Toader Gheorghe

Hierarhies

of
Convexity

of
Functions

2015



I want to thank S. S. Dragomir, P. T. Mocanu, J. E.
Pec¢ari¢, I. Rasa, I. Serb and Silvia Toader, the coautors
of some of the included papers.



Introduction

Let us consider the sets of continuous, convex, starshaped, and superadditive
functions on [a,b] given by:

Cla,b] = {f : [a,b] — R,f continuous},
Kla,b] = {f € C[a,b];f(tx + (1 —t)y) < tf(x) + (1 - t)f(y), Vx,y € [a,b],t € [0,1]},

S*[a,b] = {f e Clab); I IO T@ 5y < b},

and
S[a,b] = {f € C[a,b];f(x) + f(y) < f(x+y—a) +f(a), VXx,y,x+y—a € [a,b]},
respectively.

For a = 0 we denote by C(b),K(b),S*(b), and S(b) respectively, the corresponding
set of functions, restricted also under the condition f(0) = 0. A.M. Bruckner and E.
Ostrow have proven in [1] the strict inclusions:

K(b) < S*(b) < S(b).

These inclusions were extended with some results of preservation of the above
properties by the arithmetic integral mean

AHK) = + | : f(t)dt.

A function f is said to have the property "P" in the mean if A(f) has the property "P".
Denoting by MK(b), MS*(b) and MS(b) the sets of functions which are convex,
starshaped, respectively superadditive in the mean, in [1] was proved that

K(b) € MK(b) < S*(b) < S(b) = MS*(b) = MS(b),
which was named in [2] as the hierarchy of convexity.

Simple proofs and generalizations of the results of [1] may be found in [6]. In [5] was
considered a more general integral mean Ay defined by

A0 = s [ g ot

In [6] was proved that if Ag preserves the convexity (the starshapedness or the
superadditivity) then the function g is of the form

g(x) = kx%,u > 0,k # 0.
Making the substitution t = xs't, the mean A4, denoted now A,, becomes
1
Au(F)(X) = j f(xs")ds,
0
It was also proved that for all b,u > 0, the following inclusions
K(b) <« MU'K(b) < S*(b) c S(b)
N N
MUS*(b) < MUS(b),



hold.

In [4], one of the many generalizations on the convexity of functions - called m -
convexity - was introduced. The set of m - convex functions is defined by:

Km[a,b] = {f € C[ma,b]; f(tx + m(1 —t)y) < tf(x) + m(1 — t)f(y),

vx,y € [a,b],t € [0,1]}, m € [0,1].
If a = 0and f(0) < 0, we also obtain a hierarchy of m - convexity:
K(b) € Kn(b) = Kn(b) = S*(b), forl >m >n > 0.
Taking it into consideration, in [3] was defined the order of star-convexity of a function
f e S*(b) by
m*(f) = sup{m : fis m — convex}.
As was shown in [9], for every p € [0,1] there is a polynomial P of degree four such
that m*(P) = p.
The preservation of m - convexity by the integral mean A, was proved in [7]. It was
shown that foru > 0and 0 < n < m < 1, the following inclusions
K(b) c Kn(b) < Kn(b) c S*(b)
N N N N
MUK(b) < MYKp(b) < MUKp(b) < MUS*(b)
hold.

Assuming m # 0, in [8] were defined the following sets of functions:

Salanb] = {f < Cla.bl =T > T a<zcx<b}

called m — starshaped functions;

Sm[a,b] = {f € C[a,b];f(x) + f(x) < f(x +y —ma) + mf(a), Vx,y € [a,b]},
called m — superadditive functions;

Jnla,b] = {f € C[a,b];f(2x — ma) — mf(a) > 2[f(x) —mf(a)], a<x < b},
called Jensen m — starshaped functions;

In[a,b] = {f c C[a,b];f( M+ ) ) < MfCO+fWN] vy v e 1a, b]},

1+m - 1+m

called m — Jensen convex functions;
Hm[a,b] = {f € C[a,b];f(tx) < tf(x),a <x <b,m <t <1},
called m — subhomogenous functions, and

Hxla,b] = {f € C[a,b];f(%) < 12+—mmf(x), a<x< b},

called Jensen m — subhomogenous functions.

In fact, to assure that all the definitions and results that follow are valid we will
assume that the functions are defined on [ma, 2b — ma]. For these sets, we have the
following main results.

Theorem The following inclusions



Km[a,b] < Si[a,b] < Sn[a,b] < Ji[a,b]
and

Hi[a,b] 2 Hp[a,b] 2 Kn[a,b] < Jn[a,b]
hold.

| am also the author or coauthor of other thirty papers with subject related to the

hierarchy of convexity of functions. Most of those papers were published with more
than twenty years ago, in Romanian of other less known journals. As | got many
demands of copies of some of these papers, | decided to offer them with open access.
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Proc. Colloqu. Approx. Optim., Cluj-Napoca, 1984, 329-338
SOME GENERALIZATIONS OF THE CONVEXITY

Gh.TOADER

In this paper we present some generalizations of the convexity of real functions and
propose a new one. First of all let us recall four equivalent definitions of the convexity. Al-
though the discussion may be done in more general cases, we content ourselves to consider

only real functions defined on a convex (real) set C'.

Definition 0.1. The function f : C — R is said to be convex if it satisfies one of the

following conditions:

Ei ={(z,y);x € C, y> f(x)} is a convex set (1)
[x,y,z; f] > 0 for any x,y,z € C (2)
where [x,y, z; f] represents a divided difference;
(== 9) f(@) + (o= 2) Fl) + (g —x) - F(2) 20, fora<y<z Q
a-f(z)+b- fly)— flax +by) >0, for anyx,y € C, (a,b) € J (4)
where J = {(a,b) : a,b > 0,a+ b= 1}.
Each of these relations has led to some generalizations.

1. First of all let us recall more directions in which was generalized the notion of convex

set.

A.A set C is said to be convex if for any points z,y € C the segment zy is in C.
Some generalizations replace the segment zy by a joint set J(x,y). Systems of
axioms for the joint sets were given by A. Ghika [15], W. Prenowitz [39], V.W.
Bryant and R.J. Webster [9].

B. The segment zy is the set of points tx + (1 —t)y, for t € I = [0, 1].
In other generalizations one considers, instead of the combination given before,
a "mixture" < t,x,y > which satisfies some axioms. Such systems of axioms
gave T. Swirszck [44], S.P. Gudder [18] and L.A. Skorniakov [41].

1



C. Sometimes the combination tx + (1 — t)y is only replaced by another. So is, for
example, the k-convexity (D.K. Kulshrestha [31)):z,y € C, t € [ = tFz + (1 —
t)ky € C.

D. Fixing one of the ends of the segment, say x at x¢, we find another generalization
of convexity, the stellarity with respect to zg. In the complex plane, this was
generalized by G.M. Goluzin [16]. The idea was taken again by I. Marusciac in
[27] defining the polygonal convexity: a set X is m-convex if for any z,y € X
ther is a polygonal line between x and y, 7., C X. If any such polygonal line

may be taken to have at most m edges, the set X is called m,,-convex.

E. Another generalization is similarly to the definition of the topology a family of
sets defines a convexity on a space X if it satisfies some axioms (see V.P. Soltan
[43]).

F. A way for other generalizations was given by F.A. Valentine [47] defining a
three point convexity: with any three points x,y, z, the set contains at least
one of the segments zy,yz, zx. Later was considered a m point convexity, a

(m, n)-convexity (see M. Breen [7]) and a m-segment convexity (M. Breen [§]).

G. One considers also some discrete convexities as: p-convexity (see I.Munteanu

[30]), S-convexity (see I.Oprea [32]) and strong convexity (L. Lupsa [25]).

2. The various generalizations of the relation (2) may be found in the book of T. Popoviciu
[38].

3. Let g : I> — I be such that g(z,y) > 0 for y > x. The relation (3) led to the following

generalization:

Definition 0.2. The function f is called g-convez if:
9(y,2) - f(x) +9(z,2) - fy) + 9(z,9) - f(2) 20, forz<y<z

In a particular case this definition was given by I.LE. Ov¢arenko [34] and in this form
by D.M. Vasi¢ and J.D. Kecki¢ in [48].

4. It seems (see [38] that the convex functions were introduced by O. Stolz in 1893 in the

study of the derivatives, considering the relation:
flx+h)—=2f(z)+ f(x —h) >0

that is

f(z) + f(y) _f(x+y> > 0. (5)

2 2



J.L.W.V. Jensen [21] is the first who studied them systematically.The relation (5) is

in fact a generalization of (4). Let us see other generalizations.

A. The geometrical interpretation of the relation is that on the segment xy, the function
f takes values below the chord that connects the values of f at = and y. Starting
from this, in some generalizations the chords are replaced by families of functions
with some propertiee (see the book of E. Popoviciu [35] and the paper of V.P. Soltan
42)).

B. Many generalizations refer to the convexity with respect to a given function h (that
is the function h o f to be convex). So, for h(z) = logz we have the log-convexity
(P. Montel [29]), for h(z) = exp(rx) the r-convexity defined by B. Martos (see [17])
and by M. Avriel [1], for h(xz) = z® the am-convexity defined by M. Avriel, I. Zang
[2] and by I. Marusciac [26].

C. Other generalizations are of the form:

g(a) - f(z) + h(b) - f(y) — flax + by) = 0. (6)

So for g(a) = h(a) = a®, we have the s-convexity defined by W.W. Breckner [6] and
D.K. Kulshrestha [24] and g(a) = Aa and h(1 —a) = 1 — Aa the A-convexity of Chi
Zong Tao and Qi Li Qun [10] if A € I is constant and f(z) < f(y), or the weak
convexity of C.R. Bector [4] if A = \(z,y,a).

D. A well known generalization is the quasi-convexity, defined by:

flaz +by) < Cmaz{f(z), f(y)} (7)

with (a,b) € J and C' = 1. Such functions were introduced by T. Popoviciu [37] as

being unimodal. Then B. de Finetti [13] considered function with convex level sets:

Ly={zeC: f(z) <y}

finding again the class of quasi-convex functions. I. Kolumban [22] has enlarged the
class by admitting C' # 1 and (a,b) in a subset of J. Many authors have defined
families of functions between that of convex and of quasi-convex functions. Let us to
mention E.F. Beckenbach (see [5]), B. Martos (see [17]), I. Oprea [31] and Chi Zong
Tao and Qi Li Qun [10].

In the last case, A-convexity means convexity for A = 1 and quasi-convexity for
A = 0. Many generalizations of quasi-convex function may be found in the survey

paper of H.J. Greenberg and W.J. Pierskalla [17]. Other generalizations are in the
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book of J.M. Ortega and W.C. Rheiboldt [33] and in the papers of M. Avriel and I.
Zang [3], V.P. Soltan [43] and I. Marusciac [27]. Quasi-convexities of high order are
defined by E. Popoviciu [36].

E. A wide generalization is given by A. Guerraggio and L. Paganoni in [19] a function
f is said to be (H, K)-convex if:

f(H(z,y)) < K(f(2), f(y), forz,yeC.

F. M.Kuczma [23] has relaxed the relation (4) requiring it only almost everywhere, that

is defining almost convex functions.

G. Another relaxation is given by:

af(z) +bf(y) — flax +by) € P. (8)

In the case of convexity P is [0,00). D.H. Hyers and S.M. Ulam [20] and Gh. Cimoca
and I.Serb [11] have considered P = [—¢,00), obtaining approximately convex func-
tions. Arbitrary sets P have used D. Duca [14] for complex functions and Gh. Toader

[46] for sequences in a group.

H. In their book [40], A.W. Roberts and D.E. Varberg have proposed, as an independent
study project, to replace J in (4) by an arbitrary set M.
Call this M-convexity. So, the Jensen-convexity, given by (5) coresponds to M =
{(1/2,1/2)}, the p-convexity of E. Deak [12] to M = {(p, 1—p)}, the subadditivity to
M = {(1,1)} and the stellarity to M = I x {0}. In what follows, we shall introduce
another notion of convexity of this type. In the case of complex functions, P.T.
Mocanu [28], has introduced a-convexity, a notion intermediate to convexity (o = 1)
and stellarity (o = 0). We have transpose in [45] this notion to sequences and now

we want to do it in the case of real functions.

Definition 0.3. The function f: C — R is said to be m-convex if for any x,y € C and
any t € I it satisfies:

t-flx)+m-(1=t)- fly) = fltz +m(l = t)y) > 0. 9)

Remark 0.1. The relation (4) is requested to be verified for any (a,b) on the segment
joining (1,0) with:

- (0,1) in the case of convexity;

- (0,0) in the case of stellarity;



- (0,m) in the case of m-convexity.

Remark 0.2. Let us denote for y < x the points Az, f(x)),B(y, f(y)) and
P(my,mf(y)).Then f(z) is under the chord:

e - BA, for z € (y,x), if f is convex;
o - OA, for z € (0,x), if f is starshaped;
e - PA, for z € (my,x), if f is m-convez.

