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Preface

Jean-Baptiste Joseph Fourier is best known for initiating the investigation of
Fourier series and their applications to problems of heat transfer and vibra-
tions. These series are special cases of trigonometric series and are named as
Fourier series in honor of him. In the sequel, many questions pertaining to
Fourier series has been raised. One of the main question about them is: When
a trigonometric series is a Fourier series? Another interesting question related
to the above question is: If a trigonometric series converges in L'-norm to a
function f € L', then is it a Fourier series of the function f? The answer of
this question has been interesting and challenging for almost one century and
still receives considerable attentions. Among others, in the accessible litera-
ture we encounter the following answer: If a trigonometric series converges in
L'-norm to a function f € L', then it is a Fourier series, however the con-
verse of this is not true in general i.e., exist many Fourier series which are not
convergent in L'-metric. For example, F. Riesz, in 1932, gave the following
counter example (the details of this example the interested reader can find in
the well-known book of N. Bari [79]): The series

i cosmx
= logm
is a Fourier series, however it does not converge in L'-metric.

As a result of above observations, it seems that lots of researchers ”curi-
ously asked”: How to make possible that this converse statement to be true?
The answer has been obtained by modification of partial sums of a trigono-
metric series and by imposing several conditions on their coefficients. As ini-
tial work regarding to L!-convergence of Fourier series, by imposing several
conditions on their coefficients, belongs to W. H. Young in 1913 and A. N.
Kolmogorov in 1923 who employed the class of convex sequences and the class
of quasi-convex sequences, respectively. On the other side, regarding to mod-

ification of partial sums of a trigonometric series, were J. W. Garret and C.
V. Stanojevic the first, in 1976, who introduced the modified trigonometric
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cosine sums as follows

[\]

_1 i Aay,) z": zn:(Aaj) cos k.
k=0

k=1j=k

Later on, were S. Kumari and B. Ram, during 1988-1989, who introduced
next new modified trigonometric cosine and sine sums as follows

¢¢(2) = +ZZA( )kcoskx

k=1 j=k

and oo
ZZA( )ksmkm

These modified trigonometric sums and many others have been subject of
studies for more than fifty years and still goes on. In this, monograph we have
collected all results related to their L'-convergence which have been published
till now in several journals. These results are written in a chronological order
as much as possible and are included in seven main sections.

The objective of the first section is to inform the reader about some real
and, separately, to some complex classes of sequences which are used through-
out this book and more. Moreover, in it are included some basic facts on
trigonometric series and necessary auxiliary lemmas.

In the second section we deal with L'-convergence of modified trigonomet-
ric sums f,(x) with coefficients which are quasi-convex, which belong to the
class C, are of bounded variation, belong to the class S, belong to the class
S’, belong to the class K, are semi-convex, belong to the class S;, are semi-
convex of fractional order, and belong to the class T. Also, LP(0 < p < 1)-
convergence of modified trigonometric sums f,,(z) has been treated in this sec-
tion. We have finalized this section with L!-convergence of modified trigono-
metric sums wé(z) and ws(z) with coefficients of bounded variation as well
as L'-convergence of modified trigonometric sums 2¢(z) and 22 (x) with gen-
eralized semi-convex coefficients.

In third section we deal with L'-convergence of modified trigonometric
sums ¢< (x) and g2 (z) with coefficients from the class S, from the class R, from
the class S(d), from the class S(§) without additional condition, from the class
S without additional condition, from the class F,,, from the class BV N C,
and finally from the class S**. We close this section with L!-convergence of
modified trigonometric sums gy, ,,,(z) and g;, ,,(v), which are generalizations
of the sums ¢¢(z) and g2 (z) respectively, with coefficients from the class R.

In the fourth section we deal with L'-convergence of other modified
trigonometric sums which are generalization of those previously introduced,
those that are new, and with coefficients belonging to above generalized classes
or to "old” and "new” ones.
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The fifth section mainly deals with L*-convergence of r-th derivative mod-
ified trigonometric sums whose coefficients belong to several above generalized
classes of sequences.

The sixth section deals with L'-convergence of complex modified trigono-
metric sums and their r-th derivative whose coefficients belong to several
classes of complex sequences.

The seventh section, and the last one, deals L!-convergence of double
modified trigonometric sums with some special type of coefficients. It contains
just few results on double trigonometric series, and we hope to complete it in
the future with new results.

Prishtina, Author:
December 8, 2020 Xhevat Z. Krasniqi
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Introduction

In this section we give some classes of real sequences, some classes of com-
plex sequences, some basic facts of trigonometric series, and lots of auxiliary
lemmas which are used throughout this monograph.

1.1 Some classes of real sequences

By an infinite real sequence we mean a mapping whose domain is the set of
natural numbers and its range may be an arbitrary set of real numbers.

Let ug,u1,...,Upn,... and vg,v1,...,Vy,,... be two real sequences. Then
the following transformation holds true.

Lemma 1.1 (Abel’s transformation—Discrete summation by parts).
The equality holds true

n n—1
> urve = Y Uk = vky1) + Untn = U 10m,  m >0,
k=m k=m

where U, = ug +uy + ... +up and U_1 := 0.

Proof. Since upy = U —Up_1, k=m,m+1,...,n we have

n
§ UV = UmUm + Um+1Vm+1 + -+ UpUn
k=m

= (Um - Umfl) Um + (Um+1 - Um) Um+1 +--- 4+ (Un - Unfl) Un
—Um—1Um + Um(vm - Um+1) + -+ Unfl ('Unfl - 'Un) + Unvn

n—1

= —Umn-1Vm + Z Uk:(’Uk - Uk:Jrl) + Unvn-

k=m

The proof is completed.
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For m = 0 it is clear that

n n—1
Zukvk = Z Ui (v — vgt1) + Unvp. (1.1)
k=0 k=0

For any sequence {u,} we define the differences A%u,, := wu,, Alu, =

Ay, = Uy — Uny1, A%y, = A(AM ) =y — 2Up 11 + U2, and in general
Ay, = AA™ ) = A"y, — A g, moe {1,200

In this context (1.1) can be written as follows

n n—1
Z UV = Z Av U + Uy, (1.2)
k=0 k=0

Using these notation we have,

Definition 1.2. The sequence {u,} is monotone decreasing (it is written
Up ) if Auy, >0 for all n.

WZOfOI"aHnZO,

then the sequence {(n + 1)7!} is monotone decreasing one.

Ezxample 1.3. For example, since A (%ﬂ) =

As an important application of (1.2) is the following.

Corollary 1.4 (Abel’s Lemma). If there exists a real number M > 0 such
that |Ux| < M, for0 <k <mn, andvg > vy > -+ > v, >0, then

n
E UKV

k=0

S M’LLO.

Proof. Based on (1.2) and our assumptions we have

n
E UKV
k=0

n—1
<Y |Avg | |Uk| + [Un] vl
k=0

n—1

< Z(Avk)-M—kan
k=0
=MI(vo—v1)+ (v1 —va) + -+ + (V1 — V) + vy] = Muyg.

The proof is completed.
Using the second difference we can recall,

Definition 1.5. The sequence {u,} is convez if A%u, >0 for all n.
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Ezample 1.6. Defining Ad; =
> 0 for j € {0,1,.

, j € {0,1,...}, then we have A?%d; =

1
J+1
.-}, which means that the sequence {d;}32,

1
G+ (G+2)
is convex.

Next we give another example.
Ezample 1.7. We consider the sequence d; = ﬁj, j€{2,3,...}, then we have
1 1 it od
Adj=— — ——— = / =
Inj In(j+1) ;  zlhnz

for j € {2,3,...}, and thus

A2d~—/j+1 da _/j+2 dx
! i xln2x j+1 .731112.13.

Since the function

1
xln’x

h(z) =

is decreasing, then A%d; > 0 for all j € {2,3,...}, which means that the
sequence {d;}32, is convex.

Throughout this monograph for two sequence {u,} and {v,} we write
Up = o(vy,) if z—z — 0 as n — oo, and u, = O(v,) if Z—: < M for a real

number M > 0 and for all n.
Some properties of convex sequences are included in next statement.

Lemma 1.8. The following properties holds true.

(i) If the sequence {un} is convex and bounded from above, then u, |.
(i) If the sequence {uy} is convex and u, — 0, then u, } 0.
(iii) If the sequence {uy} is convex and bounded, then

o0
nAu, -0 and Z(n +1)|A%u,| < oo.

n=1

Proof. (i) Assuming that the opposite conclusion is true, then there would
exists a value m such that Au,, < 0. Since {u,} is convex at any j > m we
would have Au; < 0 and of course |Au;| > | Au,,|. Therefore,

Up — Um = (un - un—l) + (un—l - un—?) + -+ (um—i-l - um)

n—1

n—1
=Y Auy = |Aug| = (n = m)|Aug| — 0
Jj=m j=m

as n — oo, which is a contradiction as the sequence {u,} is bounded from
above.
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(ii) Condition u,, — 0 implies that the sequence {u,} is bounded from
above, therefore using the property (i) we obtain w, . So, u, J with u, — 0
imply u, | 0.

(iii) Based on assumption we immediately get w, |. The sequence {u,}
has a finite limit since it is bonded from below. Let lim,,_, u,, = u, then the

series on the equality
o0
Uy — U = Z Au;
j=0

has monotone decreasing terms and therefore it converges. This means that
nAu, — 0.
Moreover, using Lemma 1.1, we have

n n—1
37 Aup =Y (m A1) A%y + (0 + 1) Auy,.
m=0 m=0

So, (n + 1)Au,, — 0 and

n
E AUy, = Ug — Uy —> Uy —U AS T — OO

m=0

This means that

n—1 o
Z (m+ 1) A%, —ug—u or Z (m +1)A%u,, < cc.
m=0 m=0

The proof is completed.
Remark 1.9. If the sequence {uy,} is convex and u, — 0, then
o0
nAu, -0 and Z(n—i— 1)|A%u,| < oo
n=1
as well.
The notion of a bounded sequence is given in next definition.

Definition 1.10. The sequence {u,} is said to be bounded if there exists a
positive real number M such that |u,| < M for all n.

Another class of sequences is the class of quasi-convex sequences.
Definition 1.11. The sequence {u,} is said to be quasi-convez if

Z(n +1)|A%u,| < 0.

n=1
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It is a well-known fact that every bounded convex sequence is quasi-convex
but the converse statement is not always true (see Lemma 1.8, (iii)).

Moreover, every quasi-convex zero sequence satisfies conditions: (i) uy =
o(1) as k — oo (ii) S1 := D5 |Auk| < oo, and

v |[%]

Syi= Y |3 ok k|

m=2 |k=1

Namely, since ux, = o(1) as k — oo, then

o0 o0
=YD A%y, < ZZ | A% < Zk|A2uk|
k=0 |j=k k=0 j=Fk
Also, since
m—+k—1
Aum—k Aum—i—k - Z AQUH
1=m—k

then we have

I
S

ZZ\AQM = 2ZZ\A2U,| = 22 | A%u;] < oo

k=11i= =1 k=1

Now we are going to prove a lemma which deals with conditions (i) and
(ii).

Lemma 1.12. Let ag, k =0,1,2,..., be a sequence of real numbers satisfying
So < 00 and let n be a positive integer. If

b, =0 for k<n and by =ax for k>n, (1.3)

then, uniformly in respect to n > 2,

> Atp—r — Aay,
Sy = Z | kk +k|+(9<imax |ak|10gn>.

Proof. Let us estimate the sum
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n—1 [%}

2_22 Z Ay, ; Aam+k )

k=1

By the definition of the numbers by, Aa.,,_ = 0 for all m and k in this sum.
Therefore

am+k

i M wf3

Since

[

o

] (%]

Adpsr 11 1
Tk bm-t1 +kz::2 (k Tkt 1) btk = (2] O [z]+10

and by, =0 for m+ k < n, b4k = @k for m+k > n, then

—1 %]
Y |3 At
m=2 |k=1 k
n—1 [%]
1 1 1
< bms1] + <—> |bm+k|+7‘bm m 1‘
mzz:z Z\k k+1 (] Pt
n—1 1
< max |a < max |ag|(1+logn
< mox ol 320 e foul(1+ log)

Now we estimate the difference

i [7] Abm k — Aberk i [7] Aam k — Aaerk
m=n k=1 m=n (k=1

Note that Ab,,+x = Aamyr forallm > n. If m—k > n, then Ab,,—, = Aap—k
as well. But, m— [%2] > n for all m > 2n and, therefore, the following estimate
is valid

[7 Abm k — Abm-i,-k; [22:] Aanb—k — Aa?fb-i-k
. k

oo
m=n

k= - k=
= [ ] Abyy—p — Aam k
<> D .

m=n |k=1
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Since
[%] Abp—j; — Alm—r
k=1
[%}_1 1 1 1
+ ( - ) (bt = @m—r) + 7 (O[] = W[
£ E k+1 [7}< (2] [2])

=—1ifk=0,dnr=7—- 7 ifk=12,...,[2] -1, and
[%], we can write

by setting d, i
(%]

[

w3

Abmfkr - Aamfkr

k
1 k=0

k

A
=)
2

£

g

N

=

B

A
=
5
"

lak| (3 4+ logn) .

2<k<ip
The proof is completed.

Definition 1.13. The sequence {uy} is said to be of bounded variation if the

series -
S [ Auy| (1.4)

n=1

CONVETgeES.

The class of zero-sequences of bounded variation usually is denoted by
BV. It is obvious that if u, | 0, then series (1.4) converges.

A very useful subclass of the class of bounded variation sequences is the
so-called Sidon-Telyakovskii class denoted by S, seemingly in honor of Sidon,
who was the first to introduce this class. We present here its equivalent form
expressed by Telyakovskii.
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Definition 1.14. The zero-sequence {uy} is said to be in the class S if there
exists a sequence {A,} such that

(i) An 1 0 as n — oo,

(i) 30" o An < 00, and
(1) |Auy,| < Ay, for all n.

It is clear that the inclusion S C BV holds true. Also it was shown that ev-
ery quasi-convex zero-sequence satisfies the conditions of the class S. Namely,

taking
Ap = [APuy
k=n
we have
An - An+1 = |A2un‘ >0,
. o . 2 _
Jim A= lim, )[4 =0,

) 0o 00 ) k [
DAL= A %] =D A% Y 1= (k+ 1) A% < oo,
n=0 n=0k=n k=0 n=0 k=0

and
Ay | = > A%up| <Y [A%uy] = A,
k=n k=n

The converse of this statement, in general, is not true.
A new criteria, in order that {u,} € S, has been introduced latter by the
following definition.

Definition 1.15. A zero-sequence {u,}22, is said to belongs to the class F,,
for some 1 <p <2 if

1
o Aun|P + | A1 P+ -\ 7
Z('“'”““” )<OO.
n=1

n

Before recalling an important class of sequences we need another definition.

Definition 1.16. A sequence {u,}52, of non-negative numbers is said to be
quasi-monotone if 1% | 0 for some 3> 0 and for all n or equivalently w,41 <
un (14 a/n) for some a > 0 and for all n > ngp(«).

Related to this definition is next lemma.

Lemma 1.17. Let {u,}32, be a quasi-monotone sequence of real numbers. If
>0 Uy converges, then nu, = o(1) as n — co.



1.1 Some classes of real sequences 9
Proof. We have
U1 > (14 a/(n—1)) " up, upo > (1+a/(n—2) %uy,,...

and therefore for k < n

Zun v 2 k(l+a/(n— ))_kun

or
k

k
kg < (L4 a/(n = k)* Y uamy < b/ Y 0,

v=1 v=1

n

Putting k£ = [5] into last inequality and taking into account that 23;1 U,
converges, we obtain nu, = o(1) as n — oo.
The proof is completed.

Lemma 1.18. Let {u,}52, be a quasi-monotone sequence of constants. If
Yoo | up, converges, then Yo (n+ 1)|Au,| converges.

Proof. Under assumption of this Lemma, Lemma 1.17, and Lemma 1.1 we
have

o0 > Zun = lim Zun
n=1 mree n=1
m—1 00
= lim (Z(n—i—l)Aun (m+1) um> Zn—l—lAun
m—0o0
n=1 n=1
The proof is completed.

Years later, a "new” class of sequences S’ was introduced.

Definition 1.19. The zero-sequence {uy} is said to be in the class S’ if there
exists a sequence {A,} such that

(i) {An} is quasi-monotone,
(ii) 300 o An < o0, and
(1) |Auy,| < Ay, for all n.
More general class of sequences than S’ class is the class S**.
Definition 1.20. The zero-sequence {u,} is said to be in the class S** if

nAu, =0(1) as n— oo.

The latest definition is illustrated by next example.
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Ezample 1.21. The sequence

(-1

=7 €{1,2,...
nlog(n + 1) ned }

does not satisfy the conditions of the class S’ since
(o]
|Au,| > nlog(n+1)"'  and Z | Auy,| = oo.
n=0

On the other hand,

1
Auy| < ———— = 0(1).
nl ul_log(nJrl) (1)
This class of sequences was generalized further to the class S}*, r €
{0,1,2,...}. Namely,

Definition 1.22. The zero-sequence {uy} is said to be in the class S*, r €

{0,1,2,...}, f

n" T Au, = O(1) as n — oo.

It is clear that for » = 0, as a special case, we have S§* = S**.

More than two decades later has been proved that the classes S and S’
are equivalent. Now we recall S2 class of sequences, which indeed expresses
an another equivalent form of the class S.

Definition 1.23. The zero-sequence {u,} is said to be in the class S? if there
exists a zero-sequence { Ay} of non-negative numbers such that

(i) >0 n|AA,| < oo, and
(ii) |Auy,| < A, for all n.

The definition of d-quasi-monotone sequences S(¢) is the following.

Definition 1.24. A sequence {u,} is said to be §-quasi-monotone, if u, — 0,
u, > 0 ultimately and Au,, > —6,, where {§,} is a sequence of positive
numbers.

Along with what we said above, even in this case, the classes S and S(J)
are identical as well. Exactly, L. Leindler in 2000 has proved the following
embedding relations

ScsS cS()cs,

which factitive mean that the classes S, S, and S(§) are indeed equivalent.
To show this firstly we prove two lemmas.

Lemma 1.25. Let {u,} be a §-quasi-monotone sequence with > o~ nd, <
oo. If Y0 |y, < 00, then nu, = o(1) as n — oo.
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Proof. Let 0 < m < n. Adding the inequalities
TLA'U/n,1 Z _nanflv

(n—1)Aup_—92 > —(n—1)d,_2,

(m+ 1)Au,y, > —(m+ 1)d,,,

we obtain
n—1 n—1
—upn+ Y [(k+1) = Kug + (m+ Dum > = (k+1)d.
k=m+1 k=m

By assumptions, the right-hand side is o(1) as m,n — co. The sum on the
left side is o(1) since Y7 | u, < co. Whence,

(m + Dy, — nuy, > 0(1),  (myn — 00).
Since, u,, — 0, then
MUy, — NUy > 0(1),  (m,n — 00).

We can not have lim inf nu,, > 0, since otherwise fo:l u,, could not con-
verge. Hence, in particular, there is for each positive £ an infinite sequence of
indices m for which mu,, < e.

Now suppose that liminf nu, > 0. Then there is an infinite sequence of
indices n such that nu, > 2¢ > 0. For each m satisfying mu,, < € we take
larger n satisfying nu,, > 2¢ > 0. So, we have a contradiction of

MUy, — Ny > 0(1),  (m,n — o).

Thus lim inf nu,, = 0, as we required.
The proof is completed.

Lemma 1.26. Let {u,} be a §-quasi-monotone sequence with > >~ nd, <
oo, If Y0 up < 00, then Y 0 n|Au,| < co.

Proof. We have

Z n|Au,| = Z n(Auy,) + 2 Z n(Au,)”,
n=1

n=1 n=1

where (Au,, )~ is —Au, if Au, < 0, and 0 otherwise. Since 0 < (Auy,)~ < 0y,
we have Y7 | n(Au, )~ convergent, and it is therefore enough to show that
>0 i n(Auy) is convergent. We may consider the series Y~ (n + 1)(Au,)
instead, since the difference between these series converges with Y > | |Au,,|.
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Now >°°  (n + 1)(Au,,) is not necessarily a series of positive terms, but it
differs from such series, namely

oo

> ln+ 1)(Auy) + (n 4 1)d,],

n=1

by a convergent series. Hence it is enough to show that > °7 . (n + 1)(Au,)

n=1
has bounded partial sums. By Lemma 1.1 we obtain
n n—1
Zuk = Z(k + 1) Aug + (n + 1)u, + O(1).
k=1 k=2

The series on the left converges, and therefore by Lemma 1.25, (n+1)u,, — 0
as n — 00. So, the partial sums on the right are bounded.
The proof is completed.

Now, the following lemma holds true.

Lemma 1.27. The classes S, S’, S(3), and S? are all equivalent.

Proof. Firstly we verify that classes S(§) and S? are equivalent. Let {u,} €
S(4). By Lemma 1.26 we have > - n|AA,| < co, which means that {u,} €
S2.

If {u,} € S?, then

<> k|AAl=0(1), n— .

k=n

i AAy

k=n

nA, =n

Using Lemma 1.1 we also have the inequality

n n—1 n—1
> Ap =) kAA+nA, < kAA+nA,
k=1 k=1 k=1

which implies that >, Ay < oo i.e. {u,} € S(4).
Now we are going to prove that S and S(§) are equivalent. It is clear that
S C S(9). If {un} € S(9), we define

m=Fk

Then By, — Br11 = AAg + 0 > 0, i.e. By | 0 as k — co. On the other hand,

DBe=2 Akt Y 0w
k=1 k=1 k=1m=k

(oo} oo

I
NE
=
+
NE
NE
3"

I
N
=
+
]

s

3

A

3

k=1 m=1 k=1 k=1 m=1
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and |Au,| < A4,, < B, for all n, which means that {u,} € S. So, we have
ScSs' cs()cs.

Subsequently, S = S’ = S(§) = S%.
The proof is completed.

Even if the efforts to generalize the class S were in some way only virtual,
such efforts were not without any success as shows next definition.

Definition 1.28. The zero-sequence {u,} is said to be in the class S, (r =
1,2,...), if there exists a sequence {A,} such that

(i) An 1 0 as m — oo,
(i) Yo" yn"A, < oo, and
(iii) | Au, | < Ay, for all n.

Here we write S = S. It should be noted that from A, | 0 and
Yoo n"A, < oo we get n"t1A, = o(1) as n — oo. Also, the inclusion
S,41 C S, forall r=1,2,..., is trivial.

Now let {u,} € S;. For arbitrary real number ug we prove that {u,}52, €
So. Define Ag = max{|Aug|, A1}. Then |Aug| < Ap i. e. |Au,| < A, for all
n=0,1,2,..., and {4,}22, J.

On the other hand

iAn < Ay + inrAn < 00.
n=0

n=1
Consequently, {u,}>2, € Sp which indeed shows that S, C S, for all

(r=0,1,2,...).
The next example proves that the implication

{un} €Spr1 C{unt €S,, (r=0,1,2,...)
is not always reversible.

Ezxample 1.29. For n = 0,1,2,..., we define u,, = Z;oznﬂ 1?12 Then u, — 0

as n — oo and for n = 0,1,2,..., Au, = —=—. Let us show first that

(n+1)2*
{untniy & Si.
Let {A,}52 4 is an arbitrary positive sequence such that 4,, | 0 and Au,, <
|Au,| < A, for all n. However Y~ nA, > > > Gtz is divergent, i.e.

{un}%ozo ¢ Si1.

Now, for alln = 0,1,2,..., let A, = m Then A, |0, |Au,| < A,
and > 00 (A, =>00, ﬁ < 0o, ie. {un,}5%, € So.

An example, which we are going to consider, will show that there exists a
sequence such that {u,} € S,, but {u,} &€ S,41, (r=1,2,...).
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FEzample 1.30. Indeed, for n = 1,2,..., let u,, = ZZC’:”H kr% Then u,, — 0
asn — oo and for n = 1,2,..., Au, = nr—lﬁ Let {A4,,}22, is an arbitrary
positive sequence such that A4,, | 0 and Au,, < |Au,| < A,, for all n. Even
thought

§ nr-‘rlAn > E nr-i—l _ § = =00,
nrt2 n
n=1 n=1 n=1

ie. {un} &€ Sr41, (r =1,2,...). On the other hand, for all n = 1,2,..., let
A, = 777}1-%—2' Then A, | 0, |Au,| < A,, and Y 02 n"A, => 7, n% < o0, ie.
{un}%ozl S ST"

Now we give the definition of the class C. It has an important place, among
others, since as we will see below S ¢ CNBV.

Definition 1.31. The zero-sequence {uy} is said to be in the class C if for
every € > 0, there exists a 0(¢) > 0, independent of n, and so that for all

n >0,
5
J

The class C was not remained without generalization. Namely,

dx < e.

> A, S0kt )@
2sin £
k=n-+1 2

Definition 1.32. The zero-sequence {u,} is said to be in the class C,., r =
0,1,..., if for every e > 0, there exists a §(¢) > 0, independent of n, and so
that for all n > 0,

R sin (k+ %)z
/0 Z Aukl 2sin 5

k=n-+1

()
dr < e.

One should note here that for » = 0 we obtain Cy = C.
In the following we need to prove an inequality known as Cauchy—Schwarz
inequality for integrals.

Lemma 1.33. Let f and g be real functions which are continuous on the
closed interval [a,b]. Then

{/ab[f ) 'gm]dm}g < [ [ e

Proof. For any real number x we have
0 < [zf(t) +g(t))*
b
— 02 [ [of(6) + g(0)dt

b b b
2 / FO)dE + 20 / FBg)dt + / lo(t)]2dt
= Maz?+ 2Nz + P,
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where

b b b
M= [rora N = [ogwld ad P [goPa

So, the quadratic expression Mx2 4+ 2Nx + P is non-negative. Therefore
its discriminant (2N)? — 4M P must be non-positive

N2 < MP.

Putting M, N, ad P into last inequality we obtain the proof of the re-
quested inequality.

Now, as we mentioned above, we are in able to prove a lemma which
shows that S C C N BV. Truly, to show this we prove the following lemma
which is known as Sidon-Fomin lemma. We give here its proof presented by
Telyakovskii who gave an elementary proof.

Lemma 1.34. Let the real numbers «;, i = 1,2,...,k, satisfy conditions
|oi;| < 1. Then the following estimations hold true

| ka1
[ e D < o,
A 2sin 5
=0
and X
& cos (i + %
|4 2sin £
F+1 |i=0 2

where C' is a positive constant.

Proof. First we have

/kiz’“: sin(i+%)md<zk: N A N S
T e A7 T

2sin £
On the other hand using Lemma 1.33 and the Jordan’s inequality sin 5 >
%B, B € [O, 71, see Lemma 1.79 page 37, we also have

.

k+1

k . . 1
Za-sm(l+ 2)x d

1 . x
2sin 5

=0

& dx : & k 1 ’
< / — - / [ «; sin (z + ) a:] dx
( T 4SlIl 2) ki—%—l ; 2

k+1

Tk 2 3
<C(k+1)7 - / [Zaisin <z+;) m} dr | <C(k+1).
0 [i=0

The second inequality of this lemma can be proved in a very similar way.
The proof is completed.
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Lemma 1.35. The inclusion S C CN BV holds true.

Proof. Since, according to the Lemma 1.27, the class S is equivalent to S2,
then we prove that S € CN BV by proving S2 ¢ CNBV.
From {u,} € S? it implies that {u,} € BV. Indeed,

D AAL <D K|AA] < o
k=1 k=1

On the other hand from Ay = o(1) as k — oo we have

i AA,

k=n

nA, =n §Zk\AAk|:0(1), as n — oo.

k=n

Applying Lemma 1.1 we obtain
> A
k=1

which along with (1.5) we get that >, Ax < co. Since {u,} € S? it follows
that |Auyg| < Ay, for all k, and therefore

3

>

1
= ST kAAL + nA,, (1.5)
k=1

oo

Z | Aug| < ZAk < 00, i.e. {up} € BV.

k=1 k=1

Now we are going to prove the implication {u,} € S? = {u,} € C.
Indeed, applying Lemma 1.34 we obtain

§ T
/ s
0 0

m—1
< K lim l Z (F+D]AAL| + (m+ 1A, + (n+1)An

m—00
k=n-+1

Auy , sin (k+3)
1 Ay, —
k 2 sin 5

i Auy sin (k+m%) x
~ 2sin 5
k=n+1

k=n-+1

)

where K is an absolute constant.
Since mA,, — 0 as m — oo, because of > -, Ay < oo, by Olivier’s
theorem, we find that

) ] . /{ 1
/ 5 PORLLIURS KIS
0 |psht1 2sin 5
SK[ S (k4 DIAA + (i DA | (16)
k=n+1

Both terms of the right-hand side (1.6) are o(1) as n — oo. Subsequently,
we can choose n big enough so that for every ¢ > 0 we have
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sm )
Z Au Up————— dl‘<5
2511
k=n-+1

[

which means that {u,} € C.

17

So, we have proved implications {u,} € S = {u,} € BV and {u,} €

S = {u,} €Cor{u,} eBVNC.
The proof is completed.

A wider class of sequences than the class of bounded variation is the class

of bounded variation of higher order.

Definition 1.36. The zero-sequence {un} is said to be in the class (BV)™

(the class of bounded variation of higher order) if

0o
Z |A™ | < oo,
n=1

where A™uy, = A(A™ u,) = A"y, — A™ Ly, g, me {1,200}

Note that for m = 1, the class (BV)! is the class BV. Also it is clear that

{un} € (BV)" = {u,} € (Bv)m-'rl,

but the converse inclusion is not true.
To show this fact we give an example.

Example 1.87. For k=1,2,..., and —k < n < k, let us define

k=)
k24+n — ]f2

The sequence {u;} is well defined, for k? + k = (k + 1)? — (k + 1). Since

= 35
we have
o k-1 oo k—1 ) 1
Zmuzl =5 JAueral = k2 =Y = 4o
k=1n=—k k=1n=—k k=1

which means that {u;} is not of bounded variation.
However,
A2uk2+n =0

for —=k<n<—-lor0<n<k-—2,and

2 1 1
JEx A? Ug2 -1 = +

Aluge g = —
ket ZRRCES .
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Whence,
oo oo k—1 oo 1 1
2 _ _
;;Aw—gigﬁmmﬁ—gﬂw+“#n4<+w

and therefore the sequence {u;} is of bounded variation of order two, but is
not of bounded variation.

The class R of sequences also appears to be useful in literature.
Definition 1.38. The zero-sequence {u,} is said to be in the class R if

3 (%) <

This class has been generalized to the class R, as follows.

Definition 1.39. The zero-sequence {u,} is said to be in the class R, r €

{0,1,2,...}, if N
nz::lnH'Z ’AQ (%)’ < 00.

This class has been defined in the complex domain as we will see it in the
next section. One should note here that for » = 0 we have Ry = R.

Also we introduce a new class of null sequences of real numbers related to
the class R.

Definition 1.40. If up — 0 as k — oo and
0o un
k2 log k ’AQ (4 ‘
; og k:) < oo

then we say that {uy} belongs to the class R°8.

Because of the inequality 1 < Inn for n > 3, it is clear that R°¢ C R.
Moreover the following example shows that the class R!°% is not an empty
subclass of the class R.

FEzxzample 1.41. Let ug, = m, k > 2. Then it is obvious that u; — 0 and
A (3| < s = S kg2 (W) < 0 <o
k B’k k — kIn’k

Next definition introduces the notion of the semi-convexity.

Definition 1.42. The zero-sequence {u,} is said to be semi-convex if

Zn ‘A2un,1 + A2un’ <00, (ug=0).

n=1
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The class of semi-convex sequences has been generalized to the class of
semi-convex sequences of order v, r € {0,1,2,...}.

Definition 1.43. A sequence (uy,) is said to be semi-conver of order r, r €
{0,1,...}, or (an) € (SC)", if up, — 0 as n — oo, and

Z n" A%, 1 + A?u,| < 0o, (ug = 0).
n=1

We note that the class (SC)Y is the same with the class of semi-convex
sequences.

The semi-convexity of a sequence is generalized to hyper semi-convexity
of non-negative integer and to non-integer positive order.

Definition 1.44. The zero-sequence {u,} is said to be hyper semi-conver if
o0
Z notl |Aa+2un_1 + Aa+2un| < oo, (up=0),
n=1

where « € {0,1,2,...}.

Definition 1.45. The zero-sequence {u,} is said to be hyper semi-convex of
non-integer positive order if

Zna+1 | A2,y + APy, | < 0o, (ug =0),

n=1
where a > 0 any real number.

Lately, the following class has been introduced.

Definition 1.46. The sequence {uy} is said to belongs to the class K if u,, —
0 as n = oo and

Zn ‘A2un,1 — A2Un+1’ < o0, (ug=0).

n=1
The class K was generalized to the class K.
Definition 1.47. The sequence {u,} is said to belongs to the class K* if

Un, — 0 as n — oo and

(oo}
Zno‘ | A,y — A ] < oo, (ug =0).
n=1
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It is obvious that for & = 1 we obtain K! = K.
In what follows it is related in some way to the class K.
For any real value of o the binomial coefficients A% are defined by

(I—m) @t => A%, |a| <1,
v=0

Then Af =1 and for v > 1

Aa:(_l)v<_0‘_1> _(e+D(@+2)---(a+v) _ (1/—}—04).

v v v! v

When « # —q, where ¢ is a positive integer, we have

ﬂ:(a+1)(a+2)--~(a+l/)_> L for v — oo,
Ve vive I'la+1)

and it follows that
A5 =0w*) and v*=0(A)),
where

—+oo
I'(z) :/ z* e %dz
0

is the well-known Euler integral of the second kind and we recall here only its
main property that is I'(«a) = (o — 1)\

This relation concerning the order of magnitude of the binomial coefficients
A% justifies the notation . Also by definition it follows that

A9

VOé

=0 forv>gq.

Concerning the sign and variation of the binomial coefficients we mention the
following result, which are all immediate consequences of the definition of A%.

When o > —1 and all A% are positive and the sequence {A%} is monotone,
for « increasing to co and for —1 < a < 0 decreasing to 0. If &« = 0, then all
the coefficients are equal to 1.

When a < —1 the sequence {A%} contains both positive and negative
terms. For small values of v the terms have alternating sign, but from a
certain value of v all terms have same sign or vanish. In particular we note
that in the sequence

Ao AT AT AT L (0< <),

where —2 < a < —1, all terms are negative except the firs one.
It should also be noticed that the series > - ; A% is absolutely convergent
for « < 1. Since for o < —1
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oo
ZA‘;‘Q:” =(1-z)"*t =0, for z—1,
v=0

we have

ZA;“ =0, for a<-L
v=0

By multiplication of two binomial series we obtain for |z| < 1

oo o0 0
ZAng ZAEJ:U = (1—33)7 *1(1_‘1:)*5*1 _ (1—3}‘)70(7[572 — ZA§+[5+1$U.
v=0 v=0 v=0

It follows that

D ACAL L, = AGTPTL (n=0,1,2,..)

n—v
v=0

for all values of « and 3. For g = 0 this formula reduces to

STAG = AT or AST - ASTE A2, (n>1),
v=0

which deals with addition and subtraction of binomial coefficients of the same
order.

For any real value of a the sums of order o belonging to a given sequence
{a,} will be defined by

Sp(ay,) = i AL ay.
v=0

In particular
S%ay) =ag+ar +---+a, and Sy (a,) = ap.
As a consequence of the formula Zﬁ:o A2 Ag_,, — Ag+ﬁ+1’ the formula
Sn(Sp(an) = Sy ay),

holds for all values of a and 3. For 8 = 0 this formula reduces to

n
> S8ta, =S5 a, or S8 (ay) = Sit(ay) = S3(a), n > 1,
v=0
which deals with addition and subtraction of sums of the same order.
For any real value of & > —1 the Cesaro means of order a belonging to
the series > >, a, are defined by
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«@ Sﬁf ay
Cn(ull) - /50‘ )

As we have seen earlier for any positive integer « the differences of order
« belonging to a given sequence a, are defined by the equations

Aa, =a, —a,11, A=AYA"'a,), (¥=0,1,2,...).

For these differences we have the formulas

(07
@ o —a—1
A%, = E A# Qutp
pn=0

and

A%(a,b,) = ZO (0)artaa (@),

both of which can be verified by mathematical induction.
Since A;“‘l = 0 for 4 > o+ 1 we may replace the sum in the above
equality by the infinite series

oo
A%y, =Y A ayy,, (v=0,1,2,...).
=0

If these series are convergent for some a which is not a positive integer, we
define the differences Aa, by the above equations. It should be noticed here
that the convergence of this series for some value v implies the convergence
for all values of v. If the series are not convergent these differences will not
be defined. Thus, in any case where the differences Aa, exist, they can be
determined by above equations.

After this extensions of the definition we have

0
Aa, = a,.

We further notice that the difference A%a, exists when a, = O(v*~°) for
some positive value of §. In particular, if the sequence {a,} is bounded, the
differences of any positive order will exists.

Whether the series 32 ; A, ', is convergent or not, we will call the
partial sums

n—v
—a—1 —a—1 —a—1 —a—1
Afa, = Aq a, +A;j ayy1+---+ A2, a, = E AMO‘ Gyt
n=0

where n > v, the broken differences of order o belonging to the sequence a,,.
The broken differences exist for any value of . When « is a positive integer
we have
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A%a, = A%,  for n—v>a,

since A, "1 =0 for p > a.
By means of the broken differences we can condense the Abel’s formula
for partial summation,

n n—1
> ayb, = S(ay)Ab, + S5 (ay)bn,
v=0 v=0

into .
Z al/bl/ = Z SB(aV)A}Lbuv
v=0 v=0

and generalize it, by introducing an unrestricted parameter «, to the trans-

formation
n

> avb, = S0 (a,)ASb,, (1.7)
v=0 v=0
which replaces the factors a, by the sums S¢~!(a,) and the factors b, by the
broken differences A%b,. The last generalized Abel’s transformation is said to
be of the order a. The formula for partial summation is of order 1 (Lemma
1.1).
If o is a positive integer we have

ASb, = A%, for n—v>a,

and the last transformation may be written

n n—ox n
> ah, =Y SN a)A + Y S0 (a))A%D,, (1.8)
v=0 v=0 v=n—a-+1
which for a = 1 reduces to the original form of the formula for partial sum-
mation. This transformation carries the product-sum ZLL:O a, b, into two dif-
ferent kinds of sum of which the first one will be called the main term of
the transformation and the second one the reminder. In the main term we
find only complete differences, in the remainder only broken differences of the
sequence {b, }.

Just as the usual formula for partial summation is of the utmost im-
portance not only for the theory of convergence of numerical infinite series,
but also for the convergence of Fourier series. The generalized Abel’s trans-
formation is a very valuable tool for investigation within the so-called L'-
convergence of Fourier series. In this short book it will be frequently applied
in both of its forms i.e. the original and the generalized Abel’s transformation.

In accordance with the generalized Abel’s transformation we shall call the
series

iSf‘l(ay)Ao‘by
v=0

an Abel transform (of order a) of the series Y I'_ a,b,.
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Lemma 1.48. Ifa>0,p >0,

(a) e, = O(nP), and
(b) 307, AatP|Avtle, | < oo, then

(i) S0 g ANTP|AM g, | < o0, for —1 < A < a
(ii) AMPAXe,, is of bounded variation for 0 < A\ < a, and tends to zero as
n — oo, except when p =0 and A = 0.

Proof. If 0 < 6 < 1 and 0 < 0 < «, we have (except when p = 0, 0 = 0,
0=1),

[eS) [eS) [eS)
2 :Azfd+p|Aof<5+16n| < § :AzfderE A?,ZZIA”H&?,I
n=0 n=0 v=n
[eS) v
_ E o+1 § : §—1 gqo—6+p
- |A EU' Av—nAn
=0 n=0

oo
=Y ATTP|ATe |,

v=0

and (i) follows by induction, the case p = 0, A = —1 being trivial.
Again, if 0 < A <

oo (oo} (oo}
S IAMANTP AN, < DT ANTPIAM e | 4> T AR AMe, 4| < 0.
n=0 n=0 n=0

Whence A)MPA*e, is of bounded variation, and tends to a limit, which
can only be zero, except when p =0 and A = 0.
The proof is completed.

Lemma 1.49. Let r > 0 be a real number and let s denote the integral part
and § the fractional part of r (0 < § < 1). If the sequence €, satisfies the
conditions

(i) e, = O(1) and
(it) Y02 gV AT e, | < oo,

then we have

o0
Atle, =Y ATTAT e,
n=0
Proof. We introduce the sequence

o0
Ey = E ALAT.JFlEV«HJ,'
pu=0

Since Aj, < A}, for all values of p1, we have
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oo
len| <) AR|AT e, e e, =o(1).
=%

The differences of the order one being determined by

o] o0
1 1 1 -1 1
Ale, = AGA™ e, + > (AL = A JA™ ey =D ATTA e,
n=1 =0

we obtain, by mathematical induction, the difference formula

oo
_ r— r+1
Aleg, = g A} YA ey,

pn=0

valid for any positive integer ¢. In particular,
(o]
As+1€” _ ZAiflAr+1€l/+#.
pn=0
The proof is completed.

Lemma 1.50. If0 < § <1 and 0 <m < n, then

ZA5 Sp

Proof. We suppose that 0 < d < 1 since the result is trivial for § =0 or § = 1.
By repeated application of Abel’s Lemma 1.1 and since

< max |S |
o<pu<m

5— 6—1 6—1
An—;ln o 6 -1 +n— p m-—p An p 1 An—p—l

-1 _ 51+ > 51
Amfp n b m-—p Am p—1 Am—p—l

for 0 < p < m < n, there exist integers m,, such that m > m; >mg > --- >0,
and

m m 5—1
6—1 _ n—p 46—1
ZATL pS - Z o—1 Am—psp
p=0 p=0 ""m—p
6—1 | M1
An Aéfl S
— A5—1 m—p~PpP
m p=0
6—1 p6—1 |™Mm2
An Am ZA(S—l S
— A(;fl Aﬁfl my—p~P
m ma p:0
A6 1 |™Mk+1

ZAmk —-Pp

<
ASY
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Now since mq,mo, ... is a non-decreasing sequence of non-negative inte-
gers, there is an integer p such that m, = m,41. Therefore, since

m mp
6—1 6—1
Yo ATls, S ALS,
p=0 p=0

< |Sp,| < max |S),]-

6—1
<A
>~ A;Sn_pl

AST!
At
there is strict inequality in this lemma unless Sﬁ =0 for 0 < pu < m, ie.

So=81=-=58,=0.

Identically we note that for 0 < § < 1, then

< 1, and whence

The proof is completed.
Five other classes of sequences of the ”semi” and ”hyper” type also came
across in the literature.

Definition 1.51. The sequence {u,} is said to be twice quasi semi-convez if
Up, — 0 asn — oo and

Zn |A4un,1 — A4un| <00, (up=wu_q=0).
n=1

Definition 1.52. The sequence {u,} is said to be quasi semi-convex if u, — 0

as n — 0o and
oo

Z n }Azun — A2un+1| < 00.

n=1

Definition 1.53. The sequence {u,} is said to be r—quasi convex, v > 0, if
U, — 0 as n — oo and

oo
Z n" ) Aup g — Auy| < 00, (ug = 0).
n=1

Definition 1.54. The sequence {uy} is said to be third quasi hyper-convez if
Up, — 0 asn — oo and

o0
Z n3e ’A?’a*lun_l - A?’a*lun| < o0, (up=wu_q=0).
n=1

The newly class of sequences SJ is given i next definition.

Definition 1.55. The zero-sequence {u,} of positive numbers is said to be in
the class SJ, if there exists a sequence {A,} such that

(i) An 1 0 as n — oo,

(ii) >0 | Ap < o0, and
(iii) |A (%)‘ < %, for all n.
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Since
’A (%”)‘ < % — A (un)| < Ay, ¥n,

then it is clear that SJ C S.
The above inclusion is a proper one. Next example shows this fact.

Ezample 1.56. For n € Z\{0, 1,2}, where Z is the set of non-negative integers,
define u,, = 7%3 Then there exists the sequence A,, = # such that u,, satisfies
all conditions of the class S but not those of SJ. But, for n € {1,2,...} the
sequence v,, = % satisfies the conditions of the class S as well as conditions
of the class SJ. Therefore, the class SJ is indeed a proper subclass of the class

S.

The class of sequences SJ,., r € {0,1,2,...}, is a natural extension of the
class SJ. It is defined as follows.

Definition 1.57. The zero-sequence {u,} of positive numbers is said to be in
the class SJ,, r € {0,1,2,...}, if there exists a sequence {A,} such that

(i) An 1 0 as n — oo,
(ii) 37 n" A, < oo, and
(iii) | A ()| < An - for all n.

n

It is also clear that for r = 0 we have SJy = SJ. Moreover, the inclusion
SJ,4+1 C SJ,. holds true for all » € {0,1,2,...}, but the converse statement
does not hold as shows next example.

Ezample 1.58. For n = 1,2,..., define u,, = —4, r € {0,1,2,...}. Let us
show first that {u,} ¢ SJ,;1. Namely, u, = —5 — 0 as n — oo. If we take
A, = L2, r€{0,1,2,...}, then we have

r+1 _ r+1 _ -
Do A=Y s = =0
n=1 n=1 n=1
which means that {u,} & SJ,11.
However, A,, | 0 as n — oo, and
r _ r _ o
ZnAn—Zn 2 _an < 0.
n=1 n=1 n=1

Finally,
U, 1 A,
ny | = <™ )
‘A(n)’ ‘A<nr+3>’ n,Vn
So, we have verified that {u,} € SJ,.

The BV'°® class of sequences has been defined as follows.
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Definition 1.59. If u; = 0 as j — oo and

Zl"g 6+0|3 ()| <=

then we say that {u;} belongs to the class BV°8,

Also earlier has been introduced the so-called weakly even null-sequences
and this class was denoted by W.

Definition 1.60. If u; — 0 as j — oo and

S log(j + 1) | Auy| < oo
j=1

then we say that {u;} is weakly even, briefly denoted by {u;} € W.

Moreover, in general context, next lemma shows that the class BV is a
wider class of sequences, and more useful in applications than the class W.

Lemma 1.61. The implication {u;} € W = {u;} € BV'% holds true, i.c.
W C BV,

Proof. Let {u;} € W. After some elementary calculations we have

1
( U ) _uy—uyyy | 1108 (1 + m)

log(j+1)/) log(j+1) log(j+1)log(j +2)°
Hence,
, u; , luj+1|log (4 +1)
10g2j+1‘A<,j>‘§logJ—|—1 Auj| + 2 ,
G+1) log(j +1) G+ Dldul ( +1)log(j +2)
. |ujt1]
<1 + )| Au;| + 22—,
< log(j + 1)|Auy| |
Thus,
- 2/ . |UJ+1|
JZ:log(j+1)’A<logj+1)‘ Zlogjﬂmujmz
> 1
Z g(j+1) |AU‘J‘+2Z it Z | Au| <210g]+1)|ﬂuj‘
= =741 Jj=1
1+1 1
+QZ|AulIZ <0 ZlogJJrl)IAUgl < +o0,
=1 Jj= 1 j=1

which clearly implies {u;} € BV
The proof is completed.
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1.2 Some classes of complex sequences

In this section we shall give the definitions of some classes of complex se-
quences. We assume that {c;} is a zero-sequence, i.e.

lim ¢; = 0.
[j]—ro0

Definition 1.62. A zero sequence {c;} of complex numbers satisfying
Z|A i —c—;)|logj < o0

is called weakly even.

It is clear that every even sequence is weakly even too.
The class W of weakly even sequences has been generalized in the following
manner.

Definition 1.63. A zero sequence {c;} of complex numbers belongs to the
class W,., r € {0,1,2,...} if

Z|A i —c—;)| 7" logj < oo.

For r = 0 we obviously have Wy = W.

Definition 1.64. A zero sequence {c;} of complex numbers belongs to the

class R* if
Z ( )‘jlogj < 00

Sl (5)] =

The class R* is generalized by the following definition.

and

Definition 1.65. A zero sequence {c;} of complex numbers belongs to the

class R*(r), r € {0,1,2,...}, if

> Cj —C—j
> [ (5

j=1

7" logj < o0

and
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If we take r = 0 in this definition, then we obtain R*(0) = R*.
The class S} of complex sequences is defined as follows.

