x; y 2 H; kxk = kyk =
1 we have the identity

h(f (A)� � � 1H) (g (A)� hg (A)x; xi � 1H) y; yi (3.62)

= hf (A) g (A) y; yi � � � [hg (A) y; yi � hg (A)x; xi]
� hg (A)x; xi hf (A) y; yi :
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Taking the modulus in (3.62) we have

jhf (A) g (A) y; yi � � � [hg (A) y; yi � hg (A)x; xi] (3.63)

�hg (A)x; xi hf (A) y; yij
= jh(g (A)� hg (A)x; xi � 1H) y; (f (A)� � � 1H) yij
� kg (A) y � hg (A)x; xi yk kf (A) y � �yk

=
h
kg (A) yk2 + hg (A)x; xi2 � 2 hg (A)x; xi hg (A) y; yi

i1=2
� kf (A) y � �yk

�
h
kg (A) yk2 + hg (A)x; xi2 � 2 hg (A)x; xi hg (A) y; yi

i1=2
� kf (A)� � � 1Hk

for any x; y 2 H; kxk = kyk = 1:
Now, since 
 = mint2[m;M ] f (t) and � = maxt2[m;M ] f (t) ; then by the

property (P) we have that 
 � hf (A) y; yi � � for each y 2 H with kyk = 1
which is clearly equivalent with����hf (A) y; yi � 
 + �

2
kyk2

���� � 1

2
(�� 
)

or with ������f (A)� 
 + �

2
1H

�
y; y

����� � 1

2
(�� 
)

for each y 2 H with kyk = 1:
Taking the supremum in this inequality we get



f (A)� 
 + �

2
� 1H





 � 1

2
(�� 
) ;

which together with the inequality (3.63) applied for � = 
+�
2 produces

the desired result (3.61).
As a particular case of interest we can derive from the above theorem

the following result of Grüss�type:

Corollary 174 (Dragomir, 2008, [31]) With the assumptions in Theo-
rem 173 we have

jhf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xij (3.64)

� 1

2
� (�� 
)

h
kg (A)xk2 � hg (A)x; xi2

i1=2�
� 1

4
(�� 
) (�� �)

�
for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � :=
maxt2[m;M ] g (t) :



132 3. Inequalities for the µCeby�ev Functional

Proof. The �rst inequality follows from (3.61) by putting y = x:
Now, if we write the �rst inequality in (3.64) for f = g we get

0 � kg (A)xk2 � hg (A)x; xi2 =


g2 (A)x; x

�
� hg (A)x; xi2

� 1

2
(�� �)

h
kg (A)xk2 � hg (A)x; xi2

i1=2
which implies thath

kg (A)xk2 � hg (A)x; xi2
i1=2

� 1

2
(�� �)

for each x 2 H with kxk = 1:
This together with the �rst part of (3.64) proves the desired bound.
The following particular cases that hold for power function are of interest:

Example 175 Let A be a selfadjoint operator with Sp (A) � [m;M ] for
some scalars m < M:
If A is positive (m � 0) and p; q > 0; then

(0 �)


Ap+qx; x

�
� hApx; xi � hAqx; xi (3.65)

� 1

2
� (Mp �mp)

h
kAqxk2 � hAqx; xi2

i1=2
�
� 1

4
� (Mp �mp) (Mq �mq)

�
for each x 2 H with kxk = 1:
If A is positive de�nite (m > 0) and p; q < 0; then

(0 �)


Ap+qx; x

�
� hApx; xi � hAqx; xi (3.66)

� 1

2
� M

�p �m�p

M�pm�p

h
kAqxk2 � hAqx; xi2

i1=2
�
� 1

4
� M

�p �m�p

M�pm�p
M�q �m�q

M�qm�q

�
for each x 2 H with kxk = 1:
If A is positive de�nite (m > 0) and p < 0; q > 0 then

(0 �) hApx; xi � hAqx; xi �


Ap+qx; x

�
(3.67)

� 1

2
� M

�p �m�p

M�pm�p

h
kAqxk2 � hAqx; xi2

i1=2
�
� 1

4
� M

�p �m�p

M�pm�p (Mq �mq)

�
for each x 2 H with kxk = 1:
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If A is positive de�nite (m > 0) and p > 0; q < 0 then

(0 �) hApx; xi � hAqx; xi �


Ap+qx; x

�
(3.68)

� 1

2
� (Mp �mp)

h
kAqxk2 � hAqx; xi2

i1=2
�
� 1

4
� (Mp �mp)

M�q �m�q

M�qm�q

�
for each x 2 H with kxk = 1:

We notice that the positivity of the quantities in the left hand side of
the above inequalities (3.65)-(3.68) follows from the Theorem 150.
The following particular cases when one function is a power while the

second is the logarithm are of interest as well:

Example 176 Let A be a positive de�nite operator with Sp (A) � [m;M ]
for some scalars 0 < m < M:
If p > 0 then

(0 �) hAp lnAx; xi � hApx; xi � hlnAx; xi (3.69)

�

8>>><>>>:
1
2 � (M

p �mp)
h
klnAxk2 � hlnAx; xi2

i1=2
ln
q

M
m �

h
kApxk2 � hApx; xi2

i1=2
"
� 1

2
� (Mp �mp) ln

r
M

m

#

for each x 2 H with kxk = 1:
If p < 0 then

(0 �) hApx; xi � hlnAx; xi � hAp lnAx; xi (3.70)

�

8>>><>>>:
1
2 �

M�p�m�p

M�pm�p

h
klnAxk2 � hlnAx; xi2

i1=2
ln
q

M
m �

h
kApxk2 � hApx; xi2

i1=2
"
� 1

2
� M

�p �m�p

M�pm�p ln

r
M

m

#

for each x 2 H with kxk = 1:

3.3.3 An Inequality of Grüss�Type for n Operators

The following multiple operator version of Theorem 173 holds:
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Theorem 177 (Dragomir, 2008, [31]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
If f; g : [m;M ] �! R are continuous and 
 := mint2[m;M ] f (t) and � :=
maxt2[m;M ] f (t) then������

nX
j=1

hf (Aj) g (Aj) yj ; yji �
nX
j=1

hf (Aj) yj ; yji �
nX
j=1

hg (Aj)xj ; xji (3.71)

�
 + �
2

24 nX
j=1

hg (Aj) yj ; yji �
nX
j=1

hg (Aj)xj ; xji

35������
� 1

2
(�� 
)

264 nX
j=1

kg (Aj) yjk2 +

0@ nX
j=1

hg (Aj)xj ; xji

1A2

� 2
nX
j=1

hg (Aj)xj ; xji
nX
j=1

hg (Aj) yj ; yji

35 1
2

for each xj ; yj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
=
Pn
j=1 kyjk

2
= 1:

Proof. Follows from Theorem 173.
The following particular case provides a re�nement of the Mond-Peµcaríc

result.

Corollary 178 (Dragomir, 2008, [31]) With the assumptions of Theo-
rem 177 we have������

nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

������ (3.72)
� 1

2
� (�� 
)

264 nX
j=1

kg (Aj)xjk2 �

0@ nX
j=1

hg (Aj)xj ; xji

1A2
375
1=2

�
� 1

4
(�� 
) (�� �)

�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1 where � := mint2[m;M ] g (t)

and � := maxt2[m;M ] g (t) :

Example 179 Let Aj ; j 2 f1; : : : ; ng be a selfadjoint operators with Sp (Aj) �
[m;M ] ; j 2 f1; : : : ; ng for some scalars m < M:
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If Aj are positive (m � 0) and p; q > 0; then

(0 �)
nX
j=1



Ap+qj xj ; xj

�
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
(3.73)

� 1

2
� (Mp �mp)

264 nX
j=1



Aqjxj

2 �
0@ nX
j=1



Aqjxj ; xj

�1A2
375
1=2

�
� 1

4
� (Mp �mp) (Mq �mq)

�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

If Aj are positive de�nite (m > 0) and p; q < 0; then

(0 �)
nX
j=1



Ap+qj xj ; xj

�
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
(3.74)

� 1

2
� M

�p �m�p

M�pm�p

264 nX
j=1



Aqjxj

2 �
0@ nX
j=1



Aqjxj ; xj

�1A2
375
1=2

�
� 1

4
� M

�p �m�p

M�pm�p
M�q �m�q

M�qm�q

�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

If Aj are positive de�nite (m > 0) and p < 0; q > 0 then

(0 �)
nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
�

nX
j=1



Ap+qj xj ; xj

�
(3.75)

� 1

2
� M

�p �m�p

M�pm�p

264 nX
j=1



Aqjxj

2 �
0@ nX
j=1



Aqjxj ; xj

�1A2
375
1=2

�
� 1

4
� M

�p �m�p

M�pm�p (Mq �mq)

�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:
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If Aj are positive de�nite (m > 0) and p > 0; q < 0 then

(0 �)
nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�
�

nX
j=1



Ap+qj xj ; xj

�
(3.76)

� 1

2
� (Mp �mp)

264 nX
j=1



Aqjxj

2 �
0@ nX
j=1



Aqjxj ; xj

�1A2
375
1=2

�
� 1

4
� (Mp �mp)

M�q �m�q

M�qm�q

�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

We notice that the positivity of the quantities in the left hand side of
the above inequalities (3.73)-(3.76) follows from the Theorem 150.
The following particular cases when one function is a power while the

second is the logarithm are of interest as well:

Example 180 Let Aj be positive de�nite operators with Sp (Aj) � [m;M ] ;
j 2 f1; : : : ; ng for some scalars 0 < m < M:
If p > 0 then

(0 �)
nX
j=1



Apj lnAjxj ; xj

�
�

nX
j=1



Apjxj ; xj

�
�
nX
j=1

hlnAjxj ; xji (3.77)

�

8>>>>><>>>>>:
1
2 � (M

p �mp)

�Pn
j=1 klnAjxjk

2 �
�Pn

j=1 hlnAjxj ; xji
�2�1=2

ln
q

M
m �

�Pn
j=1



Apjxj

2 � �Pn
j=1



Apjxj ; xj

��2�1=2
"
� 1

2
� (Mp �mp) ln

r
M

m

#

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:
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If p < 0 then

(0 �)
nX
j=1



Apjxj ; xj

�
�
nX
j=1

hlnAjxj ; xji �
nX
j=1



Apj lnAjxj ; xj

�
(3.78)

�

8>>>>><>>>>>:
1
2
M�p�m�p

M�pm�p

�Pn
j=1 klnAjxjk

2 �
�Pn

j=1 hlnAjxj ; xji
�2�1=2

ln
q

M
m �

�Pn
j=1



Apjxj

2 � �Pn
j=1



Apjxj ; xj

��2�1=2
"
� 1

2
� M

�p �m�p

M�pm�p ln

r
M

m

#
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1:

3.3.4 Another Inequality of Grüss�Type for n Operators

The following di¤erent result for n operators can be stated as well:

Theorem 181 (Dragomir, 2008, [31]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
If f and g are continuous on [m;M ] and 
 := mint2[m;M ] f (t) and � :=
maxt2[m;M ] f (t) then for any pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1 we

have�����
*

nX
k=1

pkf (Ak) g (Ak) y; y

+
(3.79)

� 
 + �

2
�

24* nX
k=1

pkg (Ak) y; y

+
�
*

nX
j=1

pjg (Aj)x; x

+35
�
*

nX
k=1

pkf (Ak) y; y

+
�
*

nX
j=1

pjg (Aj)x; x

+������
� �� 


2

24 nX
k=1

pk kg (Ak) yk2 � 2
*

nX
k=1

pkg (Ak) y; y

+*
nX
j=1

pjg (Aj)x; x

+

+

*
nX
j=1

pjg (Aj)x; x

+2351=2 ;
for each x; y 2 H with kxk = kyk = 1:

Proof. Follows from Theorem 177 on choosing xj =
p
pj � x; yj =

p
pj � y;

j 2 f1; : : : ; ng ; where pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x; y 2 H;

with kxk = kyk = 1: The details are omitted.
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Remark 182 The case n = 1 (therefore p = 1) in (3.79) provides the
result from Theorem 173.

As a particular case of interest we can derive from the above theorem
the following result of Grüss�type:

Corollary 183 (Dragomir, 2008, [31]) With the assumptions of Theo-
rem 181 we have�����
*

nX
k=1

pkf (Ak) g (Ak)x; x

+
�
*

nX
k=1

pkf (Ak)x; x

+
�
*

nX
k=1

pkg (Ak)x; x

+�����
(3.80)

� �� 

2

0@ nX
k=1

pk kg (Ak)xk2 �
*

nX
k=1

pkg (Ak)x; x

+21A1=2

�
� 1

4
� (�� 
) (�� �)

�

for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � :=
maxt2[m;M ] g (t) :

Proof. It is similar with the proof from Corollary 174 and the details are
omitted.
The following particular cases that hold for power function are of interest:

Example 184 Let Aj ; j 2 f1; : : : ; ng be a selfadjoint operators with Sp (Aj) �
[m;M ] ; j 2 f1; : : : ; ng for some scalars m < M and pj � 0; j 2 f1; : : : ; ng
with

Pn
j=1 pj = 1:

If Aj ; j 2 f1; : : : ; ng are positive (m � 0) and p; q > 0; then

(0 �)
*

nX
k=1

pkA
p+q
k x; x

+
�
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pkA
q
kx; x

+
(3.81)

� 1

2
� (Mp �mp)

24 nX
k=1

pk kAqkxk
2 �

*
nX
k=1

pkA
q
kx; x

+2351=2
�
� 1

4
� (Mp �mp) (Mq �mq)

�

for each x 2 H with kxk = 1:
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If Aj ; j 2 f1; : : : ; ng are positive de�nite (m > 0) and p; q < 0; then

(0 �)
*

nX
k=1

pkA
p+q
k x; x

+
�
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pkA
q
kx; x

+
(3.82)

� 1

2
� M

�p �m�p

M�pm�p

24 nX
k=1

pk kAqkxk
2 �

*
nX
k=1

pkA
q
kx; x

+2351=2
�
� 1

4
� M

�p �m�p

M�pm�p
M�q �m�q

M�qm�q

�
for each x 2 H with kxk = 1:
If Aj ; j 2 f1; : : : ; ng are positive de�nite (m > 0) and p < 0; q > 0 then

(0 �)
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pkA
q
kx; x

+
�
*

nX
k=1

pkA
p+q
k x; x

+
(3.83)

� 1

2
� M

�p �m�p

M�pm�p

24 nX
k=1

pk kAqkxk
2 �

*
nX
k=1

pkA
q
kx; x

+2351=2
�
� 1

4
� M

�p �m�p

M�pm�p (Mq �mq)

�
for each x 2 H with kxk = 1:
If Aj ; j 2 f1; : : : ; ng are positive de�nite (m > 0) and p > 0; q < 0 then

(0 �)
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pkA
q
kx; x

+
�
*

nX
k=1

pkA
p+q
k x; x

+
(3.84)

� 1

2
� (Mp �mp)

24 nX
k=1

pk kAqkxk
2 �

*
nX
k=1

pkA
q
kx; x

+2351=2
�
� 1

4
� (Mp �mp)

M�q �m�q

M�qm�q

�
for each x 2 H with kxk = 1:

We notice that the positivity of the quantities in the left hand side of
the above inequalities (3.81)-(3.84) follows from the Theorem 150.
The following particular cases when one function is a power while the

second is the logarithm are of interest as well:

Example 185 Let Aj ; j 2 f1; : : : ; ng be positive de�nite operators with
Sp (Aj) � [m;M ] ; j 2 f1; : : : ; ng for some scalars 0 < m < M and
pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1:
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If p > 0 then

(0 �)
*

nX
k=1

pkA
p
k lnAkx; x

+
�
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pk lnAkx; x

+

(3.85)

�

8>>><>>>:
1
2 � (M

p �mp) �
hPn

k=1 pk klnAkxk
2 � h

Pn
k=1 pk lnAkx; xi

2
i1=2

ln
q

M
m �

hPn
k=1 pk kA

p
kxk

2 � h
Pn
k=1 pkA

p
kx; xi

2
i1=2

"
� 1

2
� (Mp �mp) ln

r
M

m

#

for each x 2 H with kxk = 1:
If p < 0 then

(0 �)
*

nX
k=1

pkA
p
kx; x

+
�
*

nX
k=1

pk lnAkx; x

+
�
*

nX
k=1

pkA
p
k lnAkx; x

+

(3.86)

�

8>>><>>>:
1
2 �

M�p�m�p

M�pm�p

hPn
k=1 pk klnAkxk

2 � h
Pn
k=1 pk lnAkx; xi

2
i1=2

ln
q

M
m �

hPn
k=1 pk kA

p
kxk

2 � h
Pn
k=1 pkA

p
kx; xi

2
i1=2

"
� 1

2
� M

�p �m�p

M�pm�p ln

r
M

m

#

for each x 2 H with kxk = 1:

The following norm inequalities may be stated as well:

Corollary 186 (Dragomir, 2008, [31]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M: If
f; g : [m;M ] �! R are continuous, then for each pj � 0; j 2 f1; : : : ; ng
with

Pn
j=1 pj = 1 we have the norm inequality:







nX
j=1

pjf (Aj) g (Aj)







 �







nX
j=1

pjf (Aj)







�







nX
j=1

pjg (Aj)







+14 (�� 
) (�� �) ;
(3.87)

where 
 := mint2[m;M ] f (t), � := maxt2[m;M ] f (t) ; � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) :
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Proof. Utilising the inequality (3.80) we deduce the inequality�����
*

nX
k=1

pkf (Ak) g (Ak)x; x

+����� �
�����
*

nX
k=1

pkf (Ak)x; x

+����� �
�����
*

nX
k=1

pkg (Ak)x; x

+�����
+
1

4
(�� 
) (�� �)

for each x 2 H with kxk = 1: Taking the supremum over kxk = 1 we
deduce the desired inequality (3.87).

Example 187 a. Let Aj ; j 2 f1; : : : ; ng be a selfadjoint operators with
Sp (Aj) � [m;M ] ; j 2 f1; : : : ; ng for some scalars m < M and pj � 0; j 2
f1; : : : ; ng with

Pn
j=1 pj = 1:

If Aj ; j 2 f1; : : : ; ng are positive (m � 0) and p; q > 0; then





nX
k=1

pkA
p+q
k






 �






nX
k=1

pkA
p
k






 �






nX
k=1

pkA
q
k






+ 14 � (Mp �mp) (Mq �mq) :

(3.88)
If Aj ; j 2 f1; : : : ; ng are positive de�nite (m > 0) and p; q < 0; then





nX
k=1

pkA
p+q
k






 �






nX
k=1

pkA
p
k






 �






nX
k=1

pkA
q
k






+ 14 � M�p �m�p

M�pm�p
M�q �m�q

M�qm�q :

(3.89)
b. Let Aj ; j 2 f1; : : : ; ng be positive de�nite operators with Sp (Aj) �

[m;M ] ; j 2 f1; : : : ; ng for some scalars 0 < m < M and pj � 0; j 2
f1; : : : ; ng with

Pn
j=1 pj = 1:

If p > 0 then





nX
k=1

pkA
p
k lnAk






 �






nX
k=1

pkA
p
k






 �






nX
k=1

pk lnAk






+ 12 � (Mp �mp) ln

r
M

m
:

(3.90)

3.4 More Inequalities of Grüss Type

3.4.1 Some Vectorial Grüss�Type Inequalities

The following lemmas, that are of interest in their own right, collect some
Grüss type inequalities for vectors in inner product spaces obtained earlier
by the author:

Lemma 188 (Dragomir, 2003 & 2004, [23], [28]) Let (H; h�; �i) be an
inner product space over the real or complex number �eld K, u; v; e 2 H;
kek = 1; and �; �; 
; � 2 K such that

Re h�e� u; u� �ei � 0; Re h�e� v; v � 
ei � 0 (3.91)
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or equivalently,



u� �+ �

2
e





 � 1

2
j� � �j ;





v � 
 + �

2
e





 � 1

2
j� � 
j : (3.92)

Then

jhu; vi � hu; ei he; vij (3.93)

� 1

4
� j� � �j j� � 
j

�

8><>:
[Re h�e� u; u� �eiRe h�e� v; v � 
ei]

1
2 ;���hu; ei � �+�

2

��� ���hv; ei � 
+�
2

��� :
The �rst inequality has been obtained in [23] (see also [27, p. 44]) while

the second result was established in [28] (see also [27, p. 90]). They provide
re�nements of the earlier result from [16] where only the �rst part of the
bound, i.e., 14 j� � �j j� � 
j has been given. Notice that, as pointed out
in [28], the upper bounds for the Grüss functional incorporated in (3.93)
cannot be compared in general, meaning that one is better than the other
depending on appropriate choices of the vectors and scalars involved.
Another result of this type is the following one:

Lemma 189 (Dragomir, 2004 & 2006, [24], [29]) With the assump-
tions in Lemma 188 and if Re (��) > 0;Re (�
) > 0 then

jhu; vi � hu; ei he; vij (3.94)

�

8>>>>><>>>>>:

1
4 �

j���jj��
j
[Re(��) Re(�
)]

1
2
jhu; ei he; vij ;

h�
j�+ �j � 2 [Re (��)]

1
2

��
j� + 
j � 2 [Re (�
)]

1
2

�i 1
2

� [jhu; ei he; vij]
1
2 :

The �rst inequality has been established in [24] (see [27, p. 62]) while
the second one can be obtained in a canonical manner from the reverse of
the Schwarz inequality given in [29]. The details are omitted.
Finally, another inequality of Grüss type that has been obtained in [25]

(see also [27, p. 65]) can be stated as:

Lemma 190 (Dragomir, 2004, [25]) With the assumptions in Lemma
188 and if � 6= ��; � 6= �
 then

jhu; vi � hu; ei he; vij (3.95)

� 1

4
� j� � �j j� � 
j
[j� + �j j� + 
j]

1
2

[(kuk+ jhu; eij) (kvk+ jhv; eij)]
1
2 :
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3.4.2 Some Inequalities of Grüss�Type for One Operator

The following results incorporates some new inequalities of Grüss�type for
two functions of a selfadjoint operator.

Theorem 191 (Dragomir, 2008, [32]) Let A be a selfadjoint operator
on the Hilbert space (H; h:; :i) and assume that Sp (A) � [m;M ] for some
scalarsm < M: If f and g are continuous on [m;M ] and 
 := mint2[m;M ] f (t),
� := maxt2[m;M ] f (t), � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) then

jhf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xij (3.96)

� 1

4
(�� 
) (�� �)

�

8><>:
[h�x� f (A)x; f (A)x� 
xi h�x� g (A)x; g (A)x� �xi]

1
2 ;���hf (A)x; xi � �+


2

��� ��hg (A)x; xi � �+�
2

�� ;
for each x 2 H with kxk = 1:
Moreover if 
 and � are positive, then we also have

jhf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xij (3.97)

�

8><>:
1
4 �

(��
)(���)p
�
��

hf (A)x; xi hg (A)x; xi ;�p
��p


��p
��

p
�
�
[hf (A)x; xi hg (A)x; xi]

1
2 ;

while for � + 
;�+ � 6= 0 we have

jhf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xij (3.98)

� 1

4
� (�� 
) (�� �)
[j� + 
j j�+ �j]

1
2

� [(kf (A)xk+ jhf (A)x; xij) (kg (A)xk+ jhg (A)x; xij)]
1
2

for each x 2 H with kxk = 1:

Proof. Since 
 := mint2[m;M ] f (t), � := maxt2[m;M ] f (t), � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) ; the by the property (P) we have that


 � 1H � f (A) � � � 1H and � � 1H � g (A) � � � 1H

in the operator order, which imply that

[f (A)� 
 � 1] [� � 1H � f (A)] � 0 and (3.99)

[� � 1H � g (A)] [g (A)� � � 1H ] � 0

in the operator order.
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We then have from (3.99)

h[f (A)� 
 � 1] [� � 1H � f (A)]x; xi � 0

and
h[� � 1H � g (A)] [g (A)� � � 1H ]x; xi � 0;

for each x 2 H with kxk = 1; which, by the fact that the involved operators
are selfadjoint, are equivalent with the inequalities

h�x� f (A)x; f (A)x� 
xi � 0 and h�x� g (A)x; g (A)x� �xi � 0;
(3.100)

for each x 2 H with kxk = 1:
Now, if we apply Lemma 188 for u = f (A)x; v = g (A)x, e = x; and the

real scalars �; 
;� and � de�ned in the statement of the theorem, then we
can state the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.101)

� 1

4
� (�� 
) (�� �)

�

8><>:
[Re h�x� f (A)x; f (A)x� 
xiRe h�x� g (A)x; g (A)x� �xi]

1
2 ;���hf (A)x; xi � �+


2

��� ��hg (A)x; xi � �+�
2

�� ;
for each x 2 H with kxk = 1; which is clearly equivalent with the inequality
(3.96).
The inequalities (3.97) and (3.98) follow by Lemma 189 and Lemma 190

respectively and the details are omitted.

Remark 192 The �rst inequality in (3.97) can be written in a more con-
venient way as���� hf (A) g (A)x; xi

hf (A)x; xi hg (A)x; xi � 1
���� � 1

4
� (�� 
) (�� �)p

�
��
(3.102)

for each x 2 H with kxk = 1; while the second inequality has the following
equivalent form����� hf (A) g (A)x; xi

[hf (A)x; xi hg (A)x; xi]1=2
� [hf (A)x; xi hg (A)x; xi]1=2

����� (3.103)

�
�p
��p


��p
��

p
�
�

for each x 2 H with kxk = 1:
We know, from [30] that if f; g are synchronous (asynchronous) functions

on the interval [m;M ] ; i.e., we recall that

[f (t)� f (s)] [g (t)� g (s)] (�) � 0 for each t; s 2 [m;M ] ;
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then we have the inequality

hf (A) g (A)x; xi � (�) hf (A)x; xi hg (A)x; xi (3.104)

for each x 2 H with kxk = 1;provided f; g are continuous on [m;M ] and
A is a selfadjoint operator with Sp (A) � [m;M ].
Therefore, if f; g are synchronous then we have from (3.102) and from

(3.103) the following results:

0 � hf (A) g (A)x; xi
hf (A)x; xi hg (A)x; xi � 1 �

1

4
� (�� 
) (�� �)p

�
��
(3.105)

and

0 � hf (A) g (A)x; xi
[hf (A)x; xi hg (A)x; xi]1=2

� [hf (A)x; xi hg (A)x; xi]1=2 (3.106)

�
�p
��p


��p
��

p
�
�

for each x 2 H with kxk = 1; respectively.
If f; g are asynchronous then

0 � 1� hf (A) g (A)x; xi
hf (A)x; xi hg (A)x; xi �

1

4
� (�� 
) (�� �)p

�
��
(3.107)

and

0 � [hf (A)x; xi hg (A)x; xi]1=2 � hf (A) g (A)x; xi
[hf (A)x; xi hg (A)x; xi]1=2

(3.108)

�
�p
��p


��p
��

p
�
�

for each x 2 H with kxk = 1; respectively.

It is obvious that all the inequalities from Theorem 191 can be used to
obtain reverse inequalities of Grüss�type for various particular instances of
operator functions, see for instance [31]. However we give here only a few
provided by the inequalities (3.105) and (3.106) above.

Example 193 Let A be a selfadjoint operator with Sp (A) � [m;M ] for
some scalars m < M:
If A is positive (m � 0) and p; q > 0; then

0 � hAp+qx; xi
hApx; xi � hAqx; xi � 1 �

1

4
� (M

p �mp) (Mq �mq)

M
p+q
2 m

p+q
2

(3.109)

and

0 � hAp+qx; xi
[hApx; xi � hAqx; xi]1=2

� [hApx; xi � hAqx; xi]1=2 (3.110)

�
�
M

p
2 �m

p
2

��
M

q
2 �m

q
2

�
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for each x 2 H with kxk = 1:
If A is positive de�nite (m > 0) and p; q < 0; then

0 � hAp+qx; xi
hApx; xi � hAqx; xi � 1 �

1

4
� (M

�p �m�p) (M�q �m�q)

M� p+q
2 m� p+q

2

(3.111)

and

0 � hAp+qx; xi
[hApx; xi � hAqx; xi]1=2

� [hApx; xi � hAqx; xi]1=2 (3.112)

�
�
M� p

2 �m� p
2

� �
M� q

2 �m� q
2

�
M� p+q

2 m� p+q
2

for each x 2 H with kxk = 1:

Similar inequalities may be stated for either p > 0; q < 0 or p < 0; q > 0:
The details are omitted.

Example 194 Let A be a positive de�nite operator with Sp (A) � [m;M ]
for some scalars 1 < m < M: If p > 0 then

0 � hAp lnAx; xi
hApx; xi � hlnAx; xi � 1 �

1

4
�
(Mp �mp) ln Mm

M
p
2m

p
2

p
lnM � lnm

(3.113)

and

0 � hAp lnAx; xi
[hApx; xi � hlnAx; xi]1=2

� [hApx; xi � hlnAx; xi]1=2 (3.114)

�
�
M

p
2 �m

p
2

� hp
lnM �

p
lnm

i
;

for each x 2 H with kxk = 1:

3.4.3 Some Inequalities of Grüss�Type for n Operators

The following extension for sequences of operators can be stated:

Theorem 195 (Dragomir, 2008, [32]) Let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
If f and g are continuous on [m;M ] and 
 := mint2[m;M ] f (t), � :=
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maxt2[m;M ] f (t), � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) then

������
nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

������
(3.115)

� 1

4
� (�� 
) (�� �)

�

8>>>>>>>>><>>>>>>>>>:

"
nP
j=1

h�xj � f (Aj)xj ; f (Aj)xj � 
xji

�
nP
j=1

h�xj � g (Aj)xj ; g (Aj)x� �xji
# 1
2

;����� nPj=1 hf (Aj)xj ; xji � �+

2

�����
����� nPj=1 hg (Aj)xj ; xji � �+�

2

����� ;

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Moreover if 
 and � are positive, then we also have

������
nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

������
(3.116)

�

8>>>>>>>><>>>>>>>>:

1
4 �

(��
)(���)p
�
��

nP
j=1

hf (Aj)xj ; xji �
nP
j=1

hg (Aj)xj ; xji ;

�p
��p


��p
��

p
�
�

�
"
nP
j=1

hf (Aj)xj ; xji �
nP
j=1

hg (Aj)xj ; xji
# 1
2

;
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while for � + 
;�+ � 6= 0 we have������
nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

������
(3.117)

� 1

4
� (�� 
) (�� �)
[j� + 
j j�+ �j]

1
2

�

26666
0B@
0@ nX
j=1

kf (Aj)xjk2
1A1=2

+

������
nX
j=1

hf (Aj)xj ; xji

������
1CA

�

0B@
0@ nX
j=1

kg (Aj)xjk2
1A1=2

+

������
nX
j=1

hg (Aj)xj ; xji

������
1CA
375
1=2

;

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Proof. Follows from Theorem 191. The details are omitted.

Remark 196 The �rst inequality in (3.116) can be written in a more con-
venient way as�����

Pn
j=1 hf (Aj) g (Aj)xj ; xjiPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

� 1
����� � 1

4
� (�� 
) (�� �)p

�
��

(3.118)
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1; while the second

inequality has the following equivalent form�������
Pn
j=1 hf (Aj) g (Aj)xj ; xjihPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

i1=2 (3.119)

�

24 nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

351=2
�������

�
�p
��p


��p
��

p
�
�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

We know, from [30] that if f; g are synchronous (asynchronous) functions
on the interval [m;M ] ; then we have the inequality

nX
j=1

hf (Aj) g (Aj)xj ; xji � (�)
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

(3.120)
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for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1;provided f; g are con-

tinuous on [m;M ] and Aj are selfadjoint operators with Sp (Aj) � [m;M ],
j 2 f1; : : : ; ng :
Therefore, if f; g are synchronous then we have from (3.118) and from

(3.119) the following results:

0 �
Pn
j=1 hf (Aj) g (Aj)xj ; xjiPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

� 1 (3.121)

� 1

4
� (�� 
) (�� �)p

�
��

and

0 �
Pn
j=1 hf (Aj) g (Aj)xj ; xjihPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

i1=2 (3.122)

�

24 nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

351=2

�
�p
��p


��p
��

p
�
�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1; respectively.

If f; g are asynchronous then

0 � 1�
Pn
j=1 hf (Aj) g (Aj)xj ; xjiPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

(3.123)

� 1

4
� (�� 
) (�� �)p

�
��

and

0 �

24 nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji

351=2 (3.124)

�
Pn
j=1 hf (Aj) g (Aj)xj ; xjihPn

j=1 hf (Aj)xj ; xji �
Pn
j=1 hg (Aj)xj ; xji

i1=2
�
�p
��p


��p
��

p
�
�

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1; respectively.

It is obvious that all the inequalities from Theorem 195 can be used to
obtain reverse inequalities of Grüss�type for various particular instances of
operator functions, see for instance [31]. However we give here only a few
provided by the inequalities (3.121) and (3.122) above.
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Example 197 Let Aj j 2 f1; : : : ; ng be selfadjoint operators with Sp (Aj) �
[m;M ] ; j 2 f1; : : : ; ng for some scalars m < M:
If Aj are positive (m � 0) and p; q > 0; then

0 �
Pn
j=1



Ap+qj xj ; xj

�Pn
j=1



Apjxj ; xj

�
�
Pn
j=1



Aqjxj ; xj

� � 1 (3.125)

� 1

4
� (M

p �mp) (Mq �mq)

M
p+q
2 m

p+q
2

and

0 �
Pn
j=1



Ap+qj xj ; xj

�hPn
j=1



Apjxj ; xj

�
�
Pn
j=1



Aqjxj ; xj

�i1=2 (3.126)

�

24 nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�351=2

�
�
M

p
2 �m

p
2

��
M

q
2 �m

q
2

�
for each xj 2 H; j 2 f1; : : : ; ng with

Pn
j=1 kxjk

2
= 1:

If A is positive de�nite (m > 0) and p; q < 0; then

0 �
Pn
j=1



Ap+qj xj ; xj

�Pn
j=1



Apjxj ; xj

�
�
Pn
j=1



Aqjxj ; xj

� � 1 (3.127)

� 1

4
� (M

�p �m�p) (M�q �m�q)

M� p+q
2 m� p+q

2

and

0 �

24 nX
j=1



Apjxj ; xj

�
�
nX
j=1



Aqjxj ; xj

�351=2 (3.128)

�
Pn
j=1



Ap+qj x; x

�hPn
j=1



Apjxj ; xj

�
�
Pn
j=1



Aqjxj ; xj

�i1=2
�
�
M� p

2 �m� p
2

� �
M� q

2 �m� q
2

�
M� p+q

2 m� p+q
2

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Similar inequalities may be stated for either p > 0; q < 0 or p < 0; q > 0:
The details are omitted.
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Example 198 Let A be a positive de�nite operator with Sp (A) � [m;M ]
for some scalars 1 < m < M: If p > 0 then

0 �
Pn
j=1



Apj lnAjxj ; xj

�Pn
j=1



Apjxj ; xj

�
�
Pn
j=1 hlnAjxj ; xji

� 1 (3.129)

� 1

4
�
(Mp �mp) ln Mm

M
p
2m

p
2

p
lnM � lnm

and

0 �
Pn
j=1



Apj lnAjxj ; xj

�hPn
j=1



Apjxj ; xj

�
�
Pn
j=1 hlnAjxj ; xji

i1=2 (3.130)

�

24 nX
j=1



Apjxj ; xj

�
�
nX
j=1

hlnAjxj ; xji

351=2

�
�
M

p
2 �m

p
2

� hp
lnM �

p
lnm

i
;

for each xj 2 H; j 2 f1; : : : ; ng with
Pn
j=1 kxjk

2
= 1:

Similar inequalities may be stated for p < 0: The details are omitted.
The following result for n operators can be stated as well:

Corollary 199 Let Aj be selfadjoint operators with Sp (Aj) � [m;M ] for
j 2 f1; : : : ; ng and for some scalars m < M: If f and g are continu-
ous on [m;M ] and 
 := mint2[m;M ] f (t), � := maxt2[m;M ] f (t), � :=
mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) then for any pj � 0; j 2 f1; : : : ; ng
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with
Pn
j=1 pj = 1 we have

������
*

nX
j=1

pjf (Aj) g (Aj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+������

(3.131)

� 1

4
(�� 
) (�� �)

�

8>>>>>>>>>>><>>>>>>>>>>>:

"
nP
j=1

pj h�x� f (Aj)x; f (Aj)x� 
xi

�
nP
j=1

pj h�x� g (Aj)x; g (Aj)x� �xi
# 1
2

;

�����
*

nP
j=1

pjf (Aj)x; x

+
� �+


2

�����
�����
*

nP
j=1

pjg (Aj)x; x

+
� �+�

2

����� ;

for each x 2 H; with kxk2 = 1:
Moreover if 
 and � are positive, then we also have

������
*

nX
j=1

pjf (Aj) g (Aj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+������
(3.132)

�

8>>>>>>>>><>>>>>>>>>:

1
4 �

(��
)(���)p
�
��

*
nP
j=1

pjf (Aj)x; x

+
�
*

nP
j=1

pjg (Aj)x; x

+
;

�p
��p


��p
��

p
�
�

�
"*

nP
j=1

pjf (Aj)x; x

+
�
*

nP
j=1

pjg (Aj)x; x

+# 1
2

:
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while for � + 
;�+ � 6= 0 we have������
*

nX
j=1

pjf (Aj) g (Aj)x; x

+
�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+������
(3.133)

� 1

4
� (�� 
) (�� �)
[j� + 
j j�+ �j]

1
2

�

26666
0B@
0@ nX
j=1

pj kf (Aj)xk2
1A1=2

+

������
*

nX
j=1

pjf (Aj)x; x

+������
1CA

�

0B@
0@ nX
j=1

pj kg (Aj)xk2
1A1=2

+

������
*

nX
j=1

pjg (Aj)x; x

+������
1CA
375
1=2

for each x 2 H; with kxk2 = 1:

Proof. Follows from Theorem 195 on choosing xj =
p
pj �x; j 2 f1; : : : ; ng ;

where pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1: The

details are omitted.

Remark 200 The �rst inequality in (3.132) can be written in a more con-
venient way as������

DPn
j=1 pjf (Aj) g (Aj)x; x

E
DPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
E � 1

������ � 1

4
� (�� 
) (�� �)p

�
��

(3.134)
for each x 2 H; with kxk2 = 1; while the second inequality has the following
equivalent form�������

DPn
j=1 pjf (Aj) g (Aj)x; x

E
hDPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
Ei1=2 (3.135)

�

24* nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+351=2
�������

�
�p
��p


��p
��

p
�
�

for each x 2 H; with kxk2 = 1:
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We know, from [30] that if f; g are synchronous (asynchronous) functions
on the interval [m;M ] ; then we have the inequality

*
nX
j=1

pjf (Aj) g (Aj)x; x

+
� (�)

*
nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
(3.136)

for each x 2 H; with kxk2 = 1; provided f; g are continuous on [m;M ] and
Aj are selfadjoint operators with Sp (Aj) � [m;M ], j 2 f1; : : : ; ng :
Therefore, if f; g are synchronous then we have from (3.134) and from

(3.135) the following results:

0 �

DPn
j=1 pjf (Aj) g (Aj)x; x

E
DPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
E � 1 (3.137)

� 1

4
� (�� 
) (�� �)p

�
��

and

0 �

DPn
j=1 pjf (Aj) g (Aj)x; x

E
hDPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
Ei1=2 (3.138)

�

24* nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+351=2

�
�p
��p


��p
��

p
�
�

for each x 2 H; with kxk = 1; respectively.
If f; g are asynchronous then

0 � 1�

DPn
j=1 pjf (Aj) g (Aj)x; x

E
DPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
E (3.139)

� 1

4
� (�� 
) (�� �)p

�
��
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and

0 �

24* nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+351=2 (3.140)

�

DPn
j=1 pjf (Aj) g (Aj)x; x

E
hDPn

j=1 pjf (Aj)x; x
E
�
DPn

j=1 pjg (Aj)x; x
Ei1=2

�
�p
��p


��p
��

p
�
�

for each x 2 H; with kxk = 1; respectively.

The above inequalities (3.137) - (3.140) can be used to state various
particular inequalities as in the previous examples, however the details are
left to the interested reader.

3.5 More Inequalities for the µCeby�ev Functional

3.5.1 A Re�nement and Some Related Results

The following result can be stated:

Theorem 201 (Dragomir, 2008, [33]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f; g : [m;M ] �! R
are continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then

jC (f; g;A;x)j � 1

2
(�� �) hjf (A)� hf (A)x; xi � 1H jx; xi (3.141)

� 1

2
(�� �)C1=2 (f; f ;A;x) ;

for any x 2 H with kxk = 1:

Proof. Since � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; we have����g (t)� �+ �2
���� � 1

2
(�� �) ; (3.142)

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
If we multiply the inequality (3.142) with jf (t)� hf (A)x; xij we get����f (t) g (t)� hf (A)x; xi g (t)� �+ �2 f (t) +

�+ �

2
hf (A)x; xi

���� (3.143)

� 1

2
(�� �) jf (t)� hf (A)x; xij ;
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for any t 2 [m;M ] and for any x 2 H with kxk = 1:
Now, if we apply the property (P) for the inequality (3.143) and a selfad-

joint operator B with Sp (B) � [m;M ] ; then we get the following inequality
of interest in itself:

jhf (B) g (B) y; yi � hf (A)x; xi hg (B) y; yi (3.144)

��+ �
2

hf (B) y; yi+ �+ �
2

hf (A)x; xi
����

� 1

2
(�� �) hjf (B)� hf (A)x; xi � 1H j y; yi ;

for any x; y 2 H with kxk = kyk = 1:
If we choose in (3.144) y = x and B = A; then we deduce the �rst

inequality in (3.141).
Now, by the Schwarz inequality in H we have

hjf (A)� hf (A)x; xi � 1H jx; xi � kjf (A)� hf (A)x; xi � 1H jxk
= kf (A)x� hf (A)x; xi � xk

=
h
kf (A)xk2 � hf (A)x; xi2

i1=2
= C1=2 (f; f ;A;x) ;

for any x 2 H with kxk = 1; and the second part of (3.141) is also proved.

Let U be a selfadjoint operator on the Hilbert space (H; h:; :i) with the
spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and let fE�g�2R be its spectral family. Then for any continuous
function f : [m;M ] ! R, it is well known that we have the following
representation in terms of the Riemann-Stieltjes integral:

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; (3.145)

for any x 2 H with kxk = 1: The function gx (�) := hE�x; xi is monotonic
nondecreasing on the interval [m;M ] and

gx (m� 0) = 0 and gx (M) = 1 (3.146)

for any x 2 H with kxk = 1:
The following result is of interest:

Theorem 202 (Dragomir, 2008, [33]) Let A and B be selfadjoint op-
erators with Sp (A) ; Sp (B) � [m;M ] for some real numbers m < M: If
f : [m;M ] �! R is of r � L�Hölder type, i.e., for a given r 2 (0; 1] and
L > 0 we have

jf (s)� f (t)j � L js� tjr for any s; t 2 [m;M ] ;
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then we have the Ostrowski type inequality for selfadjoint operators:

jf (s)� hf (A)x; xij � L

�
1

2
(M �m) +

����s� m+M

2

�����r ; (3.147)

for any s 2 [m;M ] and any x 2 H with kxk = 1.
Moreover, we have

jhf (B) y; yi � hf (A)x; xij � hjf (B)� hf (A)x; xi � 1H j y; yi (3.148)

� L

�
1

2
(M �m) +

�����B � m+M

2
� 1H

���� y; y��r ;
for any x; y 2 H with kxk = kyk = 1:

Proof. We use the following Ostrowski type inequality for the Riemann-
Stieltjes integral obtained by the author in [22]:�����f (s) [u (b)� u (a)]�

Z b

a

f (t) du (t)

����� (3.149)

� L

�
1

2
(b� a) +

����s� a+ b

2

�����r b_
a

(u)

for any s 2 [a; b] ; provided that f is of r�L�Hölder type on [a; b] ; u is of
bounded variation on [a; b] and

_b

a
(u) denotes the total variation of u on

[a; b] :
Now, applying this inequality for u (�) = gx (�) := hE�x; xi where x 2 H

with kxk = 1 we get�����f (s)�
Z M

m�0
f (�) d (hE�x; xi)

����� (3.150)

� L

�
1

2
(M �m) +

����s� m+M

2

�����r M_
m�0

(gx)

which, by (3.145) and (3.146) is equivalent with (3.147).
By applying the property (P) for the inequality (3.147) and the operator

B we have

hjf (B)� hf (A)x; xi � 1H j y; yi � L

��
1

2
(M �m) +

����B � m+M

2
� 1H

�����r y; y�
� L

��
1

2
(M �m) +

����B � m+M

2

���� � 1H� y; y�r
= L

�
1

2
(M �m) +

�����B � m+M

2
� 1H

���� y; y��r
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for any x; y 2 H with kxk = kyk = 1; which proves the second inequality
in (3.148).
Further, by the Jensen inequality for convex functions of selfadjoint op-

erators (see for instance [44, p. 5]) applied for the modulus, we can state
that

jhh (A)x; xij � hjh (A)jx; xi (M)

for any x 2 H with kxk = 1; where h is a continuous function on [m;M ] :
Now, if we apply the inequality (M), then we have

jh[f (B)� hf (A)x; xi � 1H ] y; yij � hjf (B)� hf (A)x; xi � 1H j y; yi

which shows the �rst part of (3.148), and the proof is complete.