Remark 0.3. Obviously, m-convezity for m = 1 and stellarity for m = 0. To obtain
a hierarchy of m-convezities, we shall prove first some relations in the general case of

M -convexity.

Definition 0.4. Two sets My and My are in the relation My < My if for any (a,b1) € M
there is a point (a,bz) € My such that by > b1.By M > 0 we mean M > I x {0}.

Lemma 0.1. If M >0, the function f is M-convex and f(0) < 0 then it is starshaped.

Proof. For any a € I, there is an (a,b) € M with b > 0. Thus

flaz) = flax +00) <a- f9z)+b- f(0) < a- f(z0.

O
Theorem 0.1. If 0 < M; < Ms, then any Ms-convex function f is Mi-convex.
Proof. For any (a,by) € Mj, there is an (a,be) < My with by > b;. Thus:
flaw+biy) = Flaz -+ b 1) < of @)+ bof (o) < of (@) + b £ (o).
O

Theorem 0.2. For any M C I?, closed, M > 0, there is a function g : I — I such that
M -convexity be equivalent with G-convexity, where G is the graph of g.

Proof. 1t is enough to define:
g(x) = mazx{y : (z,y) € M}.
O

Remark 0.4. All these properties may be proved in more general cases but this only

complicates the enounces.



Theorem 0.3. If0 < mq < mo <1 then:
convexity = mo — convexity =—> my convexity —> stellarity.

Lemma 0.2. The function f is m-convex on [a,b] if and only if the function:

flz) —m-fy)

T —my

fm(z) =

is increasing on my,b) N [a,b) for any y € [a,b).

Proof. The relation (9) is equivalent to:
f@) =mf(y) o fltz+m(l—t)y) —mf(y)

xT—my t(z —my)

that is, denoting z =tz + m(1 — t)y (or t = (z — my) : (x — my) if it is given an z < x),
we have:

fm(2) < f(x), for z <.

O]

Lemma 0.3. The function f € C[a,b] is m-convex on [a,b] if and only if x > y implies:

#(z) > M (10)

x —my

Proof. By Lemma 2, we have f,,(z) increasing, that is f; (x) > 0, which gives (10). O

Remark 0.5. These results combine known properties of convex and of starshaped func-
tions. Instead to give more such properties, we look for relation between the m-convexity
and other convezities.

M -convex function may be defined on a more general set.

Definition 0.5. A set D (in a linear space) is called:

i) M-convez if for any x,y € D and (a,b) € M, we have ax + by € D;
it) m-convex if for any x,y € D, any t € I, we have tx +m(1 —t)y € D.

Lemma 0.4. A function defined on a M -conver set is M -convex if and only if its epigraph

Ey is M-convex.
Lemma 0.5. A m-convex set D is w2-convex.

Proof. For any x,y € D, the segment joining x with my and that joining y with mx are
in D. They meet in the point (z +y) - m/(1 4+ m), that is D contains a 2-polygonal line
joining x with y. O



Remark 0.6. In spite of the lemmas 4 and 5, a m-convex function is not w2-convex (as
it is defined in [27]). Also it can be proved that the m-convezity is not a g-convezity in the
sense of [48]. The M -convezity is also independent of the order generalizations of (4) so

that it can be combined with any of them.
We give here only:

Definition 0.6. A function f defined on a M-convex set D is said to be M -quasi-convex

if it satisfies (7), with C =1 for any x,y € D and any (a,b) € M.
Lemma 0.6. A function f is M -quasi-convex if and only if all his level sets are M -convex.
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AN INTEGRAL MEAN THAT PRESERVES SOME
FUNCTION CLASSES

GH. TOADER

ABSTRACT. Se demonstreazi c& singurele medii integrale de forma
(6) care pastreazd clasa functiilor convexe, stelate, sau supraaditive se

obtin pentru functia pondere de forma: g(z) = z*, cu v > 0 arbitrar.

In [4] we have shown that the sequence (X,,),>0 given by:

_pOIO_’_"'_’_pnIEn
Po+ -+ D

(1) X

is convex for any convex sequence (2, ),>o iff there is an v > 0 such that

the weights p,, be given by:

(2) pnzpo<u+z_1>

3 <v):v(v—1)...$v—n+1)’fornZL @:1.

n.

A similar result we have proved in [5] for starshaped sequences and so
we have obtained an improvement of the hierarchy of convexity from [3].

More generally, we have proved in [6] the following:
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Theorem 1. For some functions a,b,c,d : R — R, let us consider the

eTpPression:

(4) t(zn) = a(n)rniz + b(n)zni1 + c(n)z, + d(n)zo
and the set:

(5) K ={(zn)n>0: t(x,) >0, ¥Vn >0}

If for any (x,)n>0 € K, the sequence (X,,)n>0 given by (1) is also in K
and if the sequence (kn),>o belongs to K for any real k, then the weights
pn are given by (2) with some u > 0.

In what follows we establish similar properties for functions improving
some results from [1].

In [2] is considered the integral mean:

(6) Fy(f)(a) = ﬁ / " 1()g (2)ds

and for fixed function g have a given sufficient conditions on f such
that F,(f) have a prescribed property. We are interested in finding those
functions g which furnish by (6) integral means that preserve a given
function class: that of convex functions, of starshaped functions, or of
superadditive functions. If ¢ is such a function, then kg has the same
property for any real k # 0. As a convention, we consider always k = 1.

For some fixed functions a,b,c,d : [0,q] — R, let us consider the

operator:

(7) Ty(z) = a(z)y" () + b(z)y'(z) + c(x)y(z) + d(2)y(0)
and the set of functions:

(8) S={f:10,q] = R, Tf(z) >0, Va}.

2



It may be easily proved the following:

Lemma. The set S contains the functions f(x) = kx for any real k

(9) b(x) = —zc(x), ¥V x €]0,q].

Theorem 2. If it is satisfied (9) and for any f € S, the transformation
(6) gives a function Fy(f) in S, then g must be of the form:

(10) o) = oxp [ 755 /hio)
with
hz) = 1z + ng/%exp (/ Zc(f)) dx)
ifa#0, or:
(11) glx)=2", u>0
ifa=0.

Proof. From (9) we have that f(z) = kz is in S for any real k. So, by
hypothesis,

Fy(f) () = k—— / Ctg/ (1)t

and denoting:

(12) Glo) = —— /0 " g(t)dt

we have:



and so
TF(z) = —kla(2)G"(z) — 2c(z)G(z) + c(2)G(z)].
Hence TF(z) > 0 for any real k iff:
(13) a(z)G" (x) — c(z)[zC'(z) — G(x)] = 0.
If a = 0, (13) becomes:
2G'(x) — G(z) = 0
or G(x) = C'z, which gives g of the form (11). If a # 0, we put:
(14) (z) = 2G'(z) — G(x)
and the relation (13) becomes:
(15) a(z)?(z) — zc(z)z(x) = 0

that is:

and by the usual methods:

Gx) = c1o + CQx/%eXp </ “;‘“;%) da;> dx

which gives (10).

We may obtain some consequences.
Theorem 3. The function F,(f) is convex for any convex f if and

only if there is an u > 0 such that g(x) = x.
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Proof. If a convex function f is twice differentiable then f”(z) > 0.
So if F,, preserves any convex function it also preserves the set (8) which

correspond to the operator (7) with:
(16) a=1 b=c=d=0.
By the theorem 2:

1 dx
1 =
( 7) g(x) C1T + Co P (/ clx+02>

which gives g1 (z) = 2%, for ¢; # 0, and go(z) = exp(ux), for ¢; = 0. But

the function f(z) = —sin(ux) is convex on [0, 7/u], while Fy (f)(0) =

—u?, that is g don’t preserve the convexity. That ¢; preserves the con-
vexity for any u > 0 is proved in [2]. Namely, making in (6), for g(z) = z*,

the substitution: s = 2t'/*, it becomes:

(©) Fu(f)(x) = / F (e

and the conclusion follows easily.

Theorem 4. The function F,(f) is starshaped for any starshaped func-
tion f iff g(x) = x* for some u > 0.

Proof. As it is proved in [1], if the starshaped function f is differen-
tiable, then:

(18) —zf'(z) + f(z) = f(0) 2 0.

So, if F, preserves the starshaped functions, it preserves also the set S

which correspond to the operator (7) with:

(19) a=0, c=1



and so g must be given by (11). That for such functions g, the trans-
formation Fj really preserves starshaped functions is also proved in [2],
using the relation (6).

Remark 1. In [1] it is considered also the class of superadditive func-

tions, that is of functions f : [0, ¢] — R, which satisfy:

(20) fl@+y)+ f0) > f(x)+ fy), Vo,y,x+y€0,q]

Although the relation (20) is not of the form asked by the theorem 2,
the method of proof may be used to obtain:

Theorem 5. The function Fy(f) is superadditive for any superadditive
fiff g(x) = z*, for some u > 0.

Proof. As in the proof of the theorem 2, because f(z) = kz is super-
additive for any real k, the function F(z) = k[x — G(x)] also must be so.

Hence
k[G(x) + Gy) — G(x +y)] > 0, for v,y,2+y € [0,q]

that is, k being of arbitrary sign, the function G must satisfy the
functional equation of Cauchy. In very large hypothesis, this implies:
G(x) = Cx, which gives g(x) = x079/¢. That the condition is sufficient

also follows from (6’).
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GENERALIZED FINITE DIFFERENCES

GH. TOADER AND SILVIA TOADER

1. Finite differences may be easily expressed by means of divided differ-
ences (see [7]), but they are not simply divided differences with equidis-
tant knots. In this paper, we consider a modified expression instead of
the usual divided difference, which reduces exactly at finite difference in
the case of equidistant knots. This expression is taken as definition for
finite differences with respect to a Tchebysheff system.

2. We begin by presenting some definitions and results which we need
in what follows.

Definition 1. The system U, of real functions (uo,...,u,), will be
called a Tchebysheff system (or a T-system) of the set E if the determi-

nant:

Uy - .-, Up
1 V =
( ) (ZL‘(),...,ZL’n)

does not vanish for any system of different points zg,...,z, in F.

uo(wo) ... up(wy)

un(zo) .. up(zy)

1



Definition 2. The system U, of real functions (uo,...,u,) will
be called a Markov system (or an M-system) on E if every subsystem
(ug,...,ux), for k=0,...,n,is a T-system on E.

Definition 3. Let U, be a T-system on E and z,...,x, a set of

different knots from E. The expression:

V(UO,...,un—l;f)
Lo,y Ty1,Tn
2) Unsr: To, - - T f] = —0 -

% Uy -+ -5 Up
Loy .-y Ty

is said to be a generalized divided difference of the function f.

In [8] the following is proved:

Lemma 1. If U, is an M-system on E, then for any real function f

on E and any set of different knots xy, ..., x, in E, we have:
UQy -+ oy Up_1,
Loy -y Tn—1,Tn

= Cn{[Un;xla ey L f] - [Un;%, ey T—15 f]}

where
Ugy - -, Up—1 Ugy -« - -y Up—1 UQy + - -y Up—2
(4) C{n: < Y y n )v( ? y n /v ? )y N .
L1y..-, Ty Loy -y Tp—1 T1yeyTp—1

Remark 1. For the validity of relations (3) and (4) in the case n = 1,

in what follows we make the convention:

5 V()=

Remark 2. From (3) and (4) we can obtain recurrence relations for

divided differences in the form given by Silvia Toader in [8], as well as

2



in the form given by G. Miilbach in [5]. Also they may be written as a

recurrence relation for the determinants V:

(3/) V(uO,...,Un_l,f):AHV(UO,...,Un_l,f>

Loy -y Tp—1,Tn L1y Tp—1,Tp

_an( an"'aun—Qaf )
Loy -y Tp—2;Tn-1
where

(4/) A -V Ugy -+ -, Up—1 /V Ugy -+ -y Up—2
" Loy oy Tp—1 Ti1yeeoyTp—1
and
(4/,) B — Uy -+ -y Up—1 /V Uy« + oy Up—2
" Ti, ..., Tp i, 1)
Definition 4. Finite differences in the knot x and with step h of the

function f are given successively by:

(6) Auf(x)=fla+h)—fl2), A f()=Anf(x+h)— AL f(w).

3. For the system of functions u;(x) = z* and the knots z; = x + ih

(i=0,...,n), one obtains (see [3]):

(7) [Uns1; @0, - - i f] = 1/ (nIh") AL f ().

But, if we consider instead of the divided difference (2), the expression:

(8) A[Un;xo,...,xn;f]=V<“°""’“"1’f)/v<“°=""“"1)

Zoy. -y Tp—1,Tn Loy -5 Tp-1

for the same system of functions and of knots, we have:
9) AlUy;z,z+ hy ... x +nh; f] = A) f(2).

This suggests the definition that follows. Let us suppose that the set

F contains the knots:

(10) x; =x+ih, i=0,...,n.



Definition 5. We call finite difference of order n of the function f
wn the knot x, with step h, in respect to the T-system U, on E, the

expression:
(11) AV f(x) = AlUp; 2,2+ Ry ...,z +nh; f].