Definition 1.66. A weakly even zero sequence {c;} of complex numbers be-
longs to the class Sy if for some 1 < p <2 and some monotone sequence {4;}
such that 3272 | Aj < 0o the condition

150 o

holds.

An extension of the class Sy is the class Sy (), where 1 < p < 2 and
a > 0.

Definition 1.67. A weakly even zero sequence {c;} of complex numbers be-
longs to the class Sy, (8) if for some 1 < p < 2 and some 0-quasi-monotone
sequence {A;} such that Z;i1 jot14; < 0o and Zjil J*A; < oo the condition

1
npoz+1

" 1A (e)]P
2EIE o)
j=1 J

holds.

A new class of complex sequences also has been introduced e.i., the class
K*.

Definition 1.68. A zero sequence {c;} of complex numbers belongs to the
class K* if for some 1 < p < 2 the conditions

[An]

ﬁ 3 <Cj_kcf> log k = o(1),

Jj=1

(An]
0 T €~ Cj _
lﬁrllhmnﬁoo Z (k) klogk =0,
J

()

hold, where [A] denotes the integer part of .

and
[An]

P T -p—1
lim iy o0 7 j

Jj=n

Definition 1.69. A null sequence (c;) of complex numbers belongs to class
J* if there exists a sequence (A;) such that

A; 10, as j— oo,
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oo

Z‘]AJ < 00,

Jj=1

’A ((jﬂ_“)’ <Z v
] J

Now we are going to introduce the following class of sequences of complex
numbers.

and

Definition 1.70. A null sequence (c;) of complex numbers belongs to class K
if there exists a sequence (A;) such that

A; 10, as j— oo,

oo
Z]A] < 00,
j=1

maX{‘A (Cj) A(C;J)‘} < % je{1,2,....

The class K has been extended to the class 2 given in the next definition.

9

Definition 1.71. A null sequence (c;) of complex numbers belongs to class
K2 if there exists a sequence (A;) such that

A; 10, as j— oo,

oo
Zj2Aj < o0,
j=1

max{‘A2 (CJJ) A? (7)’}§;42J, je{1,2,...}.

Next example shows that the there exist sequences that belong or not belong
to the class KC2.

)

Example 1.72. Let (¢;j) be a sequence defined by its general term c¢; := J%

j€{1,2,...}. Then, |A? (%)‘ <A =% A=100 ad X2, %4, =

T
+00, which means that (c;) & K?.
On the other hand, let (¢;) be a sequence defined by its general term

& =% . je{L2...}. Then, ’AZ(%N <A =M A =410 and

)

> 521 %A < +o0, which means that (¢;) € K*.



32 1 Introduction

The class K? was generalized also to the class K2, r € {1,2,...}.

Definition 1.73. A null sequence (c;) of complex numbers belongs to class
K2 if there exists a sequence (A;) such that

A; 10, as j— oo,

oo

er+1A]‘ < o0,

j=1

4 . A
max{’AQ (ji) A2 (erj)‘}ﬁjr#’ jre{l,2,...}.

Note that for r = 1 we clearly have K2 = K2
Even in this case, next example shows that the there exist sequences that
belong or not belong to the class K2 for some r.

)

Example 1.74. Let (c;) be a sequence defined by its general term ¢; := %2 ,
j € {1,2,...} and r = 2. Then, |A? (%)‘ < ]% = %, A; = % 10, and
> 21 72 Aj = +oo, which means that (c;) & K3.

On the other hand, let (¢;) be a sequence defined by its general term

o =, J € {12} Then, [4% ()| < & = %, 4, = % L0, and
> 21 7% Aj < +oo, which means that (¢;) € K3.

Some of the classes given in this section are extended to the two-dimensional
case. Indeed, the notion of bounded variation of double sequences is given by
next definition.

Definition 1.75. We say that u;j belongs to the class BVg if
ujr —+0 as j+k— oo,

and

o0 o0

DD 1Al < oo,

j=1k=1
where

AnUj g = W) g — U1k — Uj k1 + U1 ki1

Definition 1.76. The zero-sequence {u;} is said to be in the class Cy if for
every € > 0, there exists a §(¢) > 0, independent of m,n, and so that for all
m >0 and n > 0, we have

> > sin(j—&—l)a:sin(k—kl)y
//D Z Z Ak 42111 $sin g : drdy < e,

§ |j=m+1k=n+1 2

where
Ds = {(z,y) : 0 < 2,y < 7 & min(,y) < §}.
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Definition 1.77. The double sequence {u;} is said to be quasi-convex if

[o oliNe o]

DD Gk + 1) [Auy ] < oo,

§=0 k=0
where Asguj e = Arn (Ujk — Wjt1,k — Ujik+1 + Uj1,k+1) -

Definition 1.78. A double null sequence {a; .} of positive numbers is said to
belong to the class Jq if there exists a double sequence {A; 1} such that

Ajkd 0, j+k— oo,

and

for any non-negative integers p,q and j, k € {1,2,3,...}.

1.3 Basic facts on trigonometric series

A trigonometric series is the series
a oo
0 .
5 + ngil(an cosnx + by, sinnx), (1.9)

where a,, and b, are real numbers (n = 0,1,2,...), known as the coefficients
of the series.

If a trigonometric series converges for all z € (—oo, +00), then it represents
a function which has the period 2.

Trigonometric series play an important role not only in mathematics itself
but also in many of its applications. We will not discuss their entire role here
but only one of them which we are going to reveal it at the and of this section.

Let us express the series (1.9) in a different form. Using the well-known
Euler’s identity

e =cosz+isine and e ¥ =cosz —isinz

it follows that

67,'1: + e*iz . eix _ efiz
cosy = —— and snr=-———
2 24

Putting last identities into (1.9) we obtain
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a e3¢} eim_i_e_iz e—im eir
0 ) —
= n——— iy | .

Hence, taking

, Cp= and c_, =

o ag a, — by, ap + iby,
0 2 2 ) 2 )

then the series (1.9) takes its form

“+o0
> e (1.10)

n=—oo

The series (1.10) is called complex form of the series (1.9).
The partial sum of the series (1.9) is

Sn(z) = C;—O + Z(ak cos kx + by sin kx),
k=1

while its complex form is

k=+n

Sp(x) = Z cpet™®, (1.11)

k=—n

in which case the convergence of the series (1.10) must be understood as the
limit of sums of the form (1.11).

Let us assume that the function f(z) is not only the sum of a trigonometric
series but also that this series converges uniformly in [—, 7]. These conditions
allow us easily to determine its coefficients. This is implied by multiplying

f(z) = % + ;(an cos nx + by, sinna)

by cos kz or by sin kx, then integrating it from — to 7 and taking into account
that

s
/ cosmzx cosnxdr =0, m #n,

—T

s
/ sinmx cosnxzdr =0, m #n,

—T

™
/ cosmrsinnzdr =0, m#*n and m=n,

—T

™ s
/ cos® nxdr = / sin? nede =m, m,n € N.

—T —T
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These equalities imply that

™ 1 ™
ap = — f(z) cosnzdz, by, = — f(z)sinnzdz, n € {0,1,...}. (1.12)
T

—T —T

Formulae (1.12) are called Fourier formulae, the numbers a,, and b,, are
Fourier coefficients and the series whose coefficients are determined by Fourier
formulae derived from the function f(z) is named the Fourier series of the
function f(z).

Regarding to the complex form of Fourier coefficients of the series (1.10)
we write as in the following. Indeed, assuming that

fl@)y= > exe, (1.13)

(where the convergence is uniform), multiplying both sides of (1.13) by e~"*
and integrating term by term, we have

m +o0 ™
fz)dx = Z / cpe’ Py
- k=—o0 T

However,
/7r eFMrde —or if k=n and =0 if k#n,
and whence
Cp = % _: (x)e” ™ dz, (n=0,1,2,...).

The numbers ¢,, are called the complex Fourier coefficients of the function
f ().
Using formulae (1.12) we find that
Sp(x) = a0 4 Z(ak cos kx + by sin kx)
k

_ %/W f(t)dt+§:
- k=1

(2 st s
-1/ 0
- [ 1)

n

—

1 T
( f(t) cos k:tdt) cos kx
T™J—x

1 n
-+ Z(cos kt cos kx + sin kt sin kx)} dt

2
k=1

1 n
3 + Z cosk(t — x)] dt.

k=1
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Replacing ¢t — z = w into last equality and using 2w-periodicity of f(x) we
obtain

% + icos k(u)] du = % i f(u+ z)Dy(u)du,

The expression D, (u) is called the Dirichlet kernel which we are going
to express it in a simpler form. Namely, using the elementary trigonometric
identity

2sinacos f = sin(a + ) + sin(a — )

we have

1 1 O
Dy, (u) = 5t 250 ;QSinZCOSku

1 1 @ 1 , 1
—2+2Sing;{sm<k+2>u—sm<k—2>u}
—1—1— 1 sing—u—sing + sin5—u—sin3—u
2 2sin¥ 2 2 2 2

n—f u — sin n—§ u
2
1 1
u—sin|{n—=|u
( ( 2) (=3)4)]
1

u . 1 sin(n—&—%)u
781n§+sm n+§ U| = ———

1

Jr
2 251n§

in U
251n2

(This is why in the trigonometric series we take % and not only ao).
The series

oo
Z(—bn cos nx + a, sinnx)
=1

usually is called the conjugate series of the the trigonometric series (1.9).
For its partial sum S, (z) we similarly find that

n

Z —by, cos kx + ay sin k)
k=

zn: [ < ( t)sin ktdt) cos ka

k=1

—
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4 (— = f(t) cos k:tdt) sin kx

—T

_ = /Tr £t [i(—sin kt cos kx + cos kt sin k:x)} dt

k=1
1 (" — .
= _;/_W f(@) kz_lsmk'(t—w)] dt

:_%/ f(u—|—:c)Zsinkudu:—%/ f(u+:1:)l~)n(u)du,

- k=1 -

where .
Dy (u) = Z sin ku
k=1

is called the conjugate Dirichlet kernel.
The conjugate Dirichlet kernel D,,(x) has the following simplified form

~ 1 i U
D, = 2 sin — si
() ZsmZ ; sin 5 sin ku
1 =« 1 1
= ZsmZ Z [cos (k:—2>u—cos (k+2) u}

k=1

1 u 3u n 3u S5u + n
= COS — — COS — COS — — COS —
2sin 3 2 2 2 2

onop)emen(ee))]

1 cosZ —cos(n+1)u
= [COSZCOS <n+2> u] = 2 ( 2) .

- in & in &
251112 251112

In order to estimate the kernels D,, (z) and D,,(z) we prove a lemma known
as Jordan’s inequality.

Lemma 1.79. If z € [O, g], then sinx > %x

Proof. 1t is clear that for z = 0 the inequality holds always true. Let z €
(07 g] Since the function *2-* is a decreasing one we have

t.e. sinx > —ux.
T

The proof is completed.
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38
Using Lemma 1.79 we have
Du()| < o3y = - =0 for 0<u<
n(u _2%%_2u_ , or u<m,
and also
1 1
- - <), for 0<u<m.
2 U

Last estimates of the Dirichlet and the conjugate Dirichlet kernels have
very important role in studying many questions related to the trigonometric

series as we will see later in this book.
The Cesaro mean of the first order of the Dirichlet and of the conjugate

Dirichlet kernels
1
k=0
and
~ 1 L
K, (u) = 1 ;Dk(u)

respectively, are called the Fejér and the conjugate Fejér kernels.
Another form of the Fejér kernel can be derived as well. Namely, since
cos ku — cos(k + 1)u

2sin (k + 1) usin ¥
Dyu) = 250 ,g)u 2 _ oS!
4sin” g 4sin” g
we have
1 & cosku —cos(k + 1)u 1 1—cos(n+1)u
Kn(’u) = Z RN = 2w
n-l—lk:O 4sin” 3 n+1 4sin” §
2
_ 1 2sin? Lgl)u _ 1 sin Lgl)u
n+1 4sin®% 2(n+1) sin % ‘
This form implies that K, (u) > 0 and using Lemma 1.79 for we get
1 1 1
S 2 2 — o]
2(n+1)(33) e

Kﬂ(“) S . 92
2(n 4 1)sin” g

for all u € (0, 7).
Moreover, since
Dy(uw)du ==, (k=0,1,2,...),

—T

we also obtain
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= = =0,1,2,...).
( du TL+1Z 7T7 (n 07 ) ) )

For the conjugate Fejér kernel we also have

—T

I~(n(u) >0 for O0<u<m,

and for n € {1,2,...},
K |<7Z|Dk

An interesting relation between D, (u), the derivative of D,, (u), and K, (u)
is given in next lemma.

112"%:7

k=1

Lemma 1.80. The equality

D, (u) = (n+ 1)Dp(u) — (n + 1)K, (u)
holds true.
Proof. Since

(n+1)Dn(u) = (n+ 1)Ky (u)
cosnu —cos(n+u  1—cos(n+1)u

=+ 4 sin® 5 4sin? 5
(n+1)cosnu —ncos(n+1)u—1
N 4sin? ¥
nlcos nu — cos(n + 1)u] + cosnu — 1
- 4sin2%
2n sin § sin (nJr %)qucosnuf 1
B 4sin2%
and
B! (u) = —sin® % + (2n+1)sin%sin(n+'%2)ufcos2 %t cos%cos(n+3)u
4sin” §
_ 2nsin g sin (n—|— %) u+ cosnu — 1
B 4 sin? 5
we obtain

Dj(w) = (n+ 1)Dy(u) = (n + 1)Ky (u).
The proof is completed.
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Lemma 1.81. For n big enough the estimation
/ " | Dn(u)
-7

2sinu

du = O(n?).

holds true.
Proof. Since
1 n
1Du(u)] < 5 +I;|008k$| =5

for all n € {1,2,...}, we have

. (2

Dy (u)

2sinu

du

| /\

/7r du 1 /7 du
— =4 =4+n _
2|smu| 2 o 2|sinul

1.
2
1 2 gy
Q ) Mgy [T

IN
3

The proof is completed.

Lemma 1.82. Let r be a non-negative integer, and x € [r/n,w|, wheren > 1.
Then

D)z 725 (n+1/2)Fsin[(n + 1/2)x + kr /2]

P [sin(xz/2)]r+1-F
n (n +1/2)"sin[(n + 1/2)x + rm /2]
sin(z/2) ’

where the same ¢ denotes various analytical functions of x independent of n,
and D, (x) is the Dirichlet kernel.

Proof. For r = 0 the proof follows immediately. Supposing that this equality
holds true and deriving its both sides we have

D7(f+1)(m) = z_: {(n +1/2)k+1 sin[(n +1/2)z + (k + 1)77/2][5in(x/2)}k7r71<p
k=0

+(n+1/2)%sin[(n + 1/2)z + kr/2][sin(2/2)] "%
L (4 1/2)" sin[(n +1/2)z + (r + 1)m/2)
2sin(z/2)

L (n+1/2)"sin[(n + 1/2)z + rr/2) }

sin?(z/2)
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(n+ 1/2)k sin[(n + 1/2)3; + k?T/Q] [Sin(.r/Z)]k_T_Q(p
=0
+(n+1/2)" sinf(n + 1/2)x + (r + 1)7/2]2[sin(z/2)] !

=

By mathematical induction the proof is completed.

Lemma 1.83. Let r be a non-negative integer, and x € [e, 7], where n > 1.
Then

where C; is a positive constant depending on € and 0 < € < 7.
Proof. Using Lemmas 1.82 and 1.79 we have

ool -o T A+ ) o, (1),

k=0

The proof is completed.

Lemma 1.84. Let r € {0,1,2,...}. Then
/ |D) (2)|de = O, (n"logn 4+ n").

where O, contains a positive constant depending on € and 0 < € < 7.
Proof. Since

n

DI Z k" cos(kx + rm/2),
k=1

n
D,(f)(x)\ < Zkr < nr+1
k=1

Whence, using Lemmas 1.82 and 1.79 we obtain

T T/n T
/ DY) () dar = 2 < / 4 / ) DY (2) e
-7 0 w/n

T/n | o
- / |51n(nx+r7r/2)\dx

xT

then we have

—1—2/ nFxh=1""dr + O(n") = O, (n" logn +n").
w/n

The proof is completed.
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Lemma 1.85. Let r € {0,1,2,...}. Then

/ |D) (2)|dz = O (n" logn) .

Proof. Using the Bernstein inequality, for trigonometric polynomials, in the

L space, we have
/ | D) ()| da < nT'/ D,y (z)|da.
0 0

/OW B (2)|dz < /W de + o)

= lc?g(l +nm) + O(1) = O(logn).

However,

Last two estimates complete the proof of this lemma.

Lemma 1.86. Let the real numbers «;, i = 1,2,...,n, satisfy conditions
|aj| < 1. Then the following estimation holds true

/ ZalD(r

where C' is a positive constant.

de < C(n+1)",

Proof. Using the Bernstein inequality, for trigonometric polynomials, in the
L space and Lemma 1.34, we have

/ gpz

where C' is a positive constant.
The proof is completed.

) dr < ( ) dx < C(n+1)"T

et

Lemma 1.87. The following estimates

D)) = 0 (<2

), O<z<m
T

and
T

1
|D8(z)| = O ((x + 2) log(n + 1)) , 0<x<m,
hold true, where

D8 (g Zlog + 1) cos(jx)
J=1
and

D8 (x Zlog J+ 1)sin(jz).
j=1
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Proof. Applying Abel’s transformation we obtain

DIOg Zlog (j + 1)sin(jx)

Z (log(j + 1)) Zsmsx +log(n+1) Zsmsa:

=1 s=1 =

i cos%—cos(j—i—ﬂx

— '+1 2sin 3
COS**COS(’H,+%)$

+log(n + 1) —2 , for0 <z <.

: T
2s1n§

Thus, using Lemma 1.79, we have

1 1
| D% |<Zm7+log(n+1) O(og(r;—l—)>7 0<z <.
Similarly, we have
Dlos (g Zlongrl)cos(]x)
7j=1
n—1
—ZAlogj—I—l Zcos (sz) +log(n+1) Zcos (sx)
Jj=1 s=1 s=1
n—1 . . 1
1 sm(]+§)z 1
§:0g< +'+1> 2sinZ 2
j=1 2

sin(n+31)z 1
+log(n+1) ésinﬁ)—Q],for0<x<7r.
2

Thus, using Lemma 1.79, we have
= N o1
DE() <> —— (=45 ) +1 il =+z
|”(@|jﬂj+1<x+2>+0gn+)(x+2>

=0<(Z+;>bgn+n>.

The proof is completed.

Lemma 1.88. If z € [e,m —€],e > 0 and m € N, then the following estimate
holds
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~ (r)
(Dm(x)> :Or,e (mr+1), (r:O,l,Q...)

2sinx
where O, depends only on r and e.

Proof. By Leibniz formula we have

(220) 25 (1) () (Bt

i=0
T (r—i) m .
T 1 g . o
> () (zme) T+ 5)
i=0 j=1
T (r—1)
=omm Yy (! ! . (1.14)
= ) 2sinx

We shall prove by mathematical induction the equality

( 1 >(T)PT(cosx)

. . bl
2sinx sin” !z

where P, is a cosine polynomial of degree .
Namely, we have

1\ (~1/2)cosz _ Pi(cosz)
(752) 7

2sinx 2

B sin? x - sin?a
so for 7 = 1 the above equality is true.
Assume that the equality

F(x) ;-( 1 >(T)_Pr(cosm)

2sinx sin”t! ¢

holds. For the (7 + 1) — th derivative of s—-— we get

2sinx

F(2) =
B P.(cos ) (—sin™*?z) — P;(cosz)(r + 1)sin” z cos x
B sin?" T2
_ (=1/2)H; _1(cosx) + (1/2)H,_1(cosx) cos 2z — (r + 1) P (cos ) cos =
B sin”t? g

Qri1(cosz) — (r+1)Rr41(cosz)  Triq(cosz)
= T2 = T2 ’ (115)

sin”" ¢z sin” "

where H,_1, Q;41, Rr+1, Tr41 are cosine polynomials of degree 7 — 1 and
T + 1 respectively.
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Therefore for z € [e,m — €], € > 0, from (1.14) dhe (1.15) we obtain

~ (r)
Dm(x) r+1 |Pr i COSSC)l r+1
<2smx> - Z ity = One (m™).

The proof is completed.

Lemma 1.89. If the set of real numbers ag, a1, ..., a0y, ... satisfy conditions
lim a, =0,
n—oo

and

oo
Z nk|AFa, | < oo,

n=1

then the series

Qo >
= 5+Zancosn:r (1.16)

will converge in the open interval 0 < x < w, and will represent there an
L-integrable function whose Fourier cosine development is given by (1.16).
Further,

z) = Z Ak Flg, Sk (1),
n=0

where S¥(x) denotes the Césaro sum of order k of the series
= + i (1.17)
= COS NT. .
2 n=1

Proof. First the Cesaro sum o' )( ) of order k of the series (1.17) is bounded
in the mean in the interval (0, 7). Because of the conditions on {a,} and the

boundedness of Sflk)(x) for the series (1.17) in the interval 0 < § < z <, we
may infer the convergence of the series (1.16) in that interval to a function

x) =Y A, SF(z), (1.18)
n=0

The series on the right hand side of (1.18) converges absolutely and uni-
formly in the interval 0 < § < & < 7 and can therefore be integrated term by
term in that interval. Subsequently, we have

/ |dm<z<

<’“><x>

AP
dx e nklAk g, . (1.19)
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As ¢ approaches to zero. the right hand side of (1.19) approaches to a
definite limit in view of conditions of this lemma and the boundedness in
the mean of U%k)(x) in the interval (0,7). Thus the left hand side does also,
and the existence of the resulting integral shows that the function f(z) is an
L-integrable function whose Fourier cosine development is given by (1.16).

The proof is completed.

Lemma 1.90. Let S, (z) and T,gk)(z) be the n-th partial sum and Cesaro mean
of order k > 0, respectively, of the infinite series

1 o0
5 + ;cosmg.

Then

(i) [y |Sn(z)|dz ~ logn,
(ii) [, |T(k )|dx remains bounded for all n.

Proof. This Lemma intently is left without its proof. The interested reader
can find it in [62].

Lemma 1.91. Let r be a non-negative integer and 0 < ¢ < w. Then there
exists Myc > 0 such that for all e < |z| <7 and alln > 1,

(i) 1B (2)] < —Mfri

(ii) | BV) (x)| < Mt
(iii) | DY ()] < QMTE"
(iv) | DY (z)] < QMTE"
where . .
E,(z) = Zeikx, E_,(x)= Zeﬂ‘km.
k=1 k=1

Proof. The case r = 0 is trivial. For » > 1, we have

n

—ED (@) = 3 K eTH =3 AR E() + (n+1) Ba(a),
k=1

k=1

and so

M, MTE "
B @) < (ZA (W) + (1) < =2
k=1

for some positive constant M,...
Since

we also obtain
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M,on"

||

1B ()] <

)

for some positive constant M,...
Moreover, using the equalities

DY(z) = ED(x) + BV (2)

and
iD{(w) = BY) () = BY) (@),
we obtain
|D§LT)( )| < M,.n M,n 2M,.n
|| |z ||
and .
|l~)£lr) (2)] < M,n Mn 2M,..n

The proof is completed.

47

Lemma 1.92. Let r be a non-negative integer and 0 < € < w. Then there

exists My > 0 such that for alle < |z| <7 and alln > 1,

(i) B (x)] < Moen®,
(ii) [E ()] < Mesn®,

where E,(x) = 3.1 _| Ep(z).

m=1

Proof. (i) Under conditions of this Lemma and Lemma 1.91 we have

|<zw i

Mre n(n + 1) M,.
] 2 I:vl

for 0 <e <|z| <.
(ii) Similarly we have obtained

Z i
m=1 m= |LL"

for 0 <e <|z| <.
The proof is completed.

Lemma 1.92 has been generalized to the next statement.

Lemma 1.93. Let r be a non-negative integer and 0 < € < w. Then there

exists Myc > 0 such that for all e < |z| <7 and alln > 1,
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(i) B (z)] < Meen™

[z]
(ii) [BV) (z)] < Men

where En(z) = Y1 _| En(z).

Proof. (i) Under conditions of the Lemma and Lemma 1.91 we have

TE

—(r) - r
B, ()] < > [BG) ()] <

m=1
M. n""n(n+1) M,n"H!
e 2 ||

5|2
hE
Sﬂ

for 0 <e < z| <.
(ii) Similarly we have obtained

—(r n . M, M,.n"t1
BV (@) < Y IED (@) < T2 S mr < 2

—n
for 0 <e <|z| <.
The proof is completed.

Lemma 1.94. The following statements hold true.

(i) There exists a positive constants « and 8 such that
a(logn)| < [|Ka(2)]l < Bllogn),
(ii) |K,(z)| = o(n), where K,(z) = 30" _; D ().

Proof. (i) The existence of the constant 3 follows from the fact that D, (z) =
O(logn). Further, we have

27| B ()| > /OW Ko (2)da

:Z(l— kl)/ sin kxdx
=0 n —+ 0

B " 1 k 1 — coskm
- n+1 k

k=0
n k
1 Z 1—cosjym
n+1 k=0 \j=0 J
log(n!)
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for some constant M and the last step being the implication of the relation
Son_  logv = log(n!). Using Sterling’s asymptotic formula n! ~ v/2rn-n"-e="
then we have

)

1K (2)]] > a(log ).
(ii) Firstly, we have

~ - n(n+1)
D! = < ——
() chos kx| < 5
k=0
and so
~ 1 L
K/ < / — 2 .
W) S — |57 DL = o)
k=0
Subsequently,
|, (x)|de = o(n).
x| <%

Differentiating K, () we get

K/ () = Z1n(2) — Zon(#) + Xsn(z),

where )
cosx — cos(n+ 1)z 2sin” x
Eln(x) = 4si 2z ) ZQn(I) = o a2’
Sme 5 (231n 5)
and o in( D
smaxsin(n + 1)x
Egn(ZE) =

(n+1) (2sin %)2

Clearly, |21, (2)| = o(|x|72) for j = 1,2, and (n + 1)| X3, (x)| = o(|x|~3).
Using these estimates, we obtain

~ d 1 d
A o A e - A
z<fo|<n Z<fal<n & ntlJecpicn @

n—= n

Combining the above estimates, we infer that |K’ (z)| = o(n).
The proof is completed.

Lemma 1.95. For each non-negative integer n, there holds

lim
n— oo

CnEv(Lr)(l') - C_nE(_Z)](x)H =0

if and only if

lim n"e¢p,log|n| =0,
n|—oo

where {c,} is a complex sequence.
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Proof. Assuming r > 1 and denoting J,, = ||c, B )( )+ E(T)( |,

Lemma 1.84 we have

Jn:/
[
Z\cn+c_n|/ E)

_2|cn+c_n\/ dx> —|cn+c_ |n" logn + O(1).

n

CnEy)(x) + Cang) (m)‘ T

CnE(—T)z () + Canr(Lr)(x) ‘ } du

E(_’g(x)‘ dz

On the other hand, using

5=
0

< len +c_pl

en + el B (@) 4 c_a[BY) () — B ()]

B (@) de + o] |

—T

E(”( )~ ) (@) de

with Lemma 1.84 and Lemma 1.85 we have
In <O (Jen + c—n|n”logn) + O (Jc—n|n" logn) = O (Jcp, + c—n|n" logn) .

So, based on these estimates the results follow.
The proof is completed.

Lemma 1.96. For n > 1, we have

a 5;1552 o(n), n = 0,
(ZZ)H 251nw =o(n), n = oo,
m =o(logn), n — oco.

Proof. (i) For z # 0, sinz > 2z for x € (0,7/2), and Lemma 1.93 we have

) [ |E / .
2sinx o |2sinz o 2|sinz|
3 2 M. d ANE
§/ R T e = o(n),
0 2|xsmm| n—00 z )|
as n — 00.

(ii) In a similar way, we can prove that

(i)
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nT inT

e /7r /” 1
- < . < ——dz
‘2SIH.’L‘ ~ Jo |2sinz — Jo 2|sinz|
P % dy
< ——dx <k — =1 1 =o(l
_/0 Sfrsina] ™ S /0 — = lim (logz) ] o(logn),
as n — 00.

The proof is completed.
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2

L'-convergence of modified sums f,,(x)

In this section we are going to present all collected results regrading to L!-
convergence of modified trigonometric sums f, (z) whose coefficients belong
to several classes of real sequences.

2.1 L'-convergence of modified trigonometric sums
fn(x) with quasi-convex coefficients

We know that the trigonometric sums

n n

fu(x) = % i: Aay, + Z Z Aaj cos kx
k=0

k=1j=k

are called modified trigonometric cosine sums or simply modified cosine sums.
Regarding to these sums we have next statement.

Theorem 2.1. Let

o0
aop )
flx) = ) + ,;,1 ay, cos kx,

limg o0 a = 0, and {ax} a quasi-convexr sequence. Then f,(x) converges to
f(x) in L*-norm.

Proof. Using Lemma 1.1 (transformation (1.1)) twice, we have

a (oo}
flx) = ?O +kzlak,coskx

ot [N
—n11_>120<2 +Zakcosk‘x>

k=1
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n—1
= nh—>Holo kz_o Aag Dy (z) + an Dy (z)

n—2
= lim [Z(k + l)Azaka(x) + nAan_an_l(x) + CLnDn(:C)

n—oo
k=0
We know that [Dy(z)| = O () for # € (0,7], and by assumptions we
obtain
lim a,D,(z) = 0.

n—oo

Moreover, using the estimate

1

nx?

|Kn(x)|:(’)< ), x € (0, ],

we also have
lim nAa,_1F,-1(z) =0.

Whence,
fl@) = (k+1)A%arFi(x), (2.1)
k=0

where Fy(x) := k%_l Z?:o Dj(z).
On the other hand, using Lemma 1.1 we have

1 n n n
fn(x) = 5 kZ:OAQk + kZ:lj:ZkAaj cos kx

ao An 41
=5 +Zak coskx — "2+ fan_HZcos kx
k=1 k=1

n—1
= Z Aap Dy (x) + anDy(x) — apy1Dn(x)
k=0

= AapDi(x) = i(k + 1) A%y, Fy(z) + (n + 1) Aa, Fy(x).  (2.2)
k=0 k=0

oo

So, (2.1) and (2.2) imply
/ﬂ f (@) = fula)|de = /ﬂ SOk + 1) A% F(x) — (1 + 1) Ay Fo(a)| da
0 0 k=n

< Sk Di2%a [ [Fi@)]ds
k=n 0

+(n+ 1) Aan| / \Fy (2)] da
0
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™ > ™
= 2 Y (k+1)|A%] + Zn+1)| Aa|
k=n

Since
lim |Aay,| =0,

n— oo

then we have

i Azak

k=n

<(n+1)) A%l
k=n

(n+1)|Aan| = (n+1)

<) (k4 1)|A%a].

k=n

Subsequently,

/O7T |f(z) — fo(x)|dz < WZ(:’£+ 1)|A%a;] = o(1) as n — oco.

k=n
The proof is completed.
Corollary 2.2. Let

. . Qo -
nh—>Holo Sp(x) = n11_>11010 (2 + I;ak cos kx) = f(x),

limg 00 ar, = 0, and {ar} a quasi-convex sequence. Then S, (x) converges to
f(x) in L*-norm if and only if |an11|logn = o(1) as n — oco.

Proof. Using Theorem 2.1 and some parts of its proof we have
[ 1@ = su@lde < [ 176) = fu@lda+ [ 1,(0) = Su(a)lds
0 0 0

= o(1) + |ans] / | Do(a)de
= o(1) + O(|an+1]| logn).

Also, we have

Olansa|logn) = / "t s1 D)) de
- / " ful@) — Su(x)lda
< [1@ - 1@z + [ 15 - Su@)lts
— o(1) + / (@) = Su(e)d.

55



56 2 L'-convergence of modified sums f,(x)

So,
IIf = Snll =0(1) as n — o©

if and only if
|ant1]logn =o(1) as n — oo.

The proof is completed.

2.2 L'-convergence of modified trigonometric sums
fn(z) with coefficients from the class C

We consider the cosine series

a o0

0

?+ E ay cos kx,
k=1

for which
_ a0 <
flz) = nhﬁngO Sp(x) = nl;rrgo ( 5+ ’; a, cos kx) ,
li =
oo ’
and
(oo}
Z |Aay| < oo,
k=1

i.e. the sequence {a;} is a zero-sequence of bounded variation.
First we prove the following lemma.

Lemma 2.3. Let
1 n n n
fulz) = 3 Z Aay + Z Z Aajcoskx.
k=0 k=1j=k
Then
lim f,(z) = f(z), Vze(0,n].

n—oo

Proof. Since |D,(z)] = O (%) for x € (0, 7], limy, 00 an Dy () =0, and

lim S, (z) = f(z),

n— oo

we have
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lim f,(x)

n;oo T nlingo Z Aay, + Z Z Aaj cos kx

k=1j=k

= lim % + Z ay, cos kx — an2+1 — apy1Dn(x)

n—oo

k=1
- nh—>Hclo [Sn(x) - a”"‘lD”(x)]
= f(z) =0 = f(x).

The proof is completed.

Theorem 2.4. The sequence {f,(z)} converges to f(x) in the L'-metric if
and only if given € > 0 there exists () > 0 such that

5 )
A Z Aaka(x)

k=n+1
Proof. Let ¢ > 0. Then there exists § > 0 such that

/ Z AapDy,(x

k=n-+1
Then by Lemma 2.3 we have

/0”|f<x> fula |dx—/0

der <e, Vn>0.

dx<g, Vn > 0.

Z Aaka

k=n+1

Z Aaka

k=n-+1

Il
s~

dx—i—/

Z Aaka

k=n-+1

A
TG
_|_
S
=
S
5
o
5

IN

Il
N ™
_l’_
ANSER
S
S
=
—
[N}
5}
o

since for n — oo,

Z|Aak|<oo:> Z |Aag| = o(1).

k=n+1

In contrary, let € > 0. Then there exists an integer M such that

57



58 2 L'-convergence of modified sums f,(x)

/ @) = Fu@lde < S, 0z
0
Now if 3337, |Aak| =0, then for n > M,

[

That is,

d:c< n> M.

dx< <5,

and for 0 <n < M,

/ Z Aaka da? = / Z Aaka(ac) dr < = < E.
O 2
k=n k=M+1
If S0 [Aag| # 0, let
M
€
= 52 | Aay,|.
k=0
For n > M,
6| o© o | oo c
Z Aay Dy (z)|dx < Z AapDg(x)|dx < = < e.
k=n 0 k=n 2
For0<n< M,
5 §|M~—1 5
/ x)|dx g/ Z Aay Dy (x) dx—i—/
0 0

5M1

/ Z k|Aak|da:+/
k=M

3
< 5 kz_: k‘AaHdSU -+ 5
M-1 c

=n

PR
2 2

So given € > 0 there exists § > 0 such that

5| oo
Z Aak Dk (:ZJ)
k=n

dr <e
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for all n > 0.
If
lim / |f(x (z)|dx =0,
n— o0
then

(2)]dz < / ") — fula)lde + / " fu(@)ldz < oo,

that is f € L'[0, 7], since f,(z) is a trigonometric polynomial.
The proof is completed.

Corollary 2.5. If for € > 0 there exists §(¢) > 0 such that

5| oo
Z Aaka (x)
k=n

then {S,} converges to f in the L* metric if and only if

der <e, Vn>0,

lim a,logn = 0.
n—oo

Proof. Using f,, as in the Lemma 2.3, we get

/Olf(:v) |dx</ @) = ful@) + fula) — Su(@)lde

< / @) = Fu(olda+ [ " 1fale) - Su(a)lda
/ F(2) = ful@)ldz + / (a1 Do ()

Also,

/ (a1 Dy (1) = / [fal) — Su(@)lde
s/o Fal) — £ |da:+/ () = S () d.

| lanaDaf) iz
0

behaves like a,,41 logn for large values of n, and

Since

lim / |f(z (x)|dz =0,

n—oo

the corollary is proved.
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2.3 L'-convergence of modified trigonometric sums
fn(x) with coefficients of generalized bounded variation

The following theorem regarding to L'-convergence of modified trigonometric
sums f,(x) holds true.

Theorem 2.6. Let k > 0 be a real number. If

Jim_a, =0, (2.3)
and
oo
Z nkflAM g, | < oo, (2.4)
n=1

then f,(z) converges to f(x) in the L'-metric.
Proof. First using Lemma 1.1 we have
n
ZA% + ZZACLJ cos it = ZA% i
1=1 j=¢

Part 1. Let k be integral. Applying Abel’s transformation of order k to
fn(x) we get

n—k

f ZA'““alSk ZA Apy— 1+1Sn 1+1( ) (2'5)

=0 =1

Now by Lemma 1.88,
Z Aktlg, SF(x (2.6)

So by (4.16) and (2.6),

/ 1F(2) = fulw)|de

:/ Z AkJrlalSk ZA Qp— Z+1Sn 1+1( ) dx

0 i=n—k+1

§/ Z AR, SE () d;c—|—/ ZAian_iHSfl_iH(a:) dx
0 |i=n—k+1 0 |i=1

< |Ak+1 |/ ‘Sk ‘d$+Z|A Qp— l+1|/ n— l+1 ‘d.’lﬁ

i=n— k+1
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— Z Ak Ak—O—l |/

1nk+1

+ZA;, z+1|A An— 1+1|/

<C Z Ak Akt |+CZA; 1| A an i
i=n—k+1 1=1

=o(1) +o(1) = o(1),

0o

n— z+1 ,’E

by Lemmas 1.48, 1.90, and the assumptions of the theorem, where C is a
positive real number.
Whence, we have

li_>m |f(z) = fn(z)|dx = 0. (2.7)
Part II. Let k be non-integral. Let k = r 4+ §, r is the integral part of k,
and J is its fractional part i.e. 0 < 6 < 1.
Case (i). Let r = 0. Applying Abel transformation of order —§ we have

n n—i
3 A = 305 A (o)
=0 i=0 m=0

by (1.7).
Again by the result of Lemma 1.49 this formula can be transformed into

ZA“lazSé Zﬂaz i(z) — Ru(@),

1=0

Rn(.’I}) = ZS ( ) (Afl },JrlA +1a’" 1+ An z+2A6+1aTL+2 +- ) :
=0

This implies that

Z AalSl(x) = Z A‘;HaiSf(a:) + Rn(l‘),
=0

=0

and thus,

n

fulz) = A 1a;8) () + Ry (x).

i=0
When r = 0, it clear that k = ¢ and
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n

fla) =" A a;S)(x).

=0

Whence, by Lemmas 1.48 and 1.90 we have

/ (@) = fule)lda

:/ Z A1, 8% (x) — R, ()| da
0 li=n+1
< Z |AH g |/ |S? () ‘dm—l—/ R, (z)|dz

i=n+1
— Z A A |/ T () |da:+/ |R,, ()| dx

i1=n+1
<C Z A% A% |+/ |R,, ()| da:

i=n+1
§o(1)+/ |Ry, (z)| dx. (2.8)
0

Now we estimate [; |Ry ()| dz. Namely, by Lemmas 1.48, 1.50, and 1.90

we obtain
(Z AT S >) A ay

[ itatlae = [0 >

<Z Ai 1+QS ( )) A6+lan+2 4+ ...
=0
(z A0

=0

dx

< |A* g, dx

1A, dz+ -

S8 >)

0

S\A”lan+1\/ 0<r;137§+1|55 x)| da

o+1
H8anal [ma_[i0)] e -

— 140, alal [C

s
A g, ] A0, /

<C [|A5+1an+1f42+1| +14 +1a’n+2|Ai+2 + ]

O<p<n+1 ’ p(x)’ du

T2 (z)| da + - - -
0<p<n+2
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= Clo(1) +o(1) +---] = o(1).
Consequently, by (2.8) we have
™
/ |f(z) = fn(z)|dx = 0(1), as n — occ. (2.9)
0

Case (ii). Let r > 1. Applying Abel transformation of order r we have

=0
=) A ST(z) + Z Alap—it18,_i41(2). (2.10)
i=0 =1

Again, applying Abel transformation of order —¢ we have

ZAk+1asz( zn:nzfAé 1Ak+1a1 pSr( )
1=0 =0 p=0

By the result of Lemma 1.49 this formula can be transformed into

ZA’@% Sk (x Zmﬂalsr R, (z), (2.11)
=0

R, (x) = ZS () (A(TSL 1+1A5+1an+1 + Ai t+2A6+1an+2 + - )
i=0

(Z 87 () A5~ 1+1> A lapp
<ZST )AL 1+2> e

Replacing n by n — r in (2.11) we have

Z AF+lg, Sk (2 Z A8 (x (). (2.12)

=0

Now by (2.10) and (2.12) we get

v) =Y A4S (@) + Ry (@) + Y Alan_i1Sh iy (2). (2.13)
=0 =0
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64 2 L'-convergence of modified sums f,(x)

Therefore by Lemmas 1.48, 1.49, 1.88, and the assumptions of the theorem,
we obtain

/ (@) = ful@)ldz

:/ Z AkJrlaiSf(lL')—Rn r ZA Gp— 1+1Sn z+1( ) dx
0 li=n—k+1 i=1
g/ Z AR, Sk ()| da

0 i=n—k+1

Z Alay_i11S) ;11 (x)| d

+/ \Rn_r<x>\dw+/
0 0 li=1

i=n—k+1

+/0 B (@) dz + 3" A | Al zm/ Ti oy (2)] da

i=1

<C Z AF| AR |+CZAn il Al zJr1|—i—/ |Rp—r ()| dx
i=n—k+1 1=1

+ /0 R ()] da. (2.14)

By Lemma 1.49 we estimate [ |R,—,(z)|dz. Indeed, we have

[ iraslan = [

(Z An r—it19 )) Ay g

(Z A i+29 )) ARl o+ |da
< |Ak+ <2An " H—l )) dx
+|Ak+ (Z An r—ig2S )) dzr + -

n—r

< |AHay 0| 3 AT A / 177 (@) do
=0

HA ) 3 A2 t] [ @) o

=0



2.3 L'-convergence of modified trigonometric sums f,, (x) with coefficients of generalized bounded variation

n—r
k+1 6—1 r
< ClAM | YA A
=0
n—r
k+1 6—1
+C‘A an*T+2| Z An7r7i+2A? +e
=0
n+l—r
k+1 6—1 T
< C|A an—T+1| Z An—r—i+1Ai
1=0
n+2—r
k+1 6—1
+C‘A an*T+2| Z An7r7i+2A? +e
=0

k+1 § k+1 é
=ClA - an—r+1|A::r+1 +ClA * an—r+2|A:Ltr+2 +o

= C|Ak+1anfr+1|AZ—r+1 + C‘Ak+1an77'+2|Afo’r‘+2 +-

=o(1)4+o(l)+---=o0(1).

Whence,
/ |Ry—r(z)|dx =0(1) as n — oo.
0

Using (2.14) this implies that

[ 1@ - @z =ot) as e
Subsequently by (2.9) and (2.15)

[ 170 = fu@llde =o(1) a5 o

where k is non-integral number.
Whence, in view of (2.7) and (2.16), we have

s

li_>m |f(z) = fn(z)|dx =0,
for any k£ > 0, which implies that
fo(@) = f(2)

in the L' metric.
The proof is completed.

(2.15)

(2.16)
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66 2 L'-convergence of modified sums f,(x)

2.4 L'-convergence of modified trigonometric sums
fn(x) with coefficients from the class S

Let -
a
flz) = ?0 + Zak cos kx
k=1
and
1
§ZAG"~‘+ZZAGJ cos k.
k=1 j=k

Theorem 2.7. Let {ai} € S, then f,(z) converges to f(z) in L*-norm.

Proof. Abel’s transformation implies

. ao .
flz) = nl;rrgo (2 + ’; aj Cos kx)

= lim li Aaka( )—i—anDn(x)]

n—00
k=1

n—oo

= Z Aaka (I)
k=0

= lim [nz: AapDy(x )—l—anDn(:v)]

since
lim a,D,(x) =0

n— oo

if z # 0, where
1 n
x) = 3 + ,;,1 coskx.

Also, the use of Abel’s transformation yields

fu(z) = 35 Z Aay, + Z Z Aaj cos kx

k=1 j=k
= Z Aaka(x)
k=0

Now, using Lemma 1.34 we have



2.4 L'-convergence of modified trigonometric sums f, () with coefficients from the class S

[ 10wl = [7| S s0pie)|

k=n-+1

™ kA
:/0 ZAAZA# (2)

<C > (k+1)AA
k=n-+1

=C(n+1)4,41+C Z A =0o(1) as n— oo.
k=n-+1

taking into account that {ax} € S.
So, we have obtained

lim/ F(2) — fu(@)|dz = 0.

n—o0
The proof is completed.
Corollary 2.8. Let {a} € S. The series
flz) = aQ—O + iak cos kx
k=1
converges in L'-norm if and only if

lim a,logn = 0.
n—oo

Proof. We notice that

/0|f(z:)—sn(x)|dx§/ |f(:z:)—fn(x)|dx+/ |[fn(2) = Sn(z)|dx

/ 1F(@) — Ful@)ldz + lan] / D, (2)|dz,

/ (a1 Dy ()i = / Fal) — ()
s/o fule) - |dx+/ 1F(2) = Su(@)\de.

67



68 2 L'-convergence of modified sums f,(x)
So,
|f —Sullzr = 0(1) as n — oo

if and only if
|ant1]logn = o(1) as n — oo,

since [ |apnt1 Dy (2)|dx behaves as |an41]logn for large values n.
The proof is completed.

2.5 L'-convergence of modified trigonometric sums
fn(x) with coefficients from the class S’

Let
(1)) >
flx) = ) + ,},1 ay, cos kx

and

fu(x) =

i Aay, + i i Aaj coskx.
k=0

k=1 j=k

N |~

Theorem 2.9. Let {a} € S/, then f,(x) converges to f(x) in L'-norm.

Proof. By Abel’s transformation we have

a0 <
f(z) nh_}n;o (2 +Zak oS km)
k=1
@o

= lim < + 2 Aaka(:c) + anDn(r) — 2)

Il

=
X\

M

>

S

B |

-]

e

O

+

S

3

)

O
N——

k=0
= Z Aaka (:L')7
k=0

since

if © # 0, where
1
D,(z) = B + cosx + cos2x + - - - + cosnx.

The use of Abel’s transformation yields



2.5 L'-convergence of modified trigonometric sums f, (z) with coefficients from the class S’

fu(x) = *ZAak—I—ZZAa] cos kx
k=1 j=k
Xn:Aaka
k=0

Now, since |Aay/Ax| < 1 by assumption, then applying Lemma 1.34 we

have
| 1@ = su@iae= [

= lim Z Aay Dy (x)

N—o0 0

Z Aaka

k=n-+1

N—o0 0

N—-1
< C lim ( > (k+1)AAk|+(N+1)|AN|+(n+1)|An+1)
N— o0 vt

< C( i (k+1)|AAkI+(N+1)AN+(n+1)|An+1|>. (2.17)
k=n+1

Taking into account Lemmas 1.17 and 1.18 we have
(N+1)JAN -0 as N — oo,

and
(o)

> (k+1)]AA =0(1) as n— o

k=n-+1

Finally, based on (2.17) we obtain
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70 2 L'-convergence of modified sums f,(x)

s

lim |f(z) — fn(z)|dz = 0.

n—oo 0

The proof is completed.

2.6 L'-convergence of modified trigonometric sums
fn(x) with coefficients from the class K

Let -
flz) = (12—0 + ;ak cos kx

and

In(z) = % i Aay + i i Aaj coskx.
k=0

k=1 j=k

Theorem 2.10. Let the sequence {ay} belong to the class K, then f,(x) con-
verges to f(x) in the L*-norm.