Remark 203 With the above assumptions for f;A and B we have the
following particular inequalities of interest:����f �m+M2

�
� hf (A)x; xi

���� � 1

2r
L (M �m)r (3.151)

and

jf (hAx; xi)� hf (A)x; xij � L

�
1

2
(M �m) +

����hAx; xi � m+M

2

�����r ;
(3.152)

for any x 2 H with kxk = 1.
We also have the inequalities:

jhf (A) y; yi � hf (A)x; xij (3.153)

� hjf (A)� hf (A)x; xi � 1H j y; yi

� L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

���� y; y��r ;
for any x; y 2 H with kxk = kyk = 1;

jh[f (B)� f (A)]x; xij � hjf (B)� hf (A)x; xi � 1H jx; xi (3.154)

� L

�
1

2
(M �m) +

�����B � m+M

2
� 1H

����x; x��r
and, more particularly,

hjf (A)� hf (A)x; xi � 1H jx; xi (3.155)

� L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
for any x 2 H with kxk = 1:
We also have the norm inequality

kf (B)� f (A)k � L

�
1

2
(M �m) +





B � m+M

2
� 1H





�r : (3.156)
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The following corollary of the above Theorem 202 can be useful for ap-
plications:

Corollary 204 (Dragomir, 2008, [33]) Let A and B be selfadjoint op-
erators with Sp (A) ; Sp (B) � [m;M ] for some real numbers m < M: If
f : [m;M ] �! R is absolutely continuous then we have the Ostrowski type
inequality for selfadjoint operators:

jf (s)� hf (A)x; xij

�

8>><>>:
�
1
2 (M �m) +

��s� m+M
2

��� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +

��s� m+M
2

���1=q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1;

(3.157)

for any s 2 [m;M ] and any x 2 H with kxk = 1, where k�kp;[m;M ] are the
Lebesgue norms, i.e.,

khk1;[m;M ] := ess sup
t2[m;M ]

kh (t)k

and

khkp;[m;M ] :=

 Z M

m

jh (t)jp
!1=p

; p � 1:

Moreover, we have

jhf (B) y; yi � hf (A)x; xij (3.158)

� hjf (B)� hf (A)x; xi � 1H j y; yi

�

8>><>>:
�
M�m
2 +


��B � m+M
2 � 1H

�� y; y�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
M�m
2 +


��B � m+M
2 � 1H

�� y; y�� 1q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1;

for any x; y 2 H with kxk = kyk = 1:

Now, on utilising Theorem 201 we can provide the following upper bound
for the µCeby�ev functional that may be more useful in applications:

Corollary 205 (Dragomir, 2008, [33]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If g : [m;M ] �! R
is continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then
for any f : [m;M ] �! R of r � L�Hölder type we have the inequality:

jC (f; g;A;x)j � 1

2
(�� �)L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
(3.159)

for any x 2 H with kxk = 1:
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Remark 206 With the assumptions from Corollary 205 for g and A and
if f is absolutely continuos on [m;M ] ; then we have the inequalities:

jC (f; g;A;x)j � 1

2
(�� �)

�

8>><>>:
�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x��1=q kf 0kp;[m;M ]

if f 0 2 L1 [m;M ] ;
p; q > 1; 1p +

1
q = 1

(3.160)

for any x 2 H with kxk = 1:

3.5.2 Some Inequalities for Sequences of Operators

Consider the sequence of selfadjoint operators A = (A1; : : : ; An) with
Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M: If
x = (x1; : : : ; xn) 2 Hn are such that

Pn
j=1 kxjk

2
= 1; then we can con-

sider the following µCeby�ev type functional

C (f; g;A;x) :=
nX
j=1

hf (Aj) g (Aj)xj ; xji�
nX
j=1

hf (Aj)xj ; xji�
nX
j=1

hg (Aj)xj ; xji :

As a particular case of the above functional and for a probability sequence
p =(p1; : : : ; pn) ; i.e., pj � 0 for j 2 f1; : : : ; ng and

Pn
j=1 pj = 1; we can

also consider the functional

C (f; g;A;p;x) :=

*
nX
j=1

pjf (Aj) g (Aj)x; x

+

�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+

where x 2 H; kxk = 1:
We know, from [30] that for the sequence of selfadjoint operators A =

(A1; : : : ; An) with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for the synchro-
nous (asynchronous) functions f; g : [m;M ] �! R we have the inequality

C (f; g;A;x) � (�) 0 (3.161)

for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1: Also, for any proba-

bility distribution p =(p1; : : : ; pn) and any x 2 H; kxk = 1 we have

C (f; g;A;p;x) � (�) 0: (3.162)
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On the other hand, the following Grüss�type inequality is valid as well
[31]:

jC (f; g;A;x)j � 1

2
� (�� 
) [C (g; g;A;x)]1=2

�
� 1

4
(�� 
) (�� �)

�
(3.163)

for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1; where f and g are

continuous on [m;M ] and 
 := mint2[m;M ] f (t), � := maxt2[m;M ] f (t),
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :
Similarly, for any probability distribution p =(p1; : : : ; pn) and any x 2

H; kxk = 1 we also have the inequality:

jC (f; g;A;p;x)j � 1

2
� (�� 
) [C (g; g;A;p;x)]1=2

�
� 1

4
(�� 
) (�� �)

�
:

(3.164)
We can state now the following new result:

Theorem 207 (Dragomir, 2008, [33]) Consider the sequence of selfad-
joint operators A = (A1; : : : ; An) with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M: If f; g : [m;M ] �! R are continuous with
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then

jC (f; g;A;x)j � 1

2
(�� �)

nX
j=1

*�����f (Aj)�
nX
k=1

hf (Ak)xk; xki � 1H

�����xj ; xj
+

(3.165)

� 1

2
(�� �)C1=2 (f; f ;A;x) ;

for any x = (x1; : : : ; xn) 2 Hn such that
Pn
j=1 kxjk

2
= 1:

Proof. Follows from Theorem 201 and the details are omitted.
The following particular results is of interest for applications:

Corollary 208 (Dragomir, 2008, [33]) Consider the sequence of self-
adjoint operatorsA = (A1; : : : ; An) with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M: If f; g : [m;M ] �! R are continuous with
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then for any pj � 0; j 2
f1; : : : ; ng with

Pn
j=1 pj = 1 and x 2 H with kxk = 1 we have

jC (f; g;A;p;x)j (3.166)

� 1

2
(�� �)

*
nX
j=1

pj

�����f (Aj)�
*

nX
k=1

pkf (Ak)x; x

+
� 1H

�����x; x
+

� 1

2
(�� �)C1=2 (f; f ;A;p;x) :
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Proof. In we choose in Theorem 207 xj =
p
pj � x; j 2 f1; : : : ; ng ; where

pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1 then a simple

calculation shows that the inequality (3.165) becomes (3.166). The details
are omitted.
In a similar manner we can prove the following result as well:

Theorem 209 (Dragomir, 2008, [33]) Consider the sequences of self-
adjoint operatorsA = (A1; : : : ; An) ; B = (B1; : : : ; Bn) with Sp (Aj) ; Sp (Bj) �
[m;M ] for j 2 f1; : : : ; ng and for some scalars m < M: If f : [m;M ] �! R
is of r � L�Hölder type, then we have the Ostrowski type inequality for
sequences of selfadjoint operators:������f (s)�

nX
j=1

hf (Aj)xj ; xji

������ � L

�
1

2
(M �m) +

����s� m+M

2

�����r ; (3.167)

for any s 2 [m;M ] and any x = (x1; : : : ; xn) 2 Hn such that
Pn
j=1 kxjk

2
=

1.
Moreover, we have������

nX
j=1

hf (Bj) yj ; yji �
nX
k=1

hf (Ak)xk; xki

������ (3.168)

�
nX
j=1

*�����f (Bj)�
nX
k=1

hf (Ak)xk; xki � 1H

����� yj ; yj
+

� L

241
2
(M �m) +

nX
j=1

�����Bj � m+M

2
� 1H

���� yj ; yj�
35r ;

for any x = (x1; : : : ; xn) ;y = (y1; : : : ; yn) 2 Hn such that
Pn
j=1 kxjk

2
=Pn

j=1 kyjk
2
= 1:

Corollary 210 (Dragomir, 2008, [33]) Consider the sequences of self-
adjoint operatorsA = (A1; : : : ; An) ; B = (B1; : : : ; Bn) with Sp (Aj) ; Sp (Bj) �
[m;M ] for j 2 f1; : : : ; ng and for some scalars m < M: If f : [m;M ] �! R
is of r�L�Hölder type, then for any pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj =

1 and x 2 H with kxk = 1 we have the weighted Ostrowski type inequality
for sequences of selfadjoint operators:������f (s)�

*
nX
j=1

pjf (Aj)x; x

+������ � L

�
1

2
(M �m) +

����s� m+M

2

�����r ;
(3.169)

for any s 2 [m;M ].
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Moreover, we have������
*

nX
j=1

qjf (Bj) y; y

+
�
*

nX
k=1

pkf (Ak)x; x

+������ (3.170)

�
*

nX
j=1

qj

�����f (Bj)�
*

nX
k=1

pkf (Ak)x; x

+
� 1H

����� y; y
+

� L

241
2
(M �m) +

*
nX
j=1

qj

����Bj � m+M

2
� 1H

���� y; y
+35r ;

for any qk � 0; k 2 f1; : : : ; ng with
Pn
k=1 qk = 1 and x; y 2 H with kxk =

kyk = 1:

3.5.3 Some Reverses of Jensen�s Inequality

It is clear that all the above inequalities can be applied for various particular
instances of functions f and g: However, in the following we only consider
the inequalities

jf (hAx; xi)� hf (A)x; xij � L

�
1

2
(M �m) +

����hAx; xi � m+M

2

�����r
(3.171)

for any x 2 H withkxk = 1; where the function f : [m;M ] ! R is of
r � L�Hölder type, and

jf (hAx; xi)� hf (A)x; xij

�

8>><>>:
�
1
2 (M �m) +

��hAx; xi � m+M
2

��� kf 0k1;[m;M ] ; if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��hAx; xi � m+M
2

���q kf 0kp;[m;M ] ;
if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1

(3.172)

for any x 2 H with kxk = 1; where the function f : [m;M ] ! R is ab-
solutely continuous on [m;M ] ; which are related to the Jensen�s inequality
for convex functions.
1. Now, if we consider the concave function f : [m;M ] � [0;1) ! R,

f (t) = tr with r 2 (0; 1) and take into account that it is of r � L�Hölder
type with the constant L = 1; then from (3.171) we derive the following
reverse for the Hölder-McCarthy inequality [48]

0 � hArx; xi � hAx; xir �
�
1

2
(M �m) +

����hAx; xi � m+M

2

�����r (3.173)

for any x 2 H with kxk = 1:
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2. Now, if we consider the functions f : [m;M ] � (0;1) ! R with
f (t) = ts and s 2 (�1; 0) [ (0;1) ; then they are absolutely continuous
and

kf 0k1;[m;M ] =

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :
If p � 1; then

kf 0kp;[m;M ] = jsj
 Z M

m

tp(s�1)dt

!1=p

= jsj �

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p :

On making use of the �rst inequality from (3.172) we deduce for a given
s 2 (�1; 0) [ (0;1) that

jhAx; xis � hAsx; xij �
�
1

2
(M �m) +

����hAx; xi � m+M

2

����� (3.174)

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

for any x 2 H with kxk = 1:
The second part of (3.172) will produce the following reverse of the

Hölder-McCarthy inequality as well:

jhAx; xis � hAsx; xij � jsj
�
1

2
(M �m) +

����hAx; xi � m+M

2

�����q (3.175)

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p

for any x 2 H with kxk = 1; where s 2 (�1; 0) [ (0;1) ; p > 1 and
1
p +

1
q = 1:

3. Now, if we consider the function f (t) = ln t de�ned on the interval
[m;M ] � (0;1) ; then f is also absolutely continuous and

kf 0kp;[m;M ] =

8>>>>><>>>>>:

m�1 for p =1;

�
Mp�1�mp�1

(p�1)Mp�1mp�1

�1=p
for p > 1;

ln
�
M
m

�
for p = 1:
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Making use of the �rst inequality in (3.172) we deduce

0 � ln (hAx; xi)� hln (A)x; xi �
�
1

2
(M �m) +

����hAx; xi � m+M

2

�����m�1

(3.176)
and

0 � ln (hAx; xi)� hln (A)x; xi (3.177)

�
�
1

2
(M �m) +

����hAx; xi � m+M

2

�����q � Mp�1 �mp�1

(p� 1)Mp�1mp�1

�1=p
for any x 2 H with kxk = 1; where p > 1 and 1

p +
1
q = 1:

Similar results can be stated for sequences of operators, however the
details are left to the interested reader.

3.5.4 Some Particular Grüss�Type Inequalities

In this last section we provide some particular cases that can be obtained
via the Grüss� type inequalities established before. For this purpose we
select only two examples as follows.
Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real num-

bers m < M: If g : [m;M ] �! R is continuous with � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) ; then for any f : [m;M ] �! R of r�L�Hölder
type we have the inequality:

jhf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xij (3.178)

� 1

2
(�� �)L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
for any x 2 H with kxk = 1:
Moreover, if f is absolutely continuos on [m;M ] ; then we have the in-

equalities:

jhf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xij � 1

2
(�� �)

�

8>><>>:
�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x��1=q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1

(3.179)

for any x 2 H with kxk = 1:
1. If we consider the concave function f : [m;M ] � [0;1)! R, f (t) = tr

with r 2 (0; 1) and take into account that it is of r � L�Hölder type with



166 3. Inequalities for the µCeby�ev Functional

the constant L = 1; then from (3.178) we derive the following result:

jhArg (A)x; xi � hArx; xi � hg (A)x; xij (3.180)

� 1

2
(�� �)

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
for any x 2 H with kxk = 1; where g : [m;M ] �! R is continuous with
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :
Now, consider the function g : [m;M ] � (0;1) ! R, g (t) = tp with

p 2 (�1; 0) [ (0;1). Obviously,

�� � =

8<:
Mp �mp if p > 0;

M�p�m�p

M�pm�p if p < 0;

and by (3.180) we get for any x 2 H with kxk = 1 that

0 �


Ar+px; x

�
� hArx; xi � hApx; xi (3.181)

� 1

2
(Mp �mp)

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
when p > 0 and

0 � hArx; xi � hApx; xi �


Ar+px; x

�
(3.182)

� 1

2
� M

�p �m�p

M�pm�p

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
when p < 0:
If g : [m;M ] � (0;1) ! R, g (t) = ln t; then by (3.180) we also get the

inequality for logarithm:

0 � hAr lnAx; xi � hArx; xi � hlnAx; xi (3.183)

� ln
r
M

m
�
�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
for any x 2 H with kxk = 1:
2. Now consider the functions f; g : [m;M ] � (0;1)! R, with f (t) = ts

and g (t) = tw with s; w 2 (�1; 0) [ (0;1) : We have

kf 0k1;[m;M ] =

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

and, for p � 1;

kf 0kp;[m;M ] = jsj �

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p :
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If w > 0; then by the �rst inequality in (3.179) we have��
As+wx; x�� hAsx; xi � hAwx; xi�� (3.184)

� 1

2
(Mw �mw)

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

for any x 2 H with kxk = 1:
If w < 0; then by the same inequality we also have��
As+wx; x�� hAsx; xi � hAwx; xi�� (3.185)

� 1

2
� M

�w �m�w

M�wm�w

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) ;

for any x 2 H with kxk = 1:
Finally, if we assume that p > 1 and w > 0; then by the second inequality

in (3.179) we have��
As+wx; x�� hAsx; xi � hAwx; xi�� (3.186)

� 1

2
jsj (Mw �mw)

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��1=q

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p ;

while for w < 0; we also have��
As+wx; x�� hAsx; xi � hAwx; xi�� (3.187)

� 1

2
jsj � M

�w �m�w

M�wm�w

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��1=q

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p ;

where q > 1 with 1
p +

1
q = 1 and x 2 H with kxk = 1:
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3.6 Bounds for the µCeby�ev Functional of
Lipschitzian Functions

3.6.1 The Case of Lipschitzian Functions

The following result can be stated:

Theorem 211 (Dragomir, 2008, [34]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is Lipschitzian with the constant L > 0 and g : [m;M ] �! R is continuous
with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then

jC (f; g;A;x)j � 1

2
(�� �)L h`A;x (A)x; xi � (�� �)LC (e; e;A;x)

(3.188)
for any x 2 H with kxk = 1; where

`A;x (t) := hjt � 1H �Ajx; xi

is a continuous function on [m;M ] ; e (t) = t and

C (e; e;A;x) = kAxk2 � hAx; xi2 (� 0) : (3.189)

Proof. First of all, by the Jensen inequality for convex functions of selfad-
joint operators (see for instance [44, p. 5]) applied for the modulus, we can
state that

jhh (A)x; xij � hjh (A)jx; xi (M)

for any x 2 H with kxk = 1; where h is a continuous function on [m;M ] :
Since f is Lipschitzian with the constant L > 0; then for any t; s 2 [m;M ]

we have
jf (t)� f (s)j � L jt� sj : (3.190)

Now, if we �x t 2 [m;M ] and apply the property (P) for the inequality
(3.190) and the operator A we get

hjf (t) � 1H � f (A)jx; xi � L hjt � 1H �Ajx; xi ; (3.191)

for any x 2 H with kxk = 1:
Utilising the property (M) we get

jf (t)� hf (A)x; xij = jhf (t) � 1H � f (A)x; xij � hjf (t) � 1H � f (A)jx; xi

which together with (3.191) gives

jf (t)� hf (A)x; xij � L`A;x (t) (3.192)

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
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Since � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; we also have����g (t)� �+ �2
���� � 1

2
(�� �) (3.193)

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
If we multiply the inequality (3.192) with (3.193) we get����f (t) g (t)� hf (A)x; xi g (t)� �+ �2 f (t) +

�+ �

2
hf (A)x; xi

���� (3.194)

� 1

2
(�� �)L`A;x (t) =

1

2
(�� �)L hjt � 1H �Ajx; xi

� 1

2
(�� �)L

D
jt � 1H �Aj2 x; x

E1=2
=
1

2
(�� �)L

�

A2x; x

�
� 2 hAx; xi t+ t2

�1=2
;

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
Now, if we apply the property (P) for the inequality (3.194) and a selfad-

joint operator B with Sp (B) � [m;M ] ; then we get the following inequality
of interest in itself:

hf (B) g (B) y; yi � hf (A)x; xi hg (B) y; yi (3.195)

��+ �
2

hf (B) y; yi+ �+ �
2

hf (A)x; xi
����

� 1

2
(�� �)L h`A;x (B) y; yi

� 1

2
(�� �)L

D�

A2x; x

�
1H � 2 hAx; xiB +B2

�1=2
y; y
E

� 1

2
(�� �)L

�

A2x; x

�
� 2 hAx; xi hBy; yi+



B2y; y

��
;

for any x; y 2 H with kxk = kyk = 1:
Finally, if we choose in (3.195) y = x and B = A; then we deduce the

desired result (3.188).
In the case of two Lipschitzian functions, the following result may be

stated as well:

Theorem 212 (Dragomir, 2008, [34]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f; g : [m;M ] �! R
are Lipschitzian with the constants L;K > 0; then

jC (f; g;A;x)j � LKC (e; e;A;x) ; (3.196)

for any x 2 H with kxk = 1:
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Proof. Since f; g : [m;M ] �! R are Lipschitzian, then

jf (t)� f (s)j � L jt� sj and jg (t)� g (s)j � K jt� sj

for any t; s 2 [m;M ] ; which gives the inequality

jf (t) g (t)� f (t) g (s)� f (s) g (t) + f (s) g (s)j � KL
�
t2 � 2ts+ s2

�
for any t; s 2 [m;M ] :
Now, �x t 2 [m;M ] and if we apply the properties (P) and (M) for the

operator A we get successively

jf (t) g (t)� hg (A)x; xi f (t)� hf (A)x; xi g (t) + hf (A) g (A)x; xij
(3.197)

= jh[f (t) g (t) � 1H � f (t) g (A)� f (A) g (t) + f (A) g (A)]x; xij
� hjf (t) g (t) � 1H � f (t) g (A)� f (A) g (t) + f (A) g (A)jx; xi
� KL


�
t2 � 1H � 2tA+A2

�
x; x

�
= KL

�
t2 � 2t hAx; xi+



A2x; x

��
for any x 2 H with kxk = 1:
Further, �x x 2 H with kxk = 1: On applying the same properties for

the inequality (3.197) and another selfadjoint operator B with Sp (B) �
[m;M ] ; we have

jhf (B) g (B) y; yi � hg (A)x; xi hf (B) y; yi (3.198)

�hf (A)x; xi hg (B) y; yi+ hf (A) g (A)x; xij

= jh[f (B) g (B)� hg (A)x; xi f (B)� hf (A)x; xi g (B) + hf (A) g (A)x; xi 1H ] y; yij
� hjf (B) g (B)� hg (A)x; xi f (B)� hf (A)x; xi g (B) + hf (A) g (A)x; xi 1H j y; yi
� KL


�
B2 � 2 hAx; xiB +



A2x; x

�
1H
�
y; y
�

= KL
�

B2y; y

�
� 2 hAx; xi hBy; yi+



A2x; x

��
for any x; y 2 H with kxk = kyk = 1; which is an inequality of interest in
its own right.
Finally, on making B = A and y = x in (3.198) we deduce the desired

result (3.196).

3.6.2 Some Inequalities for Sequences of Operators

Consider the sequence of selfadjoint operators A = (A1; : : : ; An) with
Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M: If
x = (x1; : : : ; xn) 2 Hn are such that

Pn
j=1 kxjk

2
= 1; then we can con-

sider the following µCeby�ev type functional

C (f; g;A;x) :=
nX
j=1

hf (Aj) g (Aj)xj ; xji�
nX
j=1

hf (Aj)xj ; xji�
nX
j=1

hg (Aj)xj ; xji :
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As a particular case of the above functional and for a probability sequence
p =(p1; : : : ; pn) ; i.e., pj � 0 for j 2 f1; : : : ; ng and

Pn
j=1 pj = 1; we can

also consider the functional

C (f; g;A;p;x) :=

*
nX
j=1

pjf (Aj) g (Aj)x; x

+

�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
where x 2 H; kxk = 1:
We know, from [30] that for the sequence of selfadjoint operators A =

(A1; : : : ; An) with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for the synchro-
nous (asynchronous) functions f; g : [m;M ] �! R we have the inequality

C (f; g;A;x) � (�) 0 (3.199)

for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1: Also, for any proba-

bility distribution p =(p1; : : : ; pn) and any x 2 H; kxk = 1 we have

C (f; g;A;p;x) � (�) 0: (3.200)

On the other hand, the following Grüss�type inequality is valid as well
[30]:

jC (f; g;A;x)j � 1

2
� (�� 
) [C (g; g;A;x)]1=2

�
� 1

4
(�� 
) (�� �)

�
(3.201)

for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1; where f and g are

continuous on [m;M ] and 
 := mint2[m;M ] f (t), � := maxt2[m;M ] f (t),
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :
Similarly, for any probability distribution p =(p1; : : : ; pn) and any x 2

H; kxk = 1 we also have the inequality:

jC (f; g;A;p;x)j � 1

2
� (�� 
) [C (g; g;A;p;x)]1=2

�
� 1

4
(�� 
) (�� �)

�
:

(3.202)
We can state now the following new result:

Theorem 213 (Dragomir, 2008, [34]) Let A = (A1; : : : ; An) be a se-
quence of selfadjoint operators with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M: If f : [m;M ] �! R is Lipschitzian with the
constant L > 0 and g : [m;M ] �! R is continuous with � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) ; then

jC (f; g;A;x)j � 1

2
(�� �)L

nX
k=1

h`A;x (Ak)xk; xki (3.203)

� (�� �)LC (e; e;A;x)
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for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1; where

`A;x (t) :=
nX
j=1

hjt � 1H �Aj jxj ; xji

is a continuous function on [m;M ] ; e (t) = t and

C (e; e;A;x) =
nX
j=1

kAxjk2 �

0@ nX
j=1

hAjxj ; xji

1A2

(� 0) :

Proof. Follows from Theorem 211. The details are omitted.
As a particular case we have:

Corollary 214 (Dragomir, 2008, [34]) Let A = (A1; : : : ; An) be a se-
quence of selfadjoint operators with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M: If f : [m;M ] �! R is Lipschitzian with the
constant L > 0 and g : [m;M ] �! R is continuous with � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) ; then for any pj � 0; j 2 f1; : : : ; ng withPn
j=1 pj = 1 and x 2 H with kxk = 1 we have

jC (f; g;A;p;x)j � 1

2
(�� �)L

*
nX
k=1

pk`A;p;x (Ak)x; x

+
(3.204)

� (�� �)LC (e; e;A;p;x)

where

`A;p;x (t) :=

*
nX
j=1

pj jt � 1H �Aj jx; x
+

is a continuous function on [m;M ] and

C (e; e;A;p;x) =
nX
j=1

pj kAxjk2 �
*

nX
j=1

pjAjx; x

+2
(� 0) :

Proof. In we choose in Theorem 213 xj =
p
pj � x; j 2 f1; : : : ; ng ; where

pj � 0; j 2 f1; : : : ; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1 then a simple

calculation shows that the inequality (3.203) becomes (3.204). The details
are omitted.
In a similar way we obtain the following results as well:

Theorem 215 (Dragomir, 2008, [34]) Let A = (A1; : : : ; An) be a se-
quence of selfadjoint operators with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng
and for some scalars m < M: If f; g : [m;M ] �! R are Lipschitzian with
the constants L;K > 0; then

jC (f; g;A;x)j � LKC (e; e;A;x) ; (3.205)

for any x = (x1; : : : ; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1:
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Corollary 216 Let A = (A1; : : : ; An) be a sequence of selfadjoint opera-
tors with Sp (Aj) � [m;M ] for j 2 f1; : : : ; ng and for some scalars m < M:
If f; g : [m;M ] �! R are Lipschitzian with the constants L;K > 0; then
for any pj � 0; j 2 f1; : : : ; ng with

Pn
j=1 pj = 1 we have

jC (f; g;A;p;x)j � LKC (e; e;A;p;x) ; (3.206)

for any x 2 H with kxk = 1:

3.6.3 The Case of (';�)�Lipschitzian Functions
The following lemma may be stated.

Lemma 217 Let u : [a; b] ! R and ';� 2 R with � > ': The following
statements are equivalent:

(i) The function u�'+�
2 �e; where e (t) = t; t 2 [a; b] ; is 12 (�� ')�Lipschitzian;

(ii) We have the inequality:

' � u (t)� u (s)
t� s � � for each t; s 2 [a; b] with t 6= s; (3.207)

(iii) We have the inequality:

' (t� s) � u (t)�u (s) � � (t� s) for each t; s 2 [a; b] with t > s:
(3.208)

Following [47], we can introduce the concept:

De�nition 218 The function u : [a; b] ! R which satis�es one of the
equivalent conditions (i) �(iii) is said to be (';�)�Lipschitzian on [a; b] :

Notice that in [47], the de�nition was introduced on utilising the state-
ment (iii) and only the equivalence (i) , (iii) was considered.
Utilising Lagrange�s mean value theorem, we can state the following result

that provides practical examples of (';�)�Lipschitzian functions.

Proposition 219 Let u : [a; b] ! R be continuous on [a; b] and di¤eren-
tiable on (a; b) : If

�1 < 
 := inf
t2(a;b)

u0 (t) ; sup
t2(a;b)

u0 (t) =: � <1 (3.209)

then u is (
;�)�Lipschitzian on [a; b] :

The following result can be stated:



174 3. Inequalities for the µCeby�ev Functional

Theorem 220 (Dragomir, 2008, [34]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is (';�)�Lipschitzian on [a; b] and g : [m;M ] �! R is continuous with
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then����C (f; g;A;x)� '+�

2
C (e; g;A;x)

���� � 1

4
(�� �) (�� ') h`A;x (A)x; xi

(3.210)

� 1

2
(�� �) (�� ')C (e; e;A;x)

for any x 2 H with kxk = 1:

The proof follows by Theorem 211 applied for the 12 (�� ')�Lipschitzian
function f � '+�

2 � e (see Lemma 217) and the details are omitted.

Theorem 221 (Dragomir, 2008, [34]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M and f; g : [m;M ] �!
R. If f is (';�)�Lipschitzian and g is ( ;	)�Lipschitzian on [a; b] ; then����C (f; g;A;x)� �+ '2 C (e; g;A;x) (3.211)

�	+  
2

C (f; e;A;x) +
� + '

2
� 	+  

2
C (e; e;A;x)

����
� 1

4
(�� ') (	�  )C (e; e;A;x) ;

for any x 2 H with kxk = 1:

The proof follows by Theorem 212 applied for the 12 (�� ')�Lipschitzian
function f � '+�

2 � e and the 1
2 (	�  )�Lipschitzian function g�

	+ 
2 � e:

The details are omitted.
Similar results can be derived for sequences of operators, however they

will not be presented here.

3.6.4 Some Applications

It is clear that all the inequalities obtained in the previous sections can be
applied to obtain particular inequalities of interest for di¤erent selections
of the functions f and g involved. However we will present here only some
particular results that can be derived from the inequality

jC (f; g;A;x)j � LKC (e; e;A;x) ; (3.212)

that holds for the Lipschitzian functions f and g; the �rst with the constant
L > 0 and the second with the constant K > 0:
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1. Now, if we consider the functions f; g : [m;M ] � (0;1) ! R with
f (t) = tp; g (t) = tq and p; q 2 (�1; 0)[ (0;1) then they are Lipschitzian
with the constants L = kf 0k1 and K = kg0k1 : Since f 0 (t) = ptp�1; g (t) =
qtq�1; hence

kf 0k1 =

8<: pMp�1 for p 2 [1;1);

jpjmp�1 for p 2 (�1; 0) [ (0; 1)

and

kg0k1 =

8<: qMq�1 for q 2 [1;1);

jqjmq�1 for q 2 (�1; 0) [ (0; 1)
:

Therefore we can state the following inequalities for the powers of a
positive de�nite operator A with Sp (A) � [m;M ] � (0;1) :
If p; q � 1; then

(0 �)


Ap+qx; x

�
� hApx; xi � hAqx; xi � pqMp+q�2

�
kAxk2 � hAx; xi2

�
(3.213)

for each x 2 H with kxk = 1:
If p � 1 and q 2 (�1; 0) [ (0; 1) ; then��
Ap+qx; x�� hApx; xi � hAqx; xi�� � p jqjMp�1mq�1

�
kAxk2 � hAx; xi2

�
(3.214)

for each x 2 H with kxk = 1:
If p 2 (�1; 0) [ (0; 1) and q � 1; then��
Ap+qx; x�� hApx; xi � hAqx; xi�� � jpj qMq�1mp�1

�
kAxk2 � hAx; xi2

�
(3.215)

for each x 2 H with kxk = 1:
If p; q 2 (�1; 0) [ (0; 1) ; then��
Ap+qx; x�� hApx; xi � hAqx; xi�� � jpqjmp+q�2

�
kAxk2 � hAx; xi2

�
(3.216)

for each x 2 H with kxk = 1:
Moreover, if we take p = 1 and q = �1 in (3.214), then we get the

following result

(0 �) hAx; xi �


A�1x; x

�
� 1 � m�2

�
kAxk2 � hAx; xi2

�
(3.217)

for each x 2 H with kxk = 1:
2. Consider now the functions f; g : [m;M ] � (0;1) ! R with f (t) =

tp; p 2 (�1; 0) [ (0;1) and g (t) = ln t: Then g is also Lipschitzian with
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the constant K = kg0k1 = m�1: Applying the inequality (3.212) we then
have for any x 2 H with kxk = 1 that

(0 �) hAp lnAx; xi�hApx; xi�hlnAx; xi � pMp�1m�1
�
kAxk2 � hAx; xi2

�
(3.218)

if p � 1;

(0 �) hAp lnAx; xi � hApx; xi � hlnAx; xi � pmp�2
�
kAxk2 � hAx; xi2

�
(3.219)

if p 2 (0; 1) and

(0 �) hApx; xi � hlnAx; xi � hAp lnAx; xi � (�p)mp�2
�
kAxk2 � hAx; xi2

�
(3.220)

if p 2 (�1; 0) :
3. Now consider the functions f; g : [m;M ] � R! R given by f (t) =

exp (�t) and g (t) = exp (�t) with �; � nonzero real numbers. It is obvious
that

kf 0k1 = j�j �

8<: exp (�M) for � > 0;

exp (�m) for � < 0

and

kg0k1 = j�j �

8<: exp (�M) for � > 0;

exp (�m) for � < 0
:

Finally, on applying the inequality (3.212) we get

(0 �) hexp [(�+ �)A]x; xi � hexp (�A)x; xi � hexp (�A)x; xi

� j��j
�
kAxk2 � hAx; xi2

�
�

8<: exp [(�+ �)M ] for �; � > 0;

exp [(�+ �)m] for �; � < 0

and

(0 �) hexp (�A)x; xi � hexp (�A)x; xi � hexp [(�+ �)A]x; xi

� j��j
�
kAxk2 � hAx; xi2

�
�

8<: exp (�M + �m) for � > 0; � < 0

exp (�m+ �M) for � < 0; � > 0

for each x 2 H with kxk = 1:
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3.7 Quasi Grüss�Type Inequalities

3.7.1 Introduction

In [16], in order to generalize the above result in abstract structures the
author has proved the following Grüss�type inequality in real or complex
inner product spaces.

Theorem 222 (Dragomir, 1999, [16]) Let (H; h:; :i) be an inner prod-
uct space over K (K = R,C) and e 2 H; kek = 1: If '; 
;�;� are real or
complex numbers and x; y are vectors in H such that the conditions

Re h�e� x; x� 'ei � 0 and Re h�e� y; y � 
ei � 0 (3.221)

hold, then we have the inequality

jhx; yi � hx; ei he; yij � 1

4
j�� 'j � j�� 
j : (3.222)

The constant 14 is best possible in the sense that it can not be replaced by a
smaller constant.

For other results of this type, see the recent monograph [27] and the
references therein.
Let U be a selfadjoint operator on the complex Hilbert space (H; h:; :i)

with the spectrum Sp (U) included in the interval [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. Then for any contin-
uous function f : [m;M ]! C, it is well known that we have the following
spectral representation theorem in terms of the Riemann-Stieltjes integral :

f (U) =

Z M

m�0
f (�) dE�; (3.223)

which in terms of vectors can be written as

hf (U)x; yi =
Z M

m�0
f (�) d hE�x; yi ; (3.224)

for any x; y 2 H: The function gx;y (�) := hE�x; yi is of bounded variation
on the interval [m;M ] and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi

for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic
nondecreasing and right continuous on [m;M ].
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3.7.2 Vector Inequalities

In this section we provide various bounds for the magnitude of the di¤erence

hf (A)x; yi � hx; yi hf (A)x; xi

under di¤erent assumptions on the continuous function, the selfadjoint op-
erator A : H ! H and the vectors x; y 2 H with kxk = 1:

Theorem 223 (Dragomir, 2010, [35]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. Assume that x; y 2
H; kxk = 1 are such that there exists 
;� 2 C with either

Re h�x� y; y � 
xi � 0 (3.225)

or, equivalently 



y � 
 + �

2
x





 � 1

2
j�� 
j :

1. If f : [m;M ] ! C is a continuous function of bounded variation on
[m;M ], then we have the inequality

jhf (A)x; yi � hx; yi hf (A)x; xij (3.226)

� max
�2[m;M ]

jhE�x; yi � hE�x; xi hx; yij
M_
m

(f)

� max
�2[m;M ]

(hE�x; xi h(1H � E�)x; xi)1=2
�
kyk2 � jhy; xij2

�1=2 M_
m

(f)

� 1

2

�
kyk2 � jhy; xij2

�1=2 M_
m

(f) � 1

4
j�� 
j

M_
m

(f) :

2. If f : [m;M ] ! C is a Lipschitzian function with the constant L > 0
on [m;M ], then we have the inequality

jhf (A)x; yi � hx; yi hf (A)x; xij (3.227)

� L

Z M

m�0
jhE�x; yi � hE�x; xi hx; yij d�

� L
�
kyk2 � jhy; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� L
�
kyk2 � jhy; xij2

�1=2
h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

2
(M �m)L

�
kyk2 � jhy; xij2

�1=2
� 1

4
j�� 
j (M �m)L:



3.7 Quasi Grüss�Type Inequalities 179

3. If f : [m;M ] ! R is a continuous monotonic nondecreasing function
on [m;M ], then we have the inequality

jhf (A)x; yi � hx; yi hf (A)x; xij (3.228)

�
Z M

m�0
jhE�x; yi � hE�x; xi hx; yij df (�)

�
�
kyk2 � jhy; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 df (�)

�
�
kyk2 � jhy; xij2

�1=2
� h(f (M) 1H � f (A))x; xi1=2 h(f (A)� f (m) 1H)x; xi1=2

� 1

2
[f (M)� f (m)]

�
kyk2 � jhy; xij2

�1=2
� 1

4
j�� 
j [f (M)� f (m)] :

Proof. First of all, we notice that by the Schwarz inequality in H we have
for any u; v; e 2 H with kek = 1 that

jhu; vi � hu; ei he; vij �
�
kuk2 � jhu; eij2

�1=2 �
kvk2 � jhv; eij2

�1=2
:

(3.229)
Now on utilizing (3.229), we can state that

jhE�x; yi � hE�x; xi hx; yij (3.230)

�
�
kE�xk2 � jhE�x; xij2

�1=2 �
kyk2 � jhy; xij2

�1=2
for any � 2 [m;M ] :
Since E� are projections and E� � 0 then

kE�xk2 � jhE�x; xij2 = hE�x; xi � hE�x; xi2 (3.231)

= hE�x; xi h(1H � E�)x; xi �
1

4

for any � 2 [m;M ] and x 2 H with kxk = 1:
Also, by making use of the Grüss�type inequality in inner product spaces

obtained by the author in [16] we have�
kyk2 � jhy; xij2

�1=2
� 1

2
j�� 
j : (3.232)

Combining the relations (3.230)-(3.232) we deduce the following inequality
that is of interest in itself

jhE�x; yi � hE�x; xi hx; yij (3.233)

� (hE�x; xi h(1H � E�)x; xi)1=2
�
kyk2 � jhy; xij2

�1=2
� 1

2

�
kyk2 � jhy; xij2

�1=2
� 1

4
j�� 
j
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for any � 2 [m;M ] :
It is well known that if p : [a; b]! C is a continuous function, v : [a; b]!

C is of bounded variation then the Riemann-Stieltjes integral
R b
a
p (t) dv (t)

exists and the following inequality holds�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ; (3.234)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising this property of the Riemann-Stieltjes integral and the inequal-
ity (3.233) we have�����

Z M

m�0
[hE�x; yi � hE�x; xi hx; yi] df (�)

����� (3.235)

� max
�2[m;M ]

jhE�x; yi � hE�x; xi hx; yij
M_
m

(f)

� max
�2[m;M ]

(hE�x; xi h(1H � E�)x; xi)1=2
�
kyk2 � jhy; xij2

�1=2 M_
m

(f)

� 1

2

�
kyk2 � jhy; xij2

�1=2 M_
m

(f) � 1

4
j�� 
j

M_
m

(f)

for x and y as in the assumptions of the theorem.
Now, integrating by parts in the Riemann-Stieltjes integral and making

use of the spectral representation theorem we haveZ M

m�0
[hE�x; yi � hE�x; xi hx; yi] df (�) (3.236)

= [hE�x; yi � hE�x; xi hx; yi] f (�)jMm�0

�
Z M

m�0
f (�) d [hE�x; yi � hE�x; xi hx; yi]

= hx; yi
Z M

m�0
f (�) d hE�x; xi �

Z M

m�0
f (�) d hE�x; yi

= hx; yi hf (A)x; xi � hf (A)x; yi

which together with (3.235) produces the desired result (3.226).
Now, recall that if p : [a; b] ! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;
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then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral we have
from (3.233) that�����

Z M

m�0
[hE�x; yi � hE�x; xi hx; yi] df (�)

����� (3.237)

� L

Z M

m�0
jhE�x; yi � hE�x; xi hx; yij d�

� L
�
kyk2 � jhy; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�:

If we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the
spectral representation theorem we have successivelyZ M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d� (3.238)

�
"Z M

m�0
hE�x; xi d�

#1=2 "Z M

m�0
h(1H � E�)x; xi d�

#1=2

=

"
hE�x; xi�jMm�0 �

Z M

m�0
�d hE�x; xi

#1=2

�
"
h(1H � E�)x; xi�jMm�0 �

Z M

m�0
�d h(1H � E�)x; xi

#
= h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2 :

On utilizing (3.238), (3.237) and (3.236) we deduce the �rst three inequal-
ities in (3.227).
The fourth inequality follows from the fact that

h(M1H �A)x; xi h(A�m1H)x; xi

� 1

4
[h(M1H �A)x; xi+ h(A�m1H)x; xi]2 =

1

4
(M �m)2 :

The last part follows from (3.232).
Further, from the theory of Riemann-Stieltjes integral it is also well

known that if p : [a; b] ! C is of bounded variation and v : [a; b] ! R
is continuous and monotonic nondecreasing, then the Riemann-Stieltjes in-
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tegrals
R b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����

Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) : (3.239)

Utilising this property and the inequality (3.233) we have successively�����
Z M

m�0
[hE�x; yi � hE�x; xi hx; yi] df (�)

����� (3.240)

�
Z M

m�0
jhE�x; yi � hE�x; xi hx; yij df (�)

�
�
kyk2 � jhy; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 df (�) :

Applying the Cauchy-Bunyakovsky-Schwarz integral inequality for the Riemann-
Stieltjes integral with monotonic integrators and the spectral representation
theorem we haveZ M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 df (�) (3.241)

�
"Z M

m�0
hE�x; xi df (�)

#1=2 "Z M

m�0
h(1H � E�)x; xi df (�)

#1=2

=

"
hE�x; xi f (�)jMm�0 �

Z M

m�0
f (�) d hE�x; xi

#1=2

�
"
h(1H � E�)x; xi f (�)jMm�0 �

Z M

m�0
f (�) d h(1H � E�)x; xi

#1=2
= h(f (M) 1H � f (A))x; xi1=2 h(f (A)� f (m) 1H)x; xi1=2

� 1

2
[f (M)� f (m)]

and the proof is complete.

Remark 224 If we drop the conditions on x; y; we can obtain from the
inequalities (3.226)-(3.227) the following results that can be easily applied
for particular functions:
1. If f : [m;M ] ! C is a continuous function of bounded variation on

[m;M ], then we have the inequality���hf (A)x; yi kxk2 � hx; yi hf (A)x; xi��� (3.242)

� 1

2
kxk2

�
kyk2 kxk2 � jhy; xij2

�1=2 M_
m

(f)
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for any x; y 2 H;x 6= 0:
2. If f : [m;M ] ! C is a Lipschitzian function with the constant L > 0

on [m;M ], then we have the inequality���hf (A)x; yi kxk2 � hx; yi hf (A)x; xi��� � L
�
kyk2 kxk2 � jhy; xij2

�1=2
(3.243)

� [h(M1H �A)x; xi h(A�m1H)x; xi]1=2

� 1

2
(M �m)L kxk2

�
kyk2 kxk2 � jhy; xij2

�1=2
for any x; y 2 H;x 6= 0:
3. If f : [m;M ] ! R is a continuous monotonic nondecreasing function

on [m;M ], then we have the inequality���hf (A)x; yi kxk2 � hx; yi hf (A)x; xi��� � �kyk2 kxk2 � jhy; xij2�1=2
(3.244)

� [h(f (M) 1H � f (A))x; xi h(f (A)� f (m) 1H)x; xi]1=2

� 1

2
[f (M)� f (m)] kxk2

�
kyk2 kxk2 � jhy; xij2

�1=2
for any x; y 2 H;x 6= 0:

The following lemma may be stated.