From (2) and (8) we have:

Lemma 2. For any M-system U,.1, any function f and any system

of different knots xy, ..., x,, we have:
Ui 20, f]V(uO’ . ,un) v <u0, . >Un1).
Loy ., Ty Loy yTp_1

Lemma 3. If U, is an M-system on E, then for any function f and
any system of different knots xg,...,x, € E, the following recurrence

relation is valid:
(13) AlUn; 0, -+, 05 f] = AlUn—1521, - . ., Tn; f]

_DnA[Un—h Loy -y Ln—1; f]

V(uo,...,ung Vv Uy -+ -y Up—1

Loy sy Tpn_9 T1y...y, Ty
(14) D, = D(Uy;xg,...,x,) = .

Vv Ug, -+ -, Up—2 Vv Ug, - - -, Un—1

L1y-- oy Tp—1 Zoy .-y Tn—1

Proof. It follows from Lemma 1 and 2 (or from relations (3’) and (8))

with a simple computation. The relations holds also for n = 1, if we make

the conventions (5) and

(15) AlUo; z; f] = f(z).
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Particularly, if the knots are equidistant, we have:
Theorem 1. If U, is a M-system on a set E which contains the knots

(10), then the following recurrence relation holds:
(16) AP f(z) = Ay f(z+ h) — DUy 2, h) - A" ()

where D(Uy; z, h) is given by (14) for the knots (10).

Remark 3. If u;(x) = 2' (i =0,...,n — 1) we have D(U,;z,h) =1
and (16) reduces to the usual relation (6) of definition of "ordinary"
finite differences. In [6] we found some references at the paper [1] in
which the author, I. Aldanondo, defines generalized finite differences for
sequences. Let us give a sequence of real numbers (d,,),>;. One defines

finite differences of a sequence (a,),>1 by:
(16") APa, = AP a, . —d, - AP ta,, with Ala, = a,

which has the same form as (16). We shall return to this problem in [2].
Example 1. On [0, 7) let us have the system C,, = (co, ..., c,—1) given
by cx(x) = coskx, for k =0,...,n — 1, with n > 2. One proves (see [4])

that:
c c n—1k—1
05+ -5 Cn-1 Y
V< o ) = on=D(n=2)/2 H H(cos T} — COSX1)
Loy yTp—1 e 10
so that
— COS T, — COS Tpy1
D(Cy;xo,. .., 2,) = H
COS Ty,_1 — COS T},
k=0
and

sin(z +nh — h)sin(x +nh — h/2)
sin(z 4+ nh/2 — h/2)sin(x + nh/2)

D(Cp;x,h) =
Thus (16) becomes:
(17) AR f(a) = A fa o+ h)

5



_ cos(2z +2nh — 3h/2) — cosh/2
cos(2x +nh — h/2) — cosh/2

A f(2).

Example 2. On the same set [0,7) let us have the system S, =

(S1,.-.,8n), where sg(x) = sinkx, for k = 1,...,n. In this case we have
(see [4]):
V(Sl’ Y Sn) = gn(n=1)/2 ﬁsinxk ﬁ ﬁ(cos T}, — COST))
Tlyeees Tn k=1 k=2 =1
so that:
D(Sn;xg,...,x,) = D(Cy; o, ..., x,)sinx, /sine, 1

and (16) becomes:
(18) Ay fla) = Ay f(a + h)

___sin(z +nh)sin(z +nh — h/2)
sin(x + nh/2 — h/2)sin(x + nh/2)

Example 3. Let ¢ be such a function that the system @, =

A ().

(qo, - - -, qn_1), Where qz(x) = ¢"(x), for k =0,...,n — 1, is an M-system

on a set . We have:

D(Qn;xo, ..., xy) =
In particular, if ¢(x) = p* and z; = x + ih, we have:
D(Qusx;h) = pt» ="

that is, it is independent of x.
4. In contrast with the recurrence formula of G. Miihlbach from [5],

relation (3) has permitted the construction (in [8]) of the generalized

6



Lagrange interpolation formula in Newton’s form

V(“m---;%u%)
u Toyooy Li—1, T
(19) F(2) =3 [Uisaszo, ..., fl—A -
i—0 V(“O?"'?“i—l)
Loy -y Ti-1
V(”Oa'”aun7un+l)
Loy .-y Ly, T
+Uni2; %0, - oy Ty, T f] Z "
V< 05+ n)
Toy...,Tp
we may write (19) as:
. V(“O»-'wui—lyui)
Lo, .. Li1,T
(20) f@) =Y AlUszo, ... x5 f] 0 o=
- Ug,y -« -, Uj
=0 V
(Io,...,xi)
V(“Ow“a“n—la”n)
TOy -y Tpe1, T
+A[Un+1;$0,...,$n,l‘; f] > -

% Uy -« -, Up
Loy, Ty

From here we obtain the generalized Newton’s polynomial with equidis-

Taking into account relations (12)

tant knots:

v( UQy « vy Uj—1, Usg )
(21) NUn(f?*/EOah;ZE) :ZA}[{Z]C(I’[)) an-w,xoﬁ—Zh—h?x

=0 Vv UO,...,UZ'-
Xo,...,To+ 1h

where, by convention, the first term is f(zo)

Example 4. For the system C), from example 1, we have

i—1
- +jh
Ne, (f,xo, h;z) = f(xo +ZAC %o H cosx — cos(xg + jh)

g COS (o +ih) — cos(zo + jh)

where A f(x0) are given by (17).



Remark 4. The system S,, from example 2, or the system @, from

example 3 may be treated similarly. Other systems will be analyzed in

[2].
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The resolution of some inequations with finite
differences

Gh. Toader

Let us consider the linear equation with finite differences:
p _ p
Lo(Xn) = ZciA'xn = Zd,—xm =0, n>0,(1)
=0 j=0

where d, and dy does not vanish. As one knows (see [1]), the resolution of this equation
is related to the solutions of the algebraic equation:

p p
Lo(t/" = > ditt = d, [ Jt-t).(2)
i=0 i=1

In what follows, we shall deal with the set of convex sequences in respect to the
operator Lp, that is:

Km(t],...,tp) == {(XH)P]L() . Lp(Xn) Z O, 0 S n S m— p}
or:
K(ti,...,tp) = {(Xn)n=0 : Lp(Xn) =0, n > 0.

The caset; = ... = t, = 1, corresponds to the usual convexity of order p (that is
Lp = AP). In [8] we have proved that a sequence X = (Xn)n=0 1s convex of order p if and
only if it may be represented by:

n

Xn:Z(n+§__i_1)Yi,Yi > 0i > p.

i=0

Such representations were also given in [10], in the case p = 2, for any t; and t».
We want to extend this result to the general case.
A leading part will be played by the sequence (Un)n=o defined by:

Lp(Un) = O, V n Z 0, UO e Upfz = 0, Upfl = l/dp

For example, if t; = ... = tp, thenuy = (t?/d;,)( pﬂl ) and if tj # tj for i # j, then



p p
Un = (1/dp) D1t/ ] Jcte—to)
k=1 i=1

i=k

Lemma 1. If:
n
Xn = Zump—i—lyi(z)
i=0

then:

Lp(Xn) = Ynp.
Proof. From (1) and (2) we have:

n+j

p
Lp(Xn) = Z dJ Z Un+j+p-i-1Yi
=0 i=0

n /p ntp /p
= <Z djUnsjep-izi ))/i + Z (Z den+j+pi1>yi
i—0 \_j-0

i=n+1 \j=n+1

n p-1 k-1
= Lp(un+p—i—1)yi - Z(Z djup+jk1>yn+k + dpup—lyn+p = Yn+p-

i=0 k=1 \_j=0

Remark 1. As from (2) we obtain:

n—1
Yo = dp[xn ~Xn1 = Y (Unsp-ict = Unsp-i2)Yi J

i=0

it results the following:

Lemma 2. Let P < R. We have Lp(xn) € P for every n > 0, if and only if (Xn)n=o IS
represented by (2) withy; € P fori > p.

Lemma 3. The sequence (Xn)n=o Verifies the equation:

Lp(Xn) =2zn, N=0

if and only if it is represented by (2) with y; = z;, fori > p.

Theorem 1. The sequence (Xn)n belongs to Km(ti,...,tp) if and only if it may be
represented by (2) withy; > 0forp <i <m-p.

Remark 2. Some other sequences can also be represented using (2). For example,
in [9] we have given the following definition: the sequence X = (Xn)n>o is starshaped of
order p if AP"'((Xns1 — Xo0)/(N+ 1)) > 0, for n > 0. So, the sequence X is starshaped of
order p if and only if it may be represented by:



y0+n2(n+p K- Z)Yk,ykZOKZp.
k=1

Remark 3. In what follows, we are interested in the determination of the dual cone
Of Km(tl, . .,tp), le

m
K%(t],,tp) - {(an)mo . Zaan 2 0, VX S Km(t],...,tp)}.

n=0

As it is stated even in [2], results of this nature were obtained for the first time by T.
Popoviciu (see [7]).

Theorem 2. The sequence (an)f-, belongs to K (ti,...,tp) if and only if it satisfies
the relations:

m
D anUnip k1 = 0k =0,...,p—1(3)

and
m
Zanump—k—l >0k =p,....,m.(4)
n=k

Proof. From (2) we have:

m m m
Z aAnXp = Z dn Z Un+p-k-1Yk = Z Yk Z Unipk-1@n = 0.(5)
n=0 n=0 k=0 n=k

As Yy is of arbitrary sign for k = 0,...,p — 1, but it is nonnegative for k = p, the
relation (5) is equivalent with (3) and (4).

Remark 4. For L, = AP the result may be find in [2] (in the special case p = 2) and
in [6] (in the general case). In [10] we have put the result in a more convenient form.
We want to do the same thing for the general case. For this we need the operator:

p
Lp(Xn) = Z dp-jXnsj-
i-0

Theorem 3. The sequence (an)f., belongs to Kg (ti,...,tp) if and only if it may be
represented by:

an = Ly(bn),n =0,...,m(6)
with
bh>0p<n<m; by=0<p-1In>m.(7)

Proof. If we put:



m
Zump—k—lan = bk (8)

n=k

from (3) and (4) we have (7). But (8) may be written as:

Up-1  Up  Up4 Up+m-1 ao bo
O Up_l Up Up+m_2 al bl
0 0 0 ... Up dm bm
which gives:
do dp dp_1 dp_2 bo
al 0 dp dpfl b1
am 0 0 0 ..d bm

that is (6).

Remark 5. If L, = AP, then L} = VP = (~1)PAP, and we get the result from [10].
The transition from the conditions (3) and (4) to (6) and (7) remind the
Minkowski-Farkas Lemma [11], but it does not represent a simple consequence of it,
we needing the conditions b, = 0 forn = 0,...,p— 1.

Remark 6. Let the triangular matrix Q = (qnk)p,;....- It defines a transformation in

k=0,...,n
the set of sequences: to any sequence X = (Xn)n=0 corresponds the sequence
X = Q(X) = (Xn)n=0 given by:

Xn = an,ka. (9)
k=0

We have the following problem: what are the matrices Q with the property that
X € Kn(ti,...,tp) implies Q(X) € Kn(ti,...,tp). For this we need:

n+i

p
Lp(Xn) = D di D GneikX

0 k0
n_ /P mp /P

= <Z diQn+i,k>Xk + (Z diQni,k>Xk >0
k=0 \ i=0 k=n+1 \i=k-n

forany 0 <n < m-pifx € Kn(ty,...,tp). This means that the sequences a" = (a}) 5

given by:



o

10

diQn+ik, K ...,n+p, j =max{0,k—n}

MU

belong to K3, (t1,...,tp). From (3) and (4) we have the following:
Theorem 4. The sequence X given by (9) is in Ki(t,...,tp) for any
X € Kn(ti,...,tp) if and only if:

N+i

p
Zdi ZUkerflflanri,k =0, 1=0,....p—-1

i=0 k=1

n+i

Zd.Zuk+IO 1Oneik >0, l=p,...n+p, | =max{0,1 -n’

i=j k=1

forevery0 < n <m-p.
Remark 7. For L, = AP such results may be found in [3] and [4] and for L,
arbitrary in [5]. We want to put the result in another form, using the theorem 3.
Theorem 5. The matrix Q has the property Q(x) € Kn(ti,...,tp) for any
X € Kn(ti,...,tp) ifand only if, for every 0 < n < m — p, there is a nonnegative
sequence V" = (V})kso such that vi = 0 for k < p and for k > n + p, with the property
that:

p
D ditnik = L),k = 0,...,n+p, j = max{0,k —n}.

=

Remark 8. So i may be chosen arbitrarily fori = 0,...,p—landj = 0,...,iand
then, taking V" as it is requested by the theorem 5, we can build, step by step, qnx for
n=p,p+1,...andk =0,...,n.
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ON THE HIERARCHY OF CONVEXITY OF
FUNCTIONS

Gh.TOADER

In the first part of this paper we simplify the proof of the main theorem of A.M.
Bruckner and E. Ostrow from [4]. In the second part we extend this result, simplyfing also
some proofs from our paper [8].