Proof. We have

n
a
fn(l‘) = ?O -+ Z Ay, COSMIT — an_i,-an(x)

m=1

1 n
= 5oz Z 2a, sin x cos Mx — apy1Dp (), (ap =0)
m

_ 1 Z [ sin(m + 1)z — sin(m — 1)z] — 11Dy ()

2sinx

m=

1

n
= — g Ap—1 — Qmp41) SINMET
2sinx (am m+1)

m=1

sin(n + 1)x sin nx
+an ( . ) + apy1 N - an+1Dn(x)
2sinx 2sinx

3

1 .
= — App—1 — Q1) SINMT
2sinx ( m mt )

3

sin(n + 1)z

+(an 7an+1) 2sinx

(2.18)

Applying the Abel’s transformation in (2.18) we get

n

1

fn(z) = Osinz mz:: (Aam—1 — Atm1) Dm(2)
D, (z) sin(n 4+ 1)x
F o =) gy O ) g



2.6 L'-convergence of modified trigonometric sums f, (z) with coefficients from the class K

and passing on limit when n — co we obtain

nh—>Holo fulz = Sena mzd (Aap—1 — Atmy1) D (). (2.19)

In a similar fashion we can show that

n

Sn( = 5o (Aap—1 — Atmt1) D (2)
m=1
Dy (z) sinnx sin(n + 1)z
t(an = azn) 2sinx a““Qsinx + n 2sinx
f(z) = nlgr;oS = 5oz Z Atp_1 — Atmi1) Dy (z),  (2.20)
m=1
and the series -
2311150 mZ:l (Aapm—1 — Atm41) D (2)

converges.
Therefore lim, o fn(z) = f(x) exists, and from (2.19) and (2.20) the

following equality
nlggo fn(z) = 1320 Sp(z) = f(z)

holds.
Hence
1 oo
f(‘T) - fn(x) 2 5in Z (Aam,1 - Aam+1) D (:L')
n+1
5n(x) sin(n + 1)z
) Sy ) T

Denoting with F, (z) = ﬁ >t D;(z) the conjugate Fejér kernel, then the
use of Abel’s transformation gives

-1
L lim Z (m+1) (AZam_l - A2am+1) ﬁm(x)

2s8inx £—o0
m=n+1

f(l‘) - fn('r) =

+(041) (Aar—1 — Aagr) Fo(@) — (n+ 1) (Aan — Aapio) Fo(x)

sin(n + 1)z

= (an = anp1) 2sinx
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72 2 L'-convergence of modified sums f,(x)

1 [ Z (m+1) (A%ap—1 — A1) Fn(x)

~ 2sinz
m=n+1

~ Dy (z)
—(n+1) (Aa, — Aani2) Fp(z) | — (an — az,) 9 sin

sin(n + 1)z

e ) g

Thus
W’ﬁLO<XIW+DM%W4‘&%H| ﬁwmm)
m=n+1 o

s

+(n+1)|Aan, — Aapi2| ‘ﬁn(x)‘dx

— T
™
+ |an - a2n| /
-7

The first and fourth terms tend to zero as n — oo based on facts that
[T |Fmn(z)|de = 7 and {a,,} belongs the class K.

Further, for the second term, denoted by A(n), for large enough n we
obtain

T sin(n + 1)z
2sinx

dx.

D, (x
".( ) dz + |a, — ang1]
2sin

X

—T

An) = O((n+1)|Aa, — Aa,sa )
(n+ 1)‘ i (AQam — A2am+2) D

=0 <(n—|— 1) i |A2am,1 - A2am+1|>

m=n+1
Z m|A2am_1 — A2am+1|> = o(1).
m=n+1

2sinx

Since ["_

Indeed, we have

T
|an - a2n| /
—7

dx = O (n) then the third term tends to zero, as well.

Dy (x)
2sinx

dr =0 (n‘ i (Aay, — Aapi2) ‘)

m=n

:()(01+1) 53 |A2mn1—49am+ﬂ>

m=n+1

(@) ( Z m|A2am_1 — A2am+1|> =o(1).

m=n-+1

The proof is completed.



2.7 L'-convergence of modified trigonometric sums f, () with generalized semi-convex coefficients

Corollary 2.11. If {a,} € K, then the necessary and sufficient condition for
the L'-convergence of the cosine series

oo
fz) = % + Zak coskr s nli_)ngoan logn = 0.
k=1

Proof. Sufficiency. We can write

sinnz  sin(n+ 1)z
- Hf_ f’n” + an+1 <281nx + 2 sin 7 )H

™

= If = fall + |ant1] | Dy ()| da.
From the well-known relation ffﬂ | Dy, (z)|dz ~ logn and our assumption
that a,, logn = o(1), we obtain |ani1| [ |Dn(x)|dz = o(1) as n — oc.
Also, according to the Theorem 2.10

lf = foll =0(1) as n— occ.

This completes the sufficient condition.
Necessity. The following holds

s

|antillogn ~ lansa| [ |Dn(2)]de = [|ani1 D (@)

—T

=[S0 = fall < IS0 = fll + If = full = o(1) as n— oo,

by our assumption and Theorem 2.10.
The proof is completed.

2.7 L'-convergence of modified trigonometric sums
fn(x) with generalized semi-convex coefficients

Let
an >
flz)=—+ E ay, cos kx

2
k=1

z”: Aay, + z”: i Aaj cos kx.
k=0 k=1j=k

and

fn(w) =

N[ =

For 0 <z <, let
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74 2 L'-convergence of modified sums f,(x)

Do(z) %cot%,

Su(x) = Do(x) + D),

S(z) = So(z) 4+ S1(x) + Sa(x) + -+ - + Sp ()
S2(x) = Sg(@) + S1(x) + S3(x) + -+ + Sh(x),

Sh(@) = S (@) + 51 @) + 55 @) + - + 55 @),
The conjugate Cesaro means Tv,f‘ (z) of order « is denoted by

Sg (@)
Ao

T (@) =

The following result holds true.

Theorem 2.12. If {a,} is a generalized semi-convexr null sequence, then
fn(x) converges to f(x) in the L'-norm if and only if

lim Aay,logn = 0.

n—oo

Proof. We have

n n

fulz) == Z Aay, + Z Z Aajcoskz

k=1 j=k

%0 + ; ay cos kx — apy1 D, ()

Z ay coskx — apy1Dp (), (ag =0)

k=1

- sin kx sin nx

= (ap—1—aps1)g—— + Q17—
— 2sinx 2sinx
sinfn+ 1)x
o gt Dale)
where ) in(n+ 1)
sinnx + sin(n + 1)x

Dy (x) =

2sinx
Applying Lemma 1.1 we obtain

sin(n + 1)z
2sinx

oz Z (Aak—1 + Aag) sinkz + Aa,
k=1

251111;

Applying Lemma 1.1 again we have



2.7 L'-convergence of modified trigonometric sums f, () with generalized semi-convex coefficients

n—1
1 ~
fulx) = pYSTn Z(AQG;C,1 + A%a;) Dy ()
k=1

sin(n + 1)z

Aa,_1 + Aa,)D A
+( n-1+ an) n(x)—i— n 2sinx

n—

(Aag—y + A%ar)(SP(x) — So(x))

2sinx
k=
H(Aan 1 + Aan)(3(2) — So(2)| + Ay, SR+ D
" e ’ " 2¢ing
1 n—1 N n—1 N
" 2sinz Z(A%k*l + A%a) S (@) - Z(Azak—1 + A%ay,) Sy ()
k=1 pat
~ B . )
+(Aap_1 + Aap)S0(2) — (Aan_1 + Aap)So(z)| + Aan sin(n + 1)z
2sinx
1 n—1
= A’a_y + Aar)S(x) — (Aay_1 + Aa,)50
2sinx ;( ag—1+ A%a)Sg(z) — (Aan—1 + Aay,)S, (v)
+a280 () +Aansm(n.7+1)x.
2sinx

Similarly, if we continue to apply Lemma 1.1 « times, we obtain

1 — o o Qa— = ok—
Inlx) = 2sinz Z(A ag_y + A ay)SETH(2) + Z Aka”*kSS—llc—o—l(x)
k=1 k=1
= ~h1 = sin(n + 1)z
+;A CLn_k_‘_lSn_k_,’_l(.ﬁv) +CLQSO(I') +Aanm

Since S¢(z) and T (z) are bounded on every segment [e,7 — €], & > 0,
have

f(z) = lim fo(x)

n—roo
1 > - _
~ sinz Z(Aa+lak_1 + A a) ST () + a250(m)] .
k=1
Consequently,

2sinx
k=n—a+1

f(@) = fule) : [ Z (A gy g 4+ A%Ha,) 827 ()
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76 2 L'-convergence of modified sums f,(x)

— Z Akan_k@’j:}ﬁl(m) — Z Ak&n—k+1§§_;1€+1(x)]
k=1 k=1
sin(n + 1)z

—Aay,
2sinx

r

Whence,

dz

1f(z) = ful@)| < C Z (A*ay_y + A““ak)gg*l@)

k=n—a-+1
dx]
0

S 1A e+ A ] [ [8p @)
k=n—a+1 0

+3 AR, ) / 15471 ()| da
k=1 0

L — |

Akan,kS’;:iH (z)|dx

_|_
S
Mg

b
Il

1

Akan_k+1§§:}€+1 (2)

+
S
Mp

x>
I
—

A, sin(n + 1)z i

2sinx

+
S—

<C

+37 A / y§’;}@+1(a:)\dx]
k=1 0

< 1
sin(n + 1)z da

Aay

+/0 “ 2sinx

<ol S AgAttia, + A% / 1T (2) | da
k=n—a+1 0

+ Z Aﬁkarl |AF | /0 |1~17]1€7k+1 () |d$
k=1

+ZA§L—k+1|Akan—k+1\/0 |T::£+1(I)|da:]
k=1

)
0

Based on Lemma 1.48 and assumptions of the theorem, first three terms of
(2.21) are of order o(1) as n — oo.
Moreover, since
™
/

i 1
sin(n + 1)z iz

2.21
2sinx ( )

Aa,

sin(n + 1)z

- dx < Clogn, n>2,
2sinx




2.8 Ll—convergence of modified trigonometric sums fr, (x) with coefficients from the class S,

r

So, it follows that

then
sin(n 4+ 1)z
2sinx

Aay, dx ~ Aaylogn.

T [|f(x) ~ fale)]| =0,

if and only if
lim Aa,logn = 0.

n—oo

The proof is completed.

2.8 L'-convergence of modified trigonometric sums
fn(x) with coefficients from the class S,

Let -
fx) = a0 +Za cos kx
2 = ’

and

fn(z) = %iﬂak + iiAaj coskzx.

k=0 k=1 j=k

Theorem 2.13. Let {ap} € Sy, r € {1,2,...}, then fn(x) converges to f(x)
in L'-norm.

Proof. Firstly, we have

fn(®) %iﬂak—l—iiAaj cos kx
k=0

k=1 j=k
a n
0
= 5 + Z ay, cos kx — apy1Dp ().
k=1
Consequently,

lim f,(x) = lim S, (x) = f(x).

n— oo

since D,,(x) is bounded in (0, 7] and {ax} € Sy, r € {1,2,...}, where
1 n
D, (x) = 3 + Zcos k.
k=1
So, we can write

fx) — fu(z) = Z ag, cos kx + ap1Dp ().
k=n+1

7



78 2 L'-convergence of modified sums f,(x)

Now, using Lemmas 1.1, 1.34, and {ax} € Sy, r € {1,2,...}, we have

/ |f (2 )Idx—/oﬁ f: Aay Dy ()| dx

k=n-+1

INA
: []e
b
EF

r (rn o+ 1)r—1 2: k%_l LAAk
k=n+1

<2°C Z k" Ay + C Z (k+1)" App

k=n-+1 k=n-+1

=2"+1)C Z E"Ar =o0(1) as n— oo,
k=n

taking into account that {ax} € S.
Thus, we have obtained

lim |f(z) = fu(z)|dz = 0.
0

The proof is completed.

Corollary 2.14. Let {ar} € Sy, r € {1,2,...}. The series

[¢)) >
flx) = 5 +Zakcoskx

converges in L'-norm if and only if
lim ay,41logn = 0.
n—oo

Proof. We note that

/0 (@) — Su(e)|dz = / F(@) = ful(@) + fu(@) — Sula)lda



2.9 L'-convergence of modified sums £, (z) with generalized semi-convex coefficients of fractional order

< / (@) = ful@)lda + / " ful@) — Su(a)|de

= [ 1) = u@lde + laneal [ D@,

/ (a1 Do)l = / [Fa(2) = S (@)|da
< / ) = f(@lda+ [ "1 (@) = Su(o)ld.

If = SnllLr =o(1) as n — oo

Subsequently,

if and only if
|ant1]logn = o(1) as n — oo,

since [ |an+1Dn(2)|dx behaves as |a,11|logn for large values n.
The proof is completed.

2.9 L'-convergence of modified sums f,(x) with
generalized semi-convex coefficients of fractional order

Let
ap >
=5 + ,;,1 ap cos kx

and

Z Aay, + Z Z Aaj cos kx.

k=1j=k

For 0 <z <, let

Do() —%cotg,

%(m) = l:?o(r)Jr ?n(x), R R
@i(m) = So(w) + 81(x) + S5(x) + -+ + Sn(x),
Sn(x) = Sg(z) + Si(x) + S3(x) + -+ + Sy (w),

Sh(x) - S @) + ST ) + S5 @) + -+ SE T ().

The conjugate Ceésaro means T,?(m) of order « is denoted by
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80 2 L'-convergence of modified sums f,(x)

T _ ~]?(Z‘)
T (x) = A,g .

Next result holds true.

Theorem 2.15. If {a,} is a generalized semi-convex null sequence of frac-
tional order, then f,(x) converges to f(x) in the L*-norm if and only if

lim Aa,logn = 0.

n—oo

Proof. We have

fulz) == Z Aay, + Z Z Aajcoskz

k=1 j=k

ao
? + Z ay cos kx — an+1D7L(x)

I
NE

ay coskx — apy1Dp (), (ag =0)

k=1

- sin kx sin nx

= (ak71 - ak+1) . Un—15—
— 2sinx 2sinx
sinfln+ 1)x
o~ D)
where ) in 0
sinnx + sm(n + 1)x

Dy (z) =

2sinx
Applying Lemma 1.1 we obtain

- ) sin(n + 1)z
(Aag— Aay, k Aa,——————
Ful@ 2Sln$; k-1 + Aay) sinke + Aay 2sinx
Applying Lemma 1.1 again, we have
1 n—1 _
fal@) = 5— ;(A%k_l + A%ay,) Dy (z)
~ sin(n + 1)z
+(Aan—1 + Aa,)Dy(x) + Aay,————
2sinx
n—1
_ 1 2 2 30 3
= 5o E(A ap_1 + A%ap)(SY(x) — So(x))
sin(n + 1)z

00 &
+(Aap-1 + Aay) (S, (z) — So()) | + Aayn 2sinx



2.9 L'-convergence of modified sums £, (z) with generalized semi-convex coefficients of fractional order

n—1 n—1
1 o ~
" 2sinw Z(AQ%H + A%ay)Si(e) - Z(AQGk—l + A%a;)So(x)
k=1 —
+(Aan-1 + Aay)S) (@) = (Aan-1 + Aan)Sy(x) | + Aanw
2sinx
1 n—1 B N
= 5| D (Aap1 + A%) S{(2) — (Aan-1 + Aan) S (x)
3 sin(n + 1)z
Aap—5 = 2.22
FazSo(e)| + Aa 2sinx ( )

Since a > 0 is non-integral, then let « = r + §, where r is integral part of
«, ¢ is its fractional part, and 0 < § < 1.

Case (i). Let r = 0. Applying Abel’s transformation of order —d6 + 1, we
have by (1.7)

n—1
Z s«vg—l(aj)(A&—Hak_l + A‘S'Hak)
k=1
n—1 n—(k+1)
= S(z) D> AL(A M ank1 + A an ).
k=1 m=1

Moreover, applying Lemma 1.49, we have

n—1

Z 5271(36) (A‘H'lak,l + A(S'Hak)
k=1

n—1 [e%e}
= Sy () {(AZGk—l + A%qy) — Z A2 (A g + A6+1am+k)} .

m=n—~k

= Sk(x) (Azak,l + A2ak) — R, (),

n—1
Rp(z) =) §k(x){AfL_i (A% la,_q + A%Tay,)
k=1

+Af1:21c+1 (A6+1an + A6+1an+1) T }

Therefore,

1 n—1 "
Z Sk(l‘) (A2ak_1 + Azak)

2sinx
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82 2 L'-convergence of modified sums f,(x)

n—1

_1 { Z ggq(x) (A‘S'Hak,l + A‘Hla;@) + Rn(x)},
k=1

2sinx

and thus by (2.22) we get

n—1
1 S5—1 5
— A +1 B A5+1
) = ] 2 ) (47 o+ 4 )
sin(n + 1)x

+R,(x) + (Aay— 1—|—Aan)S (z )—|—a250( )}—I—Aan S sina

When r = 0, then oo = § and
f(z) = lim f,(z)

n—oo

= 1 {Zggl(x) (A‘Hlak1+(A5+1ak)+a2§0(x)},

2sinx
k=1

So, by Lemmas 1.48 and 1.90 we obtain

/ |f )|d£€</0 {236 1 A5+1 1+A5+1ak)

_Rn(gj) — (Aan—l + Aan)gg(x)}

“
0

oo

<c Z|A5+1ak,1+A5+1ak]/w\§,‘z’1(x)]dm
P 0

+/ |Rn(x)|d:£+|Aan_1+Aan|/ |§2(:v)|d:r}
0 0
J

o0
{ZAé 1|A5+1 _|_A5+1 ‘/ |T6 1 ’dm

k=n

2sinx

dx

Aa, sin(n + 1)z

2sinx

dx

i 1
A@ﬂsm(n—&— S g

2sinx

+

Q

+/7T|Rn |dx—|—|Aan 1+Aan|/ ‘SO ‘dl‘}

0
+/
0

k

sin(n + 1)z

Aa, ——————
2sinx

A‘S ! ’A‘Hlak_ A5+1ak| +/ ’Rn(x)’dx
0

n




2.9 L'-convergence of modified sums £, (z) with generalized semi-convex coefficients of fractional order

T . 1
+Mmhrhhd}+/ A%Eﬂliléx
0 2sinz
= o(1) +C/ | Ry (2)|da
0
T sin(n + 1)z
+Cl|an—1 — an+1| +/0 Aanm dx. (223)

In order to estimate foﬂ |Rn(:z:)|das we use Lemmas 1.48, 1.50, and 1.90:
/ | Ry (2)|da
0

T n—1
[)

> S 413 (40,0 + A%,
k=1

FA T (A% g + A ) } da
T n—1 _
< |A6+1an_1 + A5+1an|/ Z Af;QkSk(a:) dx
0 lp=1

n—1

Z Af;—2k+1§k(x)
k=1

™

+]A6+1an+A6+1an+1|/ de + -
0

< |A5+1an,1 + A6+1an|/ max gg_l(x) dx
0

1<p<n-—1

T
+’A6+1an+A5+lan+l|/ max de + - -
0

1<p<n

Sy ()

™
= Affl |A5+1an_1 + A6+1an|/ max Tgil(x) dzx
0

1<p<n-—1

+A°1 ‘A5+1an—|—A5+1an+1’/ max fl‘f—l(m) dx + -
0

et 1<p<n

< CAY A ay, g + A, |

+CAY T | A ay + A agyq| + -
< CA° |A5+1an_1 + A5+1an|

+CA2+1 |A5+1an + A‘Hlanﬂ‘ 4+
=o0(1)+o(1)+--- = o(1).

r

Moreover, since

sin(n + 1)z

- dx < Clogn, n>2,
2sinx

then

83



84 2 L'-convergence of modified sums f,(x)

’

Thus, it follows that

sin(n + 1)x
2sinx

Aay, dx ~ Aay logn.

i [|£(2) ~ fu(@)] =0,

if and only if
lim Aa,logn = 0.

n—oo

Case (ii). Let » > 1. Applying Abel’s transformation r times to equality

n

) sin(n + 1)z
Ful@ 251n33 kz_l (A + Aag)sin ke + AG”W
we obtain
fn( QSlnl‘{ Z ATJrlak-_l + A’r‘+1ak)§£—1(l’)
k=1

+ Z(Akan—k + Akan—k+1)§§:i,1(l‘) + azgo(m)}

k=1
i 1
+Ag, S+ Dz (2.24)
2sinx
Applying Abel’s transformation of order —9 again, we get
n—1 "
> Sp @) (A apy + A hay)
k=1
n— n—(k+1)
=3 5@ Y AN A a1 + A )
= m=0

By Lemma 1.49 we have

ZSQ 1 Aa+1 1+Aa+1ak)

2sinx

QSlnx

{ZST Ya) (AT ap_y + A lay,) —Rn(x)}, (2.25)

where

n—1

ZST 1 {A6 1 (Aa+l 1 +Aa+1an)
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P (A7 0y A ) }

_ (A(H_lan,l-l-Aaﬁ_l ZA5 IST 1

n—1

(Aa+1a + AC a+1 Ant1 ZAn k+15r—1(1,)_|_...
k=1

Replacing n by n — r + 1 in (2.25), we obtain

Sa 1 AaJrl AaJrl
2sinx Z -1+ k)

r—= 1 "'Jrl r+1
QSlnx{ Z Sk )4 1+ AT ay) - Rn—r+1($)}. (2.26)

Now, based on (2.24) and (2.26), we get

fn(z) = 1 { Z gg_l(m)(AaJrlak—l + A% ag) = Ry (2)

2sinx
k=1

+ Z(Ak’an_k + Akan_kﬂ)gfi:}ﬁl(x) + aggo(x)}

k=1
sin(n + 1)z

A n .
taa 2sinx

(2.27)

Whence, under assumptions of theorem and Lemma 1.48, we have

[ 1@ = fat@las
0

S/ : { > ST @A ay + A ay)
0

2sinx
k=n—r+1

—Ry_ry1(x +Z AFay_p + AFa,_ k+1)5n k+1( )} dx
k=1
us : 1
+/ Aansm(n'—i— )z de
0 2sinz

<C Z |AYT gy, 1—|—Aa+1ak|/ |S°‘ Y |da:

k=n—r+1

+/ |Rn_r+1(x)’dx
0

+Z\Akan—k+ﬂkan—k+1\/o Sk (@)]dz
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86 2 L'-convergence of modified sums f,(x)

)
0

—C¢ Y A A a4 A ey [T @)de
k=n—r+1 0

sin(n + 1)x

- dx
2sinx

Aay,

+ / | Ry ()| de
0
+ZAn k+1|Akan—k+Akan—k+1|/ ‘Trlf 1i+1 )‘d@"
0
.
0

s
<G Z Ap A gy g + Ay +/ |Rnfr+1($)|d$
k=n—r+1 0

sin(n + 1)z

Aa
n .
2sinx

dx

T

+Cl Z A’:L:%C+1|Akan7k: + Ak‘anfk+1| + /0
k=1

sin(n 4+ 1)x
2sinx

Aay, T

sin(n + 1)z

Aay,
2sinx

=o(1)+ /07T |Ri—ri1(z)|dx + o(1) + /7T

0

de.  (2.28)

However, by the assumptions of the theorem we obtain

/ |Rn7r+1($)|dl'
0

+/
0
I

+

n—r

Z n—r— k-HAT 1|Aa+1a *T+Aa+ An— r+1|/ (x)}dx

dx

dx

(Z Ai 1 k+25r_1(x)> (Aa+1an—r+1 + AaJrlan_r_,_z)

k=1

dxr

(Z Ai 1r k+35r1(m)> (Aa+1anfr+2 + Aa+1anfr+3)

k=1

+2An r— k+2A2_1|Aa+1a7l—r+l+Aa+1an—r+2|/o ‘Tvl:_l(x)’da?

T
ZAn r— k+3A;_1|Aa+1a"—T+2+Aa+1an—r+3|/ Ty~ () |da
0



2.9 L'-convergence of modified sums £, (z) with generalized semi-convex coefficients of fractional order

n—r
6—1 -1 1 1
<G z :An—r—k+1A2 |Aa+ An—r + A%t anfr+1|
k=1
n—r
E 6—1 -1 +1 +1
+Cl An7r7k+2A2 ‘Aa Ap—r41 + A® an7r+2|
k=1

n—r
o1 r=lipetl +1
+Ch Z A’ﬂfrfk+3Ak ‘Aa On—r+2 + A Cln_r+3|
k=1

n+l—r
0—1 -1 1 1
<O E : An-&-l—r—kA;; 1A ay, p + A gy
k=1
n+2—r
§ 6—1 -1 +1 +1
+Cl An+27r7kA2 ‘Aa Ap—r41 + A® an—r+2|
k=1
n+3—r

§ : 6—1 —1 1 1
+C1 An+3—r—k:A?l; ‘AaJr Ap—r4-2 + AQJF an7r+3|
k=1

4.

< ClA:z—rsl_—HAa+1an—r + AaJrlan—r—&-l‘
JrOlAZiég__HAaJrlan—r-i-l + A, ]
+01A::_%__1T‘Aa+lan—r+2 + Aa+1an—r+3|
4.

< CIA:LTSI—AAOH_lanfT + Aa+1anfr+1‘
+01A2162—T‘Aa+1an77“+1 + Aa+1an7r+2|
+ClA:Li%7T‘Aa+1an7T+2 + Aa+1an7r+3|
+.o.

= C’lA%+1_T|A°‘+1an_T + AO"Han_T_H\
+CIA2+27r‘Aa+1anfr+l + Aa+1anfr+2|
FCLAS g | ATy i+ ATy

=o(l)+o(1)+o(l)+---=0(1) as n — oc.

i 1£(2) — fule)]| =0,

if and only if
lim Aa,logn = 0.

n—oo

Finally, the cases (i) and (ii) imply

lim [ f(z) = fu(2)[| = 0.

n— oo
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88 2 L'-convergence of modified sums f,(x)

if and only if
lim Aay,logn =0,

n—oo

where « is non-integral number.
The proof is completed.

2.10 LP-convergence of modified trigonometric sums
fn(x) with coefficients from the class T

Let
[e)) >
flz) = 5 + ,;,1 ay, cos kx

and

fulz) = % i Aay, + i Zn: Aaj coskx.
k=0

k=1j=k
Firstly, there were run into in literature the following class of sequences.
Definition 2.16. A sequence {a,} is said to be in the class T, if:

(i) an — 0 as n — oo,

(ii) There exists a 6 quasi-monotone sequence {A,}, and the series Y~ nd,
and >0 | A, converge, and

(1) | Aay| < A, ultimately.

Now we are going to prove first the following.
Theorem 2.17. If {ax} € T, then S, (x) converges point-wise to f(z).
Proof. Let N’ > N. Then

N/
|Sne(z) — Sn(z)| = Z ap cos kx|,
k=N

and by discrete summation by parts, we get

N’'—1
|Sne(2) = Sn(z)| = | Y AarDy(z) — an+1Dy(x) + an' Dy ()],
k=N

where Dy (x) = Zﬁl sinix.
Using the inequality |Dy(x)| = O(z~1), for 7 > x > 0, then for arbitrary
small € > 0 and N', N > Ny(g), we have

N’ —1

|Sne (@) = Sn(2)] <O | 7 |Aar] + lansa| + lane] | |
k=N



2.10 LP-convergence of modified trigonometric sums fy, (x) with coefficients from the class T
Since {ax} € T, then it follows that
|Sn/(x) — Sn(2)] <,

for arbitrary small € > 0 and N’, N > Ny(e).
Consequently,
f(z) = lim Sn(x)

exists for (0, 7].
The proof is completed.

Theorem 2.18. Let {ay} € T. Then fn(x) converges to f(z) in L'-norm.

Proof. Applying Abel’s transformation in the equality

f(z) = lim Sy(x),

N—o00

we have

N—-1
agp ao
5 + kz:;) Aaka(x) + aNDN(x) — 2]

f(z) = lim

N—o00

N—oc0

N-1
= lim lz AayDy(z) + aNDN(@] )
k=0

since Do () = 3.

Hence, using |Dy(z)| = O(z~1) we obtain
fx) = AapDy(w).
k=0
The use of Abel’s transformation also implies
fu(x) = AapDy(),
k=0
and

f((E) - fn(x) = lim i AAka($) + AnTn(x) - Am+1Tm(x)7

m—o0
k=n-+1

where T, (z) =Y 1 _, AA—‘Z“Dk(x).
Aak
Ay

If we put ay = , then for k big enough |a| < 1, and since {ax} € T,

we have
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90 2 L'-convergence of modified sums f,(x)

m—1

S A4y / " T (2) da

k=n+1

i@ - i < |

m

+An/ |Tn(x)\dx—|—Am+1/ Tm(x)|dx}
0 0

So, applying Lemma 1.34, we get

/Oﬂlf(x)—fn(a:)ldarg lim [ Z_: (k + 1)| AA|

m—oo
k=n-+1

+(n+1)A, +(m+ 1)Am+1.:|

Now, using Lemma 1.17, we obtain

oo

/O @)~ fal)ldr < S (k4 D] AA] + (n+ 1A,

k=n+1
Subsequently, using Lemma 1.17 again and the hypothesis of the theorem

we get
™

lim |f(z) = fn(z)|dx = 0.

n— oo

The proof is completed.
As a consequence of the above theorem we have next corollary.

Corollary 2.19. Let {a;} € T. Then S5(x) converges to f(x) in L*-norm if
and only if lim, . a, logn = 0.

/7r |f(z) — S5 (x)| dx = /7r |f(@) = fu(z) + fulz) — Sh(2)| da
0 0
< [ 1@ = fu@lde+ [ 1pate) - Si(a)da
= [ @ = fu@lde+ [ ool da.
Since by Theorem,
/07r |f(z) = fu(z)|dz = 0(1) as n — o

and [i" |anq1Dp(x)| dz behaves like |an41]logn for large values n, the conclu-
sion the necessity part follows.
Conversely, assume that S¢(z) converges to f(z) in L!'-norm. Then,



2.10 LP-convergence of modified trigonometric sums fy, (x) with coefficients from the class T
aniallogn ~ [ fawaDu(@)]dz = [ |fu(o) - S5(a)|do
0 0

< / (@) — 85(x)| da + / 1F(@) — fala)| i = o(1),

as n — 00.
The proof is completed.
Now we are going to prove some results on LP-convergence.

Theorem 2.20. Let {a} be a sequence of bounded variation such that a, —
0, asn — oco. Then for 0 < p <1,

K

lim |f(z) — fn(z)|" dz = 0.

n—oo 0

Proof. In what we said in the proof of above theorem, we have

[f (@) = ful2)] =

Z Aaka (l’)

k=n-+1

Based on |Dy ()| = O(z71) for x € (0, 7] we get

k=n-+1
Subsequently,
T 9] P
/'f(@—fn(w)lpdw@ 3 [Aa /di”:o
0 0 P ’
k=n+1
since
/7T dx
— < 00,
o P

for 0 < p <1 and {a;} is a sequence of bounded variation.
The proof is completed.

Now we consider the sums

gn(T) = %iak + zn:zn:Aaj cos kx.
k=0

k=1 j=k

Theorem 2.21. Let {a;} be a sequence of bounded variation such that a, —
0, asn — oco. Then for 0 < p < % holds

s

lim [ |g(z) = go(@) dz = 0.

n—oo 0
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92 2 L'-convergence of modified sums f,(x)

Proof. Discrete summation by parts gives
n(2) = ly ar + 3 arDi(z) 1y ap + an Dy (2
! 2 k=1 2 k=0

k=0
n

a
= ?0 + aka(x),
k=1

where Dy (x) is Dirichlet’s kernel.
Applying the summation by parts once again, we get

a0 |\ ag
gn(z) = 5 ; (k+ 1D AarKp(z) + (n+ 1)ap, K, () — 5
n—1
= (k+1)AaKp(z) + (n + a, K, (z),
k=1
where Kj(x) is Fejér’s kernel.
Since,
1
K =0|—
k(x) (kx2 ) )
for all x € (0, ], and a,, = 00, as n — 00, then we obtain
g(z) = nl;rréogn Z (k+1)AarKy(x).
k=1
Whence,
9(x) = gn(x) = Y (k+ D AapKy(x) — (n+ Dan Ky (@),
k=n
and
C oo
19(2) = gn(@)lde < — > 1Aag] + lan| | -
k=n
Thus,

0o P
™ ™ d
0< lim | 19(@) - ga(@)lPde < 0/0 72‘”‘; <;|Aak| + |an|> —0,
as n — 00, since

T dx

—- < 00,
o @
for 0 < p < % and {ax} is a sequence of bounded variation.

The proof is completed.
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Corollary 2.22. Let {ay} be a sequence of bounded variation such that a, —
0, as m — oo. Then g € LP[0, 7] for 0 < p < %

Proof. We write

9(z) = g(x) — gn(x) + gn(x).

Using the well-known inequality
(a+b)P <2P(a? +bP), a >0, b >0,

we have
lg(@)[" < 27[|g(x) — gn ()" + |gn(z)["].

Also, taking into account the equality

n—1
gn(x) = Z(k‘ + 1) Aar Ki(x) + (n + 1)a, K, (x)
k=1
and )
we have
|gn (@ Z'Aak|+ 2|an|

Thus, we have

lg(z)|P < 2P {Ig(x) — gn(2)P +27

C o0
G (S am) + G|
Hence,

/Oﬂ lg(z)|Pdx < QP{ /OW 19(z) — gn(z)[Pdz
/0”;1;; <§|Aak|>p+/o jx |an|p] }

Based on the above theorem and assumptions of the corollary we obtain

/Oﬂ| (2)|Pdz < C(p) <Z|Aak) < 0,

where C(p) is a positive constant depending only on p.
Subsequently, g € LP[0,7] for 0 < p < 3.
The proof is completed.

+2PC
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94 2 L'-convergence of modified sums f,(x)

2.11 LP-convergence of modified trigonometric sums
w¢ (x) and w? (x) with coefficients of bounded variation

‘We consider cosine series

o0
apn )
flx) = ) + ,;,1 ay, cos kx,

sine series

g(x) = Z a, sin kx,
k=1

modified cosine sums

n

1 n n
wy (z) = 3 (al + Z A2ak> + Z ap+1 + Z A%a; | cosku,
k=0

= k=1 j=k

and modified sine sums

n n

wp (x) = E ak41 + E A%a; | sinkw,
k=1 j=k
where A%a; = a; — 2a;41 + a;iyo.

We present here the following result.

Theorem 2.23. Let {a,} be a sequence such that a, — 0, as n — oo and
>0 |Aan| < co. Then for any p € (0,1)

T

3 _ c P —
Jim [ 1 (@) — @) =0,

and
T

lim lg(x) — ws (x)|Pdx = 0.
n—oo [_

Proof. Firstly, we have

1 n n n
w; (z) = 5 <a1 + Z A2ak> + Qg1+ ZA2aj cos kx
k=0 k=1 j=k

= Sp(x) — Aany1Dn(2),

where D, (z) = 3 + cosz + cos2z + - -+ + cosna represents the Dirichlet’s
kernel.
Using Abel’s transformation, we get



2.11 LP-convergence of modified trigonometric sums wy, (x) and w,, () with coefficients of bounded variation
n—1
w (z) = Z AapDy(x) + anDy(x) — Aapy1Dp(2)
k=1

= Z AapDy(x) + any2 Dy ().
k=1
Therefore,

fl@) —wi(x) = Z AapDy(x) — any2Dp(x), x #0.
k=n+1

Hence, taking into account that D, (x) = O(z~!), we obtain

@)~ uzl =0 (1) (Z Aak|+|an+2> |

k=n-+1

and therefore

i) - wiwpa o, ([ &) K > |Aak|>p+<|an+2|>p] o,

k=n+1
as n — 00, since the integral
/Tr dx
— |zl

is finite for p € (0, 1).
So, we have proved that

s

lim |f(z) —ws (x)|Pdx = 0.
n—oo J_

Similar arguments can be used to prove the equality

s

lim lg(z) —ws (x)|Pdx = 0.
n—oo [_

The proof is completed.
Corollary 2.24. Let {a,} be a sequence such that a, — 0, as n — oo and
Yoo i |Aay| < co. Then for any p € (0,1)
lim |f(z) — S5 (x)Pdz = 0.

n—oo J_

Proof. We can write
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96 2 L'-convergence of modified sums f,(x)
[ 1@ - si@rs

< [ 1@ - wppds+ i [ () - Si@)Pds

—T —T

= [T @) —wgpar s [ 1aaapa@pas

—T —T

The first term, on right hand side of last equality tends to zero as n — oo,
by the above theorem, while the second term tend to zero as well, since

s s 2 p
/ \AanJran(x)V’dxg/ <I> |Aay i1 [Pdx

= 2”|Aan+1|p/ x Pdr — 0,
as n — oo, and ffﬂ x~Pdz is finite for p € (0,1).
The proof is completed.

Corollary 2.25. Let {a,} be a sequence such that a,, — 0, as n — oo and
Yoo i |Aay| < co. Then for any p € (0,1)

s

lim lg(x) — S (x)|Pdx = 0.
n—oo J_

Proof. The proof can be done using the same arguments.

Theorem 2.26. Let a,, — 0 as n — oo. Then (i) f(z) = lim,_ o ws(x)
exists, and (ii) f € L'(0,n].

Proof. (i) We have
wy (z) = Z AapDi(x) 4+ antoDn(x).
k=1

Applying the Abel’s transformation, we obtain

n—1

wy (z) = Z(k + 1D)A%a K (2) + (n+ 1) Aap K, (2) 4 ang2Dn (),
k=1

where K, (z) denotes the Fejér’s kernel.

Since, K, (z) = O(1/(nx?)) for  # 0, and a,, — 0 as n — oo, the last two
terms in the above equality tend to zero.

Also,

0< (k+ 1) A%, Ky (x) + (n + 1) Aap K, (2) < (C/(nz?))(ag — Aay),

S
|

ES
Il



2.12 L*-convergence of modified trigonometric sums z¢ () and 2% (z) with generalized semi-convex coefficients

S0
n—1
. 2
nhﬁnolo kgil(k + 1) A%ai Ki(x)

always exists for x # 0 and a,, — 0 as n — oo, which proves the part (i).
(if) We proved that

Z (k 4+ 1)A%a, Ky (x), = # 0.
k=1

Integrating term by term, we get

[ @i = TS 1% = Tao < oo

- k=1

The proof is completed.

2.12 L'-convergence of modified trigonometric sums
z¢(x) and z? (x) with generalized semi-convex coefficients

We consider cosine series

a (o ]

0

?—F E ay, cos kx,
k=1

oo
x) = g ay sin kx,
k=1

fz) =

sine series

their parital sums

n
ag
=—+ g ay, cos kx,
2
k=1
n
= g a sin kx,
k=1

modified cosine sums

Z ak+1+ZA2( > kcoskx, (ap=a1 =az=0),

k=1

and modified sine sums

n

N b, = b ,
zn(ac):z k—:ll +ZA2 <]j> ksinkz, (by =bs=0),
j=k

k=1

where A%¢; := ¢; — 2c;41 + ciga.
We prove the following result.
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98 2 L' -convergence of modified sums f,(x)

Theorem 2.27. If {ax} is a generalized semi-conver sequence, then z&(x)
converges to f(x) in L*-metric if and only if the condition

lim a,logn =20
n—oo
holds true.

Proof. At first, we have

c Q41 n a;
zo(x) Z kil —|—ZA2 (;) k cos kx
k=1 j

Jj=k

S (ar Qpp | Gnao
= — — k k
k_1<k7 n+1+n+2) cos kx

S et (225 ) By,

— n+2 n+1

where D/ () represents the first derivative of the conjugate Dirichlet kernel
Applying the Abel’s transformation we get

n—1
Ay 42 An+1 \ 7
Aay, Dy ( nDn, mr b
Z apDi(z) +a ()+<n+2 n+1) n(®)
Z @ . )sm kx sin nx
Bt Ok S sing ~ 2sinz
sin(n + 1)z Ant2  Antl | 7y
n D ’
o s (n+2 wr1) P
where D,,(z) = Sinm;:iisgcnﬂ)m
Also, we have
n sin kx sinnx
= Z Aak 1+ Aak) i
— 2sinx 2sinx

i 1 ~
a, Sln(”"k )T Unt2  Ongl D' (x),
2sinzx n+2 n+1
Using Abel’s transformation again, we have
1 n—1 k
Zp () = o sing Z(AQC%—1 + A%ay,) Zsinvx
k=1 v=1

(Aay—1 + Aay) Z sin U.’L“|

v=1

1

2sinx

+




2.12 L*-convergence of modified trigonometric sums z¢ () and 2% (z) with generalized semi-convex coefficients

sinnx sin(n + 1)z <an+2 _ Ony1 > D (x)

+an+l . [e2% A
2sinx 2sinx

n+2 n+1 "
1 n—1 » N
= s Z(Azak,1 + A2ak) (Sg(x) — S()($))
(Aan_y + Aay,) (§0 (z) — S (:c)) ]
2sin n—1 n n 0
sinnx sin(n + 1)z Gnt2 nt1 \ =,
o e T 2sma <n+2 n+1 D (z)
n—1 n—1
1 - -
=53 Z(AQak,l + A%a,)SY () — Z(AQak,l + A2ak)50(x)1
sinz | £~ Pt
S0/ ~
Tenm (Aap—1 + Aay)S, (z) Tsna (Aap—1 + Aay)So(x)
sin nx sin(n + 1)z Apt2  Qpa1 \ =
- D
+an+1QSinx " 2sinz <n+2 n+1 ()

= 1 li(AQQk_l + A2ak)§2(:z:) + (Aan—l + Aan)gg(x)]

2sinx
k=1
1 n—1 N N
 2sing Z(Aakfl — A1) (z) - QSinx(ark1 ~ ant1)50(2)

sin nx sin(n 4+ 1)z Apt2  Qpa1 \ =
— D
+an+125mx an 2sinx <n+2 n+1 n(@)

1 n—1 . .
=5 > (A’agy + A%ay)SP(x) + (Adp 1 + Aan)Sg(x)]
k=1
sinnx sin(n + 1)z Anio nt1 \ =,
. — D .
+an+12sinx+aL 2sinz <n—|—2 n+1 ()

Moreover, applying Abel’s transformation a-times, the latest equality be-
comes

2sinx

1 n—aoa -
2z (x) = [Z(Aa+lak—l + A% ) S (x)

o - . in(n + 1)z
Akq G § sinnz nsm(n
+kz—1 kSt (0] nig g 2sinz
@ ~7._ Ap+1 g
+Zﬂkan—k+15§_}c+1(x> —-A (n n 1) D, (x).
k=1

Since, gk(x) and T}, (z) are uniformly bounded on every segment [e, 7 — €],
e >0, and $5% is bounded in (0, 7), then
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100 2 L'-convergence of modified sums f,(x)

o0
= I Aa+l B Aa+l ga—l
f(x) nl_{r(ioz = Sena 321 ag_1+ ai)Sy ()

exists in (0, 7) by given hypothesis.
Next, we consider

1 > ~
f(@) = zp(@) = 5—— > (A ey + A ay) S (@)
k=n—a+1
_ - b ~h_1 sinnz sin(n + 1)z
;A @n=kSn k+1( )1 " osing n 2sinx
an ~
-3 Aok + A (22 D).
k=1
Hence,
If(@) - 2] < C /0 S (A 4 A8 (@) d
k=n—a+1

sin nx sin(n + 1)z

dzx

an*kgszllf-u(x) dx
0 k=1
us
Hanni| [
0

2+ Jan) /
+c/
0 Jp=1

Z Akan7k+1§7’§:lﬁ+1 (z)|dz

n+1

<C Z |A ayy + Aa+1ak|/ So‘ Y )‘d:r

k=n—a+1

2sinx © 2sinz

! ‘5' (m)‘ dx

n

+C’Z\A Ap— k|/ Sk- pa (@) dgc
sin nx sin(n + 1)z
+|a"+1|/ 2sinx T |an|/ "~ 2sinx dx
+CZ\A n k+1|/ SE (@) dx
A ( dott \[7’ (x)‘dm
n+1 "

=C Z AR Ay, 1+Aa+1ak\/ Ta N )‘dx
k=n—a+1



2.12 L*-convergence of modified trigonometric sums z¢ () and 2% (z) with generalized semi-convex coefficients

+CZAn k-&-l‘A Qn— k|/

+|an+1|/ x+|an|/
0

+CZA k+1‘A Qp— k+1|/
k=1

+’A<Zri:1l> /0 ‘52(33)‘(1:10

By Lemma 1.90 and given hypothesis, the first three terms of the above
inequality are of o(1) order as n — oo. Further, it is a well-known that

r

Thus, the conclusion of the statement holds true if and only if

k—1
'~ k+1 dx

sin nx sin(n + 1)z

dx

2sinx © 2sinz

n— k+1

Th-1 )’dw

sinnx

dx = O (logn), n > 2.

15;1(x)’d o(nlogn) and /

2sinx

lim a,logn = 0.
n—oo

The proof is completed.

Corollary 2.28. If {a} is a generalized semi-convex sequence, then the nec-
essary and sufficient condition for L'-convergence of the cosine series is the
condition

lim a,logn = 0.
n—oo

Proof. 1t is obvious that
1) = S5@)| = 1 f () — 25 (@) + 26 () — S(@)]
< [ ) - s+ [ @) - Si@lda

_ " ¢ T Ap 2 Gp41 \ 7/
- [ 1) - sponas + \(nH—Hl)Dn(x)

S I )| [ 15

dzr

an+1
n+1

an+2
n -+ 2

By Theorem 2.27
lim / |f(z) — 2 (z)|dx = 0,
n— 00 0

holds true, and while fow ‘Eg(x)‘ dx behaves like nlogn for large values of n,
then by given hypothesis we conclude that

lim || f(z) — S;(z)]] =0<= lim a,logn =0.

n—oo n—oo

The proof is completed.
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102 2 L'-convergence of modified sums f,(x)

Pertaining to the sine series we prove the following.

Theorem 2.29. If {ax} is a generalized semi-conver sequence, then z3(x)
converges to g(x) in L*-metric if and only if the condition

lim a,logn =20
n—oo
holds true.