Lemma 225 Let u : [a; b] ! R and ';� 2 R with � > ': The following
statements are equivalent:

(i) The function u�'+�
2 �e; where e (t) = t; t 2 [a; b] ; is 12 (�� ')�Lipschitzian;

(ii) We have the inequality:

' � u (t)� u (s)
t� s � � for each t; s 2 [a; b] with t 6= s; (3.245)

(iii) We have the inequality:

' (t� s) � u (t)�u (s) � � (t� s) for each t; s 2 [a; b] with t > s:
(3.246)

Following [47], we can introduce the concept:

De�nition 226 The function u : [a; b] ! R which satis�es one of the
equivalent conditions (i) �(iii) is said to be (';�)�Lipschitzian on [a; b] :

Notice that in [47], the de�nition was introduced on utilizing the state-
ment (iii) and only the equivalence (i) , (iii) was considered.
Utilising Lagrange�s mean value theorem, we can state the following result

that provides practical examples of (';�)�Lipschitzian functions.
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Proposition 227 Let u : [a; b] ! R be continuous on [a; b] and di¤eren-
tiable on (a; b) : If

�1 < 
 := inf
t2(a;b)

u0 (t) ; sup
t2(a;b)

u0 (t) =: � <1 (3.247)

then u is (
;�)�Lipschitzian on [a; b] :

We are able now to provide the following corollary:

Corollary 228 (Dragomir, 2010, [35]) With the assumptions of Theo-
rem 223 and if f : [m;M ] ! R is a (';�)-Lipschitzian function then we
have

jhf (A)x; yi � hx; yi hf (A)x; xij (3.248)

� 1

2
(�� ')

Z M

m�0
jhE�x; yi � hE�x; xi hx; yij d�

� 1

2
(�� ')

�
kyk2 � jhy; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� 1

2
(�� ')

�
kyk2 � jhy; xij2

�1=2
� h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

4
(M �m) (�� ')

�
kyk2 � jhy; xij2

�1=2
� 1

8
j�� 
j (M �m) (�� ') :

The proof follows from the second part of Theorem 223 applied for the
1
2 (�� ')-Lipschitzian function f � �+'

2 � e by performing the required
calculations in the �rst term of the inequality. The details are omitted.

3.7.3 Applications for Grüss�Type Inequalities

The following result provides some Grüss�type inequalities for two function
of two selfadjoint operators.

Proposition 229 (Dragomir, 2010, [35]) Let A;B be two selfadjoint
operators in the Hilbert space H with the spectra Sp (A) ; Sp (B) � [m;M ]
for some real numbers m < M and let fE�g� be the spectral family of
A. Assume that g : [m;M ] ! R is a continuous function and denote
n := mint2[m;M ] g (t) and N := maxt2[m;M ] g (t) :
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1. If f : [m;M ] ! C is a continuous function of bounded variation on
[m;M ], then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hg (B)x; xij (3.249)

� max
�2[m;M ]

jhE�x; g (B)xi � hE�x; xi hx; g (B)xij
M_
m

(f)

� max
�2[m;M ]

(hE�x; xi h(1H � E�)x; xi)1=2

�
�
kg (B)xk2 � jhg (B)x; xij2

�1=2 M_
m

(f)

� 1

2

�
kg (B)xk2 � jhg (B)x; xij2

�1=2 M_
m

(f) � 1

4
(N � n)

M_
m

(f)

for any x 2 H; kxk = 1:
2. If f : [m;M ] ! C is a Lipschitzian function with the constant L > 0

on [m;M ], then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hg (B)x; xij (3.250)

� L

Z M

m�0
jhE�x; g (B)xi � hE�x; xi hx; g (B)xij d�

� L
�
kg (B)xk2 � jhg (B)x; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� L
�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

2
(M �m)L

�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� 1

4
(N � n) (M �m)L

for any x 2 H; kxk = 1:
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3. If f : [m;M ] ! R is a continuous monotonic nondecreasing function
on [m;M ], then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hg (B)x; xij (3.251)

�
Z M

m�0
jhE�x; g (B)xi � hE�x; xi hx; g (B)xij df (�)

�
�
kg (B)xk2 � jhg (B)x; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 df (�)

�
�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� h(f (M) 1H � f (A))x; xi1=2 h(f (A)� f (m) 1H)x; xi1=2

� 1

2
[f (M)� f (m)]

�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� 1

4
(N � n) [f (M)� f (m)]

for any x 2 H; kxk = 1:

Proof.We notice that, since n := mint2[m;M ] g (t) andN := maxt2[m;M ] g (t) ;
then n � hg (B)x; xi � N which implies that hg (B)x� nx;Mx� g (B)xi �
0 for any x 2 H; kxk = 1: On applying Theorem 223 for y = Bx;� = N
and 
 = n we deduce the desired result.

Remark 230 We observe that if the function f takes real values and is a
(';�)-Lipschitzian function on [m;M ], then the inequality (3.250) can be
improved as follows

jhf (A)x; g (B)xi � hf (A)x; xi hg (B)x; xij (3.252)

� 1

2
(�� ')

Z M

m�0
jhE�x; g (B)xi � hE�x; xi hx; g (B)xij d�

� 1

2
(�� ')

�
kg (B)xk2 � jhg (B)x; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� 1

2
(�� ')

�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

4
(M �m) (�� ')

�
kg (B)xk2 � jhg (B)x; xij2

�1=2
� 1

8
(N � n) (M �m) (�� ')
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for any x 2 H; kxk = 1:

3.7.4 Applications

By choosing di¤erent examples of elementary functions into the above in-
equalities, one can obtain various Grüss�type inequalities of interest.
For instance, if we choose f; g : (0;1)! (0;1) with f (t) = tp; g (t) = tq

and p; q > 0; then for any selfadjoint operators A;B with Sp (A) ; Sp (B) �
[m;M ] � (0;1) we get from (3.251) the inequalities

jhApx;Bqxi � hApx; xi hBqx; xij (3.253)

� p
�
kBqxk2 � jhBqx; xij2

�1=2 Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 �p�1d�

�
�
kBqxk2 � jhBqx; xij2

�1=2
h(Mp1H �Ap)x; xi1=2 h(Ap �mp1H)x; xi1=2

� 1

2
(Mp �mp)

�
kBqxk2 � jhBqx; xij2

�1=2
� 1

4
(Mq �mq) (Mp �mp)

for any x 2 H with kxk = 1; where fE�g� is the spectral family of A.
The same choice of functions considered in the inequality (3.252) produce

the result

jhApx;Bqxi � hApx; xi hBqx; xij (3.254)

� 1

2
�p

�
kBqxk2 � jhBqx; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� 1

2
�p

�
kBqxk2 � jhBqx; xij2

�1=2
� h(Mp1H �Ap)x; xi1=2 h(Ap �mp1H)x; xi1=2

� 1

4
(M �m)�p

�
kBqxk2 � jhBqx; xij2

�1=2
� 1

8
(Mq �mq) (M �m)�p

where

�p := p�

8<:
Mp�1 �mp�1 if p � 1

M1�p�m1�p

M1�pm1�p if 0 < p < 1:

(3.255)

for any x 2 H with kxk = 1:
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Now, if we choose f (t) = ln t; t > 0 and keep the same g then we have
the inequalities

jhlnAx;Bqxi � hlnAx; xi hBqx; xij (3.256)

�
�
kBqxk2 � jhBqx; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 ��1d�

�
�
kBqxk2 � jhBqx; xij2

�1=2
� h(lnM1H � lnA)x; xi1=2 h(lnA� lnm1H)x; xi1=2

�
�
kBqxk2 � jhBqx; xij2

�1=2
ln

r
M

m

� 1

2
(Mq �mq) ln

r
M

m

and

jhlnAx;Bqxi � hlnAx; xi hBqx; xij (3.257)

� 1

2

�
M �m
mM

��
kBqxk2 � jhBqx; xij2

�1=2
�
Z M

m�0
(hE�x; xi h(1H � E�)x; xi)1=2 d�

� 1

2

�
M �m
mM

��
kBqxk2 � jhBqx; xij2

�1=2
� h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

4

(M �m)2

mM

�
kBqxk2 � jhBqx; xij2

�1=2
� 1

8
(Mq �mq)

(M �m)2

mM

for any x 2 H with kxk = 1:

3.8 Two Operators Grüss�Type Inequalities

3.8.1 Some Representation Results

We start with the following representation result that will play a key role in
obtaining various bounds for di¤erent choices of functions including contin-
uous functions of bounded variation, Lipschitzian functions or monotonic
and continuous functions.
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Theorem 231 (Dragomir, 2010, [36]) Let A;B be two selfadjoint op-
erators in the Hilbert space H with the spectra Sp (A) ; Sp (B) � [m;M ] for
some real numbers m < M and let fE�g� be the spectral family of A and
fF�g� the spectral family of B: If f; g : [m;M ] ! C are continuous, then
we have the representation

hf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xi (3.258)

=

Z M

m�0

 Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

!
d (f (�))

for any x 2 H with kxk = 1:

Proof. Integrating by parts in the Riemann-Stieltjes integral and making
use of the spectral representation theorem we haveZ M

m�0
[hE�x; yi � hE�x; xi hx; yi] df (�) (3.259)

= [hE�x; yi � hE�x; xi hx; yi] f (�)jMm�0

�
Z M

m�0
f (�) d [hE�x; yi � hE�x; xi hx; yi]

= hx; yi
Z M

m�0
f (�) d hE�x; xi �

Z M

m�0
f (�) d hE�x; yi

= hx; yi hf (A)x; xi � hf (A)x; yi

for any x; y 2 H with kxk = 1:
Now, if we chose y = g (B)x in (3.259) then we get thatZ M

m�0
[hE�x; g (B)xi � hE�x; xi hx; g (B)xi] df (�) (3.260)

= hx; g (B)xi hf (A)x; xi � hf (A)x; g (B)xi

for any x 2 H with kxk = 1:
Utilising the spectral representation theorem for B we also have for each

�xed � 2 [m;M ] that

hE�x; g (B)xi � hE�x; xi hx; g (B)xi (3.261)

=

*
E�x;

Z M

m�0
g (�) dF�x

+
� hE�x; xi

*
x;

Z M

m�0
g (�) dF�x

+

=

Z M

m�0
g (�) d (hE�x; F�xi)� hE�x; xi

Z M

m�0
g (�) d (hx; F�xi)

for any x 2 H with kxk = 1:
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Integrating by parts in the Riemann-Stieltjes integral we haveZ M

m�0
g (�) d (hE�x; F�xi) = g (�) hE�x; F�xi]Mm�0 �

Z M

m�0
hE�x; F�xi dg (�)

= g (M) hE�x; xi �
Z M

m�0
hE�x; F�xi d (g (�))

andZ M

m�0
g (�) d (hx; F�xi) = g (�) hx; F�xi]Mm�0 �

Z M

m�0
hx; F�xi d (g (�))

= g (M)�
Z M

m�0
hx; F�xi d (g (�)) ;

thereforeZ M

m�0
g (�) d (hE�x; F�xi)� hE�x; xi

Z M

m�0
g (�) d (hx; F�xi) (3.262)

= g (M) hE�x; xi �
Z M

m�0
hE�x; F�xi d (g (�))

� hE�x; xi
 
g (M)�

Z M

m�0
hx; F�xi d (g (�))

!

= hE�x; xi
Z M

m�0
hx; F�xi d (g (�))�

Z M

m�0
hE�x; F�xi d (g (�))

=

Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

for any x 2 H with kxk = 1 and � 2 [m;M ] :
Utilising (3.260)-(3.262) we deduce the desired result (3.258).

Remark 232 In particular, if we take B = A; then we get from (3.258)
the equality

hf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xi (3.263)

=

Z M

m�0

 Z M

m�0
[hE�x; xi hx;E�xi � hE�x;E�xi] d (g (�))

!
d (f (�))

for any x 2 H with kxk = 1; which for g = f produces the representation
result for the variance of the selfadjoint operator f (A) ;

kf (A)xk2 � hf (A)x; xi2 (3.264)

=

Z M

m�0

 Z M

m�0
[hE�x; xi hx;E�xi � hE�x;E�xi] d (f (�))

!
d (f (�))

for any x 2 H with kxk = 1:
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3.8.2 Bounds for f of Bounded Variation

The �rst vectorial Grüss�type inequality when one of the functions is of
bounded variation is as follows:

Theorem 233 (Dragomir, 2010, [36]) Let A;B be two selfadjoint op-
erators in the Hilbert space H with the spectra Sp (A) ; Sp (B) � [m;M ]
for some real numbers m < M and let fE�g� be the spectral family of A
and fF�g� the spectral family of B: Also, assume that f : [m;M ] ! C is
continuous and of bounded variation on [m;M ] :
1. If g : [m;M ]! C is continuous and of bounded variation on [m;M ] ;

then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.265)

� max
(�;�)2[m;M ]2

jhE�x; xi hx; F�xi � hE�x; F�xij
M_
m

(g)
M_
m

(f)

� max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

� max
�2[m;M ]

[hF�x; xi h(1H � F�)x; xi]1=2
M_
m

(g)

M_
m

(f) � 1

4

M_
m

(g)

M_
m

(f)

for any x 2 H with kxk = 1:
2. If g : [m;M ]! C is Lipschitzian with the constant K > 0 on [m;M ] ;

then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.266)

� K max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�

#
M_
m

(f)

� K
M_
m

(f) max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 d�

� 1

2
K

M_
m

(f) h(M1H �B)x; xi1=2 h(B �m1H)x; xi1=2

� 1

4
K (M �m)

M_
m

(f)

for any x 2 H with kxk = 1:
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3. If g : [m;M ] ! R is continuous and monotonic nondecreasing on
[m;M ] ; then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.267)

� max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�)

#
M_
m

(f)

�
M_
m

(f) max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 dg (�)

� 1

2

M_
m

(f) h(g (M) 1H � g (B))x; xi1=2 h(g (B)� g (m) 1H)x; xi1=2

� 1

4
[g (M)� g (m)]

M_
m

(f)

for any x 2 H with kxk = 1:

Proof. 1. It is well known that if p : [a; b] ! C is a continuous function,
v : [a; b] ! C is of bounded variation then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds

�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ; (3.268)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Now, on utilizing the property (3.268) and the identity (3.258) we have

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.269)

� max
�2[m;M ]

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

�����
M_
m

(f)

for any x 2 [m;M ] :
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The same inequality (3.268) produces the bound

max
�2[m;M ]

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� (3.270)

� max
�2[m;M ]

�
max

�2[m;M ]
jhE�x; xi hx; F�xi � hE�x; F�xij

� M_
m

(f)

= max
(�;�)2[m;M ]2

jhE�x; xi hx; F�xi � hE�x; F�xij
M_
m

(f)

for any x 2 [m;M ] :
By making use of (3.269) and (3.270) we deduce the �rst part of (3.265).
Further, we notice that by the Schwarz inequality in H we have for any

u; v; e 2 H with kek = 1 that

jhu; vi � hu; ei he; vij �
�
kuk2 � jhu; eij2

�1=2 �
kvk2 � jhv; eij2

�1=2
:

(3.271)
Indeed, if we write Schwarz�s inequality for the vectors u � hu; ei e and
v � hv; ei e we have

jhu� hu; ei e; v � hv; ei eij � ku� hu; ei ek kv � hv; ei ek

which, by performing the calculations, is equivalent with (3.271).
Now, on utilizing (3.271), we can state that

jhE�x; xi hx; F�xi � hE�x; F�xij (3.272)

�
�
kE�xk2 � jhE�x; xij2

�1=2 �
kF�xk2 � jhF�x; xij2

�1=2
for any �; � 2 [m;M ] :
Since E� and F� are projections and E�; F� � 0 then

kE�xk2 � jhE�x; xij2 = hE�x; xi � hE�x; xi2 (3.273)

= hE�x; xi h(1H � E�)x; xi �
1

4

and

kF�xk2 � jhF�x; xij2 = hF�x; xi h(1H � F�)x; xi �
1

4
(3.274)

for any �; � 2 [m;M ] and x 2 H with kxk = 1:
Now, if we use (3.272)-(3.274) then we get the second part of (3.265).
2. Further, recall that if p : [a; b] ! C is a Riemann integrable function

and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;
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then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt: (3.275)

If we use the inequality (3.275), then we have in the case when g is
Lipschitzian with the constant K > 0 that

max
�2[m;M ]

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� (3.276)

� K max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�

#
for any x 2 H with kxk = 1 and the �rst part of (3.266) is proved.
Further, by employing (3.272)-(3.274) we also get that

max
�2[m;M ]

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d� (3.277)

� max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 d�

for any x 2 H with kxk = 1:
If we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the

spectral representation theorem, then we have successivelyZ M

m�0
(hF�x; xi h(1H � F�)x; xi)1=2 d� (3.278)

�
"Z M

m�0
hF�x; xi d�

#1=2 "Z M

m�0
h(1H � F�)x; xi d�

#1=2

=

"
hF�x; xi�jMm�0 �

Z M

m�0
�d hF�x; xi

#1=2

�
"
h(1H � F�)x; xi�jMm�0 �

Z M

m�0
�d h(1H � F�)x; xi

#
= h(M1H �B)x; xi1=2 h(B �m1H)x; xi1=2 ;

for any x 2 H with kxk = 1:
On employing now (3.276)-(3.278) we deduce the second part of (3.266).
The last part of (3.266) follows by the elementary inequality

�� � 1

4
(�+ �)

2
; �� � 0 (3.279)
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for the choice � = h(M1H �B)x; xi and � = h(B �m1H)x; xi and the
details are omitted.
3. Further, from the theory of Riemann-Stieltjes integral it is also well

known that if p : [a; b] ! C is of bounded variation and v : [a; b] ! R
is continuous and monotonic nondecreasing, then the Riemann-Stieltjes
integrals

R b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����

Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) : (3.280)

Now, if we assume that g is monotonic nondecreasing on [m;M ] ; then
by (3.280) we have that

max
�2[m;M ]

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� (3.281)

� max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�)

#
for any x 2 H with kxk = 1:
Further, by employing (3.272)-(3.274) we also get that

max
�2[m;M ]

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�) (3.282)

� max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 dg (�)

for any x 2 H with kxk = 1: These prove the �rst part of (3.267).
If we use the Cauchy-Bunyakovsky-Schwarz integral inequality for the

Riemann-Stieltjes integral with monotonic nondecreasing integrators and
the spectral representation theorem, then we have successivelyZ M

m�0
(hF�x; xi h(1H � F�)x; xi)1=2 dg (�) (3.283)

�
"Z M

m�0
hF�x; xi dg (�)

#1=2 "Z M

m�0
h(1H � F�)x; xi dg (�)

#1=2

=

"
hF�x; xi g (�)jMm�0 �

Z M

m�0
g (�) d hF�x; xi

#1=2

�
"
h(1H � F�)x; xi g (�)jMm�0 �

Z M

m�0
g (�) d h(1H � F�)x; xi

#1=2
= h(g (M) 1H � g (B))x; xi1=2 h(g (B)� g (m) 1H)x; xi1=2 ;



196 3. Inequalities for the µCeby�ev Functional

for any x 2 H with kxk = 1:
Utilising (3.283) we then deduce the last part of (3.267). The details are

omitted.
Now, in order to provide other results that are similar to the Grüss�type

inequalities stated in the introduction, we can state the following corollary:

Corollary 234 (Dragomir, 2010, [36]) Let A be a selfadjoint operators
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be the spectral family of A: Also, assume
that f : [m;M ]! C is continuous and of bounded variation on [m;M ] :
1. If g : [m;M ]! C is continuous and of bounded variation on [m;M ] ;

then we have the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.284)

� max
(�;�)2[m;M ]2

jhE�x; xi hx;E�xi � hE�x;E�xij
M_
m

(g)
M_
m

(f)

� max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]
M_
m

(g)
M_
m

(f) � 1

4

M_
m

(g)
M_
m

(f)

for any x 2 H with kxk = 1:
2. If g : [m;M ]! C is Lipschitzian with the constant K > 0 on [m;M ] ;

then we have the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.285)

� K max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij d�

#
M_
m

(f)

� K
M_
m

(f) max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

� 1

2
K

M_
m

(f) h(M1H �A)x; xi1=2 h(A�m1H)x; xi1=2

� 1

4
K (M �m)

M_
m

(f)

for any x 2 H with kxk = 1:



3.8 Two Operators Grüss�Type Inequalities 197

3. If g : [m;M ] ! R is continuous and monotonic nondecreasing on
[m;M ] ; then we have the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.286)

� max
�2[m;M ]

"Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij dg (�)

#
M_
m

(f)

�
M_
m

(f) max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]1=2

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 dg (�)

� 1

2

M_
m

(f) h(g (M) 1H � g (A))x; xi1=2 h(g (A)� g (m) 1H)x; xi1=2

� 1

4
[g (M)� g (m)]

M_
m

(f)

for any x 2 H with kxk = 1:

Remark 235 The following inequality for the variance of f (A) under the
assumptions that A is a selfadjoint operators in the Hilbert space H with
the spectrum Sp (A) � [m;M ] for some real numbers m < M , fE�g� is
the spectral family of A and f : [m;M ]! C is continuous and of bounded
variation on [m;M ] can be stated

0 � kf (A)xk2 � hf (A)x; xi2 (3.287)

� max
(�;�)2[m;M ]2

jhE�x; xi hx;E�xi � hE�x;E�xij
"
M_
m

(f)

#2

� max
�2[m;M ]

[hE�x; xi h(1H � E�)x; xi]
"
M_
m

(f)

#2
� 1

4

"
M_
m

(f)

#2
for any x 2 H with kxk = 1:

3.8.3 Bounds for f Lipschitzian

The case when the �rst function is Lipschitzian is as follows:

Theorem 236 (Dragomir, 2010, [36]) Let A;B be two selfadjoint op-
erators in the Hilbert space H with the spectra Sp (A) ; Sp (B) � [m;M ]
for some real numbers m < M and let fE�g� be the spectral family of A
and fF�g� the spectral family of B: Also, assume that f : [m;M ] ! C is
Lipschitzian with the constant L > 0 on [m;M ] :
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1. If g : [m;M ]! C is Lipschitzian with the constant K > 0 on [m;M ] ;
then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.288)

� LK

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�d�

� LK

Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 d�

� LK [h(M1H �A)x; xi h(A�m1H)x; xi]1=2

� [h(M1H �B)x; xi h(B �m1H)x; xi]1=2 �
1

4
LK (M �m)2

for any x 2 H with kxk = 1:
2. If g : [m;M ] ! R is continuous and monotonic nondecreasing on

[m;M ] ; then we have the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.289)

� L

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�) d�

� L

Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 dg (�)

� L [h(M1H �A)x; xi h(A�m1H)x; xi]1=2

� [h(g (M) 1H � g (B))x; xi h(g (B)� g (m) 1H)x; xi]1=2

� 1

4
L (M �m) [g (M)� g (m)]

for any x 2 H with kxk = 1:

Proof. 1. We observe that, on utilizing the property (3.275) and the iden-
tity (3.258) we have

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.290)

� L

Z M

m�0

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� d�
for any x 2 H; kxk = 1:
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By the same property (3.275) we also have�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� (3.291)

� K

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�

for any x 2 H; kxk = 1 and � 2 [m;M ] :
Therefore, by (3.290) and (3.291) we get

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.292)

� LK

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�d�

for any x 2 H; kxk = 1; which proves the �rst inequality in (3.288).
From (3.272)-(3.274) we have

jhE�x; xi hx; F�xi � hE�x; F�xij (3.293)

� [hE�x; xi h(1H � E�)x; xi]1=2 [hF�x; xi h(1H � F�)x; xi]1=2

for any x 2 H; kxk = 1 and �; � 2 [m;M ] :
Integrating on [m;M ]2 the inequality (3.293) and utilizing the Cauchy-

Bunyakowsky-Schwarz integral inequality for the Riemann integral we haveZ M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�d� (3.294)

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 d�

�
"Z M

m�0
hE�x; xi d�

#1=2 "Z M

m�0
h(1H � E�)x; xi d�

#1=2

�
"Z M

m�0
hF�x; xi d�

#1=2 "Z M

m�0
h(1H � F�)x; xi d�

#1=2
:

Integrating by parts and utilizing the spectral representation theorem we
have Z M

m�0
hE�x; xi d� = hE�x; xi�jMm�0 �

Z M

m�0
�d hE�x; xi

= M � hAx; xi = h(M1H �A)x; xi ;



200 3. Inequalities for the µCeby�ev FunctionalZ M

m�0
h(1H � E�)x; xi d� = h(A�m1H)x; xi

and the similar equalities for B; providing the second part of (3.288).
The last part follows from (3.279) and we omit the details.
2. Utilising the inequality (3.280) we have

�����
Z M

m�0
[hE�x; xi hx; F�xi � hE�x; F�xi] d (g (�))

����� (3.295)

�
Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�)

which, together with (3.290), produces the inequality

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.296)

� L

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�) d�

for any x 2 H; kxk = 1:
Now, by utilizing (3.293) and a similar argument to the one outlined

above, we deduce the desired result (3.289) and the details are omitted.
The case of one operator is incorporated in

Corollary 237 (Dragomir, 2010, [36]) Let A be a selfadjoint operators
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be the spectral family of A: Also, assume
that f : [m;M ]! C is Lipschitzian with the constant L > 0 on [m;M ] :
1. If g : [m;M ]! C is Lipschitzian with the constant K > 0 on [m;M ] ;

then we have the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.297)

� LK

Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij d�d�

� LK

 Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

!2
� LK [h(M1H �A)x; xi h(A�m1H)x; xi] �

1

4
LK (M �m)2

for any x 2 H with kxk = 1:
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2. If g : [m;M ] ! R is continuous and monotonic nondecreasing on
[m;M ] ; then we have the inequality

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.298)

� L

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�) d�

� L

Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 dg (�)

� L [h(M1H �A)x; xi h(A�m1H)x; xi]1=2

� [h(g (M) 1H � g (A))x; xi h(g (A)� g (m) 1H)x; xi]1=2

� 1

4
L (M �m) [g (M)� g (m)]

for any x 2 H with kxk = 1:

Remark 238 The following inequality for the variance of f (A) under the
assumptions that A is a selfadjoint operators in the Hilbert space H with
the spectrum Sp (A) � [m;M ] for some real numbers m < M , fE�g� is the
spectral family of A and f : [m;M ] ! C is Lipschitzian with the constant
L > 0 on [m;M ] can be stated

0 � kf (A)xk2 � hf (A)x; xi2 (3.299)

� L2
Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij d�d�

� L2

 Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

!2
� L2 [h(M1H �A)x; xi h(A�m1H)x; xi]

� 1

4
L2 (M �m)2

for any x 2 H with kxk = 1:

3.8.4 Bounds for f Monotonic Nondecreasing

Finally, for the case of two monotonic functions we have the following result
as well:

Theorem 239 (Dragomir, 2010, [36]) Let A;B be two selfadjoint op-
erators in the Hilbert space H with the spectra Sp (A) ; Sp (B) � [m;M ] for
some real numbers m < M and let fE�g� be the spectral family of A and
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fF�g� the spectral family of B: If f; g : [m;M ] ! C are continuous and
monotonic nondecreasing on [m;M ] ; then

jhf (A)x; g (B)xi � hf (A)x; xi hx; g (B)xij (3.300)

�
Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij dg (�) df (�)

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 df (�)

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 dg (�)

� [h(f (M) 1H � f (A))x; xi h(f (A)� f (m) 1H)x; xi]1=2

� [h(g (M) 1H � g (B))x; xi h(g (B)� g (m) 1H)x; xi]1=2

� 1

4
[f (M)� f (m)] [g (M)� g (m)]

for any x 2 H; kxk = 1:

The details of the proof are omitted.
In particular we have:

Corollary 240 (Dragomir, 2010, [36]) Let A be a selfadjoint operators
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be the spectral family of A: If f; g :
[m;M ]! C are continuous and monotonic nondecreasing on [m;M ] ; then

jhf (A)x; g (A)xi � hf (A)x; xi hx; g (A)xij (3.301)

�
Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij dg (�) df (�)

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 df (�)

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 dg (�)

� [h(f (M) 1H � f (A))x; xi h(f (A)� f (m) 1H)x; xi]1=2

� [h(g (M) 1H � g (A))x; xi h(g (A)� g (m) 1H)x; xi]1=2

� 1

4
[f (M)� f (m)] [g (M)� g (m)]

for any x 2 H; kxk = 1:
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In particular, the following inequality for the variance of f (A) in the
case of monotonic nondecreasing functions f holds:

0 � kf (A)xk2 � hf (A)x; xi2 (3.302)

�
Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij df (�) df (�)

�
 Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 df (�)

!2
� [h(f (M) 1H � f (A))x; xi h(f (A)� f (m) 1H)x; xi]

� 1

4
[f (M)� f (m)]2

for any x 2 H; kxk = 1:

3.8.5 Applications

By choosing di¤erent examples of elementary functions into the above in-
equalities, one can obtain various Grüss�type inequalities of interest.
For instance, if we choose f; g : (0;1)! (0;1) with f (t) = tp; g (t) = tq

and p; q > 0; then for any selfadjoint operators A;B with Sp (A) ; Sp (B) �
[m;M ] � (0;1) we get from (3.300) the inequalities:

jhApx;Bqxi � hApx; xi hBqx; xij (3.303)

� pq

Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij�q�1�p�1d�d�

� pq

Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 �p�1d�

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 �q�1d�

� [h(Mp1H �Ap)x; xi h(Ap �mp1H)x; xi]1=2

� [h(Mq1H �Bq)x; xi h(Bq �mq1H)x; xi]1=2

� 1

4
(Mp �mp) (Mq �mq)

for any x 2 H with kxk = 1; where fE�g� is the spectral family of A and
fF�g� is the spectral family of B:
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When B = A then by the µCeby�ev�s inequality for functions of same
monotonicity the inequality (3.303) becomes

0 � hApx;Aqxi � hApx; xi hAqx; xi (3.304)

� pq

Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij�q�1�p�1d�d�

� pq

Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 �p�1d�

�
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 �q�1d�

� [h(Mp1H �Ap)x; xi h(Ap �mp1H)x; xi]1=2

� [h(Mq1H �Bq)x; xi h(Bq �mq1H)x; xi]1=2

� 1

4
(Mp �mp) (Mq �mq)

for any x 2 H with kxk = 1 and p; q > 0:
Now. de�ne the coe¢ cients

�p := p�

8<:
Mp�1 �mp�1 if p � 1

M1�p�m1�p

M1�pm1�p if 0 < p < 1:

(3.305)

On utilizing the inequality (3.288) for the same power functions consid-
ered above, we can state the inequality

jhApx;Bqxi � hApx; xi hBqx; xij (3.306)

� �p�q
Z M

m�0

Z M

m�0
jhE�x; xi hx; F�xi � hE�x; F�xij d�d�

� �p�q
Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

�
Z M

m�0
[hF�x; xi h(1H � F�)x; xi]1=2 d�

� �p�q [h(M1H �A)x; xi h(A�m1H)x; xi]1=2

� [h(M1H �B)x; xi h(B �m1H)x; xi]1=2 �
1

4
�p�q (M �m)2

for any x 2 H with kxk = 1 and p; q > 0:
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In particular, for B = A we have

0 � hApx;Aqxi � hApx; xi hAqx; xi (3.307)

� �p�q
Z M

m�0

Z M

m�0
jhE�x; xi hx;E�xi � hE�x;E�xij d�d�

� �p�q

 Z M

m�0
[hE�x; xi h(1H � E�)x; xi]1=2 d�

!2
� �p�q [h(M1H �A)x; xi h(A�m1H)x; xi] �

1

4
�p�q (M �m)2

for any x 2 H with kxk = 1 and p; q > 0:
Similar results can be stated if p < 0 or q < 0: However the details are

left to the interest reader.
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4
Inequalities of Ostrowski Type

4.1 Introduction

Ostrowski�s type inequalities provide sharp error estimates in approximat-
ing the value of a function by its integral mean. They can be utilized to
obtain a priory error bounds for di¤erent quadrature rules in approximating
the Riemann integral by di¤erent Riemann sums. They also shows, in gen-
eral, that the mid-point rule provides the best approximation in the class
of all Riemann sums sampled in the interior points of a given partition.
As revealed by a simple search in the data baseMathSciNet of the Amer-

ican Mathematical Society with the key words "Ostrowski" and "inequal-
ity" in the title, an exponential evolution of research papers devoted to
this result has been registered in the last decade. There are now at least
280 papers that can be found by performing the above search. Numer-
ous extensions, generalisations in both the integral and discrete case have
been discovered. More general versions for n-time di¤erentiable functions,
the corresponding versions on time scales, for vector valued functions or
multiple integrals have been established as well. Numerous applications in
Numerical Analysis, Probability Theory and other �elds have been also
given.
In the present chapter we present some recent results obtained by the

author in extending Ostrowski inequality in various directions for continu-
ous functions of selfadjoint operators in complex Hilbert spaces. As far as
we know, the obtained results are new with no previous similar results ever
obtained in the literature.
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Applications for mid-point inequalities and some elementary functions
of operators such as the power function, the logarithmic and exponential
functions are provided as well.

4.2 Scalar Ostrowski�s Type Inequalities

In the scalar case, comparison between functions and integral means are
incorporated in Ostrowski type inequalities as mentioned below.
The �rst result in this direction is known in the literature as Ostrowski�s

inequality [44].

Theorem 241 Let f : [a; b]! R be a di¤erentiable function on (a; b) with
the property that jf 0 (t)j �M for all t 2 (a; b). Then�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
241
4
+

 
x� a+b

2

b� a

!235 (b� a)M (4.1)

for all x 2 [a; b]. The constant 1
4 is the best possible in the sense that it

cannot be replaced by a smaller quantity..

The following Ostrowski type result for absolutely continuous functions
holds (see [34] �[36]).

Theorem 242 Let f : [a; b]! R be absolutely continuous on [a; b]. Then,
for all x 2 [a; b], we have:�����f (x)� 1

b� a

Z b

a

f (t) dt

�����

�

8>>>>>>>>>><>>>>>>>>>>:

�
1
4 +

�
x� a+b

2

b�a

�2�
(b� a) kf 0k1 if f 0 2 L1 [a; b] ;

1

(p+1)
1
p

��
x�a
b�a

�p+1
+
�
b�x
b�a

�p+1� 1p
(b� a)

1
p kf 0kq if f 0 2 Lq [a; b] ;

1
p +

1
q = 1; p > 1;h

1
2 +

���x� a+b
2

b�a

���i kf 0k1 ;
(4.2)

where k�kr (r 2 [1;1]) are the usual Lebesgue norms on Lr [a; b], i.e.,

kgk1 := ess sup
t2[a;b]

jg (t)j

and

kgkr :=
 Z b

a

jg (t)jr dt
! 1

r

; r 2 [1;1):
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The constants 14 ,
1

(p+1)
1
p
and 1

2 respectively are sharp in the sense presented

in Theorem 241.

The above inequalities can also be obtained from the Fink result in [39]
on choosing n = 1 and performing some appropriate computations.
If one drops the condition of absolute continuity and assumes that f is

Hölder continuous, then one may state the result (see for instance [32] and
the references therein for earlier contributions):

Theorem 243 Let f : [a; b]! R be of r �H�Hölder type, i.e.,

jf (x)� f (y)j � H jx� yjr ; for all x; y 2 [a; b] ; (4.3)

where r 2 (0; 1] and H > 0 are �xed. Then, for all x 2 [a; b] ; we have the
inequality: �����f (x)� 1

b� a

Z b

a

f (t) dt

����� (4.4)

� H

r + 1

"�
b� x
b� a

�r+1
+

�
x� a
b� a

�r+1#
(b� a)r :

The constant 1
r+1 is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski�s inequality for Lipschitzian functions (with L instead
of H) (see for instance [24])�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
241
4
+

 
x� a+b

2

b� a

!235 (b� a)L: (4.5)

Here the constant 14 is also best.
Moreover, if one drops the condition of the continuity of the function,

and assumes that it is of bounded variation, then the following result may
be stated (see [23]).

Theorem 244 Assume that f : [a; b] ! R is of bounded variation and

denote by
bW
a
(f) its total variation. Then

�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
"
1

2
+

�����x� a+b
2

b� a

�����
#

b_
a

(f) (4.6)

for all x 2 [a; b]. The constant 12 is the best possible.
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If we assume more about f , i.e., f is monotonically increasing, then the
inequality (4.6) may be improved in the following manner [12] (see also the
monograph [33]).

Theorem 245 Let f : [a; b] ! R be monotonic nondecreasing. Then for
all x 2 [a; b], we have the inequality:�����f (x)� 1

b� a

Z b

a

f (t) dt

����� (4.7)

� 1

b� a

(
[2x� (a+ b)] f (x) +

Z b

a

sgn (t� x) f (t) dt
)

� 1

b� a f(x� a) [f (x)� f (a)] + (b� x) [f (b)� f (x)]g

�
"
1

2
+

�����x� a+b
2

b� a

�����
#
[f (b)� f (a)] :

All the inequalities in (4.7) are sharp and the constant 12 is the best possible.

For other scalar Ostrowski�s type inequalities, see [2]-[4] and [25].

4.3 Ostrowski�s type Inequalities for Hölder
Continuous Functions

4.3.1 Introduction

Let U be a selfadjoint operator on the Hilbert space (H; h:; :i) with the
spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and let fE�g�2R be its spectral family. Then for any continuous
function f : [m;M ]! C, it is well known that we have the following spectral
representation theorem in terms of the Riemann-Stieltjes integral :

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; (4.8)

for any x 2 H with kxk = 1: The function gx (�) := hE�x; xi is monotonic
nondecreasing on the interval [m;M ] and

gx (m� 0) = 0 and gx (M) = 1 (4.9)

for any x 2 H with kxk = 1:
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Utilising the representation (4.8) and the following Ostrowski�s type in-
equality for the Riemann-Stieltjes integral obtained by the author in [28]:�����f (s) [u (b)� u (a)]�

Z b

a

f (t) du (t)

����� (4.10)

� L

�
1

2
(b� a) +

����s� a+ b

2

�����r b_
a

(u)

for any s 2 [a; b] ; provided that f is of r�L�Hölder type on [a; b] (see (4.11)
below), u is of bounded variation on [a; b] and

_b

a
(u) denotes the total

variation of u on [a; b] ; we obtained the following inequality of Ostrowski
type for selfadjoint operators:

Theorem 246 (Dragomir, 2008, [29]) Let A and B be selfadjoint op-
erators with Sp (A) ; Sp (B) � [m;M ] for some real numbers m < M: If
f : [m;M ] �! R is of r � L�Hölder type, i.e., for a given r 2 (0; 1] and
L > 0 we have

jf (s)� f (t)j � L js� tjr for any s; t 2 [m;M ] ; (4.11)

then we have the inequality:

jf (s)� hf (A)x; xij � L

�
1

2
(M �m) +

����s� m+M

2

�����r ; (4.12)

for any s 2 [m;M ] and any x 2 H with kxk = 1.
Moreover, we have

jhf (B) y; yi � hf (A)x; xij (4.13)

� hjf (B)� hf (A)x; xi � 1H j y; yi

� L

�
1

2
(M �m) +

�����B � m+M

2
� 1H

���� y; y��r ;
for any x; y 2 H with kxk = kyk = 1:

With the above assumptions for f;A and B we have the following par-
ticular inequalities of interest:����f �m+M2

�
� hf (A)x; xi

���� � 1

2r
L (M �m)r (4.14)

and

jf (hAx; xi)� hf (A)x; xij � L

�
1

2
(M �m) +

����hAx; xi � m+M

2

�����r ;
(4.15)
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for any x 2 H with kxk = 1.
We also have the inequalities:

jhf (A) y; yi � hf (A)x; xij (4.16)

� hjf (A)� hf (A)x; xi � 1H j y; yi

� L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

���� y; y��r ;
for any x; y 2 H with kxk = kyk = 1;

jh[f (B)� f (A)]x; xij (4.17)

� hjf (B)� hf (A)x; xi � 1H jx; xi

� L

�
1

2
(M �m) +

�����B � m+M

2
� 1H

����x; x��r
and, more particularly,

hjf (A)� hf (A)x; xi � 1H jx; xi (4.18)

� L

�
1

2
(M �m) +

�����A� m+M

2
� 1H

����x; x��r ;
for any x 2 H with kxk = 1:
We also have the norm inequality

kf (B)� f (A)k � L

�
1

2
(M �m) +





B � m+M

2
� 1H





�r : (4.19)

For various generalizations, extensions and related Ostrowski type in-
equalities for functions of one or several variables see the monograph [31]
and the references therein.

4.3.2 More Inequalities of Ostrowski�s Type

The following result holds:

Theorem 247 (Dragomir, 2010, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is of r � L�Hölder type with r 2 (0; 1], then we have the inequality:

jf (s)� hf (A)x; xij � L hjs � 1H �Ajx; xir (4.20)

� L
h
(s� hAx; xi)2 +D2 (A;x)

ir=2
;

for any s 2 [m;M ] and any x 2 H with kxk = 1, where D (A;x) is the
variance of the selfadjoint operator A in x and is de�ned by

D (A;x) :=
�
kAxk2 � hAx; xi2

�1=2
;
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where x 2 H with kxk = 1:

Proof. First of all, by the Jensen inequality for convex functions of selfad-
joint operators (see for instance [40, p. 5]) applied for the modulus, we can
state that

jhh (A)x; xij � hjh (A)jx; xi (M)

for any x 2 H with kxk = 1; where h is a continuous function on [m;M ] :
Utilising the property (M) we then get

jf (s)� hf (A)x; xij = jhf (s) � 1H � f (A)x; xij � hjf (s) � 1H � f (A)jx; xi
(4.21)

for any x 2 H with kxk = 1 and any s 2 [m;M ] :
Since f is of r � L�Hölder type; then for any t; s 2 [m;M ] we have

jf (s)� f (t)j � L js� tjr : (4.22)

If we �x s 2 [m;M ] and apply the property (P) for the inequality (4.22)
and the operator A we get

hjf (s) � 1H � f (A)jx; xi � L hjs � 1H �Ajr x; xi � L hjs � 1H �Ajx; xir
(4.23)

for any x 2 H with kxk = 1 and any s 2 [m;M ] ; where, for the last
inequality we have used the fact that if P is a positive operator and r 2
(0; 1) then, by the Hölder-McCarthy inequality [42],

hP rx; xi � hPx; xir (HM)

for any x 2 H with kxk = 1: This proves the �st inequality in (4.20).
Now, observe that for any bounded linear operator T we have

hjT jx; xi =
D
(T �T )

1=2
x; x

E
� h(T �T )x; xi1=2 = kTxk

for any x 2 H with kxk = 1 which implies that

hjs � 1H �Ajx; xir � ksx�Axkr (4.24)

=
�
s2 � 2s hAx; xi+ kAxk2

�r=2
=
h
(s� hAx; xi)2 + kAxk2 � hAx; xi2

ir=2
for any x 2 H with kxk = 1 and any s 2 [m;M ] :
Finally, on making use of (4.21), (4.23) and (4.24) we deduce the desired

result (4.20).
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Remark 248 If we choose in (4.20) s = m+M
2 ; then we get the sequence

of inequalities����f �m+M2
�
� hf (A)x; xi

���� (4.25)

� L

�����m+M2 � 1H �A
����x; x�r

� L

"�
m+M

2
� hAx; xi

�2
+D2 (A;x)

#r=2

� L

�
1

4
(M �m)2 +D2 (A;x)

�r=2
� 1

2r
L (M �m)r

for any x 2 H with kxk = 1; since, obviously,�
m+M

2
� hAx; xi

�2
� 1

4
(M �m)2

and
D2 (A;x) � 1

4
(M �m)2

for any x 2 H with kxk = 1:
We notice that the inequality (4.25) provides a re�nement for the result

(4.14) above.

The best inequality we can get from (4.20) is incorporated in the follow-
ing:

Corollary 249 (Dragomir, 2010, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is of r � L�Hölder type with r 2 (0; 1], then we have the inequality

jf (hAx; xi)� hf (A)x; xij � L hjhAx; xi � 1H �Ajx; xir � LDr (A;x) ;
(4.26)

for any x 2 H with kxk = 1.