Let us denote the classes of continuous, convex, starshaped, respectively superadditive

functions, by:

C(b)={f:[0,0] — R, f(0) =0, f continuous}
K(b) ={f €C); ftz+ (1 —t)y) <tf(z) + (1 -1)f(y),
vVt € (0,1), Va,y € [0,b]}
S*(b) ={f €C(b); f(tx) <tf(x), Vt € (0,1), z € [0,b]}
S) ={f € Cb)if(z+y) = f(z) + f(y), Vz,y,x +y € [0,b]}.

In what follows we need some well known results (see [4]). They are more general, but

we prove only the form that we use.
Lemma 0.1. If the convex function f is differentiable, then f’ is nondecreasing.

Proof. Let us suppose z > y. From the definition we have:

fly+iz—y) - fly) _ flz) = fy)
t(z —y) T Ty
which gives:
) < f(fv; - g(y)‘
Replacing ¢ by 1 — t, we obtain similarly:
f(fv:z_g(y) < Pl



Lemma 0.2. The function f is starshaped if and only if f(x)/x is nondecreasing.

Proof. f 0 < z < y, from f(ty) < tf(y) and ¢t = x/y we have: f(z) < (z/y)f(y).
Conversely, if t € (0,1),tx < x and so f(tx)/(tx) < f(z)/z gives the starshapedness of
/. O

Lemma 0.3. If the function f is differentiable, then it is starshaped if and only if:f'(x) >
f(x)/z.

Proof. The function f(z)/x is nondecreasing if and only if:

[f(2)/2) = [f'(2)z — f(z)]a® > 0.

O
Lemma 0.4. For any b > 0 hold the inclusions:
K(b) C S*(b) C S(b).
Proof. a) If f € K(b),t € (0,1) and x € [0,b] then:
f(tx) = f(tz + (1 —1)0) < tf(z) + (1 —1)f(0) = tf(z)
that is f € S*(b).
b) If f € S*(b) and z,y,z +y € [0,b], then, by lemma 2, we have:
faty) = xf;wjyy) +yfiwjyy) > xfiw) +yf(yy)
and so, f € S(b).
O

Remark 0.1. These simple inclusions were not always known. So, in [5] it is proved that

if f is conver and subadditive then f(x)/x is non-increasing. In fact it is constant (if

f(0) =0).

Definition 0.1. The function f has the property ” P” in the mean, if the function:
Flz) = i/o F(®)dt, = > 0; F(0) =0 (1)

has the property ” P”.

Let us denote by:M K (b), M S*(b) and M S(b) the sets of functions which are convex,
starshaped, respectively superadditive in the mean.

The main result from [4] is:



Theorem 0.1. For any b > 0 hold the strict inclusions:
K(b) Cc MK(b) C S*(b) C S(b) € MS*(b) C MS(b). (2)

Proof.  a) Making in (1) the change of variable:t = zu, it becomes (see [3]):

Flz) = /0 F(wu)du. 3)

If f € K(b), then for every ¢t € (0,1) and z,y € [0,b] we have:

1 1
Flta+(1—t)y) = /0 Ftzut(1—t)yu)du < /0 (t- F @)+ (1—)- F ) )du = tF(2)+(1—1) F(y)
that is f € MK (b).

b) From (1) we have:
f(@)/z = F'(@) + F(z)/z (1)

and if F' is convex F’ is nondecreasing and by lemmas 4 and 2, f € S*(b).

c¢) The inclusion S*(b) C S(b) was proved in Lemma 4. It implies also the inclusion:
MS*(b) C MS(b).

d) Let f € S(b). Then, for every x € [0,b] and every u € (0, 1):
f(@) = fleu+ (1 —wz) = fleu) + f(1 - u)z)

and so:

1

f(x) - 2F(z) = /0 (f(2) — 2f (xu))du > /0 (1 - u)a) -
1 1
— fu))du = /0 (1 = w)a)du — /0 F(uz)du = 0.

But this, by Lemma 3 and by relation (4) is equivalent with f € M S*(b).

The strictness of the inclusions (2) was proved in [3] by more examples. A beautiful
proof of this fact was also given by E.F. Beckenbach in [2], showing that the function
f(z) = (1 +1/x)exp(—1/z) is in K(1/3), MK (1/2),S*((5 —1/2),5(0,8955...), M S*(1)
and M S(1/log?2) (the values of b being in every case the greatest possible). O

Remark 0.2. In [6] it was considered the more general mean:

Fyl) = —— /0 " () f(t)de, Fy(0) = 0. (5)

Related to it, we have given in [8] the following result, whose proof we want to simplify.



Theorem 0.2. If the transformation (5) preserves the convezity (the starshapedness or

the superadditivity) then the function g is of the form:
g(x) =kz® a >0, k#0. (6)

Proof. The function fy(x) = cx is in K(b) for any ¢ € R, and so by lemma 4:

Folz) = —— /0 " (bt

must be in S(b). But ¢ being of arbitrary sign, this happens if and only if, for ¢ = 1, it
verifies:

Fo(z +y) = Fo(z) + Fo(y)
for any z,y,x +y € [0,b]. Thus (see [1]):Fy(z) = kx which gives (6) with a # 0. But, if
a < 0, (5) is not defined for f(t) = C, thus we must take a > 0. O

Remark 0.3. As was pointed out to me by prof. J.E. Pecarié¢, such a result was also

proved by I.B. Lackovié in his doctoral dissertation using:

@@=%Z@ﬂ%ﬁﬂ%@ﬁ

Remark 0.4. Denoting by F, the function (5) with g given by (6), we have:

instead of (5).

_ i * a—1
Fule) = 5 [ e o 7)
and so:
f(@) = Fa(z) + (z/a) Fy(2). (8)

If we make in (7) the substitution (see [6]): t = zu'/?, it becomes:

L/fwwm (9)

In what follows we shall prove that the condition from theorem 2 is also sufficient. For
this, let us denote by M*K (b), M*S*(b) and M*S(b), the sets of functions f € C(b) with
the property that the corresponding functions F,, belong to K (b), S*(b) respectively S(b).

Theorem 0.3. For any b > 0 and any a > 0 hold the following inclusions:

K() < M°K(@®}) < S*b) C S(b)
N N (10)
M*S*(b) < MeS(b).



Proof. a) If f € D(b), t € (0,1), z,y € [0,b], then, by (9):

Fy(tz + (1 —t)y) = /01 Fltzu® + (1 — t)yul/*)du <

< (G (@) + (1 ) F(u*))du = tE,(x) + (1~ D Faly)
thus f € MK (b).
b) If f € M®K(b), taking into account (8), we have:
f(@)fz = Fulw) a1 Fl(a)/a
thus, by lemmas 1,2 and 4, f € S*(b). Lemma 4 gives also the inclusions:
S*(b) C S(b) and M®S*(b) C M®S(b).

c) If f € S*(b), t€(0,1) and = € [0,b], using (9), we have:

1 1
F,(tx) :/0 f(tzu*)du §/0 tf (zu*)du = tF,(z)
that is f € M*S*(b).

d) For f e S(b), z,y,z+y € [0,b], we have also:

1 1
Fu(z+y) = /0 F((@ + yyut/a)du > /0 (F@ut/) + f(yud®))du = Fy(x) + Fa(y)
thus f € M*S(b).

a

Remark 0.5. To prove the strictness of the inclusions, we may proceed for a # 1 as
was done in [2] for a = 1: let F(z) = exp(—1)/z) for x # 0 and F(0) = 0. From (8) we
get:f(z) = (1+1/ax)-exp(l—/z) for x # 0 and f(0) = 0. If we denote by k, kq, s, s}, s, Sq
the largest value of b, for what f belongs to K (b), M*K(b), S*(b), M*S*(b), S(b) respectively
MeS(b), we have from [2]:k, = 1/2,8% = 1 and s, = 1/In2. As f"(z) > 0 only for
r€((a—4—vVa2+8)/(4a—4);(a—4+ Va2 +8)/(4a —4)], we have k=0 if 0 <a < 1
and k = (a — 4+ Va2 +8)/(4a — 4) < 1/2 if a > 1. Using Lemma 3 we have also
s =(a—2++Va2+4)/2a < 1.

Applying Bruckner’s test (see [2]), we obtain also that s is the unique positive solution of

the equation:
ax(exp(l/z) —2) =4 — exp(1/x)

thus:1/In4 < s < 1/In2. So:

k<ky<s*<s:<sq.



We remark also that 1/In4 < 1 = s¥, that is, for 0 < a < 1 we can have s < s} and so
S(b) & M*S*(b).

Remark 0.6. In [7] was proved that if 0 < a < ¢ then:
MK (b) D MK (b) and M*S*(b) D M°S*(b).
Thus (10) extends to:

K(b) ¢ M°K®b) c M°K(b) c S*0b) < S

N N
MeS*(b) C  MeS(b)
N

MeS*(b) < MeS(b).
Moreover, if 0 < a < 1:
S(b) € M'S*(b) = MS*(b) C MS*(b).
We do not know if it is true that:
MeS(b) € M*S(b).

We have proved also similar results for sequences (see [9]).
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ON A GENERAL TYPE OF CONVEXITY

Gh.TOADER

In their book [5], A.W. Roberts and S.E. Varberg have proposed, for an independent
study project, the following general notion of convexity. Let S be a subset of I x I (where
I =[0,1]) and D = [0, b]. The function f : D — R is said to be S-convex it is verifies the

relation:
flsz+ty) <s- f(z)+t fy) (1)

for any (s,t) € S and any z,y € D.

The set of all S-convex functions defined on D is denoted by K(S). Theoretically S
can be a subset of R? and a S-convex function can be defined on some subsets of a linear
space. But even in the case given before can appear some complications. For example,
from (1) we can see that s+ ¢ <1 for any (s,t) € S. Otherwise b must be infinite because
(s-t)-x € DforxeD.

Apart from the well known examples of S-convexity given in [5], let us to mention here
another one, given by us in [7]. For a given m € I, we say that the function f: D — R

is m-convex if:
flsz+m(l—s)y) <s- f(z) +m(l—s)- f(y)

for any z,y € D and any s € I. A function is m-convex if and only if it is .5,,-convex,
where:
Sm={(s,t):s€l, t=m(1—-s)}.

As follows from Lemma 2, m-convexity is a notion intermediate to convexity (m = 1) and
starshapendness (m = 0). So, it may be considered similar to a notion given for complex
functions by P.T. Mocanu in [4].

For s =t =0, from (1) we have f(0) < 0, that we suppose to be valid for any function
which appears in what follows.

To answer to some questions from [5], we consider the following relation between sets:
S < S" it for any (s,t) € S there is an (s,t) € S’ such that ¢ < ¢'. We put 0 < S for
I x{0} <S.



Lemma 0.1. If0 < S, any S-convex function f is starshaped.

Proof. For any s € I, there is a t > 0 such that (s,t) € S. So, for any x € D, we have:

flsz) = f(sx+t-0) <s-f(x)+t-f(0)<s-f(x).

Lemma 0.2. If0< S <5, then K(S) D K(5).

Proof. Let f be in K(S') and z,y in D. For any (s,t) € S there is a (s,t') € S such that
t' € t. Hence:

flsz+ty) = f(sz +1'(t/t)y) < sf(x) +Ef((t/)y) < sf(x) +tf(y).
O

Remark 0.1. As s+t <1 for (s,t) € S, we deduce that the usual convexity is the most

restrictive.

Corollary 0.1. If0 < S and G C S, where:
G ={(s,ts) :s€l, ts=inf{t: (s,t) € S}},
then K(S) = K(G).

Remark 0.2. This property gives an answer, at least partial, to the question on the

minimality of the set S which determines a class K(S).

But our central objective in this note is a related to another problem. In [2] A.M.
Bruckner and E. Ostrow have proved that the integral mean:
1 €T
F(P@) =5 [ fede
T Jo
preserves the convexity, the starshapendness and the superadditivity of the function f. In

[3] it is considered a more general mean:

1 x
BN = = [ g )
I 9(z) Jo
In [6] we have obtained a characterization of the weight-functions g which give integral
means [, that preserve the above properties. We want to extend now this characterization

to the case of S-convexity.

Theorem 0.1. The function Fy(f) is S-convex for any S-convex function f if and only

if the function g is of the form:

gx)=Fk-2% keR, a>0. (3)



Proof. The function fo(x) = cx is S-convex for any real c¢. Hence so must be also the

function:
c

Rulo) = Fy(f)(@) = = [ f(0) v

But, ¢ being of arbitrary sign, this happens if and only if, for ¢ = 1:
Fo(sz+t-y)=s- Fo(z) +1- Fo(y)

for (s,t) € S; x,y € D. Thus (see [1]) Fo(z) = bx and so g must be of the form (3). If
a > 0, (2) is not defined for f(x) = c.
Conversely, if ¢ is given by (3), then (2) becomes:

a

Fu(f)(x) = / "ot (o), (4)

.’L'ao

1/a

making the substitution (given in [3]):v = x - w'/?, from (4) we get:

1
a - . 1/a dw.
)@ = [ st

If fisin K(9), for any (s,t) € S and any z,y € D, we have:

1 1
F.(f)(sz+ty) = / f((sx+ ty)wl/“)dw < s/ f(:vwl/“)dw—i-

0 0

1
[ 5t/ = s Fu(p(a) + ¢ Ful )

that is F,(f) is also in K(5). O

If we denote:

MK(S) ={f : Fu(f) € K(S)}
we have thus the following:
Corollary 0.2. If0< S < 5" and a > 0, then:

K(S) < K(S)
N N
M°K(S") C MeK(S).
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SOME GENERALIZATIONS OF JESSEN’S
INEQUALITY

Gh.TOADER

1. The inequality of Jessen is a generalization of that of Jensen (see [1]). In what follows
we want to extend this inequality by replacing the isotony required in Jessen’s inequality
with a weaker condition. This allows the passage to inequalities for convex functions of
higher orders.