Proof. Modified sine sums z3(x) can be written as follows

zi(z)zzn: ;:H_l ZAZ( ) ksin kx

k=1
n b n
= Z (: — H ) sin kx
k=1
- bnyz  bns
= b kx + -
k=1 con ke < +2 n+1> (=)

where D/, () represents the first derivative of the Dirichlet kernel.
Abel’s transformation gives

=" AbyDi(x) + by D () + ( btz _ boir > Dl (x)

n+2 n+1

1+ cosz — coskx — cos(k + 1)z

2sinx
k=1
+b, Dy (z) + butr _ buta2 ) (z)
e n+1 n+2 nATmae

Where En (x) — 14+cosxz— C(;S::fw COS(’IL+1)CL‘
Last equality can be transformed as follows

n—1 i
s 1+ cosz — coskz — cos(k + 1)z
Zn(@) = ;(bk 1 ber) 2sinz
- bn+1 bn+2 /
b, Dy, — D
Do)+ (15 - 25 ) Dlo)
— 1+cosx—coskx—cos(k+1)x-
Z Kk — be—1) .
— I 2sinx |

n—1

1—|—cosx cosk:x
= b,_1—0b _— b —b
k—l( =l k1) 2sinx Z bl k1) 2sinx




2.12 L*-convergence of modified trigonometric sums z¢ () and 2% (z) with generalized semi-convex coefficients

— cos (k+1 1+cosx
> (br—1 = bera) at Z bk — br—1)

: 2smx 2sinx
n_1 n—1
cos kx cos(k + 1z
=20 b = D (e ) g
— k=1
b D) + (2l Otz ) (g
nDn n+l n+2)"

or

s coskx 14 coszx
25(z) = — Z b1 = brt1); + (b1 — bp) ———m

2sinx
cosnx cosx cos T cosnx
+bp——— — b1 — 05— — bn—17—
2sinx 2sinx 2sinx 2sinx
1+ cosz COS NT cos(n + 1)z
2sinx 2sinx 2sinx

n+l n+2

n

cos kx cosnx

= E (b—1 = bry1) m——— —bpp1 70—
k=1

e e L

2sinx osing
cos(n + 1)z b1 bnio /
—b — D bp=01 =0
2sinz (n+1 n+2 n(@); o=y
1 " cosNT
=— Abp_1 + Ab kx — by,
2sinx 1;( k-1 + Abi) cos ke 1 9sinx
b cos(n'—l— 1z bri1 B bria D' (2).
2sinx n+l n+2
Using again Abel’s transformation in last equality we have
1 n—1 k
s - _ AQ _ A2
z5 () Sena ;( br—1+ bk)vz::lcosvx
1 n
e (Abp—1 + Aby,) ; Cos v
cosnT cos(n + 1)z bri1 bria ,
—b — by, — D
"9 sing © 2sinx Jr(n—&—l n+2 n(®)
n—1
1 2 2 0
= 5o kZ_I(A be—1 + A%b) (Sp(z) — So(x))
_ Ab. A 0 —
(A + Aby) (89(2) — 50()

2sinx " 2¢inz

n+1l n+2

1 bn bn
B anosmc b cos(n + 1)z ( 11 12 ) D (2)
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104 2 L'-convergence of modified sums f,(x)

n—1

S (A% + A%)SU() + (Abu + A%)Sﬁ(w)]

1
2sinx

cosnr cos(n+ 1)z bpt1  bpao ,
n+1l n+4+2

b, _p, 8\ Dl (x).
osing 2sinx n(7)

Repeating Abel’s transformation a times to the last equality we obtain

n—a«x

D (AT by 4+ A ) S ()

+2Akbn ;@SS 11€+1 )+2Akbnk+15511c+1($>]
— k=1

cos nx cos(n+ 1)x bpt1 bnao ,
n — b, - D )
Hosing 2sinx + ( n(@)

1
2sinx

n+l n+2

Since S, (x) and T, (x) are uniformly bounded on every segment [e, 7 — €],
€ > 0, then based on the given hypothesis we conclude that

D (AT by + AT ) Sp T ()

pr— 1.
9(w) n1—>r2<> Zn(@)  2sing

exists in [e,m —¢], € > 0.
Next, we have
1 oo

o)~ shla) = g D (A% AT S )
k=n—a-+1

1 @
Ak k—1
+QSiH£CkZ_:1 kS k41 ()

I _
+2Sinz;A bnka“lS k+1()

CcOS NI cos(n + 1)z bn, bn,
+bn+1 + b ( ) _ ( +1 _ +2 > /

n D .
2sina 2sina ntl ntz)Pr@
Subsequently, we get

lg(z) — 25z \<C/

(A g + A1) SO (1)
k=n— a+1

dzr

bn*ksls:llﬁ-l(x) dzx

ZA D154, (2)| da

k=1

o [0
0




2.12 L*-convergence of modified trigonometric sums z¢ () and 2% (z) with generalized semi-convex coefficients

COSTLI’
+|bn+1|/ +|b |/
/ D! ()] dee

|Ao¢+1bk 1+Aa+1bk|/ |Sa 1 ‘dl’

cos(n + 1)z

© 2sinz

bn+1 bn+2

n+1l n+2

k=

Z
Z Ak by — k|/ ’Sn k+1 )’dm

+O 3 4" k+1|/ S5 41 (@)] da
k=

COSn.’I}
+|bn+1|/ |52 dar+ o I/
/|D;<x>\dx

=C Z AR ATy 1+A"‘+1bk|/ T ()| da
k=n—a+1

cos n+1

~ 2sinz

bn+1 bn+2

n+1l n+2

+OY Al [ )
0

+02A5§ a4y k+1|/ [Tk (@)] do

+|bn+1|/ cosm: x—|—|b |/
/ |D; (z)| dx.
0

As we know ["|D},(z)|dz = o(nlogn) and [ [£52L| dx ~ O(logn), n >
2. So by given hypothesis and Lemma 1.48, all terms that appear in the right
hand side of the above inequality are of order o(1) as n — oc.
Subsequently, it follows that
lim_[lg(x) — 23] = 0

n— oo

cos(n+ 1)z

© 2sinz

bn—i—l bn+2

+ n+1l n+2

if and only if the condition

lim a,logn = 0.
n—oo

The proof is completed.
Corollary 2.30. If {b;} is a generalized semi-convex sequence, then the nec-

essary and sufficient condition for L'-convergence of the sine series is the
condition
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106 2 L'-convergence of modified sums f,(x)
lim b, logn = 0.
n—oo
Proof. We can see that
lg(z) = S(0)ll = llg(x) — 25 () + 25 (x) — S5 (2)||
< [ lat@) -~ sn@lde + [ a0 - S3(a)lds
0 0

= /07T lg(z) —zfl(x)dx+/o“
= /o7r l9(z) — 2, (z)|dz + ( bn+2

n+2
By Theorem 2.29

dx

bn+2 bn—i—l /
Ini2 D
<n—|—2 n—i—l) n(®)

)| [ nas

anrl
n+1

+

T

lim [ |g(a) — 23 (x)ldz =0,

n—oo 0

holds true, and while foﬂ |D., (z)| dz behaves like nlogn for large values of n,
then by given hypothesis we verify that

lim ||g(z) — Sy (z)|| =0 <= lim b,logn =0.
n—roo n—r oo

The proof is completed.




3

L'-convergence of modified sums g¢(z) and
()

In this section we are going to present all results regrading to L'-convergence
of modified trigonometric sums g¢(x) and g¢ (x) whose coefficients belong to
several classes of real sequences.

3.1 L'-convergence of modified trigonometric sums
g¢ (z) with coefficients from the class S

Let -
ao
fz) = 5 + ;ak cos kx

be a cosine series and
gc(x):@—i—iiA a—? kcoskx
! 2 k=1 j=k J

the modified trigonometric cosine sums.
In what follows we prove the following.

Theorem 3.1. Let {ai} € S. If

nl;ngo |apn41]logn =0,

then g¢(z) converges to f(z) in L*-norm.

Proof. We have

go(x) = % +ZZA (Czj) kcos kx



108 3 L'-convergence of modified sums g¢(z) and g ()

ap - . Q. Ak+1 a
2 Skonia () + () -2 2)
C;—O—I—chosk‘x <0;:— ZTidl)

kr — Ap41 k k
—l—];akcos X - Z COS KX

an
= Sn(x) = 2 Dn (@),

where D/ (z) denotes the first derivative of the conjugate Dirichlet kernel.
Since {a} is a null sequence and D/, (z) = O(n) for z € (0, 7], then

lin'olo gn(x) = nh_)néo Sp(z) = f(z), Yz e (0,n].

n—

Applying Abel’s transformation and Lemma 1.34, we obtain

i ") - g @)l de
0

k=n-+1
> Aak
> AvT = Dila)
k=n-+1

—/OW > AAk 20 )

k=n-+1

Intl B (@)
n—+1

d:c+/
0
dx+/
0
d:ch/
0
dm—i—/
0

Ap+1 7,
—D
D (@)

IN
o\:‘

Il
o\q

Aai
— A
=0

<C Y (k+1)AAk+/
0

k=n-+1

Ap+1 7=,
D

dz. (3.1)

Under the assumed hypothesis, the series

o0

> (k+1)AA,

k=1

converges and therefore the first term in (3.1) tends to zero as n — oo.

Moreover,
An+1 7=/ T An+1 7=/ |an+1| ~/ ‘
D, dx < D = — D d
J|Epw|a < [0 45w ae = 280 [ |5 o) ao
= Clans| [ |Di@)]dw~ Jansallogn,  (32)

—T



3.2 L'-convergence of modified trigonometric sums g¢ (z) and g5 (z) with coefficients from the class R

since [ ‘E;L (x)‘ dx behaves like logn for large values of n.

Now the conclusion of the theorem follows from (3.1) and (3.2).
The proof is completed.

In the sequel we prove the following.

Corollary 3.2. Let {ax} € S and

lim ay,41logn = 0.
n— oo

Then ||f — Spllzr = o(1) as n — oo.

Proof. We note that

/ " (@) - S (@) da = / " @) — g5 @) + g5() — Sula)| da

—T —T

< [ @) - g@lds+ [ 1) - Suw)l ds
- [ @ - g@ldes [ |25 a,

Since by Theorem 3.1,

/Tr |f(x) — g5 (z)]dz = o(1) as n — oo

behaves like |ay,+1|logn for large values n, the conclusion of the corollary

follows.
The proof is completed.

and
Ap+1 7=,
n+1 "

dzr

3.2 L'-convergence of modified trigonometric sums
g (z) and g’ (x) with coefficients from the class R
Let

ao >
f(z) = 5 —&-;ak cos kx

and

g(x) = Z ay sin kx
k=1

be cosine and sine series.
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110 3 L'-convergence of modified sums ¢ (z) and g5 ()
Also we consider the modified trigonometric cosine and sine sums
a " a
ey 20 25
gz = & +;ZkA(j ) kcos ka
= J:

and 0w
. a;
go(x) = ZZA (J> k sin kx.
k=1 j=k J
In what follows we denote by t(x) either f(x) or g(z), and ¢,(x) either
g () or gy (z).
Theorem 3.3. Let {ax} € R. Then

lim t,(z) =t(z), Vxe (0,7],

n— oo
and t,(z) converges to t(z) in L*-norm.

Proof. We consider only cosine sums g¢¢(z) since the proof for the sine sums
follows in the same line. We have

ta() = 2 43 keoske [A(C;:) +A<Ijk++ll> +...+A(6¢;ﬂ
k=1
7040 - Ak An+1
= 5+choskx (k_ n+1>
k=1

n n
% +;akcoskx— ﬁ;kcoskx

= Su(x) = 5Dl (a), (3.3)

where D/, (x) denotes the first derivative of the conjugate Dirichlet kernel.
Since {ax} is a null sequence and D/, (z) = O(n) for = € (0, 7], then

lim ¢,(z) = lim S,(z) =t(x), Ve (0,7].

n—oo n—oQ

The relation (3.3) gives

t(z) —tn(z) = Z ay, cos kx + an_:llﬁ;(z)

k=n-+1
o a - % . n+1 75/
= n}gnoo . (k_z:%l . smkx) + 1Dn(x)

Applying Abel’s transformation twice, we obtain



3.2 L'-convergence of modified trigonometric sums g¢ (z) and g5 (z) with coefficients from the class R

i [ 3 st

k=n+1

t(x) = tn(x)

an+1 an+1 /
D D
- fud nm} RN

- [0+ $ wenar () R

maA (;m_ll) Ria) - (4 DA (250 R o)

= §Zw+nA% t) Ki(x) - m+DA(%“)K%)

k=n+1 +1

where K/, (z) denotes the first derivative of the conjugate Fejér kernel.
Hence,

[ )tz < 3 wen|a2 (9] [ |Rio)|do
k=n-+1 -7

Ap41 T )
—i—(n—l—l)‘A (n+1>’/_7r K, (z)|dx

However, using the inequality

we have

k=n-+1
CESE k:ZM # ()]
1
— ((n + 1>2>

by given hypothesis.
Thus, it follows that

/W () — tn(z)|de = O ( i (k+1)? ‘42 (CZ“)D +o(1) = o(1),

- k=n-+1
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112 3 L'-convergence of modified sums g¢(z) and g ()

as n — 00.
The proof is completed.

Now we prove the following.

Corollary 3.4. Let {ax} € R. The series

converges in L'-norm if and only if

lim ay,41logn = 0.
n—oo

Proof. We shall prove the corollary only for cosine series, since the proof for
the sine series is very similar. Indeed, we have

| @) = suwdr = [ i) = tala) + tala) = Sua)|

—T —T

< [ o) - a@lde+ [ leale) - a0l o
:/_7; t(x)—tn(x)|d:v+/_: L | da

and

Intl B (@)
n+1

dr = /” [tn(x) — Sp(x)| dx

—T

/.

< /Tr [t(z) — Sp(z)|dx + /7r [t(x) — tn(x)| da.

—T —T

Since by Theorem 3.3,

/7r [t(x) — tn(z)] dz = o(1) as n — oo

—T
™
L
behaves like |a,41|logn for large values n, the conclusion of the statement

follows.
The proof is completed.

and
It D (x)

. dxr
n+1




3.3 L'-convergence of modified trigonometric sums g¢ (2) with coefficients from the class S(6) 113

3.3 Ll-convergence of modified trigonometric sums
g¢ (z) with coefficients from the class S(6)

Let

a oo
flz) = ?0 +kz_1akcoskx

be a cosine series and

+ZZA( >kcoslm

k=1 j=k

the modified trigonometric cosine sums.
In what follows we prove the following.

Theorem 3.5. Let {ax} € S(4). If

nll)n;o |ant1]logn =0,

then g (x) converges to f(z) in L'-norm.

Proof. We have

go(x) = a;—l—i:i:A(J )k:coskx

k=1j=k

ag - Q41 (2%
— S oL A=
2 +ZkC05k { <k+1>+ + (n)}
_ k_ Ap+1
= +§ k cos kx <k n+1>

_ ap n+1
_74—];%005/% -y choskx

k 1
Un41 75

where D/, (z) denotes the first derivative of the conjugate Dirichlet kernel.
Since {a} is a null sequence and D/, (z) = O(n) for x € (0, 7], then

lim g5 (z) = lim S,(z) = f(z), Vz e (0,n].

n—oo n— oo

Applying Abel’s transformation and Lemma 1.34, we obtain



114 3 L'-convergence of modified sums g¢(z) and g ()

/ﬁ”|f<x>-gz<xndx

T = Ap+1 /
<
_/0 k:;HAaka(x) d:c—i—/o n+1D (x)| dz
i o0 A m .
:/ Z AkﬂDk () dac—l—/ MD;L(a:) dx
0 k=n-+1 0 TL+1
- / Z AAk A‘“ Di(z)|dx + / Untl B (2)| da
0 k=n+1 =0 0 Tl+1
> ™| L Ag, "la ~
< AA LDy(x)|d +/ "L D! (x)|d
p 9 z D)ot [ A (@) da
<C >y (k+1)AAk+/O a’flp/( z)|de. (3.4)
k=n-+1

Based on Lemma 1.26 the series
D (k+1)AA,
k=1

converges and therefore the first term in (3.4) tends to zero as n — oo.

Moreover,
An41 7 " lang1 =, |an+1| ‘
—D dx < D de = —— d
[ |E= B as < [ |22 By o) o = nt (@)
= Clanal [ |D(@)|dz ~ Jansa|logn, (3.5)

—T

since

behaves like logn for large values of n.
Now the conclusion of the theorem follows from (3.4) and (3.5).
The proof is completed.

Now we prove the following.

Corollary 3.6. Let {ax} € S(6) and

nh_{glo Gn+1logn = 0.

Then || f — Snllrr = o(1) as n — co.



3.4 L'-convergence of modified sums g¢ (x) with coefficients from S(§) without additional condition

Proof. We note that

/ " f(@) - S (@) da = / " (@) — g5 @) + g5 () — Sula)| da

<[ " @) - gi@) da + / " 10e (@) - Su(a)|de
Ap+41

:/_:|f<x>—gz<x>ldx+/_: n+1

Since by Theorem 3.5,

dx.

f)/

[ 150 g de = 0(1) as m o

™
/.
behaves like |ay,t1|logn for large values n, the conclusion of the corollary

follows.
The proof is completed.

and
Ap41 ﬁ/

d
n+1"x

3.4 L'-convergence of modified sums g¢(x) with
coefficients from S(J) without additional condition

Let

a oo
flz) = ?O +kz_1akcoskx

be a cosine series and
a & a
0 j
gt (z) = 0 +k§ 1 EkA (;) k cos kx
—1j=

the modified trigonometric cosine sums.
Here we prove the following.

Theorem 3.7. If {ax} € S(6), then g (x) converges to f(x) in L'-norm.
Proof. After some calculations we have

n
. ag ar  Gpi1
=—+ g kcoskx | — — ——
9n() 2 — o8 x(k n+1)

C;O—l—;akcoskm— sii;kcoskx

An+1 =
= (@) — D (),
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116 3 L'-convergence of modified sums g¢(z) and g ()

where D/, (z) denotes the first derivative of the conjugate Dirichlet kernel.
Applying Abel’s transformation and Lemma 1.80, we obtain

n
Ap+1 7=
ZA%Dk + 1 Da(2) = D ()

ZAaka )+ ant1 Kn(x).
k=

Applying Abel’s transformation again and Lemma 1.34, we get

/ "7 @) - g8 (@) da
g/o > AaxDi(x)

k=n+1

T o A
=/ > AkﬁDk (x)
0

k=n-+1

da:+/ |41 K (2)] do
0

dz + |ans1] / Ko ()] da
0

" Aa;
ZA,D<>dx+|an+1|/ K (o) da

=0

Z (k+1)AAL +C(n+1)Apy1 + |an+1\/ (z)| dz. (3.6)

Based on Lemma 1.26 the series

o0

> (k+1)AA,

k=1

converges and therefore the first term in (3.6) tends to zero as n — oo, and

/0 | K, (2)| de < [ﬂ|Kn(x)\dx:w. (3.7

Thus, the conclusion of the theorem follows from (3.6) and (3.7).
The proof is completed.

As a consequence of Theorem 3.7 is the following.



3.5 L'-convergence of modified sums g¢ (x) with coefficients from S without additional condition

Corollary 3.8. Let {ax} € S(6). Then ||f — Sullzr = o(1) as n — oo if and
only if lim, o |an+1]logn = 0.

Proof. 1t is clear that we can write

/ " (@) - Sa(@)] da = / " @) — g @) + g5 (@) — Sula)| du

—T —T

< [T - gl [ |25 )| ass)

Since by Theorem 3.7,

/Tr |f(z) — g5 (z)|dx =0o(1) as n = o0

—T

and .
Ant1 =
/_Tr - _:11D;(x) dx ~ |any1|logn
as |7 ﬁ;(x)‘ dx ~ n|logn, for large values n, from (3.7) we obtain

lf —Sullzr =0(1) as n— .

Conversely, we have
/71'
—Tr

Subsequently,

Intl B (a)

— de =gy, = Sullr < If = gnller +[1f = Sallzr-

If = Sullzr =0(1) as n— oo

if and only if
lim |an41]logn = 0.
n— oo

The proof is completed.

3.5 L'-convergence of modified sums g¢(x) with
coeflficients from S without additional condition

Let -
fz) = C;—O + l;ak cos kx

be a cosine series and
a & a
0 )
gn(x) = > + kg 1 E kA (;) k cos kx
= J:

the modified trigonometric cosine sums.
Next statement holds true.
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118 3 L'-convergence of modified sums g¢(z) and g ()
Theorem 3.9. Let {a} € S. Then g&(x) converges to f(x) in L'-norm.
Proof. We have

gn(z) = %—l—zn:kcoskx {A (%) —|—A(Z’i:'11) +..._|_A<C;:)}

kr — Ap41 k k
+;akcos T Y Z cos kx

Gnp
= Sux) ~ LD (),

where 5;,(10) denotes the first derivative of the conjugate Dirichlet kernel.
Applying Abel’s transformation and Lemma 1.80, we obtain

n an, _
- Z Aar Dy (x) + an41Dn () = ++11 D! (z)

n
= Z Aaka(a:) + an-&—an(x) - a7t+1D7L(x) + an-i—lKn(-r)
= Z Aaka(ac) + an+1Kn($).

Applying Abel’s transformation again and Lemma 1.34, we get

/ ") - g5 @)lde
0

g/ Z Aayp Dy (x) der/ |apt1 K, ()| dx
0 lk=n+1 0
=[S a5 piw| o+ lanal [ 1Kol do
0 lk=n+1
g Aaz
g/ Z AAk Di(z)| dz + |any 1|7
0 k=n-+1
> ™|~ Aa;
< Z AA, /0 A;Di(x) dz
k=n+1 =0
x|l n Aas
+An+1/ azDi(a:) dx + |an41|m
o |z A
<C Y (k+1)AA+ (n+ 1Ay + |appT. (3.9)

k=n+1



3.5 L'-convergence of modified sums g¢ (x) with coefficients from S without additional condition

Based on Lemma 1.26 the series

o0

> (k+1)A4,

k=1

converges and therefore the first term in (3.9) tends to zero as n — oo, and

/O|Kn(m)\dx§/ K (2)] d = 7. (3.10)

Thus, the conclusion of the theorem follows from (3.9) and (3.10).
The proof is completed.

As a consequence of Theorem 3.9 is the following.

Corollary 3.10. Let {ar} € S. Then ||f — Sul|lr = o(1) as n — oo if and
only if

lim |an41]logn = 0.

n— oo

Proof. 1t is clear that

s

[ rw-si@lar < [ 5@ -g@lae+ [ lgw - s@)ds

—T —Tr —T

</ (@) — g8 (@) do
o

/Tr |f(z) — g5 (z)|dx = o(1) as n — o

—T

.

E;L(x)‘ dx ~ nlogn, for large values n, from (3.11) we obtain

An+1 75/
D
2D, (@)

dzx. (3.11)

Since by Theorem 3.9,

and

An+1 7%
D
Gt ()

dx ~ |ap41]logn

as f:r

If = Snllzr =0(1) as n— oo.

Conversely, we have
/'Tr
—T

Subsequently,

D (@)

i de = |lgy, = Sullr < If — gl +[1f = Sullzr.

If = Sullzr =0(1) as n— oo

if and only if

lim |ap41|logn =0.
n— oo

The proof is completed.
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120 3 L'-convergence of modified sums g¢(z) and g ()

3.6 L'-convergence of modified trigonometric sums
g¢ (z) with coefficients from the class F),

Let

a oo
flz) = ?O +kz_1akcoskx

be a cosine series and
a L a
0 .
gz($)2+kglgkA(;>kCOSkI
= ]:

the modified trigonometric cosine sums.
We have the following statement.

Theorem 3.11. Let {a;} € F,, 1 < p < 2. Then g5 (z) converges to f(zx) in
L'-norm if and only if

lim a,logn = 0.
n—oo

Proof. We have

go(z) = a;—%ZZA((;j) k cos kx

k=1 j—k
o N an+1 =/
= Su(e) ~ LD ()
= Sn(2) = ant1Dn () + ant1Kn(z)

T

AapDy(x) + ant1 Kp(x), (3.12)
=0

=

where K, (z) denotes the Fejér’s kernel.

Since |K,(z)] < O(27%), 2 € (0,7, and a, — 0 as n — oo, then
limy, 00 g5 () exists for z € (0, 7], and lim,,—, g5 (z) = f(z).

Now,

s

/0 (@) — g5 () |de = / 1F(@) — g2 (0)ldr + / (@) — g2 (0)lde. (3.13)

1
n

For the first integral of the right hand side of (3.13), we have

1 1 1

/O (@) — g8 (@)lde < / on(@) — F(2)]dz + / 165 (2) — onla)\de,

where 0, (x) is the Fejér sum of S, (z), and

/n |lon(z) — f(z)|de = O ([lon(z) — f(2)]]), n— oo

0



3.6 L'-convergence of modified trigonometric sums g¢ () with coefficients from the class F,,

From (3.12), we get

95 (@) = 0u(@) = ani1 Ku(e) + —— (Z kdar Dy(x) = 3 awk@c)) :

Therefore,

1

n 1

n T 1 n
e —op(2)|lde < |apt1]|= + —— k|A D d
/0 190(2) = on(@)lde < lantilg + = §:1 | ak|/0 | D () |da

or
1

/Oﬁ|gﬁ(m) ou(2)dz = O <ZkAak|> n — co.

Thus, for the first integral in (3.13), we have

1

| gt@) = e =0 (non(x) ~ f@l+ ZkIAaM) e
k=1

For the second integral of the right hand side of (3.13), we have

/1|gfl(x)—an(x)|dx§/l (a1 Fo (2 |da:+/ Z AaxDi(

n n n k=n-+1

g/ |ans1 Fo (2 |d:z:+/ Z Aap Dy (z
0

n ' k=n+1
T us
= |an+1|§ +A

Z Aay Dy (x)|dx

(3.14)

So, we have
/07r |g5.(x) = f(x)ldz = O ([lon(z) — f(z)]))
+0 <Z k|Aag| + Z kP~ 1Aak|p> =o0(1), n— oo.

k=1 k=n-+1

The proof is completed.

As a consequence of Theorem 3.9 is the following.
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122 3 L'-convergence of modified sums g¢(z) and g ()
Corollary 3.12. Let {ay} € Fp, 1 <p < 2. Then

lim [ — Sullzs = 0

n—oo

if and only if

lim |ap41]logn = 0.
n—oo

Proof. We have

T

/O (@) = Su(a)|dz < / (@) - g5(@)|de + / 196 (&) — Su(2)| de
< / (@) — g5 ()] de

™ T

+ |ant1 D ()| d +/ |@pt1 K ()| da
0 -
and

us

/ (a1 D ()| dz < / 165(2) — S(a)| da + / (g o ()] i
0 0

—T

< [ i@ -g@lde+ [ Janako (@) de

—T

Since f:r D, (z)|dz ~ nlogn, for large values n, from Theorem 3.11, we
obtain the conclusion of the corollary.
The proof is completed.

3.7 L'-convergence of modified sums g¢(x) with
coefficients from the intersection class BV N C

Let us consider the cosine series
a oo
0
5 + E ay cos kx,
k=1

and modified cosine sums

Theorem 3.13. Let {ar} € BV NC. Then g(x) converges to f(z) in L'-
norm if and only if

lim ay,41logn = 0.

n—oo



3.7 L'-convergence of modified sums g¢ (x) with coefficients from the intersection class BV N C

Proof. Using Lemma 1.80 we have

65(@) = Su(2) — 2D (@)

(
= Sn(x) = an1Dn (@) + an1 Kn(2)

= Aap Dy () + Aani1Dn () + anp1 Kn(x), (3.15)
k=0

where K, (z) denotes the Fejér’s kernel.
Therefore,

| 1@ - gz @)z
0
<)
O k_
§/ ) dx+/ |Aan+1Dn(x)|d:E+/ |@pnt1 K ()| dx
0 |z 0 0
) x| oo
[ [E oo
0 R
4 0
+ [ 1A D@l do -+ vl §

< - +Z|Aak|/ cse — dm+\Aan+1|/ |d;v+1

— Aapi1Dp(x) — ap1 Kp(x)| da

< - +Z|Aak|[ 2log 5 15T

] ] e €
csC 5 — cot H + C(Jan+t1| + |ant2])logn+ - < =

since [ |Dy,(z)| dz behaves like logn for large n and {a)} € BV N C.
Also, using (3.15) we have

/ (ans1 Dn(2)] d < / 150(2) — g5 (@)ldz + lans| / (a1 Kon(2)] da
/ 17() — g5 @)lde + lania] § = 0(1) +0(1) = o(1)

as n — 00.
The proof is completed.

Corollary 3.14. Let {ay} € BV NC. Then S,(x) converges to f(x) in L*-
norm if and only if

lim |an41]logn = 0.

n— oo
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124 3 L'-convergence of modified sums g¢(z) and g ()

Proof. We have

| 17@ = su@ide < [1£@) - 620+ g2(a) = S, (o)l
< [ 1@ - gi@lds+ [ lgho) - Sl
/ \f(x )|dx+/ﬂan+1Dn(x)dx+/0ﬂ i1 Fn (2)|da.
Also,

/0 *ams1 Do (2) e < / " 16 (@) - Su(@)ldz + / " lan a1 Kon(2) e
/ 1F(@) — Su(@)lde + lanial 3

/ \ay 1 Dy (2)|d
0

behaves like |a,11|logn for large values of n, and by Theorem 2.13

lim / 1£(z) — Sn(2)|dz = 0,
n—oo

then the corollary is proved.

Since

3.8 L'-convergence of modified sums g¢(x) with
coefficients from the class S**

Let us consider the cosine series
a oo
0
5 + Z ay cos kx,
k=1
and modified cosine sums
gn(x) = +ZZA< >kcoskx
k=1 j=k

Theorem 3.15. Let {ar} € S**. Then g<(x) converges to f(x) in L'-norm
if and only if |ap+1|logn = o(1) as n — oo.

Proof. Firstly we have

% | ZZA ( ) kcoskx = S, (x) — s’flf?;(r)-

k=1 j=k




3.8 L!'-convergence of modified sums g (x) with coefficients from the class S** 125
Since, D/, (z) = O(n) in (0, 7] and {a,} is a null sequence, then

lim gy (x) = lim S,(z) = f(z) for z e (0,7

n—oo n—oo

This implies the equality

c S An41 75/
_ = E k D .
f(I) 9n (1‘) W @k COS R + n+1 TL(I)

Applying Abel’s transformation, we obtain

f@) —g5@) = > AaDi(e) — ans1Dale) + LD (2).

k=n-+1 n+1
Whence,
i = anJrl =~/
—grll = AarD — Gn+1Dn D d
17 =5l = [ 3 AnDu(a) ~aneaDuto) + Do) d
S/ Z Aay Dy (x) da:—i—/ |41 D ()] da
0 k=n+1 0
+/7T Intl py ()| dx.
0 n+1 n

Since [ “:L"_:ll 15;(33)’ dr ~ |a,y1|logn, by Zygmund’s theorem, {a,} €

S** and Lemma 1.85, we get

I = gall 0( > Mak) +0(lanta[logn) + o (Jant1|logn)

k=n+1
=o(1) + o(lan+1[logn).

Subsequently, || f — g5 (z)|| = o(1) as n — oo if and only if |a,41|logn =
o(1) as n — oo.
The proof is completed.

Corollary 3.16. Let {a;} € S**. Then S,(x) converges to f(z) in L'-norm
if and only if |ap+1|logn = o(1) as n — oo.

Proof. We consider,
”f - SnH < Hf_gfz _|_g7cl - Sn”
< I = gall + llgn — Snll

™ an -
I = gill+ [ | 2D (a)| o
0

n+1 "




126 3 L'-convergence of modified sums g¢(z) and g ()

r

behaves like |a,+1|logn for large values of n, and by Theorem 3.15 we get

Again, since

D ()

d
n+1 " ac

lim [[f — S,/ =0
n—o0
if and only if |a,+1|logn = o(1) as n — oo.

The corollary is proved.

3.9 L'-convergence of modified trigonometric sums
g, () and g;,  (x) with coefficients from the class R

‘We consider cosine series
a o0
0
flz) = Y + E ay, cos kx,
k=1

sine series

o0
g(x) = Z ay sin kx,
k=1
their parital sums

n
a
Se(x) = 50 + Z ay, cos kx,
k=1

So(x) = Z ay, sin kx,
k=1

modified cosine sums
n n
Gnom(T) = % + Z Z EmA <Jafn> cos kz,
k=1 j=k
and modified sine sums
n n
Gom(@) =SS kA (]m) sin kz,
k=1 j=k

where m € {1,2,...} is a fixed number.
We prove the following result.



3.9 L'-convergence of modified trigonometric sums g, ,,, (z) and g5, ,,, (z) with coefficients from the class R

Theorem 3.17. Let the coefficients of the cosine or sine series belong to the
class R. Then

le Gn.m(x) = r(x) existsforall z € (0, 7],

r€ LY0,7] and lim |r — gu.m| =0,
n—o0
where gn m(x) denotes either gy, . (x) or gy, . (x) and m € {1,3,5,...}.

Proof. We are going to prove these results only for the cosine series. The proof
for the sine series is very similar. Indeed, we have

Inm(T) = % + Z Z EmA (ﬁ) cos kx

k=1j=k

0;()4_; [A (%) +~--+A(Z—:1)} k™ cos kx

ago ag Gp41
= kM cosk
5 —|—Z[km (n—i—l)m] COS KX

k=1
= %JrZakcoskz— ﬁkamskx
k=1 k=1
Ap+1 ~
— S¢(g) — L [iD(m) ] , 3.16
@) - Gt (£ @) (3.16)

where D™ (x) denotes m—th derivative of conjugate Dirichlet kernel.
Since B
D™ ()] = O(n™ )

then for second term of the right side of (3.16) we have
|ans1] | 5 m)
D™ ()] = O(nfan1])-
D @) = Ofna )
Therefore, by (3.16) and our assumptions, we obtain that

Jim_ gy (2) = lim Sp(e) = f(x)
exists for all € (0,7] and m € {1,3,5,...}.
Consequently, Kano’s theorem implies that f € L'(0, x].
Using (3.16) we can write

— An+1  5(m)
Z ay cos kx + ————D,"(z)
k=n+1 (n T 1)

IRT d > ag . An+1  7(m)
= élggo . (k_Z-H - sin k:x) + WDH (x).

f(x) = g m(2)
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128 3 L'-convergence of modified sums g¢(z) and g ()

Applying summation by parts twice we obtain

f(@) = g5 m ()
AR

_Ontl fmx)} B )

n+1 n+1)m
=t [ 3 002 (%) R+ oa (S K2 w)
k=n+1

—(n+1)A (Z’f ) K (z) + %f);(x)

_ Ap41 E;L(CC):| + ( Ap+1 E(m)(fﬂ)

n+1 n4+1)m "
:kzzm(ﬂ DA% (S8) Kj@) = (n+ 1)A (Z’E)f{;(gg)
tanit | D) - D).

where I?n(x) denotes the conjugate Fejér kernel.
Whence, we have

/w (@) = g (@)l < Z (k+ 1) |27 (%) ‘/ ‘Kk ’d
n+1

A

roenfa (i) [ IR
Hownl| oy [ |D

an —_—

+1 R

- / 13 (2)| -3

ntl/ x . . i=1 N

Let us estimate alternately each J;, i = 1,2, 3. Indeed, using the estimation

.l

<>\d

(x)’dz — O (k)

we have

5 L
Iy kgl(kﬂ)‘ﬁ(k)‘/
:C’)(i kQ‘AQ(a]:)Dzo(l) as n— oo,

k=n+1

Ri(2)|da



3.9 L'-convergence of modified trigonometric sums g, ,,, (z) and g5, ,,, (z) with coefficients from the class R

since {ax} € R.
Also, we have

An+41
=(n+1)|A
& (n+ )’ <n+1>

K! (x))dﬂc

n

.

-ofera(z])
- Ik
_o<n+1 an’AZ(’f)’)
O( k2’A2 ak D as n — oo,
k=n+1

since {ax} € R.
Also, we have

1 LT 1 /T
Js = |an+1|{(n+1)m/ Dy, )(f)’dx o]

1

i O ((n+ Dlansl).-

O((n+1)"™) + ﬁ

S
E)
_|_
=
.
I

=mmﬂ

Consequently, by given hypothesis we obtain
™

lim |f (@) = gp,m (2)|d = 0.

n—oo [
The proof is completed.

Corollary 3.18. Let the coefficients of the cosine or sine series belong to the
class R. Then

nhHH;O |ap+1]logn =0 = nl;rgo Ilf — S|l =0.

Proof. Let lim,_ |an+1|logn = 0 be satisfied. Then, based on (3.16) we
have

/ﬂmmfﬁmw:/wmm—ﬁam+ﬁmmfx@mx

—T —T

< [ @) = g@te+ [ 1500 - Si@lds

—T —T

S/_" If(:v)—gﬁ,m(x)dw+m/_w

T

=0(1) 4+ O (Jans1|logn) = o(1) + 0o(1) = 0o(1) as n — occ.

N )(x)‘dac

The proof is completed.
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130 3 L'-convergence of modified sums g¢(z) and g ()

3.10 Equivalent theorems pertaining L!-convergence of
modified trigonometric sums f,(x) and g,(x)

Let

ap =
flz) = 3 + ];ak cos kz,

be the cosine series with its partial sums

n
a
Se(x) = 50 + Z ay cos kx,
k=1
and the known modified cosine sums

fulz) = % 2": Aay, + 2": Zn: Aaj coskx
k=0

k=1 j=k

and
n n .
go(z) = % + ZZA <aj> kcoskx.
k=1 j=k

We prove here that all results which have been proved by considering f,,(x)
are also true for g¢(z) as far as L'-convergence of cosine series is concerned
irrespective of the consideration of classes. When we say that S is any subclass
of coefficients of the cosine series, we mean that the sequence {a} is a null-
sequence and convex or quasi-convex or belongs to the class S of Sidon or any
class of coefficients for which ||f — f.(z)]| = o(1) or ||f — g5(x)]| = o(1) as
n — 00.

First we prove next statement.

Theorem 3.19. If {a;} belongs to the class S, then || f — g5 = o(1) as n —
00.

Proof. We have

. @ o An+1 =
= — kx — ——D )
ge(x) 5 + ; ay, cos kx it 1 (2)

Using summation by parts and Lemma 1.80 we get
n
gn(z) = Z AarDy(x) + ans1Kn(z).
k=1

Applying Abel’s transformation again and Lemma 1.34, we get



3.10 Equivalent theorems pertaining L'-convergence of modified trigonometric sums f, (x) and g () 131

/0 "1 (@) - g5 @))de

S/ Z AayDy(x) d:l?—l—/ |an+1 Kn(2)| de
0 k=n-+1 0
™ oo A T
:/ > ATGED@)| do tlann| [ Ko(o)] do
0 k=n-+1 0
T A z
g/ Z AAk % Di(2)| dz + Jans|m
0 k=n-+1 =0
> ™ | EL Agg
< Z AAk/ A; D;(x)|dx
k=n-+1 1=0
T | n A ;
A / 2% b ()| dz + |ansa|T
0 i=0 Az
<C Y (k+1D)AA+ (n+ 1A, + |anp|m. (3.17)
k=n-+1

Based on Lemma 1.26 the series
D (k+1)A4,
k=1

converges and therefore the first term in (3.17) tends to zero as n — oo, and

/0 K (2)| da g/ | Ko (2)| da = 7. (3.18)

—T

Thus, the conclusion of the theorem follows from (3.17) and (3.18).
The proof is completed.

Theorem 3.20. Let S be any subclass of coefficients of the cosine series and
{ar} belongs to the class S. Then ||f — foll = o(1) <= ||f — ¢5| = o(1) as
n — 0o.

Proof. Using the equalities

and

we have



132 3 L'-convergence of modified sums ¢ (z) and g5 ()
Whence, using Lemma 1.80 we get

fa(2) = g5(2) = —an 1 Kn(2).

Assume that || f — fn|| = o(1) as n — oo. Then,

1f = gnll = If = fr — an1 Kn(z)||
< ||f7an+|an+1H‘Kn(x)” :O(l)a n — o0.

Conversely,

1fn = gl = lansa [ Kn(2)]] = o(1), n — oo.
The proof is completed.

Theorem 3.21. Let S be any subclass of coefficients of the cosine series and
{ax} belongs to the class S and r € {0,1,2,...}. Then:

(DIIFT = £ = 0"y = [|F7) = [g5)7]| = o(1) as n"ay — 0, n — oo,
(2)1F7 = g2l = O(m") = [|F™) = £ = o(1) as n"a, — 0, n — oo.

Proof. Using the equalities
10(@) = $(@) = an1 DY ()
and

c T I an n(r
lg5,(2)]) ") = 87 (@) = -5 DT (@),

we have

(") () — [o¢ ()] = —q. D Ontl Br+1) ().

Whence, using Lemma 1.80 we get
F0(@) = (g5 ()] = —an1 K ().
Now, the proof is very similar to the proof of Theorem 3.20. Therefore we
omit it.
The proof is completed.

Remark 3.22. Similar results hold true when we consider sine series
oo
g(z) = Z ay sin kx,
k=1

and the modified sine sums

fi(x) = zn:zn:Aaj sinkx or g (x)= zn:i:A (?) ksin kz.

k=1j=k k=1j=k
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Other modified trigonometric sums similar to g¢(z) and g3 (x) have been
introduced as follows

7 (o +ZZA<GJCOS]I>2k
k=1 j=k

and
n n

Z:: <ajsmjx>2

The sums g¢ (z) can be rewritten as follows

k=1

apt1cos(n + 1)z
2?7,

(@) = 5(x) — ant1cos(n + 1) +
From last equality we obviously obtain

lim g5, (z) = lim S (x) = f(x)

n—oo n—oo

whenever {ay} is a null-sequence.
Using this fact we are in able to prove next statement.

Theorem 3.23. Let {ar} be a null-sequence and convex or quasi-convexr or
belongs to the class S. Then || f—75|| = o(1) as n — oo if and only if a, logn =
o(1) as n — oo.

Proof. The proof can be done easily. This is why we have omitted it.
Remark 3.24. The modified sums g (z) and g5, (x) are generalized as follows
—C - apn " & aj COs ]ZL‘ k

k=1 j=k
and
B iiA <aJ smy:r) -
k=1 j=k

where d > 1 is a real number.

Remark 3.25. We note that, in the specific case d = 2, it holds G, (x) = g5 ()
and G, () = g5 (x).

Remark 38.26. Using modified sums G, (x) and G, (z) we can obtain similar
results as Theorem 3.23.







4

L'-convergence of some other modified
trigonometric sums

In this section we show all results regrading to L!-convergence of of some
other modified trigonometric sums with coefficients from some new classes of
real sequences.

4.1 L'-convergence of modified sums j¢(x) and j2(x)
with coefficients from the class SJ

Let us consider the cosine

ap >
flx) = 5 + kz_lak cos kz,

sine series
o0
glx) = E ay, sin kx,
k=1
or together

d(x) = ardn(z),
k=1

where ¢ (z) is cos kz or sinkxz and ¢(x) is f(x) or g(x) respectively.
We also consider modified cosine and sine sums

. a A .
dn(@) =5+ Alajcosjz)

k=1j=k
and
n n
Jn(@) =2 > Ala;sinjz).
k=1 j=k

Now we prove the following.
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Theorem 4.1. Let {ay} € SJ. Then

(i)  limy, o tn(z) = t(x) exists for all x € (0, ], where t,(z) is either jS(x)
or jn (),

(ii) t(x) € L'(0,7], and

(1ii) ||t —Sn(t)]| = o(1) as n — oc.

Proof. We are going to give the proof of this statement only for cosine sums

since for the sine sums the proof can be done in the same manner. We note
that

n n

Jo(x) = % Z Z (a; cos jx)

j=k

_|_

M3 Il

M‘O@

[A (ay coskx) + - - + A(ay cosnz)]

>
Il
—

m‘g

M=

n
+ ag cos kr — Z apt1cos(n+ Dz
1 k=1

() — napyq cos(n + 1)x.

n
x~
Il

Since Ay, | 0 as k — oo and > 7~ | Ap < 0o, then by Olivier’s theorem we
have kA, — 0 as k — oo and therefore

nay, néA(k 7};1/{ (k:) o(l) as n— 0.
Also cos(n + 1)z is finite in (0, 7] and therefore

lim ¢,(z) = lim S,(z) = t(x).

n—o0 n—oo

Moreover,

t(l‘) = lim tn(x) = lim Sn( )7 5 + lim Zak coskx.

n—oo n—oo n—oo

Abel’s transformation implies that

n—1
a0 Z i |5 A (%) By + B
5 nhﬁn;o ay cos kx = nl;rrgol A(k)Dk(x)+ - Dn(x)]
or

- iA (%’“) Dl.(x).
k=1

Based on our assumptions and Lemma 1.83 the series Y7 | A (%) 52 (x)
converges, and hence the limit-function t(z) exists for « € (0,n] and subse-
quently the statement (i) holds true.



4.1 L*-convergence of modified sums j& (z) and j3 (x) with coefficients from the class SJ
For x # 0 we have

t(z) — tp(z) = Z ay cos kx 4+ nap4q cos(n + 1)z
k=n+1

= n}gnoo [ i (%) kcoskx

k=n-+1

+ nayy1 cos(n + 1)x.

Now applying Abel’s transformation, Lemma 1.85 and Lemma 1.86 we get

/ " Jt() — to(a)lda
0

(oo}

A (—) Dl (z) — Z:"fllf);(:c) + nany1 cos(n + 1)z| dz

k=n+1 j=1
Ztll /0 ‘ ;(x)’d33+ |n@n+1|/0 |cos(n + 1)z| dx
IS Ak | Bk A “J?) -
< Y a(F) [ X D) de
k=n+1 0 j=1 7
(07% 2
+n _:11(9((11 + 1) logn) + nap4q - —
S A
k=n+1
However using the identity
n n—1
kD) (A | n(ntl) A,
Sy M a () e 10 2
k=1 k=1
and {a,} € ST we get
1) A

which means that the series

137
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o0
Ay,
D (k+1)°A (/:)
k=1

converges. Since we have already proved that na, = o(l) as n — oo, it
follows that ||t — t,]| = o(1) as n — oco. Finally, the fact that ¢,(x) is a
trigonometric polynomial implies that ¢ € L(0,7]. This conclusion verifies
completely statement (ii).

Now we consider,

”t_ Sn” < Ht_tn +in — SnH
< it = tall 4 l[tn — Sl

= ||t =t —|—/ [nan41 cos(n + 1)z| dx
0

2
= o(1) + nlant1] - i o(1) as n — oo.

The proof of (iii) is completed.
The proof of theorem is completed.

Remark 4.2. This theorem holds true for a weaker class than the class S,
but the results of Theorem 4.1 have been proved without any conditions like
anlogn — 0 as n — oo.

4.2 L'-convergence of modified sums K?(x) with
coefficients from the class K

In this unit we consider the cosine
a o0
-0
g(x) = 5 + ,;,1 ay cos kx,

series and the modified sine sums of the form

K (z)= ! Z Z (Aaj_1 — Aajyq)sinka.

2sinx =1 i=n
Then we prove the following statement.
Theorem 4.3. If {a;} € K, then K3 (x) converges to g(x) in L'-norm.

Proof. By definition of the class K we know that ag = 0 and making some
elementary transformation we obtain
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n n
Sp(z) = G?O + Zak coskxr = 7sinz ZQak sin x cos kx
k=1 k=1
1 n
= — Z ag[sin(k + 1)z — sin(k — 1)z]
2sinx —
R . sin nx sin(n + 1)z
= -1 — k n n .
2sinzx ’;(ak 1 k) sinkr 4 a 1 osing “ 2sinz

Applying Abel’s transformation, we have

Sn(z) = 1 (Z(Aakl - AakJrl)ﬁk(x) + (an — an+2)Dn(x)>
k=1

2sinx

sin na sin(n 4+ 1)x

Fnr1-— a -
"9 sin o " 92sing

where Dy (z) is the Dirichlet conjugate kernel. Thus

g(z) = nlLII;OS 251nx % (Aag_1 — Aag41)Dy(z)

if the series is convergent. Also

K:(z) = Z Z (Aa;j_1 — Aajiq)sinkx

2s1nx
k=1 j=k

= Z (ag—1 — agy1) sinkx — (a, — an+2)Dn(x)>
k=1

2sinx

in which after applying the Abel’s transformation again we get

Z Aak 1 — Aak+1)Dk( )
=1

K (z) =

2sinx

Before we go further we have to prove that the series

> (Aak_1 — Aag41) Di(w),
k=1

2sinx
converges. _
Indeed, since ]23:132 = O(k) and

o
kazakq — Aapyq] < o0,
k=1
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then the series
1

2sinx

> (Aax—1 — Aaxs1) Di(2)
k=1

n

is a convergent one. This means that lim,,_, . K2 (z) = g(z) exists.
Whence,

1 > _
— K*(x) = Aajp_1 — A D
9(x) — K (x) 2simk§+1( a1 — Aagi1) Di()

! lim [ Z (Aap—1 — Aak_H)lN)k(x)] .

2sin x m—oo
k=n-+1

Applying the Abel’s transformation, even in this case, we obtain

g(z) — K3 (x) = L im [ i (k+1)(A%a,_1 — A%ap 1) Fr(2)

2sinx m—oo
k=n+1
+(m 4+ 1)(Aapm—1 — A1) Ep(2)

—(n+1)(Aa, — Aan+2)}~7'n(x)}

1 — ~
= QSM[ > (k+1)(A%ap1 — Aajsr) Fi(2)
k=n-+1

—(n+1)(Aa, — Aan+2)}~7'n(x)} ,

where F,(z) = Tl Z?:o D;(z) denotes the conjugate Fejér kernel.
Therefore we have

/ﬂ lg(z) — K2 (z)| do = /Tr 2811” { > (k+1)(A%a-1 — Alapyr) Fi()
-r -n k=n+1

~(n+1)(Aay, — Aan+2)ﬁn(x)] dz
< C{ Z (k+1)|A% 1 — A%ap ]| ﬁk(x)’dx
k=n+1 —m

+(n+1)|Aay, — Aapqa] / ﬁn(aj)‘ dx] .

Taking into account that [™_ ‘ﬁk(w)’ dx =7 and

oo

> (M%), — Aagys)

k=n

(n+1)|Aa, — Aapya] = (n+1)
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oo

k
= (n + 1) Z E(A2a,k_1 — A2ak+1)
k=n+1
n+l —
<o E Z k |A2ak_1 — A2ak+1| =o(1)
k=n-+1

as n — oo, we get

/W|g<x>— @) de =0 (Z k+1|A2ak1—Aak+1|> o(1) = o(1)

- k=n-+1

as n — 0o.
The proof is completed.

As an important consequence of this theorem is the following.

Corollary 4.4. Let {a;} € K. The necessary and sufficient condition for the
L'-convergence of the cosine series is lim,,_,oo a, logn = 0.