The inequality (4.20) may be used to obtain other inequalities for two
selfadjoint operators as follows:

Corollary 250 (Dragomir, 2010, [30]) Let A and B be selfadjoint op-
erators with Sp (A) ; Sp (B) � [m;M ] for some real numbers m < M: If
f : [m;M ] �! R is of r � L�Hölder type with r 2 (0; 1], then we have the
inequality

jhf (B) y; yi � hf (A)x; xij (4.27)

� L
h
(hBy; yi � hAx; xi)2 +D2 (A;x) +D2 (B; y)

ir=2
for any x; y 2 H with kxk = kyk = 1:
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Proof. If we apply the property (P) to the inequality (4.20) and for the
operator B; then we get

hjf (B)� hf (A)x; xi � 1H j y; yi (4.28)

� L

�h
(B � hAx; xi � 1H)2 +D2 (A;x) � 1H

ir=2
y; y

�
for any x; y 2 H with kxk = kyk = 1:
Utilising the inequality (M) we also have that

jf (hBy; yi)� hf (A)x; xij � hjf (B)� hf (A)x; xi � 1H j y; yi (4.29)

for any x; y 2 H with kxk = kyk = 1:
Now, by the Hölder-McCarthy inequality (HM) we also have�h

(B � hAx; xi � 1H)2 +D2 (A;x) � 1H
ir=2

y; y

�
(4.30)

�
Dh
(B � hAx; xi � 1H)2 +D2 (A;x) � 1H

i
y; y
Er=2

=
�
(hBy; yi � hAx; xi)2 +D2 (A;x) +D2 (B; y)

�r=2
for any x; y 2 H with kxk = kyk = 1:
On making use of (4.28)-(4.30) we deduce the desired result (4.27).

Remark 251 Since

D2 (A;x) � 1

4
(M �m)2 ; (4.31)

then we obtain from (4.27) the following vector inequalities

jhf (A) y; yi � hf (A)x; xij (4.32)

� L
h
(hAy; yi � hAx; xi)2 +D2 (A;x) +D2 (A; y)

ir=2
� L

�
(hAy; yi � hAx; xi)2 + 1

2
(M �m)2

�r=2
;

and

jh[f (B)� f (A)]x; xij (4.33)

� L
h
h(B �A)x; xi2 +D2 (A;x) +D2 (B;x)

ir=2
� L

�
h(B �A)x; xi2 + 1

2
(M �m)2

�r=2
:

In particular, we have the norm inequality

kf (B)� f (A)k � L

�
kB �Ak2 + 1

2
(M �m)2

�r=2
: (4.34)
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The following result provides convenient examples for applications:

Corollary 252 (Dragomir, 2010, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is absolutely continuous on [m;M ], then we have the inequality:

jf (s)� hf (A)x; xij (4.35)

�

8>><>>:
hjs � 1H �Ajx; xi kf 0k[m;M ];1 if f 0 2 L1 [m;M ] ;

hjs � 1H �Ajx; xi1=q kf 0k[m;M ];p

if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1;

�

8>>><>>>:
h
(s� hAx; xi)2 +D2 (A;x)

i1=2
kf 0k[m;M ];1 if f 0 2 L1 [m;M ] ;

h
(s� hAx; xi)2 +D2 (A;x)

i 1
2q kf 0k[m;M ];p

if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1;

for any s 2 [m;M ] and any x 2 H with kxk = 1; where kf 0k[m;M ];` are the
Lebesgue norms, i.e.,

kf 0k[m;M ];` :=

8><>:
ess supt2[m;M ] jf 0 (t)j if ` =1

�RM
m
jf 0 (t)jp dt

�1=p
if ` = p � 1:

Proof. Follows from Theorem 247 and on tacking into account that if f :
[m;M ] �! R is absolutely continuous on [m;M ] ; then for any s; t 2 [m;M ]
we have

jf (s)� f (t)j

=

����Z s

t

f 0 (u) du

����
�

8><>:
js� tj ess supt2[m;M ] jf 0 (t)j if f 0 2 L1 [m;M ]

js� tj1=q
�RM

m
jf 0 (t)jp dt

�1=p
if f 0 2 Lp [m;M ] ; p > 1; 1p +

1
q = 1:

Remark 253 It is clear that all the inequalities from Corollaries 249, 250
and Remark 251 may be stated for absolutely continuous functions. How-
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ever, we mention here only one, namely

jf (hAx; xi)� hf (A)x; xij (4.36)

�

8>><>>:
hjhAx; xi � 1H �Ajx; xi kf 0k[m;M ];1 if f 0 2 L1 [m;M ]

hjhAx; xi � 1H �Ajx; xi1=q kf 0k[m;M ];p

if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1;

�

8>><>>:
D (A;x) kf 0k[m;M ];1 if f 0 2 L1 [m;M ]

D1=q (A;x) kf 0k[m;M ];p

if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1:

4.3.3 The Case of (';�)�Lipschitzian Functions
The following lemma may be stated.

Lemma 254 Let u : [a; b] ! R and ';� 2 R be such that � > ': The
following statements are equivalent:

(i) The function u�'+�
2 �e; where e (t) = t; t 2 [a; b] ; is 12 (�� ')�Lipschitzian;

(ii) We have the inequality:

' � u (t)� u (s)
t� s � � for each t; s 2 [a; b] with t 6= s; (4.37)

(iii) We have the inequality:

' (t� s) � u (t)�u (s) � � (t� s) for each t; s 2 [a; b] with t > s:
(4.38)

We can introduce the following class of functions, see also [41]:

De�nition 255 The function u : [a; b] ! R which satis�es one of the
equivalent conditions (i) �(iii) is said to be (';�)�Lipschitzian on [a; b] :

Utilising Lagrange�s mean value theorem, we can state the following result
that provides practical examples of (';�)�Lipschitzian functions.

Proposition 256 Let u : [a; b] ! R be continuous on [a; b] and di¤eren-
tiable on (a; b) : If

�1 < 
 := inf
t2(a;b)

u0 (t) ; sup
t2(a;b)

u0 (t) =: � <1 (4.39)

then u is (
;�)�Lipschitzian on [a; b] :

The following result can be stated:
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Proposition 257 (Dragomir, 2010, [30]) Let A be a selfadjoint opera-
tor with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �!
R is (
;�)�Lipschitzian on [m;M ] ; then we have the inequality

jf (hAx; xi)� hf (A)x; xij � 1

2
(�� 
) hjhAx; xi � 1H �Ajx; xi (4.40)

� 1

2
(�� 
)D (A;x) ;

for any x 2 H with kxk = 1.

Proof. Follows by Corollary 249 on taking into account that in this case
we have r = 1 and L = 1

2 (�� 
) :
We can use the result (4.40) for the particular case of convex functions

to provide an interesting reverse inequality for the Jensen�s type operator
inequality due to Mond and Peµcaríc [43] (see also [40, p. 5]):

Theorem 258 (Mond-Peµcaríc, 1993, [43]) Let A be a selfadjoint op-
erator on the Hilbert space H and assume that Sp (A) � [m;M ] for some
scalars m;M with m < M: If f is a convex function on [m;M ] ; then

f (hAx; xi) � hf (A)x; xi (MP)

for each x 2 H with kxk = 1:

Corollary 259 (Dragomir, 2010, [30]) With the assumptions of Theo-
rem 258 we have the inequality

(0 �) hf (A)x; xi � f (hAx; xi) (4.41)

� 1

2

�
f 0� (M)� f 0+ (m)

�
hjhAx; xi � 1H �Ajx; xi

� 1

2

�
f 0� (M)� f 0+ (m)

�
D (A;x) � 1

4

�
f 0� (M)� f 0+ (m)

�
(M �m)

for each x 2 H with kxk = 1:

Proof. Follows by Proposition 257 on taking into account that

f 0+ (m) (t� s) � f (t)� f (s) � f 0� (M) (t� s)

for each s; t with the property that M > t > s > m:
The following result may be stated as well:

Proposition 260 (Dragomir, 2010, [30]) Let A be a selfadjoint opera-
tor with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �!
R is (
;�)�Lipschitzian on [m;M ] ; then we have the inequality

jf (hAx; xi)� hf (A)x; xij (4.42)

� 1

2
(�� 
)

�
1

2
(M �m) +

����hAx; xi � m+M

2

�����
for any x 2 H with kxk = 1.
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The following particular case for convex functions holds:

Corollary 261 (Dragomir, 2010, [30]) With the assumptions of Theo-
rem 258 we have the inequality

(0 �) hf (A)x; xi � f (hAx; xi) (4.43)

� 1

2

�
f 0� (M)� f 0+ (m)

� �1
2
(M �m) +

����hAx; xi � m+M

2

�����
for each x 2 H with kxk = 1:

4.3.4 Related Results

In the previous sections we have compared amongst other the following
quantities

f

�
m+M

2

�
and f (hAx; xi)

with hf (A)x; xi for a selfadjoint operator A on the Hilbert space H with
Sp (A) � [m;M ] for some real numbers m < M; f : [m;M ] �! R a
function of r � L�Hölder type with r 2 (0; 1] and x 2 H with kxk = 1:
Since, obviously,

m � 1

M �m

Z M

m

f (t) dt �M;

then is also natural to compare 1
M�m

RM
m
f (t) dt with hf (A)x; xi under

the same assumptions for f;A and x:
The following result holds:

Theorem 262 (Dragomir, 2010, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
is of r � L�Hölder type with r 2 (0; 1], then we have the inequality:����� 1

M �m

Z M

m

f (s) dt� hf (A)x; xi
����� (4.44)

� 1

r + 1
L (M �m)r

�
"*�

M � 1H �A
M �m

�r+1
x; x

+
+

*�
A�m � 1H
M �m

�r+1
x; x

+#

� 1

r + 1
L (M �m)r ;

for any x 2 H with kxk = 1:
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In particular, if f : [m;M ] �! R is Lipschitzian with a constant K; then����� 1

M �m

Z M

m

f (s) dt� hf (A)x; xi
����� (4.45)

� K (M �m)
"
1

4
+

1

(M �m)2

 
D2 (A;x) +

�
hAx; xi � m+M

2

�2!#

� 1

2
K (M �m)

for any x 2 H with kxk = 1:

Proof. We use the following Ostrowski�s type result (see for instance [31,
p. 3]) written for the function f that is of r�L�Hölder type on the interval
[m;M ] : ����� 1

M �m

Z M

m

f (s) dt� f (t)
����� (4.46)

� L

r + 1
(M �m)r

"�
M � t
M �m

�r+1
+

�
t�m
M �m

�r+1#

for any t 2 [m;M ] :
If we apply the properties (P) and (M) then we have successively����� 1

M �m

Z M

m

f (s) dt� hf (A)x; xi
����� (4.47)

�
*����� 1

M �m

Z M

m

f (s) dt� f (A)
�����x; x

+

� L

r + 1
(M �m)r

�
"*�

M � 1H �A
M �m

�r+1
x; x

+
+

*�
A�m � 1H
M �m

�r+1
x; x

+#

which proves the �rst inequality in (4.44).
Utilising the Lah-Ribaríc inequality version for selfadjoint operators A

with Sp (A) � [m;M ] for some real numbers m < M and convex functions
g : [m;M ]! R; namely (see for instance [40, p. 57]):

hg (A)x; xi � M � hAx; xi
M �m g (m) +

hAx; xi �m
M �m g (M)
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for any x 2 H with kxk = 1; then we get for the convex function g (t) :=�
M�t
M�m

�r+1
;

*�
M � 1H �A
M �m

�r+1
x; x

+
� M � hAx; xi

M �m

and for the convex function g (t) :=
�
t�m
M�m

�r+1
;

*�
A�m � 1H
M �m

�r+1
x; x

+
� hAx; xi �m

M �m

for any x 2 H with kxk = 1:
Now, on making use of the last two inequalities, we deduce the second

part of (4.44).
Since

1

2

*�
M � 1H �A
M �m

�2
x; x

+
+

*�
A�m � 1H
M �m

�2
x; x

+

=
1

4
+

1

(M �m)2

 
D2 (A;x) +

�
hAx; xi � m+M

2

�2!

for any x 2 H with kxk = 1; then on choosing r = 1 in (4.44) we deduce
the desired result (4.45).

Remark 263 We should notice from the proof of the above theorem, we
also have the following inequalities in the operator order of B (H)�����f (A)�

 
1

M �m

Z M

m

f (s) dt

!
� 1H

����� (4.48)

� L

r + 1
(M �m)r

"�
M � 1H �A
M �m

�r+1
+

�
A�m � 1H
M �m

�r+1#

� 1

r + 1
L (M �m)r � 1H :

The following particular case is of interest:

Corollary 264 (Dragomir, 2010, [30]) Let A be a selfadjoint operator
with Sp (A) � [m;M ] for some real numbers m < M: If f : [m;M ] �! R
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is (
;�)�Lipschitzian on [m;M ] ; then we have the inequality�����hf (A)x; xi � � + 
2 � 1

M �m

Z M

m

f (s) dt+
� + 


2
� m+M

2

����� (4.49)

� 1

2
(�� 
) (M �m)

�
"
1

4
+

1

(M �m)2

 
D2 (A;x) +

�
hAx; xi � m+M

2

�2!#

� 1

4
(�� 
) (M �m) :

Proof. Follows by (4.45) applied for the 1
2 (�� 
)-Lipshitzian function

f � �+

2 � e:

4.3.5 Applications for Some Particular Functions

1. We have the following important inequality in Operator Theory that is
well known as the Hölder-McCarthy inequality:

Theorem 265 (Hölder-McCarthy, 1967, [42]) Let A be a selfadjoint
positive operator on a Hilbert space H. Then
(i) hArx; xi � hAx; xir for all r > 1 and x 2 H with kxk = 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1 and x 2 H with kxk = 1;
(iii) If A is invertible, then hA�rx; xi � hAx; xi�r for all r > 0 and

x 2 H with kxk = 1:

We can provide the following reverse inequalities:

Proposition 266 Let A be a selfadjoint positive operator on a Hilbert
space H and 0 < r < 1: Then

(0 �) hAx; xir � hArx; xi � hjhAx; xi � 1H �Ajx; xir � Dr (A;x) (4.50)

for all x 2 H with kxk = 1:

Proof. Follows from Corollary 249 by taking into account that the function
f (t) = tr is of r � L�Hölder type with L = 1 on any compact interval of
(0;1) :
On making use of Corollary 259 we can state the following result as well:

Proposition 267 Let A be a selfadjoint positive operator on a Hilbert
space H. Assume that Sp (A) � [m;M ] � [0;1):
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(i) We have

0 � hArx; xi � hAx; xir (4.51)

� 1

2
r
�
Mr�1 �mr�1� hjhAx; xi � 1H �Ajx; xi

� 1

2
r
�
Mr�1 �mr�1�D (A;x) � 1

4
r
�
Mr�1 �mr�1� (M �m)

for all r > 1 and x 2 H with kxk = 1;
(ii) We also have

0 � hAx; xir � hArx; xi (4.52)

� 1

2
r

�
M1�r �m1�r

m1�rM1�r

�
hjhAx; xi � 1H �Ajx; xi

� 1

2
r

�
M1�r �m1�r

m1�rM1�r

�
D (A;x) � 1

4
r

�
M1�r �m1�r

m1�rM1�r

�
(M �m)

for all 0 < r < 1 and x 2 H with kxk = 1;
(iii) If A is invertible, then

0 �


A�rx; x

�
� hAx; xi�r (4.53)

� 1

2
r

�
Mr+1 �mr+1

Mr+1mr+1

�
hjhAx; xi � 1H �Ajx; xi

� 1

2
r

�
Mr+1 �mr+1

Mr+1mr+1

�
D (A;x) � 1

4
r

�
Mr+1 �mr+1

Mr+1mr+1

�
(M �m)

for all r > 0 and x 2 H with kxk = 1:

2. Consider the convex function f : (0;1) ! R, f (x) = � lnx: On
utilizing the inequality (4.41), we can state the following result:

Proposition 268 For any positive de�nite operator A on the Hilbert space
H with Sp (A) � [m;M ] � [0;1) we have the inequality

(0 �) ln (hAx; xi)� hln (A)x; xi (4.54)

� 1

2
� M �m
mM

hjhAx; xi � 1H �Ajx; xi

� 1

2
� M �m
mM

D (A;x) � 1

4
� (M �m)2

mM

for any x 2 H with kxk = 1:

Finally, the following result for logarithms also holds:
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Proposition 269 Under the assumptions of Proposition 268 we have the
inequality

(0 �) hA ln (A)x; xi � hAx; xi ln (hAx; xi) (4.55)

� ln
r
M

m
hjhAx; xi � 1H �Ajx; xi

� ln
r
M

m
�D (A;x) � 1

2
(M �m) ln

r
M

m

for any x 2 H with kxk = 1:

Remark 270 On utilizing the results from the previous sections for other
convex functions of interest such as f (x) = ln [(1� x) =x] ; x 2 (0; 1=2) or
f (x) = ln (1 + expx) ; x 2 (�1;1) we can get other interesting operator
inequalities. However, the details are left to the interested reader.

4.4 Other Ostrowski Inequalities for Continuous
Functions

4.4.1 Inequalities for Absolutely Continuous Functions of
Selfadjoint Operators

We start with the following scalar inequality that is of interest in itself
since it provides a generalization of the Ostrowski inequality when upper
and lower bounds for the derivative are provided:

Lemma 271 (Dragomir, 2010, [27]) Let f : [a; b]! R be an absolutely
continuous function whose derivative is bounded above and below on [a; b] ;
i.e., there exists the real constants 
 and �; 
 < � with the property that 
 �
f 0 (s) � � for almost every s 2 [a; b] : Then we have the double inequality

� 1
2
� �� 

b� a

"�
s� b�� a


�� 


�2
� �


�
b� a
�� 


�2#
(4.56)

� f (s)� 1

b� a

Z b

a

f (t) dt

� 1

2
� �� 

b� a

"�
s� a�� b


�� 


�2
� �


�
b� a
�� 


�2#

for any s 2 [a; b] : The inequalities are sharp.
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Proof. We start with Montgomery�s identity

f (s)� 1

b� a

Z b

a

f (t) dt (4.57)

=
1

b� a

Z s

a

(t� a) f 0 (t) dt+ 1

b� a

Z b

s

(t� b) f 0 (t) dt

that holds for any s 2 [a; b] :
Since 
 � f 0 (t) � � for almost every t 2 [a; b] ; then




b� a

Z s

a

(t� a) dt � 1

b� a

Z s

a

(t� a) f 0 (t) dt � �

b� a

Z s

a

(t� a) dt

and

�

b� a

Z b

s

(b� t) dt � 1

b� a

Z b

s

(b� t) f 0 (t) dt � �

b� a

Z b

s

(b� t) dt

for any s 2 [a; b] :
Now, due to the fact thatZ s

a

(t� a) dt = 1

2
(s� a)2 and

Z b

s

(b� t) dt = 1

2
(b� s)2

then by (4.57) we deduce the following inequality that is of interest in itself:

� 1

2 (b� a)

h
� (b� s)2 � 
 (s� a)2

i
(4.58)

� f (s)� 1

b� a

Z b

a

f (t) dt

� 1

2 (b� a)

h
� (s� a)2 � 
 (b� s)2

i
for any s 2 [a; b] :
Further on, if we denote by

A := 
 (s� a)2 � � (b� s)2 and B := � (s� a)2 � 
 (b� s)2

then, after some elementary calculations, we derive that

A = � (�� 
)
�
s� b�� a


�� 


�2
+

�


�� 
 (b� a)
2

and

B = (�� 
)
�
s� a�� b


�� 


�2
� �


�� 
 (b� a)
2

which, together with (4.58), produces the desired result (4.56).
The sharpness of the inequalities follow from the sharpness of some par-

ticular cases outlined below. The details are omitted.
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Corollary 272 With the assumptions of Lemma 271 we have the inequal-
ities

1

2

 (b� a) � 1

b� a

Z b

a

f (t) dt� f (a) � 1

2
� (b� a) (4.59)

and
1

2

 (b� a) � f (b)� 1

b� a

Z b

a

f (t) dt � 1

2
� (b� a) (4.60)

and �����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt

����� � 1

8
(�� 
) (b� a) (4.61)

respectively. The constant 18 is best possible in (4.61).

The proof is obvious from (4.56) on choosing s = a; s = b and s = a+b
2 ;

respectively.

Corollary 273 (Dragomir, 2010, [27]) With the assumptions of Lemma
271 and if, in addition 
 = �� and � = � with �; � > 0 then

1

b� a

Z b

a

f (t) dt� f
�
b� + a�

� + �

�
� 1

2
� ��

�
b� a
� + �

�
(4.62)

and

f

�
a� + b�

� + �

�
� 1

b� a

Z b

a

f (t) dt � 1

2
� ��

�
b� a
� + �

�
: (4.63)

The proof follows from (4.56) on choosing s = b�+a�
�+� 2 [a; b] and s =

a�+b�
�+� 2 [a; b] ; respectively.

Remark 274 If f : [a; b]! R is absolutely continuous and

kf 0k1 := ess sup
t2[a;b]

jf 0 (t)j <1;

then by choosing 
 = �kf 0k1 and � = kf 0k1 in (4.56) we deduce the clas-
sical Ostrowski�s inequality for absolutely continuous functions. The con-
stant 14 in Ostrowski�s inequality is best possible.

We are able now to state the following result providing upper and lower
bounds for absolutely convex functions of selfadjoint operators in Hilbert
spaces whose derivatives are bounded below and above:

Theorem 275 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] ! R is an absolutely continuous function
such that there exists the real constants 
 and �; 
 < � with the property



4.4 Other Ostrowski Inequalities for Continuous Functions 233

that 
 � f 0 (s) � � for almost every s 2 [m;M ] ; then we have the following
double inequality in the operator order of B (H) :

� 1
2
� �� 

M �m

"�
A� M��m


�� 
 � 1H
�2
� �


�
M �m
�� 


�2
� 1H

#
(4.64)

� f (A)�
 

1

M �m

Z M

m

f (t) dt

!
� 1H

� 1

2
� �� 

M �m

"�
A� m��M


�� 
 � 1H
�2
� �


�
M �m
�� 


�2
� 1H

#
:

The proof follows by the property (P) applied for the inequality (4.56)
in Lemma 271.

Theorem 276 (Dragomir, 2010, [27]) With the assumptions in Theo-
rem 275 we have in the operator order the following inequalities�����f (A)�

 
1

M �m

Z M

m

f (t) dt

!
� 1H

����� (4.65)

�

8>>>>>>>>>>><>>>>>>>>>>>:

�
1
41H +

�
A�m+M

2 1H
M�m

�2�
(M �m) kf 0k1 if f 0 2 L1 [m;M ] ;

1

(p+1)
1
p

��
A�m1H
M�m

�p+1
+
�
M1H�A
M�m

�p+1�
(M �m)

1
q kf 0kq

if f 0 2 Lp [m;M ] ; 1
p +

1
q = 1; p > 1;h

1
21H +

���A�m+M
2 1H

M�m

���i kf 0k1 :
The proof is obvious by the scalar inequalities from Theorem 242 and

the property (P).
The third inequality in (4.65) can be naturally generalized for functions

of bounded variation as follows:

Theorem 277 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] ! R is a continuous function of bounded
variation on [m;M ] ; then we have the inequality�����f (A)�

 
1

M �m

Z M

m

f (t) dt

!
� 1H

����� (4.66)

�
"
1

2
1H +

�����A� m+M
2 1H

M �m

�����
#
M_
m

(f)
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where
M_
m

(f) denotes the total variation of f on [m;M ] : The constant 12 is

best possible in (4.66).

Proof. Follows from the scalar inequality obtained by the author in [23],
namely �����f (s)� 1

b� a

Z b

a

f (t) dt

����� �
"
1

2
+

�����s� a+b
2

b� a

�����
#

b_
a

(f) (4.67)

for any s 2 [a; b] ; where f is a function of bounded variation on [a; b] : The
constant 12 is best possible in (4.67).

4.4.2 Inequalities for Convex Functions of Selfadjoint
Operators

The case of convex functions is important for applications.
We need the following lemma.

Lemma 278 (Dragomir, 2010, [27]) Let f : [a; b] ! R be a di¤eren-
tiable convex function such that the derivative f 0 is continuous on (a; b)
and with the lateral derivative �nite and f 0� (b) 6= f 0+ (a). Then we have the
following double inequality

� 1
2
�
f 0� (b)� f 0+ (a)

b� a (4.68)

�
"�

s�
bf 0� (b)� af 0+ (a)
f 0� (b)� f 0+ (a)

�2
� f 0� (b) f 0+ (a)

�
b� a

f 0� (b)� f 0+ (a)

�2#

� f (s)� 1

b� a

Z b

a

f (t) dt � f 0 (s)

�
s� a+ b

2

�
for any s 2 [a; b] :

Proof. Since f is convex, then by the fact that f 0 is monotonic nonde-
creasing, we have

f 0+ (a)

b� a

Z s

a

(t� a) dt � 1

b� a

Z s

a

(t� a) f 0 (t) dt � f 0 (s)

b� a

Z s

a

(t� a) dt

and

f 0 (s)

b� a

Z b

s

(b� t) dt � 1

b� a

Z b

s

(b� t) f 0 (t) dt �
f 0� (b)

b� a

Z b

s

(b� t) dt

for any s 2 [a; b] ; where f 0+ (a) and f 0� (b) are the lateral derivatives in a
and b respectively.
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Utilising the Montgomery identity (4.57) we then have

f 0+ (a)

b� a

Z s

a

(t� a) dt�
f 0� (b)

b� a

Z b

s

(b� t) dt

� f (s)� 1

b� a

Z b

a

f (t) dt

� f 0 (s)

b� a

Z s

a

(t� a) dt� f 0 (s)

b� a

Z b

s

(b� t) dt

which is equivalent with the following inequality that is of interest in itself

1

2 (b� a)

h
f 0+ (a) (s� a)

2 � f 0� (b) (b� s)
2
i

(4.69)

� f (s)� 1

b� a

Z b

a

f (t) dt � f 0 (s)

�
s� a+ b

2

�
for any s 2 [a; b] :
A simple calculation reveals now that the left side of (4.69) coincides

with the same side of the desired inequality (4.68).
We are able now to sate our result for convex functions of selfadjoint

operators:

Theorem 279 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] ! R is a di¤erentiable convex function
such that the derivative f 0 is continuous on (m;M) and with the lateral
derivative �nite and f 0� (M) 6= f 0+ (m) ; then we have the double inequality
in the operator order of B (H)

� 1
2
�
f 0� (M)� f 0+ (m)

M �m

�
"�

A�
Mf 0� (M)�mf 0+ (m)
f 0� (M)� f 0+ (m)

� 1H
�2
� f 0� (M) f 0+ (m)

�
M �m

f 0� (M)� f 0+ (m)

�2
� 1H

#

� f (A)�
 

1

M �m

Z M

m

f (t) dt

!
� 1H �

�
A� m+M

2
� 1H

�
f 0 (A) :

(4.70)

The proof follows from the scalar case in Lemma 278.

Remark 280 We observe that one can drop the assumption of di¤erentia-
bility of the convex function and will still have the �rst inequality in (4.70).
This follows from the fact that the class of di¤erentiable convex functions
is dense in the class of all convex functions de�ned on a given interval.
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A di¤erent lower bound for the quantity

f (A)�
 

1

M �m

Z M

m

f (t) dt

!
� 1H

expressed only in terms of the operator A and not its second power as
above, also holds:

Theorem 281 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] ! R is a convex function on [m;M ] ; then
we have the following inequality in the operator order of B (H)

f (A)�
 

1

M �m

Z M

m

f (t) dt

!
� 1H (4.71)

�
 

1

M �m

Z M

m

f (t) dt

!
� 1H

� f (M) (M � 1H �A) + f (m) (A�m � 1H)
M �m :

Proof. It su¢ ces to prove for the case of di¤erentiable convex functions
de�ned on (m;M) :
So, by the gradient inequality we have that

f (t)� f (s) � (t� s) f 0 (s)

for any t; s 2 (m;M) :
Now, if we integrate this inequality over s 2 [m;M ] we get

(M �m) f (t)�
Z M

m

f (s) ds (4.72)

�
Z M

m

(t� s) f 0 (s) ds

=

Z M

m

f (s) ds� (M � t) f (M)� (t�m) f (m)

for each s 2 [m;M ] :
Finally, if we apply to the inequality (4.72) the property (P), we deduce

the desired result (4.71).
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Corollary 282 (Dragomir, 2010, [27]) With the assumptions of Theo-
rem 281 we have the following double inequality in the operator order

f (m) + f (M)

2
� 1H (4.73)

� 1

2

�
f (A) +

f (M) (M � 1H �A) + f (m) (A�m � 1H)
M �m

�
�
 

1

M �m

Z M

m

f (t) dt

!
� 1H :

Proof. The second inequality is equivalent with (4.71).
For the �rst inequality, we observe, by the convexity of f we have that

f (M) (t�m) + f (m) (M � t)
M �m � f (t)

for any t 2 [m;M ] ; which produces the operator inequality

f (M) (A�m � 1H) + f (m) (M � 1H �A)
M �m � f (A) : (4.74)

Now, if in both sides of (4.74) we add the same quantity

f (M) (M � 1H �A) + f (m) (A�m � 1H)
M �m

and perform the calculations, then we obtain the �rst part of (4.73) and
the proof is complete.

4.4.3 Some Vector Inequalities

The following result holds:

Theorem 283 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
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an absolutely continuous function on [m;M ], then we have the inequalities

jf (s) hx; yi � hf (A)x; yij (4.75)

�
M_
m�0

�

E(�)x; y

��

�

8>><>>:
�
1
2 (M �m) +

��s� m+M
2

��� kf 0k1 if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��s� m+M
2

���1=q kf 0kp if f 0 2 Lp [m;M ] ; p > 1;
1
p +

1
q = 1;

� kxk kyk

�

8>><>>:
�
1
2 (M �m) +

��s� m+M
2

��� kf 0k1 if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��s� m+M
2

���1=q kf 0kp if f 0 2 Lp [m;M ] ; p > 1;
1
p +

1
q = 1;

for any x; y 2 H and s 2 [m;M ] :

Proof. Since f is absolutely continuous, then we have

jf (s)� f (t)j (4.76)

=

����Z t

s

f 0 (u) du

���� � ����Z t

s

jf 0 (u)j du
����

�

8<:
jt� sj kf 0k1 if f 0 2 L1 [m;M ]

jt� sj1=q kf 0kp if f 0 2 Lp [m;M ] ; p > 1; 1p +
1
q = 1;

for any s; t 2 [m;M ] :
It is well known that if p : [a; b] ! C is a continuous functions and

v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds

�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ;

where
b_
a

(v) denotes the total variation of v on [a; b] :
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Now, by the above property of the Riemann-Stieltjes integral we have
from the representation (4.82) that

jf (s) hx; yi � hf (A)x; yij (4.77)

=

�����
Z M

m�0
[f (s)� f (t)] d (hEtx; yi)

�����
� max
t2[m;M ]

jf (s)� f (t)j
M_
m�0

�

E(�)x; y

��
�

M_
m�0

�

E(�)x; y

��

�

8>><>>:
maxt2[m;M ] jt� sj kf 0k1 if f 0 2 L1 [m;M ]

maxt2[m;M ] jt� sj1=q kf 0kp
if f 0 2 Lp [m;M ] ; p > 1;

1
p +

1
q = 1;

:= F

where
M_
m�0

�

E(�)x; y

��
denotes the total variation of



E(�)x; y

�
and x; y 2

H:
Since, obviously, we have maxt2[m;M ] jt� sj = 1

2 (M �m) +
��s� m+M

2

�� ;
then

F =
M_
m�0

�

E(�)x; y

��
(4.78)

�

8>><>>:
�
1
2 (M �m) +

��s� m+M
2

��� kf 0k1 if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��s� m+M
2

���1=q kf 0kp if f 0 2 Lp [m;M ] ; p > 1;
1
p +

1
q = 1;

for any x; y 2 H:
The last part follows by the Total Variation Schwarz�s inequality and the

details are omitted.
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Corollary 284 (Dragomir, 2010, [27]) With the assumptions of Theo-
rem 283 we have the following inequalities�����f
 
hAx; xi
kxk2

!
hx; yi � hf (A)x; yi

����� (4.79)

� kxk kyk

�

8>>><>>>:
h
1
2 (M �m) +

��� hAx;xikxk2 � m+M
2

���i kf 0k1 if f 0 2 L1 [m;M ]

h
1
2 (M �m) +

��� hAx;xikxk2 � m+M
2

���i1=q kf 0kp if f 0 2 Lp [m;M ] ; p > 1;
1
p +

1
q = 1;

and ����f �m+M2
�
hx; yi � hf (A)x; yi

���� (4.80)

� kxk kyk

�

8>><>>:
1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
21=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ] ; p > 1;

1
p +

1
q = 1;

for any x; y 2 H:

Remark 285 In particular, we obtain from (4.63) the following inequali-
ties

jf (hAx; xi)� hf (A)x; xij (4.81)

�

8>><>>:
�
1
2 (M �m) +

��hAx; xi � m+M
2

��� kf 0k1 if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��hAx; xi � m+M
2

���1=q kf 0kp if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1;

and ����f �m+M

2

�
� hf (A)x; xi

���� (4.82)

�

8>><>>:
1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
21=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ] ; p > 1;

1
p +

1
q = 1;

for any x 2 H with kxk = 1:

Theorem 286 (Dragomir, 2010, [27]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
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numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
r �H-Hölder continuous on [m;M ], then we have the inequality

jf (s) hx; yi � hf (A)x; yij (4.83)

� H
M_
m�0

�

E(�)x; y

�� �1
2
(M �m) +

����s� m+M

2

�����r
� H kxk kyk

�
1

2
(M �m) +

����s� m+M

2

�����r
for any x; y 2 H and s 2 [m;M ] :
In particular, we have the inequalities�����f

 
hAx; xi
kxk2

!
hx; yi � hf (A)x; yi

����� (4.84)

� H kxk kyk
"
1

2
(M �m) +

����� hAx; xikxk2
� m+M

2

�����
#r

and ����f �m+M2
�
hx; yi � hf (A)x; yi

���� � 1

2r
H kxk kyk (M �m)r (4.85)

for any x; y 2 H:

Proof. Utilising the inequality (4.77) and the fact that f is r �H-Hölder
continuous we have successively

jf (s) hx; yi � hf (A)x; yij (4.86)

=

�����
Z M

m�0
[f (s)� f (t)] d (hEtx; yi)

�����
� max
t2[m;M ]

jf (s)� f (t)j
M_
m�0

�

E(�)x; y

��
� H max

t2[m;M ]
js� tjr

M_
m�0

�

E(�)x; y

��
= H

�
1

2
(M �m) +

����s� m+M

2

�����r M_
m�0

�

E(�)x; y

��
for any x; y 2 H and s 2 [m;M ] :
The argument follows now as in the proof of Theorem 283 and the details

are omitted.
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4.4.4 Logarithmic Inequalities

Consider the identric mean

I = I (a; b) :=

8><>:
a if a = b;

1
e

�
bb

aa

� 1
b�a

if a 6= b;

a; b > 0;

and observe that
1

b� a

Z b

a

ln tdt = ln [I (a; b)] :

If we apply Theorem 279 for the convex function f (t) = � ln t; t > 0;
then we can state:

Proposition 287 Let A be a positive selfadjoint operator in the Hilbert
space H with the spectrum Sp (A) � [m;M ] for some positive numbers 0 <
m < M: Then we have the double inequality in the operator order of B (H)

� 1

2mM

�
A2 �mM

�
� ln I (m;M)�1H�lnA �

m+M

2
�A�1�1H : (4.87)

If we denote by G (a; b) :=
p
ab the geometric mean of the positive num-

bers a; b; then we can state the following result as well:

Proposition 288 With the assumptions of Proposition 287, we have the
inequalities in the operator order of B (H)

lnG (m;M) � 1H (4.88)

� 1

2

�
lnA+

lnM � (M � 1H �A) + lnm � (A�m � 1H)
M �m

�
� ln I (m;M) � 1H :

The inequality follows by Corollary 282 applied for the convex function
f (t) = � ln t; t > 0:
Finally, the following vector inequality may be stated

Proposition 289 With the assumptions of Proposition 287, for any x; y 2
H we have the inequalities

jhx; yi ln s� hlnAx; yij (4.89)

� kxk kyk

8><>:
�
1
2 (M �m) +

��s� m+M
2

��� 1
m ;�

1
2 (M �m) +

��s� m+M
2

���1=q Mp�1�mp�1

(p�1)Mp�1mp�1 ;

for any s 2 [m;M ] ; where p > 1; 1p +
1
q = 1:
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4.5 More Ostrowski�s Type Inequalities

4.5.1 Some Vector Inequalities for Functions of Bounded
Variation

The following result holds:

Theorem 290 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ] ! R
is a continuous function of bounded variation on [m;M ], then we have the
inequality

jf (s) hx; yi � hf (A)x; yij (4.90)

� hEsx; xi1=2 hEsy; yi1=2
s_
m

(f)

+ h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2
M_
s

(f)

� kxk kyk
 
1

2

M_
m

(f) +
1

2

�����
s_
m

(f)�
M_
s

(f)

�����
! 

� kxk kyk
M_
m

(f)

!
for any x; y 2 H and for any s 2 [m;M ] :

Proof. We use the following identity for the Riemann-Stieltjes integral
established by the author in 2000 in [10] (see also [31, p. 452]):

[u (b)� u (a)] f (s)�
Z b

a

f (t) du (t) (4.91)

=

Z s

a

[u (t)� u (a)] df (t) +
Z b

s

[u (t)� u (b)] df (t) ;

for any s 2 [a; b] ; provided the Riemann-Stieltjes integral
R b
a
f (t) du (t)

exists.
A simple proof can be done by utilizing the integration by parts formula

and starting from the right hand side of (4.91).
If we choose in (4.91) a = m; b = M and u (t) = hEtx; yi ; then we have

the following identity of interest in itself

f (s) hx; yi� hf (A)x; yi =
Z s

m�0
hEtx; yi df (t)+

Z M

s

h(Et � 1H)x; yi df (t)

(4.92)
for any x; y 2 H and for any s 2 [m;M ] :
It is well known that if p : [a; b] ! C is a continuous function and

v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integral
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a
p (t) dv (t) exists and the following inequality holds

�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising this property we have from (4.92) that

jf (s) hx; yi � hf (A)x; yij (4.93)

�
����Z s

m�0
hEtx; yi df (t)

����+
�����
Z M

s

h(Et � 1H)x; yi df (t)
�����

� max
t2[m;s]

jhEtx; yij
s_
m

(f) + max
t2[s;M ]

jh(Et � 1H)x; yij
M_
s

(f) := T

for any x; y 2 H and for any s 2 [m;M ] :
If P is a nonnegative operator on H; i.e., hPx; xi � 0 for any x 2 H;

then the following inequality is a generalization of the Schwarz inequality
in H

jhPx; yij2 � hPx; xi hPy; yi (4.94)

for any x; y 2 H:
On applying the inequality (4.94) we have

jhEtx; yij � hEtx; xi1=2 hEty; yi1=2

and

jh(1H � Et)x; yij � h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2

for any x; y 2 H and t 2 [m;M ] :
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Therefore

T � max
t2[m;s]

h
hEtx; xi1=2 hEty; yi1=2

i s_
m

(f) (4.95)

+ max
t2[s;M ]

h
h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2

i M_
s

(f)

� max
t2[m;s]

hEtx; xi1=2 max
t2[m;s]

hEty; yi1=2
s_
m

(f)

+ max
t2[s;M ]

h(1H � Et)x; xi1=2 max
t2[s;M ]

h(1H � Et) y; yi1=2
M_
s

(f)

= hEsx; xi1=2 hEsy; yi1=2
s_
m

(f)

+ h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2
M_
s

(f)

:= V

for any x; y 2 H and for any s 2 [m;M ] ; proving the �rst inequality in
(4.90).
Now, observe that

V � max
(

s_
m

(f) ;
M_
s

(f)

)
�
h
hEsx; xi1=2 hEsy; yi1=2 + h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2

i
:

Since

max

(
s_
m

(f) ;

M_
s

(f)

)
=
1

2

M_
m

(f) +
1

2

�����
s_
m

(f)�
M_
s

(f)

�����
and by the Cauchy-Buniakovski-Schwarz inequality for positive real num-
bers a1; b1; a2; b2

a1b1 + a2b2 �
�
a21 + a

2
2

�1=2 �
b21 + b

2
2

�1=2
(4.96)

we have

hEsx; xi1=2 hEsy; yi1=2 + h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2

� [hEsx; xi+ h(1H � Es)x; xi]1=2 [hEsy; yi+ h(1H � Es) y; yi]1=2

= kxk kyk

for any x; y 2 H and s 2 [m;M ] ; then the last part of (4.90) is proven as
well.
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Remark 291 For the continuous function with bounded variation f : [m;M ]!
R if p 2 [m;M ] is a point with the property that

p_
m

(f) =
M_
p

(f)

then from (4.90) we get the interesting inequality

jf (p) hx; yi � hf (A)x; yij � 1

2
kxk kyk

M_
m

(f) (4.97)

for any x; y 2 H:
If the continuous function f : [m;M ] ! R is monotonic nondecreas-

ing and therefore of bounded variation, we get from (4.90) the following
inequality as well

jf (s) hx; yi � hf (A)x; yij (4.98)

� hEsx; xi1=2 hEsy; yi1=2 (f (s)� f (m))

+ h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2 (f (M)� f (s))

� kxk kyk
�
1

2
(f (M)� f (m)) +

����f (s)� f (m) + f (M)

2

�����
(� kxk kyk f (M)� f (m))

for any x; y 2 H and s 2 [m;M ] :
Moreover, if the continuous function f : [m;M ] ! R is nondecreasing

on [m;M ] ; then the equation

f (s) =
f (m) + f (M)

2

has got at least a solution in [m;M ] : In his case we get from (4.98) the
following trapezoidal type inequality����f (m) + f (M)2

hx; yi � hf (A)x; yi
���� � 1

2
kxk kyk (f (M)� f (m)) (4.99)

for any x; y 2 H:

4.5.2 Some Vector Inequalities for Lipshitzian Functions

The following result that incorporates the case of Lipschitzian functions
also holds

Theorem 292 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
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numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
Lipschitzian with the constant L > 0 on [m;M ], i.e.,

jf (s)� f (t)j � L js� tj for any s; t 2 [m;M ] ;

then we have the inequality

jf (s) hx; yi � hf (A)x; yij (4.100)

� L

"�Z s

m�0
hEtx; xi dt

�1=2�Z s

m�0
hEty; yi dt

�1=2

+

 Z M

s

h(1H � Et)x; xi dt
!1=2 Z M

s

h(1H � Et) y; yi dt
!1=235

� L hjA� s1H jx; xi1=2 hjA� s1H j y; yi1=2

� L

�
D2 (A;x) +

�
s kxk2 � hAx; xi

�2�1=4
�
�
D2 (A; y) +

�
s kyk2 � hAy; yi

�2�1=4
for any x; y 2 H and s 2 [m;M ] ; where D (A;x) is the variance of the
selfadjoint operator A in x and is de�ned by

D (A;x) :=
�
kAxk2 kxk2 � hAx; xi2

�1=2
:

Proof. It is well known that if p : [a; b] ! C is a Riemann integrable
function and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (4.92) that

jf (s) hx; yi � hf (A)x; yij

�
����Z s

m�0
hEtx; yi df (t)

����+
�����
Z M

s

h(Et � 1H)x; yi df (t)
�����

� L

"Z s

m�0
jhEtx; yij dt+

Z M

s

jh(Et � 1H)x; yij dt
#
:= LW
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for any x; y 2 H and s 2 [m;M ] :
By utilizing the generalized Schwarz inequality for nonnegative operators

(4.94) and the Cauchy-Buniakovski-Schwarz inequality for the Riemann
integral we have

W �
Z s

m�0
hEtx; xi1=2 hEty; yi1=2 dt (4.101)

+

Z M

s

h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2 dt

�
�Z s

m�0
hEtx; xi dt

�1=2�Z s

m�0
hEty; yi dt

�1=2
+

 Z M

s

h(1H � Et)x; xi dt
!1=2 Z M

s

h(1H � Et) y; yi dt
!1=2

:= Z

for any x; y 2 H and s 2 [m;M ] :
On the other hand, by making use of the elementary inequality (4.96)

we also have

Z �
 Z s

m�0
hEtx; xi dt+

Z M

s

h(1H � Et)x; xi dt
!1=2

(4.102)

�
 Z s

m�0
hEty; yi dt+

Z M

s

h(1H � Et) y; yi dt
!1=2

for any x; y 2 H and s 2 [m;M ] :
Now, observe that, by the use of the representation (4.92) for the con-

tinuous function f : [m;M ] ! R, f (t) = jt� sj where s is �xed in [m;M ]
we have the following identity that is of interest in itself

hjA� s � 1H jx; yi =
Z s

m�0
hEtx; yi dt+

Z M

s

h(1H � Et)x; yi dt (4.103)

for any x; y 2 H:
On utilizing (4.103) for x and then for y we deduce the second part of

(4.100).
Finally, by the well known inequality for the modulus of a bounded linear

operator

hjT jx; xi � kTxk kxk ; x 2 H
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we have

hjA� s � 1H jx; xi1=2 � kAx� sxk1=2 kxk1=2

=
�
kAxk2 � 2s hAx; xi+ s2 kxk2

�1=4
kxk1=2

=

�
kAxk2 kxk2 � hAx; xi2 +

�
s kxk2 � hAx; xi

�2�1=4
=

�
D2 (A;x) +

�
s kxk2 � hAx; xi

�2�1=4
and a similar relation for y. The proof is thus complete.