2. Let us recall some notations and definitions. We consider the set C' = C|a, b] of all
continuous real functions defined on [a, b] and the set K of convex functions (from C).

Let also ex(k =0,1,...) and w, (with ¢ € (a,b)) be the functions defined by:

ex(z) = 2, Vo € [a,b]

respectively

we(x) = |z —¢|, Yx € [a, b
A functional A : C — R is linear if:

Alaf +bg) = aA(f) + bA(g), Vf,g € C; a,be R

and it is isotonic if:
A(f) >0, Vf>0.

We consider the following form of Jessen’s inequality:

Theorem 0.1. The function f € C is convex if and only if for any isotonic linear func-
tional A, with A(eg) = 1, f verifies:

f(A(er)) < A(f) (1)

Remark 0.1. As w,. is conver for any c, we have also:

we(A(e1)) < A(we) (2)



We want to prove that (2) can replace the condition of isotony of A in (1). For this we

need the following theorem of K. Toda [6] and T.Popoviciu [4]:

Theorem 0.2. Every function f € K is the uniform limit of a sequence (gm)m>1, given
by:

m
gm =DPm €0+ qm €1+ Zpk,m * Wey i, (3)
k=0

where Pm, Gm € R, pm > 0, Clom € [a, b].

Using this theorem, in [7] it is proved the following result.

Theorem 0.3. Let A be a linear and continuous operator defined on C. Then,
A(f)>0,Vfe K

if and only if:
Aleg) = A(er) =0, A(w.) > 0,Vc € [a,b].

Similarly we can prove the following generalization of Theorem 1.
We define by LT the set of liniar and continuous functionals A, which satisfy A(ep) = 1
and the relation (2).

Theorem 0.4. The function f € C is convez if and only if for any A € LT, f verifies

(1).

In fact we can prove a stronger result. Let ST denote the set of all superadditive,
positively homogeneous, upper semicontinuous functionals A, which satisfy (2) and A(aep+
ber) > a+b- Aler).

Theorem 0.5. The function f € C is convex if and only if for any A € ST, f verifies

(1).

Proof. The sufficiency is obviously: take A(f) = sf(z) + (1 —s)f(y) with s € (0,1),z,y €
[a,b].
The necessity: for a given convex function f, let the sequence (gm)m>1 given by (3),

which converges uniformly to f. If A € ST, we have:
m
A(gm) > Pm + Qm A(el) + Zpk:,m : A(wck,m) > gm(A(el))-
k=0

As A is upper semicontinuous it follows:

AF) 2 lim_Algn) > lm_gu(Ale)) = F(A(er)

m—0o0

2



We remark that the converse inequality of (1) may be also used for the characterization of
the convexity. So, let S~ denote the set of all subadditive, positively homogeneous, lower

semicontinuous functionals A, which satisfy A(a-ey+0b-e1) <a+b- Aer) and:
we(A(e1)) = A(we) (2)
Theorem 0.6. The function f € C is convex if and only if for any A € S, f verifies:
f(A(er)) = A(f) (1)
O

3. As we have proved in [5], the convexity of order two may be characterized by the

same relation (1) valid for some linear functionals which verify the conditions
Aleo) =1, Ale2) = [A(e1)]

and, of course, are not isotonic. In what follows we want to transpose theorem 5 to con-
vexity of higher order. We need the following result from [2] which generalizes Theorem
2.
Let us denote by w the function defined by:
0 ifr<c
(x—c)" ! ifx>c
by P,, the set of polynomials of degree at most n and by K,, = K,[a,b] the set of all

n-convex functions (convex of order n).

Theorem 0.7. Every function from K,(n > 1) can be approzimated uniformly on [a,b]

by spline functions of the form:

1-1
Im1(2) = pma(2) + Z Gm 1k * We, (T) (3)
k=1

where pmn € Po—1 and ¢minx > 0.
Using this result, we obtain a direct generalization of Theorem 4 in:

Theorem 0.8. The function f € C is in K, if and only if for any continuous linear

functional A : C — R with the properties:

A(p) > p(Aler)), Vp € Ppa (4)

and
w

¢ (Aler)) < A(wy), Ve € (a,b) ()

the function f wverifies:

f(A(er)) < A(f)



In fact, we can prove the following general result which extends also Theorem 5: let
ST denote the set of all superadditive, positively homogeneous, upper semicontinuous
functionals, A : C' — R, which satisfy (4) and (5).

Theorem 0.9. The function f € C is in K, if and only if for any A € S;F, it verifies (1).

Inequality (1’) may be also used : let S~ denote the set of suadditive, positively ho-

mogeneous, lower semicontinuous functionals A : C — R which satisfy:

A(p) < p(Afer)) (4)

and
wl (A(er)) > A(w?), Ve € (a,b). (5")

C

Theorem 0.10. The function f € C is in Ky, if and only if for any A € S, it verifies

(1).

In the same manner, we can give the following generalization of the main result from

[2], which extends also Theorem 3.

Theorem 0.11. Let B : C — R, be a superadditive, positively homogeneous, upper
semicontinuous functional. In order that B(f) > 0 for every f € K,(n > 1) it is necessary
and sufficient that:

B(p) >0, Vp € P, (6)

and
B(w}) >0, Ve € (a,b). (7)

Remark 0.2. There is a strong connection between the functionals A from Theorem 9

and the functionals B from Theorem 10.
If A satisfies (4) and (5), then
B(f) = A(f) — f(A(e1))
verifies (6) and (7). Conversely, if B has properties (6) and (7) and B(e;) = 0, then
A(f) = B(f) + f(B(e1))

verifies (4) and (5).
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ON THE CONVEXITY OF ORDER TWO OF
FUNCTIONS

Gh.TOADER

The convexity (of order one) of a function f is defined by:

[tz + (1 =t)y) <tf(z) + (1 -1)f(y), vt € (0,1) (1)

In what follows, we want to give analogous conditions for the convexity of order two.
Basic definitions and notations may be found in [2], [3] and [4].So, let f be defined on
[a,b] and 21 < 2 < --- < x, be points in this interval. The divided differences of the

function f on these points is given by:

[.Il,ﬂ?g,...,xn;f] =
k=1

where:

j=1
For n = 3, if [x1,z9,x3; f] > 0, we get:
Flas) < 22 f o) + 2 ()

or putting:

p1 = (z3 —x2)/(x3 — x1) and p3 = (v2 — x1)/(x3 — =1) (2)
we have:

p1,p3 = 0,p1 +p3 = 1, p1x1 + p3x3 = 22 (3)

and so:

f(p1x1 + p3z3) < p1f(x1) + p3f(xs)

that is in (?7). Continuing on this way, we get the well known result:

Theorem 0.1. The following conditions are equivalent:



a) the function f is convex on [a,b];
b) for any points: a < x1 < x9 < x3 < b, [x1, T2, T3; f] > 0;

¢) for any points:a < x1 < x9 < b and any numbers py < 0,p2 > 0 such that:p; + pa =
1,p1z1 + poxe < b, we have:

f(p1z1 + pax2) > prf(x1) 4+ paf(z2);
d) Zf a<z <x3< b,p17p3 >0,p1 +p3 =1, then:

f(piz1 + p3x3) < p1f(z1) + paf(xs)

e) if:a < xo < w3 < b,py > 0,p3 <0,p2 +p3 =1 and para + p3x3 > a then:
f(p2w2 + p3x3) > paf(x2) + p3f(x3).

Remark 0.1. As it is known, if Mi(x1,y1) and Ma(xa,y2) are two points in the plane,
then M (p1z1 + paz2, p1y1 + p2x2), with p1 + p2 = 1 is an arbitrary point on the straight
line determined by M} and Ms.

Moreover, if z1 < x5 then:
p1z1 +paza < xpiff pa <0;
1 < prxy +paxe < z2if f p1,p2 > 0;
p1z1 +paza > x2 if f p1 <O.

Hence we get from Theorem 1 the well known geometric interpretation of the convexity.

Analogously, for n = 4, from [z, z2, 3, 4; f] > 0, we have:

(24 — @2) (24 — x3) (x4 — 1) (24 — x3)
fles) 2 (w2 — )@z —21)" 7 (w2 — w1) (@3 — $2)f($2)+ (4)
(x4 — 1) (w4 — xQ)f(q; )
(w3 — x1)(z3 — 22)”
and putting:
(w4 —m) (x4 —23) (w4 —21)(T4 — 23)
P —an)(ws —20) P T (52 — 1) (22 — 75)
(24 — B (5)
T x1)(24 — T2)
(z3 — z1)(23 — 22)
we have:
p1>0,p2 <0,p3 > 0,p1 +p2+ps = 1,p171 + pawa + p3r3 = T4 (6)



and hence:

f(p1x1 + paxa + p3x3) < pif(er) + paf(x2) + p3f(xs). (7)

Expressing x1, zg respectively x3, we get three other similar relations. But now (5) and

(6) are not longer equivalent with (7) and (6). For example, we have also the relation:
123 + poxs + p3xi = 23

In fact, given the non-collinear points My (z, yx) for k = 1,2, 3, a point M (x,y) is on the
parabola determined by these points if and only if:

Y = p1y1 + p2y2 + p3x3 (8)
where:
p1+p2+ps=1 9)
p171 + P22 + P3T3 = (10)
P17 + paxy + pazy = 2”. (11)

To precise the position of the point M on the parabola, we remark that any point M (x,y)
from the plane may be given by (8), (9) and (10).

Moreover, if we denote by M}, one of the points (that is My, M2 or M3) and by M; and M;
the other two, we have p; zero if M is on the straight line M;M;, positive if M and M
are in the same semi-plane determined by M;M; andnegative if M and M}, are in opposite
semi-planes. So, if x1 < xo < z3, the point M given by (8), (9) and (10) and (11) is between
My and My iff p1,po > 0 and p3 < 0. It is between My and Mg iff p; < 0,p9, p3 > 0. But
it is before M; of after Mj, then p; > 0,p2 < 0, p3 > 0, thus these two cases cannot be

separated on this way. Finally (taking the first equivalence as definition) we have:

Theorem 0.2. The following conditions are equivalent:

a) the function f is convex of order two on [a,b];
b) for any points: a < x1 < x9 < x3 < x4 < b, [x1, T2, T3, 24; f] > 0;

¢) for any points a < x1 < x3 < x4 < b and any numbers p1, p3, p4 such that: p; + ps +
pa=1,p3>0,ps <0 and p1x1 + psw3 + pawa)?® = p1a} + p3x} + paxi, we have:

f(p1w1 + p3x3 + paxa) > prf(w1) + p3f(x3) + paf(xa)



d) ifra <x1 <xo<x4 <bandpi+pr+ps=1,p1 <0,p2 >0,ps >0, (p121 + p2xa +
pat4)? = p122 + pox3 + pax? then:

f(p1x1 + paxa + pazs) > p1f(x1) + paf(x2) + paf(xa)

Remark 0.2. If we denote by ey the function given by er(z) = 2* (k = 0,1,2,...), by
the point d) of Theorem 2, the convexity of order two may be characterized by the same
relation:f(A(e1)) < A(f), valid for some linear functionals which verify the conditions
A(ep) = 1 and A(ez) = [A(e1)]?, but are not positive as they are in the inequality of Jessen

[1].
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SOME ASPECTS OF CONVEXITY OF FUNCTIONS
AND OF SEQUENCES

GH. TOADER

1. GENERAL DEFINITIONS

Let E be a subset of R and f a real function defined on E. The di-
vided difference (of order n) on the distinct points xg, 71, . . . , x, is defined

recurrently by:

[z0; f1 = f(wo),  [x0,21; f] = ([wo; f] = [w1 f]) /(w0 — 21)

[I()?"'axn;f] = ({I()?"wxn—l;f] - [Ilw'wxn;f])/(xo_xn)‘

The function f is said to be n-convex (or convex of order n) if it verifies:
[0, ..., Zny1; f] > 0 for any distinct points from F.

Following the book [20] of T. Popoviciu, the convex functions of order
one on [a, b] were defined in 1893 by O. Stolz in [24], but their systematic
study begins with the paper [8] of J.L.W.V. Jensen from 1906. In 1916,
L. Galvani has considered in [6] convex functions of order one on an

arbitrary set . The generalization to an order n, has appeared in two

1



thesis: the first in 1926 of E. Hopf [7] for functions defined on [a, b] and the
second [16], in 1934 of T. Popoviciu for functions defined on an arbitrary
set E. The generalization to a set E is essential as it is proved in [17]
by T. Popoviciu. As a matter of fact, T. Popoviciu has many relevant
results on convexity, which constantly preoccupied his activity. It is thus
natural that some of the aspects which we analyse in what follows were
initiated by him.