Proof. Firstly we have

15n(2) = g(@)|| < [[Sn(z) = K5 (@) + [ () — g(@)|| = [ K5 (x) — g(2)

D (z) sin nx sin(n 4+ 1)z
*|(an = an+2)2sinx anHZSinaj " 2sinz
Also we have
D, (z) sin nx sin(n + 1)z

an — an+2 . an+1 N ap, .
( )QSmx 2sinx 2sinx

= [15n(2) — K5 (@) < K5 (2) = g(2) || + [[Sn () — ()],

and
oo
nlan, — apial =n Z(Aak — Aagy2)
k=n
=k
= —(Aap_1 — Aagyo — A A
n Z k:( ak—1 Ak+2 aps1 + Aagy2)
k=n-+1
n+l & 2 2
< i Z k|A ap—1 — A ak+1| =o(1)
k=n-+1
as n — 00. _
Hence, since [ ]23811(3 dx = O(n) we obtain

= O(nlan = anys|) = o(1)

™D
an_an+2|/
-7
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as n — 00.
Moreover,
g sin nx sin(n + 1)z
Ap+1 N an " i
o 2sinx 2sinx

sinnr  sin(n+ 1)z

s
S/ Gn
—T

Since || Kz (z) — g(x)|| = o(1) as n — oo, by the above theorem, then

T

lim 1Sn(x) —g(z)| =0

n—oo J_

x = an/ | Dy, (z)|dx ~ ay, logn.

—T

2sinx 2sinx

if and only if
lim a,logn = 0.
n—oo

The proof is completed.

4.3 L'-convergence of modified sums K¢(x) with
coefficients from the class J

Here we are going to consider the sine
o0
flz) = Z a sin kx,
k=1

series and the modified cosine sums of the form
1 n n
Ki(z) = Z Z (Aaj_1 — Aajy1) coskz,

2sinx ‘
k=1 j=k

where ag := a; := 0.
The main result is the following statement.
Theorem 4.5. If {ay} € J, then KE(x) converges to f(x) in L'-norm.

Proof. We have

1 n n
Ki(z) = Z Z (Aaj_1 — Aajyq) coskx

2sinx ;
k=1 j=k
1 n
= Ysn s Z (ak_H — a:k—l) cos kx + (an — CL,L_;,_Q) D»,L(JZ)
k=1

- 1
= Z ay sin kx + ———Jay, cos(n + 1)z
Pt 2sinx

+ap+1cosnx + (a, — an+2)Dn($)}

=S, (z) +

1
Y [an cos(n + 1)z

+ant1cosnx + (an — ani2)Dn(x)].
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D (x)
2sinx

cos nx
2sinx

Since ‘

)

‘ are bounded in (0,7), and a, — 0 as n — oo, then

the last three terms of the last equality tend to zero as n — co.
Thus
f(z) = lim K;(z)= lim S,(z).

n—oo n—oo

Considering the partial sums

n
x) = g a, sin kx
k=1

of the sine series we apply the Abel’s transformation:

n—1

Z Aaka —|— anDn( )
Since ‘Bk(x)’ — O(k),

‘A (%)‘ < % — [Aay| < Ay, ke {1,2,...),

then

lim S, () (Z kAk> + o(nay),

k=1

and based on our assumptions it holds
(oo} o0
nay :nZAak. < ZkAk =o0(1), n— .

So, limy, 00 Sp(z) = f(x) exists.
Whence, applying Abel’s transformation again we have

[ 1@ - Ki@lao = [

—|—an+1 cosnx + (an - an.l,_Q)Dn (x)}
<[ Y anbile [

k=n+1
s
dr + /
—

E ar sin kx —

k=n-+1

[an cos(n + 1)z

dx

(ni1 ﬁn (z)|dx

Gp41 cOsnT|dT

1
2sinx

ap cos(n + 1)z
x

(an — @ny2)Dp(x)|dx
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or

1f(2) — Ky ()]

@ < Z Ay log k;) + o(an41logn)

k=n-+1

+0(an11logn) + o(a, logn) 4+ o(n*(ay — any2))
— o(1) + o(1) + o(1) + o(1) + 0(n*(an — ans2))
=0(1) + o(n*(an — ani2)).

Since, by assumptions, Ay | 0 as k — oo and >_,o, kA, < oo, then by
Olivier’s theorem we have k2A;, — 0 as k — oo, which implies that

n2|an —apyo| = n2|an = Gpy1 + Qpy1 — Gpyo|
= n?|Aa, + Aap 1|
< n2|Aan\ + [Aany1)
<n?A,+ (n+1)%4,41) =0(1), n— oo,

Subsequently,
I£(@) — K@) = o(1), n— .
The proof is completed.
As an important consequence of this theorem is the following.
Corollary 4.6. Let {ax} € J. Then ||f — Sy,|| = o(1) as n — co.
Proof. We have

[Sn(x) = f(@)l| = [Sn(2) — K5 (x) + K5 (2) — f()]]
< Sn(@) = K5 (@)l + [ K5 (2) — f(2)]
< [[K5(2) = f@)]l

“
0

+/07T [(an, — ant2)Dn(x)|da.

S [an cos(n + 1)z + apy1 cosnzl]| d

The conclusion of the corollary follows by making the same augmentations
as in the proof of the above theorem.
The proof is completed.

4.4 L'-convergence of modified sums K? () with
semi-convex coefficients

Here we are going to show the L!-convergence of the cosine
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oo
g(x) = % + I;ak cos kx,

series with semi-convex coefficients using the modified sine sums of the form

K (x) = ! Z Z (Aaj_1 — Aajyq)sin k.

~ 2¢inz 4
k=1 j=k

Namely,

Theorem 4.7. Let {ar} be a semi-conver null sequence. Then KZ(x) con-
verges to g(x) in L'-norm.

Proof. We have

Sp(z) = % + Zak coskx

k=1
1 n
= — E ay cos kx2sin
2sinx Pt
1 n
= E ay, [sin(k 4+ 1) — sin(k — 1)z]
2sinzx —
1 & sin nx sin(n + 1)z
= = in k
2sinx ]; (@1 = @p1) SNk + dniy 2sinx (i 2sinx
1< sin nx sin(n + 1)z
= A Aap_q1)sink , —_—
2sinx kil( a + Aa—y) sinkz + 1 osng " 2sing

Applying Abel’s transformation, we have

1 - ~ ~
Sn(x) = S sin o <kzl (Azak —+ A2ak+1) Dk(x) —+ (an — CLn+2)Dn(l’)>
sin nx sin(n + 1)z
+an+1 . anp B
2sinx 2sinx
Thus
1 oo
: 2 2 ~
g(w) = lim Sp(w) = 5—=— ; (A%ay, + A%ay_1) Dy().
Also
1 n n )
gn(z) = T ' (Aaj_1 — Aajyq)sinkx
k=1j=k

— 1 Z (ag—1 — ag41)sinkx — (a, — an+2)Dn(x)> .
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Applying Abel’s transformation, we have

gn(z) = QSilnz Zn: (Aag—1 — Aaji1) Dy(z)

k=1
= QSilna: ,é (AQak + A ak,l) Dy.(x)

and

9(x) — gn(x) = 2811” i (A%ay + A%ay_1) Dy()

k=n+1

~ i (g 3 (@t fan) D).
k=n+1

Consequently, taking into account that {a;} is semi-convex, we have
7T (o]
/ lg(x) — gn(z)|dx = O ( Z k|(A%ay + A%aj—1) |> =o0(1), n — 0.
Zr k=n-+1
The proof is completed.
As a consequence of this theorem is the following.

Corollary 4.8. If {a,} be the semi-convex null sequence, then the necessary

and sufficient for L*-convergence of the cosine series is lim a, logn = 0.
n— oo

Proof. We have

150 (@) = g(@)[| < [[Sn (@) = gn(@)[] + [lgn(z) — g(2)]|

= llgn(z) — g(=)|
Dy (z) sin nx sin(n 4+ 1)z
* (| (an = an+2) 2sinx tnt1 2sinzx i 2sinx
Also
D, (z) sin nx sin(n + 1)z
(an = anyz2) 2sinz " osing " 2sinz

= llgn(2) = Su(@)[| < llgn (@) = g(@)|| + [[Sn(z) — g(2)],

and
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Z (Aay, — Aag2)

k=n

‘( - an+2

oo

k
E — (Aag—1 — Aag41)
k=

?T‘

Z k (AQCLk + A2ak,1) =
k=n+1

1
< =
n

Since f 5 ”l(r dz = O(n), then

[ Dy()
(= ns2) [ 5220 = O ((an = ans2)n) = o(1)
Moreover,
/an_HSin.nz ansin(n.—k 1)z dr < /an sin.nx sin(n.—|— 1z
2sinx 2sinx 2sinx 2sinx

—T

= ln / | Dy ()] dz ~ (an logn).

—Tr

Since ||gn(z) — g(x)|| = o(1), as n — oo, by the already proved theorem,
then it implies that

lim / lg(z) — Sy (x)|dx =0

if and only if hm anlogn = 0.

The proof is completed

4.5 L'-convergence of modified sums K? () with
coefficients from the class K¢

Let

glx) = % + Zak cos kx
k=1
and

KS

Z Aaj_l — Aaj+1) sin kx.

2sm:c

We give the proof of next result.
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Theorem 4.9. Let {a,} € K, where a > 0 is a real number. Then K3 (x)
converges to g(x) in the L*-norm.

Proof. We have

K20 g 33~ s
1 « n ~
" 2sing ; (Aax-1 = Aaxir) Di(x = Ssinz ; (Aak—1 — Aagt1) Sk(z).

where

Dk( Zsm k.

Part 1. Let a > 0 be non-integral. Applymg Lemma 1.1 o times we obtain

K3 (1) = — {Z(A““ 1 — A1) Sg (@)

2sinx
k=1

+ Z(Akan—k - Akan—k+2)§§—k+1(x)}~
k=1

Then

9(x) = nlggo K3 ()
(o]

Z A“+1ak 1 —A Hak“)Sk( )

k=1

2smx

Thus we have

/ lg(a) — K3 (2)|de
0

s 1 -
- /0 2sinx Z (A a1 — A" lag 1) S} (z)
k=n—a+1

— Z(Akan,k — Akan—k+2)§§—k+l(x)
k=1

<c/

o0

dx

oo

Z (A*Tay g — Ay 1) 8¢ ()

k=n—a+1

dx

dx

Ara, y — Akanfk+2)§ﬁfk+1(m)
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<C ), |Aa+1ak—1—4a+lak+1|/ |Sp ()| da
0

k=n—a+1

+CZ |A%a, p — AFay,_giol / |§§_k+1(:17)‘da:
k=1 0

(o] s
=C ) ApATag - Aa+1ak+1|/ | T3 ()| dze
k=n—a+1 0

+OY AY A g — AFay gyl / |TF_ 1 (2)|de
k=1 0

oo
<C; Z AP A gy — A lay |
k=n—a+1

+OL Y DAY 4| — AFan | = O(1) + 0(1) = o(1),
k=1

by Lemmas 1.48, 1.90 and hypothesis of the theorem. So,

lim/ lg(x) — K (z)|dx = 0.
0

n—oo

Part 2. Let o > 0 be non-integral. Let o = r + §, r is the integral part of
«, and 0 is the fractional part i.e. 0 < d < 1.
Case (i). Let r = 0. Applying Abel’s transformation of order —d, we have

Q6 ( AS+1 5+1
Sp(Aag_y — A ayyq)

NE

k=1
n n—k

_ Q. S+17 A6+1 §+1

=3 S > A A a1 — A g iga).
k=1 m=0

Also applying Lemma 1.49 we have

Sp(@) (A gy — A lagyy)

M=

™~
Il
-

Sk(m){<Aak1 — Aagy1)

M=

k=1

oo

6—1 5+1 6+1
- Y AN A agpa — A am+k+1)}
m=n—k+1

Si(x)(Aak—1 — Aags1) — R (),

[M]=

k=1
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where
Ru(@) = Si(e ){Ag L (AT, — AT,
k=1

Ai 1k+2(A6HGn+3 - A6+1an+1) T }

Therefore,

n

1 ~
2 sin ]; Sk(a:){(Aak_l — Aak_H)

{ Z S (x)(A ag_y — AT ayp) + Rn(x)},
k=1

2sinx

and consequently

Ky (z) = - {znjgg(x)(ﬂéﬂakl — A ap 1) + Ry(x )}

2sinx
k=1

When r =0, then oo = § and

oo

1 -
= 5o DL @) (A agy — A% agy).
k=1

Therefore,

/|g (2)lda

= / Z S(s A5+1 -1 — A6+1ak+l) - Rn(x)
0

{ Z / dﬁE‘Afs-i-l 71—A5+1ak+1|+/ |Rn(ac)|da;}
k=n+1 0

QSmx

\ /\

SC{ Z Ai/ ‘T,f(m)‘dx‘Aéﬂak,l—A6+1ak+1]+/ |Rn(x)|dx}
k=n-+1 0 0
o0
> A AT gy — A% ak+1|+0/ x)|dx
k=n-+1

—o()+C [ R0l

by Lemma 1.48 and Lemma 1.90.
Now we estimate foﬂ ’Rn(x)’dm using Lemmas 1.48, 1.50, and 1.90:
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/ ‘Rn(x)‘dx
0
N /0 Z §k($){Ai_i+1 (A6+1an+2 - AHlan)
k=1

"'Af;lmz (A6+1an+3 - AHla”“) T }

dzx

s
< |A6+1an+2 — A5+1an| / dx
0

Z Aijcﬂgk(x)
k=1

Tl n
541 541 e N
—|—’A Qpys — A an+1‘/ E A o Sk()|da 4 - -
0 lr=1
U
5+1 5+1 Qs
< |Atapi0 — AT a max |S°(z)|dx
>~ | n—+ n| 0 0<p<ntl p( )
v
6+1 5+1 Qs
+ (AT — AT a max |[S°(x)|dx + -
’ nt3 n+1‘ 0 0<p<n+2 p( )
™ ~
= AT A% — A%ty max |T° Y (z)|dx
n-+1 | n+2 n‘ o 0<p<nil P ( )
T
) 541 541 78
+A A’ a — A" a max |T°(z)|dx 4+ ---
n+2 ’ n+3 n+1| ) 0<p<nt2 p( )

< C’Afl_s_1 ’A‘”lam_g — A§+1an|
+CA(:L+2 |A6+16Ln+3 _ A§+1an+1’ + ...
=o(1)+o(1)+--- =o(1).

Thus, it follows that

Tim_(lg(x) — K3 ()| =0.

Case (ii). Let » > 1. Applying Abel’s transformation of order r we have

S 1 - rd
Ko@) = 50— ];(Aak—l — Aajr1) Sk ()
1 n—r .
= 5oa (A gy — A" ay1)Sk(x)

(AFap_y, — AFap_142)SE s (@).

+
-

Applying Abel’s transformation of order —¢§ again, we get

151
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1 n

2sinx Z §2_1($>(Aa+1ak—1 — A agyy)
k=
n n—=k
" 2sinz Z Z AT A o1 — A g g).
k=1 m=0
By Lemma 1.49 we have
o atl, atl
2sinx ZS )(A 1= A agq1)
1 LIS
- 2sinx{25z<x>w+lak_l e - hin
k=1

where

=SS A (A i - A%a,)

k=1

Afz 2_’_2 (Aa+1an+3 o Aa+1an+1) 4+ .. }
= (Aa+1an+2 — A%t Z‘An k15

+ (A ay 5 — Al Z AT LS

Replacing n by n — r we obtain

2sinx Z ) (A% agy = A% ag )
k=1

1 n—r _
- 2Sil’1.’L‘{ Z S,:(x)(AT+1ak_1 - Ar+1ak+1) - Rn—r(x)}.
k=1

Now, based on what have obtained above, we get

1 n—r _
K (2) = { £(@) (A 4y — AP a) + Ry, (o)

+ Z(Akanfk - Akank+2)§rl§k+1(9ﬁ)}~

k=1

Hence, under assumptions of theorem and Lemma 1.48, we have
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[ o) - 3 )
0

4 1
S/ . { Z S (x) (A% ay_y — A%y, )
0

2sinx
k=n—r+1

- Z(Akan_k - Akan_k+2)§ﬁ_k+1(x)} dx
k=1
<C Z |AT gy — AxT? ak+1|/ ’Sk |d:1c
k=n—r+1
+/ | Ry ( |dx+Z|A an— — AFa,_ k+2|/ ’Sn f1 () |da
0

k=1

=C Z ARlA*Tay_y — Aa+1ak+1|/ T ()| da
k=n—r+1 0

+/ |Rn r |d$+ZATL k+1|A Qp—k+1 — A Qn— k‘+2|/ | k+1(x)|dx
0

k=1

< Z AR|A oy — A lay | + c/ |Rp—r(z)|dz
k=n—r+1 0

T
k k k
+{jlj£:14n_k+1vﬁ Ap—p — A% 2
k=1

=o(1) + /07r |Ru—r (@) |dz + 0(1) = o(1) + /OTr |Ry—r(z)|da.

However, by the assumptions of the theorem we obtain

/07r ‘Rn_r(x)}dx

</ (Z An r— k+1 )) (Aa+1an—r+2 —Aa+1an,r)
0

dx

+/ (Z Afllrkﬂg,:(x)) (Aaﬂan,,urg — AaHan,TH) dx
0 k=1
- n—r _
/ (Z Ai_lrkJrgS,:(a:)) (Aa+1an_,«+5 - Aa+1an_r+2) dx
0 k=1

s
<D AN AR A e — AaH“n—”/ | T} ()| da
- 0
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n—r T
-1 1 1 T
S A ALA s = A | [T @)
k=1 0

n—r T

S A ALA s = A | [T )]
k=1 0

+ PN

n—r
§ : 6—1 1 1
< C'1 An,T,kJrl 7];|Aa+ Qp—r4+2 — Aa+ an7r|

k=1
n—r
2 : 6—1 1 1

+C1 An—r—k+2A2|Aa+ an_,»+3 — AOHF an_,n+1|
k=1

n—r
2 : 6—1 1 1

+Cl An_r_k+3Az|Aa+ Ap—r45 — AaJr an—r+2|
k=1

n+l—r

5—1 T a+1 a+1
<G Z An+1—r—kAk|A An—ry2 — A an |
k=1

n+2—r
z : 0—1 1 1
+Cl An+2—r—k Z|Aa+ Ap—r4+3 — AaJr a7z—r+1|
k=1
n+3—r
0—1 1 1
+C E : A sk Z|Aa+ an—ris5 — AT an—r+2|
k=1
+4 1 1
< C2A2+17T|Aa+ Qp—r42 — AOH_ an7r|

‘*‘CZA;J:;*HAQH%—MS — A", |
+C?A;i%—r|Aa+1anfr+5 - Aa+1an7r+2|
+ P

< C2Ag+1—r|Aa+lan—r+2 - Aa+1an—rl
O A o J A 0y — A gy |
+CO2 A 5 | At pys — Ay
+ P

=o(l)+o0(1)+o0(l)+---=0(1) as n— .

Therefore, we proved that

lim_{|lg(x) — K5 (z)[| = 0.

n—oo
So, the cases (i) and (ii) imply

lim {|g(x) — K5 (z)[| =0,

n—roo
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when « is non-integral.
Finally, we have deduced that

lim {|g(x) — K3 (z)[| =0,

n
n—oo

for any o > 0, which means K3(z) — g(z) in L'-norm.
The proof is completed.

4.6 L'-convergence of modified sums K? (x) with
coefficients from the class K¢

Let -
= Zak cos kx
k=1
and
1 < _
KS — Tan_1 — A" r—1
nr(x) sinz (A ak—1 A a’k+1)sk (.’17),

k=1

where r is any real number greater or equal to 1.
We give here the proof of next result.

Theorem 4.10. Let « be a positive real number. If {a,} € K%, then for
a<r<a+l1

(i) K:(z) converges to g(x) pointwise for 0 < § < x <, and
(ii) K2 (z) — g(z) in the L*-norm.

Proof. We have

oo

r r or—1
= Sz ]; (A"ap—1 — A"ap41) S, ()
and
1 < —1
KnT(Jj) = S sin 2 (A Qp—1 — A ak+1) Sk: (a:)

Case 1. Let r = a+ 1. Then

Z (A Tay_y — A Tay ) 5S¢ ().

k=1

KS

QSlnx

So K: (x) to g(x) point-wise for 0 < § <.
Now, by hypothesis of the theorem we obtain
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[ tata) = 12, @)l
_ /0”

<C Y |Aap - Arak+1|/
0

k=n-+1

o0 ™
=C > AF|ATar fATak+1|/
k=n+1 0

o0

Z (A"ap—1 — A"ag+1) §,:71(:1:)
k=n+1

1

2sinx

dxr

512—1(33)‘ dx

f,:_l(:v)‘ dr

<0 Z A |A"ap—1 — A"ag1] = o(1), n — oo.
k=n-+1

Therefore, K3 (x) converges to g(x), as n — oo in the L'-norm.

Case 2. Let a<r<a+1.Taker=a+1—6 and 0 < é < 1. Then

n

1

Kin(a) = 5o 3 (anc — M) 570
1 - at+1—68 at+1—6 Qa—45
= 5> (A0 = AT ay ) P70 (),

k=1

Applying Abel’s transformation of order —é again and using Lemma 1.49,
we get

1 n N
2sinx Z (Aaﬂak—l - Aa+1ak+1) Sk ()
k=1
1 no n—k
" 2sin {Z 200) 3 A (A gy - Aa+1am+k+l>}
k=1 m—1
1 no B i
" 2sinz { Z S0 (=) [ (A2 gy — A gy )
k=1
_ Z AT (A g — A6+1am+k+l)} }
m=n—k+1
1 n B ) .
~ 2sinz D (A gy — Ay ) S0 (2) — Ra(x) |
k=1
where
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+An k42 (A6+1an+1 — A6+1an+3) +.. ]

- ZST *(@) A0 (A A — A ay,)

S S (- )

This implies that

K ()= [Z Si(z A"Hak,l — A‘Hlakﬂ) + Rn(x)} .

2511158

Whence, by hypothesis of the theorem we have

[ lot) — K )i
0

/

2511193 [ Z St ) (A apy — A agyq) — Rn(x)} dx

< C[ Z | A ap_y — A% ag ] /7r ‘§;§(x)’ dx + /7T | Ry, ()] dw}
k—n+1 0 0
<C [ Z A2 |Aa+1 o1 — ak+1|/ ‘Tk ‘daﬁ—/ | n(x)|dx}
k=n-+1
Cl |: Z A% }Aa“"lak_l — Aa+1ak+1| +/ |Rn($)| dx:|
k=n+1 0

1+ Cy /07T | Ry ()] dx.

Let us estimate now the quantity [ |R,(z)|dz. Indeed, using Lemmas
1.48, 1.50, and 1.90 we obtain

k=

(Z A‘:L %CHSC“_‘S(QU)) (A5+1an - A5+1an+g)

dx

1
( An k+25a ) )> (A‘H'lanﬂ _ A5+1an+3) 4.
k=1

n
< ’A5+1aan5+1an+2|/ ZAi 1k+150‘ 5 x)|dx
U -
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+ |A6+1an+1 _ A6+1 A(S 1 Sa—é(l,)

n—k+2 de +---

T
< ’A‘Hlan — A6+1an+2|/ [ Jmax ’Sg(x)’ dx
<p<n+

5+1
+|A Ont1 — an+3‘/ 0<p<n+2 ( )‘dz+

=CA® A, — AHlq, max
ntl " et | 0<p<n+1

5 5+1 A+
+CA AT a max
n+2 ‘ ntl ™ +3’ 0<p<n+2

Tz‘f (m)‘ dx

()’daH—

4 0+1 0+1 0+1 0+1
:ClAn+1|A+an—A+an+2|+C’1 n+2’A+ n+1—A+an+3|+~~

=o(l) as n— .

Using this fact we clearly have

Case 3. Let o = r. In this case

n

1 ~
D A%y — A%upsr) SEH(2).

2sinx
k=1

Ky, (2) =

Applying Abel’s transformation, we have

n

[Z (A‘H'lak,l — Aa+1ak+1) gg‘(.’lﬁ)

1

Kj,(x) =
() 2sinx

+ (A%, — A%y y0) S0 (m)} .

Since, §g (2) are bounded for 0 < § < x <, then

o0

Z A‘”lak_l — A‘”lakﬂ) §,§‘(az)

Kpp() = ~ 2sinz
k=1

pointwise for 0 < § < x < 7.
Subsequently, by hypothesis of the theorem and Lemma 1.48 we get

| o) - K )i
0

_/O”

o0

[Z A‘Hlak,l — A"‘Hakﬂ) §,3(x)

k=1

2sinx

— (A%, — A%y y9) §S(x)} dz
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o0

Z Aa—i—l - A(’“akﬂ)/ ~°‘(x)‘dx
Py 0
—l—\Aaan—Ao‘anH\/ S, (x)‘dm]
0
-y ZA3|AQ+1ak,1—Aa+1akH|/ ‘fg(x)‘d:c
-1 0

T

+AY | A%y, — A% 42|

o0
< Cl ZAg |Aa+1ak_1 _ Aa+1ak+1|
k=1
+CL A, | A%y — A%pg2] = 0o(1) + 0(1) = o(1), as n — oo.

The proof is completed.

4.7 L'-convergence of modified sums k¢ (x) and k? (x)
with semi-convex coefficients

Let
ao oo oo
5 + ; aipcoskx and ; ar sin kx

be cosine and sine series, with their partial sums

Sy(x) = +Zakcoskx and S (x Zaksmkx

k=1

2

respectively, and let

f(z) = lim Sy (x) and g¢g(x)= lim S;(x).

n—oo n— oo

Also we recall the following modified trigonometric sums

Fo() = — 52— >3 Allaj1 — ag4) cos ja]

2sinx :
k=0 j=k

and

ky(x) = = Semna ZZ (aj—1 —ajy1)sinjz].

Firstly, we prove the followmg.

159
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Theorem 4.11. Let {a,} be a semi-conver null sequence, then kS(x) con-

verges to g(x) in L'-norm.

Proof. We have

. 1 n n )
k() = —5—— D> Al(aj1 —ajy1) cos jz] (4.1)
k=0 j=k
1 n
= —5u: Z [(ag—1 — ag1) coskx — (an — apy2) cos(n + 1)x]
1 < cos(n + 1)x
=55 Z: (ak—1 — agy1) coskx + (n+ 1) (an, — ant2) Ry
1 < cos(n + 1)x
= — A — A 1 - - < ..
QSinka:O< ap—1 + Aag) coskx + (n+ 1) (an, — any2) s
Applying Abel’s transformation in (4.1), we have
1 & 1
kfl(x) = _2sinx{ Z (A2Clk71 + A2ak) (Dk(x) + 2) (42)
k=0
1 cos(n+ 1)z
+ (Aan_l + Aa") (Dn(z) + 2) } + (TL + 1) (a" —_ an+2) ﬁ
1 n
=54 { Z (A%ap—1 4+ A%ay,) Di(2) — (Aan—1 — Aany1) Dy ()
sinz | £
n—1
1 Aa,_1 + Aa, cos(n+1)x
+§ ICZO (Aak,I — AakJrl) + 2} + (n + ].) (an — an+2) W
B 1 < 9 9 cos(n + 1)z
=5 Z (A%a1 + A%ar) De(w) + (n+1) (an = anga) —) ———.
On the other side we have
1 n
So(x) = — Z a, sin kx sin ¢ (4.3)
sinz £~
1 n
=—— Z a [cos(k + 1)x — cos(k — 1)z]
2sinx Pt
1 & COS NT cos(n + 1)z
= - -1 — kx — n — Qp .
2sinx kzzo(ak 1 kgr) coskr —a 1 osing “ 2sinz
1 & COS NT cos(n + 1)z
=— Aajp_1 + A kx —ap —ap
QSian( a1 + Aag) coskz —a 1 osing “ 2sinx

ES
Il
=3
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Applying Abel’s transformation to (4.3) we get

Snl) = _QSilnx{ z_: (AZQk_l + AQ%) (Dk(m) + ;)

1 1
+ (Aan,l + Aan) (Dn(l‘) + ) } — Qpi1 COS. nr a w

2 2sinx " 2¢inx
= L E”: 2a + A%q 1 i Aa — Aag41)
= sz " k—1 k Qk_ k—1 k1
Aay_1 + Aay, cosnx cos(n+ 1)x
A A D — Wy
+ (Aan + Aani1) Dn() + } "o sin n 2sinx
1 n
=— Aap_1 + A%ax) D
QSin;CZ:( -1+ ak) k()
D, 1
~ (an — ansa) ﬂ Ca, cos nx Ca cos(n.Jr )x (4.4)
2sinx QSlnx 2sinx

Since {a,} is semi-convex sequence, then we have

|(n+1) (an = anta) | = (n+1)| Y (Aag — Aags)
k=n
=(n+1) Z (Aag—1 — Aak1)
k=n-+1
< Z k|A%ay_q + A%ag| = o(1), n — co. (4.5)
k=n-+1

Using (4.5) and passing on limit as n — oo to (4.2) and (4.2) we get

g(x) = lim Sp(z) = lim kj(z)
— 1 - 2 2
= QSlnx 2 (A ap_1 + A ak) Dk(a:)

(4.6)

Applying well-known inequality | Dy (z)| < 1/2 + k,k = 1,2,..., and rela-

tions (4.4), (4.5) and (4.6) we obtain

/ " lo(x) — k(@) de

—T

T 1 oo
- / s 2 (A + A%a) Di() + (n+1) (an — ansa)
T k=n+1

1
cos(n + 1)z de

2sinx

=0 ( i k|A2ak1+A2ak|> +O0((n+1)(an — any2)]) =0(1), n— oco.

k=n+1
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The proof is completed.

Corollary 4.12. Let {a,} be a semi-convez null sequence. Then the necessary
and sufficient condition for L'-convergence of the sine series islim,_, o a, logn =
0.

Proof. Let ||Si(x) — g(x)|| = o(1),n — oo. We are going to show that
aplogn =o(l),n — co.
Indeed, we have

c s cos(n+ 1)z
lot@) = K@ + [1856) = (@) + ||+ 1) (an — angz) St
Dy () cosS T cos(n+ 1)z
+‘ (an = ans2) 2sinz|| = ||“" 2sing T " 2sinz
" |cosnz  cos(n+ 1)x T 1
= tn dz = ay Dy (z) — ~ctg=|d
=4 H/_Tr 2sinx 2sinx r=a H/—n (z) 20 92 T

us

= Qpt1 </ ﬁn(x)‘ dx — / cot g‘ dm) = O (ap41logn). (4.7

Since ||g(z) — k()| = o(1) by Theorem, ||S;(z) — g(z)| = o(1) by
assumption of corollary, and (4.5), the third and fourth term in the left side
of relation (4.7) tends to 0. This means that a, logn = o(1), n — co.

Conversely, let a, logn = o(1),n — oco. Then by (4.7)

1S5 (@) = g(@)|| < ||k (@) = g(@)|| + [|k5,(x) = S5 ()]

. cos(n + 1)x
= Hkn(x) - Q(I)H + ||(n+1) (an — any2) T osina
D, (x) cosnx cos(n+ 1)z
(= ani2) 2sinx fnt 2sinz 2sinz
=0(1) + O ((n+1)|an — ans2|) + O (nlan — an2|)
cos Nx cos(n+ 1)x
+’ (1 2sinx n 2sinz
cosnx cos(n + 1)x
o(l) +|ja 1 osing “ 2sinx (48)
However,
™ 1 7T ) 1
/ am_lcos., nx a cos(n.+ )z de < an/ cosnx + c.os(n + 1z i
o 2sinzx 2sinx - 2sinx
s 1 ~
:a,n/ icotg—Dn(x) dx = O (aplogn) = o(1), n — oo,

and therefore from (4.8) we get |55 (x) — g(z)|| = o(1), n — oc.
The proof is completed.



4.8 L'-convergence of modified sums 85 () and B2 (x) with coefficients from the class BV'°8 163

Theorem 4.13. Let {a,} be a semi-conver null sequence. Then ki (xz) con-
verges to f(x) in L*-norm.

Proof. The proof is very similar to the proof of Theorem 4.11.

Corollary 4.14. Let {a,} be a semi-convexr null sequence. Then the nec-
essary and sufficient condition for L'-convergence of the cosine series is
lim,, o an logn = 0.

Proof. The proof is very similar to the proof of Corollary 4.12.

4.8 L'-convergence of modified sums 35" (xz) and B°°%(x)
with coefficients from the class BV'°8

‘We consider

Eo-i-;akcosk‘x

and
o0
E ar sin kx
k=1

cosine and sine series, and the modified trigonometric sums

Bsm kz Z <1Og )) log(k + 1) sin kx

and .
cos 70
By, = Z Zk <log )> log(k + 1) cos kz.

Here and throughout this unit we will denote by S,,(z) the partial sums
of the cosine or sine series and lim,,_,oc S, () = B(x), where 8(x) is the sum-
function of sine or cosine series.

We prove here the following.

Theorem 4.15. Let {a;} be a sequence that belongs to the class BV'°8, then

(i) Bn(x) converges point-wise to f(z) for § <z <m, § >0,
(ii) Bn(x) converges to 3(z) in the L'-norm, and
(iii) B(z) is an integrabile function i.e. B € L*,

where (3, (x) represents either B<°(z) or B3 (x).
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Proof. (i) We consider only the case of the sine sums 85" (), since the case
of cosine sums £5%%(x) can be treated in a similar way.

We have
goin(z) = A ( ) log(k + 1) sin kx
kz_:uz ogG 1)) kD
Y a
,;( <10g k+1) >+ + (bg(n—f—l))) og(k + 1) sin kx
B i L log(k + 1) sin kx
log( k +1) log(n+2)

ES
Il

1

. An+1 nlo
kx — ———————D,%%(x). 4.9
ap SIM KT log(n ¥ 2) n (l‘) ( )

[
M§

™~
Il

1

Since the sequence {ax} tends to zero then the second term in (4.9) tends
to zero. Namely, using Lemma 1.87 for 0 < § < z < 7, we find that

Ap+1 Elog (JC)

_ an+1 ‘Blog(z)‘

log(n+2) ™ ~log(n+2) 17"
An+1 log(n +1) 1 ant1log(n 4+ 1)
log(n + 2) x ) log(n + 2)
1
= go(anﬂ):o(l), as mn — 0o,
in view of 280D < 1 for all n € N.

log(n+2)
Therefore, we obtain that

lim 83" (z) = nlgngo Sp(x) = B(x), for O0<az<m.

n—roo

(ii) Based on equality (4.10) we can write
sm k an+1 510g
1) = 3 vk s e i

P
T ag .
= p]ggo Z Togh £ 1) log(k + 1) sin kz
k=n—+1
An+1 log
log(n+2) ™ ()
Applying the summation by parts to the above equality we get
p—1 a
_ psin = | A k Elog
5(w) — A (x) = lim [; (g ) e

ap log _ An+1 mlog An+1 510g
gD @ g P )} ogn 12 @)
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In a similar way one can show that (based on discussion we made in the

proof of the assertion (i)) the second term in brackets of the above equality
tend to zero, and hence we obtain

o) - 50 = Y A (s ) Do)

k=n-+1
Since
k k-1 j k
Z log(j + 1) sin(jz) = Z Alog(j + 1)) Zsin(sx) +log(k+1) Z sin(sz),
7j=1 7j=1 s=1 s=1
then we proceed as follows
T k—1 T
JRESOIES SR 1)>|/
0 = 0
+log(k+1 /
k-1 1
= log <1 + ) |O(log j) + O(log? k)
j=1
"
_ 2 _ 2
= O(logk) ; it O(log?(k + 1)) = O(log?(k + 1)).

Subsequently, since {ax} € BV!°8 we get

) - < 3[4 (s ) | [ 1Bt

k=n-+1

—0 ( f: log? (k + 1)‘A (log(zk+1)> ‘) = o(1),

k=n-+1

as n — oo, which obviously means that 35%(z) — B(z) in the L'-norm.
(iii) Since B5%(x) is a polynomial, then the obtained relation ||3(z) —
Bin(x)|| = o(1) as n — oo in (ii), clearly implies 3 € L!.

The proof is completed.

Now we will deduce a sufficient condition for the L!-convergence of the
sine series. Let g(z) be the sum function of the sine series and S, (g;z) its
partial sums.

Corollary 4.16. Let {a;} € BV'°8, then ||g — Sn(g)|| = o(1) as n — oo, i.e.
the sine series is Fourier series of the function g.
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Proof. Using (4.9), the already proved Theorem (ii), and

/0 "B (2)dr = O(log(n + 1)
we have
/0 l9(2) — Sa(@)|dz < / (@) — B ()] + / B30 (2) — S(a)|de

|an+1| /7T =1
= 1 - D:og
o) + el [ 1 Ds(a) o

= 0(1) + O (Jan41|log(n + 1)) .

Since

aj G54
log(7+1) log(j+2)

0 < lanti|log(n+1) <> log?(j + 1)

j=n

as n — 0o, then we have
/ lg(x) — Sp(x)|de — 0 as n — oco.
0

The proof is completed.

4.9 L'-convergence of modified sums ¢ () and ¥ (x)
with coefficients from the class R!°8

‘We consider

azo-l-kz_lakcoskx

and
o0
E ar sin kx
k=1

cosine and sine series, and the modified trigonometric sums

n

¢(z) = a;+§:1]_zk (gm (?))kcoskz

and

¥n ()

ii(im (‘z))ksmlm

k=1j=k \i=j

The following theorem presents the main result of this unit.
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Theorem 4.17. Let {a;} be a null sequence. If {a;} € R'°% then

(i) Yn(x) converges to (x) pointwise for 0 < 6 < x <,
(i) ¢ € L(0, ], and
(iii) Pp (x) — () in the L'-norm,

where ¥, () represents either < (x) or ¥5(x).

Proof. (i) We consider only the case of the cosine sums 9¢(x), since for the
case of sine sums 3 (x) it can be treated in the same way.
We have

(anm (?))kcoskx
TR ) ) o
(

A (a]) — A <a"+l)>kcoskx
J n+1

= % +ZiA <C;J> kcoskr — A (Zri:ll) iikcoskx

k=1 j=k

n n n !
o @ %_ An+1 N An+41 .
=3 —l—kE: (k; n_l_l)kcoskx A(n+1) [kg_ljg_ksmkx}
_ G0,y (% Gn A ( Ot
- 2+ (k: n+1)kCOSkx A<n+1)x

n n

n n /
X <Zsinkx+Zsinkx+Zsinkx+~~~+ Zsinkx)
j=1 =2 j=3 j=n

ag - ag Apt1 An 41
== — - kcoskz — A [ /=
2+Z(k n—l—l) cos kx <n+1)><

k=1

<
3
&
I
| &
+
NE
™

X [5n(x) + (Dn(:c) - 51(:5))

+ (f)n(x) - f)z(x)) Fot (f?n(x) - f)n,l(x)) ]

ag ~ ag Ap 1 Ap+41
=2 ok _ kcoska — A
2+Z(k n+1> oS (n+1)x
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= 5,(0) - 2D ) - nd (250) (D) - Froat@), (@0)

where D,,(z) and F,(z) denote the conjugate Dirichlet and Fejer’s kernels
respectively. It is not difficult to verify the estimations

~ 272 - 2
\D;(z)|g%” and |F7;_1(z)|g%”, 0<dé<z<m.

Since the sequence {ay} tends to zero then the second term in (4.10) tends
to zero as well, based on the above estimation. For the third term we also have

o(22)

n+1

T 3 fa ()
m=n+1

< 2wl (52)

=o0(l) as n— oo, (4.11)

na (2222) (Do)~ o) < o

n+1

IN

in view of {a;} € R'°®.
Therefore, we obtain that

lim ¥, (x) = lim S,(z) =¢(z), for 0<z<m.

n—oo n—oo

(ii) The statement ¢ € L(0, ] is an immediate result of Theorem 4.17 since
by our assumption {ay} € R8.
(iii) Based on equality (4.10) we can write

Y(x) — Yn(z) = Z ay, cos kx

k=n-+1

2 D) 40 (2251) (Di) + Fioa(o)

P I
:pli_)r{)10< Z ?sinkx)

k=n-+1

+ ’f:llD’( 7) +nd <§’f11> (Dh@) + Fyy(@).

Applying the summation by parts to the above equality twice we get

(@) = Yu(@) = Tim ( 5 A (%) D) + "D a) — 25 5;<x>>

n+1

k=n+1
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+ 2L DY (2) 4 nA <Z”“> (Dh@) + Fyy(@)

n+1 +1
p2 a a
T Z 2 (Gk\ 7 p—1 \ 7w

~(n+1)A (Zﬁll) Fl(z) + %5;(@)

Gnt1 ~ ~
+nA <n2—1> (D;L(a:) +F)_ (x)) )
In a similar way one can show that (based on discussion we made in the proof
of the assertion (i)) the second term and the fourth term in brackets of the
above equality tend to zero, and hence we obtain

v~ () = Y b+ D2 (%) Fi(a)
k=n+1
~(n+1)4 (g:*a) Fj(x) +nA (Z”fl) (Dh(@) + Fra(@))

Subsequently, we get

/w () — n(2)|dz < i <k+1)\A2 (%’“) \/:m;(x);dx

- k=n+1
+(n+ 1)‘A (Z’fl) ‘/_: | ()| da
+n’A (Ziﬁ) ‘ </_: ‘5;(x)’dac + /_T; ‘fél(x)’da? .
Since by Zygmund’s theorem
/W |FY()|dz = O(k),

we obtain

wenfa (i) | [ el =o 32 el (32)]) <otn

m=n+1

and similarly using Lemma 1.85 (for » = 1) we get

n\A(ﬁ)\/jﬁuwldw:O( > wlogm|a? @T)DZO“% "o

m=n+1

because of {a;} € RI°8.
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Thus, it follows that

| W@~ va@lds = (1) as s,
which obviously means that
U (x) — () in the L' —norm.
The proof is completed.

Now we will deduce a necessary and sufficient condition for the L'-
convergence of a cosine series. Let f(z) be the sum-function of the cosine
series and S, (f;x) its partial sums.

Theorem 4.18. Let {ai} € R'°® be a null sequence. Then || f —S,.(f)|| = o(1)
if and only if |an+1|logn = o(1), n — oco.

Proof. Let |ap+1|logn = o(1), as n — oo. Using (4.10), Theorem 4.17 (iii),
Zygmund’s theorem and Lemma 1.85 we have

/ " F (@) = Su(a)lde < / " F (@) = bala)dz + / " on(@) — Sa(a)|dx

—T —T

lanal [ 5
:0(1)+n+1 7Tr’D;L(x)‘dx

o (223) [t [ )

=0(1) + O (lant1]logn) + o(1) + o(1) = o(1), n — occ.

—+n

Conversely,

[ansa] [ |D’;L(x)|dx1eq[ [n(z) = Su()ldz

n+1 J_,
A (ZT?) ' (/1 |15;(x)|dz+/7; |F,;_1(x)|dz>
< [ 1@ - su@lda+ [ ppu(o) - f@)lda
a(ms)lsa ()

:o(l)—i—(’)( i mlogmAz(CZLn”—i- i 72

m=n+1 l=n-+1

+n

+0 (n logn

2 (%))
=o0(1), n — 0.

Since

|an+1| T ~/
i _F‘Dn(ac)|dx

by Zygmund’s theorem behaves as |a,11|logn for larg n.
The proof is completed.
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4.10 L'-convergence of modified sums ;> (x) with
coefficients from the class S»

‘We consider cosine series
a oo
0
fz) = 5 + E ay, cos kx
k=1

and modified cosine sums

j,(Lz’C)(z) = % + i i i A2 (ak, cosksz) ,

k}1:1 k}2:k1 k3:k2

where A2%a;, = A (Aay) = A(ar — ary1) = ap — 20541 + Qo
The main result of this unit is the following.

Theorem 4.19. Let {a;} € S, then ||f — j7(7,2’C)HL1 =o(1), as n — oo.

Proof. We have

3 (@) = % + i i i A? (ay, cos ksx)

k1:1 k}g:k‘l k3:k2

a n n
= ?0 + Z Z [A (ak, coskax) — A (ag,+1 cos(ks + 1)) +
ki=1ko=k1

<o+ Alay cosnx) — A (ant1 cos(n+1)x)]

a n n
= ?O + Z Z [A (ak, cos kaz) — A(ap41 cos(n+1) :1:)}
ki1=1ko=kq
= 0%0 + Z [akl coskix — ag,+1 cos(ky + )a + - - + a, cosnx
k=1

—ap41cos(n+1) x} — A(apt1cos(n+1)x) Z (n—ki+1)

k=1
1
= Sn(z) —napii1cos(n+ 1)z — in(n + 1A (any1cos(n+1)x)
= Sn(z)
1
—in(n +3)apri1cos(n+ 1)z
1
+§n(n+ 1)apyo cos (n+ 2)x. (4.12)

From Ay, | 0 and > r; k*A), < oo it follows k3 Ay = o(1), k — oo, which

gives k> Ay, = o(1), k — oo. Therefore from

171
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(o) o0 o0
0 < n?la,| = nQ‘ Z Aak‘ < ‘ Z k‘QAak) < Z k*Ar = o(1),n — oo
k=n k=n k=n

follow

na, =o(1), na,=o(1), n— oco. (4.13)

Also, cos(n + 1)x and cos(n + 2)x are finite in [0, 7] therefore from (4.12)
and (4.13) we get

lim j2)(z) = lim S,(z) = f(z).

n—oo n—oo

On the other side, using Abel’s transformation we have

f(x) 7‘7‘7(12’6)( = W}gnoo < Z A(Ika +amDm( ) an—l—an(l'))
k=n+1

1 1
—|—§n(n +3)anticos(n+ 1)z — §n(n + Dapy2cos(n+2)x

1
g AapDy(x) — any1Dn(x) + §n(n +3)apyi1cos(n+ 1)z
k=n+1

1
—§n(n + Dayqacos(n+2)x

Therefore

| 1@ - i2owia < [0

1
—|—§n(n + 3)|an+1] / | cos (n + 1) z|d
0

Z Aaka )

k=n-+1

dx + \am_l\/ n( |d:v

1 ™
+§n(n+1)|an+2\/ | cos (n + 2) z|dx
0

=Y _By(n). (4.14)

Since ar € Sy C Sy = S then Y 77 . (k+ 1)AA; = o(1) as n — oo,
therefore from this fact, Lemma 1.34, and using Abel’s transformation we

have
k
= / E Aa D;(z)|dz
0 A
=0

=0 ( i (k+ 1)AAk> =o(1),n — oo. (4.15)
k

=n-+1

o0

3 Ak%[)k
k=n+1

d:c§ i AA]C/7T
0

k=n+1
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By well-known Zygmund’s theorem, for large enough n, the following re-
lation holds

/ | Dy (2)|da ~ logn,
0
therefore from last relation and (4.13) we have
Bs(n) = |ant1]logn < nlany1| = o(1),n — oo. (4.16)
Moreover, from the fact that integrals [ |cos(n + 1)z|dz, [ |cos(n +
2)x|d:1c are bounded, and from relation (4.13) we conclude that
Bs(n) = O<n(n + 3)|an+1> =o(1),n — o0 (4.17)
and similarly

By(n) = O(n(n + 1)|an+2|> =o(1),n — oo. (4.18)

Finally, from (4.13)-(4.18) it follows that
If = 329 @)le = (1), n — cc.
The proof is completed.
Corollary 4.20. Let {ar} € Sa, then ||f — Sullr: = o(1) as n — .
Proof. From Theorem 4.19, and relations (4.17), (4.18), we have
1F = Saller = IIf =3 (@) + 529 (@) = Sull»
<|If =32 @) o + 155 () = Sl

(o 1 ™
<17 =32 @a -+ gnn+ Blania] [ [eos(n-+ 1)alds
0

1 ™
+§n(n+1)|an+2|/ | cos (n + 2) z|dz = o(1)
0

as n — 00, which completely proves the corollary.

Remark 4.21. We noticed during the proofs of Theorem 4.19 and Corollary
4.20 that condition a; € S we can replace with conditions ar € S and
n?|a,| = o(1). This enables us to formulate Theorem 4.19 and Corollary 4.20
as follows.