Remark 293 Since A is a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) � [m;M ] ; then����A� m+M

2
� 1H

���� � M �m
2

1H

giving from (4.100) that����f �m+M2
�
hx; yi � hf (A)x; yi

���� (4.104)

� L

24 Z m+M
2

m�0
hEtx; xi dt

!1=2 Z m+M
2

m�0
hEty; yi dt

!1=2

+

 Z M

m+M
2

h(1H � Et)x; xi dt
!1=2 Z M

m+M
2

h(1H � Et) y; yi dt
!1=235

� L

�����A� m+M

2
� 1H

����x; x�1=2�����A� m+M

2
� 1H

���� y; y�1=2
� 1

2
L (M �m) kxk kyk

for any x; y 2 H:

The particular case of equal vectors is of interest:

Corollary 294 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M . If f : [m;M ]! R is Lipschitzian with the constant L > 0
on [m;M ], then we have the inequality���f (s) kxk2 � hf (A)x; xi��� � L hjA� s � 1H jx; xi (4.105)

� L

�
D2 (A;x) +

�
s kxk2 � hAx; xi

�2�1=2
for any x 2 H and s 2 [m;M ] :
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Remark 295 An important particular case that can be obtained from (4.105)
is the one when s = hAx;xi

kxk2 ; x 6= 0; giving the inequality�����f
 
hAx; xi
kxk2

!
kxk2 � hf (A)x; xi

����� � L

*�����A� hAx; xikxk2
� 1H

�����x; x
+
(4.106)

� LD (A;x) � 1

2
L (M �m) kxk2

for any x 2 H;x 6= 0:

We are able now to provide the following corollary:

Corollary 296 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
a (';�)�Lipschitzian functions on [m;M ] with � > '; then we have the
inequality����hf (A)x; yi � �+ '2 hAx; yi+ �+ '

2
s hx; yi � f (s) hx; yi

���� (4.107)

� 1

2
(�� ')

"�Z s

m�0
hEtx; xi dt

�1=2�Z s

m�0
hEty; yi dt

�1=2

+

 Z M

s

h(1H � Et)x; xi dt
!1=2 Z M

s

h(1H � Et) y; yi dt
!1=235

� 1

2
(�� ') hjA� s1H jx; xi1=2 hjA� s1H j y; yi1=2

� 1

2
(�� ')

�
D2 (A;x) +

�
s kxk2 � hAx; xi

�2�1=4
�
�
D2 (A; y) +

�
s kyk2 � hAy; yi

�2�1=4
for any x; y 2 H:

Remark 297 Various particular cases can be stated by utilizing the in-
equality (4.107), however the details are left to the interested reader.

4.6 Some Vector Inequalities for Monotonic
Functions

The case of monotonic functions is of interest as well. The corresponding
result is incorporated in the following
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Theorem 298 (Dragomir, 2010, [16]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
a continuous monotonic nondecreasing function on [m;M ], then we have
the inequality

jf (s) hx; yi � hf (A)x; yij (4.108)

�
�Z s

m�0
hEtx; xi df (t)

�1=2�Z s

m�0
hEty; yi df (t)

�1=2
+

 Z M

s

h(1H � Et)x; xi df (t)
!1=2 Z M

s

h(1H � Et) y; yi df (t)
!1=2

� hjf (A)� f (s) 1H jx; xi1=2 hjf (A)� f (s) 1H j y; yi1=2

�
�
D2 (f (A) ;x) +

�
f (s) kxk2 � hf (A)x; xi

�2�1=4
�
�
D2 (f (A) ; y) +

�
f (s) kyk2 � hf (A) y; yi

�2�1=4
for any x; y 2 H and s 2 [m;M ] ; where, as above D (f (A) ;x) is the
variance of the selfadjoint operator f (A) in x:

Proof. From the theory of Riemann-Stieltjes integral is well known that
if p : [a; b] ! C is of bounded variation and v : [a; b] ! R is contin-
uous and monotonic nondecreasing, then the Riemann-Stieltjes integralsR b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

On utilizing this property and the representation (4.92) we have succes-
sively

jf (s) hx; yi � hf (A)x; yij (4.109)

�
����Z s

m�0
hEtx; yi df (t)

����+
�����
Z M

s

h(Et � 1H)x; yi df (t)
�����

�
Z s

m�0
jhEtx; yij df (t) +

Z M

s

jh(Et � 1H)x; yij df (t)

�
Z s

m�0
hEtx; xi1=2 hEty; yi1=2 df (t)

+

Z M

s

h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2 df (t)

:= Y;
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for any x; y 2 H and s 2 [m;M ] :
We use now the following version of the Cauchy-Buniakovski-Schwarz

inequality for the Riemann-Stieltjes integral with monotonic nondecreasing
integrators Z b

a

p (t) q (t) dv (t)

!2
�
Z b

a

p2 (t) dv (t)

Z b

a

q2 (t) dv (t)

to get thatZ s

m�0
hEtx; xi1=2 hEty; yi1=2 df (t) �

�Z s

m�0
hEtx; xi df (t)

�1=2�Z s

m�0
hEty; yi df (t)

�1=2
andZ M

s

h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2 df (t)

�
 Z M

s

h(1H � Et)x; xi df (t)
!1=2 Z M

s

h(1H � Et) y; yi df (t)
!1=2

for any x; y 2 H and s 2 [m;M ] :
Therefore

Y �
�Z s

m�0
hEtx; xi df (t)

�1=2�Z s

m�0
hEty; yi df (t)

�1=2
+

 Z M

s

h(1H � Et)x; xi df (t)
!1=2 Z M

s

h(1H � Et) y; yi df (t)
!1=2

�
 Z s

m�0
hEtx; xi df (t) +

Z M

s

h(1H � Et)x; xi df (t)
!1=2

�
 Z s

m�0
hEty; yi df (t) +

Z M

s

h(1H � Et) y; yi df (t)
!1=2

for any x; y 2 H and s 2 [m;M ] ; where, to get the last inequality we have
used the elementary inequality (4.96).
Now, since f is monotonic nondecreasing, on applying the representation

(4.92) for the function jf (�)� f (s)j with s �xed in [m;M ] we deduce the
following identity that is of interest in itself as well:

hjf (A)� f (s)jx; yi =
Z s

m�0
hEtx; yi df (t) +

Z M

s

h(1H � Et)x; yi df (t)

(4.110)
for any x; y 2 H:
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The second part of (4.108) follows then by writing (4.110) for x then by
y and utilizing the relevant inequalities from above.
The last part is similar to the corresponding one from the proof of The-

orem 292 and the details are omitted.
The following corollary is of interest:

Corollary 299 (Dragomir, 2010, [16]) With the assumption of Theo-
rem 298 we have the inequalities����f (m) + f (M)2

hx; yi � hf (A)x; yi
���� (4.111)

�
�����f (A)� f (m) + f (M)

2
� 1H

����x; x�1=2
�
�����f (A)� f (m) + f (M)

2
� 1H

���� y; y�1=2
� 1

2
(f (M)� f (m)) kxk kyk ;

for any x; y 2 H:

Proof. Since f is monotonic nondecreasing, then f (u) 2 [f (m) ; f (M)]
for any u 2 [m;M ] : By the continuity of f it follows that there exists at
list one s 2 [m;M ] such that

f (s) =
f (m) + f (M)

2
:

Now, on utilizing the inequality (4.108) for this s we deduce the �rst in-
equality in (4.111). The second part follows as above and the details are
omitted.

4.6.1 Power Inequalities

We consider the power function f (t) := tp where p 2 R� f0g and t > 0:
The following mid-point inequalities hold:

Proposition 300 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 � m < M .
If p > 0; then for any x; y 2 H�����m+M2

�p
hx; yi � hApx; yi

���� (4.112)

� Bp

�����A� m+M

2
� 1H

����x; x�1=2�����A� m+M

2
� 1H

���� y; y�1=2
� 1

2
Bp (M �m) kxk kyk
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where

Bp = p�

8<: Mp�1 if p � 1

mp�1 if 0 < p < 1;m > 0:

and �����
�
m+M

2

��p
hx; yi �



A�px; y

������ (4.113)

� Cp

�����A� m+M

2
� 1H

����x; x�1=2�����A� m+M

2
� 1H

���� y; y�1=2
� 1

2
Cp (M �m) kxk kyk

where
Cp = pm�p�1 and m > 0:

The proof follows from (4.104).
We can also state the following trapezoidal type inequalities:

Proposition 301 With the assumption of Proposition 300 and if p > 0
we have the inequalities����mp +Mp

2
hx; yi � hApx; yi

���� (4.114)

�
�����Ap � mp +Mp

2
� 1H

����x; x�1=2�����Ap � mp +Mp

2
� 1H

���� y; y�1=2
� 1

2
(Mp �mp) kxk kyk ;

and, for m > 0;����mp +Mp

2mpMp
hx; yi �



A�px; y

����� (4.115)

�
�����A�p � mp +Mp

2mpMp
� 1H

����x; x�1=2�����A�p � mp +Mp

2mpMp
� 1H

���� y; y�1=2
� 1

2

�
Mp �mp

Mpmp

�
kxk kyk ;

for any x; y 2 H:

The proof follows from Corollary 299.

4.6.2 Logarithmic Inequalities

Consider the function f (t) = ln t; t > 0: Denote by A (a; b) := a+b
2 the

arithmetic mean of a; b > 0 and G (a; b) :=
p
ab the geometric mean of

these numbers. We have the following result:
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Proposition 302 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 < m < M .
For any x; y 2 H we have

jlnA (m;M) � hx; yi � hlnAx; yij (4.116)

� 1

m

�����A� m+M

2
� 1H

����x; x�1=2�����A� m+M

2
� 1H

���� y; y�1=2
� 1

2

�
M

m
� 1
�
kxk kyk

and

jlnG (m;M) � hx; yi � hlnAx; yij (4.117)

� hjlnA� lnG (m;M) � 1H jx; xi1=2 hjlnA� lnG (m;M) � 1H j y; yi1=2

� ln
r
M

m
� kxk kyk :

The proof follows by (4.104) and (4.111).

4.7 Ostrowski�s Type Vector Inequalities

4.7.1 Some Vector Inequalities

The following result holds:

Theorem 303 (Dragomir, 2010, [26]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C
is a continuous function of bounded variation on [m;M ], then we have the
inequality�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.118)

� 1

M �m

M_
m

(f) max
t2[m;M ]

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i

� kxk kyk
M_
m

(f)

for any x; y 2 H:
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Proof. Assume that f : [m;M ] ! C is a continuous function on [m;M ] :
Then under the assumptions of the theorem for A and fE�g� ; we have the
following representation

hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi (4.119)

=
1

M �m

Z M

m�0
h[(M � t)Et + (t�m) (Et � 1H)]x; yi df (t)

for any x; y 2 H:
Indeed, integrating by parts in the Riemann-Stieltjes integral and using

the spectral representation theorem we have

1

M �m

Z M

m�0
h[(M � t)Et + (t�m) (Et � 1H)]x; yi df (t)

=

Z M

m�0

�
hEtx; yi �

t�m
M �m hx; yi

�
df (t)

=

�
hEtx; yi �

t�m
M �m hx; yi

�
f (t)

����M
m�0

�
Z M

m�0
f (t) d

�
hEtx; yi �

t�m
M �m hx; yi

�
= �

Z M

m�0
f (t) d hEtx; yi+ hx; yi

1

M �m

Z M

m

f (t) dt

= hx; yi 1

M �m

Z M

m

f (t) dt� hf (A)x; yi

for any x; y 2 H and the equality (4.119) is proved.
It is well known that if p : [a; b] ! C is a continuous function and

v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds�����

Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising this property we have from (4.119) that�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.120)

� 1

M �m max
t2[m;M ]

jh[(M � t)Et + (t�m) (Et � 1H)]x; yij
M_
m

(f)
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for any x; y 2 H:
Now observe that

jh[(M � t)Et + (t�m) (Et � 1H)]x; yij (4.121)

= j(M � t) hEtx; yi+ (t�m) h(Et � 1H)x; yij
� (M � t) jhEtx; yij+ (t�m) jh(Et � 1H)x; yij

for any x; y 2 H and t 2 [m;M ] :
If P is a nonnegative operator on H; i.e., hPx; xi � 0 for any x 2 H;

then the following inequality is a generalization of the Schwarz inequality
in H

jhPx; yij2 � hPx; xi hPy; yi (4.122)

for any x; y 2 H:
On applying the inequality (4.122) we have

(M � t) jhEtx; yij+ (t�m) jh(Et � 1H)x; yij (4.123)

� (M � t) hEtx; xi1=2 hEty; yi1=2

+ (t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2

� max fM � t; t�mg

�
h
hEtx; xi1=2 hEty; yi1=2 + h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2

i
� max fM � t; t�mg

� [hEsx; xi+ h(1H � Es)x; xi]1=2 [hEsy; yi+ h(1H � Es) y; yi]1=2

= max fM � t; t�mg kxk kyk ;

where for the last inequality we used the elementary fact

a1b1 + a2b2 �
�
a21 + a

2
2

�1=2 �
b21 + b

2
2

�1=2
(4.124)

that holds for a1; b1; a2; b2 positive real numbers.
Utilising the inequalities (4.120), (4.121) and (4.123) we deduce the de-

sired result (4.118).
The case of Lipschitzian functions is embodied in the following result:

Theorem 304 (Dragomir, 2010, [26]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! C is
a Lipschitzian function with the constant L > 0 on [m;M ], then we have
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the inequality�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.125)

� L

M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
dt

� 3

4
L (M �m) kxk kyk

for any x; y 2 H:

Proof. It is well known that if p : [a; b] ! C is a Riemann integrable
function and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (4.119) that�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.126)

� L

M �m

Z M

m�0
jh[(M � t)Et + (t�m) (Et � 1H)]x; yij dt:

Since, from the proof of Theorem 303, we have

jh[(M � t)Et + (t�m) (Et � 1H)]x; yij (4.127)

� (M � t) hEtx; xi1=2 hEty; yi1=2

+ (t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2

� max fM � t; t�mg kxk kyk

=

�
1

2
(M �m) +

����t� m+M

2

����� kxk kyk
for any x; y 2 H and t 2 [m;M ] ; then integrating (4.127) and taking into
account that Z M

m

����t� m+M

2

���� dt = 1

4
(M �m)2
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we deduce the desired result (4.125).
Finally for the section, we provide here the case of monotonic nonde-

creasing functions as well:

Theorem 305 (Dragomir, 2010, [26]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
a continuous monotonic nondecreasing function on [m;M ], then we have
the inequality

�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.128)

� 1

M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
df (t)

�
"
f (M)� f (m)� 1

M �m

Z M

m

sgn

�
t� m+M

2

�
f (t) dt

#
kxk kyk

� [f (M)� f (m)] kxk kyk

for any x; y 2 H:

Proof. From the theory of Riemann-Stieltjes integral is well known that
if p : [a; b] ! C is of bounded variation and v : [a; b] ! R is contin-
uous and monotonic nondecreasing, then the Riemann-Stieltjes integralsR b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and

�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (4.119) that

�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
����� (4.129)

� 1

M �m

Z M

m�0
jh[(M � t)Et + (t�m) (Et � 1H)]x; yij df (t) :
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Further on, by utilizing the inequality (4.127) we also have thatZ M

m�0
jh[(M � t)Et + (t�m) (Et � 1H)]x; yij df (t) (4.130)

�
Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
df (t)

�
"
1

2
(M �m) [f (M)� f (m)] +

Z M

m

����t� m+M

2

���� df (t)
#
kxk kyk :

Now, integrating by parts in the Riemann-Stieltjes integral we haveZ M

m

����t� m+M

2

���� df (t)
=

Z M+m
2

m

�
m+M

2
� t
�
df (t) +

Z M

m+M
2

�
t� m+M

2

�
df (t)

=

�
m+M

2
� t
�
f (t)

����M+m
2

m

+

Z M+m
2

m

f (t) dt

+

�
t� m+M

2

�
f (t)

����M
m+M
2

�
Z M

m+M
2

f (t) dt

=
1

2
(M �m) [f (M)� f (m)]�

Z M

m

sgn

�
t� m+M

2

�
f (t) dt;

which together with (4.130) produces the second inequality in (4.128).
Since the functions sgn

�
� � m+M

2

�
and f (�) have the same monotonicity,

then by the µCeby�ev inequality we haveZ M

m

sgn

�
t� m+M

2

�
f (t) dt

� 1

M �m

Z M

m

sgn

�
t� m+M

2

�
dt

Z M

m

f (t) dt = 0

and the last part of (4.128) is proved.

4.7.2 Applications for Particular Functions

It is obvious that the above results can be applied for various particular
functions. However, we will restrict here only to the power and logarithmic
functions.
1. Consider now the power function f : (0;1)! R, f (t) = tp with p > 0:

This function is monotonic increasing on (0;1) and applying Theorem 305
we can state the following proposition:
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Proposition 306 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities����hApx; yi � Mp+1 �mp+1

(p+ 1) (M �m) hx; yi
���� (4.131)

� p

M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
tp�1dt

�
"
Mp �mp � Mp+1 +mp+1 � 2p (M +m)

p+1

(p+ 1) (M �m)

#
kxk kyk :

On applying now Theorem 304 to the same power function, then we can
state the following result as well:

Proposition 307 With the same assumptions from Proposition 306 we
have ����hApx; yi � Mp+1 �mp+1

(p+ 1) (M �m) hx; yi
���� (4.132)

� Bp
M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
dt

� 3

4
Bp (M �m) kxk kyk

for any x; y 2 H, where

Bp = p�

8<: Mp�1 if p � 1

mp�1 if 0 < p < 1;m > 0:

The case of negative powers except p = �1 goes likewise and we omit
the details.
Now, if we apply Theorem 305 and 304 for the increasing function f (t) =

� 1
t with t > 0; then we can state the following proposition:

Proposition 308 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
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inequalities

����
A�1x; y�� lnM � lnm
M �m hx; yi

���� (4.133)

� 1

M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
t2dt

�

24M �m
mM

�
ln
h�
m+M
2

�2i� ln (mM)
M �m

35 kxk kyk
and

����
A�1x; y�� lnM � lnm
M �m hx; yi

���� (4.134)

� 1

m2 (M �m)

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
dt

� 3

4

M �m
m2

kxk kyk :

2. Now, if we apply Theorems 305 and 304 to the function f : (0;1)!
R, f (t) = ln t, then we can state

Proposition 309 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities

jhlnAx; yi � hx; yi ln I (m;M)j (4.135)

� 1

M �m

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
tdt

�
"
ln

�
M

m

�
� ln

 s
I
�
m+M
2 ;M

�
I
�
m; m+M2

� !# kxk kyk
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and

jhlnAx; yi � hx; yi ln I (m;M)j (4.136)

� 1

m (M �m)

Z M

m

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i
dt

� 3

4

�
M

m
� 1
�
kxk kyk ;

where I (m;M) is the identric mean of m and M and is de�ned by

I (m;M) =
1

e

�
MM

mm

�1=(M�m)

:

4.8 Bounds for the Di¤erence Between Functions
and Integral Means

4.8.1 Vector Inequalities Via Ostrowski�s Type Bounds

The following result holds:

Theorem 310 (Dragomir, 2010, [22]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If f : [m;M ]! R is
a continuous function on [m;M ], then we have the inequality�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.137)

� max
t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

�����
M_
m�0

�

E(�)x; y

��
� max
t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� kxk kyk
for any x; y 2 H:

Proof. Utilising the spectral representation theorem we have the following
equality of interest

hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds (4.138)

=

Z M

m�0

"
f (t)� 1

M �m

Z M

m

f (s) ds

#
d (hEtx; yi)
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for any x; y 2 H:
It is well known that if p : [a; b] ! C is a continuous function and

v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds�����

Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ; (4.139)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising these two facts we get the �rst part of (4.137).
The last part follows by the Total Variation Schwarz�s inequality and we

omit the details.
For particular classes of continuous functions f : [m;M ]! C we are able

to provide simpler bounds as incorporated in the following corollary:

Corollary 311 (Dragomir, 2010, [22]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M; fE�g� be its spectral family and f : [m;M ] ! C a
continuous function on [m;M ] :
1. If f is of bounded variation on [m;M ] ; then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.140)

�
M_
m

(f)
M_
m�0

�

E(�)x; y

��
� kxk kyk

M_
m

(f)

for any x; y 2 H:
2. If f : [m;M ] �! C is of r�H�Hölder type, i.e., for a given r 2 (0; 1]

and H > 0 we have

jf (s)� f (t)j � H js� tjr for any s; t 2 [m;M ] ; (4.141)

then we have the inequality:�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.142)

� 1

r + 1
H (M �m)r

M_
m�0

�

E(�)x; y

��
� 1

r + 1
H (M �m)r kxk kyk

for any x; y 2 H:
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In particular, if f : [m;M ] �! C is Lipschitzian with the constant L > 0;
then �����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.143)

� 1

2
L (M �m)

M_
m�0

�

E(�)x; y

��
� 1

2
L (M �m) kxk kyk

for any x; y 2 H:
3. If f : [m;M ] �! C is absolutely continuous, then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.144)

�
M_
m�0

�

E(�)x; y

��

�

8>>>>>><>>>>>>:

1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
(q+1)1=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ]

p > 1; 1=p+ 1=q = 1;

kf 0k1
� kxk kyk

�

8>>>>>><>>>>>>:

1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
(q+1)1=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ]

p > 1; 1=p+ 1=q = 1;

kf 0k1

for any x; y 2 H; where kf 0kp are the Lebesgue norms, i.e., we recall that

kf 0kp :=

8><>:
ess sups2[m;M ] jf 0 (s)j if p =1;

�RM
m
jf (s)jp ds

�1=p
if p � 1:

Proof. We use the Ostrowski type inequalities in order to provide upper
bounds for the quantity

max
t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

�����
where f : [m;M ] �! C is a continuous function.
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The following result may be stated (see [23]) for functions of bounded
variation:

Lemma 312 Assume that f : [m;M ] ! C is of bounded variation and

denote by
MW
m
(f) its total variation. Then

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� �
"
1

2
+

����� t� m+M
2

M �m

�����
#
M_
m

(f) (4.145)

for all t 2 [m;M ]. The constant 12 is the best possible.

Now, taking the maximum over x 2 [m;M ] in (4.145) we deduce (4.140).
If f is Hölder continuous, then one may state the result:

Lemma 313 Let f : [m;M ]! C be of r�H�Hölder type, where r 2 (0; 1]
and H > 0 are �xed, then, for all x 2 [m;M ] ; we have the inequality:

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� (4.146)

� H

r + 1

"�
M � t
M �m

�r+1
+

�
t�m
M �m

�r+1#
(M �m)r :

The constant 1
r+1 is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski�s inequality for Lipschitzian functions (with L instead
of H) (see for instance [17])

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� �
241
4
+

 
t� m+M

2

M �m

!235 (M �m)L;

(4.147)
for any x 2 [m;M ] : Here the constant 14 is also best.
Taking the maximum over x 2 [m;M ] in (4.146) we deduce (4.142) and

the second part of the corollary is proved.
The following Ostrowski type result for absolutely continuous functions

holds.
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Lemma 314 Let f : [a; b] ! R be absolutely continuous on [a; b]. Then,
for all t 2 [a; b], we have:�����f (t)� 1

M �m

Z M

m

f (s) ds

�����

�

8>>>>>>>>>><>>>>>>>>>>:

�
1
4 +

�
t�m+M

2

M�m

�2�
(M �m) kf 0k1 if f 0 2 L1 [m;M ] ;

1

(q+1)
1
q

��
t�m
M�m

�q+1
+
�
M�t
M�m

�q+1� 1q
(M �m)

1
q kf 0kp if f 0 2 Lp [m;M ] ;

1
p +

1
q = 1; p > 1;h

1
2 +

��� t�m+M
2

M�m

���i kf 0k1 :
(4.148)

The constants 14 ,
1

(p+1)
1
p
and 1

2 respectively are sharp in the sense presented

above.

The above inequalities can also be obtained from the Fink result in [39]
on choosing n = 1 and performing some appropriate computations.
Taking the maximum in these inequalities we deduce (4.144).
For other scalar Ostrowski�s type inequalities, see [1] and [18].

4.8.2 Other Vector Inequalities

In [37], the authors have considered the following functional

D (f ;u) :=

Z b

a

f (s) du (s)� [u (b)� u (a)] � 1

b� a

Z b

a

f (t) dt; (4.149)

provided that the Stieltjes integral
R b
a
f (s) du (s) exists.

This functional plays an important role in approximating the Stieltjes
integral

R b
a
f (s) du (s) in terms of the Riemann integral

R b
a
f (t) dt and the

divided di¤erence of the integrator u:
In [37], the following result in estimating the above functional D (f ;u)

has been obtained:

jD (f ;u)j � 1

2
L (M �m) (b� a) ; (4.150)

provided u is L�Lipschitzian and f is Riemann integrable and with the
property that there exists the constants m;M 2 R such that

m � f (t) �M for any t 2 [a; b] : (4.151)
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The constant 1
2 is best possible in (4.150) in the sense that it cannot be

replaced by a smaller quantity.
If one assumes that u is of bounded variation and f is K�Lipschitzian,

then D (f; u) satis�es the inequality [38]

jD (f ;u)j � 1

2
K (b� a)

b_
a

(u) : (4.152)

Here the constant 12 is also best possible.
Now, for the function u : [a; b] ! C; consider the following auxiliary

mappings �;� and � [19]:

� (t) :=
(t� a)u (b) + (b� t)u (a)

b� a � u (t) ; t 2 [a; b] ;

� (t) := (t� a) [u (b)� u (t)]� (b� t) [u (t)� u (a)] ; t 2 [a; b] ;
�(t) := [u; b; t]� [u; t; a] ; t 2 (a; b) ;

where [u;�; �] is the divided di¤erence of u in �; �; i.e.,

[u;�; �] :=
u (�)� u (�)

�� � :

The following representation of D (f; u) may be stated, see [19] and [20].
Due to its importance in proving our new results we present here a short
proof as well.

Lemma 315 Let f; u : [a; b]! C be such that the Stieltjes integral
R b
a
f (t) du (t)

and the Riemann integral
R b
a
f (t) dt exist. Then

D (f; u) =

Z b

a

� (t) df (t) =
1

b� a

Z b

a

� (t) df (t) (4.153)

=
1

b� a

Z b

a

(t� a) (b� t)� (t) df (t) :

Proof. Since
R b
a
f (t) du (t) exists, hence

R b
a
� (t) df (t) also exists, and the

integration by parts formula for Riemann-Stieltjes integrals gives thatZ b

a

� (t) df (t) =

Z b

a

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�
df (t)

=

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�
f (t)

����b
a

�
Z b

a

f (t) d

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�

= �
Z b

a

f (t)

�
u (b)� u (a)

b� a dt� du (t)
�
= D (f; u) ;
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proving the required identity.
For recent inequalities related to D (f ;u) for various pairs of functions

(f; u) ; see [21].
The following representation for a continuous function of selfadjoint op-

erator may be stated:

Lemma 316 (Dragomir, 2010, [22]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M; fE�g� be its spectral family and f : [m;M ]! C a continuous
function on [m;M ] : If x; y 2 H; then we have the representation

hf (A)x; yi = hx; yi 1

M �m

Z M

m

f (s) ds (4.154)

+
1

M �m

Z M

m�0
h[(t�m) (1H � Et)� (M � t)Et]x; yi df (t) :

Proof. Utilising Lemma 315 we have

Z M

m

f (t) du (t) = [u (M)� u (m)] � 1

M �m

Z M

m

f (s) ds (4.155)

+

Z M

m

�
(t�m)u (M) + (M � t)u (m)

M �m � u (t)
�
df (t) ;

for any continuous function f : [m;M ] ! C and any function of bounded
variation u : [m;M ]! C.
Now, if we write the equality (4.155) for u (t) = hEtx; yi with x; y 2 H;

then we get

Z M

m�0
f (t) d hEtx; yi = hx; yi �

1

M �m

Z M

m

f (s) ds (4.156)

+

Z M

m�0

�
(t�m) hx; yi
M �m � hEtx; yi

�
df (t) ;

which, by the spectral representation theorem, produces the desired result
(4.154).
The following result may be stated:

Theorem 317 (Dragomir, 2010, [22]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M fE�g� be its spectral family and f : [m;M ] ! C a
continuous function on [m;M ] :
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1. If f is of bounded variation, then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.157)

� kyk
M_
m

(f)

� max
t2[m;M ]

"�
t�m
M �m

�2
k(1H � Et)xk2 +

�
M � t
M �m

�2
kEtxk2

#1=2

� kxk kyk
M_
m

(f)

for any x; y 2 H:
2. If f is Lipschitzian with the constant L > 0, then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.158)

� L kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
dt

� 1

2

"
1 +

p
2

2
ln
�p
2 + 1

�#
(M �m)L kyk kxk

for any x; y 2 H:
3. If f : [m;M ]! R is monotonic nondecreasing, then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.159)

� kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
df (t)

� kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t)

� kyk kxk [f (M)� f (m)]1=2

�
"
f (M)� f (m)� 4

M �m

Z M

m

�
t� m+M

2

�
f (t) dt

#1=2
� kyk kxk [f (M)� f (m)]

for any x; y 2 H:
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Proof. If we assume that f is of bounded variation, then on applying the
property (4.139) to the representation (4.154) we get�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.160)

� 1

M �m max
t2[m;M ]

jh[(t�m) (1H � Et)� (M � t)Et]x; yij
M_
m

(f) :

Now, on utilizing the Schwarz inequality and the fact that Et is a pro-
jector for any t 2 [m;M ] ; then we have

jh[(t�m) (1H � Et)� (M � t)Et]x; yij (4.161)

� k[(t�m) (1H � Et)� (M � t)Et]xk kyk

=
h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
kyk

�
h
(t�m)2 + (M � t)2

i1=2
kxk kyk

for any x; y 2 H and for any t 2 [m;M ] :
Taking the maximum in (4.161) we deduce the desired inequality (4.157).
It is well known that if p : [a; b] ! C is a Riemann integrable function

and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral to the
representation (4.154), we get�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.162)

� L

M �m

Z M

m�0
jh[(t�m) (1H � Et)� (M � t)Et]x; yij dt

� L kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
dt

� L kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
dt;

for any x; y 2 H:
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Now, if we change the variable in the integral by choosing u = t�m
M�m

then we get Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
dt

= (M �m)
Z 1

0

h
u2 + (1� u)2

i1=2
du

=
1

2
(M �m)

"
1 +

p
2

2
ln
�p
2 + 1

�#
;

which together with (4.162) produces the desired result (4.158).
From the theory of Riemann-Stieltjes integral is well known that if p :

[a; b] ! C is of bounded variation and v : [a; b] ! R is continuous and
monotonic nondecreasing, then the Riemann-Stieltjes integrals

R b
a
p (t) dv (t)

and
R b
a
jp (t)j dv (t) exist and�����

Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (4.154)�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

����� (4.163)

� 1

M �m

Z M

m�0
jh[(t�m) (1H � Et)� (M � t)Et]x; yij df (t)

� kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
df (t)

� kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t) ;

for any x; y 2 H and the proof of the �rst and second inequality in (4.159)
is completed.
For the last part we use the following Cauchy-Buniakowski-Schwarz in-

tegral inequality for the Riemann-Stieltjes integral with monotonic nonde-
creasing integrator v�����

Z b

a

p (t) q (t) dv (t)

����� �
"Z b

a

jp (t)j2 dv (t)
#1=2 "Z b

a

jq (t)j2 dv (t)
#1=2

where p; q : [a; b]! C are continuous on [a; b] :
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By applying this inequality we conclude that

Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t) (4.164)

�
"Z M

m

df (t)

#1=2 "Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#
df (t)

#1=2
:

Further, integrating by parts in the Riemann-Stieltjes integral we also have
that Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#
df (t) (4.165)

= f (M)� f (m)� 4

M �m

Z M

m

�
t� m+M

2

�
f (t) dt

� f (M)� f (m)

where for the last part we used the fact that by the µCeby�ev integral in-
equality for monotonic functions with the same monotonicity we have thatZ M

m

�
t� m+M

2

�
f (t) dt

� 1

M �m

Z M

m

�
t� m+M

2

�
dt

Z M

m

f (t) dt = 0:

4.8.3 Some Applications for Particular Functions

1. Consider the function f : (0;1)! R given by f (t) = tr with r 2 (0; 1]:
This function is r-Hölder continuous with the constant H > 0: Then, by
applying Corollary 311 we can state the following result

Proposition 318 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and fE�g� be its spectral family. Then for all r with r 2 (0; 1] we have the
inequality����hArx; yi � hx; yi Mr+1 �mr+1

(r + 1) (M �m)

���� (4.166)

� 1

r + 1
(M �m)r

M_
m�0

�

E(�)x; y

��
� 1

r + 1
(M �m)r kxk kyk

for any x; y 2 H:



274 4. Inequalities of Ostrowski Type

The case of p > 1 is incorporated in the following proposition:

Proposition 319 With the same assumptions from Proposition 318 and
if p > 1; then we have����hApx; yi � Mp+1 �mp+1

(p+ 1) (M �m) hx; yi
���� (4.167)

� 1

2
pMp�1 (M �m)

M_
m�0

�

E(�)x; y

��
� 1

2
pMp�1 (M �m) kxk kyk

for any x; y 2 H.

The case of negative powers except p = �1 goes likewise and we omit
the details.
Now, if we apply Corollary 311 for the function f (t) = � 1

t with t > 0;
then we can state the following proposition:

Proposition 320 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities ����
A�1x; y�� lnM � lnm

M �m hx; yi
���� (4.168)

� 1

2

M �m
m2

M_
m�0

�

E(�)x; y

��
� 1

2

M �m
m2

kxk kyk :

2. Now, if we apply Corollary 311 to the function f : (0;1) ! R,
f (t) = ln t, then we can state

Proposition 321 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities

jhlnAx; yi � hx; yi ln I (m;M)j (4.169)

� 1

2

�
M

m
� 1
� M_
m�0

�

E(�)x; y

��
� 1

2

�
M

m
� 1
�
kxk kyk ;

where I (m;M) is the identric mean of m and M and is de�ned by

I (m;M) =
1

e

�
MM

mm

�1=(M�m)

:
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4.9 Ostrowski�s Type Inequalities for n-Time
Di¤erentiable Functions

4.9.1 Some Identities

In [6], the authors have pointed out the following integral identity:

Lemma 322 ( Cerone-Dragomir-Roumeliotis, 1999, [6]) Let f : [a; b]!
R be a mapping such that the (n� 1)-derivative f (n�1) (where n � 1) is
absolutely continuous on [a; b]. Then for all x 2 [a; b], we have the identity:Z b

a

f (t) dt =
n�1X
k=0

"
(b� x)k+1 + (�1)k (x� a)k+1

(k + 1)!

#
f (k) (x) (4.170)

+ (�1)n
Z b

a

Kn (x; t) f
(n) (t) dt

where the kernel Kn : [a; b]
2 ! R is given by

Kn (x; t) :=

8<:
(t�a)n
n! ; a � t � x � b

(t�b)n
n! ; a � x < t � b:

(4.171)

The identity (4.171) can be written in the following equivalent form as:

f (z) =
1

b� a

Z b

a

f (t) dt (4.172)

� 1

b� a

n�1X
k=1

1

(k + 1)!

h
(b� z)k+1 + (�1)k (z � a)k+1

i
f (k) (z)

+
(�1)n�1

(b� a)n!

"Z z

a

(t� a)n f (n) (t) dt+
Z b

z

(t� b)n f (n) (t) dt
#

for all z 2 [a; b].
Note that for n = 1, the sum

Pn�1
k=1 is empty and we obtain the well

known Montgomery�s identity (see for example [3])

f (z) =
1

b� a

Z b

a

f (t) dt (4.173)

+
1

b� a

"Z z

a

(t� a) f (1) (t) dt+
Z b

z

(t� b) f (1) (t) dt
#
;

for any z 2 [a; b] :
In a slightly more general setting, by the use of the identity (4.172), we

can state the following result as well:
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Lemma 323 (Dragomir, 2010, [8]) Let f : [a; b] ! R be a mapping
such that the n-derivative f (n) (where n � 1) is of bounded variation on
[a; b]. Then for all � 2 [a; b], we have the identity:

f (�) =
1

b� a

Z b

a

f (t) dt (4.174)

� 1

b� a

nX
k=1

1

(k + 1)!

h
(b� �)k+1 + (�1)k (�� a)k+1

i
f (k) (�)

+
(�1)n

(b� a) (n+ 1)!

�
"Z �

a

(t� a)n+1 d
�
f (n) (t)

�
+

Z b

�

(t� b)n+1 d
�
f (n) (t)

�#
:

Now we can state the following representation result for functions of
selfadjoint operators:

Theorem 324 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
f : I ! C is such that the n-th derivative f (n) is of bounded variation on
the interval [m;M ], then we have the representation

f (A) =

 
1

M �m

Z M

m

f (t) dt

!
1H �

1

M �m (4.175)

�
nX
k=1

1

(k + 1)!

h
(M1H �A)k+1 + (�1)k (A�m1H)k+1

i
f (k) (A)

+ Tn (A;m;M)

where the remainder is given by

Tn (A;m;M) :=
(�1)n

(M �m) (n+ 1)! (4.176)

�
"Z M

m�0

 Z �

m

(t�m)n+1 d
�
f (n) (t)

�!
dE�

+

Z M

m�0

 Z M

�

(t�M)n+1 d
�
f (n) (t)

�!
dE�

#
:
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In particular, if the n-th derivative f (n) is absolutely continuous on [m;M ],
then the remainder can be represented as

Tn (A;m;M) (4.177)

=
(�1)n

(M �m) (n+ 1)!

�
Z M

m�0

h
(��m)n+1 (1H � E�) + (��M)n+1E�

i
f (n+1) (�) d�:

Proof. By Lemma 323 we have

f (�) =
1

M �m

Z M

m

f (t) dt� 1

M �m (4.178)

�
nX
k=1

1

(k + 1)!

h
(M � �)k+1 + (�1)k (��m)k+1

i
f (k) (�)

+
(�1)n

(M �m) (n+ 1)!

�
"Z �

m

(t�m)n+1 d
�
f (n) (t)

�
+

Z M

�

(t�M)n+1 d
�
f (n) (t)

�#

for any � 2 [m;M ] :
Integrating the identity (4.178) in the Riemann-Stieltjes sense with the

integrator E� we getZ M

m

f (�) dE� (4.179)

=
1

M �m

Z M

m

f (t) dt

Z M

m

dE� �
1

M �m

�
nX
k=1

1

(k + 1)!

Z M

m

h
(M � �)k+1 + (�1)k (��m)k+1

i
f (k) (�) dE�

+ Tn (A;m;M) :

Since, by the spectral representation theorem we haveZ M

m�0
f (�) dE� = f (A) ;

Z M

m�0
dE� = 1H

and Z M

m�0

h
(M � �)k+1 + (�1)k (��m)k+1

i
f (k) (�) dE�

=
h
(M1H �A)k+1 + (�1)k (A�m1H)k+1

i
f (k) (A) ;
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then by (4.179) we deduce the representation (4.175).
Now, if the n-th derivative f (n) is absolutely continuous on [m;M ] ; then

Z �

m

(t�m)n+1 d
�
f (n) (t)

�
=

Z �

m

(t�m)n+1 f (n+1) (t) dt

and Z M

�

(t�M)n+1 d
�
f (n) (t)

�
=

Z M

�

(t�M)n+1 f (n+1) (t) dt

where the integrals in the right hand side are taken in the Lebesgue sense.
Utilising the integration by parts formula for the Riemann-Stieltjes in-

tegral and the di¤erentiation rule for the Stieltjes integral we have succes-
sively

Z M

m�0

 Z �

m

(t�m)n+1 f (n+1) (t) dt
!
dE�

=

 Z �

m

(t�m)n+1 f (n+1) (t) dt
!
E�

�����
M

m�0

�
Z M

m�0
(��m)n+1 f (n+1) (�)E�d�

=

 Z M

m

(t�m)n+1 f (n+1) (t) dt
!
1H �

Z M

m�0
(��m)n+1 f (n+1) (�)E�d�

=

Z M

m�0
(��m)n+1 f (n+1) (�) (1H � E�) d�

and

Z M

m�0

 Z M

�

(t�M)n+1 f (n+1) (t) dt
!
dE�

=

 Z M

�

(t�M)n+1 f (n+1) (t) dt
!
E�

�����
M

m�0

+

Z M

m�0
(��M)n+1 f (n+1) (�)E�d�

=

Z M

m�0
(��M)n+1 f (n+1) (�)E�d�

and the representation (4.177) is thus obtained.

Remark 325 Let A be a positive selfadjoint operator in the Hilbert space
H with the spectrum Sp (A) � [m;M ] for some positive real numbers 0 <
m < M and fE�g� be its spectral family. Then, for n � 1; we have the
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equality

lnA = [ln I (m;M)] 1H +
1

M �m (4.180)

�
nX
k=1

1

k (k + 1)

h
(A�m1H)k+1 + (�1)k (M1H �A)k+1

i
A�k

+
1

(M �m) (n+ 1)

�
"Z M

m�0

h
(��m)n+1 (1H � E�) + (��M)n+1E�

i
��n�1d�

#
;

where I (m;M) is the identric mean and is de�ned by

I (m;M) =

8><>:
1
e

�
MM

mm

�1=(M�m)
if M 6= m;

M if M = m:

Remark 326 If we introduce the exponential mean by

E (m;M) =

8<:
expM�expm

M�m if M 6= m;

M if M = m

and applying the identity (4.175) for the exponential function, we have

"
1H +

1

M �m

nX
k=1

1

(k + 1)!

h
(M1H �A)k+1 + (�1)k (A�m1H)k+1

i#
(4.181)

� expA� E (m;M) 1H

=
(�1)n

(M �m) (n+ 1)!

Z M

m�0

h
(��m)n+1 (1H � E�) + (��M)n+1E�

i
e�d�

where A is a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) � [m;M ] for some real numbers m < M and fE�g� is its spectral
family.
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4.9.2 Error Bounds for f (n) of Bounded Variation

From the identity (4.175), we de�ne for any x; y 2 H

Tn (A;m;M ;x; y) (4.182)

:= hf (A)x; yi+ 1

M �m

nX
k=1

1

(k + 1)!

�
hD
(M1H �A)k+1 f (k) (A)x; y

E
+ (�1)k

D
(A�m1H)k+1 f (k) (A)x; y

Ei
�
 

1

M �m

Z M

m

f (t) dt

!
hx; yi :

We have the following result concerning bounds for the absolute value of
Tn (A;m;M ;x; y) when the n-th derivative f (n) is of bounded variation:

Theorem 327 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I and let n be an integer with n � 1:
1. If f : I ! C is such that the n-th derivative f (n) is of bounded variation

on the interval [m;M ], then we have the inequalities

jTn (A;m;M ;x; y)j (4.183)

� 1

(M �m) (n+ 1)!

M_
m�0

�

E(�)x; y

��
� max
�2[m;M ]

"
(��m)n+1

�_
m

�
f (n)

�
+ (M � �)n+1

M_
�

�
f (n)

�#

� (M �m)n

(n+ 1)!