If we consider the points xy < 21 < -+ < &, (m > n+ 1) from E,
we have the following mean theorem of T. Popoviciu [20]: for any indices
0 <idp <iy < -+ < ipy1 < m there are the constants a; > 0 with
ao+ -+ apy_n_1 = 1 such that:

m—n—1

[xioa’”aximrl;f]: Z ai[xiaxi+17---;xi+n+1;f]'

=0

It results that if the set E is at most countable,

E:{IO,Il,...,l’nJrl,...}

a function f : E — R is n-convex iff it verifies [xy, ..., Zgini1; f] > 0 for
k > 0. This leads also to the definition of n-convex sequences.

The finite differences of the sequence (x,,),>0 are defined by:
AOxm =Ty An‘%‘m = An_lxm-|-1 - An_ll‘m forn > 1.

The sequence (Z,,)m>o is called n-convex (or convex of order n) if
A"z, > 0 for m > 0. For convex (of order two) sequences, in the book
[23] of A.W. Roberts and D.E. Varberg, are given as basic references
the books [1] and [39] on Fourier series (see also [5]). Let us remark that

with this definition of n-convexity adopted for sequences (see for example

2



[11]) appears a difference of an unity between the order of convexity of a
sequence if it is considered also as discrete function.

Before ending this introduction we remind that in the literature have
appeared many generalizations of the convexity. We don’t refer to them
in what follows, but we can send to [14] and [26], where may be found

most of them.

2. REPRESENTATION THEOREMS

In what follows we denote by K, (FE) the cone of n-convex functions
on E and by K, the cone of n-convex sequences.

There are more approximation and representation theorems of convex
functions. We remind some of them which are used in what follows. So,
in [38] it is given the theorem of K. Toda [37] and T. Popoviciu [22].

Theorem 1. a) Every function of the sequence:

(1) gm(x):px+q+2pk|x—:rk], m>1
k=0

where x,xy € [a,b], p,q €ER, pr >0 (k=0,...,n), belongs to Ki[a,b].
b) Every function f from Kila,b] is the uniform limit of a sequence of
the form (1).
R. Bojanic and J. Roulier have given in [3] a generalization to an
arbitrary order, using also some results of T. Popoviciu from [18]. Let us

denote by w! the function defined by:

0 if z<c

(=)™t if z>c¢
and by P, the set of polynomials of degree at most n.
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Theorem 2. Every function f from K,la,b] (n > 1) can be approxi-

mated uniformly on [a,b] by spline functions of the form:

-1
Ima () = Drn() + Y Gt sy, ()
k=1

where Py, ,, belong to P,_1 and Gy, 1.1 are positive constants.

In the study of n-convex sequences, we have used also more represen-
tation theorems. The simplest may be found for example in [29]:

Theorem 3. A sequence (Ty)m>o0 s in K, if and only if it may be
represented by:

o (mtn—k—1
Tm = kz:; ( n—1 )yk

where y, > 0 for k > n.

Using the method from [10] we can put this result in another form. In
the vector space S of all sequences, it is considered the following metric
d: for © = () m>0 and ¥ = (Ym)m>0 We put:

_ = o T — Y
o) = 2 T T

m=0

Let us denote by e,, the sequence with the components:

@) emk:(n—lJrj—m>

n—1

where TIZ =0ifm<k.

Theorem 4. A sequence x is in K, if and only if:

r = lim y0€0+"'+ymem

m—00

for yx, >0 for k > n and the limit is taken in (S, d).
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3. POSITIVE OPERATORS ON K, (E)

T. Popoviciu has begun in [19] the study of characterization of positive
operators defined on K,,(E). Some of his results may be found in [20].
Let us note the following one:

Theorem 5. The inequality:
Zpif(xz') >0, pi#£Ofori=1,...,m
i=1

1s valid for any n-convex function defined on x1 < 9 < --+ < T, if and

only if:

ZPiIfZO, fork=0,1,....n

i=1
,
> piwi =) o (@ = 2n) <O, =1, m—n—1
i=1

In [3] it is used the representation from Theorem 2 to obtain a result
of this type. It may be formulated more generally as follows. Let X be a
topological vector space and P C X a closed, convex cone in X.

Theorem 6. Let A : Cla,b] — X be a continuous linear operator. In
order that A(f) € P for every f € K,[a,b] (n > 1) it is necessary and
sufficient that:

i) A(p) =0 for every p € P,_1

ii) A(w?) € P for every c € (a,b).

In 1981, J.E. Pecari¢ has transposed in [13] the results of T. Popoviciu

to sequences. Let us denote:

K,(m)={(zx)j, : A"z, >0, k=1,....,m—n—1}

5



and
Ky(m) = {(pk)’;;”—l DY pkre 20,V x = (k)i € Kn(m)} .
k=1

Theorem 7. The m-tuple p = (px)}, belongs to K} (m) iff:

m

Z(i—l)(k)pi:(), fork=0,1,....,.n—1

=1

and
n

Z(z’—kz—{—n—l)(”’l)pizo, fork=n+1,....m

where:

This is transposed in [36] as follows:

Theorem 8. The m-tuple p = (pg)j, belongs to K’ (m) iff:
Pk = V"qk = (—1)”Anqk, k= 1, T
where:
G =0fork=1,....nandk=m+1,... m+n

and

g >0 fork=n+1,...,m.

Using Theorem 4, in [34] it is given the following result, analogous with
that of Theorem 6.

Theorem 9. Let A: S — X be a continuous linear operator. In order
that A(x) € P for every x € K, it is necessary and sufficient that:

i) Alex) =0, for k=0,1,...,n—1
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ii) Alex) € P, fork >n
where ey, is given by (2).

The results of the theorems 6 and 9 may be applied also for non-convex
elements. Let us give an example:

Theorem 10. Let A: S — R be a continuous linear functional which

verifies:
Aley) =0 fork=0,1,...,n—1, A(ex) >0 for k >n.
If © = (z1)k>0 € S is such that:
m < Az, <M, VE>0

then

mA(w) < A(x) A(w)

<M
L k
where w = (wg)g>o S given by wy = <n) for k > n and w, = 0 for

k<n.

4. JESSEN’S INEQUALITY

In 1931, B. Jessen has generalized in [9] the well known Jensen’s in-
equality to isotonic linear functionals. Some aspects are analysed in [20]
and more recently by P.R. Beesack and J.E. Pecari¢ in [2].

Let £ # () be a set and L be a linear class of functions ¢ : £ — R
such that 1 € L. A linear functional B : L — R is said to be isotonic if
B(g) >0 for g >0on E.

Theorem 11. If f is in Ki[a,b] and B is any isotonic linear functional

with B(1) = 1, then for all g € L such that f(g) € L, we have B(g) €
[a,0] and f(B(g)) < B(f(9))-



Starting from [33] we have proposed to renounce at the isotony, which is
proper to convexity of order one. So, in [34] and [35] we pass to convexity
of higher order.

Theorem 12. The function f € Cla,b] is in K,[a,b] if and only if for

any continuous linear functional B : Cla,b] — R with the properties:

(3) B(p) =p(B(e)), Vp € Py
and
(4) B(wy) > w;(B(e)), V c € (a,b)

where e(z) = x, the function f verifies the inequality:

f(B(e)) < B(f).

Before ending, we must remark that there is a bijection between the
functionals A from Theorem 6 (for X = R and P = R, ) and the func-

tionals B from Theorem 12. Indeed, if A satisfies the conditions:

(5) A(p)=0forpe P, 4
and
(6) A(w}) >0 for ¢ € (a,b)

then the functional B defined by:

B(f) = A(f) + f(0)

verifies (3) and (4). Conversely, if B has the properties (3) and (4) then:



verifies (5) and (6).

5. HIERARCHIES OF CONVEXITY

In 1962, A.M. Bruckner and E. Ostrow started in [4] a study on that
is now called "hierarchy of convexity". Let us denote the classes of con-
tinuous, convex, starshaped, respectively superadditive functions by:

C)={f:[0,0] = R, f(0) =0, f continuous}

K(b) ={f € C(b), f € K[0,b)}

S*(b) ={feC(B): f(te) <tf(x), Vte(0,1), x €[0,b]}

Sy ={feC®): flx+y) > f(x)+ f(y), ¥V z,y,z+y € [0,b]}.

We say that the function f has the property "P" in the mean, if the

function:
1 T
Flo) =1 / fOdt, >0, F(0)=0
T Jo
has the property "P". Let us denote by M K (b), M .S*(b) and M S(b) the
sets of functions which are convex, starshaped, respectively superadditive

in the mean. The result from [4] may be formulated as:

Theorem 13. For any b > 0 hold the strict inclusions:

K(b) ¢ MK(b) C S*(b) C S(b) € MS*(b) C MS(b).

In 1983, in [25] we have transposed this result to sequences. We call a

sequence (Z,),>o starshaped if:

xn—1—$0<$n—$0 Vn>9
n—-1 — n -

and superadditive if:

Tnam + o > Tp 4+ Ty, ¥V m,m > 0.
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Let us denote by K, S*, S the sets of convex, starshaped, respectively
superadditive sequences. We say that the sequence (z,),>0 has the prop-

erty "P" in the mean if the sequence (z/,),>¢ given by:

l‘, _x0_|_..._|_xn
me n—+1

has the property "P". We denote by MK, MS* and MS the sets of
sequences which are convex, starshaped, respectively superadditive in
the mean.

Theorem 14. Hold the following strict inclusions:

KcMKcS*cScMS*cMS.

In [32] and [27] we have generalized this result as follows:

Theorem 15. The sequence (x))n,>0 given by:

(™) dy= P >0, 20

is in K (S* or S) for any sequence (x,)n>o with the same property, if

and only if there is an u > 0 such that:

—1
(8) pn:pﬂ(u+n >,Vn21
n
where
v v 1
=1, =—1llv—k), n>1 veR
0 n n!k:O

In this case:

(9) a =t = 3 (UJFZ_l)xk/(u—gn)'

10



We say that the sequence (z,,),>0 has the property "P" in the u-mean
if the sequence z" = (z%),>0 given by (9) has the property "P". We
denote by M*“K, M"S* and M"S the sets of sequences which are convex,
starshaped, respectively superadditive in u-mean.

Theorem 16. If 0 < v < u, then hold the strict inclusions:

KcM*KCcMKc S ¢ M"S* ¢ MvYS*

These results are later generalized in [30] where it is defined a measure
of convexity, of starshapedness and of superadditivity of a sequence.
Then I tried to transpose these results back to functions. In 1982, C.

Mocanu has considered in [12] the weighted mean:

1 xX
10 Fx:—/g’tftdt, F,(0)=0.
(10) o(2) o ), @) f () 5(0)
Related to it, we have proven in [31] the following results:
Theorem 17. If the transformation (10) preserves the convezity (the

starshapedness or the superadditivity) then the function g is of the form:

(11) g(x) =kz", u>0, k#0.

Denoting by F,, the function (10) with ¢ given by (11) and by M" K (b),
M"S*(b) and M™S(b) the sets of functions f € C(b) with the property
that the corresponding functions F,, belong to K(b), S*(b) or S(b), we

have:

11



Theorem 18. If 0 < v < u, then hold the following strict inclusions:

K(b) c M*K(b) Cc M"K(b) C S*(b) < M"S*(b) C MvS*(b)
N N N
S) < M“S(b) MvS(b).

For sequences we tried also to pass to the convexity of high order.
So, in [28] we have considered the hierarchy of order three, giving the
following definitions: the sequence (z,,),>¢ is said to be:

a) starshaped of order three if the sequence ((x,11 — zo)/(n + 1))n>0
is convex of order two;

b) superadditive of order three if:
Tntm+p — Tntm — Tm4p — Tp4n + Tp + Ty + Ip — Zo Z 07 v m,n,p > 07

c¢) 2-starshaped of order three if it satisfies the relation:

Tn4+3 — Lo > Tp42 — X1

> n > 0.
n-+3 n+1

I

We denote by K3, S5, S3 and S2* the sets of convex, starshaped, super-
additive, respectively 2-starshaped of order three sequences. In [28] are
given the following results:

Theorem 19. If the sequence (),),>0 defined by (7) is in Ks (S5,
Ss or S2*) for any sequence (x,)n>0 with the same property, then the
sequence (pp)n>0 must be given by (8).

If we denote by M“K3, M“S%, M*S; and M"S2* the sets of sequences
(Zn)n>0 With the property that (z@),>¢ given by (9) is in K3, S}, S3 re-

spectively S2*, we have also:

12



Theorem 20. If0 < u < v, then:

Ks < S < S < S

N N N
(12) M°Ks; C M"S; C MYS; C MvS%
N N N

M'Ky C M“S; C M“S; C M"S%.