Theorem 4.22. Let (ay) belong to the class S and n?|a,| = o(1), then
If =33 @)) = o(1) as n— oc.
Corollary 4.23. Let (ay) belong to the class S and n?|a,| = o(1), then

lf —Sullzr =0(1) as n— .
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4.11 L'-convergence of modified sums w¢(x) with
coefficients satisfying some special conditions

‘We consider cosine series

Qo >
fx) = 5 +Zak cos kx

and new modified cosine sums

n

1 n n
w; (z) = 3 <a1 + Z AQak> + Z ap+1 + Z AQaj cos kx,

k=0 k=1 j=k

where A%a; = a; — 2a;41 + aiyo.
We present here the following result.

Theorem 4.24. Let {ar} be a sequence of numbers such that the conditions:
(i) ar = o(1) as k — oo (i) S1 =Y pey|Aak| < o0, and

s |[%]
. Aaf’rn—k - AanL-{-k
SQ = Z L o0
m=2 |k=1
are satisfied.
If lim,, 00 ap logn = 0, then lim,,_, o || f — w&(z)|| = 0.

Proof. We have

n

1 n n
w; (x) = 3 <a1 + Z A2ak> + Z ap+1 + Z Azaj cos kx
= k=1 j=k
1
=3 a1 + Z ar — 2041 + Qri2)
+ Af41 + Z(aj — 2(1j+1 + aj+2) cos kx
k=1 j
1 n
=3 (ap — Gnt1 + Gnyo) + Z (ar — any1 + any2) coskx
k=1
:@—l—zn:a coskx—%—Aa En:coskx
: k=1 ’ : n+1k_1

= 5 (x) — Aapy1Dn(2).

Choosing numbers b as in Lemma 1.12, we can write
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—|—Zbkcoskx— Z ay cos kx.

k=n-+1

Now using Lemma 1.12 and the inequality (see [70])

/07r |f(z)| < C(S1+ S2),

we obtain

| 11w - wiwas = [
:/0 b
<[5

o |[%]
<c me“_z ZAbm AL

m=2 |k=1

Z ay coskx + Aap+1Dy,(x)| dx

k=n-+1

9 +Zbkcoskx+Aan+1D ()| dx

b o0
2 +Zbkcoskx dx+/ |Aap41 Dy ()| da

+ [ lannDo@lde + [ lansaDa(a)|do
0 0

~ o |[3]
Aay, Aay,
Cllamsal + D Aar] + Y e
k=n+1 m=n |k=1

+ max |a,|logn
n<k<in

+lanal [ 1Du@)do +lansal [ 1D, da.

Since [ | Dy (2)| dz behaves like log n for large values of n, then the results
follows.
The proof is completed.

Corollary 4.25. Let {a;} be a sequence of numbers such that the condi-
tions: (i) ar = o(1) as k — oo (ii) S1 < o0, and Sy < oo are satisfied. If
limy, 00 an logn = 0, then lim, 0| f — S5(x)|| = 0.

Proof. We have
/ "1 (@) — S8 (@) der = / " 1f (@) — (@) 4wl (2) — S5()dz
0 0
< / (@) — wl (2)de + / S () — S () |d

175
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— [ 5@ - wi@lde + [ |Aa,Du(@)ds
0 0
< [ 1@~ wi@)de + ansa] [ |Dala)ide + lansal [ Dalo)lda,
0 0 0

Since limy, o0 [y |f(2) —w (z)|dz = 0 by Theorem 4.24 and [ |Dy(z)| d
behaves like logn for large values of n, then the results follows.
The proof is completed.

4.12 L'-convergence of modified sums w¢(x) with
coefficients from the class S

In this unit we are going to consider cosine series
a oo
0
flx) = ) + E ay, cos kx,
k=1

modified cosine sums

1

wi (z) = 3 <a1 + Z AQak> + Z ap+1 + Z AQaj cos kz,
k=0 k=1 j=k

where A%a; = a; — 2a;41 + a;42, and the class S.
We present the following result.

Theorem 4.26. Let {ar} € S. Then lim, o ||f — wS(z)]| = 0 if and only if
lim,, o an logn = 0.

Proof. As in the previous unit we have

1 n
w, (x) 5 <a1 + Z A2ak> +
k=0

= 5S¢ (x) — Aapy1 Dy ().

3

n
akH—i-E Azaj cos kx
k=1 j=k

Using Abel’s transformation, we get
n—1
wy (z) = Z Aap Dy (x) + anDy(x) — Aapi1 Dy ()
k=1

= AarDi(x) + an2Dn ().
k=1

Hence,
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flz) —wi(x) = Z AapDg(x) — apyoDyp(x).
k=n+41

Abel’s transformation with Lemma 1.34 yield,

| 17w - wite |dx</0

/ i Ak Aak
:/ Z AAkZAaJD df”+|an+2|/ x)| dx

0 |k=n+1

<3 Gkt AAk+\an+2\/ 2)| dz.
k=n+1

Z Aaka

dm—f—/ |@pt2Dy(x)| dx
0

)| dx + |an+2|/ x)| dx

Now, foﬂ |@p+2Dn ()| dz behaves like ay, logn for large values of n, and
under assumed hypothesis a, logn — 0, n — oo, as well as Y- | (k+1)AA; <
oo and Y 7 (k+1)AAL = o(1) as n — oo.

So, we have obtained

Jim |[f = wy (2)[| = 0.
On the other hand,
g2 Dy ( Z Aay Dy (z) — [f(z) — wy (z)],
k=n+1

and

/ |an+2Dn( |d$</
0

Using the hypothesis of the theorem along with above estimates, the right
hand side tends to zero as n — oo.
The proof is completed.

Z Aaka

k=n-+1

dm—l—/o7r |f(z) — wi (x)] da.

Corollary 4.27. Let {ar} € S. Then lim,_, || f — SS(2)|| = 0 if and only if
lim,, o an logn = 0.

Proof. We have
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170 = si@lde = [ 150 - wi(e) + w ) - (o)l
< [1r@ - wi@lde + [t - st
= [ 15 - wi@lds + [ 140D,

whereas

™

/0 | Aty 1 Do ()| dz < / (@) — wl (@)lde + / (@) — S ()] d.

Since [ |Dy(x)|dz behaves like logn for large values of n, then by the
hypothesis of our result the corollary follows.
The proof is completed.

Remark 4.28. This corollary is indeed a result proved earlier by S. A. Telyakovskii
in 1973.

4.13 L'-convergence of modified sums I¢(x) and 15 (x)
with coefficients from the class S

‘We consider cosine series

(o)
flz) = % + Zak cos kx,
k=1
sine series
o0
g(x) = Z by, sin kx,
k=1

modified cosine

I°(x) = i i Aaji1 + Z A3a; | | cos ke,

and modified sine sums

n

I(x) = Z i Abjiq + ZA?’bi sin kx,
j=k ‘

k=1 i=j

where A3c; = A%c; — A%¢; 11, and the class S.
We prove first the following result.
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Theorem 4.29. Let {a;} € S and lim,,_,o, n*a,, = 0. Then

lim | f =17 ()] = 0.

n— oo

Proof. We have

3

Z Aa_j+1 + Z Agai
=k i=j

Z (Aaj_H + Azaj - A2an+1) cos kx
_jZk

cos kx

S

~
2
—~
8
~
Il
b
Il
-

3

=~
Il
—

3

[ak —apt1 —(n—k+ 1)A2an+1] cos kx

=
Il
-

[
M3

ay cos kx — apv1 Dy (2)

>
Il
—

+1) A%y 41 D () + A%ap 11 D) ().

|
3

We apply the Abel’s transformation to get

Z Aaka

Since D, (x) is bounded and |Aay| < Ay for all k € {1,2,...}, then by
given hypothesis and Lemma 1.83 we conclude that lim,_, IS (2) = f(x)
exists in (0, 7).

Now, we consider the difference

(n+1)A%ap 41 Dp(2) + A’ans1 Dy, (2).

flx) =1 (z Z ay cos kx + ant1Dy ()

k=n-+1

+(n+1)A%a, 41D, () — Ay D ().

Applying Abel’s transformation we get

Z Aaka

k=n-+1
+(n 4+ 1)A%a, 41Dy (x) —

fx) =1 (2
A%a, 1 D! (x).

Thus,

/|f ) - I |d:c—/

Z Aaka

k=n-+1

179
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+(n+ Dans1Dn(x) —2(n + Va2 Dn(x) + (n+ 1api3 Dy (x)

—an+15;(x) + 2an+25;(x) - an+35;(x) dx

</,

+(n+1)|an+1|/0 }Dn(x)|dx+2(n+1)|an+2/0”|Dn(x)|d$

> Aa
> Ak—ka (2)|dx
k=n-+1

o+ Diaasal [ Da@)ldo + e [ D) (o)]do
0 0
—|—2|an+2|/ }B;L(x)|dx+|an+3|/ D!, (2)|de
0 0

Using the fact that foﬂ |Dn(x)’dx ~ logn, for n big enough, Abel’s trans-
formation, Lemma 1.85 and Lemma 1.34, we have

k
Z AA(? D;(z)|dz

=0

[ -@iaws Y aa [

k=n+1
+(n+ Dlapti|logn + 2(n+ 1)|ap42| logn

+(n + 1)|ants|logn + |ant1|nlogn + 2|any2|nlogn + |an4s|nlogn

< c[ > Ak + 1) A + nPlanta| + n®lanio]
k=n+1

+n2|an+3| + n2|an+1| + n2\an+2| + n2an+3] .

Since, {ax} € S and lim,,_,~ n%a, = 0, then lim, . ||f — I5(z)| = 0.
The proof is completed.

Corollary 4.30. Let {a;} € S and lim,, o, n%a,, = 0. Then
lim ||f — S5(x)|| =0 <= lim a,logn =0.
n— o0 n—oo

Proof. Similarly, we notice that

1f = SS@) < I1f — 1 (@)l + 15 () — S5(@)]
<If — @+ / lans1Da(2)

+(n+1)A%a,41 D, (2) — A0 41 D), (z)|da
< |f = @)+ n?|ap4] + n’lants]
+n2|an 3] + n?ans1| + n2lan o] + n?anss| — 0,
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as n — 0o, based on Theorem 4.29, the fact that fow |Dn(33)’dx ~ logn, for n
big enough, Lemma 1.85, and given assumptions.
The proof is completed.

Pertaining to the sine series and the modified sine sums [? (x) we can prove,
in a similar way, the following results. We have omitted their proofs.

Theorem 4.31. Let {a;} € S and lim,, o n?a, = 0. Then

lim || — I3 (2)]| = 0.

n— oo

Corollary 4.32. Let {a;} € S and lim,, o, n%a,, = 0. Then

lim ||f — S, (z)|| =0 <= lim a,logn =0.
n—oo n—oo

4.14 L'-convergence of N, (z) sums with quasi
semi-convex coefficients

We consider cosine series

aon >
flx) = 5 + kz_lak cos kz,

with its partial sums

n
Sp(z) = % + Z ay cos kx,
k=1

flz) = lim Sy (z),
and modified cosine sums

n n

N, (z) = .alm 5 — '1 — ZZ (A%a;_y — A%a) cos k.
(2 sin 5) (2 sin 5) =1 j—k

We prove the following result.

Theorem 4.33. Let {a,} be a quasi semi-convex null sequence, then N, (x)
converges to f(x) in L* norm.

Proof. We have
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Sp(z) = % + Zak cos kx

k=1

1 - . ox\2
= m;ak cos kx (28111 5)

n

2

ag[cos (k + 1)z — 2 cos kx + cos (k — 1)z]
(2 sin §)” 11

n
Z ak—1 — 2ay, + ag41) cos kx

(2 sin & 2 =1
Qo COS T ap cos(n+ 1)z ay (i1 COSNT

- 7 T 2 2 2
(2 sin %) (2 sin %) (2 sin %) (2 sin%)

or
Sp(x) = fizA ax_1 coskx

(25111 2) 1

_ agcosw an cos (n+ 1)z ay  Qny1COSNT
(2sin 2)? (2sin 2)? (2sin2)®  (2sin2)®

Applying Abel’s transformation, we have

n—1 _ 2 N
Su(t) = ————— 3 (Aay_y — A%ay) Di(x) + M
(25111%) 1 (QSIH%)
ag CoS T an cos (n+ 1)z ay Qpt1 COSNT
- . 222 + . z\2 . 2\2 . N2
(2 sin 5) (2 sin 5) (2 sin 5) (2 sin 5)

Since Dy, (z) is uniformly bounded on every segment [¢,m — €] for every
€ > 0, then

o0

f(z) = lim S,(z) = 1 Z (A2ay,_y — A%ay)Dy(z) +

n—oo (2sin2)* = (2sin2)*

a1

Also,
1 n n
Ny(z) = ——— A%a;_1 — A%a;) coskx +
(@) (25in%)2 k:lg( = i) (ZSim%)2

ay

can be rewritten as

1 i A2a, D,
Np(z) = ———— Z A2aj_q coskx + a (z) !

(2sin %)2 =1 (25111%)2 (2sin %)2

Now applying Abel’s transformation we get
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—1

3

1 ~
Ny(z) = ——— Z (A1 — A%ar) Dy ()
(2 sin 5) b1
A%a, 1D, A%a, D,
N Un—1 2(x)+ a (;26)+ ay .
(2 sin %) (2 sin %) (2 sin %)
From above relation we have
1 = ~
f@) = Np(a) = ———— > (A%ap_y — A%ap)Dy(x)
(2 sin 5) [R—l
_Azan,lf)n(x) B A%a, D, (z)
(2sin %)2 (2 sin %)2

or

f(@) = Np(z) = — lim <(12 i”: (A%ap_1 — A2ak)5k($)>

_AQan,lﬁn(m) B A2a, D, (z)

(QSin %)2 (2 sin %)2

Consequently, based on the assumption that {a,} is a quasi semi-convex
null sequence, we obtain

lim |f(z) — Ny (z)|dx = 0.
n—oo 0

The proof is completed.

Corollary 4.34. Let {a,} be a quasi semi-convex null sequence, then N, (x)
converges to f(x) in L norm.

Proof. The proof follows directly from Theorem 4.33 and the fact that every
quasi-convex null sequence is a quasi semi-convex sequence as well.

Corollary 4.35. If {a,} is a quasi semi-convex null sequence, then the nec-
essary and sufficient condition for L'-convergence of the cosine series is

lim a,logn = 0.
n—roo
Proof. We have

1S0(2) — 9(2)]| < 19u(@) ~ Na(a) | + | Na(x) — a(z)
= ||Nn(2) — g()|| + ancos(n+1)x  apyicosnxe  A?apDy,(x)

(QSin %)2 (2Sin %)2 (2sin%)2

)
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ancos(n+ 1)z appicosne  A2a,Dy(z)

(2sin§)2 (2sin %)2 - (2sin %)2
= [[Nn(z) = Sn(@)|| < [[Nn(z) = f@)[| + [ f(z) = Sn()]l,

and
oo
Z 2a, — A%ag41)
iﬁ 2a, — A%a )<lik’(A2a — A%apq) =0 1
k k 1) S k k+1 -
k=n k=n
Since _
" _Dn(z)
/ 2 = 0,
0 (2sin%)
then _
T Dn
A2an/ i% =o(1).
0 (2sin%)
Moreover,
/w ancos(n+ 1)z apqqcosne da </ o | o8 (n+1)z  cosnx
0 (2 sin %)2 (2 sin 5 B " 2 sin £ )2 (2 sin %)2
/ an, — % dz ~ (anlogn).

From Theorem 4.33 it follows that
[Nn(z) — f(2)]| = o(1), n — oo.

Finally we get

lim |f(x) — Sp(x)|de =0
n—oo 0
if and only if
lim ay,logn = 0.
n—oo
The proof is completed.

The following consequence also holds true.

Corollary 4.36. If {a,} is a quasi semi-convex null sequence, then the nec-
essary and sufficient condition for L'-convergence of the cosine series is

lim a,logn = 0.
n—oo



4.15 L'-convergence of N,(Ll) (z) sums with third quasi hyper convex coefficients 185

4.15 L'-convergence of N1 (z) sums with third quasi
hyper convex coefficients

‘We consider cosine series

a oo
flz) = 30 + Zak cos kz,

with its partial sums

Snp(x) = % + Z ay, cos kx,
k=1

f(x) = lim S, (x),

n— o0
and modified cosine sums
N(l)(x) _ az(6 — cosx) _ as B a1(15 — 6 cos x + cos 2z)
' (QSiH 2)° (2sin%)6 (2sin 2)°

ZZ APaj_3 — APaj_) cos k.

(2 Sln 2 k=1 j= k
We prove here the following result.

Theorem 4.37. Let {a,} be a third quasi hyper convex zero sequence, then
N,(Ll)(x) converges to f(x) in L* norm.

Proof. Applying Abels transformation to the sums

1) az(6 — cos ) as a1 (15 — 6 cos x + cos 2x)
Ny (z) = . 2\6 R 276
(2 sin 5) (2 sin 5) (2 sin 5)
GZZ (A%a;_5 — APaj_s) coskz
(2 m 5 2 k=1 j=k
we have
1 n—1 ~
NV (z) = ————5 > (A%aj_3 — A’a;_5) Di(x)
(2sin2)” 1=
A5an,35n(x) A5an,25n(x)
(2sin2)° (2sin2)°
~a1(15 —6cosz +cos2x)  ax(6—cosx) as

(ZSin %)6 (2sin %)6 (2 sin %)6
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Repeating the Abel’s transformation 3o — 5 times, we get

n—3a+5

N’r(Ll)(x) — _ 1 Z (Asa—lak_g . ASaflak_Q)Sl?;oz—ﬁﬁ(x)

(2sin2)° =

306 (Aktg, AFtq, o 9)SF ()

NG

1 (2 sin 5)
AS n— AS n—2 1

ap—3 + 6a 2 Dn(x)

(2sin 2)
a1(15 —6cosx + cos2x)  az(6 — cosx) as
(2sin %)6 (2Sin%)6 (2sin %)6.
Since S¥(z), T, (x), Dy (2) are uniformly bounded in any segment [e, 7 —¢],
k
€>0, and TF(z) = SZ(,CI), we obtain

= 1 (1)
f(2) = lim N ()
1 o -
- _ . - (A3a71ak_3 _ A3a71&k_2)82a 6(1,)
(2sin 3)
Sll’l§ k=1

_a1(15 —6cosx +cos2z)  a(6—cosz) as
(23111%)6 (2sin%)6 (28111%)6'

From last two equalities we have

f(ax) = NV ()
1 Nt _
= _W Z (Aga_lak,;; _ ABa—lak72)Sga 6(1})
SIS ) p—p—(30—5)

3a—6 (Ak+4an—k:—3 — Ak+4an_k—2)sﬁ_k(x)
5> el
] (2sin 2)
A5 . AE') n—9 =
_ Ap—3 + 6a 2Dn(l'>
(2 sin %)

Whence,

1f (@) = NV (@)

1 > o— o— o—
< S 20 Z (A% ay_g — A% Lay_5) S 0 ()
(2sin §) k=n—(30—5)
3a—6

! Z ARt a, p_3Sk_(2)

A ey
(2 sin %) 1
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3a—

Z AMHa,_ g aSh (@)

2sm 1
Ada,,_ 3D (2) A‘r’an,gﬁn(x)
2S1n (2 sin%)6
Subsequently,
£ () = NV ()]
< / > (A% lgg — A% ey 5) S5 S (a) |da
0 k=n—(3a—>5)
T |3a—6
+Cl/ Z Ak+4an,k,3557k(a?) dx
0 | k=1
T [3a—6
+C’1/ Z Ak+4an_k_257]f_k(m) dx
0 | k=1
—|—C’1/ A5an_35n(az)‘d$ + C’l/ x)‘dx
0 0

o0

<Oy Z Aia—ﬁ ’(A?’a_%k—?, _ A3O‘_5ak—2)’ /W ‘Tkﬂé—l(g;)‘ dx
0

k=n—(3a—>5)
3a—6

+Cl Z Ak Ak+4 —k— 3’/ n— k ‘di
k=1

3a—6

+Cl Z An k Ak+4a7l—k—2|/ |T§_k(x)|d5€
0
+C1A°| AP, / 2)|da

+01 A% | ASa, | / T (z)|da.
0

Next, we can write

3a—6 -
Z A, |Ak+4anfk72‘/ T (2)| da
k=1 0

3a—6

= Z Az_k|Akan—k—3 — 4Akan_k_2

+6AFq, 1 —4A%a, ) + Akan,k+1| / ’T,]ffk(x)’dx
0

187

Based on Lemma 1.48 the right hand side of last equality tends to zero.
Also, based on the hypothesis that {a,,} is a third quasi hyper convex sequence,



188 4 L'-convergence of some other modified trigonometric sums

then it holds

ZkSaKASaflak_l o A3a71ak)| < 0.
k=1

So, finally we get
lg(@) = NV (@)[| =0, n — oo.

The proof is completed.

4.16 L'-convergence of N{?(x) sums with twice quasi
semi-convex coefficients

Let

ao >
flz) = 3 + kz_:lak cos kz,

be cosine series with its partial sums
a n
0
Sp(z) = Y + ,;,1 ay cos kx,

f(x) = lim S,(z),

n— oo
and modified cosine sums
ay(cosx — 4) as
NP (x) = o4 o4
(2 sin 5) (2 sin 5)
1 n n

m Z (A4aj72 — A4aj71) coskx.
2 k=1j=k

Now we are going to prove next result.

Theorem 4.38. Let {a,} be a twice quasi semi-conver null sequence, then
N,(Lz)(ac) converges to f(x) in L' norm.

Proof. We have
1 n a4
Sp(x) = —— ; ay cos kx (2 sin 5)

(2 sin %)

1 n
= ﬁZak[cos(lﬂ—i—ﬂx —4cos(k+1)x

(2sin%)” ;=3

+6 coskx — 4 cos (k — 1)z + cos (k — 2)x]
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1 n
=— Z (ag—o — 4ag_1 + 6ay, — dag11 + ags2) coskx
(2 sin %) 1

a_jcosr  agcos2r  ap—icos(n+ 1) ancos(n+ 2)x

(ZSin %)4 (ZSin %)4 (25in%)4 (QSin %)4
4ap cosx _ 4ay, cos(n+ 1)z _ 4aq 4an41 COSNT
(2sin %)4 (QSin %)4 (25111%)4 (2sin%)4
a1 cosT as _ Qny1COS (n—1zx _ Qn42COSNT
(QSin %)4 (ZSin %)4 (QSin %)4 (25in%)4
or
Sy (z) = 1 Zn:A4a cos ki — a_1CosT  ag cos2x
! (2sin %)4 b1 e (2sin %)4 (2sin %)4
an—1cos(n+ 1)z  apcos(n+2)x  4dagcosz
(2sin§)4 (25111%)4 (2Sin§)4
_dapcos(nt 1)z da 4ay, 41 cOSNT
(251n%)4 (QSin %)4 (ZSin %)4
ay cosT as _ Qny1COS (n—1x  Qny2COSNT
(2sin%)4 (2Sin %)4 (28111%)4 (QSin %)4

Applying the Abel’s transformation, we have

n—1
Sp(x) = M Z (Aay_o — Atay_1)Dy(z)
3) k=1
(A%a,_o — A4an,1)ﬁn(m) ap_1cos(n+ 1)z
- (28111%)4 (ZSin %)4
apcos(n+2)x  4day,cos(n+ 1)z 4daq 4a,41 COSNT
(251n%)4 - (2sin%)4 - (231n%)4 (251n%)4
a1 Ccosx as an—1cos(n+1)x  anq2cosnx

(QSin ”264)4 (25111%)4 - (2Sin%)4 - (2sin%)4

Since l~)n(m) is uniformly bounded on every segment [e, 7 —¢], € > 0, then

f(z) = lim S,(z)

n—oo

1 > ~
= m Z (A4ak_2 — A4ak_1)Dk(:c)
2 k=1

ay(cosz — 4) as
(2sin2)"  (2sinZ)"
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Moreover,

ay(cosx — 4) as

N2 —
w (@) (ZSin 3)4 (ZSin %)4

2

+74 Z (A4aj_2 - A4aj_1) coskx.
(2sin§)" =1 ik

can be rewritten as follows

n

1

NP(z) = —— Z A'ay_q coskx
(2 sin %) 1
B A4an,1l~?n(a?) ay(cosz — 4) as
(25111%)4 (ZSin %)4 (2sin%)4.

Again, applying the Abel’s transformation we get the following

n—1 . 4 D
NP (z) = % > (Atag_g — A'ar_1)Di() — M
(2 S %) k=1 (2 s %)
3 Atan_1Dy(z)  aj(cosz — 4) az
(28i1’1%)4 (25111%)4 (2Sil’l%)4.

Therefore, from above relations we obtain

1 = ~
e g)” o, eI
2) k=n+1

Atan_oDy(x)  A*an_1Dy(z)
(2sin%)4 (2sin%)4 .

f(z) = NP () =

Consequently, based on our assumptions, we have
lim [ |f(z)— NP (z)|dz=0.
n—oo 0

The proof is completed.

As a consequence of the above theorem is the following.

Corollary 4.39. If {a,} is a twice quasi semi-convezr null sequence, then the
necessary and sufficient condition for L'-convergence of the cosine series is

lim a,logn = 0.
n—oo
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Proof. At first, we have
15 (2) = g(@)| < [1Su(z) = NP (@) + [IN (2) — f ()]
2A%,_1 D, ()

(25in%)4

ap cos (n+2)x  apyocosne

(2 sin %)4 (25111 %)4

ancos(n+ 1)  apq1cosnx

(25in%)4 (25in%)4

On the other hand

Aa,_1 = (A4ak - A4ak+1)

k=n—1
- k 4 4
Z E(A ap — A%ag41)
k=n—1

1 > 1
< 1 Z k(A4ak — A4ak+1) =0 (n> .

k=n—1

Taking into account that

/ M dz = O(n),
o |(2sin%)
then _
A4an_1/ Lz)zl dz = o(1).
0 (23111%)

We also have

r

apcos(n+2)x  apyocOSNT

(ZSin %)4 (2sin%)4

T
SCI/ Gnp
0
T
SCZ/ (29
0

In a similar way we find that

r

2
cos (n + 2)x cosna_|,

(ZSin %)2 (2 sin %)2

Dy (z) — % dx ~ Cs(ay logn).

apcos(n+1)x  apq1cosnx

dx ~ Cy(anlogn),
(2sin§)4 (2sin§)4 a( 5n)

191
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where C1, Cs, C5, and Cy are positive constants. From Theorem 4.38 it follows
that
IN (@) = f(2)]| = o(1), n— oc.

Subsequently,

T

lim |f(x) — Sp(x)|de =0

n—oo 0
if and only if

lim a,logn = 0.
n—oo

The proof is completed.

4.17 L'-convergence of the sine series whose coefficients
belong to some generalized classes of sequences

We consider trigonometric sine series

o0
x) = E ay, sin kx,
k=1
with its partial sums
n
= E ag sin kx,
k=1

and
lim S, (z) = g(x).

n—oo

Here we have the following generalized modified sine sums
-3 | () Fmsinks, m € {1,2,...},
=1 =k
where AQCi = A(ACZ) =cC; — 2CZ‘+1 + Ci42.

Remark 4.40. Note that z;, ;(r) = 2, (z) which have been introduced for the
fist time in [78].

Further we introduce the following classes of sequences:

Definition 4.41. A zero sequence (ay) belongs to the class Cyp, (r =
0,1,2,...;, m=1,2,...), if for every € > 0, there exists 6 > 0 independent on
n and such that for all n,
5| oo
/ > b DT ()| da < e,
0 |k=n
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where b, = £, D,(CT—H”) (x) denotes the (r + m)-th derivative of the Dirichlet
kernel

Remark 4.42. Tt is clear that 6T+1}m C CN',,,m, (r=0,1,2,..;m=1,2,...),
however, the converse inclusion need not to be true in general as shows next
example.

Ezample 4.43. Define by, = > oo W;mﬂv (r=0,1,2,..;m=1,2,...),
then Ab,, ,,, = ﬁ and

— 1 — k = 1
an, = Nby :nzm < Z rimie = Z rmie — 0, when n — .
k=n k=n k=n
So, using Bernstein’s inequality, the integral
oo
> Abg DY ()

s
dr < /
0 k=n

< Z ‘Abk,m|/ ‘D](Cr+1+m)(x)’ dr
k=n 0

=, grtidm o m > logk
SZW/O |Dk(f’3)|df’3=0<z . )

k=n k=1

dx

r

> b DT (@)
k=n

is divergent, which means (a,) & 5’T+1)m.
On the other side, the integral
5
/

da:S/
0

<37 | Abj / ‘D,(:er)(x)‘dx
k=n 0

Z AbhmD,(CH_m) (x) dx

k=n

3" Ab DY (@)
k=n

= grtme 7 > logk
<;§:W‘/O |Dk($)|dx20<kz 12 )a
—n =1

is convergent, which means (a,,) € Cy .

Definition 4.44. A zero sequence (ay) belongs to the class gr,my (r=0,1,2,...;
m=1,2,...), if there ezists a non-increasing sequence (By) so that, | Aby | <
By, Vk € {1,2,...}, and }_;2 | k"t By, < oo, where by, = .

Remark 4.45. It is clear that §T+1,m C §T,m, (r=0,1,2,..;m=1,2,...),
however, the converse inclusion need not to be true as shows next example.

193
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Ezample 4.46. Define by = > 00, wrmve, (r = 0,1,2,..5m = 1,2,...),
then Abr,%m = W;m” and

— 1 — k — 1
an = nbnm =1 ) Tz = > grmtz > gm0
k=n k=n k=n

when n — oo.
Choosing B,, = W, (r=0,1,2,...;m =1,2,...), then B, | 0 and
| Aby, | < Bj,. Now, the series

r+m _ r+m _
Zk Bk_zk kr+m+2_ ﬁ<oo
k=1 k=1
is convergent, which means (a,) € gnm.
However, the series
oo oo oo 1
r+14+m o r+14+m -
Zk Bk_zk kr+m+2 Zk
k=1 k=1 k=1

is divergent, which means (a,) ¢ §r+17m.

Definition 4.47. A zero sequence (ar) belongs to the class E\\//T’m, (r =
0,1,2,...:m=1,2,..), if

D kT Abg | < 00,

k=1

where by m = 7%

Remark 4.48. It is clear that §‘77‘+1,m C ﬁ/mm (r = 0,1,2,..; m =

1,2,...), however, the converse inclusion need not to be true.

Remark 4.49. We have to note that Crm = CT, Srm = ST, and BVTm = BV

form =1, andC’Mn_C’ Srm_S andBVrm_BVform—landr—O
These partlcular classes are introduced in [78].

Pertaining to ﬁ/r’m class, r € {0,1,2,...} and m € {1,2, ...}, the follow-
ing natural question can be raised: What about inclusion of classes BV,
with respect to m? The answer is given in next simple proposition.

Theorem 4.50. If
Z k‘ + 1 |Aak| < 00,
k=1
then . -
Bvr,m - BVr,m+1a
for allT €{0,1,2,...} and m € {1,2,...}.
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Proof. We have

LTt Ap . < Erim+l ak Ak+1
kZ:l | k, +1| = kZ:1 fmA+1 k‘(k‘ + 1)m
k,r+m+1 Ak+1 N Ak+1
+Z Kk + 17kt 1)mt

< Z kr—i—m

Szk,r+m|Abkm‘+zkr 1 Z |Aa]\
k=1

k=1 j=k+1
Jj+1

- Z K| Aby | +Z|AQJ|ZM !

kT Abg | + Z(j + 1" |Agy],
j=1

CLk+1 r—1
G § k
fem k + 1 ‘ + ‘ak-‘rl‘

8

8

M8 i

<

x>
Il
-

which implies that ET/T,m C ﬁ/r,m+1, for all r € {0,1,2,...} and m €
{1,2,...}.
The proof is completed.

Theorem 4.51. The following relation holds true gr,m C énm N E‘J/nm for
each r € {0,1,2,...} and m € {1,2,...}.

Proof. Let (ax) € gr,m, (r=0,1,2,...;m=1,2,...). Then there exists a non-
increasing sequence (Bj) of numbers so that, |Abg | < By, Vk € {1,2,...},
and Y po, k"t™ By, < co. Whence, we clearly have

D R Abg | <Y R By < o, (4.19)
k=1 k=1

which means that §T7m C ﬁmn for each r € {0,1,2,...} and m € {1,2,...}.
So, it remains to prove the inclusion Sy, C Cy,, for each r € {0,1,2,...}

and m € {1,2,...}. Let (a) € §r7m, then applying Abel’s transformation we
get

r

ZAbk,mD](:-i_m)( )
k=n

s—1 k
T Abm r+m
dr < lim [ E ABk/ E ¢D§ + )(ac) dx

=0

T - Abm r+m
+BS/0 ZBijDJ( + )(x) dz

j=0 Y
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196 4 L'-convergence of some other modified trigonometric sums
T |n—1 Ab. (rim)
,m r+m
+Bn/ Z #Dj (z)|dz|.
0 j=0 J

Applying, in last inequality, the well-known Bernstein’s inequality and
Lemma 1.34, we obtain

r

J

> Abe DY (@)
k=n

s—1 k
s A X
dz < lim le”’”ABk/O > ZJ”"Dj(x) dx
k=n

§—00 .
Jj=0

+sr+mBs/ %Dj(x) dx
o |z Bi

<= Ab;
+(n — 1)r+mBn/O Z %Dj(x) dm]
=0

J

s—1
< C lim lZ(k + 1)rmtLAB,,

s—00
k=n

1 1
4gmtmtlp 4 prtmtlp)

Since (By) is a non-increasing sequence and Y-, k"™ Bj, < oo, then
kmtm+lB. — 0 as k — oo, and thus

r

o0

Z Abk,le(fT+m) (QIJ) de < C [ Z(k + 1)r+m+lABk + nr+m+an
k=n

k=n

< C’{ Z By [(k + 1)r+m+1 o errerl] + n'rerJran}

k=n
= T1+m T Ttrm 6
< C(r,m){g kM By +n" T '+1Bn} <5
=n

for n big enough, say s > n > nyg.
Finally, using the fact that

k
. . +m)m
D(r—i—m) ‘ _ (r+m) (’I" < kT+m+1
k0] = [ (54 0T <

then for any 1 < n < s we can write as follows

4 )
I s
0 0

dxr

3" Ab DY (@)
k=n

no
3 Ab DY (2)
k=n
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/ Z Abg (T+m)(aj) dx
k=no+1
no
< 0 Z kr+m+1 |Abk,m‘
k=n
/ Z Abjm, (Hm)(gc) dx
k=no+1
<fii-¢
-2 2 7
for § small enough. This means that S,« m C C’,« m for each r € {0,1,2,...}

and m € {1,2,...}.
The proof is completed.

For m =1 we get the following corollary [78].

Corollary 4.52. The following relation holds true S, cCrn ET/T for each
re{0,1,2,...}.

Theorem 4.53. Let (a,) € émﬁﬁ/m foreachm € {1,2,...}, andlim, o a, logn =
0. Then

lim |z ., — g = 0.
n—o0 ?
Proof. We have
n a n a
s k+1 2 J m .
zZy m(x) = — + A = || k" sinkz
ml®) = 2| G 2 (5%)

o - . An42 Ap41 m
_Zakmnkx—i—{(n_'_mm— w1y }Zk sin kx

5(@) = Abparm) Y K™ sinka. (4.20)

k=1

I
N

After some transformation we have found that

— > bk m(coskx)™ i m = 4p — 3;

sin ) = bk (sin k)™ i m = 4p — 2
Sal(z) = + > p—y b,m(cos kx)(m) if m=4dp—1; (4.21)
+ 30 brem (sin k) (™ if m=4p,
and
D{™(z), if m=4p—3;
n 50m) e,
Sk sinka = D’gm)(w)’ it m=dp =2 (4.22)
P +Dy (), if m=4p—1;
—|—D£Lm)(x), if m = 4p,
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198 4 L'-convergence of some other modified trigonometric sums

where in all cases p € V.
Combining (4.20) along with (4.21) and (4.22) we obtain

— S bm(cos kz) ™ + A (byy1m) D m)(a:), if m=4p—3;

2 @) =4 S 1 bk (sin k2) ™) + A (bp1.m) D™ (x), if m=4p—2;

o + 30 brm (cos kx) ™ — A (b 1.m) D m)(:v), if m=4p—1;
+ > p—y bim(sin k)™ — A (b nt1,m) Dm (33), if m = 4p,

(4.23)
for all p e N.
The use of Abel’s transformation in (4.23), implies

—h_y Abg D™ ()
—by, mD(m)(aj) A (bpt1,m) Dslm)(x)7 if m=4p-3;
—Yhy by DY ()
—b, mD(m)(x) 4 Abpsrm) DS (), if m=4p—2;

Z’S 7”(56) = n
" k=1 Abkanz(c )( )
b m DN (1) = A (bpgrm) DV (), if m=dp—1;
Yot Aben DY () )
+bnm DI (@) = A(bpsrm) DI (@), it m = dp,
(4.24)
forallp e N.
Applying Abel’s transformation in (4.21), we also get
S Abgn DI (1) = by DS (), if m = 4p — 3;
()=~ Sit Abyy iy D™ (@) = by DY (2),  if = 4dp — 2;
" + S0y Abn D™ (@) + by D (@), i m= dp— 15
+ 0 A D™ (2) + by DYV (), i m = 4p,
(4.25)
for all p € N.

Using Lemma 1.91 in (4.24) and (4.25), we have that

2 (@) <O (a7 (Z K™ Abjen] + [ + lagia] + |an+2|) . (4.26)

k=1
and
1Sh(2)] < O (a (Z k" | Abg | + |anl> (4.27)
k=1

for all m € N.

Whence, letting n — oo in (4.26) and (4.27), and taking into account that
(ar) € BVT,m, m = 1,2,...), we conclude that series Y ;- Aby mD(m)( )
and Y oo, Abkmf),(cm) (x) converge absolutely, and
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iz (@) = Jim Sn(@) = g(@)

exists for all z € [, 7], where € > 0 as small as.
Now, we have

— 1 Abi i DY ()
Fbypm DY () = A (bpgrm) DS™ (), i m =4p—3;

_ Zzo:n—i-l A%ém)ﬁl(gm)(z) .
s +by D (2) — A (bngim) D (), if m=4p—2;
g(xy_%nm(x)_> o0 ’ ((;) ( i ) ( ) P
+Zk:n+1 Abg,m Dy, ()

b DS (2) + A (bpyr,m) DS (), if m=dp—1;
+ 0 1 Aben D™ (@) .
b D () + A (bpgr,n) DY (2),  if m = 4p,
(4.28)

forallpe N.
Thus, based on (4.28), we have

Jo
+on,ml fo
+|A (bn+1,m) | foﬂ

Z;o:TH»l Abk,mD](cm) (-'IJ)’ dzr
Dﬁ@(x)\ dz
D%m)(x)’dx, if m=4p-3Vvm=4p—1;

||g_z7sz,mH < - o ~ (m)
fo Zk:n+1 Abg,m Dy, (x)’ dx
lbwm| [ [D (@) de
A Gnsrn) | g | DS @) da, i m = 4p— 2V m = 4p, (4.29)
for all p € N.

Let us estimate the terms in right hand side of (4.29). Namely, since (a,,) €
Cy N BV, for each m € {1,2,...}, then for ¢ > 0 there exists § > 0, such

that
)
|
for all n > 0.

Consequently, for m = 4p — 3V m = 4p — 1 and Bernstein’s inequality we
(m)
> Abp D™ (x)

get
T o
/ = [
0 0 |g=n+t1

4 / S Aben D™ (1)
§

k=n+1

Z AbhmD,(cm)(x) dz <

k=n-+1

€
2’

ST Abe D™ (2)
k=n+1

da (4.30)

dx
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200 4 L'-convergence of some other modified trigonometric sums

ey |Abk,m|/5 |D{™ (@) da

k=n-+1
€ = m—1 " /
<5+ X A [ D) de
k=n+1
<S40y KA |/ﬂdﬁ
=9 k,m s 562
k=n+1
e O &
<4 ™A
_2‘1‘5 Z k | bk,m|
k=n+1
€ g
—+ - = 4.31
< 5 + 5 =6 (4.31)

and in a similar way, for m =4p — 2V m = 4p,

™
/
The other terms also tend to zero, since they can be estimated as a,, logn

(using Lemma 1.84). Using these facts, (4.29), (4.30) and (4.32) we have
proved that

S Abew DY (@)| da < e (4.32)
k=n-+1

lim |25 ., — g[| = 0.
n—00 ’
The proof is completed.
For m = 1 we have the following result given in [78].
Corollary 4.54. Let (a,) € cn BT/, and lim,_, a, logn = 0. Then
lim |25 — gl =0,
n—oo
Theorem 4.55. Let (a,) € 6mﬂ§‘7m foreachm € {1,2,...}, and lim,,_, oo an, logn =

0. Then
lim 1S5 — gl = 0.
n—oo

Proof. Firstly, we have

155 = gll = 155, = 25 m + 20, — 9l
< Nznm = Sall + 25, — gll-

Using Theorem 4.53, equalities (4.24), and equalities (4.25), we get

155 —g < \A(bn+1,m)‘foﬂ|Q£zm)(x)|dz+0(l), if m=4p—3Am=14p—1;
P VA ngrm) | [T D™ (@) |de + (1), if mo=4p — 2 Am = 4p; (4.33)
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for all p e N.
Now applying Lemma 1.84 we have

C(n+1)"|A (byt1,m)|log(n+1) +0(1), if m=4p—-3Am=4p—1;
155 —gll < 4 2+ DIA Gurm) | x (f DIV (@)|de
+ s |F,(lm_1)(o:)|dx) +o(1), if m=4p—2Am =4p;(4.34)

for all p € N.
The use of Bernstein’s inequality in (4.34) gives

Cn+1)"A (bns1,m) [log(n+1) +o(1), if m=4p—3Am=4dp—1
1S5=gll < 4 2+ V™A Busam) [ x (fy [Dale)|de
—i-f()7T‘Fn(ar:)|dac)—|—0(1)7 if m=4p—2Am=4p;(4.35)

forall p e N.
Finally, using conditions of our theorem in (4.35) we obtain

157 = gll = Olany1log(n + 1) + anyzlog(n + 2) + o(1)) = o(1),

as n — oo.
The proof is completed.

For m = 1 we have the following
Corollary 4.56. Let (a,) € CN BV and lim,, o0 an, logn = 0. Then
Tim_ (|53 — g = 0.
The following statements also hold true.

Theorem 4.57. Let (a,,) € CN'r,mﬂET/T,m, re{0,1,...}, me{1,2,...}, and
lim_, o n"a,logn = 0. Then

lim |[z;,,,]"7 =] = 0.

n— oo
Proof. The proof is similar to the Theorem 4.53. Therefore, we omit it.
For r = 0 we have the following

Corollary 4.58. Let (a,) € CN'mﬁBT/m, me {1,2,...}, andlim_, o a, logn =
0. Then

Jim |25, — gl = 0.

Using Theorem 4.55 and Theorem 4.57 we obtain next consequence.
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202 4 L'-convergence of some other modified trigonometric sums

Corollary 4.59. Let (a,) € :S’v,.,m, r e {0,1,...}, m € {1,2,...}, and
lim,, o n"aylogn = 0. Then

(1)1imy, o0 H[ZrSL,m}(T) _ g(T)H =0.
(2)lim,, o [|[S3]T) — g = 0.

For m = 1 in Corollary 4.59 we obtain next corollary proved in [78]:

Corollary 4.60. Let (a,) € Sy, 7 € {0,1,...}, and lim, o n"a, logn = 0.
Then

(1)limy, o [|[25]) = gT|| = 0.
(2)lim,, o0 [|[S3]T) = 9] = 0.




5

L'-convergence of r—th derivative of modified
trigonometric sums

In this section we give all results regrading to L!-convergence of r-th derivative
of several modified trigonometric sums imposing generalized conditions in
their coefficients.

5.1 Ll-convergence of r—th derivative of modified sums
fn(x) with coefficients from the class S,

Let -
flz) = a4 Za cos kx
5 k

k=1

and
1 n n n
fulz) = 3 Z Aay + Z Z Aajcoskz.
k=0 k=1 j=Fk

We also write f()(x) = lim, o [SS(2)]™), where [S¢(x)]") denotes the
r—th derivative of the sum S§(z) = % + > ,_, ai coskx.

Theorem 5.1. Let {a;} € S, then £ (x) converges to f)(x) in L*-norm.
Proof. First we have

fo(@) = 55(2) = an1 D (),
where

1 n
Dy (x) = 3 + Zcos kzx.
k=1

It is clear that
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where f{”(z) and DY (z) are r-th derivative of f,(z) and D, (z) respectively.
Since {a} is a null sequence and D (x) is bounded in (0, 7], then

lim £ () = Tim (55 ()] = /().

n—roo

For x # 0, it follows that
> T
FO(2) — £ () = Z ark” cos (kx + ?> + an 1 DI ().
k=n-+1

Applying the Abel’s transformation, we get

f(r)( ) f(r Z AakD(r)

k=n+1

So, we can write

/ 1™ () — £ (2) |dx—/ Z AakD(r )| da.
0 0 |k=n+1
Now, using Lemma 1.86 we have
[ 119w - f0@lde = [ 3" 20D @) do
0 0 k=n+1
s e A
=/ > Ae—— ) V(@) do
0 k=n+1
:/ Z AAkZAa“D(T)( )|da
0 k=n+1
< Z AAy / AQ“D@") dz
k=n-+1

<C Z (k+ 1) AAL =0(1) as n— oo,
k=n+1

taking into account that {a;} € S;.
So, we have obtained

im [ |50 (@) = £ (@)]dz = 0.

n— oo 0

The proof is completed.



5.2 L'-convergence of r—th derivative of modified sums g (z) with coefficients from the class S;*
Corollary 5.2. Let {ai} € S,. The series
= T
M) =Sk (k 7)
U (x) Zakcos T+
k=1
converges in L'-norm if and only if
lim n"|an41|logn = 0.
n—oo

Proof. We notice that
/ 1O @) - [85@) e < / O @) - 1O @) e + / 0 @) — (85 @) ) da
0 0 0
- / £ (@) — £O (@)l de + | / DY (@) d,
0 0

and
|l @it = [ 170(@) ~ (52 lda
0 0

T (r) _ () d T (r) — I8¢ (r) de.
< [[10@ - 1@+ [0 - 5]l
So,
£ = [S) 22 = o(1) as n — oo

if and only if
|ant1|n"logn = o(1) as n — oo,

since [ |an+1D§LT)(;E)|dac behaves as |a,11|n" logn for large values n.
The proof is completed.

5.2 Ll-convergence of r—th derivative of modified sums
g¢ (z) with coefficients from the class S**

Let us consider the cosine series
o0
flz) = % + Zak cos kx,
k=1

and modified cosine sums

g (x) = % +ZZA (?) k cos k.

k=1j=k

We also write f(")(x) = lim,,_,00[S¢(2)]), where [S¢(x)]") denotes the
r—th derivative of the partial sums S¢(x) of cosine series.
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206 5 L'-convergence of r—th derivative of modified trigonometric sums

Theorem 5.3. Let {ax} € Si*, r € {0,1,2,...}. Then [¢¢(z)]") converges to
fO)(x) in L'-norm if and only if n”|a,11|logn = o(1) as n — occ.

Proof. Firstly we have

. anp, ~
91 (2) = Sulw) — 5 D) ().

Then we have,

c r c T an n(r
g5, (@)] 7 = [87@)) @) = DI (@),

where 57(f+1) (z) represents r—th derivative of the conjugate Dirichlet’s kernel.
Since, {ar} € S¥*, r € {0,1,2,...}, then
lim [g5(2)]") = lim [$7(2)]") = f7(2)  for € (0,7).

n—roo

This implies

(") () — € ()17 — o T\ L 9nt1 3(r+1)
(@)~ g5 ()] k;faw%(k“g)*nHDn (=)

Applying Abel’s transformation, we have

FO @)~ 5@ = Y AaDY (@) — an1 DY (2) + DI (),
n
k=n-+1

Thus,

1F0 (6210 = /

An41 5274»1)(
n+1

<,
0

Since [ ‘%5&””(@ dx ~ n"|aps+1|logn, by Zygmund’s theorem,
{an} € S¥* and Lemma 1.85, we get

Z Aay, D(T) ) — ap1 D ()

k=n-+1
dx</
0

i1 D) (2 )’dﬁ/oﬂ

Z Aay, D(r)

k=n+1

an+1 (r+1)( )
n + 1 n

dx.