M_
m�0

�

E(�)x; y

�� M_
m

�
f (n)

�
� (M �m)n

(n+ 1)!

M_
m

�
f (n)

�
kxk kyk

for any x; y 2 H:
2. If f : I ! C is such that the n-th derivative f (n) is Lipschitzian with

the constant Ln > 0 on the interval [m;M ], then we have the inequalities

jTn (A;m;M ;x; y)j �
Ln (M �m)n+1

(n+ 2)!

M_
m�0

�

E(�)x; y

��
(4.184)

� Ln (M �m)n+1

(n+ 2)!
kxk kyk

for any x; y 2 H:
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3. If f : I ! R is such that the n-th derivative f (n) is monotonic nonde-
creasing on the interval [m;M ], then we have the inequalities

jTn (A;m;M ;x; y)j (4.185)

� 1

(M �m) (n+ 1)!

M_
m�0

�

E(�)x; y

��
� max
�2[m;M ]

h
f (n) (�)

�
(��m)n+1 � (M � �)n+1

�
+(n+ 1)

"Z M

�

(M � t)n f (n) (t) dt�
Z �

m

(t�m)n f (n) (t) dt
##

� 1

(M �m) (n+ 1)! max
�2[m;M ]

h
(��m)n+1

h
f (n) (�)� f (n) (m)

i
+(M � �)n+1

h
f (n) (M)� f (n) (�)

ii M_
m�0

�

E(�)x; y

��
� (M �m)n

(n+ 1)!

M_
m�0

�

E(�)x; y

�� h
f (n) (M)� f (n) (m)

i
� (M �m)n

(n+ 1)!

h
f (n) (M)� f (n) (m)

i
kxk kyk

for any x; y 2 H:

Proof. 1. By the identity (4.176) we have for any x; y 2 H that

Tn (A;m;M ;x; y) :=
(�1)n

(M �m) (n+ 1)! (4.186)

�
"Z M

m�0

 Z �

m

(t�m)n+1 d
�
f (n) (t)

�!
d hE�x; yi

+

Z M

m�0

 Z M

�

(t�M)n+1 d
�
f (n) (t)

�!
d hE�x; yi

#
:

It is well known that if p : [a; b]! C is a continuous function, v : [a; b]!
C is of bounded variation then the Riemann-Stieltjes integral

R b
a
p (t) dv (t)

exists and the following inequality holds�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ; (4.187)

where
b_
a

(v) denotes the total variation of v on [a; b] :
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Taking the modulus in (4.186) and utilizing the property (4.187), we
have successively that

jTn (A;m;M ;x; y)j =
1

(M �m) (n+ 1)!

�
�����
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m�0

" Z �

m

(t�m)n+1 d
�
f (n) (t)

�
+

 Z M

�

(t�M)n+1 d
�
f (n) (t)

�!!#
d hE�x; yi

�����
� 1

(M �m) (n+ 1)!
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E(�)x; y
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Z �
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(t�m)n+1 d
�
f (n) (t)

�
+

Z M

�

(t�M)n+1 d
�
f (n) (t)

������
(4.188)

for any x; y 2 H:
By the same property (4.187) we have for � 2 (m;M) that�����

Z �

m

(t�m)n+1 d
�
f (n) (t)

������ � max
t2[m;�]
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�_
m

�
f (n)

�
= (��m)n+1

�_
m

�
f (n)

�
and �����

Z M

�

(t�M)n+1 d
�
f (n) (t)

������ � max
t2[�;M ]

(M � t)n+1
M_
�

�
f (n)

�
= (M � �)n+1

M_
�

�
f (n)

�
which produce the inequality�����

Z �

m

(t�m)n+1 d
�
f (n) (t)

�
+

Z M

�

(t�M)n+1 d
�
f (n) (t)

������ (4.189)

� (��m)n+1
�_
m

�
f (n)

�
+ (M � �)n+1

M_
�

�
f (n)

�
:

Taking the maximum over � 2 [m;M ] in (4.189) and utilizing (4.188) we
deduce the �rst inequality in (4.183).
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Now observe that

(��m)n+1
�_
m

�
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�
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M_
�

�
f (n)

�
� max

n
(��m)n+1 ; (M � �)n+1

o" �_
m

�
f (n)

�
+

M_
�

�
f (n)

�#

= max
n
(��m)n+1 ; (M � �)n+1

o M_
m

�
f (n)

�
=

�
1

2
(M �m) +

������ m+M
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�����n+1 M_
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�
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"
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�#

� (M �m)n+1
M_
m

�
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�
and the second inequality in (4.183) is proved.
The last part of (4.183) follows by the Total Variation Schwarz�s inequal-

ity and we omit the details.
2. Now, recall that if p : [a; b]! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt: (4.190)

By the property (4.190) we have for � 2 (m;M) that�����
Z �

m

(t�m)n+1 d
�
f (n) (t)

������ � Ln

Z �

m

(t�m)n+1 d (t) = Ln
n+ 2

(��m)n+2

and�����
Z M

�

(t�M)n+1 d
�
f (n) (t)

������ � Ln

Z M

�

(M � t)n+1 dt = Ln
n+ 2

(M � �)n+2 :
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By the inequality (4.188) we then have

jTn (A;m;M ;x; y)j (4.191)

� 1

(M �m) (n+ 1)!

M_
m�0

�

E(�)x; y

��
� max
�2[m;M ]

�
Ln
n+ 2

(��m)n+2 + Ln
n+ 2

(M � �)n+2
�

=
Ln (M �m)n+1

(n+ 2)!

M_
m�0

�

E(�)x; y

��
� Ln (M �m)n+1

(n+ 2)!
kxk kyk

for any x; y 2 H and the inequality (4.184) is proved.
3. Further, from the theory of Riemann-Stieltjes integral it is also well

known that if p : [a; b] ! C is continuous and v : [a; b] ! R is monotonic
nondecreasing, then the Riemann-Stieltjes integrals

R b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t)

exist and�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) � max
t2[a;b]

jp (t)j [v (b)� v (a)] : (4.192)

On making use of (4.192) we have�����
Z �

m

(t�m)n+1 d
�
f (n) (t)

������ �
Z �

m

(t�m)n+1 d
�
f (n) (t)

�
(4.193)

� (��m)n+1
h
f (n) (�)� f (n) (m)

i
and�����

Z M

�

(t�M)n+1 d
�
f (n) (t)

������ �
Z M

�

(M � t)n+1 d
�
f (n) (t)

�
(4.194)

� (M � �)n+1
h
f (n) (M)� f (n) (�)

i
for any � 2 (m;M) :
Integrating by parts in the Riemann-Stieltjes integral, we also haveZ �

m

(t�m)n+1 d
�
f (n) (t)

�
= (��m)n+1 f (n) (�)� (n+ 1)

Z �

m

(t�m)n f (n) (t) dt

and Z M

�

(M � t)n+1 d
�
f (n) (t)

�
= (n+ 1)

Z M

�

(M � t)n f (n) (t) dt� (M � �)n+1 f (n) (�)
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for any � 2 (m;M) :
Therefore, by adding (4.193) with (4.194) we get

�����
Z �

m

(t�m)n+1 d
�
f (n) (t)

������+
�����
Z M

�

(t�M)n+1 d
�
f (n) (t)

������
�
h
f (n) (�)

�
(��m)n+1 � (M � �)n+1

�i
+ (n+ 1)

"Z M

�

(M � t)n f (n) (t) dt�
Z �

m

(t�m)n f (n) (t) dt
#

� (��m)n+1
h
f (n) (�)� f (n) (m)

i
+ (M � �)n+1

h
f (n) (M)� f (n) (�)

i
for any � 2 (m;M) :
Now, on making use of the inequality (4.188) we deduce (4.185).

Remark 328 If we use the inequality (4.183) for the function ln, then we
get the inequality

jLn (A;m;M ;x; y)j (4.195)

� 1

(M �m)n (n+ 1)

M_
m�0

�

E(�)x; y

��
� max
�2[m;M ]

�
(��m)n+1 �

n �mn

�nmn
+ (M � �)n+1 M

n � �n

Mn�n

�
� (M �m)n (Mn �mn)

n (n+ 1)Mnmn

M_
m�0

�

E(�)x; y

��
� (M �m)n (Mn �mn)

n (n+ 1)Mnmn
kxk kyk

for any x; y 2 H; where

Ln (A;m;M ;x; y) (4.196)

:= hlnAx; yi � [ln I (m;M)] hx; yi

� 1

M �m

nX
k=1

1

k (k + 1)

�
hD
(A�m1H)k+1A�kx; y

E
+ (�1)k

D
(M1H �A)k+1A�kx; y

Ei
:
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If we use the inequality (4.184) for the function ln we get the following
bound as well

jLn (A;m;M ;x; y)j (4.197)

� 1

(n+ 1) (n+ 2)

�
M

m
� 1
�n+1 M_

m�0

�

E(�)x; y

��
� 1

(n+ 1) (n+ 2)

�
M

m
� 1
�n+1

kxk kyk

for any x; y 2 H:

Remark 329 If we de�ne

En (A;m;M ;x; y)

:=

*"
1H +

1

M �m

nX
k=1

1

(k + 1)!

h
(M1H �A)k+1 + (�1)k (A�m1H)k+1

i#
expAx; y

+
� E (m;M) hx; yi ; (4.198)

then by the inequality (4.183) we have

jEn (A;m;M ;x; y)j (4.199)

� 1

(M �m) (n+ 1)!

M_
m�0

�

E(�)x; y

��
� max
�2[m;M ]

h
(��m)n+1

�
e� � em

�
+ (M � �)n+1

�
eM � e�

�i
� (M �m)n

(n+ 1)!

M_
m�0

�

E(�)x; y

�� �
eM � em

�
� (M �m)n

(n+ 1)!

�
eM � em

�
kxk kyk

for any x; y 2 H:
If we use the inequality (4.184) for the function exp we get the following

bound as well

jEn (A;m;M ;x; y)j �
eM (M �m)n+1

(n+ 2)!

M_
m�0

�

E(�)x; y

��
(4.200)

� eM (M �m)n+1

(n+ 2)!
kxk kyk

for any x; y 2 H:

4.9.3 Error Bounds for f (n) Absolutely Continuous

We consider the Lebesgue norms de�ned by

kgk[a;b];1 := ess sup
t2[a;b]

jg (t)j if g 2 L1 [a; b]
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and

kgk[a;b];p :=
 Z b

a

jg (t)jp dt
!1=p

if g 2 Lp [a; b] ; p � 1:

Theorem 330 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I and let n be an integer with n � 1: If the n-th derivative
f (n) is absolutely continuous on [m;M ], then

jTn (A;m;M ;x; y)j �
1

(M �m) (n+ 1)!

�
Z M

m�0

���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi��� ���f (n+1) (�)��� d�:
� 1

(M �m) (n+ 1)!

�

8>>>>><>>>>>:

Bn;1 (A;m;M ;x; y)


f (n)



[m;M ];1 if f (n) 2 L1 [m;M ] ;

Bn;p (A;m;M ;x; y)


f (n)



[m;M ];q
if f (n) 2 Lq [m;M ] ; p > 1; 1p +

1
q = 1;

Bn;1 (A;m;M ;x; y)


f (n)



[m;M ];1
;

(4.201)

for any x; y 2 H; where

Bn;p (A;m;M ;x; y)

:=

 Z M

m�0

���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi���p d�!1=p ; p � 1
and

Bn;1 (A;m;M ;x; y)

:= sup
t2[m;M ]

���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi��� :
Proof. Follows from the representation

Tn (A;m;M ;x; y)

=
(�1)n

(M �m) (n+ 1)!

�
Z M

m�0

h
(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi

i
f (n+1) (�) d�



288 4. Inequalities of Ostrowski Type

for any x; y 2 H; by taking the modulus and utilizing the Hölder integral
inequality.
The details are omitted.
The bounds provided by Bn;p (A;m;M ;x; y) are not useful for applica-

tions, therefore we will establish in the following some simpler, however
coarser bounds.

Proposition 331 (Dragomir, 2010, [8]) With the above notations, we
have

Bn;1 (A;m;M ;x; y) � (M �m)n+1 kxk kyk ; (4.202)

Bn;1 (A;m;M ;x; y) �
�
2n+2 � 1

�
(n+ 2) 2n+1

(M �m)n+2 kxk kyk (4.203)

and for p > 1

Bn;p (A;m;M ;x; y) �
�
2(n+1)p+1 � 1

�1=p
2n+1 [(n+ 1) p+ 1]

1=p
(M �m)n+1+1=p kxk kyk

(4.204)
for any x; y 2 H:

Proof. Utilising the triangle inequality for the modulus we have���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi��� (4.205)

� (��m)n+1 jh(1H � E�)x; yij+ (M � �)n+1 jhE�x; yij

� max
n
(��m)n+1 ; (M � �)n+1

o
[jh(1H � E�)x; yij+ jhE�x; yij]

for any x; y 2 H:
Utilising the generalization of Schwarz�s inequality for nonnegative self-

adjoint operators we have

jh(1H � E�)x; yij � h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2

and
jhE�x; yij � hE�x; xi1=2 hE�y; yi1=2

for any x; y 2 H and � 2 [m;M ] :
Further, by making use of the elementary inequality

ac+ bd �
�
a2 + b2

�1=2 �
c2 + d2

�1=2
; a; b; c; d � 0

we have

jh(1H � E�)x; yij+ jhE�x; yij (4.206)

� h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2 + hE�x; xi1=2 hE�y; yi1=2

� (h(1H � E�)x; xi+ hE�x; xi)1=2 (h(1H � E�) y; yi+ hE�y; yi)1=2

= kxk kyk
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for any x; y 2 H and � 2 [m;M ] :
Combining (4.205) with (4.206) we deduce that���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi��� (4.207)

� max
n
(��m)n+1 ; (M � �)n+1

o
kxk kyk

for any x; y 2 H and � 2 [m;M ] :
Taking the supremum over � 2 [m;M ] in (4.207) we deduce the inequal-

ity (4.202).
Now, if we take the power r � 1 in (4.207) and integrate, then we getZ M

m�0

���(��m)n+1 h(1H � E�)x; yi+ (��M)n+1 hE�x; yi���r d� (4.208)

� kxkr kykr
Z M

m

max
n
(��m)(n+1)r ; (M � �)(n+1)r

o
d�

= kxkr kykr
"Z M+m

2

m

(M � �)(n+1)r d�+
Z M

M+m
2

(��m)(n+1)r d�
#

=

�
2(n+1)r+1 � 1

�
[(n+ 1) r + 1] 2(n+1)r

(M �m)(n+1)r+1 kxkr kykr

for any x; y 2 H:
Utilizing (4.208) for r = 1 we deduce the bound (4.203). Also, by making

r = p and then taking the power 1=p; we deduce the last inequality (4.204).

The following result provides re�nements of the inequalities in Proposi-
tion 331:

Proposition 332 (Dragomir, 2010, [8]) With the above notations, we
have

Bn;1 (A;m;M ;x; y)

� kyk max
�2[m;M ]

h
(��m)2(n+1) h(1H � E�)x; xi+ (M � �)2(n+1) hE�x; xi

i1=2
� (M �m)n+1 kxk kyk ; (4.209)

Bn;1 (A;m;M ;x; y)

� kyk
Z M

m�0

h
(��m)2(n+1) h(1H � E�)x; xi+ (M � �)2(n+1) hE�x; xi

i1=2
d�

�
�
2n+2 � 1

�
(n+ 2) 2n+1

(M �m)n+2 kxk kyk (4.210)
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and for p > 1

Bn;p (A;m;M ;x; y)

� kyk
 Z M

m�0

h
(��m)2(n+1) h(1H � E�)x; xi+ (M � �)2(n+1) hE�x; xi

ip=2
d�

!1=p

�
�
2(n+1)p+1 � 1

�1=p
2n+1 [(n+ 1) p+ 1]

1=p
(M �m)n+1+1=p kxk kyk (4.211)

for any x; y 2 H:

Proof. Utilising the Schwarz inequality in H, we have���D(��m)n+1 (1H � E�)x+ (��M)n+1E�x; yE��� (4.212)

� kyk



(��m)n+1 (1H � E�)x+ (��M)n+1E�x




for any x; y 2 H:
Since E� are projectors for each � 2 [m;M ] ; then we have


(��m)n+1 (1H � E�)x+ (��M)n+1E�x


2 (4.213)

= (��m)2(n+1) k(1H � E�)xk2

+ 2 (��m)n+1 (��M)n+1Re h(1H � E�)x;E�xi

+ (M � �)2(n+1) kE�xk2

= (��m)2(n+1) k(1H � E�)xk2 + (M � �)2(n+1) kE�xk2

= (��m)2(n+1) h(1H � E�)x; xi+ (M � �)2(n+1) hE�x; xi

� kxk2max
n
(��m)2(n+1) ; (M � �)2(n+1)

o
for any x; y 2 H and � 2 [m;M ] :
On making use of (4.212) and (4.213) we obtain the following re�nement

of (4.207)���D(��m)n+1 (1H � E�)x+ (��M)n+1E�x; yE��� (4.214)

� kyk
h
(��m)2(n+1) h(1H � E�)x; xi+ (M � �)2(n+1) hE�x; xi

i1=2
� max

n
(��m)n+1 ; (M � �)n+1

o
kxk kyk

for any x; y 2 H and � 2 [m;M ] :
The proof now follows the lines of the proof from Proposition 331 and

we omit the details.
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Remark 333 One can apply Theorem 330 and Proposition 331 for partic-
ular functions including the exponential and logarithmic function. However
the details are left to the interested reader.
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5
Inequalities of Trapezoidal Type

5.1 Introduction

From a complementary viewpoint to Ostrowski/mid-point inequalities, trape-
zoidal type inequality provide a priory error bounds in approximating the
Riemann integral by a (generalized) trapezoidal formula.
Just like in the case of Ostrowski�s inequality the development of these

kind of results have registered a sharp growth in the last decade with more
than 50 papers published, as one can easily asses this by performing a
search with the key word "trapezoid" and "inequality" in the title of the
papers reviewed by MathSciNet data base of the American Mathematical
Society.
Numerous extensions, generalisations in both the integral and discrete

case have been discovered. More general versions for n-time di¤erentiable
functions, the corresponding versions on time scales, for vector valued func-
tions or multiple integrals have been established as well. Numerous appli-
cations in Numerical Analysis, Probability Theory and other �elds have
been also given.
In the present chapter we present some recent results obtained by the

author in extending trapezoidal type inequality in various directions for
continuous functions of selfadjoint operators in complex Hilbert spaces. As
far as we know, the obtained results are new with no previous similar results
ever obtained in the literature.
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Applications for some elementary functions of operators such as the
power function, the logarithmic and exponential functions are provided
as well.

5.2 Scalar Trapezoidal Type Inequalities

In Classical Analysis a trapezoidal type inequality is an inequality that pro-
vides upper and/or lower bounds for the quantity

f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt;

that is the error in approximating the integral by a trapezoidal rule, for
various classes of integrable functions f de�ned on the compact interval
[a; b] :
In order to introduce the reader to some of the well known results and

prepare the background for considering a similar problem for functions of
selfadjoint operators in Hilbert spaces, we mention the following inequali-
ties.
The case of functions of bounded variation was obtained in [2] (see also

[1, p. 68]):

Theorem 334 Let f : [a; b] ! C be a function of bounded variation. We
have the inequality�����

Z b

a

f (t) dt� f (a) + f (b)

2
(b� a)

����� � 1

2
(b� a)

b_
a

(f) ; (5.1)

where
Wb
a (f) denotes the total variation of f on the interval [a; b]. The

constant 12 is the best possible one.

This result may be improved if one assumes the monotonicity of f as
follows (see [1, p. 76]):

Theorem 335 Let f : [a; b] ! R be a monotonic nondecreasing function
on [a; b]. Then we have the inequalities:�����

Z b

a

f (t) dt� f (a) + f (b)

2
(b� a)

����� (5.2)

� 1

2
(b� a) [f (b)� f (a)]�

Z b

a

sgn

�
t� a+ b

2

�
f (t) dt

� 1

2
(b� a) [f (b)� f (a)] :

The above inequalities are sharp.
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If the mapping is Lipschitzian, then the following result holds as well [3]
(see also [1, p. 82]).

Theorem 336 Let f : [a; b]! C be an L�Lipschitzian function on [a; b] ;
i.e., f satis�es the condition:

jf (s)� f (t)j � L js� tj for any s; t 2 [a; b] (L > 0 is given). (L)

Then we have the inequality:�����
Z b

a

f (t) dt� f (a) + f (b)

2
(b� a)

����� � 1

4
(b� a)2 L: (5.3)

The constant 14 is best in (5.3).

If we would assume absolute continuity for the function f , then the fol-
lowing estimates in terms of the Lebesgue norms of the derivative f 0 hold
[1, p. 93].

Theorem 337 Let f : [a; b] ! C be an absolutely continuous function on
[a; b]. Then we have�����

Z b

a

f (t) dt� f (a) + f (b)

2
(b� a)

����� (5.4)

�

8>>>>>>>>><>>>>>>>>>:

1

4
(b� a)2 kf 0k1 if f 0 2 L1 [a; b] ;

1

2 (q + 1)
1
q

(b� a)1+1=q kf 0kp if f 0 2 Lp [a; b] ;

p > 1; 1
p +

1
q = 1;

1

2
(b� a) kf 0k1 ;

where k�kp (p 2 [1;1]) are the Lebesgue norms, i.e.,

kf 0k1 = ess sup
s2[a;b]

jf 0 (s)j

and

kf 0kp :=
 Z b

a

jf 0 (s)j ds
! 1

p

; p � 1:

The case of convex functions is as follows [4]:
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Theorem 338 Let f : [a; b] ! R be a convex function on [a; b] : Then we
have the inequalities

1

8
(b� a)2

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
(5.5)

� f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt

� 1

8
(b� a)2

�
f 0� (b)� f 0+ (a)

�
:

The constant 18 is sharp in both sides of (5.5).

For other scalar trapezoidal type inequalities, see [1].

5.3 Trapezoidal Vector Inequalities

5.3.1 Some General Results

With the notations introduced above, we consider in this paper the problem
of bounding the error

f (M) + f (m)

2
� hx; yi � hf (A)x; yi

in approximating hf (A)x; yi by the trapezoidal type formula f(M)+f(m)
2 �

hx; yi ; where x; y are vectors in the Hilbert space H; f is a continuous
functions of the selfadjoint operator A with the spectrum in the compact
interval of real numbers [m;M ] : Applications for some particular elemen-
tary functions are also provided. The following result holds:

Theorem 339 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
a continuous function of bounded variation on [m;M ], then we have the
inequality ����f (M) + f (m)2

� hx; yi � hf (A)x; yi
���� (5.6)

� 1

2
max

�2[m;M ]

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i M_
m

(f)

� 1

2
kxk kyk

M_
m

(f)
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for any x; y 2 H:

Proof. If f; u : [m;M ] ! C are such that the Riemann-Stieltjes integralR b
a
f (t) du (t) exists, then a simple integration by parts reveals the identityZ b

a

f (t) du (t) =
f (a) + f (b)

2
[u (b)� u (a)] (5.7)

�
Z b

a

�
u (t)� u (a) + u (b)

2

�
df (t) :

If we write the identity (5.7) for u (�) = hE�x; yi ; then we getZ M

m�0
f (�) d (hE�x; yi) =

f (m) + f (M)

2
� hx; yi

�
Z M

m�0

�
hE�x; yi �

1

2
hx; yi

�
df (�)

which gives the following identity of interest in itself

f (m) + f (M)

2
� hx; yi � hf (A)x; yi (5.8)

=
1

2

Z M

m�0
[hE�x; yi+ h(E� � 1H)x; yi] df (�) ;

for any x; y 2 H:
It is well known that if p : [a; b] ! C is a continuous function and

v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds�����

Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) (5.9)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising the property (5.9), we have from (5.8) that����f (m) + f (M)2
� hx; yi � hf (A)x; yi

���� (5.10)

� 1

2
max

�2[m;M ]
jhE�x; yi+ h(E� � 1H)x; yij

M_
m

(f)

� 1

2

�
max

�2[m;M ]
[jhE�x; yij+ jh(1H � E�)x; yij]

� M_
m

(f) :
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If P is a nonnegative operator on H; i.e., hPx; xi � 0 for any x 2 H; then
the following inequality is a generalization of the Schwarz inequality in the
Hilbert space H

jhPx; yij2 � hPx; xi hPy; yi ; (5.11)

for any x; y 2 H:
On applying the inequality (5.11) we have

jhE�x; yij � hE�x; xi1=2 hE�y; yi1=2

and

jh(1H � E�)x; yij � h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2 ;

which, together with the elementary inequality for a; b; c; d � 0

ab+ cd �
�
a2 + c2

�1=2 �
b2 + d2

�1=2
produce the inequalities

jhE�x; yij+ jh(1H � E�)x; yij (5.12)

� hE�x; xi1=2 hE�y; yi1=2 + h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2

� (hE�x; xi+ h(1H � E�)x; xi) (hE�y; yi+ h(1H � E�) y; yi)
= kxk kyk

for any x; y 2 H:
On utilizing (5.10) and taking the maximum in (5.12) we deduce the

desired result (5.6).
The case of Lipschitzian functions may be useful for applications:

Theorem 340 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
Lipschitzian with the constant L > 0 on [m;M ], then we have the inequal-
ity ����f (M) + f (m)2

� hx; yi � hf (A)x; yi
���� (5.13)

� 1

2
L

Z M

m�0

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i
d�

� 1

2
(M �m)L kxk kyk

for any x; y 2 H:
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Proof. It is well known that if p : [a; b] ! C is a Riemann integrable
function and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (5.8) that����f (m) + f (M)2

� hx; yi � hf (A)x; yi
���� (5.14)

� 1

2
L

Z M

m�0
jhE�x; yi+ h(E� � 1H)x; yij d�;

� 1

2
L

Z M

m�0
[jhE�x; yij+ jh(1H � E�)x; yij] d�;

for any x; y 2 H:
Further, integrating (5.12) on [m;M ] we have

Z M

m�0
[jhE�x; yij+ jh(1H � E�)x; yij] d� (5.15)

�
Z M

m�0

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i
d�

� (M �m) kxk kyk

which together with (5.14) produces the desired result (5.13).

5.3.2 Other Trapezoidal Vector Inequalities

The following result provides a di¤erent perspective in bounding the error
in the trapezoidal approximation:

Theorem 341 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. Assume that f : [m;M ]!
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C is a continuous function on [m;M ]. Then we have the inequalities����f (M) + f (m)2
� hx; yi � hf (A)x; yi

���� (5.16)

�

8>>>>>>>><>>>>>>>>:

max�2[m;M ]

��
E�x� 1
2x; y

��� M_
m

(f) if f is of bounded variation

L
RM
m�0

��
E�x� 1
2x; y

��� d� if f is L Lipschitzian

RM
m�0

��
E�x� 1
2x; y

��� df (�) if f is nondecreasing

� 1

2
kxk kyk

8>>>>>>><>>>>>>>:

M_
m

(f) if f is of bounded variation

L (M �m) if f is L Lipschitzian

(f (M)� f (m)) if f is nondecreasing

for any x; y 2 H:

Proof. From (5.10) we have that����f (m) + f (M)2
� hx; yi � hf (A)x; yi

���� (5.17)

� 1

2
max

�2[m;M ]
jhE�x; yi+ h(E� � 1H)x; yij

M_
m

(f)

= max
�2[m;M ]

�����E�x� 12x; y
����� M_

m

(f)

for any x; y 2 H:
Utilising the Schwarz inequality in H and the fact that E� are projectors

we have successively�����E�x� 12x; y
����� � 



E�x� 12x





 kyk (5.18)

=

�
hE�x;E�xi � hE�x; xi+

1

4
kxk2

�1=2
kyk

=
1

2
kxk kyk

for any x; y 2 H; which proves the �rst branch in (5.16).
The second inequality follows from (5.14).
From the theory of Riemann-Stieltjes integral is well known that if p :

[a; b] ! C is of bounded variation and v : [a; b] ! R is continuous and
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monotonic nondecreasing, then the Riemann-Stieltjes integrals
R b
a
p (t) dv (t)

and
R b
a
jp (t)j dv (t) exist and�����

Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) : (5.19)

From the representation (5.8) we then have����f (m) + f (M)2
� hx; yi � hf (A)x; yi

���� (5.20)

� 1

2

Z M

m�0
jhE�x; yi+ h(E� � 1H)x; yij df (�)

=

Z M

m�0

�����E�x� 12x; y
����� df (�)

for any x; y 2 H; from which we obtain the last branch in (5.16).
We recall that a function f : [a; b]! C is called r�H-Hölder continuous

with �xed r 2 (0; 1] and H > 0 if

jf (t)� f (s)j � H jt� sjr for any t; s 2 [a; b] :

We have the following result concerning this class of functions.

Theorem 342 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
r �H-Hölder continuous on [m;M ], then we have the inequality����f (m) + f (M)2

� hx; yi � hf (A)x; yi
���� � 1

2r
H(M �m)r

M_
m�0

�

E(�)x; y

��
(5.21)

� 1

2r
H(M �m)r kxk kyk

for any x; y 2 H:

Proof. We start with the equality

f (M) + f (m)

2
� hx; yi � hf (A)x; yi (5.22)

=

Z M

m�0

�
f (M) + f (m)

2
� f (�)

�
d (hE�x; yi)

for any x; y 2 H; that follows from the spectral representation theorem.
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Since the function


E(�)x; y

�
is of bounded variation for any vector x; y 2

H; by applying the inequality (5.9) we conclude that����f (m) + f (M)2
� hx; yi � hf (A)x; yi

���� (5.23)

� max
�2[m;M ]

����f (M) + f (m)2
� f (�)

���� M_
m�0

�

E(�)x; y

��
for any x; y 2 H:
As f : [m;M ]! C is r �H-Hölder continuous on [m;M ], then we have����f (M) + f (m)2

� f (�)
���� � 1

2
jf (M)� f (�)j+ 1

2
jf (�)� f (m)j (5.24)

� 1

2
H [(M � �)r + (��m)r]

for any � 2 [m;M ] :
Since, obviously, the function gr (�) := (M � �)r + (��m)r ; r 2 (0; 1)

has the property that

max
�2[m;M ]

gr (�) = gr

�
m+M

2

�
= 21�r (M �m)r ;

then by (5.23) we deduce the �rst part of (5.21).
The last part follows by the Total Variation Schwarz�s inequality and we

omit the details.

5.3.3 Applications for Some Particular Functions

It is obvious that the results established above can be applied for various
particular functions of selfadjoint operators. We restrict ourselves here to
only two examples, namely the logarithm and the power functions.
1. If we consider the logarithmic function f : (0;1) ! R, f (t) = ln t;

then we can state the following result:

Proposition 343 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have���hx; yi lnpmM � hlnAx; yi

��� (5.25)

� ln
�
M

m

�
�

8>>>><>>>>:
1
2 max�2[m;M ]

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i

max�2[m;M ]

��
E�x� 1
2x; y

���
� 1

2
kxk kyk ln

�
M

m

�
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and ���hx; yi lnpmM � hlnAx; yi
��� (5.26)

� 1

m
�

8>>>><>>>>:
1
2

RM
m�0

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i
d�

RM
m�0

��
E�x� 1
2x; y

��� d�
� 1

2
kxk kyk

�
M

m
� 1
�

and ���hx; yi lnpmM � hlnAx; yi
��� �

Z M

m�0

�����E�x� 12x; y
�������1d�(5.27)

� 1

2
kxk kyk ln

�
M

m

�
respectively.

The proof is obvious from Theorems 339, 340 and 341 applied for the
logarithmic function. The details are omitted.
2. Consider now the power function f : (0;1) ! R, f (t) = tp with

p 2 (�1; 0) [ (0;1) : In the case when p 2 (0; 1) ; the function is p �H-
Hölder continuous with H = 1 on any subinterval [m;M ] of [0;1): By
making use of Theorem 342 we can state the following result:

Proposition 344 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 � m < M
and let fE�g� be its spectral family. Then for p 2 (0; 1) we have����mp +Mp

2
� hx; yi � hApx; yi

���� � 1

2p
(M �m)p

M_
m�0

�

E(�)x; y

��
(5.28)

� 1

2p
(M �m)p kxk kyk ;

for any x; y 2 H:

The case of powers p � 1 is embodied in the following:

Proposition 345 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 � m < M
and let fE�g� be its spectral family. Then for p � 1 and for any x; y 2 H
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we have����mp +Mp

2
� hx; yi � hApx; yi

���� (5.29)

� (Mp �mp)�

8>>>><>>>>:
1
2 max�2[m;M ]

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i

max�2[m;M ]

��
E�x� 1
2x; y

���
� 1

2
kxk kyk (Mp �mp)

and ����mp +Mp

2
� hx; yi � hApx; yi

���� (5.30)

� pMp�1 �

8>>>><>>>>:
1
2

RM
m�0

h
hE�x; xi1=2 hE�y; yi1=2

+ h(1H � E�)x; xi1=2 h(1H � E�) y; yi1=2
i
d�

RM
m�0

��
E�x� 1
2x; y

��� d�
� 1

2
p kxk kykMp�1

and����mp +Mp

2
� hx; yi � hApx; yi

���� � p

Z M

m�0

�����E�x� 12x; y
������p�1d� (5.31)

� 1

2
kxk kyk (Mp �mp)

respectively.

The proof is obvious from Theorems 339, 340 and 341 applied for the
power function f : (0;1) ! R, f (t) = tp with p � 1: The details are
omitted.
The case of negative powers is similar. The details are left to the inter-

ested reader.

5.4 Generalised Trapezoidal Inequalities

5.4.1 Some Vector Inequalities

In the present section we are interested in providing error bounds for ap-
proximating hf (A)x; yi with the quantity

1

M �m [f (m) (M hx; yi � hAx; yi) + f (M) (hAx; yi �m hx; yi)] (5.32)
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where x; y 2 H; which is a generalized trapezoid formula. Applications for
some particular functions are provided as well. The following representation
is of interest in itself and will be useful in deriving our inequalities later as
well:

Lemma 346 (Dragomir, 2010, [6]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is a
continuous function on [m;M ], then we have the representation��

f (m) (M1H �A) + f (M) (A�m1H)
M �m

�
x; y

�
� hf (A)x; yi (5.33)

=

Z M

m�0
hEtx; yi df (t)�

f (M)� f (m)
M �m

Z M

m�0
hEtx; yi dt

=

Z M

m�0

"
hEtx; yi �

1

M �m

Z M

m�0
hEsx; yi ds

#
df (t)

for any x; y 2 H:

Proof. Integrating by parts and utilizing the spectral representation theo-
rem we haveZ M

m�0
hEtx; yi df (t) = f (M) hx; yi �

Z M

m�0
f (t) d hEtx; yi

= f (M) hx; yi � hf (A)x; yi

and Z M

m�0
hEtx; yi dt =M hx; yi � hAx; yi

for any x; y 2 H:
ThereforeZ M

m�0
hEtx; yi df (t)�

f (M)� f (m)
M �m

Z M

m�0
hEtx; yi dt

= f (M) hx; yi � hf (A)x; yi � f (M)� f (m)
M �m (M hx; yi � hAx; yi)

=
1

M �m [f (m) (M hx; yi � hAx; yi) + f (M) (hAx; yi �m hx; yi)]

� hf (A)x; yi

for any x; y 2 H; which proves the �rst equality in (5.33).
The second equality is obvious.
The following result provides error bounds in approximating hf (A)x; yi

by the generalized trapezoidal rule (5.32):
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Theorem 347 (Dragomir, 2010, [6]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family.
1. If f : [m;M ]! C is of bounded variation on [m;M ], then������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.34)

� sup
t2[m;M ]

"
t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��# M_
m

(f)

�
M_
m�0

�

E(�)x; y

�� M_
m

(f) � kxk kyk
M_
m

(f)

for any x; y 2 H:
2. If f : [m;M ]! C is Lipschitzian with the constant L > 0 on [m;M ],

then������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.35)

� L

Z M

m

"
t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��#
dt

� L (M �m)
M_
m�0

�

E(�)x; y

��
� L (M �m) kxk kyk

for any x; y 2 H:
3. If f : [m;M ]! R is monotonic nondecreasing on [m;M ], then������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.36)

�
Z M

m

"
t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��#
df (t)

�
M_
m�0

�

E(�)x; y

��
[f (M)� f (m)] � kxk kyk [f (M)� f (m)]

for any x; y 2 H:

Proof. It is well known that if p : [a; b] ! C is a bounded function,
v : [a; b] ! C is of bounded variation and the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists, then the following inequality holds�����

Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) ; (5.37)
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where
b_
a

(v) denotes the total variation of v on [a; b] :

Applying this property to the equality (5.33), we have������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.38)

� sup
t2[m;M ]

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

�����
M_
m

(f)

for any x; y 2 H:
Now, a simple integration by parts in the Riemann-Stieltjes integral re-

veals the following equality of interest

hEtx; yi �
1

M �m

Z M

m�0
hEsx; yi ds (5.39)

=
1

M �m

"Z t

m�0
(s�m) d hEsx; yi+

Z M

t

(s�M) d hEsx; yi
#

that holds for any t 2 [m;M ] and for any x; y 2 H:
Since the function v (s) := hEsx; yi is of bounded variation on [m;M ] for

any x; y 2 H; then on applying the inequality (5.37) once more, we get�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� (5.40)

� 1

M �m

"����Z t

m�0
(s�m) d hEsx; yi

����+
�����
Z M

t

(s�M) d hEsx; yi
�����
#

� t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��
that holds for any t 2 [m;M ] and for any x; y 2 H:
Now, taking the supremum in (5.40) and taking into account that

t_
m�0

�

E(�)x; y

��
;

M_
t

�

E(�)x; y

��
�

M_
m�0

�

E(�)x; y

��
for any t 2 [m;M ] and for any x; y 2 H; we deduce the �rst and the second
inequality in (5.34).
The last part of (5.34) follows by the Total Variation Schwarz�s inequality

and we omit the details.
Now, recall that if p : [a; b] ! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;
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then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (5.33) that������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.41)

� L

Z M

m�0

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� dt
for any x; y 2 H:
Further on, by utilizing (5.39) we can state thatZ M

m�0

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� dt
� 1

M �m

Z M

m�0

"����Z t

m�0
(s�m) d hEsx; yi

����+
�����
Z M

t

(s�M) d hEsx; yi
�����
#
dt

�
Z M

m�0

"
t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��#
dt

� (M �m)
M_
m�0

�

E(�)x; y

��
for any x; y 2 H; which proves the desired result (5.35).
From the theory of Riemann-Stieltjes integral it is also well known that

if p : [a; b] ! C is of bounded variation and v : [a; b] ! R is contin-
uous and monotonic nondecreasing, then the Riemann-Stieltjes integralsR b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

From the representation (5.33) we then have������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.42)

�
Z M

m�0

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� df (t)
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for any x; y 2 H:
Further on, by utilizing (5.39) we can state that

Z M

m�0

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� df (t)
� 1

M �m

Z M

m�0

"����Z t

m�0
(s�m) d hEsx; yi

����+
�����
Z M

t

(s�M) d hEsx; yi
�����
#
df (t)

�
Z M

m�0

"
t�m
M �m

t_
m�0

�

E(�)x; y

��
+

M � t
M �m

M_
t

�

E(�)x; y

��#
df (t)

� (f (M)� f (m))
M_
m�0

�

E(�)x; y

��
for any x; y 2 H; which proves the desired result (5.36).
A di¤erent approach for Lipschitzian functions is incorporated in:

Theorem 348 (Dragomir, 2010, [6]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
Lipschitzian with the constant L > 0 on [m;M ], then������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.43)

� L kyk
Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt � 1

2
L (M �m) kxk kyk

for any x; y 2 H:

Proof.We will use the inequality (5.41) for which a di¤erent upper bound
will be provided.
By the Schwarz inequality in H we have that

Z M

m�0

�����hEtx; yi � 1

M �m

Z M

m�0
hEsx; yi ds

����� dt (5.44)

=

Z M

m�0

�����
*"

Etx�
1

M �m

Z M

m�0
Esxds

#
; y

+����� dt
� kyk

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt
for any x; y 2 H:
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On utilizing the Cauchy-Buniakovski-Schwarz integral inequality we may
state that

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt (5.45)

� (M �m)1=2
0@Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds







2

dt

1A1=2

for any x 2 H:
Observe that the following equalities of interest hold and they can be

easily proved by direct calculations

1

M �m

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds







2

dt (5.46)

=
1

M �m

Z M

m�0
kEtxk2 dt�






 1

M �m

Z M

m�0
Esxds







2

and

1

M �m

Z M

m�0
kEtxk2 dt�






 1

M �m

Z M

m�0
Esxds







2

(5.47)

=
1

M �m

Z M

m�0

*
Etx�

1

M �m

Z M

m�0
Esxds;Etx�

1

2
x

+
dt

for any x 2 H:
By (5.45), (5.46) and (5.47) we get

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt (5.48)

� (M �m)1=2
 Z M

m�0

*
Etx�

1

M �m

Z M

m�0
Esxds;Etx�

1

2
x

+
dt

!1=2

for any x 2 H:
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On making use of the Schwarz inequality in H we also haveZ M

m�0

*
Etx�

1

M �m

Z M

m�0
Esxds;Etx�

1

2
x

+
dt (5.49)

�
Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds











Etx� 12x





 dt
=
1

2
kxk

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt;
where we used the fact that Et are projectors, and in this case we have



Etx� 12x





2 = kEtxk2 � hEtx; xi+ 14 kxk2
=


E2t x; x

�
� hEtx; xi+

1

4
kxk2 = 1

4
kxk2

for any t 2 [m;M ] for any x 2 H:
From (5.48) and (5.49) we getZ M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt (5.50)

� (M �m)1=2
 
1

2
kxk

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt
!1=2

which is clearly equivalent with the following inequality of interest in itselfZ M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt � 1

2
kxk (M �m) (5.51)

for any x 2 H:
This proves the last part of (5.43).

5.4.2 Applications for Particular Functions

It is obvious that the above results can be applied for various particular
functions. However, we will restrict here only to the power and logarithmic
functions.
1. Consider now the power function f : (0;1) ! R, f (t) = tp with

p 6= 0: On applying Theorem 348 we can state the following proposition:

Proposition 349 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 � m < M
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and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities������mp (M1H �A) +Mp (A�m1H)

M �m

�
x; y

�
� hApx; yi

���� (5.52)

� Bp kyk
Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt � 1

2
Bp (M �m) kxk kyk

where

Bp = p�

8<: Mp�1 if p � 1

mp�1 if 0 < p < 1;m > 0

and
Bp = (�p)mp�1 if p < 0;m > 0:

2. The case of logarithmic function is as follows:

Proposition 350 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M
and let fE�g� be its spectral family. Then for any x; y 2 H we have the
inequalities������ (M1H �A) lnm+ (A�m1H) lnMM �m

�
x; y

�
� hlnAx; yi

���� (5.53)

� 1

m
kyk

Z M

m�0






Etx� 1

M �m

Z M

m�0
Esxds






 dt � 1

2

�
M

m
� 1
�
kxk kyk :

5.5 More Generalised Trapezoidal Inequalities

5.5.1 Other Vector Inequalities

The following result for general continuous functions holds:

Theorem 351 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! R is
continuous on [m;M ] ; then we have the inequalities:������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.54)

�
�
max

t2[m;M ]
f (t)� min

t2[m;M ]
f (t)

� M_
m�0

�

E(�)x; y

��
�
�
max

t2[m;M ]
f (t)� min

t2[m;M ]
f (t)

�
kxk kyk
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for any x; y 2 H:

Proof. We observe that, by the spectral representation theorem, we have
the equality��

f (m) (M1H �A) + f (M) (A�m1H)
M �m

�
x; y

�
� hf (A)x; yi (5.55)

=

Z M

m�0
�f (t) d (hEtx; yi)

for any x; y 2 H; where �f : [m;M ]! R is given by

�f (t) =
1

M �m [(M � t) f (m) + (t�m) f (M)]� f (t) :

It is well known that if p : [a; b] ! C is a continuous function and
v : [a; b] ! C is of bounded variation, then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds�����

Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) ; (5.56)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Now, if we denote by 
 := mint2[m;M ] f (t) and by � := maxt2[m;M ] f (t)
then we have


 (M � t) � (M � t) f (m) � � (M � t) ;

 (t�m) � (t�m) f (M) � � (t�m)

and
� (M �m) � � � (M �m) f (t) � �
 (M �m)

for any t 2 [m;M ] : If we add these three inequalities, then we get

� (M �m) (�� 
) � (M �m) �f (t) � (M �m) (�� 
)

for any t 2 [m;M ] ; which shows that

j�f (t)j � �� 
 for any t 2 [m;M ] : (5.57)

On applying the inequality (5.56) for the representation (5.55) we have
from (5.57) that�����

Z M

m�0
�f (t) d (hEtx; yi)

����� � (�� 
)
M_
m�0

�

E(�)x; y

��
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for any x; y 2 H; which proves the �rst part of (5.54).
The last part of (5.54) follows by the Total Variation Schwarz�s inequality

and we omit the details.
When the generating function is of bounded variation, we have the fol-

lowing result.