For an arbitrary order, we have also given in [29] the following defini-
tions: the sequence (x,,),>0 is called:
a) (p + 1)-starshaped of order r (with p + 1 < r) if the sequence:

(o))

=0

belongs to K, _p_1;

b) superadditive of order r if for any indices n4,...,n, > 0 holds:
ST i, 20
k=0 (i1,rik)
where, the second sum is extended to all choices of indices i1, . . ., i; from
1,...,r and it reduces at aq for k = 0.

For functions, the first definition may be found in the paper [15] of
Elena Popoviciu while the second was used by T. Popoviciu in [21].

Denoting by S%™* and S, the sets of all (p+1)-starshaped respectively
superadditive of order r sequences, in [29] we have proved:

Theorem 21. For any order r > 2 hold the inclusions:

K.cS*cS*c...csib

13



We also remark that for functions, T. Popoviciu has proved in [21] the

inclusion: K, C S,. For sequences we haven’t yet find the place of S, in

this chain, as it appears in (12) for r = 3.

[1]
2]

[3]

[4]

[5]

[6]
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GENERALIZED FINITE DIFFERENCES FOR
FUNCTIONS OF MORE VARIABLES

J. E. PECARIC, SILVIA TOADER, GH. TOADER

1. Let the functions ug,...,u, be defined on some set £ C R and

X, - .., T, be a system of points from F. On denote
uo(zo) ... uo(zy)

Un(zo) .. un(wy)

The system of functions U, 11 = (ug,...,u,) is called a T-system (or

Tchebycheff system) on E if:

V( 07 ) ) % 0
Loy Tp
for any set of different points zy, ..., x, from FE. It is called a M-system

(or Markov system) on E' if every subsystem Ugy1 = (uo,...,u), for

k=0,...,nis a T-system on F.



If U,,41 is a set of functions which form a M-system on F and X,,;1 =

(xo,...,2,) a set of different points from E, we shall use the notations:
Uug,y ..., U
V() Vit X
Loy -y Ip
and

V(UO,...,Un17f> _ V(Un,Xn+1,f)

Lo -+ -5 Tp—-1,Tn

so that the generalized divided differences of the function f on the knots

X,+1 with respect to the system U, ,; may be defined by:
(1) [Unt1, Xoa1; [] = V(Un, Xoi1, f)/V (Ups, X))
For more reasons, in [7], it is considered also the definition:
AlUn, X115 f] = V(Un, X1, [)/V(Un, X5)
which gives the generalized finite difference, taking X, 1 = X!, =
(xo, 20+ hy ..., 20 + nh):
Ay f(2) = AlUn, X £

In what follows, we need some recurrence formulas from [7] and [8].

The main formula is:
(2) V(Un, Xoa1, f) = AV (U1, X, f) = B,V (Upn—1, X0, f)

where:
X! = (x1,...,7,)
An = Ap(Un, Xpy1) = V(Un, X0) /V (Un-1, X;,_1)
and

B, = Bn(UnaXnJrl) = V<Un7X;L)/V<Un*17XrIL—1)'
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From (2) we have:

[Un+17Xn+1;f] - Cn([Ume/wf] - [Uanvf])

with:
(3) Cn = Cn(UnJrla Xn+1> = BnV(Una Xn)/V(UnJrla Xn+1>
and

A[Una Xn+1; f] = A[Uﬂflv X’;L? f] - DHA{UH*M Xna f]
with:

(4) Dn - Dn(Um Xn+1) - Bn(Una Xn—i—l)V(Un—la Xn—l)/V(Um Xn)

as well as:
A f(a) = A" f(z + h) — DAY f(x)

where D! = D,,(U,,, X" ;).
We remark that (2) gives also the recurrence given in [4]:

[Um Xrlz; f] — [Unv Xn; f]

Uni1, Xnia; f] = '
[ +1 +1 f] [Un’Xleun] — [Un,Xn;Un]

2. Passing to functions of more variables, as it is known from [3], there

is no T-system or any domain, so that we cannot generalize (1) in a

simple way.

One of the ways used for this generalization is the composition of

more divided differences, each acting on a single variable. For example,

if f is a function of two variables, f : [a,b] X [¢,d] — R, U,1; is a M-

system on [a,b] and W,,,1 = (wy,...,w,) a M-system on [c, d], we can
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consider for any sets of distinct points X, .1 = (zo,...,x,) from [a,b]

and Y11 = (Yo, - - -, Ym) from [c, d] the functions:

9(y) = V(Un, Xpp1, f(-,y)) and h(z) = V(Wi Yiia, f(2,)).

We have:
V(Un7 Xn+1, h) = V(Wma Ym+1v g)

and we denote the common value by: V (U, X,11; Wi, Vi1 f). From

(2) we have the recurrence formula:

(5) V<Un7 Xn+1; Wm7 Yerl; f)
= An<Un7Xn+1)Am(W m+1 V(U n— 17 Wm 15 ma
_A n— 17 Wm 17Ym7 f

f)

) Bun( U )

~ By (Un, X)) A (Wi, Yo )V (Un—1, Xy Won1, Y f)
) B (Un—1, Xn; Win1, Y f)

where, as before, X! = (x1,...,2z,) and Y., = (y1, ..., Ym)-

We may consider not only the generalized divided difference:

(6) [Unt1, Xns1; Wi, Yongas f]

= V(Una XnJrl; Wma Ym+1; f)/(V(Un+la Xn+1>V(Wm+1> Ym+1))

but also:
(7) A[UnaXn—i—l;WmaYm-‘rl;f]

= V(Um Xn+1§ Wm, Ym—i—l; f)/(V(Um Xn)V(Wm> Ym))

to get the generalized finite difference:
(8) A/lzj,yilc’wmf(xa y) = A[Unu X’ZLLJrl; Wi, Y:LJAE f]

4



where X" | = (z,z+h,...,x+nh) and Y} | = (y,y + k,...,y + mk).

From (5) we have the recurrence relations:

[Uni1, Xnt1; Wingr, Yora; f]
- Cn(Un—Ha Xn+1)0m(Wm+17 Ym—i—l)([U X, Wma Yr:u f]

—[Un, X35 W, Yo f1 = [Un, Xo; Wi, Yoros f1 + U, X Wi, Yo f])
and

A[UnaXnJrl;WmquJrl;f] = A[UnfluX W —1, m:f]
_Dn<Un7Xn+1)A[Un laXme 1, m:f]
_Dm(Wmaym—‘rl)A[Un 17X/ Wm—bym;f]

+Dn(Un7 XnJrl)Dm(Wma Ym+l)A{Un717 Xn; Wmflv Ym; f]

which gives also:

A (@, y) = Aot f (@t by + k)

—D, (U, XT’;H)A,;,; PWmt gy 4 k)
—Dye( Wi, YE )AL f (2 + Ry y)

+ Do (Uny Xyt1) Do (Wi, Yok ) A5 f ().

Examples may be obtained from those given in [7] and [8].
3. Starting from the interpretation given in [6] to Bernstein polynomial,
in [5] it is proposed a modification to the schema of Gontcharoff and

then a generalization of divided differences. This may be yet pushed
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further. Let U,, 11 a system of functions (of one or more variables), P, 11 =

(po, - .., pn) & system of (linear) functionals defined on U,,;1, such that:
po(uo) .. po(un)
V(Uns1, Payr) =] ... ... # 0.
pn(uo) c. pn(un)

Let F' be a set of functions (of one or more variables, without any
relation U,.1) and Q,11 = (qo,---,qn) a system of functionals defined
on F. Then we can define a generalized divided difference of a function

f from F' with respect to the systems U, 1, P,,+1 and Q41 by:

[UnJrla Pn+17 QnJrl; f] = V(Una Pn+17 QnJrl; f)/V(Un+17 Pn+1)
where:

po(uo) - po(tun-1) qo(f)
V(UnaanrlaQnJrl;f) =

pu(to) - Pa(tn-1) qu(f)

Also, making some natural changements in the hypothesis, we can

define:

A[Una Pn+1> QnJrl; f] = V(Una PnJrla QnJrl; f)/V(Um Pn)'

For example U,, ;1 may be a M-system and the functionals p; may be
defined by py(u;) = u;j(xy), where X, 11 = (2o, ..., x,) is a set of distinct
knots from [a, b]. Then the recurrence relations are:

(9) [Un+17 Xn+17 Qn+1; f] = Cn([Un7 X;n anv f] - [Una X?"w Q?"w f])

6



where C,, is given by (3) and @/, = (¢1, ..., ¢»); and also:

(10) A[UnaXnJrl; QnJrl; f] = A[UnflaX;La anv f] _DnA{UnflaXnaQn; f]

with D,, given by (4).

Here, no relation between the functionals @), and the knots X, is
requested. But, in [2] it is given a special case in which such a relation
exists. We want now to generalize it for M-systems.

Let R”. denotes the set of those 2 € R? whose first non-zero coordinate
is positive. We write 2 < y iff y — 2 € RE and so we can define the
function sign. Let D C RP be a convex set, f : D — R be a function and
Xni1 = (zo,...,x,) be a system of distinct collinear points in D. Put
h = (z, — xo)/|xn — xo|sign(x, — xp), so that h > 0 and x; = x¢ + t;h
(t =0,1,...,n). For any M-system of functions U, ; we consider the
determinant:

wo(to) ... wun—1(to) f(xo)
V(Up, Xnt1, f) =
uo(tn) oo up_1(tn) f(zn)

the generalized divided difference:
[Unt1, Xni15 f1 = V(Un, X1, [)/V (Uns1, Tos1)
with T, = (to,...,t,) and also the expression:
AlUn, Xps1; f1 = V(Un, Xnga, £)/V (Un, 1)

which gives the generalized finite differences taking X, = X/, =
(o, 0+ hy ..., xo+nh). Of course, the recurrence formulas (9) and (10)

may be rewrited in this case.
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Babes-Bolyai Univ. Preprint 6(1988), 309-316
ON SOME INEQUALITIES FOR CONVEX FUNCTIONS

Gh.TOADER

1 Introduction

Almost all of the known inequalities for convex functions may be expressed by the positivity
of some linear functionals on the cone K of convex functions. As it was stated in [1] this
point of view was initiated by T.Popoviciu and many related results may be found in his
book [5]. Characterizations of the dual cone K* of K, that is of the set of linear functionals
which are positive on K, may be found in [1] and [10].

But we have also nonlinear functionals which are positive on K.
For example:A(f) = min{Li(f), L2(f)} with Ly, Ly € Kxwhich is superadditive. That is
why we consider the generalized dual cone K of all functionals which are positive on K.
Such a generalization appears sometimes usefully. For example, in[6] I.Singer has used the
dual space in the problem of the characterization of the elements of best approximation in
normed spaces. But in linear metric spaces the method don’t work and it was necessary
to replace the dual space with a cone of subadditive functionals (see [4]).

We have obtained in [8] the characterization of a great part of K.
To give the result, we present some notions and notations.

Let C be4 the set of all continuous real functions defined on I = [a, b]. We denote by
er and w, the functions defined for k € N and ¢ € (a,b) by:

respectively

x—c forze(cb
0 for z € [a, ]

A functional A : C — R is said to be:
a) superadditive if: A(f + g) > A(f) + A(g), Vf,g € C;
b) positively upper homogeneous if: A(af) > aA(f), Vf € C, a > 0;

1



¢) upper semicontinuous if: A( lim f,) > lim A(f,), V(f,) convergent.
n—oo n—oo

Theorem 1.1. A supperadditive , positively upper homogeneous, upper semicontinuous

functional A belongs to K if and only if:
A(xer) > o for k=0,1 (1)

and
A(we) >0, Ve € (a,b). (2)

We remark that if A is homogeneous, the condition (1) becomes:
Alep) =0 for k=0,1. (3)

In fact, the results from [8], as well as those from [1] and [10], are given for convexity of
order n. We have given here the result only in this form because in what follows we deal

only with convex functions.