177 = (g ]|l = © ( > k'““Aak) +0(n"|an41]logn) + 0 (n"|an41|logn)

k=n+1
=0(1) + o(n"|ant1|logn).

Consequently, || £ —[gS]™)|| = o(1) as n — oo if and only if n"|a, 1| logn =
o(1) as n — oo.
The proof is completed.



5.3 L'-convergence of r—th derivative of modified sums j¢ (x) and j$ (z) with coefficients from the class SJ.
Remark 5.4. For r = 0 this Theorem reduces to the Theorem 3.15.

Corollary 5.5. Let {a} € S**. Then [S¢(x)]") converges to f(")(x) in L'-
norm if and only if n"|ans1]|logn = o(1) as n — co.

Proof. We note that,

P = 1SN < 17 = [ga]™ + (9] — [SR1]
< P = 1o+ gr] ™ = 15710

ci(r ci(r "la 1 ~(r
= Mgt =g+ [ D @) e
Once again, since
| anga ~(r+1)
——=D d
| b @) o

behaves like n"|a,11|logn for large values of n, and by Theorem 5.3 we get
lim || £~ [$7]"]| =0
n—oo

if and only if n"|a,+1|logn = o(1) as n — oco.
The corollary is proved.

Remark 5.6. For v = 0 this Corollary reduces to the Corollary 3.16.

5.3 L'-convergence of r—th derivative of modified sums
J¢(x) and j2(x) with coefficients from the class SJ,

We consider together trigonometric series
o0
dx) = ardn(z),
k=0

where ¢y, () is cos kz or sin kx and ¢(z) is f(z) or g(x) respectively (cos0-x :=
3)
5)

‘We also consider modified cosine and sine sums

. a R .
Jji(z) = ?0 + ZZA (a; cos jx)

k=1j=k
and
n n
Jn(@)=>_ > Alajsinjz).
k=1 j=k

We prove the following.
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208 5 L'-convergence of r—th derivative of modified trigonometric sums

Theorem 5.7. Let {ai} € SJ,, r € {0,1,2,...}. Then

(i)  lim,_ e £ (x) = t")(x) exists for all x € (0,7], where ) (z) is r-th
derivative of either j5(x) or ji(x),

(i) t0)(x) € L*(0,7], and

(iii) |[t@ — S ()] = o(1) as n — oo.

Proof. We proof this statement only for cosine sums since for the sine sums

the proof can be done with the same arguments. Noting that

a n n
Jeo(x) = ?0 + Z Z A (ajcosjz) = Sp(x) — napq1 cos(n + 1)z,
k=1 j=Fk

we have

(¢ ()] = ST (2) — n(n+ 1) apyq cos ((n + 1)z + %) .

Since Ay | 0 as k — oo and 21?;1 k" A < oo, then we have k"1 A4, — 0
as k — oo and therefore

S ag = Ak
r+1 _r+2 r+2 _
n'a, =n kE,nA (?) < kgnk; (k) =o0(l) as n— oc.
Also cos ((n + 1)z + ) is finite in (0, 7] and therefore

n— o0 n— o0 2

() = lim [5¢(2)]® = lim lz k" aj cos (kHT)
k=1

Abel’s transformation implies that

. = r T
nl;ngo Lzl k"ay, cos (k:c + ?)

n—1
. ak\ 7~(r+1 Qp 7
=1

where ﬁ,(fﬂ)(x) denotes r-th derivative of the conjugate Dirichlet’s kernel.

Based on our assumptions and Lemma 1.83 the series Y, | A (%‘) 5,(:“) (x)

converges, and hence the limit-function t(")(z) exists for « € (0, 7] and subse-
quently the statement (i) holds true.
Moreover, for z # 0 we have

) (@) = [j5 @) = 3 Ky cos (kx+%)

k=n-+1



5.3 L'-convergence of r—th derivative of modified sums j¢ (x) and j$ (z) with coefficients from the class SJ.

+n(n+1)"an41 cos ((n + 1)z + %)
Z k" ay, cos (kx + %)
k=n-+1

+n(n+ 1) an41 cos ((n + Dz + %) .

= lim
m— 00

Applying Abel’s transformation, we obtain

@) - @I = 3 A(4) B - ZLBE )

k=n+1 n+1

+n(n + 1)"an41 cos ((n + 1)z + %)

_ Z <Ak> A (?k)D(T-H)( ) — Ant1 57(1T+1)($)
k Ax n+1
k=n+1 k

+n(n+ 1) a1 cos ((n + 1z + %T)

aj

oo A%
-8y ) gy

. Anir n A (7) E('r»-‘rl)(x) _ ME(T+1)(I)
n+1 "

+n(n + 1)"an41 cos ((n + 1)z + %) .
Now applying Abel’s transformation, Lemma 1.85 and Lemma 1.86 we get

"0 (@) — G2 ()] de

0
RS Ak v A<GTJ) (1)
g/o ZA(]C>ZA]D ()| dax
k=n-+1 j=1 J
An+1> . A(%J) = (r+1)
+ D d
ZLJ: /O ‘5%r+1)(x)‘dz+|n(n+1)7’an+1|/0 cos ((n+1)x+%r)‘do:

" <*> DI (g
J r+1
E J dx

J

Mg

k=n+1

A3

an T T
|n _:11‘ O((n+1)" " logn) + (n+ 1) any1] - T

+
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—o (i e ()] e 1>r+1|an+1|> ,

=n+1
/Tf cos((n—l—l) +—)’d <
0

By assumption {a,} € SJ,, then we can prove that the series
00 Ak
(k+1)? —
EDICS
k=1

converges and n"*'a,, = o(1) as n — co. So, it follows that ||t — [j¢](")| =
o(1) as n — oo.

n+1"

Also, the fact that tff)(a:) is a trigonometric polynomial implies t(") e
L' (0, 7). This conclusion verifies completely statement (ii).
Now,

16 = [S1 O < 167 = ¢ + £ — [S5] |
< e~ %T)H + 167 = [
= |t — ) + / ‘n(n + 1) ap41 cos ((n + Dz + )‘ dz
0

2
=o(l)+n(n+1)"ant1] - il o(1) as n— oo,

which completes the proof of (iii).
The proof of theorem is completed.

Remark 5.8. Putting r = 0 in the Theorem 5.7, we immediately obtain The-
orem 4.1.

5.4 L'-convergence of r—th derivative of modified sums
fn(x) with generalized quasi-convex coefficients

‘We consider cosine series

a oo
f(z) = ?O + Zak cos kz,

modified cosine sums,
1 .
falz) = B A(ag) + E E A(aj)cosjz

and



5.4 L'-convergence of r—th derivative of modified sums f, () with generalized quasi-convex coefficients

. ag n n a ‘
gin(x) = o> + ZZA (j) k cos kx,

k=1 j=k

and generalized quasi-convex sequences.

Definition 5.9. A sequence {uy} is said to be generalized quasi-convez se-

quence if
(oo}

S K A% < oo,
k=1
for allr € {0,1,2,...}.
Now we prove the following.
Theorem 5.10. Let {ar} be a generalized quasi-convex sequence. Then

(i) lim, o | f0) — £ =0,
(i) limp_soo [|F = £ = 0 = limy_yoo | f™ —[g2]T]| = 0 as limy_yoe n"ay, =
0

(i) N _eo |[£7) = S| = 0 if and only if limy_ee n"ap41logn = 0,
where r € {0,1,2,...}.
Proof. (i) We have

n n n
1

fo(z) = 3 Z A(ag) + Z Z A(aj)cosjr = Sp(x) — ant1Dn(z).

k=0 k=1j=k

Then
f0(@) = S0 (2) = ant1 DY ().

Clearly,

; (")) = i (")) = F(r)

Jim f7(2) = lim S0 (x) = f(x), @ € (0,m].

Therefore,

f(r)(l‘) - fy({)(x) = Z k" ay cos (kx + %) + an-&-lDy(,T) (z)
k=n+1

) i , rm -
= mlgnoo kz 1 k" ay, cos (kx + 7) + an+1D$L )(1?)
=n+

Applying Abel’s transformation twice we have

fO@) = f0@) = Y AaDy (@) + a1 DY (x)
k=n-+1

= lim Z AakD,(:) (2) + am D) (x) — a1 DI () | + ang1 D (2)
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212 5 L'-convergence of r—th derivative of modified trigonometric sums

m—1
— lim lz AakD,(j)(x)JramD;g)(x)]

m—00
k=n+1

m—2
= lim [ Z (/4?+1)A2akK]gT)(x)—i—mAam_lKg)_l(x)

m—00
k=n+1

—(n+ I)AanHK,(f)(x) + amD%) (x)]

(o]
= 3 (k+1)A% K (@) = (n+ 1) Aap K ().
k=n-+1
Thus,
159 =01 < 3 ke DI [ 1K @)lda
k=n+1 0
+(n+1)|Aan+1|/ K (2)|da.
0
Since,
Bl =| S A%< 3 L a2,
n+1 k|l > k+1 k
k=n+1 k=n+1
1 o0
2
=1 Z (k‘+1)|A ak|,
k=n-+1
then
(0 4+ 1) dana] [ KD @)lde
0
1 - 2 r T - r+1 2
<(n+1)- ] k:;q(k +1) |A%ak|n /0 | Ky (z)|dx < ﬂk;rlk A%,

by Zygmund’s theorem.
So, we have obtained

lim ||/ — £V = 0.
n—00
(ii) Subtracting

(1) — g () _ 9ntl 1)
(97 (2)] Sy () - HDn (z)

from

£ (@) = 87 (@) = ann DY) (x),
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and using the equality
D )(x) = (n+1)D) (x) = (n+ K (),

we have

£ (@) = g5 @) = —ann K (@),
which implies

£ = (g5) 1 = lansa 1K ()]

Whence, by Zygmund’s theorem

£ — (@) < 1FT = £+ (1£8 = (92) ™))
= 0(1) + |anr1 || K{7 (2)]]
= 0(1) + " |api1 || Kn (@) = o(1) + O(n"|an+1])

=o(1), as n — .
(iii) We have
e A e e R A
<SS = L1+ 17 = 10

= llan+1 DY) (@) + [1£7) — )
= O(n"|an+1]logn) + o(1) = o(1), as n — oo.

Conversely, we have

O |an+1|logn) ~ llan1 DY (@)|| = |55 — f17]
SIS = FOI+ 157 = £
=o0(1) 4+ o(1) = 0o(1), as n — oo,

by part (i) of the theorem.
The proof is completed.

Remark 5.11. Tt should be noted here that, if the part (i) can be proved for
any other classes of sequences, then the parts (i) and (ii) will always be true.

5.5 Ll-convergence of r—th derivative of modified sums
fn(x) and g (x) with coefficients from the class S,

Let -
flz) = % + kz_:lak cos kz,

n

fu(z) = %ZA (ag) + ZZA (a;)cos jx,

k=0 k=1 j=k
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214 5 L'-convergence of r—th derivative of modified trigonometric sums

+iiA< )kcosk‘x

k=1 j=k
and {ax} any sequence from the class Sp,.

Definition 5.12. The zero-sequence {u,} is said to be in the class Spq, if
there exists a sequence {A,} such that

(i) An 1 0 as n — oo,
(i) 30" g n*A, < 0o, for some o >0, and
(iii) >0, ‘Ajﬁlp =0(1),1<p<2, asn — 0.

Next statement holds true.

Theorem 5.13. Let {ay} € Spa, @ > 0,7 € {0,1,2,...,[a]} and n"|an+1|logn =
o(1) as n — oo. Then

(i) limpsoo n®"||f0) — 157 =0,
1) lim,,— o0 f(7') —[g€1M|| = 0 as limy— 0o n"apn = 0.
(it) I

Proof. (i) We have
f0() = S (@) = ant1 DY (@),
and
(r) (?”) e (r)
() = fy kznzﬂk akcos(ka:—i— 2)+an+1D (z).

By making use of Abel’s transformation, get

/0 @) — 0 @)de

" w D)
g/o S A0 (@)

k=n+1

S/071' i AkAak (x)

k=n+1

0z + a1 / DY) (2)| da

ot Jansal [ 1DV (@)lda
0

S/” Z A, ZA%DM i
0

k=n+1

YA, / AaJD(r)( ) dx+|an+1|/ \D(T) (z)|da

< Z |AAk|/ ZA(Z]D(T) dx

k=n+1
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+A, / ZAGJD(T) dx

+|an+1|/ \D)(z)|dz = I, + I + I.
0

For I; we can write

¥ Aa
|AAk|/ ZA—]D dzx
J

k=n+1 j=1
b Aa
.S |AAk\/ 3. G200 @) de o= Bt
k=n+1 3 = J
Since {ar} € Spa, & > 0,7 €{0,1,2,...,[a]}, then it can be proved that

(see [41])
i1 =o(n"™%) and Iia=o0(n""%).

Also in the similar way we can get Is = o(n"~%) and

IgI:./ﬂ

<n |an+1\/ x)| dx < n"|any1|logn = o(1) and n — oo,

tn i1 DU ()‘dx—|an+1|/ [D0(@)| d

by given hypothesis.
Whence,
Hf(r) — f,(f)|| =o(n""%) and n — oco.

(ii) Now we are going to prove that
17 = £71 = o(n™=*) = |IfT) = [g5]7]| = o(1)

asn"a, =0, n — oo.
As we have discussed in Theorem 5.10, part (ii), we have

£ @) = [gn @) = —ann K (x),
which implies
£ = (g5) 1l = lansa 1K ()]
Thus, by Zygmund’s theorem

1F7 = (g5) ) = (1 £ + 17 = ()|
<[ || +IF7 = (g0) 7]

=o(1 )+\an+1|||K(”( )l

= o(1) + n"|an 1 ||| Kn ()]

(1) + O(n"[an+1])

(1)

o(1l), as n — oo,

|
S
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216 5 L'-convergence of r—th derivative of modified trigonometric sums

by given hypothesis.
The proof is completed.

5.6 L'-convergence of r-th derivative of modified sums
K? () with coefficients from the class (SC)"

Let

a o0
0
— + E ag cos kx,

9(z) = =
k=1

K} (z) = 2smxzz Aaj_1 — Aajqq)sinkz,
k=1j=k

and {ax} any sequence from the class (SC)*, r € {0,1,2,...}.

Theorem 5.14. Let {a,} be a semi-conver zero sequence of order r, r €
{0,1,2,...}. Then [K:(x)]) converges to g (z) in L'-norm.

Proof. We have

K (x)= pYSTs Z AaJ 1 — Aajiq)sinkx
k=1j=
= Seng ; Q-1 — Q1) Sinkx — (@ — any2) En(m)

Applying Abel’s transformation, we get

K@) = 5o 3" (Aay-1 — Aags1) Dy (@)
k=

LS (P + 2% Bula),

Therefore,

n ~ (r)
(Ks(@)]) = (A%ap-1 + A%a) <Dk(w)> : (5.1)
k=1

2sinx

On the other side we have

Sp(z) = Z ay cos kx sin x

sin

n

Z [sin(k 4+ 1)z — sin(k — 1)z]
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1 z":( ) sin kz + sin nx sin(n + 1)z
= o sin
2sinx — Gh=t 7 Gk SIEE T An g ne " 2sing
1 & . sin na sin(n 4+ 1)x
= Aap_1 + A k " - n - .(5.2
ZSinz’;( a1+ Aay)sinkz +a osing “ 2sinx (5:2)
Applying Abel’s transformation to the equality (5.2) we get
- Dy ()
S, = Aap_1+ A
() ;( k-1 + k) Sein
D, (z) sin nx sin(n + 1)z
(@ = any2) 2sinx an+12sinx i 2sinx
Thus
n ~ (r) ~ (r)
Dy () Dy (z)
S () = A2q 1 + A2 —Zk\) W — Zn\)
n (@) ;_1( ak-1 + Aar) 2sinx +(an = ans2) 2sinz
; (r) : (r)
sin na sin(n 4+ 1)x
n - n| —F—— . 5.3
Han1 (2811156) ta ( 2sinx ) (5-3)

By Lemma 1.88 and since (a,,) is semi-convex null sequence of order r, we
have

’(n + 1)T+1 i (Aap—1 — Aag11) ‘)

k=n+1

=0, ( Z kTt A%ap g + AQak|> =o(l), n—oo. (54)

k=n-+1

Also after some elementary calculations and by virtue of Lemma 1.88 we
obtain

" sinnaz\ ta sin(n + 1)z (r)
" 2sing " 2sinzx

~ (r) ~ (r)
. D, (z) [ Dn-a(2)
ol 2sinx 2sinx




218 5 L'-convergence of r—th derivative of modified trigonometric sums

~ (r) ~ (r)
Dy, 1(x) D, (x)
+an . - B
2sinx 2sinx

= an4+10;c (n”rl + (n— 1)"+1) + anOre ((n + 1) 4 n”‘l)
=0, ((n +1)" (a, + an+1))
= O ((n + 1)7-+1 [(an —any2) + (Gny1 — an+3) + (Ang2 — an+4) + - ])

:(’)m( Z K A2y + A%ay| + Z kr+1|A2ak_1+A2ak|+~-~>

k=n+1 k=n+2
=o(1),n — oc. (5.5)

Because of (5.4) and (5.5), when we pass on limit as n — oo to (5.1) and
(5.3), we get

g7 (@) = lim SO (x)

n—oo
I~ ~ (r)
, Dy(z)
— s ()] (") = }: 2 2 Zk2)
nlgr;o[Kn(m)] 2 (A%aj—1 + A%ax) <2sinx> . (5.6)

Using Lemma 1.88, from (5.3), (5.4) and (5.6), we obtain

/ (@) - [K5(2)] | da
T & D) "
- 3 a2 20, | [ ()
- 0 k::n+1|A ot ak|| (251nm> dx

=Orc ( Z K A%y + AZCLk‘) =o(l), n— oco.
k=n-+1

The proof is completed.

Remark 5.15. If we take 7 = 0 in Theorem 5.14, then we obtain Theorem 4.7
and Corollary 4.8.

Corollary 5.16. Let (a,) € (SC)", then the sufficient condition for L'-
convergence of the r-th derivative of the cosine series is n"ap,logn = o(1)
as n — 0o.

Proof. We have

HQ(T) (z) — S (x)H < Hg(r) (2) — [K2 ()]

+ ||z @ = )|

n
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5n(:r)> ®

2sinx

sinna\ n sin(n + 1)z )
Qnp . n | —/————
1\ 2sing 2sinx

<o(l)+ap, Hﬁﬁl’)(x)H
o(1)+ O (n"a,logn) = o(1), n — cc.

=o(1) + ||(an — any2) <

+

taking into account the Theorem 5.14 and Lemma 1.88.
The proof is completed.

5.7 L'-convergence of r—th derivative of modified sums
g¢ (z) with coefficients from the class S,

Let -
a
flz) = ?0 + Zak cos kx
k=1
and I
go(x) = a0 +ZZA %) k cos k.
! 2 4 j=k J

We also write f()(x) = lim, o [SS(2)]™), where [SE(x)]") denotes the
r—th derivative of the sum S§(z) = % + >p_, ai coskx.
Theorem 5.17. Let {ar} € S,, r € {0,1,2,...}, and n"|a,41]|logn = o(1)
as n — 0o. Then [g¢(x)]) converges to f)(z) in L'-norm.

Proof. First we have

[e2% ~
gi(x) = Si(a) — -5 Dl (a),

where ﬁ;(x) denotes the first derivative of the conjugate Dirichlet’s kernel.
So,

() = [G¢ ()] — Entl Hr+1)
g5 ()] (S5 ()] @),
where [g¢ ()] and DY (x) are r-th derivative of g¢(x) and D/, (x) respec-
tively.
Since {ar} € S,, r € {0,1,2,...} is a zero sequence and D;Hl)(x) is
bounded in (0, 7], then
lim g5, ()] = lim [ (2)]") = fO)(2).

n—oo n—oo

219
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For x # 0, it follows that

oo

() () — (r) _ : rm Antl 5(r+1)
IO (@) - g5 (@) —kglakk’cos(kw+ ) 4 L B ),

Applying the Abel’s transformation, we get

F @)~ g5@) = Y AaDy (x)

k=n-+1

—a, .1 D) Ontl 5r+1) ().
An+1 n(x)+n+1 n (lL’)

So, we can write

E: 14kAak ()

[ 150 s < [0 dr
k=n-+1
" D) ‘ "t B
+/0 an+1D;) (x) dx—i—/o n+1D (x)| dx.

Now, applying Abel’s transformation again and using Lemma 1.85 and
Lemma 1.86, we obtain

[ 159 s as < [0

Z AAkZ A““D

dz
k=n-+1
< i AAk/ ZA“”D( )(z)|dz
N o |Z= Ay
k=n+1 p=1

O |ay1]log n) + O a1 | log n)

<C > (k+ 1) AAL 4+ O(n |ap 1| logn) = o(1),
k=n-+1

as n — oo, taking into account that {ax} € S, and given hypothesis.
So, we have obtained

lim [ [ () ~ [g;,(2)]"|dz = 0.

The proof is completed.

Corollary 5.18. Let {ar} € S, r € {0,1,2,...}, and n"|an4+1|logn = o(1)
as n — oo. Then [SC(x)]") converges to f)(x) in L*-norm.

Proof. We notice that
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| 0@ = Iss@n Ve < [ 150 @) - g @)
0
+ [ gl = (5@

")z () i | 7 B
= [ 1590 - @ Olda + |22 [ 1B @)
So,
177 (@) = 155 (@) = o(1) as n — oo,
if
|ant1|n"logn = o(1) as n — oo,
since foﬁ an+1l~),(f+1)(x)’ dz behaves as |an+1|n" logn for large values n.

The proof is completed.

5.8 Ll-convergence of r—th derivative of modified sums
N, (x) with r-quasi convex coefficients

Let -
f(x):a—o—i—Zakcosk‘x
2
k=1
and
Np(x) =— 222 A’aj_y — Aaj) coska + ———.
(251112 =1 j—k (2sm2)

We also write f()(x) = lim, . [SS(2)]™), where [SE(x)]") denotes the
r—th derivative of the sum S§(x) = % + >°,_, ai coskx.

Theorem 5.19. Let {a,} be a r-quasi conver null sequence, then N,gr)(x)
converges to f()(x) in L' norm.

Proof. From definition of S, (x) we have:
Sp(x) = ——m Z ay, cos kx (2 sin — )2
(2 sin 2) b1 2

2 Zak cos (k+ 1)x — 2cos kx + cos (k — 1)z]
(2sm b1

n
2 E ak—1 — 2ay, + ag41) cos kx
k=1

(2 sin £ 2
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a9 CosT ap cos(n+ 1)z n ay  Qng1COSNT
(2sin ) (2sin ) (2sinZ)?  (2sin2)’
1 - ag Cosx
= A2qy g coskr — —2—"
(%mg)ﬂg1 o (2sin )2
an cos (n+ 1)x ay _ Qny1COSNT
(QSin %)2 (25111%)2 (QSin %)2 .
Applying Abel’s transformation, we get
n—1 N 2 jog
S (x) = —%ﬂ 3 (Aay_y — A%ay) Di(x) + MLIZ"Q@
(25111 5) =1 (251n 5)
_ agcosw an cos (n+ 1)z n ay _ Qny1COSNT
(QSin%)Z (2sin %)2 (2sin %)2 (2sin %)2

Thus,
n—1 (r)
SENETSERRI Y
sin” 5
D, (z) ) cos (n + 1)(x) “
+ A% | ——5 Tan | — ey —
4sin” £ 4 sin %

(r) (r)
1e 1 . CcCoS N
"\ 4sin?2 " 4sin?z |

On the other hand, applying the Abel’s transformation to the equality

Np(z) = — QZZ (A%a;_y — A%aj) coskr + ————

(2s1n2 =1 j—F (251112)
we have
n—1 =
D
Nn(x) - - kz:l (AQG'/C—I - A ak)4sf}’f§)§'
A%a, 1D, (x)  A2%a,D,(z) n ay
(2 sin %) (2Sin%)2 (2sm %)
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Since {a,} is r-quasi convex null sequence, then we have

~ (r)
2 DnJ? r 2
Aan< “) — 0, (I (&%) )

= Or,e ( ak - A2ak+1) ‘)
= OT7E <Z kr+1|A2ak - A Clk_;,.]_l)
= Ore <Z kT+1|Aak - Aak+1|>

+O0rc Z K™ Aagyq — Aak+2|> =o0(1), n— 0.
k=n

Also, after some elementary calculations, we obtain

r) (r
cos (n+ 1)(x) ( CoS NT :
an | ——5>——+ —ant1 | ——5—
4 sin® 5 4 sin® 5
(r) (r)
—ua Dy () Dy (z)
"\ 4sin®2 4sin® Z
(r) (r)
D (3?) Dn,1($)
—ani1 N Ut el
4sin? 2 5 4 sin? 3

=, Oy c ((n + 1)t — n”‘l) — an+10rc (n”‘1 —(n— 1)“‘1)
= Or,e (nr (an - an+1))

= Or,e (nT Z (Aak — Aak+1)>

k=n

= Or75 <Z kT|Aak — Aak+1|> = 0(1)7 n — 00,

k=n

and respectively

f(z) = lim N (z) = lim S (z)

n—oo n—oo

00 ~ () (r)
Dk(lL') 1
=— Ay, — A? + .
Z( k=t ar) (451 ) “ 4sin2§

2z
k=1 2
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Now using the above equalities we obtain
T 00 5 ( ) (r)
=2 A?qy, — A%a LA
/0 ; | r k+1| (4 sin? 5

=Orc (Z k| A%ay, — A2ak+1|> =o0(1), n — oo.

k=n

0 (@) = N (@) da

dx

The proof is completed.

Corollary 5.20. Let {a,} be a r-quasi convex null sequence, then the neces-
sary and sufficient condition for L'-convergence of the r —th derivative of the
cosine series is n"a,| = o(1) as n — .

Proof. We have
|1 @ - 0@
< |10@ - MO @)|| + [V @) - 50 @)

(r) (r)
— o)+ ||a cos(n+ 1)z 4l cos nx
" 4sin? Z " 4sin? 2

2 2

~ (r)
+ (| A%a, (Dn(x)>
4si

z
(r) (r)
cos (n cos (n+1)x 1z cosne
<o(1) + ||an +|nt+1 | — =
" 4sin?2Z 4sin” 5
=o(1 )+O((n+1)r+1|a O ((n+ 1) ans1]) =o(1), n— oo

The proof is completed.




6

L'-convergence of single complex modified
sums

In this section we have collected all results regrading to L'-convergence of
complex modified trigonometric sums whose coefficients belong to some spe-
cific classes of real sequences.

6.1 L'-convergence of complex modified sums g, (C;x)
with coefficients from the class R*

We consider the complex series

9]
E Ck ezkm7

|k|<oo

its partial sums

Sp(Cix) = Z cret™®,

[k|<n

and the complex modified sums
i
gn(Cs2) = Sp(Cs2) + — [Cn+1E;L($) - cn+1El—n(x)] J

with coefficients from the class R*.
Regarding to this class we prove the following.

Theorem 6.1. Let {c;} € R*. Then there exists f(x) such that:

(i) limy, o0 gn(Csz) = f(x) for all0 < |z| <,
(ii)f € L' and ||gn(C; ) — f(2)|| = o(1) as n — oo, and
(115 )imy, o0 | S (C; ) — f(2)|| = 0 if and only if lim,|— o ¢y log In| = 0.
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Proof. (i) Using Abel’s transformation, we have

gn(C3x) = Sn(c§ x) + |:C774+1E1/'L(x) - Cn-HEl—n(x)]

_ zn: (C’“)D’ +ZA( >Ek()

By Lemma 1.91 and changing the order of summation, we get

> [ () e < g k[ (%)

k=1

k=1 j=k
0 & J Ci
= PALH
mZ(Zk) (J)‘
7=1 \k=1
—0|— 22 (9
O\ 1a 27 <.7' =
Jj=1 ]
and
- o1 =) ek
Al ———= k
S la () emie| < (15 \ (=)

Ch—1 — Ck

where C1 is a suitable constant.
These imply that

x)zzga(clj)pf +ZZA( ) B (z)

exists and consequently (i) follows.
(ii) For = # 0 and applying the Abel’s transformation, we have

(&) = gu(Cia) = 2 i A() Pite) + > At im)

k=n-+1

i (k+1) A2<k>Kk( )—2(n+1)A(C"H>I?;L(x)

n+1
—HZA( )Ek()

k=n+1
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Whence,
/ﬂ £ (x) = gn(C;2)| da < 2 i (k+1)‘A2 (%’“)‘/w f(,g(a:)‘dx
o k=n+1 -
+2(n+1)‘A(;"_:11)‘/7r f(;(x)\dx

D>

k=n+41

A(W)’/ \EL ()| da.

By Lemma 1.94, [7_ |K} (2)|dz = o(k). Also,

Cn+1 - 2 [ Cn+1
A _ E A
’ <n+1)’ <n+1>
k=n+1

o0
k
2

2 432 Cn+1
k=n-+1 n_+1

1 > c
< 2 2 n+1
<GrmE X KA <n+1

k=n-+1
=o((n+1)7%),

IN

by the hypothesis of the theorem.
Since Lemma 1.84 and Lemma 1.85 imply

/Tr |E" . (2)|dz = o(klog k),

—T

then

1£(2) = ga(Cs2)]| = ( > (4 (",j)\) +o(1)

k=n+1
A (‘:’“‘1]:6’“) ‘ klog k) = o(1),
by hypothesis of the theorem.

+o ( Z
k=n+1

Since g, (C;x) is a polynomial, it follows that f € L', which proves (ii).

(iii) We can write

1f (@) = Sn(Cs )| < 1f(2) = gn(C52) || + |90 (C 2) = Sn(C; 2]
= [If(x) fgn(C;x)\l

+ H [en1 By, (2) = cna BL,, (2)] H

)
n+1
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and

= [lgn(C52) — Sp(Cs2) ||

en1B(e) = e B (o)
< 1£(@) — Sa(C3 )] + (&) — (G321

Since || f(z) — gn(C;2)|| = o(1) as n — oo, by (ii) and by Lemma 1.95,
then

n+1

lim
n—oo

ntl I:Cn+1E:1(LE) — C—(n—‘,—l)ELn(x)} H =0

if and only if

‘nl‘iinoo cp log|n| = 0.

The proof is completed.

6.2 L'-convergence of complex modified sums g, (C;x)
with coefficients from the class K*

In this unit we consider the complex series

oo
§ Ck ezkw7

|k|<oo

its partial sums

Sn(c7x) = Z Ckeikwv

[k|<n

and the complex modified sums
i
gn(c; 93) = Sn(cv Z) +— [Cn—HE;L(:E) - Cn+1El_n($)] )
n+1
with coefficients from the class K* (see Definition 1.68).
Next, we prove the following theorem.

Theorem 6.2. Let {c;} € K*. Then for f € L'(T), T = 52 we have:

2rZ’
(1) llgn(C;2) — f(z)|| = o(1) as n — oo, and
(1)limy, 00 || S (C57) — f(2)|| = 0 if and only if lim,| o cpy1 log In| = 0.

Proof. Let A > 1 and n > 1, then we have

VA(Cia) ~ @) = St o) = £(2)]

where



6.2 L'-convergence of complex modified sums g, (C; ) with coefficients from the class K*

[An]

VACa) = S S(Cia)

[An] —n
k=n+1

is known as truncated Cesaro means, and

1 n
oa(Ciz) = — = > Su(Cia).
k=0

Moreover, the difference V2 (C;z) — f(z) can be written as

Bl an)—k+1 .
VNC;x) — f(x) = |k§+l [[/\]n]—ncke ka
Next, we have
_ T G o V%) s B
gn(C2) = VNCiz) = — k|;+1 Tl ke
e fenst B) — e B (0)].

Using summation by parts, we get

[An] [An]—1
[An] —k+1 . ) An]—k+1, rerN
_ E Wy —rT 2 ike _ _ § WAL= RT 2 A (SR B
= Palmn 1,.&, Dal-n ( K ) k(@)
1 ] Ck Cn+1
_ =\ E; - 2T F .
+[/\n}—nk_zn;1<k) k(@) n+1 ”(x)}

Similarly, we have

[An [An]—1
—k+1 ke _ ] —k+1 , fck\
Z )\n —n k€ N Z{ Z [An] —n A ( k ) Bp(@)

k=n+1
1 ] c—k Cn+1
_ E" - T F .
+[)\n]—n Z (k;) £(@) n+1 _”(x)}
k=n-+1
Therefore,
An]—1
—-k+1
9u(Cs2) = VNCs2) Z[Z = S A () Bl
k=n-+1
[n]—1
] —k+1 ,
[An] —n A( k )E K@)
k=n+1
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230 6 L'-convergence of single complex modified sums

. 1 (An] r )
| k:ZnH (Z) El(z)
[An]
a2 (F) E’k@] ~

Based on equality

we can write

n(Cia) = VNCia) =i Y. SRR A (%) 2iDi (o
k=n+1
[An]—1
[An] — k Cr — C_k '
’ wlpr Al = < k > ol )]
. 1 al Ck\ 5.
T o = k;m (%) 2iDk()
1 [An] Cr — C_f ’
[An] —n k:ZnH ( k ) E_k(z)]

Whence,

lgn(C32) = F@)I| < l9a(C;2) = VX (Cs )| + [V (Cs2) = f(@)]

= [[;\Z]] J_rrllHU[An] (C;z) — f(2)]
Jr[)\?;]%ln”ffn(C;x) — f(@)]|
SR Dl =k ey
" W An]—n (Z) k(@)
[An]—1
[An] — k —ci\
+k§+1 Dl =02 ( - ) B, (2)
2 L
i ] —n Z (?) Dy.(x)
k=n+1

(An]

+M%n 3 (ck_kc"“) B (x)

k=n+1




6.2 L'-convergence of complex modified sums g, (C; ) with coefficients from the class K*

[An] +1
= [An] -
n -+ 1
[An] —

—llopm (Cia) = f@)l]
”Un(c z) — f(x)]| + I + L.

Let us estimate first the quantity Io. Namely, we have

[An] [An]

I, < M%” I;n (%) Dj. ()| + M%” ’; (Ck_kc_k> E.(x)

where

Since, _
(k+ 1) Ky(z) = (k + 1)Dy(z) — Dy (),

where K (z) = %Zf:o Dj(z) is the Fejér kernel, and K (x) > 0, then

Di(x) < (k + 1)Dy(x).

This fact implies

2 c
Jin < Dl —n ;(kﬁL 1) (f) Dy, ()

Now, we have

- [An] s [An]

/0 ;(ij) Dy () dx:/om ;(CI:) Dy (z)| dz
+ [;] ?ji(c]:) Dy(z)|dz =1, +J,

Since, for I,, we have
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232 6 L'-convergence of single complex modified sums

then
1 [An] oD P
L. <Cp)n] | — ‘i :
where C(p) is a positive constant.
On the other hand, we have
x |[An] k [/\n] r 1
Jn/[;] ,;l(]f /[ Snt 2 (?) sin <k+2>x .dx

After applying the Holder’s inequality (1 < p < 2) we obtain

=

[\n] P

- 1 \¢ il o )
J”<Vw<2sing) dm] /0 E_;Z(k)Sln(kJrQ)x de|

an] k

and then the Hausdorff-Young inequality, we have

=

-Q\b—i

J, <C(p

1 1 [An] 1P
Z\ cmewéb ,

where C(p) is a positive constant depending only in p and p + ¢ = pq.
Lemma 1.84 and Lemma 1.85 imply
I1EZ ()] = O(klog k),

and hence

n]
Cg/\n 1
)\n—n )\Z(

01 )\n
I < mizAnZ\ ot |kost) |

where C1, Cy are positive constants.
Similarly, for I, we have

3=

[An] [An]
IlSC’sZ A(%)‘klongrCzl Zk”l P ,
k=n

where C1, Co are positive constants.
Combining the above estimations, we get



6.2 L'-convergence of complex modified sums g, (C; ) with coefficients from the class K*

lo0(C52) = F@)] £ S o (Ci2) — )]
ol (Cs) = @) + T +To

< ol (C52) = £(o)

[;;]* " Jlou(Csa) — £(@)]

ﬂf;iz(m (e

[An]
A < )’klogk

+Cs )
k=n
[An]
A %

Since, {ct} is a null sequence and A > 1, we have
[An] A

~ n — 00,

[An]—n A-=1’

and it follows that
T A

———c, = 0.
n—oo [An] — nc

Based on this fact the quantity
[An] 1 [)\Zn:] ‘ Ck|P
[An] —n | [An] =k

Also, since f € L*(T), it implies

lon(C;2) — f(z)]] =0, n— oo.

— 0, n— oo.

Now, using condition {c;} € K*, we obtain

[An]
[ —_ Cp — C—
Tim g (Cs2) = f(2)]l < Cs Tim_ k}_; A (’“k’C) 1 klog k

N
T (3w
soufim (R3]

k=n
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234 6 L'-convergence of single complex modified sums

In the last inequality we take the limit as A — 1 and since {c¢;} € K*,
then

T g (C:2) — f(x)]| = 0.
In the sequel, we notice that
197(Cs2) = f(@)]| < (150 (C;2) = gn(Cs )| + [lgn (C; ) — f ()]

n;—lkl [en1Ep () = o EL ()] H + |lgn(Cs2) — f(2)]],

and
)
n—+1

(w1 2 (@) — cupr B ()] H — 154(C52) — g (G52
< Jl9a(Cs) — F@)] + 154(C2) — (@)

Finally, since ||g,(C;x) — f(2)|| = o(1), as n — oo, and with some slight
modifications in Lemma 1.95 we can show that

lim
n—oo || n

! . [en1Ep () — e EL, ()] H =0+ | l‘im Cn+1log|n| = 0.
n|— oo

Subsequently, we have proved that

li_>m I1Sn(Csz) — f(2)]] =0 <= lim c¢p4qlog|n| =0,

|n|—o0

which implies the assertion (ii).
The proof is completed.

6.3 L'-convergence of complex modified sums k, (C;x)
with coefficients from the class J*

Here we consider the complex series

oo
§ Ck ezkw7

|k|<oo

its partial sums

Sp(Csx) = Z cpet™®,

|k|<n

and the complex modified sums (which indeed are the complex form of the
modified sums k¢ (z) and k2 (z))



6.3 L'-convergence of complex modified sums k., (C; x) with coefficients from the class J*

ei(n+1)a: —i(n+1)z

kn(Cix) = Sn(C; )

+ 2sinx T Con©
_’_cn+1emw _ C_(n+1)e—zn1‘

+(’Il + 1)(Cn o Cn+2)ei(n+1)w
+(n + 1)(6_(n+2) — C,n)e_i(n—'—l)x y

with coefficients from the class J* (see Definition 1.69).
Next, we prove the following theorem.

Theorem 6.3. Let {ci} € J*. Then there exists f(z), x € T = 52, so that:

(i) limy, o0 kn(C; ) = f(x) for |z| € (0,7],
(ii) f € LY(T) and ||k, (C;z) — f(x)| = o(1) as n — oo,
(i) [ S (C; ) = f(2)]| = o(1) as |n| = oo.

Proof. Since % < M, for 0 < e <z <, and {¢} is a zero sequence,
then
53, bn(C52) = Jig, 5a(C52)
. iM:(n+1)
+ nll)rglo % |:(Cn - c—n) - (Cn+2 - Cf(n+2)):| )

where M, > 0 is a constant depending only in € > 0.
However, for n > 1 we have

n(n+1)—5=n - n(n+1) ZA( >

by given hypothesis.
Therefore,
nh_}rr;o kn(Ciz) = nh—>120 Sp(Ciz) = f(z).

Now, we are going to show that f(z) exists in (0, 7]. First, we can write

= Xn: cre™ = ¢ —|—Z< keke 4 %keiikz).

k=—n

Applying the summation by parts, we obtain

n—1
2) = co+ Y A (L) (FiBL@) + (—iB) (x))
k=1
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236 6 L'-convergence of single complex modified sums

YA (55) (HBL(@) + S2GE (@)
k=1

i3 [A(2) Bl - A (SE) B4 0]
k=1
cn Bl () — c,nELn(x).

—1
n

Using Lemma 1.91 and {¢} € J*, we obtain

| /\

Mg nMg

! (‘”“”)l
=Tl ZAk<O°

since by assumption Y r- ; kA < co and from obvious inequality Ay < kA
it holds that > "=, Ay < oco.
Also, we have

S|4 () mute) 8 () o < i

S
k=1

Bl (@) = c_uEL ()

—1

Cp —C_p

M,
Sn‘ |€ =o(1), n— 0.
X

n n

Whence f(x) = lim,— o Sn(C;x) exists and consequently (i) follows.
Further, for x # 0, consider

f(x) — kn(C;2) = Z cpe't®

|k|>n

: [C ei(n+1)m _ C_nefi(nqtl)z
2sinx

+Cn+1€im — C_(n+1)€
+(7‘L + 1)(Cn 7 Cn+2)6i(n+1)z

+(n+ 1) (c—(ng2) — C,n)e_i("""l)x} .

—inx

Using Abel’s transformation, again, we get

F(@) = kn(Cs2) = i fj [A (%) Bl (z) —A(C_Tk) E’,k(:@}
k=n+1
y en1BL(z) + c_n B, (x)
n+1

1 .
S |:Cnez(n+l);v
2sinx

e—i(n-‘rl)w



6.3 L'-convergence of complex modified sums k., (C; x) with coefficients from the class J*

_|_cn+1€inm _ C,(nJrl)e_inI
+(n+1)(cn — cn+2)ei("+1)x

+(n + 1) (c—(nt2) — c_n)e_i("H)z],
and

IIf kn (G5 2)

— M.k T M,
(ck c_ k)’ d:c—i—/ n
o |l

(en1 = c—(mt1)) + (n+2)(en — con) = (n+ D)(Cny2 — - (n42))
sinz

Cn+1 — C_(n+1)

d
n+1 v

()
/Oz
o

Therefore, based on the assumption {c;} € J*, we find that
1f(z) = kn(Cs )

/ s A AkMk / M it — ey | da
0 o |zl

dz.

k=n-+1

+/ |(Cn+1 - 07(n+1)).+ (Cn+1 - Cf(n+1))‘ d
0 | sin x|

N /7‘!‘ |(TL =+ 1)(071 — C_n) — (T'L + 1)(Cn+2 — C_(n+2))|dx
0 | sin x|

=0 i Ag logk>

k=n-+1
+o(logn(c, — c—n)) + o(logn(c, — c—y)) + o(logn(c, — c—n)).
For all n > 1 we have that

log n(cn — c—p) < p2n — S

oo e
< ra (i)
< §k2 <f11:> =0(1), n— oo.

Subsequently, ||f(x) — k,(C;z)|| = o(1) as n — oo and since k,(C;z) is a
polynomial, it follows that f € L'(0, 7], which proves the assertion (ii).
Further, we notice that

1f (@) = Sn(Ci2)|| = [[f(2) = kn(Ci2) + kn(Cs 2) — Sn(Cs )|
< f (@) = kn(Cs 2) | + [[Fn(C; 2) = Sn(C; 2)
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238 6 L'-convergence of single complex modified sums

< |Nf (@) = kn(Cs )| +

i

i 1 —1 1
[Cnez(n+ E c_ne i(n+1)z

2sinx
—inx

+Cnt1 et —c_ (n+1)€

+(n+1)(c, — cn+2)ei("+1)m

(1 + 1) (e (2 = con)e” 7]

Finally, using (ii) and some of above estimations, we obtain the conclusion
of the assertion (iii).
The proof is completed.

6.4 L'-convergence of complex modified sums K,,(C;x)
with coeflicients from the class K

Here we consider the complex series

o0
§ : Ckelk$7

k[ <oo

its partial sums

SH(C7 x) = Z Ckeikzv

[k|<n

and the complex modified sums (which indeed are the complex form of the
modified sums k¢ (x) and k2 (x))

K, (C;x) = S,(C;x) + [ cpet e _ o e—ilntl)z

2sinx
+Cn+1ezna: _ C_(n+1)671nw
+(Cn - Cn+2)En('T)

+(C—(n+2) - C,n)E,n(.’E) )

with coefficients from the class KC (see Definition 1.70), where

E,(z) = Z et B, (x) = Z ek,
k=1 k=1

We prove the following theorem.
Theorem 6.4. Let (ci) belongs to the class K. Then:

(1) limy, 00 Kn(Cs ) = f(x) exists for |z| € (0, 7],



6.4 L'-convergence of complex modified sums K, (C;x) with coefficients from the class K
(ii) f € LY(0,n] and || K, (C;x) — f(x)| — 0, as n — oo,
(153) || S (f;2) — f(2)]] = 0 as n — oc.

Proof. Firstly, we will show that f(x) exists on (0, 7]. Indeed, it is clear that
we can write

— - ckeik =co+ k? zk'r C—k ke—ikz
> Z p
k=—n

Applying the Abel’s transformation we obtain

n—1

Sul@)=co—iy [A (%’“) Ej(z) - A (C:) E’_k(x)}

i [%E;(m> - C;"E',n(x)} .

n

Based on Lemma 1.91 we clearly have

Su(a >\<|co|+2 A ()| 1B @)+ |a (52) | 1EL <>|]

+@|E;<z>|+@|E’—n<x>l
(Sl ()b ()
T{QZAk+QZAk}

k=1 k=n

IM,.
< Jeo| + |z|f§ kAj, < oo,
k=1

+ [en| + |Cn}

since (¢;) € K, and

a2 <03 a ()] < Xk ()| <
Subsequently, lim, oo Sp(z) = lim, o K,(C;2) = f(z) exists, because

of the boundedness of the functions sz’ Jifn(‘z), s*h“l'f) on (0, 7], and thus (i)
holds true.

Now we are going to prove (ii). Indeed, for z # 0 we have

_ . _ = Ci ikx C—J —ikx

flx)— K, (C;x) = Z (kke + - ke )
k=n-+1

i i(n+1)x

ei(nJrl)z

— inx
[cn —C_pe + cpyi€

2sinx
—Cc_(m+n€ "+ (en — Cng2) En(@) + (c—(n42) — c=n) E—p(2))].
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240 6 L'-convergence of single complex modified sums

Again, applying the Abel’s transformation to the above equality we obtain
f(@) — K, (C; )

T BRTIC L INCErN

k=n-+1

Cp v C—p 1 Cnt+1 v C—(n+1) 1
—F ——F — E ——F

_ ’L [C ei(n+1)w _ Cinefi(nJrl)z + CnJrleina:
2sinzx
—C_(nyn€ "+ (cn — cny2) En(x) + (Cf(n+2) —cn)E_pn(z)]
[ee]
— 4 Cl / _ 2 C—k /
{3 [a(§) e -2 () s

k=n-+1

Cntl v C(n+1) .y i i(nt1)a —i(n+1)z
Gl G - e
n+1 n(@) + n+1 _"(I)} QSin:E[Cne €-n€

+epp1e” — C—(n+1)€7inw + (en = n2) En(®) + (c—(nt2) — c—n) E—n(2)].