Theorem 352 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
continuous and of bounded variation on [m;M ] ; then we have the inequal-
ities:������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.58)

� max
t2[m;M ]

"
M � t
M �m

t_
m

(f) +
t�m
M �m

M_
t

(f)

#
M_
m�0

�

E(�)x; y

��
�

M_
m�0

�

E(�)x; y

�� M_
m

(f) �
M_
m

(f) kxk kyk

for any x; y 2 H:

Proof. First of all, observe that

(M �m) �f (t) = (t�M) [f (t)� f (m)] + (t�m) [f (M)� f (t)] (5.59)

= (t�M)
Z t

m

df (s) + (t�m)
Z M

t

df (s)

for any t 2 [m;M ] :
Therefore

j�f (t)j �
M � t
M �m

����Z t

m

df (s)

����+ t�m
M �m

�����
Z M

t

df (s)

����� (5.60)

� M � t
M �m

t_
m

(f) +
t�m
M �m

M_
t

(f)

� max
�
M � t
M �m;

t�m
M �m

�" t_
m

(f) +
M_
t

(f)

#

=

"
1

2
+

��t� m+M
2

��
M �m

#
M_
m

(f)
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for any t 2 [m;M ] ; which implies that

max
t2[m;M ]

j�f (t)j � max
t2[m;M ]

"
M � t
M �m

t_
m

(f) +
t�m
M �m

M_
t

(f)

#
(5.61)

� max
t2[m;M ]

"
1

2
+

��t� m+M
2

��
M �m

#
M_
m

(f) =
M_
m

(f) :

On applying the inequality (5.56) for the representation (5.55) we have
from (5.61) that�����

Z M

m�0
�f (t) d (hEtx; yi)

�����
� max
t2[m;M ]

"
M � t
M �m

t_
m

(f) +
t�m
M �m

M_
t

(f)

#
M_
m�0

�

E(�)x; y

��
�

M_
m

(f)
M_
m�0

�

E(�)x; y

��
for any x; y 2 H; which produces the desired result (5.58).
The case of Lipschitzian functions is as follows:

Theorem 353 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
Lipschitzian with the constant L > 0 on [m;M ] ; then we have the inequal-
ities:������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.62)

�
M_
m�0

�

E(�)x; y

��
� max
t2[m;M ]

�
M � t
M �m jf (t)� f (m)j+ t�m

M �m jf (M)� f (t)j
�

� 1

2
(M �m)L

M_
m�0

�

E(�)x; y

��
� 1

2
(M �m)L kxk kyk

for any x; y 2 H:

Proof. We have from the �rst part of the equality (5.59) that

j�f (t)j �
M � t
M �m jf (t)� f (m)j+ t�m

M �m jf (M)� f (t)j (5.63)

� 2L

M �m (M � t) (t�m) � 1

2
(M �m)L
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for any t 2 [m;M ] ; which, by a similar argument to the one from the above
Theorem 352, produces the desired result (5.62). The details are omitted.

The following corollary holds:

Corollary 354 (Dragomir, 2010, [7]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M and let fE�g� be its spectral family. If l; L 2 R are such
that L > l and f : [m;M ] ! R is (l; L)�Lipschitzian on [m;M ] ; then we
have the inequalities:������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.64)

� 1

4
(M �m) (L� l)

M_
m�0

�

E(�)x; y

��
� 1

4
(M �m) (L� l) kxk kyk

for any x; y 2 H:

Proof. Follows by applying the inequality (5.62) to the 12 (L� l)-Lipschitzian
function f � 1

2 (l + L) e; where e (t) = t; t 2 [m;M ] : The details are omit-
ted.
When the generating function is continuous convex, we can state the

following result as well:

Theorem 355 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! R
is continuous convex on [m;M ] with �nite lateral derivatives f 0� (M) and
f 0+ (m) ; then we have the inequalities:������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.65)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

� M_
m�0

�

E(�)x; y

��
� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
kxk kyk

for any x; y 2 H:

Proof. By the convexity of f on [m;M ] we have

f (t)� f (M) � f 0� (M) (t�M)

for any t 2 [m;M ] : If we multiply this inequality with t�m � 0 we deduce

(t�m) f (t)� (t�m) f (M) � f 0� (M) (t�M) (t�m) (5.66)
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for any t 2 [m;M ] :
Similarly, we get

(M � t) f (t)� (M � t) f (m) � f 0+ (m) (M � t) (t�m) (5.67)

for any t 2 [m;M ] :
Summing the above inequalities and dividing by M �m we deduce the

inequality

�f (t) �
(M � t) (t�m)

M �m
�
f 0� (M)� f 0+ (m)

�
(5.68)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
for any t 2 [m;M ] :
By the convexity of f we also have that

1

M �m [(M � t) f (m) + (t�m) f (M)] � f

�
(M � t)m+ (t�m)M

M �m

�
(5.69)

= f (t)

giving that
�f (t) � 0 for any t 2 [m;M ] : (5.70)

Utilising (5.56) for the representation (5.55) we deduce from (5.68) and
(5.70) the desired result (5.65).

5.5.2 Inequalities in the Operator Order

The following result providing some inequalities in the operator order may
be stated:

Theorem 356 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M .
1. If f : [m;M ]! R is continuous on [m;M ] ; then����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)

���� (5.71)

�
�
max

t2[m;M ]
f (t)� min

t2[m;M ]
f (t)

�
1H :

2. If f : [m;M ]! C is continuous and of bounded variation on [m;M ] ;
then����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)

���� (5.72)

� M1H �A
M �m

A_
m

(f) +
A�m1H
M �m

M_
A

(f) �
"
1

2
+

��A� m+M
2 1H

��
M �m

#
M_
m

(f) ;
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where
A_
m

(f) denotes the operator generated by the scalar function [m;M ] 3

t 7�!
t_
m

(f) 2 R. The same notation applies for
M_
A

(f) :

3. If f : [m;M ]! C is Lipschitzian with the constant L > 0 on [m;M ] ;
then ����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)

���� (5.73)

� M1H �A
M �m jf (A)� f (m) 1H j+

A�m1H
M �m jf (M) 1H � f (A)j

� 1

2
(M �m)L1H :

4. If f : [m;M ] ! R is continuous convex on [m;M ] with �nite lateral
derivatives f 0� (M) and f

0
+ (m) ; then we have the inequalities:

0 � f (m) (M1H �A) + f (M) (A�m1H)
M �m � f (A) (5.74)

� (M1H �A) (A�m1H)
M �m

�
f 0� (M)� f 0+ (m)

�
� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
1H :

Proof. Follows by applying the property (P) to the scalar inequalities
(5.57), (5.60), (5.63), (5.68) and (5.70). The details are omitted.
The following particular case is perhaps more useful for applications:

Corollary 357 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bersm < M . If l; L 2 R with L > l and f : [m;M ]! R is (l; L)�Lipschitzian
on [m;M ] ; then we have the inequalities:����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)

���� � 1

4
(M �m) (L� l) 1H :

(5.75)

5.5.3 More Inequalities for Di¤erentiable Functions

The following result holds:

Theorem 358 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M . Assume that the function f : I ! C with [m;M ] � �I (the
interior of I) is di¤erentiable on �I:
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1. If the derivative f 0 is continuous and of bounded variation on [m;M ] ;
then we have the inequality

������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.76)

� 1

4
(M �m)

M_
m

(f 0)
M_
m�0

�

E(�)x; y

��
� 1

4
(M �m)

M_
m

(f 0) kxk kyk

for any x; y 2 H:
2. If the derivative f 0 is Lipschitzian with the constant K > 0 on [m;M ] ;

then we have the inequality

������f (m) (M1H �A) + f (M) (A�m1H)M �m

�
x; y

�
� hf (A)x; yi

���� (5.77)

� 1

8
(M �m)2K

M_
m�0

�

E(�)x; y

��
� 1

8
(M �m)2K kxk kyk

for any x; y 2 H:

Proof. First of all we notice that if f : [m;M ]! C is absolutely continuous
on [m;M ] and such that the derivative f 0 is Riemann integrable on [m;M ] ;
then we have the following representation in terms of the Riemann-Stieltjes
integral:

�f (t) =
1

M �m

Z M

m

K (t; s) df 0 (s) ; t 2 [m;M ] ; (5.78)

where the kernel K : [m;M ]
2 ! R is given by

K (t; s) :=

(
(M � t) (s�m) if m � s � t

(t�m) (M � s) if t < s �M:
(5.79)

Indeed, since f 0 is Riemann integrable on [m;M ] ; it follows that the Riemann-
Stieltjes integrals

R t
m
(s�m) df 0 (s) and

RM
t
(M � s) df 0 (s) exist for each

t 2 [m;M ] : Now, integrating by parts in the Riemann-Stieltjes integral, we



324 5. Inequalities of Trapezoidal Type

have:Z M

m

K (t; s) df 0 (s) = (M � t)
Z t

m

(s�m) df 0 (s) + (t�m)
Z M

t

(M � s) df 0 (s)

= (M � t)
�
(s�m) f 0 (s)

��t
m
�
Z t

m

f 0 (s) ds

�
+ (t�m)

"
(M � s) f 0 (s)

��M
t
�
Z M

t

f 0 (s) ds

#
= (M � t) [(t�m) f 0 (t)� (f (t)� f (m))]
+ (t�m) [� (M � t) f 0 (t) + f (M)� f (t)]
= (t�m) [f (M)� f (t)]� (M � t) [f (t)� f (m)]
= (M �m) �f (t)

for any t 2 [m;M ] ; which provides the desired representation (5.78).
Now, utilizing the representation (5.78) and the property (5.56), we have

j�f (t)j (5.80)

=
1

M �m

�����(M � t)
Z t

m

(s�m) df 0 (s) + (t�m)
Z M

t

(M � s) df 0 (s)
�����

� 1

M �m

"
(M � t)

����Z t

m

(s�m) df 0 (s)
����+ (t�m)

�����
Z M

t

(M � s) df 0 (s)
�����
#

� 1

M �m

�
"
(M � t)

t_
m

(f 0) sup
s2[m;t]

(s�m) + (t�m)
M_
t

(f 0) sup
s2[t;M ]

(M � s)
#

=
(t�m) (M � t)

M �m

"
t_
m

(f 0) +

M_
t

(f 0)

#

=
(t�m) (M � t)

M �m

M_
m

(f 0) � 1

4
(M �m)

M_
m

(f 0)

for any t 2 [m;M ] :
On making use of the representation (5.55) we deduce the desired result

(5.76).
Further, we utilize the fact that for an L�Lipschitzian function, p :

[�; �]! C and a Riemann integrable function v : [�; �]! C, the Riemann-
Stieltjes integral

R �
�
p (s) dv (s) exists and�����
Z �

�

p (s) dv (s)

����� � L

Z �

�

jp (s)j ds:



5.5 More Generalised Trapezoidal Inequalities 325

Then, by utilizing (5.80) we have

j�f (t)j (5.81)

� 1

M �m

"
(M � t)

����Z t

m

(s�m) df 0 (s)
����+ (t�m)

�����
Z M

t

(M � s) df 0 (s)
�����
#

� K

M �m

"
(M � t)

Z t

m

(s�m) ds+ (t�m)
Z M

t

(M � s) ds
#

=
K

M �m

"
(M � t) (t�m)2

2
+
(t�m) (M � t)2

2

#

=
1

2
(M �m) (t�m) (M � t)K � 1

8
(M �m)2K

for any t 2 [m;M ] :
On making use of the representation (5.55) we deduce the desired result

(5.77).
The following inequalities in the operator order are of interest as well:

Theorem 359 (Dragomir, 2010, [7]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M . Assume that the function f : I ! C with [m;M ] � �I (the
interior of I) is di¤erentiable on �I:
1. If the derivative f 0 is continuous and of bounded variation on [m;M ] ;

then we have the inequality����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)
���� (5.82)

� (A�m1H) (M1H �A)
M �m

M_
m

(f 0) � 1

4
(M �m)

M_
m

(f 0) 1H :

2. If the derivative f 0 is Lipschitzian with the constant K > 0 on [m;M ] ;
then we have the inequality����f (m) (M1H �A) + f (M) (A�m1H)M �m � f (A)

���� (5.83)

� 1

2
(M �m) (A�m1H) (M1H �A)K � 1

8
(M �m)2K1H :

5.5.4 Applications for Particular Functions

It is obvious that the above results can be applied for various particular
functions. However, we will restrict here only to the power and logarithmic
functions.
1. Consider now the power function f : (0;1) ! R, f (t) = tp with

p 6= 0: On applying Theorem 355 we can state the following proposition:
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Proposition 360 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M .
Then for any x; y 2 H we have the inequalities������mp (M1H �A) +Mp (A�m1H)

M �m

�
x; y

�
� hApx; yi

���� (5.84)

� 1

2
(M �m)�p kxk kyk

where

�p = p�

8<: Mp�1 �mp�1 if p 2 (�1; 0) [ [1;1)

mp�1 �Mp�1 if 0 < p < 1:

In particular,������M (M1H �A) +m (A�m1H)
mM (M �m)

�
x; y

�
�


A�1x; y

����� (5.85)

� 1

2

(M �m)2 (M +m)

m2M2
kxk kyk

for any x; y 2 H:

The following inequalities in the operator order also hold:

Proposition 361 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M .
If p 2 (�1; 0) [ [1;1); then

0 � mp (M1H �A) +Mp (A�m1H)
M �m �Ap (5.86)

� p
(M1H �A) (A�m1H)

M �m
�
Mp�1 �mp�1�

� 1

4
p (M �m)

�
Mp�1 �mp�1� 1H :

If p 2 (0; 1) ; then

0 � Ap � mp (M1H �A) +Mp (A�m1H)
M �m (5.87)

� p
(M1H �A) (A�m1H)

M �m
�
mp�1 �Mp�1�

� 1

4
p (M �m)

�
mp�1 �Mp�1� 1H :
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In particular, we have the inequalities

0 � M (M1H �A) +m (A�m1H)
mM (M �m) �A�1 (5.88)

� (M1H �A) (A�m1H)
M �m � M

2 �m2

m2M2

� 1

2

(M �m)2 (M +m)

m2M2
1H :

The proof follows from (5.74) and the details are omitted.
2. The case of logarithmic function is as follows:

Proposition 362 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M .
Then for any x; y 2 H we have the inequalities������ (M1H �A) lnm+ (A�m1H) lnMM �m

�
x; y

�
� hlnAx; yi

���� (5.89)

� 1

4

(M �m)2

mM
kxk kyk :

We also have the following inequality in the operator order

0 � lnA� (M1H �A) lnm+ (A�m1H) lnM
M �m (5.90)

� (M1H �A) (A�m1H)
Mm

� 1

4

(M �m)2

mM
1H :

Remark 363 Similar results can be obtained if ones uses the inequalities
from Theorem 358 and 359. However the details are left to the interested
reader.

5.6 Product Inequalities

5.6.1 Some Vector Inequalities

In this section we investigate the quantity

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij

where x; y are vectors in the Hilbert space H and A is a selfadjoint operator
with Sp (A) � [m;M ] ; and provide di¤erent bounds for some classes of
continuous functions f : [m;M ] ! C. Applications for some particular
cases including the power and logarithmic functions are provided as well.
The following representation in terms of the spectral family is of interest

in itself:
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Lemma 364 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is
a continuous function on [m;M ] with f (M) 6= f (m) , then we have the
representation

1

[f (M)� f (m)]2
[f (M) 1H � f (A)] [f (A)� f (m) 1H ] (5.91)

=
1

f (M)� f (m)

�
Z M

m�0

 
Et �

1

f (M)� f (m)

Z M

m�0
Esdf (s)

!�
Et �

1

2
1H

�
df (t) :

Proof. We observe that,

1

f (M)� f (m)

Z M

m�0

 
Et �

1

f (M)� f (m)

Z M

m�0
Esdf (s)

!
(5.92)

�
�
Et �

1

2
1H

�
df (t)

=
1

f (M)� f (m)

Z M

m�0
E2t df (t)

� 1

f (M)� f (m)

Z M

m�0
Esdf (s)

1

f (M)� f (m)

Z M

m�0
Etdf (t)

� 1
2

Z M

m�0
Etdf (t) +

1

2

Z M

m�0
Esdf (s)

=
1

f (M)� f (m)

Z M

m�0
E2t df (t)�

"
1

f (M)� f (m)

Z M

m�0
Etdf (t)

#2

which is an equality of interest in itself.
Since Et are projections, we have E2t = Et for any t 2 [m;M ] and then

we can write that

1

f (M)� f (m)

Z M

m�0
E2t df (t)�

"
1

f (M)� f (m)

Z M

m�0
Etdf (t)

#2
(5.93)

=
1

f (M)� f (m)

Z M

m�0
Etdf (t)�

"
1

f (M)� f (m)

Z M

m�0
Etdf (t)

#2

=
1

f (M)� f (m)

Z M

m�0
Etdf (t)

"
1H �

1

f (M)� f (m)

Z M

m�0
Etdf (t)

#
:
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Integrating by parts in the Riemann-Stieltjes integral and utilizing the
spectral representation theorem we haveZ M

m�0
Etdf (t) = f (M) 1H � f (A)

and

1H �
1

f (M)� f (m)

Z M

m�0
Etdf (t) =

f (A)� f (m) 1H
f (M)� f (m) ;

which together with (5.93) and (5.92) produce the desired result (5.91).
The following vector version may be stated as well:

Corollary 365 (Dragomir, 2010, [8]) With the assumptions of Lemma
364 we have the equality

h[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yi (5.94)

= [f (M)� f (m)]

�
Z M

m�0

* 
Et �

1

f (M)� f (m)

Z M

m�0
Esdf (s)

!
x;

�
Et �

1

2
1H

�
y

+
df (t) ;

for any x; y 2 [m;M ] :

The following result that provides some bounds for continuous functions
of bounded variation may be stated as well:

Theorem 366 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is a
continuous function of bounded variation on [m;M ] with f (M) 6= f (m),
then we have the inequality

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.95)

� 1

2
kyk jf (M)� f (m)j

M_
m

(f)

� sup
t2[m;M ]






Etx� 1

f (M)� f (m)

Z M

m�0
Esdf (s)






 � 1

2
kxk kyk

"
M_
m

(f)

#2
;

for any x; y 2 H:

Proof. It is well known that if p : [a; b] ! C is a bounded function,
v : [a; b] ! C is of bounded variation and the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists, then the following inequality holds�����

Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) ; (5.96)
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where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising this property and the representation (5.94) we have by the
Schwarz inequality in Hilbert space H that

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.97)

� jf (M)� f (m)j
M_
m

(f)

� sup
t2[m;M ]

�����
* 

Et �
1

f (M)� f (m)

Z M

m�0
Esdf (s)

!
x;

�
Et �

1

2
1H

�
y

+�����
� jf (M)� f (m)j

M_
m

(f)

� sup
t2[m;M ]

"




Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)











Ety � 12y






#

for any x; y 2 [m;M ] :
Since Et are projections, and in this case we have



Ety � 12y





2 = kEtyk2 � hEty; yi+
1

4
kyk2

=


E2t y; y

�
� hEty; yi+

1

4
kyk2 = 1

4
kyk2 ;

then from (5.97) we deduce the �rst part of (5.95).
Now, by the same property (5.96) for vector valued functions p with

values in Hilbert spaces, we also have that




[f (M)� f (m)]Etx�
Z M

m�0
Esxdf (s)






 (5.98)

=







Z M

m�0
(Etx� Esx) df (s)






 �
M_
m

(f) sup
s2[m;M ]

kEtx� Esxk

for any t 2 [m;M ] and x 2 H:
Since 0 � Et � 1H in the operator order, then �1H � Et�Es � 1 which

gives that �kxk2 � h(Et � Es)x; xi � kxk2, i.e., jh(Et � Es)x; xij � kxk2
for any x 2 H; which implies that kEt � Esk � 1 for any t; s 2 [m;M ] :
Therefore sups2[m;M ] kEtx� Esxk � kxk which together with (5.98) prove
the last part of (5.95).
The case of Lipschitzian functions is as follows:



5.6 Product Inequalities 331

Theorem 367 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! C
is a Lipschitzian function with the constant L > 0 on [m;M ] and with
f (M) 6= f (m), then we have the inequality

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.99)

� 1

2
L kyk jf (M)� f (m)j

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 dt
� 1

2
L2 kyk

Z M

m�0

Z M

m�0
kEtx� Esxk dsdt

�
p
2

2
L2 kyk (M �m) hAx�mx;Mx�Axi1=2 �

p
2

4
L2 kyk kxk (M �m)2

for any x; y 2 H:

Proof. Recall that if p : [a; b] ! C is a Riemann integrable function and
v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt: (5.100)

Now, on applying this property of the Riemann-Stieltjes integral, then
we have from the representation (5.94) that

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.101)

� jf (M)� f (m)j

�
Z M

m�0

�����
* 

Et �
1

f (M)� f (m)

Z M

m�0
Esdf (s)

!
x;

�
Et �

1

2
1H

�
y

+����� df (t) ;
� L jf (M)� f (m)j

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)











Ety � 12y





 dt
=
1

2
L kyk jf (M)� f (m)j

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 dt
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for any x; y 2 H and the �rst inequality in (5.99) is proved.
Further, observe that

jf (M)� f (m)j
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 dt (5.102)
=

Z M

m�0






[f (M)� f (m)]Etx�
Z M

m�0
Esxdf (s)






 dt
=

Z M

m�0







Z M

m�0
(Etx� Esx) df (s)






 dt
for any x 2 H:
If we use the vector valued version of the property (5.100), then we haveZ M

m�0







Z M

m�0
(Etx� Esx) df (s)






 dt � L

Z M

m�0

Z M

m�0
kEtx� Esxk dsdt

(5.103)
for any x 2 H and the second part of (5.99) is proved.
Further on, by applying the double integral version of the Cauchy-Buniakowski-

Schwarz inequality we haveZ M

m�0

Z M

m�0
kEtx� Esxk dsdt (5.104)

� (M �m)
 Z M

m�0

Z M

m�0
kEtx� Esxk2 dsdt

!1=2
for any x 2 H:
Now, by utilizing the fact that Es are projections for each s 2 [m;M ],

then we haveZ M

m�0

Z M

m�0
kEtx� Esxk2 dsdt (5.105)

= 2

24(M �m)
Z M

m�0
kEtxk2 dt�







Z M

m�0
Etxdt







2
35

= 2

24(M �m)
Z M

m�0
hEtx; xi dt�







Z M

m�0
Etxdt







2
35

for any x 2 H:
If we integrate by parts and use the spectral representation theorem,

then we getZ M

m�0
hEtx; xi dt = hMx�Ax; xi and

Z M

m�0
Etxdt =Mx�Ax
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and by (5.105) we then obtain the following equality of interestZ M

m�0

Z M

m�0
kEtx� Esxk2 dsdt = 2 hAx�mx;Mx�Axi (5.106)

for any x 2 H:
On making use of (5.106) and (5.104) we then deduce the third part of

(5.99).
Finally, by utilizing the elementary inequality in inner product spaces

Re ha; bi � 1

4
ka+ bk2 ; a; b 2 H; (5.107)

we also have that

hAx�mx;Mx�Axi � 1

4
(M �m)2 kxk2

for any x 2 H; which proves the last inequality in (5.99).
The case of nondecreasing monotonic functions is as follows:

Theorem 368 (Dragomir, 2010, [8]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M and let fE�g� be its spectral family. If f : [m;M ] ! R is a
monotonic nondecreasing function on [m;M ], then we have the inequality

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.108)

� 1

2
kyk [f (M)� f (m)]

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 df (t)
� 1

2
kyk [f (M)� f (m)]

� h[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; xi1=2

� 1

4
kyk kxk [f (M)� f (m)]2

for any x; y 2 H:

Proof. From the theory of Riemann-Stieltjes integral it is also well known
that if p : [a; b] ! C is of bounded variation and v : [a; b] ! R is contin-
uous and monotonic nondecreasing, then the Riemann-Stieltjes integralsR b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :
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Now, on applying this property of the Riemann-Stieltjes integral, we have
from the representation (5.94) that

jh[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; yij (5.109)

� [f (M)� f (m)]

�
Z M

m�0

�����
* 

Et �
1

f (M)� f (m)

Z M

m�0
Esdf (s)

!
x;

�
Et �

1

2
1H

�
y

+����� df (t) ;
� [f (M)� f (m)]

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)











Ety � 12y





 df (t)
=
1

2
kyk [f (M)� f (m)]

�
Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 df (t)

for any x; y 2 H; which proves the �rst inequality in (5.108).
On utilizing the Cauchy-Buniakowski-Schwarz type inequality for the

Riemann-Stieltjes integral of monotonic nondecreasing integrators, we have

Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)






 df (t) (5.110)

�
"Z M

m�0
df (t)

#1=2

�

24Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2

df (t)

351=2

for any x; y 2 H:
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Observe that

Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2

df (t) (5.111)

=

Z M

m�0

"
kEtxk2 � 2Re

*
Etx;

1

f (M)� f (m)

Z M

m�0
Esxdf (s)

+

+






 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2
35 df (t)

= [f (M)� f (m)]
"

1

f (M)� f (m)

Z M

m�0
kEtxk2 df (t)

�





 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2
35

and, integrating by parts in the Riemann-Stieltjes integral, we have

Z M

m�0
kEtxk2 df (t) =

Z M

m�0
hEtx;Etxi df (t) =

Z M

m�0
hEtx; xi df (t)

(5.112)

= f (M) kxk2 �
Z M

m�0
f (t) d hEtx; xi

= f (M) kxk2 � hf (A)x; xi = h[f (M) 1H � f (A)]x; xi

and

Z M

m�0
Esxdf (s) = f (M)x� f (A)x (5.113)

for any x 2 H:
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On making use of the equalities (5.112) and (5.113) we have

1

f (M)� f (m)

Z M

m�0
kEtxk2 df (t)�






 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2

(5.114)

=
1

[f (M)� f (m)]2

�
h
[f (M)� f (m)] h[f (M) 1H � f (A)]x; xi � kf (M)x� f (A)xk2

i
=
[f (M)� f (m)] h[f (M) 1H � f (A)]x; xi � hf (M)x� f (A)x; f (M)x� f (A)xi

[f (M)� f (m)]2

=
[f (M)� f (m)] h[f (M) 1H � f (A)]x; xi � hf (M)x� f (A)x; f (M)x� f (A)xi

[f (M)� f (m)]2

=
hf (M)x� f (A)x; f (A)x� f (m)xi

[f (M)� f (m)]2

for any x 2 H:
Therefore, we obtain the following equality of interest in itself as well

1

f (M)� f (m)

Z M

m�0






Etx� 1

f (M)� f (m)

Z M

m�0
Esxdf (s)







2

df (t)

(5.115)

=
hf (M)x� f (A)x; f (A)x� f (m)xi

[f (M)� f (m)]2

=
h[f (M) 1H � f (A)] [f (A)� f (m) 1H ]x; xi

[f (M)� f (m)]2

for any x 2 H
On making use of the inequality (5.110) we deduce the second inequality

in (5.108).
The last part follows by (5.107) and the details are omitted.

5.6.2 Applications

We consider the power function f (t) := tp where p 2 R� f0g and t > 0:
The following power inequalities hold:

Proposition 369 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 � m < M .
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If p > 0; then for any x; y 2 H

jh(Mp1H �Ap) (Ap �mp1H)x; yij (5.116)

�
p
2

2
B2p kyk (M �m) hAx�mx;Mx�Axi1=2

�
p
2

4
B2p kyk kxk (M �m)2

where

Bp = p�

8<: Mp�1 if p � 1

mp�1 if 0 < p < 1;m > 0

and ��
�A�p �M�p1H
� �
m�p1H �A�p

�
x; y
��� (5.117)

�
p
2

2
C2p kyk (M �m) hAx�mx;Mx�Axi1=2

�
p
2

4
C2p kyk kxk (M �m)2 ;

where
Cp = pm�p�1 and m > 0:

The proof follows from Theorem 367 applied for the power function.

Proposition 370 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 � m < M .
If p > 0; then for any x; y 2 H

jh(Mp1H �Ap) (Ap �mp1H)x; yij (5.118)

� 1

2
kyk (Mp �mp) h(Mp1H �Ap) (Ap �mp1H)x; xi1=2

� 1

4
kyk kxk (Mp �mp)

2

and ��
�A�p �M�p1H
� �
m�p1H �A�p

�
x; y
��� (5.119)

� 1

2
kyk

�
m�p �M�p� 
�A�p �M�p1H

� �
m�p1H �A�p

�
x; x

�1=2
� 1

4
kyk kxk

�
m�p �M�p�2 :

The proof follows from Theorem 368.
Now, consider the logarithmic function f (t) = ln t; t > 0: We have
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Proposition 371 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers with 0 < m < M .
Then we have the inequalities

jh[(lnM) 1H � lnA] [lnA� (lnm) 1H ]x; yij (5.120)

�
p
2

2m2
kyk (M �m) hAx�mx;Mx�Axi1=2

�
p
2

4
kyk kxk

�
M

m
� 1
�2

and

jh[(lnM) 1H � lnA] [lnA� (lnm) 1H ]x; yij (5.121)

� 1

2
kyk h[(lnM) 1H � lnA] [lnA� (lnm) 1H ]x; xi1=2 ln

�
M

m

�
� 1

4
kyk kxk

�
ln

�
M

m

��2
:

The proof follows from Theorem 367 and 368 applied for the logarithmic
function.
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6
Inequalities of Taylor Type

6.1 Introduction

In approximating n-time di¤erentiable functions around a point, perhaps
the classical Taylor�s expansion is one of the simplest and most convenient
and elegant methods that has been employed in the development of Math-
ematics for the last three centuries. There is probably no �eld of Science
where Mathematical Modelling is used not to contain in a form or another
Taylor�s expansion for functions that are di¤erentiable in a certain sense.
In the present chapter, that is intended to be developed to a later stage,

we present some error bounds in approximating n-time di¤erentiable func-
tions of selfadjoint operators by the use of operator Taylor�s type expansions
around a point or two points from its spectrum for which the remainder is
known in an integral form.
Some applications for elementary functions including the exponential and

logarithmic functions are provided as well.

6.2 Taylor�s Type Inequalities

6.2.1 Some Identities

In this section, by utilizing the spectral representation theorem of self-
adjoint operators in Hilbert spaces, some error bounds in approximating
n-time di¤erentiable functions of selfadjoint operators in Hilbert Spaces



342 6. Inequalities of Taylor Type

via a Taylor�s type expansion are given. Applications for some elementary
functions of interest including the exponential and logarithmic functions
are also provided.
The following result provides a Taylor�s type representation for a function

of selfadjoint operators in Hilbert spaces with integral remainder.

Theorem 372 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
f : I ! C is such that the n-th derivative f (n) is of bounded variation on
the interval [m;M ], then for any c 2 [m;M ] we have the equalities

f (A) =
nX
k=0

1

k!
f (k) (c) (A� c1H)k +Rn (f; c;m;M) (6.1)

where

Rn (f; c;m;M) =
1

n!

Z M

m�0

 Z �

c

(�� t)n d
�
f (n) (t)

�!
dE�: (6.2)

Proof. We utilize the Taylor formula for a function f : I ! C whose n-th
derivative f (n) is locally of bounded variation on the interval I to write the
equality

f (�) =
nX
k=0

1

k!
f (k) (c) (�� c)k + 1

n!

Z �

c

(�� t)n d
�
f (n) (t)

�
(6.3)

for any �; c 2 [m;M ], where the integral is taken in the Riemann-Stieltjes
sense.
If we integrate the equality on [m;M ] in the Riemann-Stieltjes sense with

the integrator E� we getZ M

m�0
f (�) dE� =

nX
k=0

1

k!
f (k) (c)

Z M

m�0
(�� c)k dE�

+
1

n!

Z M

m�0

 Z �

c

(�� t)n d
�
f (n) (t)

�!
dE�

which, by the spectral representation theorem, produces the equality (6.1)
with the representation of the remainder from (6.2).
The following particular instances are of interest for applications:

Corollary 373 (Dragomir, 2010, [5]) With the assumptions of the above
Theorem 372, we have the equalities

f (A) =
nX
k=0

1

k!
f (k) (m) (A�m1H)k + Ln (f; c;m;M) (6.4)
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where

Ln (f; c;m;M) =
1

n!

Z M

m�0

 Z �

m

(�� t)n d
�
f (n) (t)

�!
dE�

and

f (A) =
nX
k=0

1

k!
f (k)

�
m+M

2

��
A� m+M

2
1H

�k
+Mn (f; c;m;M)

(6.5)
where

Mn (f; c;m;M) =
1

n!

Z M

m�0

 Z �

m+M
2

(�� t)n d
�
f (n) (t)

�!
dE�

and

f (A) =
nX
k=0

(�1)k

k!
f (k) (M) (M1H �A)k + Un (f; c;m;M) (6.6)

where

Un (f; c;m;M) =
(�1)n+1

n!

Z M

m�0

 Z M

�

(t� �)n d
�
f (n) (t)

�!
dE�; (6.7)

respectively.

Remark 374 We remark that, if the n-th derivative of the function f
considered above is absolutely continuous on the interval [m;M ] ; then we
have the representation (6.1) with the remainder

Rn (f; c;m;M) =
1

n!

Z M

m�0

 Z �

c

(�� t)n f (n+1) (t) dt
!
dE�: (6.8)

Here the integral
R �
c
(�� t)n f (n+1) (t) dt is considered in the Lebesgue sense.

Similar representations hold true when c is taken the particular valuesm;M
or m+M

2 :

Now, if we consider the exponential function, then for any selfadjoint
operator A in the Hilbert space H with the spectrum Sp (A) � [m;M ] and
with the spectral family fE�g� we have the representation

eA�c1H =
nX
k=0

1

k!
(A� c1H)k +

1

n!

Z M

m�0

 Z �

c

(�� t)n et�cdt
!
dE�; (6.9)

where c is any real number.
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Further, if we consider the logarithmic function, then for any positive
de�nite operator A with Sp (A) � [m;M ] � (0;1) and with the spectral
family fE�g� we have

lnA = (ln c) 1H +
nX
k=1

(�1)k�1 (A� c1H)k

kck
(6.10)

+ (�1)n
Z M

m�0

 Z �

c

(�� t)n

tn+1
dt

!
dE�

for any c > 0:

6.2.2 Some Error Bounds

We start with the following result that provides an approximation for an
n-time di¤erentiable function of selfadjoint operators in Hilbert spaces:

Theorem 375 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
f : I ! C is such that the n-th derivative f (n) is of bounded variation on
the interval [m;M ], then for any c 2 [m;M ] we have the inequality

jhRn (f; c;m;M)x; yij (6.11)

=

�����hf (A)x; yi �
nX
k=0

1

k!
f (k) (c)

D
(A� c1H)k x; y

E�����
� 1

n!

"
(c�m)n

c_
m

�
f (n)

� c_
m�0

�

E(�)x; y

��
+(M � c)n

M_
c

�
f (n)

� M_
c

�

E(�)x; y

��#

� 1

n!
max

(
(M � c)n

M_
c

�
f (n)

�
; (c�m)n

M_
c

�
f (n)

�) M_
m�0

�

E(�)x; y

��
� 1

n!

�
1

2
(M �m) +

����c� m+M

2

�����n M_
m

�
f (n)

� M_
m�0

�

E(�)x; y

��
;

for any x; y 2 H:
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Proof. From the identities (6.1) and (6.2) we have

hRn (f; c;m;M)x; yi (6.12)

= hf (A)x; yi �
nX
k=0

1

k!
f (k) (c)

D
(A� c1H)k x; y

E
=
1

n!

Z M

m�0

 Z �

c

(�� t)n d
�
f (n) (t)

�!
d hE�x; yi

=
1

n!

Z c

m�0

 Z �

c

(�� t)n d
�
f (n) (t)

�!
d hE�x; yi

+
1

n!

Z M

c

 Z �

c

(�� t)n d
�
f (n) (t)

�!
d hE�x; yi

for any x; y 2 H:
It is well known that if p : [a; b]! C is a continuous function, v : [a; b]!

C is of bounded variation then the Riemann-Stieltjes integral
R b
a
p (t) dv (t)

exists and the following inequality holds�����
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where
b_
a

(v) denotes the total variation of v on [a; b] :

Taking the modulus in (6.12) and utilizing the inequality (6.13) we have
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By the same property (6.13) we have
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and
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Now, on making use of (6.14)-(6.16) we deduce
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for any x; y 2 H and the proof is complete.
The following particular cases are of interest for applications

Corollary 376 (Dragomir, 2010, [5]) With the assumption of Theorem
375 we have the inequalities
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respectively, for any x; y 2 H:

Proof. The �rst part in the inequalities follow from (6.11) by choosing
c = m; c =M and c = m+M

2 respectively.
The last part follows by the Total Variation Schwarz�s inequality and we

omit the details.
The following result also holds:

Theorem 377 (Dragomir, 2010, [5]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1:
If f : I ! C is such that the n-th derivative f (n) is Lipschitzian with the
constant Ln > 0 on the interval [m;M ], then for any c 2 [m;M ] we have
the inequality
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for any x; y 2 H:

Proof. First of all, recall that if p : [a; b] ! C is a Riemann integrable
function and v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
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a
p (t) dv (t) exists and the following

inequality holds �����
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Now, on utilizing the inequality (6.14), then we have from (6.21) and (6.22)
that
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and the proof is complete.
The following particular cases are of interest for applications:
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Corollary 378 (Dragomir, 2010, [5]) With the assumption of Theorem
377 we have the inequalities�����hf (A)x; yi �
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respectively, for any x; y 2 H:

The following corollary that provides a perturbed version of Taylor�s
expansion holds:

Corollary 379 (Dragomir, 2010, [5]) Let A be a selfadjoint operator
in the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real
numbers m < M , fE�g� be its spectral family, I be a closed subinterval on
R with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
g : I ! R is such that the n-th derivative g(n) is (ln; Ln)�Lipschitzian with
the constant Ln > ln > 0 on the interval [m;M ], then for any c 2 [m;M ]
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we have the inequality�����hg (A)x; yi � g (c) hx; yi �
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for any x; y 2 H:

Proof. Consider the function f : I ! R de�ned by

f (t) := g (t)� 1
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� tn+1:

Observe that

f (k) (t) := g(k) (t)� 1
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Since g(n) is (ln; Ln)�Lipschitzian it follows that

f (n) (t) := g(n) (t)� Ln + ln
2

� t

is 1
2 (Ln � ln)-Lipschitzian and applying Theorem 377 for the function f;

we deduce after required calculations the desired result (6.11).
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Remark 380 In particular, we can state from (6.27) the following inequal-
ities
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respectively, for any x; y 2 H:

6.2.3 Applications

By utilizing Theorem 375 and 377 for the exponential function, we can
state the following result:

Proposition 381 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers m < M and
fE�g� be its spectral family, then for any c 2 [m;M ] we have the inequality�����
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for any x; y 2 H:

Remark 382 We observe that the best inequalities we can get from (6.31)
and (6.32) are�����
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for any x; y 2 H:

The same Theorems 375 and 377 applied for the logarithmic function
produce:

Proposition 383 Let A be a positive de�nite operator in the Hilbert space
H with the spectrum Sp (A) � [m;M ] � (0;1) and fE�g� be its spectral
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family, then for any c 2 [m;M ] we have the inequalities������hlnAx; yi � hx; yi ln c�
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for any x; y 2 H:

Remark 384 The best inequalities we can get from (6.35) and (6.36) are������hlnAx; yi � hx; yi ln
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for any x; y 2 H:

6.3 Perturbed Version

6.3.1 Some Identities

The following result provides a perturbed Taylor�s type representation for
a function of selfadjoint operators in Hilbert spaces.

Theorem 385 (Dragomir, 2010, [4]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
f : I ! C is such that the n-th derivative f (n) is of bounded variation on
the interval [m;M ], then for any c 2 [m;M ] we have the equalities
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Proof. We utilize the Taylor�s formula for functions f : I ! C whose n-th
derivative f (n) is locally of bounded variation on the interval I to write the
equality
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for any �; c 2 [m;M ], where the integral is taken in the Riemann-Stieltjes
sense.
If we integrate the equality on [m;M ] in the Riemann-Stieltjes sense with

the integrator E� we getZ M
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�
f (n) (t)

�!
dE�

(6.42)
that is of interest in itself as well.
Now, integrating by parts in the Riemann-Stieltjes integral and using the

Leibnitz formula for integrals with parameters, we haveZ M

m�0

 Z �

c

(�� t)n d
�
f (n) (t)

�!
dE� (6.43)

= E�

 Z �

c

(�� t)n d
�
f (n) (t)

�!�����
M

m�0

�
Z M

m�0
E�d

 Z �

c

(�� t)n d
�
f (n) (t)

�!

=

 Z M

c

(M � t)n d
�
f (n) (t)

�!
1H

� n
Z M

m�0

 Z �

c

(�� t)n�1 d
�
f (n) (t)

�!
E�d�

and, since by the Taylor�s formula (6.41) we have

1

n!

Z M

c

(M � t)n d
�
f (n) (t)

�
= f (M)�

nX
k=0

1

k!
f (k) (c) (M � c)k ; (6.44)

then, by (6.42) and (6.44), we deduce the equality (6.39) with the integral
representation for the remainder provided by (6.40).
The following particular instances are of interest for applications:
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Corollary 386 (Dragomir, 2010, [4]) With the assumptions of the above
Theorem 385, we have the equalities

f (A) =
nX
k=0

1

k!
f (k) (m) (A�m1H)k (6.45)

+

"
f (M)�

nX
k=0

1

k!
f (k) (m) (M �m)k

#
1H + Tn (f; c;m;M)

where

Tn (f;m;M) := �
1

(n� 1)!

Z M

m�0

 Z �

m

(�� t)n�1 d
�
f (n) (t)

�!
E�d�

(6.46)
and

f (A) =
nX
k=0

1

k!
f (k)

�
m+M

2

��
A� m+M

2
1H

�k
(6.47)

+

"
f (M)�

nX
k=0

1

k!
f (k)

�
m+M

2

��
M �m
2

�k#
1H

+Wn (f; c;m;M)

where

Wn (f;m;M) :=
(�1)n

(n� 1)!

Z M

m�0

 Z �

m+M
2

(t� �)n�1 d
�
f (n) (t)

�!
E�d�

(6.48)
and

f (A) =
nX
k=0

(�1)k

k!
f (k) (M) (M1H �A)k + Yn (f; c;m;M) (6.49)

where

Yn (f;m;M) :=
(�1)n+1

(n� 1)!

Z M

m�0

 Z M

�

(t� �)n�1 d
�
f (n) (t)

�!
E�d�;

(6.50)
respectively.

Remark 387 In order to give some examples we use the simplest repre-
sentation, namely (6.49) for the exponential and the logarithmic functions.
Let A be a selfadjoint operator in the Hilbert space H with the spectrum

Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its
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spectral family. Then we have the representation

eA = eM
nX
k=0

(�1)k

k!
(M1H �A)k (6.51)

+
(�1)n+1

(n� 1)!

Z M

m�0

 Z M

�

(t� �)n�1 etdt
!
E�d�:

In the case when A is positive de�nite, i.e., m > 0; then we have the
representation

lnA = (lnM) 1H �
nX
k=1

(M1H �A)k

kMk
(6.52)

� n
Z M

m�0

 Z M

�

(t� �)n�1

tn+1
dt

!
E�d�:

6.3.2 Error Bounds for f (n) of Bounded Variation

We start with the following result that provides an approximation for an
n-time di¤erentiable function of selfadjoint operators in Hilbert spaces:

Theorem 388 (Dragomir, 2010, [4]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1: If
f : I ! C is such that the n-th derivative f (n) is of bounded variation on
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the interval [m;M ], then for any c 2 [m;M ] we have the inequalities

jhVn (f; c;m;M)x; yij (6.53)

� 1

(n� 1)!

Z c

m�0
(c� �)n�1

c_
�

�
f (n)

�
jhE�x; yij d�

+
1

(n� 1)!