Thus, using Lemmas 1.91 we get

@) - Ku(Ciol < 3 [|a(2)] B +]a (52) |12 o]
2

Cn+1 / C*(TLJrl) /
E E
| (o) + | S ) _n(x>|}
grammgrllen]  fecnl + fewsal + fe—qua)

+(len| + [ens2D)|En()| + (le—(nr2)| + c—n D E-n(2)]]
<l 3 efla()]+la()]

len| + [e—n| + [ent] + |C—(n+1)|

+ (lenta] +[e—man]) } +

2| sin z|

+<|cn|+|cn+2|)]2m +<c<n+z>l+|0n|>’ 2sinz

M | &
< 23" A+ (lensa| + |e—man))
k=n
el + [e—nl + [ens1] + |e— i)l
2| sin x|
En () E_n(z)

+(lenl + lental)

2sinx 2sinx

(le—ura] +le-nl)|




6.4 L'-convergence of complex modified sums K, (C;x) with coefficients from the class K

Therefore, using Lemma 1.96 we obtain

1f(z) = Kn(C;2)] 2

> T dx T dx
< M, l2 Z Ak/ m + (|Cn+1| + |C—(n+1)|) /0 |$|]

k=n 0
|Cn| + le—n| + [ent1] + |e- n+1)|
2 |smx|
" | En(z)
#lenl +lensal) [ |52 o+ (fe- <n+2>| tleal) [ 522
< Mrs [2 Z AkO(IOg k) (|Cn+1| + |C (”+1)| logn ‘|
k=n
Cn| + |C—n| *+ |Cn + [c—n
NEAETCECEC A
F(len| + [env2l)o(n) + ([c—(n42)| + le—n|)o(n).
Now we note that
oo oo
D Aplogh <> k*Ag = o(1)
k=n k=n
and for m =n,n+ 1,n + 2 we get
= c
el logm < m? | 22| < m? 3 ‘A ()‘
: J
j=m
. + .
SIEICSIED ST S SPTE)
Jj=m j=m j=m

as n — oo.
Subsequently, we get

If(z) = Kp(Cs2)||pr = o(1) as n— oo.
Using the latest equality and the fact that K,,(C;z) is a polynomial it

follows that f € L'(0,7]. We proved (ii) entirely.
Finally, we will prove (iii). Namely, using some facts used above we have

1 (@) — Sul@)s < / " 1f (@) = Ku(Ci)lda + / K (Ci) — S (o) de

< [N1@) - Katciolts+ [

—C—(n+1)€_m$ + (en = en42) En (@) + (c—(nt2) — c—n) E—n(z)]

e—z’(n—i—l)x

: [cnei(n-l—l)m + Cn+1einx
2sinx

dxr
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242 6 L'-convergence of single complex modified sums

s 4 dl‘
< [ V@) = Ka(Cralde + lleal + ool + e +le—unl) [ 5
™| Ea(2) " | Ecnl@)
d _ —n - |d
+(|Cn|+|cn+2|)A Jsin T+ ([e— ()| + e LDA 2sinx v

< / [f(z) = Kn(C5 2)|da + [lea] + |eon| + [enta] + [e-mi1)[lo (logn)
0

Hllenl + lental + le—niz)| + |c-nllo (n)
=o(l)+0(1) +o(1) = 0(1), n — .

The proof is completed.

6.5 L'-convergence of complex modified sums K, (C;x)
with coefficients from the class KC?

We consider the complex series
o0
§ Ck ezk:av7
|k|<oo

its partial sums

Sp(Chx) = Z crpetke,

[k|<n

and the complex modified sums

i(n+1l)z _

K,(C;x) = S,(C;z) + C_pe itz

- cpe
2sinx [

inx inx

+Cnti1€ - C,(n+1)€_
+(cn — cny2)En(x)

+(Cf(n+2) - c,n)E,n(LU) )

with coefficients from the class K2 (see Definition 1.71), where

E,(z) = Z ke B, (x) = Z e ke,
k=1 k=1

We prove the following theorem.
Theorem 6.5. Let (cx) belongs to the class K2. Then:

(1) limy,— 00 K, (Cs2) = f(x) exists for |z| € (0, 7],
(ii) f € L*(0,7] and || K, (C;x) — f(x)|| = 0, as n — oo,
(13) ||Sn (f;2) — f(2)]] = 0 as n — oc.



6.5 L*-convergence of complex modified sums K, (C; z) with coefficients from the class K

Proof. Firstly, we will show that f(x) exists on (0, 7]. Indeed, it is clear that

we can write

, c_ i
= kzz_n cre®® = co + Z ( kek® 4 kk ke_”“”)
Applying twice the Abel’s transformation we obtain
Sp(x) = co—i §A2 (i’“) Ey(z)+ A ( Cn-t ) E. ()
pt k n—1/""

n—2
i3> 4 (Ck’“)E’_k(:cHA( e
k=1

C_ @
"B (x) —i—E (z).
HERE L (2) — B ()

Based on Lemmas 1.91 and 1.92 we clearly have

s <>|<\co\+2 |42 ()| 1Bk @) + |22 (52 ’“)\E’k<x>|]

a (22| Bl +|a (S |Eln(x)|1
+%IEé(a:)| + |C‘"| B (2)]

el Sl ()] | (52)

+

s o (22| +a (S +|cn|+|cn|}
n—2
| |{ZA
e 3 0l ()] o (5] + o)

k=n—

2M, = —
|x|5 {5Zk2Ak +2M} < +o0,
k=1

since (cx) € K?, where M is a positive constant.
Subsequently, lim,, o Sp(z) = limy, .00 (C;z) = f(x) exists, because
of the boundedness of the functions Sm;, b;fn(i)7 Es‘lg(;) n (0, 7], and thus (i)

holds true.
Now we are going to prove (ii). Indeed, for = # 0 we have

243



244 6 L'-convergence of single complex modified sums

flx) — Kn(Cix) = i (%keikr + %k‘e_im)
k=n-+1
i

: [Cnei(n+1)w . C_nefi(nJrl)a:
2sinx

+Cn+1€mx —C_(n+1)€
+(en = eng2) En (@) + (c—(n42) — c—n) E_n(2)].

inx

Again, applying twice the Abel’s transformation to the above equality we
obtain

f(a) — Kn(Cyz) = —i lim { pif [A? (%)E;(x) _A? (%)E/_k(x)}

p=oe k=n-+1
1\ = -1\ =
(35 B 4 (S Pl
+ 2B (@) - Z2E (x)
P P
Cp\ =/ C_n\ =/ Cn+1
_A (—)E A(—) B (z)— Sl gy
DY)+ A (S2) B @) - 5w

+C*(:Lr+11) E'n(sc)} -3 Z [Cnei(n—i-l)a: - Cine—i(n—&-l)x
n SN x

nx —inx
+Cnt1€ — C_(nt1)€

+(en = enr2) En(2) + (c—(n42) — c—n) E_n(2)]

{3 ) 2 ()P0l

k=n+1
() ()i
— Sl (@) + mE’_n(g:)}
_2Siinx [ene’ DT — e e DT 4 e - c(nyne”

+(en = cny2)En(z) + (Cf(n+2) —c_n)E_p(2)].

Hence, using Lemmas 1.91 and 1.92 we get

@) - Ku(Ciol < 30 [|4° ()] B + |42 (S2)| B o]
=n+1
(@) B+ a ()] e

n
Cntl B, ()]

n+1

+ n n+1

B ( )|+‘C("+1)




6.5 L!'-convergence of complex modified sums K, (C;x) with coefficients from the class K2

m“cﬂ + [e—n| + [ent1l

+|C—(n+1)| + (len| + [ent2]) [ En ()]
+(le— o)l + le—a D E—n ()]

el 5 el ()]l ()]
ot Ja (%) +fa (52)]

+(n+1) (lens1l + |e— ) }

IN

el + le—nl + [ens1] + le— )]
2| sin x|
2sinx
E_,(x)
2sinz

+(|Cn| + Icn+2|)

(o= + le-al)

My |,
2] [2 > Ar+ (n+1) (Jeara| + |c<n+1>|)]
k=n

len] + le—n| + [eny1| + |C—(n+1)|
2| sin x|

2sinx

E_,(x)

2sinx

IN

+(lenl + lent2l)

F(le-mi +le-nl)

Therefore, using Lemma 1.96 we obtain

22Ak/ﬂ|cf|

k=n 0

1f(x) = Kn(C;2)|| < My

Td
+(n + 1) (|Cn+]_‘ + ’07(n+1)‘>/0 x]

||

+|Cn| + |e—n| + lent1] + e (i)l /’T da

2 o |sinz]
2sinx
E_n(z)

2sinx

(lenl + lensal) /
0

dzx

le_qnray] + le—al) /

245
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< Mo |2) Aglogk
k=n

+(n 4+ 1) (Jensa] + |e—uin)) 0 (log )

Cp| t|Con| + |Cn +lc—n
el el el

+(leal + lent2l)o(n) + (le—(ni2)| + [e-nl)o(n).

Now we note that - -
Z Aplogk < Z kA, = o(1)
k=n k=n

and

[e.°]

coir 3 Ja(%)
=n+1
(%)

()

(n+1) [cx(nin|logn < (n+1)°

_n+1 ZZ

k=n+1 j=k

oo

=(n+1° > (j—n)

Jj=n+1
2.

#(%)
j=n+1 J

Y = Y A=)

j=n+1 J

Ct(n+1)
1

o0

IA

IN

as n — 00. Subsequently, we get
1f(z) = Kn(C;2)|| = 0(1) as n— oo

Using the latest equality and the fact that K, (C;x) is a polynomial it
follows that f € L1(0,].
Finally, we will prove (iii). Namely, using some facts used above we have

/0 (@) — Su(@)ldz < / (@) — K (Cs )| di + / 106, (&) — Su(2)|dz

< [T - KuCiaia+ [

—i(n+1)z

[C 8i(n+1)x
2sinx

n —inx
—C_p€ + cpt1e€ — C—(n+1)€

+(en = ent2) En (@) + (c_(n42) — c—n) E_n ()] |da
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< / (@) = Kn(Cs 2)|da

Hieal +le-al + lensal +le-uinl] [ 5o
n —-n n+1 —(n+1) o 2|S1H1‘|
2sinz
E_n
En@)|,

2sinx

- (al + ensz]) /
0

e | +le-al) [

< / (@) = Kn(Ci)lde + [[en] + le—n] + ensa]
0

+|C_(.,L+1)H0(logn)
Hllenl + lentel + e iz + le-nllo (n)
=0(1)+o(1) + o(1) = o(1), n — 0.

The proof is completed.

6.6 L'-convergence of r-th derivative of the modified
sums g, (C;x) with coefficients from the class R*(r)

We consider the complex series
o0
§ Ck elk7;7
|k|<oo

its partial sums

Sp(Csx) = Z cpet™®,

[k|<n

the complex modified sums
i
9n(C;2) = Sn(Cs ) + nrl [cn+1E;L(x) - Cn+1El—n(w)] J

and their the r-th derivative

() — () (. ¢
o) = SP(Cr) +

with coefficients from the class R*(r), r =0,1,2,....
We prove the following.

Theorem 6.6. Let {c;} € R*(r), r =0,1,2,.... Then there exists f(z) such
that:

(1) limy, 00 g,(f)(C;x) = f)(x) for all 0 < |z| < 7,

247
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(ii) f") € L' and ||gr(f)(C';:1:) — fM(@)| = o(1) as n — oo, and

(10 )imy, 00 HS%T)(C; z) — fO)(z)|| = 0 if and only if lim|,,| o0 [1]"cp log |n]
0.

Proof. (i) Applying Abel’s transformation, we have

97 (Csz) = SP(C3) + g [ennn B ) = enn BTV )]
= DU (g (r+1)
~233a(3) B+ D () is o

By Lemma 1.91 and changing the order of summation, we get

> la(i)or 1_\m|zkf+wa<%>\
Az Gl

kl]k

2(54““)! (2)

1 oo
o | a (9] <.
|z] J

E(r+1 r41 Cr—1 — Ck
%) e < |x|2’“ afe
1 . 1 —
szri-llogk‘A(cklka)H < 00,
xr

k=3

and

o

fa (e

where (7 is a suitable constant.
Consequently,

f( _QZA(Ck)D(T-‘,-l) +ZZA<Ck 1Ck>iEIE:T+1)(x)
k=1
exists and consequently (i) follows.

(ii) Now for x # 0, we have
FO) ~ (0

=2 3 A(B) D Y A ()i )

k=n-+1 k=n-+1
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_ — 2 (Ck\ 77(r+1) _ Cn+1 \ 7>(r+1)
QanH(k +1)A ( : ) K@) —2n+1)A (n . 1) K+ ()

i Z A( > B0 ().

k=n-+1

Then,
Hfm(x) —97([)(0556)“ = 2k§1(k+ Y ‘AQ (%> ‘ /_Tr

oo (35|
-5 =)

k=n-+1
By Lemma 1.94, it holds [”_ |K}(z)|dz = O(k), and by Bernstein’s in-
equality we obtain

I?,g”l)(x)) dz

(T+1 d

r+1

/ K (2)|dz = O(K").
Cn+1 S 2 [ Cn+t1
A = AL iasy
a()|-| 2 2 ()
_ oo k7-+2 AQ ( Cn+1 )’
— r+2
it k n+1
< 1 Z 2 A
— r+2
(n + 1) k=n-+1

—o((n+1)7"?)

Also,

Cn+1
n+1

as n — 0o.
Since Lemma 1.84 and Lemma 1.85 imply

/ B (2)]de = o(k™ log k),

then

1£9 @) = g (G5 )]l = 0 ( > (e ]ae (%) ]) +o(1)
k=n+1

-l—o( > |a (C’“lk_ck> ’ k™ log k) =o(1),

k=n+1
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250 6 L'-convergence of single complex modified sums

by hypothesis of the theorem.
Since g,@(C; x) is a polynomial, it follows that f(") € L', which proves
(i)
(iii) We can write
177 (@) = SSUC; )| < (£ (@) = g7 (Ci )| + [195(C ) = ST(Cs )|
= [fT (@) - ¢ (C; )|

" H e [enn B @) = e BV 0] H

and

[anE“*”(x)c-<n+1>E<_’“:”<x>]H 90 (Cs2) — 8¢(Cs )|
< @)~ SOC ) + 17 @) — g (Cs )]

Since || () () —gr(f)(C; x)|| = o(1) as n — oo, by (ii) and by Lemma 1.95,
then

)
n+1

lim
n—oo

1 r r+1
—— {CnJrlEv(z (@) = c_(n +1)E H

if and only if
lim |n|"e,log|n| = 0.
|n|—o00

The proof is completed.




7

L'-convergence of double modified
trigonometric sums

In this section we have written only few results regrading to L!'-convergence
of some double modified trigonometric sums whose coefficients belong to some
classes of real sequences.

7.1 L'-convergence of double modified trigonometric
sums X,, »(x,y)

For a function f;(z,y) with two independent variables x and y we write f; €
LY(T?) if
5= [[ 151 g)ldedy <+,
-

where @ := [0, 7] x [0, 7].
Let us consider double cosine series of the form

Zz%kcosywcosky, (7.1)

with its partial sums

m n
S ZZaM cosjxrcosky, m,n>1,

j=1k=1

and
filz,y) = lim S (2,y).

m4+n—oo

Then, we use double modified cosine sums

Xmon(z,y) zmzzn: iiAm (@i cosizcosly) | , (7.2)

j=1k=1 \i=j t=k
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the partial sums of the series (7.1), and

filz,y) = Hm S (7,y).

m—+n—oo
Moreover, we use the following class of numerical sequences:

Definition 7.1. A double null sequence {a;} of positive numbers is said to
belong to the class Jq if there exists a double sequence {A; 1} such that

A L0, j+k— oo, (7.3)
> kA < o0, (7.4)
=1 k=1
and A
qu(?’kk)‘ﬁjj’k, 1<p+q<2 (7.5)

for any non-negative integers p,q and j, k € {1,2,3,...}.
Now, we prove the following.

Theorem 7.2. If a double sequence {a;} belongs to the class Jq, then || fi —
Xmunl =0 asj+k— 0.

Proof. Firstly, after some simple calculations we have

i i A1 1 (@i cosix cos by)

n

m
X (z,y) =
j=1k=1 \i=j t=k
m n m n
= Z Z Z Ag 1 (A1 (a; e cosiz cos Ky))]
j=1k=1 | i=j Le=k

M

n m
{ Z (Ar0(ai,k cosiz cos ky)

1 k=1 =]

J

—A1,0(ain41 cosiz cos(n + 1)y)) }

m n

= Z Z {a; 1 cos jz cosky — am1,5 cos(m + 1)z cos ky
j=1k=1

—@jn41 €08 jz cos(n + 1)y + @me1,n41 cos(m + 1)z cos(n + 1)y}

_ Scos ZZ{am+1kCOS m+1)xcosk:y
j=1 k=1

+aj,n41 cos jacos(n + 1)y }



7.1 L'-convergence of double modified trigonometric sums Xy, »(, y) 253

m n
+Z pmt1,n+1 cos(m + 1)z cos(n + 1)y
j=1k=1
m n n
Z Z aj cos jwcos ky —mceos(m + 1)x »  amy1 rcosky
i=1 k=1 k=1

<.

—ncos(n+ 1)y Z @jn+1 COS J
j=1
+mMnGpm41,n+1 cos(m + 1)x cos(n + 1)y. (7.6)

Moreover, the equality (7.2) can be rewritten as follows

Xnn(@,y) =Y (

j=1k=1

) (sin jz)’(sin ky)’

—mcos(m + 1)z Z A1,k COS kY
k=1

—ncos(n+ 1)y Z @) n1 COS J
j=1
+MNam11,n+1 cos(m + 1)z cos(n + 1)y. (7.7)
Applying double summation by parts to (7.7) we obtain

m—1n—1

Xonn(,y) = > 11(]’>D/ ) Dj(y +ZA10(
j=1 k=1

) D)D)

" i Ao (425) B, () Div) + 222 B, () D 1)

mn
=1

—mcos(m + 1)x Z Gm+1,% €08 ky — ncos(n + 1)yz @jnt1 COS JT
k=1 j=1

]~

+mMnam41n41cos(m+ Daxcos(n + 1)y = » Rs(z,y).

s=1

Based on Lemma 1.91 we have | D/, ()
(7.4) and (7.5) we clearly have

Byl < 3 i

IN



254 7 L'-convergence of double modified trigonometric sums

forall x and y suchthat 0 <z <m, 0 <y <.
Also, we have

m—1
|Ro(z,y)| < >
j=1

Ao ()\ 1B @)1 5, (v)]

n

C m—1| oo a
< == > Ay ( - ) jn
Y 7j=1 |k=n J
C m—1 oo ain ‘
<= Z A (]k> Jjn
Yy j=1 k=n J

3
L

<
Il
-
b
Il
3

IA
SN
g
NE
.|
=%
o
3

IA
SN
N
NE
3 S:h
bl
3

j=1 k=n
n—1 oo
C. "
= — E Ajr—0, as n— oo
Y
j=1 k=n

uniformly in m and for all x and y such that 0 <z <7, 0 <y < 7.
Similarly,

co n—1

C
< =& A 5 N
|Rs(z,y)| < p” E E ik —0, as m— o0

j=m k=1

uniformly in n and for all x and y such that 0 <z <7, 0 <y < .
Then based on Lemma 1.91 and on the fact that {a;} is a double null
sequence we have

~ ~ C:a
Buto i <« S
)| Do) < S22

amn
R =
[Raa, )] = 2

C
n = iam,n — 07
ry

asm-+n — oo, for all x and y such that 0 <z <7, 0 <y < 7.
Next, since {a;x} € J4 we have

n

" Am+1,k
ol 1)) < Y el =mlm+ 1) 32 | et
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< m(m+1) i zn:éjkkk

j=m+1k=1
o n A
< 1 dok
mm+1) 3, > o
j=m-+1 k=1
1 o0 n )
gajgl;“;j/l]k—)() as m — 0o (7.8)

uniformly in n and for all  and y such that 0 <2 <7, 0 <y <.
Similarly, we have verified that

m

Z i kAj,—0 as n— oo (7.9)

=1 k=n+1

|Re(z,9)]

1\9\»—*

uniformly in m and for all x and y such that 0 <z <7, 0 <y <.
Doing almost the same reasoning we have proved that

|R7(z,y)| Z Z jkAjr =0 as m+n—o00 (7.10)
] =m+1 k=n-+1

forall x and y suchthat 0 <z <m, 0 <y <.

Subsequently,
m—&lnn—l> Xm n('r y) m—iELH—k S ( 7y) = fl(xay)

exists and fi(z,y) € LY(T?).
Now, we consider

= Xall < [T 3 ZAH(.’) (@)D (v) | dedy

j=m+1 k=n+1

T T | M Qi - .
+ A (]n> D’ (z)D. (y)| dzdy
//Z 4. ) Dj(@)D, )
T P m Ak
A 3
v /0 > (T2
+ i amnD'()ﬁl(y)‘dxdy
oJo mk "

+// Znaj,n_H cos jx cos(n + 1)y| dedy
0Jo

j=1

e
+// ZmamH?k cos(m + 1)x cos ky
0Jo

k=1

) Dy (@) Dy (y) | dady

dxdy
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+mn|am+1,n+1] // |cos(m + 1)z cos(n + 1)y| dxdy

LTSS () oo

j=m+41k=n+1

+/07T/07T Zn: <én >D'( VD, (y)| dady

T | T A .

+// ( >D' Dy.(y)| dzdy
N 1;1 =) D () Dy,
T a -

R Py D! dzd 7.11
N ()n(y)\zy (711)
+// Z Z ij cosgmcos(n—i—l)y dzdy

070 |j=1k=nt1

+// Z ijQ F cos (m + 1)z cos ky| dzdy
0Jo

j=m+1 k=1

+mn\am+1,n+1|/ / |cos(m + 1)x cos(n + 1)y| dxdy.
o Jo

Applying Lemma 1.85, (7.4), and (7.5), we get

// Z Z <2k2) ()Eg(y) drdy -0 as m+n— oco.

j=m+1k=n+1

Thus, from these arguments and the given hypothesis all terms on the
right hand side of (7.11) tend to zero.
So,
lfi—Xmnll =0 as m+n— oco.

The proof is completed.

Corollary 7.3. If a double sequence {a;} belongs to the class Jq, then
[1S5em — fill = 0 as j +k — oo.

m,n

Proof. According to (2.1) it is clear that

1Smm = fill = [1Smm = X + Xinn — ful
gHfl_ m,n”"‘HXmm S’f?;)n”
< |lfi = Xonwll

+// |mcos(m+l)xZamH,kcoskmdxdy
070 k=1
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™ P, m
+ / / |ncos(n + 1)y Z @j n+1 cos jx|drdy
0J0 i
Jj=1

+ / / |mnam+1,n+1 cos(m + 1)z cos(n + 1)y|dzdy
0o
< lf1 = Xl

Ly n
+// |mZam+17k|dzdy
0Jo 1
T, m T T
—|—// |nZaj7n+1\dxdy+// |mnam+1,n+1|dzdy.
0Jo = 0Jo

Note that the first term tends to zero based on Theorem 7.2 as well as the sec-
ond, third and fourth terms according to some parts of the proof of Theorem
7.2.

The proof is completed.

7.2 L'-convergence of double modified trigonometric
sums f (z,y)

In this unit we consider double cosine series of the form

Z Z )\j)\kqﬁk cos jzx cos ky (7.12)
§=0 k=0
on the positive quadrant @ := [0,7] x [0, 7] of the two-dimensional torus,

where \g = %, A= =1ifj>1,k>1, and qﬁk are real coefficients.
The rectangular partial sums of the series (7.12) are

St (@)=

=0

NE

)\j)\kqjl)k cosjxrcosky, m,n >0,

o
Il

0

and let
fUey) = lim ST (z,y).

m,n— oo

The differences Aggq;{ i are defined by

2 2
(2 (2
Apngy = (1) M(z’) (e) Gt

i=0 £=0

we will use the following class of double numerical sequences:
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Definition 7.4. A double sequence {qﬁk} of real numbers is said to belong to
the class Sy, if
qik — 0, as max(j,k) — oo,

and

DD G+ Dk + 1) Aggf | In(j +2) In(k + 2) < (7.13)
=0 k=0

Example 7.5. Let us define Aggq;{k = ﬁ for all j,k > 1. It is obvious that
{q;»i,k} belongs to the class Sy.

In the sequel we will use the following double modified sine sums

m n
d
man () = 4smxsmy; Pt
m n
X Z ZALl [(ALl (qf_u;_l) sinrx sinéy)] , (7.14)
r=j {=k

where q?,k := 0 for either j =0 or k = 0.
Some properties of the a sequence {q}{k} that belongs to the class Sj;, are
given in next statement.
Theorem 7.6. If {q;i,k} € S,k then the following hold true:
(i) .
> G+ 1) Azq] | In(j +2)In(n) — 0 as n— oo
7=0
(ii)

(k+ 1)|A02qfln’k| In(m)In(k +2) - 0 as m — oo
k=0

n"Asrq;in’n In(m)In(n) = 0 as min(m,n) — oo,
where s,r € {0,1}.
Proof. (i) Applying the discrete summation by parts on the right side of the
equality

m

Z(] +1)|A20an|ln( +2)ln Z Z |A21q§l’k\1n(j+2),
k=n

j=0 Jj=

we have
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m oo

() D> ) G+ Dk + 1) Azagf i | In(j +2)
7=0 k=n
+1In(n) > n(j +1)[A2qf,|In(j +2)

=0

<3N G+ Dk + 1)| Agq | In(j + 2) In(k + 2)

7=0k=n

+nln(n ZZ Jj+1) |A22q]k|ln(j+2)
7=0k=n

<233 (G + 1)k + 1) Asagf | In(j + 2) In(k +2).
:0 =n

Now, the right side of last equality tends to zero, since {q;l, ikt € Sjk.
Consequently,

Z j+ 1)[A24],/n(j +2)In(n) = 0
7=0

independent on m as n — oo.
(ii) The proof can be done in the same lines as the proof of (i).
(iii) Case 1. When s =1 and r = 1 we have

Alquilm In(m) In(n) = In(m) In(n) Z Aglq?’n

j—m
= In(m Z Ardj
j=mk=n
In(m) In(n) ) y
S Z Z(] + 1)(k + 1)[ D225 |-
j=mk=n

So,
mnAqunm In(m) In(n) < In(m) In(n) Z Z(] + 1) (k+ 1)\A22q;l7k| =0
j=mk=n

as min(m,n) — oo.
Case 2. When s = 1,r =0 or s = 0,r = 1, then it is clear that

qg%n In(m) In(n) = In(m) In(n) Z Aloqf,n = In(m) In(n) Z Z Anq?,k.

j=mk=n

Performing summation by parts we have



260 7 L'-convergence of double modified trigonometric sums

G (m) In(n) < In(m)In(n) | Y > klAwgf ] + Y nlAng),|
j=m

j=mk=n

= In(m) In(n) Z Z k|A12(I}i,k| +n Z Z ‘Al?q}iﬂ

j=mk=n j=mk=n

In last two series we apply summation by parts again in order to obtain

qfn’n In(m)In(n) < In(m)In(n) [ Z Z jkﬂgzqﬁk — mkAuq;-{k
j=m |k=n
03 3 s - me |
j=m |k=n

<4 N (G + Dk + 1) Asagdy | In(j + 2) In(k 4+ 2) — 0

j=mk=n
as min(m,n) — oo.
The proof is completed.

Now we prove the main statement of this unit.

Theorem 7.7. If a double sequence {qj{k} € Sji, then for 0 < z,y < 7 the
following assertions hold true:

(i) The limit limp, n—soo [0 (2,y) = f4(x,y) exists,
(ii) f4(x,y) € LY(Q), and

(iii) ||ff,lln — fd|| — 0 as min(m,n) — oo.
Proof. (i) The modified sums
1 m n
d —
man () = 4sinxsiny ZZ
j=1k=1
X Z Z Ay [(Ara (¢f -1 4-1) sinrasinty)],
r=j {=k
which can rewritten as follows
d _ 1

mn 4sinzsiny

(z,y)
m
d d d d P .
XD Y (@ rm1 = dhiier = €1k + 1) sinjasinky

m
- Z (q;l—l,n - q;‘i+1,n - q]('i—l,n+2 + q;l+1,n+2) sin jz sin(n + 1)y
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m n

- Z Z (qiz,k—l - qg@-‘,—Q,k—l - qgl,kﬂ + qgn_i,_lk_;,_l) sin(m + 1)z sin ky
j=1k=1

m
+ Z qm,n - q';dn—i-Z,n - qg@,n-&-Q + q;in+2,n+2) Sin(m + 1).13 bln(n =+ 1)y
j=1k=1

=1 — Iy — I3+ 1.

Moreover, the quantities Iy, Is, I3 and I4 can be written as follows

b= 4Slnxb1ny Z Z (sin(k 4 1)y — sin(k — 1)y )(I}ALk sin jx

1k=
Z Z (sin(k + 1)y — sin(k — l)y)q;-jﬂ’k sin jx

j=1k=1

—

m
= (a1, — qfiy ) sinjasin(n + 1)y
=1

|
s

d d e
(¢§-1,n41 = G1,n41) SN jT S0 ny}

n

1 G d .
= Senz Z qj 1,k — Qj41,%) Sin jz cos ky
j=1k=1

Slnn—|—1 i

1)z — —Da)g?
4smxsmy = (sin(j + 1)z — sin(j ))QJ,n

_qgn,n Sin(m + 1)$ - q;in+17n sin mm‘|

: m
sin ny
4sinzsiny Lz_:l sin(j + 1)z — sin(j — 1)2)q} 41

d : d .
“Imn+1 Sln(m + ].)(E ~ Qm+1,n+1 S mx‘|

Z Z sin(j + 1)z — sin(j — 1)x)q§{k sin jx cos ky

2 sin x [
J=1k=1

n n
_ Z qfnyk sin(m + 1)x cos ky — Z qan’k sin mx cos ky]
k=1 k=1
_sin(n+ 1)y

m
4sin zsiny Z: sin(j + 1)a —sin(j — Dz)qf,,
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d . d .
~ G SI(M + 1) — g, g, S0 mx]

. m

sinny o o .
“Temasing | 20 D=0 D0

_qgn,nJrl sin(m + 1)z — qzﬂrl’nﬂ sin mx]

n

m
= Z qﬁk cos jx cos ky

j=1k=1
sin(m 4 1)z sinma
d d
T ammr GO R = g Dtk cosky
sin(n+ 1)y v 4 sin ny
_W;qj’ncow mequjnHCOSJx
sin(m + Dasin(n + 1)y 4 sinma sin(n + 1)yqd
4sinxsiny mn 4sinxsiny m+1m
sin(m + L)z sinny 4 sinmazsinny 4
4sinzsiny It T iz sin Y Im+1,n+1>
nsin(n+ 1)y | e, . . ..
I, = # Z(Sln(j + 1)z —sin(j — 1)z)q?,,

4sinzxsiny | 4
J=1

- Sin(m + 1)zq7€ln,,n — sin qugn+1,n
m

— Z(sin(j + 1)x —sin(j — 1)x)q§{n+2
j=1

. d . d
+ SIH(m + 1)'rqm,n+2 +sin qum+2,n+2

nsin(n + 1) me:

d .
— g Cos jx
4sinx siny jn2)

j=1
nsin(m + 1)z sin(n + 1)y

a
4sin x sin Y (qmn Qm,n+2)

nsinma sin(n 4+ 1)y
4sinzsiny

d d
(qm+1,7L - q7rn+1,n+2) )

msmm—i—lyi

d
— cosk
4sinzsiny Gmv2.) 4

Iy =
k=1
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msin(m + 1)z sin(n + 1)y
4sinzsiny

(qZ’L,n - qm+2,n)

msin(m + 1)z sin ny

d
(qm,n—i-l - qm+2,n+1 )’

4sinzsiny
and finally
mnsin(m + )z sin(n + 1)y , 4 4 J ;
li= 4sinzsiny (@m,n = Gmt2,n = Gtz + Gmt2inra)-

Combining all the terms of I, I, I3, and I, we obtain

£ o (@y) =S8 (2,y) (7.15)

sm m+ 1)z sinmr ¢~
© 2sinz qukcos kY = 2sinx qu+1’k cosky

sin(n + 1)y d _ sin ny
-_—— L CoS jT — cos jx
2siny ;q]’" J 251ny Zq]’”“ J

+Sin(m + Dzsin(n+ 1)y 4 n sinma sm(n + 1y 4

. - . - q
4sinzsiny mn 4sinzsiny mtLn
sin(m + L)z sinny 4 sinmazsinny
mnt1 Am+1,n+1

4sinxsiny 4sinxsiny

nsin(n + 1)y —

d d -
. . t— g cos jx
4sin x siny (q]’" q]’"+2) J

Jj=1

+nsin(m+ 1)z sin(n + 1)y< J J )
4sinxsiny mn ~ dm,n+2

nsinmazsin(n + 1)y (? gl )
m—+1,n m—+1,n+2

4sinzsiny
msm (m+ 1)y Z

d
— cosk
" 4sinzsiny Grn+2,k) 4

msin(m + 1)x s1n(n + Dy, 4 y
+ Asi - ( mn qm+27n)
sinzsiny

msin(m + 1)z sin ny (4 gl )
m,n—+1 m—+2,n+1

4dsinzsiny
mnsin(m + 1)z sin(n + 1)y

4sinxsiny

Taking into account that % is bounded in (0, 7) x (0, 7), then we
conclude that

sin(m + 1)z sinny sinmazsinny
dm n+1 — U, 7qm+1 n+1 — O

4sinzsiny 4dsinzsiny

d d d d
( m,n qm+2,n - qm,n—i—2 + qm+2,n+2)'
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sinmasin(n + 1)y 4

sin(m + Dzsin(n+ 1)y , ¢ 0
m—+1,n

m,n

— 0,

4sinzsiny 4sinzsiny

as min(m,n) — oo.
Applying twice the summation by parts we get

sin(m + 1)z sin(m + 1)z
fy = T J®
"~ 2sinz Z I,k CSFY = o ding

Z(k? + 1) Ao2qh, 1 Fi(y)
P

+(’I’L + 1)A01q’7n,n+1Fn (y) - qu,n+1D7l(y)]

D] Agagd || F
o] | 2o+ Dldozdn ikl Fiw)]

[sin(m + 1)z| [ =
k=1

+(n+ D] Ao o [1Fa(y)] + an,nHIDn(y)l] ;

where F,(y) and D,,(y) are bounded on (0, ).
The use of Theorem 7.6 implies that all the above terms on the right side
of last inequality tend to zero. Thus

sin(m + 1)z

5 qukCObk‘y—)O as min(m,n) — oco.
sinx

k=1

Similarly, has been shown that

sin ma sin(n + 1)y ~—

Z qin cosjxr — 0,

n
quwm cosky — 0,
1

2sinx 2siny 4
k= Jj=1
and
sin ny
cosjr — 0 as min(m,n) — oco.
2 Slny Z QJ n+1 J ( )

nsin(n+1)y

Tem sy and applying twice the summation

Further, putting v, (z) =
by parts to the equality

m m
Z @ = o) cOs jz = () Z(Amqg,n + 201} 4 1) cos jz
j=1

Jj=1
we have
m m
an qj n+2)COS]$—'Yn Z j+1 Aglan+A21qj n+1)F ( )
J:1 =1

+(m + 1)(A11qi+1,,L + A11qz1+1,n+1)Fm ()
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+(A01qgn+17n + AOlqgn+17n+l)Dm(x)]

ZZ k/’+1)|A22qjk +A22q] kot
=1 k=n
+(m 4+ 1)n|Angh 1 n + A1gi i nsl

—I—TL‘AOlq:in_,_Ln + AOlqu+1,n+l|] =0,

as min(m,n) — oo (by given hypothesis).
In the same lines we have concluded that

msin(m + 1)y i

d
- Jcosky — 0
“dsinzsiny G2 4

k=1

as min(m,n) — oo.
Also, by Theorem 7.6, we have

nsin(m + 1)z sin(n + 1)y
4sinzsiny
nsin(m + 1)z sin(n + 1)y

- Aorgs, Aorqy -0
4sinzsiny ( 01qm,n + 01qm,n+1)

d
(qm,n - Qm,n+2)

as min(m,n) — oo.
Reasoning in the same way we get

nsinma sin(n + 1)y

d d
- - — —0
4<inr siny (qm+1,n qm+1,n+2) )

n

msmm—i—lyz

d
— cosky — 0
4sinzsiny Tmtak) Yy ,

k=1
msin(m + 1)z sin(n + 1)y
4sinxsiny

(@ = doi2.n) = 0,
and

mnsin(m + 1)z sin(n + 1)y

d d d d
4sinxsiny (Qm’” m+2,n ~ Imn+2 qm+2,n+2)

_ mnsin(m + 1)zsin(n + 1)y

4dsinzsiny
X(Anq;'ihn + Alleihn-H + Aanimﬂ + A11qzz+17n+1) -0
as min(m,n) — oo.

Now (considering q(‘ik = q;{O =0, Vj,k), we apply double summation by
parts to
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m
y) = Z Z )‘j/\kq?,k cos jx cos ky,
7=0Ek=0

which implies

M=

~
I
<
£
Il

Sﬁn n( ): Allq]d',kD( )Dk ZAOlan_l kD"L( )Dk(y)

0 k=0

+ Z Aloq]d,7z+1Dj(x)Dn(y) + qg1+1,n+1Dm () Dn(y)-

<
Il
o

Once again, we apply double summation by parts to the last equality to
obtain

+ fju 04D Al @)

+(m A+ 1)(n+ 1) A% 11 1 Fn(2) Fa(y)

n m

Z (k + 1) Aoaqly 11 x Do (2) Fi(y) + (5 + 1) A2065 41 F () D (y)
j=0

+(” + 1)A01qm+1,n+1D7n(x)Fn(y) +(m+ 1)401q;in+1,n+1Fm(l’)Dn(y)
+qgn+1,n+1Dm($)Dn(y)
SN G+ D+ 1) Agaqd ||Fy ()] Fi(y)]

j=0 k=0

3 (k4 D) + )] Araglh 1 4l B (@) i)
k=0

+Z )(n+1)[A21q] 1| Fj () || Fn (y)]
J

+

(m +1)(n + 1)[Andg, 1t [ Fn (@) Fa(y)]

+ Z (k + 1)[ Aoz 4 1 | Do (@) | F ()] + D (5 + 1| A206 411 ()] D (y)]
k=0 j=0
+(n + 1)|A01q,‘fﬁ1,n+1I\Dm(x)||Fn(y)| + (m+ 1)|A01qgn+1,n+1||Fm(m)|‘Dn(y”

+m 4101111 Dm ()| Dn (9)].
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From the last inequality and the given assumptions we conclude that

SffL .(z,y) converges to f¢(z,y) as min(m,n) — oo. So,
fUay)=  lim  S§ (z,y)=  lim  f (z,y)
min(m,n)—oo min(m,n)—oo
exists.

(ii) In the equality

// ’fr(fz,n(‘r7y)‘dxdy:// ZZ chosymcosk;y dxdy
070 0J0 =0 k=

we apply the double summation by parts to obtain

/0 / 12 ()| dedy = / / SSUG 1)+ 1) Ansg Fy (@) Fu(y) | dedy.

=0 k=0

Since * f Fj(xz)dz =1, then by given assumption

/0/0 |fﬁn7n(x,y)|dxdy:(’) Zz_:]—i-l )(k+1) |A22qjk| < 00.

=0 k=0

(iii) We have to show that under given assumptions | fd , — f? — 0 as
min(m,n) — oco. Indeed, we can write

o0 o0
Z Z q;-i,k cos jx cos ky

j=m+1k=n+1

sin(m + 1)z
2sinx

e, — £ =

sinmx

n
Z Gt 1 cOS ky + Z o1 o COS Ky

2sinx

sin(n Y
+W;%nmij+ 95 1ny Zq]n_,’_lCOij

sin(m + 1)asin(n + 1)y 4 sin ma sm(n + 1Dy 4
- - qm+1,n

m,n

4sinzsiny 4sinzsiny

_sin(m + Dasinny 4 sinmazsinny
9m n+1l qm+1 n+1

4dsinzsiny 4sinzsiny

nsin(n + 1)y w— J 4 .
Isimasing 2o\ Gn T Garz) 0055
j=1

nsin(m + 1)z sin(n 4+ 1)y

4sinxsiny

d d
(qm,n - qm,n+2)
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nsinmasin(n 4+ 1)y

(qZH—l,n - qgn+1,n+2)

4sinx siny

m sm m—+1
DTS rE— Z - QZz+2,k) cos ky

msin(m + 1)z sin(n + 1)y

mnsin(m + 1)z sin(n + 1)y

+

j=m+1 k=n+1

4sinzsiny —

d _ d
4sinxsiny (@ = Tmt2n)

~ msin(m + 1)z sinny

4 sm T sm y (Qm n+1 qm+2,n+1)

d d d
. . — — +
4sinxsiny (va” m+2,n — 9m,nit2 qm+2,n+2)

o0 o0
Z Z q}-{k cos jx cos ky

sin(m + 1)z sinmr <~
cosk cosk

~ 2sinz quk y 2sinx qu+1’k y
sin(n + 1)y sin ny
o cosjx||l + cos jx

2siny ;qJ” J 2smy Zq]’”“ J
sin(m + L)asin(n + 1)y , sin ma sin(n + 1)yqd

4sinx siny mn 4sinx siny mtln

sin(m + 1)xsinny , sinmzsinny 4

4sinxsiny @m,n+1 4sinxsiny Tm+1,n+1

m
nsin(n + 1 y

d .
: Cos jx
4sinzsiny 4 1qJ” Gjin+2) €05 ]
j

nsin(m + Dz sin(n + 1)y
4sinxsiny

d d
(Qm,n - Qm,n+2)

nsinmasin(n + 1)y

. . (qm+1 n qu»l n+2)
4sinzsiny ’ ’

min(m + Uy §na ot eosky
k_

“dsinzsinyg siny

msin(m + 1)z sin(n + 1)y
4sinxsiny

( 'fln,n - qfdn+2,n)

msin(m + 1)z sin ny

(qm,n-ﬁ-l - q7dn+2,n+1)

4sinxsiny
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d d d d
(qmm, - qm+27n - qm)n+2 + qm+2’n+2)

mnsin(m + 1)z sin(n + 1)y
4sinzsiny

Now, we have

sin(m + Dz sin(n + 1)y 4

m,n

Is = = (9(|qg%n| Inmlnn) =0

4sinzsiny

as min(m,n) — oo.
Similarly, we get

sinmzsin(n+ 1)y 4
I; = 50
! 4sinzsiny Im+1n )
sin(m + 1)asinny ,
Is = : Lo,
® Asinzsing  motl
and
sinmxsinny
Igy=|——~ 0
’ 4sinxsiny Gmt1,n+1
as min(m,n) — oo.
Moreover,
L = (‘"(Amng,,n + AOquanN InmInn)

O
o (\n(A01qfln7n| + \Amng,nﬂ)\ InmlInn) — 0

as min(m,n) — oo.
In the same way we have verified that

nsinmzsin(n + 1)y, 4 4

Lz = 4sinx siny (qmﬂv" o QM+1,n+2) — 0,
msin(m + )z sin(n+ 1)y, 4 J

T = - — 0,

" ‘ 4sinzsiny (@ = Gms2n)

and

msin(m + 1)z sinny , 4 4

Lis = | 4sin x siny (qmv”+1 - qm+27n+1) -0

as min(m,n) — oo.
For I, we have
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L =0 (|mn(A11q'fn,n + Anqu,nﬂ + AllQrdn+1,n + A11(Ji+1,n+1)| 1nmlnn) —0

as min(m,n) — oo.
Applying the summation by parts to I, we obtain

sin(m + 1)x 4
I2 = W Z Aolq"L ka( ) + q,m,n_,'_an(y) H
sin(fm + 1z | <&
- ﬁ (k+1)Ao2qt 1 Fr(y) + (n+ 1) Ao1q, 1 Fu(y) + qgn,n+1Dn(y)] H
k=1

=0 <lan(lc + 1)|A02qgl,k| +(n+ 1)1nm\A01qgl’n+1| + \qﬁlmﬂ\ lnmlnn> .
k=1

Consequently, the use of Theorem 7.6 implies

sin(m + 1)x
Z qm k COS ky

I, =
2= © 2sinz

as min(m,n) — oo.
Similarly, we have

. n
sinme d
3= 2sinz qu+1,k cos ky — 07
k=1
sin(n + 1) y
I, = 25y quncowx — 0,
and
sinn
— Yy -0

5 —

2 smy Z @1 COSJ

as min(m,n) — oo.
Now, for I;9 can be written

Iio = O(nln n)/ Z(q_;in — G yo) cOs jx|da
o 15
= O(lnn)/ Z Z k(Amq}{k - Amq;l)k_ﬂ) cos jx|dx,
0 1j=1k=m

which, after using the summation by parts, takes the following form

I = O(lnn)/o Z Z k( Allqj E— Allq] kt2)Dj () |da

j=1k=m
= O(ln n)/o Z k‘(Algq;{k + Algq?7k+2)Dj (33) dzx.

j=1k

m
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Applying summation by parts, once again, we get

Iy = O(lnn) / 3G+ Dk + Anagthn (o) do
j=1k=m
Z Z J+ k| Az2qf . + Agag) i | In(k + 2)
Jj=1k=m

ST G+ Dk +1)]Asagd | In(k + 2)

1 k=m

MS

<.
Il

O3 (G +1)(k+1)| Axagl s | In(k+2) | =0

j=1k=m

as min(m,n) — oo.
Similarly, we have verified that

msin(m + 1)y =
I3 = H Z —qflnw’k)cosky -0

4sinxsiny
k=1

as min(m,n) — oo.
Finally, we have to show that

oo o0

Z Z q;{k cos jx cos ky

j=m+1 k=n+1

I, =

as min(m,n) — oo.
Namely, after performing double summation by parts twice, we have

oo (oo} (oo}
L = Z Z A1}, D;(x) Di(y) — Z 201453, 11,3Dom () Dy, (y)
j=m+1k=n+1 k=n+1

e
Z AlOQ?,n—HDj (x)Dn (y) + q;in+1,n+1Dm ('r)Dn (y)
j=m+1

Z Z )(k + 1) Agaqf , Fy () Fi(y)
j=m+1k=n+1

Z (m+ 1)(k+ 1) A12¢2, 41 p Fn(2) Fi(y)
k=n+1

> G+ DM+ 1)Ang] 0 Fi(2)Fa(y)
Jj=m+1

_|_

_|_
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lom + 1) + 1>Allqz+l,n+1Fm<x>Fn<y>H

o0

+ Z (k+ 1)Aozq%+1,kDm(m)Fk(y)
k=n+1

o0

+ Z (j+ 1)A2oqg,n+1Fj($)Dn(y)
j=m+1

|+ 1>A01qz+1,n+1Dm<x>Fn<y>H

lom + 1>Amqfn+1,n+1Fm<x>Dn<y>H

N q$+1,n+1Dm<x>Dn<y>]]

( Z Z )k + 1)|A22qj el (m+1)(n+ 1)|A11q7i+1,n+1

j=m+1k=n+1

+ > (k4D Aoag i plmm+ D (5 +1)[A20q] 4100
k=n-+1 j=m+1

+(n + 1)|A01Q7dn+1,n+1‘ Inm + (m + 1)|A10qgn+1,n+1| In ”)

+|qfn+1’n+1| Inmlnn —0

by given assumptions and when min(m,n) — oo.

As a conclusion, combining all the above terms, we obtain ||f,°fl’n—fd |l —0
as min(m,n) — oo.

The proof is completed.

Remark 7.8. As we know that if a double trigonometric series converges in
L'-norm to a function f¢ € L*(Q), then it is a Fourier series of the function
f4. Consequently, according to Theorem 7.7 the series (7.12) is the Fourier
series of f?.

Corollary 7.9. If a double sequence {qﬁk} belongs to the class Sji, then
1S4, — f = 0 as min(m, n) — oco.

Proof. 1t is clear that

||fd - Sﬁn,n” = ||fd - :‘fl,n +fgz7n - S?n,n”
<=l + 1 i = Sl = 17 = fr

m

sin(n + 1) sinn
+ qu]ncowm i
=1

cos jx
2smy Zq]’"“ J

2siny
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. sin(m + Dasin(n + 1)y 4 sinmazsin(n + 1)y 4
4sinxsiny mn 4sinxsiny Im+1n
. sin(m + L)z sinny , sinmasinny
4sinzsiny mnt1 4sinzsiny Im+1nt1
nsin(n + 1)y - d .
_—= —q5 Ccos jx
+ 4sinzsiny ; @int2) €08 J
n nsin(m + 1)z sin(n + 1)y( d d )
4sinzsiny Imn ~ Qmnt2

nsinmzsin(n + 1)y, 4

d
* 4sinxsiny (@ns1n = Gt 1nt2)

msin(m + 1)y ~
I Er—t Z — o) cos ky

4sinzsiny

msin(m + 1)zsin(n + 1)y

d . d
* 4sinzsiny (mn = Gmt2m)

msin(m + 1)z sinny

(qm,nJrl - q’rdn+2,n+1 )

4sinzsiny

mnsin(m + 1)zsin(n + 1)y

d d d d
+ (Qm,n - Qm+2,n - qm,n+2 + qm+2,n+2)

4sinxsiny

According to Theorem 7.7, all terms to the right side of last inequality
tend to zero as min(m,n) — co. Subsequently, the conclusion of this corollary
follows.

The proof is completed.
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