Z M

c

(�� c)n�1
�_
c

�
f (n)

�
jhE�x; yij d�

� 1

(n� 1)!

c_
m

�
f (n)

�Z c

m�0
(c� �)n�1 jhE�x; yij d�

+
1

(n� 1)!

M_
c

�
f (n)

�Z M

c

(�� c)n�1 jhE�x; yij d�

� 1

(n� 1)! max
(

c_
m

�
f (n)

�
;

M_
c

�
f (n)

�)Z M

m�0
j�� cjn�1 jhE�x; yij d�

� 1

n!
max

(
c_
m

�
f (n)

�
;
M_
c

�
f (n)

�)
Bn(c;m;M; x; y);

for any x; y 2 H; where

Bn(c;m;M; x; y) :=

8>>>>>><>>>>>>:

[(M � c)n + (c�m)n] kxk kyk ;

Cn(c;m;M; x; y);

n
�
1
2 (M �m) +

��c� m+M
2

���n�1
� [h(M1H �A)x; xi h(M1H �A) y; yi]1=2

(6.54)
and

Cn(c;m;M; x; y) (6.55)

:= [h[(M � c)n 1H � sgn (A� c1H) jA� c1H jn]x; xi]
1=2

� [h[(M � c)n 1H � sgn (A� c1H) jA� c1H jn] y; yi]
1=2

:

Here the operator function sgn (A� c1H) jA� c1H jn is generated by the
continuous function sgn (� � c) j� � cjn de�ned on the interval [m;M ] :



360 6. Inequalities of Taylor Type

Proof. From the identities (6.39) and (6.40) we have

jhVn (f; c;m;M)x; yij (6.56)

=

����� 1

(n� 1)!

Z M

m�0

 Z �

c

(t� �)n�1 d
�
f (n) (t)

�!
hE�x; yi d�

�����
� 1

(n� 1)!

�����
Z c

m�0

 Z �

c

(t� �)n�1 d
�
f (n) (t)

�!
hE�x; yi d�

�����
+

1

(n� 1)!

�����
Z M

c

 Z �

c

(t� �)n�1 d
�
f (n) (t)

�!
hE�x; yi d�

�����
� 1

(n� 1)!

Z c

m�0

�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ jhE�x; yij d�
+

1

(n� 1)!

Z M

c

�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ jhE�x; yij d�
for any x; y 2 H:
It is well known that if p : [a; b]! C is a continuous function, v : [a; b]!

C is of bounded variation, then the Riemann-Stieltjes integral
R b
a
p (t) dv (t)

exists and the following inequality holds

�����
Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) ; (6.57)

where
b_
a

(v) denotes the total variation of v on [a; b] :

By the same property (6.57) we have

�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ � (c� �)n�1
c_
�

�
f (n)

�
(6.58)

for � 2 [m; c] and

�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ � (�� c)n�1
�_
c

�
f (n)

�
(6.59)

for � 2 [c;M ] :
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Now, on making use of (6.56) and (6.58)-(6.59) we deduce

jhVn (f; c;m;M)x; yij

� 1

(n� 1)!

Z c

m�0
(c� �)n�1

c_
�

�
f (n)

�
jhE�x; yij d�

+
1

(n� 1)!

Z M

c

(�� c)n�1
�_
c

�
f (n)

�
jhE�x; yij d�

for any x; y 2 H which proves the �rst part of (6.53).
The second and the third inequalities follow by the properties of the

integral.
For the last part we observe that

Z M

m�0
j�� cjn�1 jhE�x; yij d� � max

�2[m;M ]
jhE�x; yij

Z M

m

j�� cjn�1 d�

� 1

n
kxk kyk [(M � c)n + (c�m)n]

for any x; y 2 H;and the proof for the �rst branch of B(c;m;M; x; y) is
complete.
Now, to prove the inequality for the second branch of B(c;m;M; x; y) we

use the fact that if P is a nonnegative operator on H; i.e., hPx; xi � 0 for
any x 2 H; then the following inequality that provides a generalization of
the Schwarz inequality in H can be stated

jhPx; yij2 � hPx; xi hPy; yi (6.60)

for any x; y 2 H:
If we use (6.60) and the Cauchy-Buniakowski-Schwarz weighted integral

inequality we can write that

Z M

m�0
j�� cjn�1 jhE�x; yij d� (6.61)

�
Z M

m�0
j�� cjn�1 hE�x; xi1=2 hE�y; yi1=2 d�

�
 Z M

m�0
j�� cjn�1 hE�x; xi d�

!1=2 Z M

m�0
j�� cjn�1 hE�y; yi d�

!1=2

for any x; y 2 H:
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Integrating by parts in the Riemann-Stieltjes integral, we have

Z M

m�0
j�� cjn�1 hE�x; xi d� (6.62)

=

Z c

m�0
(c� �)n�1 hE�x; xi d�+

Z M

c

(�� c)n�1 hE�x; xi d�

=
1

n

"
�
Z c

m�0
hE�x; xi d (c� �)n +

Z M

c

hE�x; xi d (�� c)n
#

=
1

n

�
� (c� �)n hE�x; xij

c
m�0 +

Z c

m�0
(c� �)n d hE�x; xi

�
+
1

n

"
hE�x; xi (�� c)nj

M
c �

Z M

c

(�� c)n d hE�x; xi
#

=
1

n

Z c

m�0
(c� �)n d hE�x; xi

+
1

n

"
kxk2 (M � c)n �

Z M

c

(�� c)n d hE�x; xi
#

=
1

n
kxk2 (M � c)n

+
1

n

"Z c

m�0
(c� �)n d hE�x; xi �

Z M

c

(�� c)n d hE�x; xi
#

=
1

n

"
kxk2 (M � c)n �

Z M

m�0
sgn (�� c) j�� cjn d hE�x; xi

#

=
1

n
[h[(M � c)n 1H � sgn (A� c1H) jA� c1H jn]x; xi]

for any x 2 H; and a similar relation for y; namely

Z M

m�0
j�� cjn�1 hE�y; yi d� (6.63)

=
1

n
[h[(M � c)n 1H � sgn (A� c1H) jA� c1H jn] y; yi]

for any y 2 H:
The inequality (6.61) and the equalities (6.62) and (6.63) produce the

second bound in (6.54).
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Finally, observe also thatZ M

m�0
j�� cjn�1 hE�x; xi d� (6.64)

=

Z c

m�0
(c� �)n�1 hE�x; xi d�+

Z M

c

(�� c)n�1 hE�x; xi d�

� (c�m)n�1
Z c

m�0
hE�x; xi d�+ (M � c)n�1

Z M

c

hE�x; xi d�

� max
n
(c�m)n�1 ; (M � c)n�1

oZ M

m�0
hE�x; xi d�

=

�
1

2
(M �m) +

����c� m+M

2

�����n�1
�
"
hE�x; xi�jMm�0 �

Z M

m�0
�d hE�x; xi

#

=

�
1

2
(M �m) +

����c� m+M

2

�����n�1 h(M1H �A)x; xi
for any x 2 H and similarly,Z M

m�0
j�� cjn�1 hE�x; xi d� (6.65)

�
�
1

2
(M �m) +

����c� m+M

2

�����n�1 h(M1H �A) y; yi
for any y 2 H:
On making use of (6.61), (6.64) and (6.65) we deduce the last bound

provided in (6.54).
The following particular cases are of interest for applications

Corollary 389 (Dragomir, 2010, [4]) With the assumption of Theorem
388 we have the inequalities

jhTn (f;m;M)x; yij (6.66)

� 1

(n� 1)!

Z M

m�0
(��m)n�1

�_
m

�
f (n)

�
jhE�x; yij d�

� 1

(n� 1)!

M_
m

�
f (n)

�Z M

m�0
(��m)n�1 jhE�x; yij d�

� 1

n!

M_
m

�
f (n)

�
Bn(m;M; x; y);
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for any x; y 2 H; where

Bn(m;M; x; y) (6.67)

:=

8>>>><>>>>:
(M �m)n kxk kyk ;

Cn(m;M; x; y);

n (M �m)n�1 [h(M1H �A)x; xi h(M1H �A) y; yi]1=2

and

Cn(m;M; x; y) := [h[(M �m)n 1H � (A�m1H)n]x; xi]
1=2 (6.68)

� [h[(M �m)n 1H � (A�m1H)n] y; yi]
1=2

:

The proof follows from Theorem 388 by choosing c = m and performing
the corresponding calculations.

Corollary 390 (Dragomir, 2010, [4]) With the assumption of Theorem
388 we have the inequalities

jhYn (f;m;M)x; yij (6.69)

� 1

(n� 1)!

Z M

m�0
(M � �)n�1

M_
�

�
f (n)

�
jhE�x; yij d�

� 1

(n� 1)!

M_
m

�
f (n)

�Z M

m�0
(M � �)n�1 jhE�x; yij d�

� 1

n!

M_
m

�
f (n)

�
~Bn(m;M; x; y);

for any x; y 2 H; where

~Bn(m;M; x; y) (6.70)

:=

8>>>><>>>>:
(M �m)n kxk kyk ;

~Cn(m;M; x; y);

n (M �m)n�1 [h(M1H �A)x; xi h(M1H �A) y; yi]1=2

and

~Cn(m;M; x; y) := [h(M1H �A)n x; xi]
1=2
[h(M1H �A)n y; yi]

1=2
: (6.71)
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The proof follows from Theorem 388 by choosing c =M and performing
the corresponding calculations.
The best bound we can get is incorporated in

Corollary 391 (Dragomir, 2010, [4]) With the assumption of Theorem
388 we have the inequalities

jhWn (f;m;M)x; yij (6.72)

� 1

(n� 1)!

Z m+M
2

m�0

�
m+M

2
� �
�n�1 m+M

2_
�

�
f (n)

�
jhE�x; yij d�

+
1

(n� 1)!

Z M

m+M
2

�
�� m+M

2

�n�1 �_
m+M
2

�
f (n)

�
jhE�x; yij d�

� 1

(n� 1)!

m+M
2_
m

�
f (n)

�Z m+M
2

m�0

�
m+M

2
� �
�n�1

jhE�x; yij d�

+
1

(n� 1)!

M_
m+M
2

�
f (n)

�Z M

m+M
2

�
�� m+M

2

�n�1
jhE�x; yij d�

� 1

(n� 1)! max

8<:
m+M
2_
m

�
f (n)

�
;
M_

m+M
2

�
f (n)

�9=;
�
Z M

m�0

������ m+M

2

����n�1 jhE�x; yij d�
� 1

n!
max

8<:
m+M
2_
m

�
f (n)

�
;
M_

m+M
2

�
f (n)

�9=; �Bn(m;M; x; y);

for any x; y 2 H; where

�Bn(m;M; x; y) (6.73)

: =

8>>>><>>>>:

(M�m)n
2n�1 kxk kyk ;

�C(m;M; x; y)

n
2n�1 (M �m)n�1 [h(M1H �A)x; xi h(M1H �A) y; yi]1=2
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and

�Cn(m;M; x; y)

:=

���
(M �m)n

2n
1H � sgn

�
A� m+M

2
1H

� ����A� m+M

2
1H

����n�x; x��1=2
�
���

(M �m)n

2n
1H � sgn

�
A� m+M

2
1H

� ����A� m+M

2
1H

����n� y; y��1=2 :
(6.74)

6.3.3 Error Bounds for f (n) Lipschitzian

The case when the n-th derivative is Lipschitzian is incorporated in the
following result:

Theorem 392 (Dragomir, 2010, [4]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I (the interior of I) and let n be an integer with n � 1:
If f : I ! C is such that the n-th derivative f (n) is Lipschitzian with the
constant Ln > 0 on the interval [m;M ], then for any c 2 [m;M ] we have
the inequalities

jhVn (f; c;m;M)x; yij (6.75)

� 1

n!
Ln

Z M

m�0
j�� cjn jhE�x; yij d�

� 1

(n+ 1)!
Ln

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

h
(M � c)n+1 + (c�m)n+1

i
kxk kyk ;

hDh
(M � c)n+1 1H � sgn (A� c1H) jA� c1H jn+1

i
x; x

Ei1=2
�
hDh

(M � c)n+1 1H � sgn (A� c1H) jA� c1H jn+1
i
y; y
Ei1=2

;

(n+ 1)
�
1
2 (M �m) +

��c� m+M
2

���n
� [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;

for any x; y 2 H:
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Proof. From the inequality (6.56) in the proof of Theorem 388 we have

jhVn (f; c;m;M)x; yij (6.76)

� 1

(n� 1)!

Z c

m�0

����Z c

�

(t� �)n�1 d
�
f (n) (t)

����� jhE�x; yij d�
+

1

(n� 1)!

Z M

c

�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ jhE�x; yij d�
for any x; y 2 H:
Further, we utilize the fact that for an L�Lipschitzian function, p :

[�; �]! C and a Riemann integrable function v : [�; �]! C, the Riemann-
Stieltjes integral

R �
�
p (s) dv (s) exists and�����
Z �

�

p (s) dv (s)

����� � L

Z �

�

jp (s)j ds:

On making use of this property we have for � 2 [m; c] that����Z c

�

(t� �)n�1 d
�
f (n) (t)

����� � Ln

Z c

�

(t� �)n�1 dt = 1

n
Ln (c� �)n

and for � 2 [c;M ] that�����
Z �

c

(t� �)n�1 d
�
f (n) (t)

������ � Ln

Z �

c

(�� t)n�1 dt = 1

n
Ln (�� c)n

which, by (6.76) produces the inequality

jhVn (f; c;m;M)x; yij (6.77)

� 1

n!
Ln

Z c

m�0
(c� �)n jhE�x; yij d�+

1

n!
Ln

Z M

c

(�� c)n jhE�x; yij d�

=
1

n!
Ln

Z M

m�0
j�� cjn jhE�x; yij d�;

for any x; y 2 H; and the �rst part of (6.75) is proved.
Finally, we observe that the bounds for the integral

RM
m�0 j�� cj

n jhE�x; yij d�
can be obtained in a similar manner to the ones from the proof of Theorem
388 and the details are omitted.
The following result contains error bounds for the particular expansions

considered in Corollary 386:
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Corollary 393 (Dragomir, 2010, [4]) With the assumptions in Theo-
rem 392 we have the inequalities

jhTn (f;m;M)x; yij (6.78)

� 1

n!
Ln

Z M

m�0
(��m)n jhE�x; yij d�

� 1

(n+ 1)!
Ln

�

8>>>>>>>>><>>>>>>>>>:

(M �m)n+1 kxk kyk ;

hDh
(M �m)n+1 1H � (A�m1H)n+1

i
x; x

Ei1=2
�
hDh

(M �m)n+1 1H � (A�m1H)n+1
i
y; y
Ei1=2

;

(n+ 1) (M �m)n [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;

and

jhYn (f;m;M)x; yij (6.79)

� 1

n!
Ln

Z M

m�0
(M � �)n jhE�x; yij d�

� 1

(n+ 1)!
Ln

�

8>>>>>><>>>>>>:

(M �m)n+1 kxk kyk ;

hDh
(M1H �A)n+1

i
x; x

Ei1=2 hDh
(M1H �A)n+1

i
y; y
Ei1=2

;

(n+ 1) [(M �m)]n [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;
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and

jhWn (f;m;M)x; yij

� 1

n!
Ln

Z M

m�0

������ m+M

2

����n jhE�x; yij d� � 1

(n+ 1)!
Ln

�

8>>>>>>>>><>>>>>>>>>:

(M�m)n+1
2n kxk kyk ;

hDh
(M�m)n+1

2n 1H � sgn
�
A� m+M

2 1H
� ��A� m+M

2 1H
��n+1ix; xEi1=2

�
hDh

(M�m)n+1
2n 1H � sgn

�
A� m+M

2 1H
� ��A� m+M

2 1H
��n+1i y; yEi1=2 ;

n+1
2n (M �m)n [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;

(6.80)

for any x; y 2 H; respectively.

6.3.4 Applications

In order to obtain various vectorial operator inequalities one can use the
above results for particular elementary functions. We restrict ourself to
only two examples of functions, namely the exponential and the logarithmic
functions.
If we apply Corollary 390 for the exponential function, we can state the

following result:

Proposition 394 Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers m < M and
fE�g� be its spectral family. Then we have�����
eAx; y�� eM

nX
k=0

(�1)k

k!

D
(M1H �A)k x; y

E����� (6.81)

� 1

(n� 1)!

Z M

m�0
(M � �)n�1

�
eM � e�

�
jhE�x; yij d�

� 1

(n� 1)!
�
eM � em

� Z M

m�0
(M � �)n�1 jhE�x; yij d�

� 1

n!

�
eM � em

�

�

8>>>><>>>>:
(M �m)n kxk kyk ;

[h(M1H �A)n x; xi]
1=2
[h(M1H �A)n y; yi]

1=2

n (M �m)n�1 [h(M1H �A)x; xi h(M1H �A) y; yi]1=2
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for any x; y 2 H:

If we use Corollary 393 then we can provide other bounds as follows:

Proposition 395 With the assumptions of Proposition 394 we have�����
eAx; y�� eM
nX
k=0

(�1)k

k!

D
(M1H �A)k x; y

E����� (6.82)

� 1

n!
eM
Z M

m�0
(M � �)n jhE�x; yij d�

� 1

(n+ 1)!
eM

�

8>>>>>><>>>>>>:

(M �m)n+1 kxk kyk ;

hDh
(M1H �A)n+1

i
x; x

Ei1=2 hDh
(M1H �A)n+1

i
y; y
Ei1=2

;

(n+ 1) [(M �m)]n [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;

Finally, the Corollaries 390 and 393 produce the following results for the
logarithmic function:

Proposition 396 Let A be a positive de�nite operator in the Hilbert space
H with the spectrum Sp (A) � [m;M ] � (0;1) and fE�g� be its spectral
family, then

������hlnAx; yi � hx; yi lnM +
nX
k=1

D
(M1H �A)k x; y

E
kMk

������ (6.83)

�
Z M

m�0
(M � �)n�1 M

n � �n

Mn�n
jhE�x; yij d�

� Mn �mn

Mnmn

Z M

m�0
(M � �)n�1 jhE�x; yij d�

� Mn �mn

nMnmn

�

8>>>><>>>>:
(M �m)n kxk kyk ;

[h(M1H �A)n x; xi]
1=2
[h(M1H �A)n y; yi]

1=2

n (M �m)n�1 [h(M1H �A)x; xi h(M1H �A) y; yi]1=2
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and ������hlnAx; yi � hx; yi lnM +
nX
k=1

D
(M1H �A)k x; y

E
kMk

������ (6.84)

� 1

mn+1

Z M

m�0
(M � �)n jhE�x; yij d�

� 1

(n+ 1)mn+1

�

8>>>>>><>>>>>>:

(M �m)n+1 kxk kyk ;

hD
(M1H �A)n+1 x; x

Ei1=2 hD
(M1H �A)n+1 y; y

Ei1=2
;

(n+ 1) [(M �m)]n [h(M1H �A)x; xi h(M1H �A) y; yi]1=2 ;

6.4 Two Points Taylor�s Type Inequalities

6.4.1 Representation Results

We start with the following identity that has been obtained in [2]. For the
sake of completeness we give here a short proof as well.

Lemma 397 (Dragomir, 2010, [2]) Let I be a closed subinterval on R,
let a; b 2 I with a < b and let n be a nonnegative integer. If f : I ! R is
such that the n-th derivative f (n) is of bounded variation on the interval
[a; b] ; then, for any x 2 [a; b] we have the representation

f (x) =
1

b� a [(b� x) f (a) + (x� a) f (b)] (6.85)

+
(b� x) (x� a)

b� a

�
nX
k=1

1

k!

n
(x� a)k�1 f (k) (a) + (�1)k (b� x)k�1 f (k) (b)

o
+

1

b� a

Z b

a

Sn (x; t) d
�
f (n) (t)

�
;

where the kernel Sn : [a; b]
2 ! R is given by

Sn (x; t) =
1

n!
�

8<: (x� t)n (b� x) if a � t � x;

(�1)n+1 (t� x)n (x� a) if x < t � b
(6.86)

and the integral in the remainder is taken in the Riemann-Stieltjes sense.
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Proof. We utilize the following Taylor�s representation formula for func-
tions f : I ! R such that the n-th derivatives f (n) are of locally bounded
variation on the interval I;

f (x) =
nX
k=0

1

k!
(x� c)k f (k) (c) + 1

n!

Z x

c

(x� t)n d
�
f (n) (t)

�
; (6.87)

where x and c are in I and the integral in the remainder is taken in the
Riemann-Stieltjes sense.
Choosing c = a and then c = b in (6.87) we can write that

f (x) =
nX
k=0

1

k!
(x� a)k f (k) (a) + 1

n!

Z x

a

(x� t)n d
�
f (n) (t)

�
; (6.88)

and

f (x) =
nX
k=0

(�1)k

k!
(b� x)k f (k) (b) + (�1)

n+1

n!

Z b

x

(t� x)n d
�
f (n) (t)

�
;

(6.89)
for any x 2 [a; b] :
Now, by multiplying (6.88) with (b� x) and (6.89) with (x� a) we get

(b� x) f (x) = (b� x) f (a) + (b� x) (x� a)
nX
k=1

1

k!
(x� a)k�1 f (k) (a)

(6.90)

+
1

n!
(b� x)

Z x

a

(x� t)n d
�
f (n) (t)

�
and

(x� a) f (x) = (x� a) f (b) + (b� x) (x� a)
nX
k=1

(�1)k

k!
(b� x)k�1 f (k) (b)

(6.91)

+
(�1)n+1

n!
(x� a)

Z b

x

(t� x)n d
�
f (n) (t)

�
respectively.
Finally, by adding the equalities (6.90) and (6.91) and dividing the sum

with (b� a) ; we obtain the desired representation (6.86).

Remark 398 The case n = 0 provides the representation

f (x) =
1

b� a [(b� x) f (a) + (x� a) f (b)] +
1

b� a

Z b

a

S (x; t) d (f (t))

(6.92)
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for any x 2 [a; b] ; where

S (x; t) =

(
b� x if a � t � x;

a� x if x < t � b;

and f is of bounded variation on [a; b] : This result was obtained by a dif-
ferent approach in [1].
The case n = 1 provides the representation

f (x) =
1

b� a [(b� x) f (a) + (x� a) f (b)] +
1

b� a

Z b

a

Q (x; t) d (f 0 (t)) ;

(6.93)
where

Q (x; t) =

(
(a� t) (b� x) if a � t � x;

(t� b) (x� a) if x � t � b:

Notice that the representation (6.93) was obtained by a di¤erent approach
in [1].

Theorem 399 (Dragomir, 2010, [3]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I and let n be an integer with n � 1: If f : I ! C is such
that the n-th derivative f (n) is of bounded variation on the interval [m;M ],
then we have the representation

f (A) =
1

M �m [f (m) (M1H �A) + f (M) (A�m1H)] (6.94)

+
(M1H �A) (A�m1H)

M �m

�
nX
k=1

1

k!

n
f (k) (m) (A�m1H)k�1 + (�1)k f (k) (M) (M1H �A)k�1

o
+ Tn (f;m;M) ;

where the remainder Tn (f;m;M) is given by

Tn (f;m;M) :=
1

(M �m)n!

Z M

m�0
Kn (m;M; f ;�) dE� (6.95)

and the kernel Kn (m;M; f ; �) has the representation

Kn (m;M; f ;�) := (M � �)
 Z �

m

(�� t)n d
�
f (n) (t)

�!
(6.96)

+ (�1)n+1 (��m)
 Z M

�

(t� �)n d
�
f (n) (t)

�!
for � 2 [m;M ] :
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Proof. Utilising Lemma 397 we have the representation

f (�) =
1

M �m [(M � �) f (m) + (��m) f (M)] (6.97)

+
(M � �) (��m)

M �m

�
nX
k=1

1

k!

n
(��m)k�1 f (k) (m) + (�1)k (M � �)k�1 f (k) (M)

o
+

1

(M �m)n!

"
(M � �)

Z �

m

(�� t)n d
�
f (n) (t)

�
+(�1)n+1 (��m)

Z M

�

(t� �)n d
�
f (n) (t)

�#
;

for any � 2 [m;M ] :
If we integrate (6.97) in the Riemann-Stieltjes sense on the interval

[m;M ] with the integrator E�; then we get

Z M

m�0
f (�) dE� (6.98)

=
1

M �m

Z M

m�0
[(M � �) f (m) + (��m) f (M)] dE�

+

Z M

m�0

(M � �) (��m)
M �m

nX
k=1

1

k!

n
(��m)k�1 f (k) (m)

+ (�1)k (M � �)k�1 f (k) (M)
o
dE� +

1

(M �m)n!

�
"Z M

m�0
(M � �)

 Z �

m

(�� t)n d
�
f (n) (t)

�!
dE�

+(�1)n+1
Z M

m�0
(��m)

 Z M

�

(t� �)n d
�
f (n) (t)

�!
dE�

#
:

Now, on making use of the spectral representation theorem we deduce from
(6.98) the equality (6.85) with the remainder representation (6.86).

Remark 400 Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) � [m;M ] for some real numbers m < M , fE�g� be
its spectral family. In the case when the function f is continuous and of
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bounded variation on [m;M ], then we get the representation

f (A) =
1

M �m [f (m) (M1H �A) + f (M) (A�m1H)] (6.99)

+
1

(M �m)

"Z M

m�0
(M � �) [f (�)� f (m)] dE�

�
Z M

m�0
(��m) [f (M)� f (�)] dE�

#
:

Also, if the derivative f 0 is of bounded variation, then we have the repre-
sentation

f (A) =
1

M �m [f (m) (M1H �A) + f (M) (A�m1H)] (6.100)

+
1

(M �m)

"Z M

m�0
(M � �)

 Z �

m

(�� t) d (f 0 (t))
!
dE�

+

Z M

m�0
(��m)

 Z M

�

(t� �) d (f 0 (t))
!
dE�

#
:

Example 401 a. Let A be a selfadjoint operator in the Hilbert space H
with the spectrum Sp (A) � [m;M ] for some real numbers m < M and
fE�g� be its spectral family. If we consider the exponential function, then
we get from (6.94) and (6.95) that

eA =
1

M �m
�
em (M1H �A) + eM (A�m1H)

�
(6.101)

+
(M1H �A) (A�m1H)

M �m

�
nX
k=1

1

k!

n
em (A�m1H)k�1 + (�1)k eM (M1H �A)k�1

o
+

1

(M �m)n! �
"Z M

m�0
(M � �)

 Z �

m

(�� t)n etdt
!
dE�

+(�1)n+1
Z M

m�0
(��m)

 Z M

�

(t� �)n etdt
!
dE�

#
:

b. If A is a positive de�nite selfadjoint operator with the spectrum Sp (A) �
[m;M ] � (0;1) and fE�g� is its spectral family, then we have the repre-
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sentation

lnA =
1

M �m [(M1H �A) lnm+ (A�m1H) lnM ] (6.102)

+
(M1H �A) (A�m1H)

M �m

�
nX
k=1

1

k

(
(�1)k�1 (A�m1H)

k�1

mk
� (M1H �A)

k�1

Mk

)

+
1

(M �m)

"
(�1)n

Z M

m�0
(M � �)

 Z �

m

(�� t)n

tn+1
dt

!
dE�

�
Z M

m�0
(��m)

 Z M

�

(t� �)n

tn+1
dt

!
dE�

#
:

The case of functions for which the n-th derivative f (n) is absolutely
continuous is of interest for applications. In this case the remainder can be
represented as follows:

Theorem 402 (Dragomir, 2010, [3]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I and let n be an integer with n � 1: If f : I ! C is such
that the n-th derivative f (n) is absolutely continuous on the interval [m;M ],
then we have the representation (6.94) where the remainder Tn (f;m;M)
is given by

Tn (f;m;M) :=
1

(M �m)n!

Z M

m�0
Wn (m;M; f ;�)E�d� (6.103)

and the kernel Wn (m;M; f ; �) has the representation

Wn (m;M; f ;�) := (�1)n
Z �

m

(�� t)n�1 [nM + t� (n+ 1)�] f (n+1) (t) dt

(6.104)

�
Z M

�

(t� �)n�1 [t+ nm� (n+ 1)�] f (n+1) (t) dt

for � 2 [m;M ] :



6.4 Two Points Taylor�s Type Inequalities 377

Proof. Observe that, by Leibnitz�s rule for di¤erentiation under the inte-
gral sign, we have

d

d�

"
(M � �)

 Z �

m

(�� t)n f (n+1) (t) dt
!#

(6.105)

= �
Z �

m

(�� t)n f (n+1) (t) dt+ (M � �) d
d�

 Z �

m

(�� t)n f (n+1) (t) dt
!

= �
Z �

m

(�� t)n f (n+1) (t) dt+ n (M � �)
Z �

m

(�� t)n�1 f (n+1) (t) dt

=

Z �

m

(�� t)n�1 [nM + t� (n+ 1)�] f (n+1) (t) dt

for any � 2 [m;M ] :
Integrating by parts in the Riemann-Stieltjes integral we have

Z M

m�0
(M � �)

 Z �

m

(�� t)n f (n+1) (t) dt
!
dE� (6.106)

= (M � �)
 Z �

m

(�� t)n d
�
f (n) (t)

�!
E�

�����
M

m�0

�
Z M

m�0

 Z �

m

(�� t)n�1 [nM + t� (n+ 1)�] f (n+1) (t) dt
!
E�d�

= �
Z M

m�0

 Z �

m

(�� t)n�1 [nM + t� (n+ 1)�] f (n+1) (t) dt
!
E�d�:

By Leibnitz�s rule we also have

d

d�

"
(��m)

 Z M

�

(t� �)n f (n+1) (t) dt
!#

(6.107)

=

Z M

�

(t� �)n f (n+1) (t) dt+ (��m) d
d�

 Z M

�

(t� �)n f (n+1) (t) dt
!

=

Z M

�

(t� �)n f (n+1) (t) dt� n (��m)
Z M

�

(t� �)n�1 f (n+1) (t) dt

=

Z M

�

(t� �)n�1 [t+ nm� (n+ 1)�] f (n+1) (t) dt

for any � 2 [m;M ] :
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Utilising the integration by parts and (6.108) we get

Z M

m�0
(��m)

 Z M

�

(t� �)n f (n+1) (t) dt
!
dE� (6.108)

= (��m)
 Z M

�

(t� �)n f (n+1) (t) dt
!
E�

�����
M

m�0

�
Z M

m�0

 Z M

�

(t� �)n�1 [t+ nm� (n+ 1)�] f (n+1) (t) dt
!
E�d�

= �
Z M

m�0

 Z M

�

(t� �)n�1 [t+ nm� (n+ 1)�] f (n+1) (t) dt
!
E�d�:

Finally, on utilizing the representation (6.95) for the remainder Tn (f;m;M)
and the equalities (6.106) and (6.108) we deduce (6.103). The details are
omitted.

Remark 403 The case n = 1 provides the following equality

f (A) =
1

M �m [f (m) (M1H �A) + f (M) (A�m1H)] (6.109)

+
1

(M �m)

Z M

m�0
W1 (m;M; f ;�)E�d�;

where

W1 (m;M; f ;�) :=

Z �

m

(2��M � t) f 00 (t) dt+
Z M

�

(2�� t�m) f 00 (t) dt
(6.110)

for � 2 [m;M ] :

6.4.2 Error Bounds for f (n) of Bonded Variation

The following result that provides bounds for the absolute value of the
kernel Kn (m;M; f ; �) holds:

Lemma 404 (Dragomir, 2010, [3]) Let I be a closed subinterval on R
with [m;M ] � �I, let n be an integer with n � 1 and assume that f : I ! C
is such that the n-th derivative f (n) exists on the interval [m;M ].
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1. If f (n) is of bounded variation on [m;M ] ; then

jKn (m;M; f ;�)j (6.111)

� (M � �) (��m)n
�_
m

�
f (n)

�
+ (��m) (M � �)n

M_
�

�
f (n)

�
� 1

4
(M �m)2

"
(��m)n�1

�_
m

�
f (n)

�
+ (M � �)n�1

M_
�

�
f (n)

�#

� 1

4
(M �m)2 Jn (m;M ;�)

where

Jn (m;M ;�) (6.112)

:=

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

�
1
2 (M �m) +

���� m+M
2

���n�1 M_
m

�
f (n)

�
;

h
(��m)p(n�1) + (M � �)p(n�1)

i1=p
�
" 

�_
m

�
f (n)

�!q
+

 
M_
�

�
f (n)

�!q#1=q
if p > 1; 1p +

1
q = 1;"

1
2

M_
m

�
f (n)

�
+ 1

2

�����
�_
m

�
f (n)

�
�

M_
�

�
f (n)

������
#

�
h
(��m)n�1 + (M � �)n�1

i
and � 2 [m;M ] :
2. If � 2 (m;M) and f (n) is Ln;1;�-Lipschitzian on [m;�] and Ln;2;�-

Lipschitzian on [�;M ] ; then

jKn (m;M; f ;�)j (6.113)

� 1

n+ 1

h
Ln;1;� (M � �) (��m)n+1 + Ln;2;� (��m) (M � �)n+1

i
� 1

4 (n+ 1)
[Ln;1;� (��m)n + Ln;2;� (M � �)n]

� 1

4 (n+ 1)

�

8>>>>><>>>>>:

[(��m)n + (M � �)n]max fLn;1;�; Ln;2;�g

[(��m)pn + (M � �)pn]1=p
�
Lqn;1;� + L

q
n;2;�

�1=q
if p > 1; 1p +

1
q = 1;�

1
2 (M �m) +

���� m+M
2

���n (Ln;1;� + Ln;2;�)
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and � 2 [m;M ] :
In particular, if f (n) is Ln-Lipschitzian on [m;M ] ; then

jKn (m;M; f ;�)j (6.114)

� Ln
n+ 1

h
(M � �) (��m)n+1 + (��m) (M � �)n+1

i
� Ln (M �m)2

4 (n+ 1)
[(��m)n + (M � �)n]

and � 2 [m;M ] :
3. If the function f (n) is monotonic nondecreasing on [m;M ] ; then

jKn (m;M; f ;�)j (6.115)

� (M � �)
"
n

Z �

m

(�� t)n�1 f (n) (t) dt� (��m)n f (n) (m)
#

+ (��m)
"
(M � �)n f (n) (M)� n

Z M

�

(t� �)n�1 f (n) (t) dt
#

� (M � �) (��m)

�
h
(��m)n�1

h
f (n) (�)� f (n) (m)

i
+ (M � �)n�1

h
f (n) (M)� f (n) (�)

ii
� 1

4
(M �m)2

�
h
(��m)n�1

h
f (n) (�)� f (n) (m)

i
+ (M � �)n�1

h
f (n) (M)� f (n) (�)

ii
� 1

4
(M �m)2 Tn (m;M ;�)

where

Tn (m;M ;�) (6.116)

:=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�
1
2 (M �m) +

���� m+M
2

���n�1 �f (n) (M)� f (n) (m)� ;
h
(��m)p(n�1) + (M � �)p(n�1)

i1=p
�
h�
f (n) (M)� f (n) (�)

�q
+
�
f (n) (�)� f (n) (m)

�qi1=q
if p > 1; 1p +

1
q = 1;h

1
2

�
f (n) (M)� f (n) (m)

�
+
���f (n) (�)� f(n)(M)+f(n)(m)

2

���i
�
h
(��m)n�1 + (M � �)n�1

i
:

Proof. 1. It is well known that if p : [a; b] ! C is a continuous function,
v : [a; b] ! C is of bounded variation then the Riemann-Stieltjes integral
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a
p (t) dv (t) exists and the following inequality holds�����

Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ; (6.117)

where
b_
a

(v) denotes the total variation of v on [a; b] :

Utilising the representation (6.96) and the property (6.117) we have suc-
cessively

jKn (m;M; f ;�)j (6.118)
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������+ (��m)
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�
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�#

� 1

4
(M �m)2 In (m;M ;�)

for any � 2 [m;M ] :
By Hölder�s inequality we also have

In (m;M ;�) (6.119)

�
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�
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h
(��m)p(n�1) + (M � �)p(n�1)

i1=p
�
" 
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f (n)

�!q
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�

�
f (n)
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1
q = 1;"

1
2

M_
m

�
f (n)

�
+ 1

2

�����
�_
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�
f (n)

�
�
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�

�
f (n)

������
#

�
h
(��m)n�1 + (M � �)n�1

i
:

for any � 2 [m;M ] :
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On making use of (6.118) and (6.119) we deduce (6.111).
2. We recall that if p : [a; b] ! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following

inequality holds �����
Z b

a

p (t) dv (t)

����� � L

Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral we have

jKn (m;M; f ;�)j (6.120)
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�����
Z �

m

(�� t)n d
�
f (n) (t)

������+ (��m)
�����
Z M
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(t� �)n d
�
f (n) (t)

������
� 1
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i
=
(M � �) (��m)

n+ 1
[Ln;1;� (��m)n + Ln;2;� (M � �)n]

� (M �m)2

4 (n+ 1)
[Ln;1;� (��m)n + Ln;2;� (M � �)n]

� (M �m)2

4 (n+ 1)

�

8>>>>><>>>>>:

[(��m)n + (M � �)n]max fLn;1;�; Ln;2;�g

[(��m)pn + (M � �)pn]1=p
�
Lqn;1;� + L

q
n;2;�

�1=q
if p > 1; 1p +

1
q = 1;�

1
2 (M �m) +

���� m+M
2

���n (Ln;1;� + Ln;2;�)
which prove the desired result (6.114).
3. From the theory of Riemann-Stieltjes integral is well known that if

p : [a; b] ! C is continuous and v : [a; b] ! R is monotonic nondecreasing,
then the Riemann-Stieltjes integrals

R b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist

and�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) � max
t2[a;b]

jp (t)j [v (b)� v (a)] : (6.121)
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By utilizing this property, we have

jKn (m;M; f ;�)j (6.122)
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�
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f (n) (t)

�
= Hn (m;M ;�)

By the second part of (6.121) we also have that

Hn (m;M ;�) (6.123)
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ii
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1

4
(M �m)2 Ln (m;M ;�)
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Ln (m;M ;�) (6.124)
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h
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�
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�
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1
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�
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Integrating by parts we have

Hn (m;M ;�) (6.125)

= (M � �)
Z �

m

(�� t)n d
�
f (n) (t)

�
+ (��m)

Z M

�

(t� �)n d
�
f (n) (t)

�
= (M � �)

"
(�� t)n f (n) (t)

����
m
+ n

Z �

m

(�� t)n�1 f (n) (t) dt
#

+ (��m)
"
(t� �)n f (n) (t)

���M
�
� n

Z M

�

(t� �)n�1 f (n) (t) dt
#

= (M � �)
"
n

Z �

m

(�� t)n�1 f (n) (t) dt� (��m)n f (n) (m)
#

+ (��m)
"
(M � �)n f (n) (M)� n

Z M

�

(t� �)n�1 f (n) (t) dt
#
:

On making use of (6.122)-(6.125) we deduce the desired result (6.115).
On making use of the bounds for the kernel Kn (m;M; f ; �) provided

above, we can establish the following error estimates for the remainder
Tn (f;m;M) in the representation formula (6.94).

Theorem 405 (Dragomir, 2010, [3]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on R
with [m;M ] � �I and let n be an integer with n � 1: If f : I ! C is such
that the n-th derivative f (n) is of bounded variation on the interval [m;M ],
then we have the representation

hf (A)x; yi = 1

M �m [f (m) h(M1H �A)x; yi+ f (M) h(A�m1H)x; yi]

(6.126)

+
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�
(

nX
k=1

1

k!
f (k) (m)

D
(M1H �A) (A�m1H)k x; y

E
+

nX
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1

k!
(�1)k f (k) (M)

D
(A�m1H) (M1H �A)k x; y

E)
+ Tn (f;m;M ;x; y) ;

where the remainder Tn (f;m;M ;x; y) is given by

Tn (f;m;M ;x; y) :=
1

(M �m)n!

Z M

m�0
Kn (m;M; f ;�) d hE�x; yi (6.127)
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and the kernel Kn (m;M; f ; �) has the representation (6.96).
Moreover, we have the error estimate

jTn (f;m;M ;x; y)j (6.128)

� 1
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� 1

4n!
(M �m)n

M_
m

�
f (n)

�
kxk kyk

for any x; y 2 H:

Proof. The identity (6.126) with the remainder representation (6.127) fol-
lows from (6.94) and (6.95).
Now, on utilizing the property (6.117) for the Riemann-Stieltjes integral

we deduce from (6.127) that

jTn (f;m;M ;x; y)j �
1

(M �m)n! max
�2[m;M ]

jKn (m;M; f ;�)j
M_
m�0

�

E(�)x; y

��
(6.129)

for any x; y 2 H:
Further, by (6.111) and (6.112) we have the bounds

jKn (m;M; f ;�)j (6.130)
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�����n�1 M_
m

�
f (n)

�
;

for any � 2 [m;M ] :
Taking the maximum over � 2 [m;M ] in (6.130) we deduce the �rst and

the second inequalities in (6.128).
The last part follows by the Total Variation Schwarz�s inequality and we

omit the details.
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Corollary 406 (Dragomir, 2010, [3]) With the assumptions from The-
orem 405 and if f (n) is Ln-Lipschitzian on [m;M ] ; then

jTn (f;m;M ;x; y)j (6.131)

� 1
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(M �m)n+1 Ln

M_
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� 1

4 (n+ 1)!
(M �m)n+1 Ln kxk kyk

for any x; y 2 H:

6.4.3 Error Bounds for f (n) Absolutely Continuous

The following result that provides bounds for the absolute value of the
kernel Wn (m;M; f ; �) holds:

Lemma 407 (Dragomir, 2010, [3]) Let I be a closed subinterval on R
with [m;M ] � �I, let n be an integer with n � 1 and assume that f : I ! C
is such that the n-th derivative f (n) is absolutely continuous on the interval
[m;M ]. Then we have the bound

jWn (m;M; f ;�)j �
4X
i=1

B(i)n (m;M; f ;�) (6.132)

where

B(1)n (m;M; f ;�) (6.133)
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;
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B(2)n (m;M; f ;�) (6.134)
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1
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f (n+1)
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1
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[m;�];1
;

for any � 2 [m;M ] ; where the Lebesgue norms k�k[a;b];p are de�ned by

kgk[a;b];p :=

8><>:
�R b

a
jg (t)jp dt

�1=p
if g 2 Lp [a; b] ; p � 1

ess supt2[a;b] jg (t)j if g 2 L1 [a; b] :
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Proof. From (6.104) we have

jWn (m;M; f ;�)j (6.137)
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m
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(t� �)n�1 [(t� �) + n (��m)]
���f (n+1) (t)��� dt

=
4X
i=1

B(i)n (m;M; f ;�)

for any � 2 [m;M ] ; which proves (6.132).
The other bounds follows by Hölder�s integral inequality and the details

are omitted.

Remark 408 It is obvious that the inequalities (6.132)-(6.136) can pro-
duce 12 di¤erent bounds for jWn (m;M; f ;�)j : However, we mention here
only the case when f (n+1) 2 L1 [�;M ] ; namely

jWn (m;M; f ;�)j (6.138)
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for any � 2 [m;M ] :

Finally, we can state the following result as well:

Theorem 409 (Dragomir, 2010, [3]) Let A be a selfadjoint operator in
the Hilbert space H with the spectrum Sp (A) � [m;M ] for some real num-
bers m < M , fE�g� be its spectral family, I be a closed subinterval on
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R with [m;M ] � �I and let n be an integer with n � 1: If f : I ! C
is such that the n-th derivative f (n) is absolutely continuous on the inter-
val [m;M ], then we have the representation (6.126) where the remainder
Tn (f;m;M ;x; y) is given by

Tn (f;m;M ;x; y) :=
1

(M �m)n!

Z M

m�0
Wn (m;M; f ;�) hE�x; yi d�

(6.139)
and the kernel Wn (m;M; f ; �) has the representation (6.104).
We also have the error bounds

jTn (f;m;M ;x; y)j (6.140)

� 1

(M �m)n!

Z M

m�0
jWn (m;M; f ;�)j jhE�x; yij d�

� 1

(M �m)n!

Z M

m�0
jWn (m;M; f ;�)j hE�x; xi1=2 hE�y; yi1=2 d�

� 1

(M �m)n! kxk kyk
Z M

m

jWn (m;M; f ;�)j d�

for any x; y 2 H:

Remark 410 On making use of Lemma 407 one can produce further bounds.
However, the details are left to the interested reader.
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