2 The Jensen-Steffensen’s inequality

One of the simplest linear functional is of the form:

n+1

A(f) = prflar), pr €R, ap € 1. (4)
k=1

From theorem 1.1 we have the following result which may be found even in [5]:

Consequence 2.1. The functional (4) is positive for any convex function f if and only

if:

n+1 n+1 n+1
> oe=0, ) proak=0, > pp-welwy) >0, Vee . (5)
k=1 k=1 k=1

The first two relations from (5) give:
n n n
Por1=—Y Pk #0, > petr/ >
k=1 k=1 k=1
thus, supposing;:

> pe>0 (6)
h=1

and dividing in (4) by it, we have equivalently the functional:

AN =D o)) > e — FO_pear/ D pr). (7)
k=1 k=1 k=1 k=1
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This is positive on K if and only if it verifies (2).
In what follows we want to give a characterization of the weights p1,...,p, for what
the functional given by (7) is positive on K for any knots 1 < xg < --- < x,,.We need the

following results of Popoviciu’s type:
Lemma 2.1. The inequality:

Z Yk = 0 (8)
k=1

is valid for any positive increasing sequence (yr)’, if and only if holds:

Proof. If the sequence (yx)}", is positive and increasing, it may be represented by:

k
Y = Zvj with v; >0, Vj > 1.
j=1

The inequality (8) becomes:

m k m m
PDIEDIIBOIEL
k=1 j=1 j=1 k=j
and it is valid for any v; > 0 if and only if holds (9). a

Lemma 2.2. The inequality (8) is valid for any positive decreasing sequence if and only
if holds:

1
S0 5=t m (10
k=1
The proof can be deduced from Lemma 1 because if (yx);"; is decreasing, (Ym—r+1)j;
is increasing.

Theorem 2.1. The functional given by (7) is positive for any convex function f and any
knots:
a<m < <xp <Db

if and only if:

n
Pn = Zpk: >0 (11)
k=1
and
1
0SS bk < j=1em (12
k=1



Proof. We must have p, # 0 in (7) and we have supposed p,, > 0 in (6). Let us denote:

n
X = Zpkwkr/pn-
k=1

If b > X >z, then, for x,, < c¢ < X it results A(w.) = —(X — ¢) < 0. Thus we must have

X < x,, which is equivalent with:

Zpk n—ak) >0

and (z, — xx)}_; beeing positive and decreasing, from Lemma 2 we must have:

1
> pp=0forj=1,...,n—1. (13)

If a <I<uz,for X <c<xy, the condition A(w.) > 0 implies:

n

Y pr-(wr—0) >0

k=1

and so Lemma 1 gives:
n
> k=20 j=1...n (14)
k=j

But then: .
> pilar —21) >0
k=1

that is I > x;. Conversely, 1 < I gives (14). Thus we always have (13) and (14) which
are equivalent with (12).
To prove the sufficiency of the conditions (11) and (12), we have to prove (2) for any
€ (a,b). If ¢ >y, or ¢ < 21, A(we) = 0.

If:2;<c<zjp1(j=1,...,n—1) we have two possibilities:

a) If X <c then:

n

A(wc) = Z pk(*xk - C)/pn >0
k=j+1
because (xy — ¢)j_; 4 is increasing and we have (14).

b) If X > ¢, then:

Z pr(zk —¢)/pn — Zpkiﬂk/pn —c)=
k=j+1
1

= S pele—a)/pn > 0

k=1

because (¢ — xk)i:l is descreasing and we have (13).

4



O

Remark 2.1. If pp > 0, k = 1,...,n, the conditions (12) are satisfied and we get
the Jensen’s inequality. The sufficiecncy of the conditions (11) and (12) was proved by
J.F.Steffenen in [7] but we don’t found anywhere stated their necessity (see also [2]). Eux-
amples if weights (py)p_, which satisfy (11) and (12) are given by the inequalities of Szegd,
Bellman, Brunk, etc. (see [2]).

3 Convex sequences

If the weights (pg)}_; from (4) are imposed, the conditions (5) characterize the knots
(@)}, which give positive functionals on K. We start to analize this point of view by the
following simple problem.

A sequence (z)r>1 is said to be convex if it verifies the conditions:
Tkro — 2Tk + 2 > 0 for k> 1.

We want to characterize the increasing sequences (xj)g>1 with the property that
(f(xk))k>1 is a convex sequence for any convex function f. From (4) we obtain the following

result:

Theorem 3.1. The sequence (f(xy))k>1 is convex sequence for any convex function f if

and only if the sequence (x)k>1 is an arithmetic progression.

4 The inequalities of Toda and of Nanson

Another example of inequality with imposed weights is that proved by K.Toda in [9] for

any convex function f and any points:
TS T2 S STy

we have:
n

n—1
S5 o) > > 1)

k=1

where y; are the roots of the derivative of the polynomial:

n

[[@— =)

k=1

In what follows we want to characterize the knots for which such an inequality holds.



Theorem 4.1. The functional:

with:

1 <xg <3 < - <xop1

is positive for any convex function f if and only if:

1 n 1 n—1
E Zw%—l = m Z@j (15)
k=1 j=1

and
= (n —1i)woi—1 1 =
- _ > L i=2...,n—1 16

Proof. The condition (15) is the second relation from (5). We have to check the last
condition from (5). Ifize; 1 < ¢ < x2;(1 < i < n) then:

n n—1
1 1
Alwe) = ~ > (wap-1— ) - — Y (waj—0c) >0
k=i+1 j=i

if and only if holds (16). Analogously, for z9;—2 < ¢ < x;, A(w.) = 0 because of (15). If

Ton—2 < ¢ < Top—1, A(we) = (x2p—1 —¢) > 0 and if 29,1 < ¢ < b, A(w,.) = 0. O
Consequence 4.1. If (a:k)?;ll s an increasing arithmetic progression then for any convex

function f holds:

n n—1
%Zf($2k—1) > %Z]P(x%)- (17)
k=1 j=1

This is a Nanson’s type inequality for functions. It also can be deduced from theorem
3 and the Nanson’s inequality for sequences [3].
We remark that (17) can be iterated:

Consequence 4.2. If (:nk)zizl 18 an increasing arithmetic progression, then for any con-

vex function f holds:

n n—1 n—1
%;f(m%—ﬂ > nil ;f(xzk) > ﬁgf(x%_l) > > fa).
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ON A GENERALIZATION OF THE CONVEXITY
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1 For complex functions, P.T. Mocanu has defined in [5] a general notion of convexity
which is intermediary to usual convexity and to starlikeness. It has inspired my definitions
for sequences from [6] and for real functions from [7]. Although based on different ideas,
they also introduce an infinity of classes of sequences (respectively of functions) between
those of convex and of starshaped ones.

In the following paragraph we give the definition of m-convexity for sets in a linear
space. In the paragraph 3 we remaind the definition of m-convex functions (from [7])
and give some properties of them. In the last paragraph, we study the conservation of
m-convexity of functions by some integral means considered in [4].

2 Let X be a linear space, I = [0, 1] and m > 0 a fixed real number.

Definition 0.1. A set D C X is called m-convez if for any x,y € D and any t € 1 we
have:

tr+m(l—t)y € D. (1)
Lemma 0.1. If m > 1,0 € D and D is m-convex then for any x € D, t > 0 we have

tx € D.

Proof. If x € D and t € I, then tx = txr+m(1—t)-0 € D. Also, mx = 0-0+m(1—0)x € D.
Thus for any ¢t € I and n € N, (t-m™)z € D. O

Remark 0.1. Taking into account this property, in what follows we shall consider only
m € I. The value m = 1. The value m = 1 corresponds to convexity and m = 0 to
starshapendness. If 0 <m < 1 and x € D, then for anyt € I, [t + m(1 —t)]x € D that is
sz € D for s € [m,1] and so, step by step, sx € D for s € (0,1]. Also, if z,y € D for any
t,sel:

tr +m(l —t)y € D and sy +m(l —s)z € D.

These points coincide for ¢ = s = m/(m + 1) which gives:
[m/(1+m)]-(z+y) € D.

1



So, D is m-convex if and only if for any z,y € D the convex hull of the set {0, x,y, [m/(1+
m)] - (x 4+ y)} is contained in D U {0}. Thus the m-convexity so defined is relative to the
origin (as the starshapendness). To be relative to another point zy, we must replace (1)
by:

tr + (1 —t)[my + (1 — m)xo] € D.

We can see that only for m = 1 this is independent of xg. In what follows we consider only

the case g = 0 and suppose that 0 € D.So, as m/(1 + m) is increasing, we have:
Lemma 0.2. If D is m-convexr and 0 < n <m < 1, then D is also n-convexz.

Remark 0.2. Any m-convex set D is w2-convex in the sense of [3]. Indeed, if we denote
by [z, y] the line segment joining the points x and y, then D contains [x,(m/(1+m)(z+y)]
and [(m/(1+m))(z +y),y].

3 Let D be a m-convex set, with m € I.

Definition 0.2. A function f: D — R is said to be m-convex if for every x,y € D and
t € I it verifies:
fltz+m(l—t)y) <t f(z)+m(l—1) f(y). (2)

Remark 0.3. If we write (2) as:
flaz +by) <a- f(z) +b- f(y) 3)

then this relation must be verified for any (a,b) on the segment joining (1,0) with (0,m).

This last point becomes (0,1) in the case of convezity and (0,0) in the case of stellarity.

Another geometric interpretation of (2) is the following: let us denote the points
A(z, f(z)), By, f(y)), P(mz,mf(z)) and Q(my, mf(y)); then f is m-convex if and only
if the point M (z, f(z)) is under the chord BP for z € [y,mz] and also under the chord
AQ for z € [z, my].

Taking into account the remark 1 it is natural to suppose:
0€ D and f(0) <0 (4)
otherwise the relation (2) should be modified. With this convention we obtain:

Lemma 0.3. The function f: D — R is m-convex if and only if the set:

epif ={(z,y) € D x Ry > f(z)}

1S M-CONveL.



Lemma 0.4. If f is m-conver then it is starshaped.

Proof. For any x € D and t € I:

fltz) = ftz+m(l —1)-0) <t- f(z) + m(l—t)- f(0) <t- f().

Theorem 0.1. If f is m-conver and 0 < n <m < 1, then f is n-convez.

Proof. 1t results from the Lemmas 2 and 3 but also from Lemma 4: if x,y € D and t € I,
then:

fltr +n(l = t)y) = f(tx +m(1 = t)(n/m)y) <
<t-f(z)+m(l—1)- f((n/m)y) <t f(z) +m(l—t)(n/m)- f(y).
In what follows we consider only functions defined on the real interval [0, b] and denote by

K, (b) the set of m-convex functions on [0, b] such that f(0) < 0. O

Lemma 0.5. The function f is in K,,(b) if and only if:
flx) —m- f(y)

T —my

fm(z) =

is increasing on (my,b]; y € [0,b]. (5)

Proof. The relation (2) may be written as:

fle) —m-fly)  fltz+m(l—t)y) —m-f(y)
x—my - t(x —my)

(6)

and denoting z = tx +m(1 —t)y we have z < z and fp,(2) < fm(x). Conversely, for z < z
we take t = (z — my)/(z — my). O

Lemma 0.6. If f is differentiable in [0,b] then f € K,,(b) if and only if:
fl@) —m- f(y)

fla) = RO

Proof. From (5) we have f; () > 0, which gives (7).
These results generalize and unify some results known for convex and for starshaped

functions (see [2]). O

, for x >my. (7)

4 In [2] was proved the conservation of the convexity and starshapendness by the

integral mean, that is, if f is convex or starshaped, then so is also:

In [4] it was considered a more general mean:
1
Fy(z) =

/
— [ J@) - ft)dt. 8
= [[90-10 ©
For this we can prove the following;:



Lemma 0.7. If F,; given by (8) is m-convex for every m-convex function f, then there is
a real k and an u > 0 such that:
glw) = k-2 (9)

Proof. The function fy(x) = c-x is in Ky, (b) for every ¢ € R. So:
Fy(z) = —/Ozg’(t)-t.dt:c-a(x)
is also in K, (b). So, for every x,y € [a,b] and t € I:
|Gtz +m(l —t)y) —t-G(x) —m(l —t) - G(y)] <0
and taking ¢ = +1, we have:
Gtz +m(l—t)y) =t-G(z)+m(l —1t)-G(y)
which gives (see [1]): G(z) = a - x, that is:
v g (x) = alg(z) + zg'(z)]
and so (9). If uw <0, then (8) is not defined for f(x) = c. O

Lemma 0.8. If g is given by (9), with u > 0, then Fy is in Ky, (b) for every f € Kp(b).

Proof. From (8) and (9) we have:

u

Fyfe) = Ful) = 2 [ 0 p(oya (10)

:L.// 0
and making the substitution ¢t = - s'/* (given in [4]), we get:
1
F.(z) = / f(z-s'%)ds. (11)
0
So, if f € K, (b);x,y €[0,0];t € I:
1
E,(tx +m(1 —t)y) = / Fltes'™ +m(1 —t)ys/")ds <
0
1
: / [t flast") +m(l—t) - flys'/“)]ds = t - Fulw) + m(1 = t) - Fu(y).
0
O

If we denote by M"K,,(b) the set of functions f : [0,b] — R with the property that
F, given by (10) is in K,,(b), we have thus:



Theorem 0.2. If 0 <n <m <1 and u > 0 then hold the following inclusions:

K (b) C  Kn() C K, (b) C Ky(b)
N N N N
M'Ky(b) C MU'K,(b) < MUK,(b) < M"Kyb).

Lemma 0.9. The function f belongs to M"K,,(b) if and only if:

[(I+w) -z —m-u-y[Fy(z) —m- -z F,(y)
u- (z —my)

flz) >

Proof. From (10)we have:
Fy(z) = (u/)[f(z) — Fu(2)]
and from (7) we get (12).
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1 Introduction

Let us consider the classes of continuous, convex, starshaped respectively superadditive

functions defined on the interval I = [0, b]:
C)={f:1—R, f(0)=0, f continuous}
K(b) ={f € C); ftz+ (1 =t)y) <tf(zx) + (1 -1)f(y),
vVt € (0,1), Yo,y € I}
Sx(b)={feCb); f(tx) <tf(x)Vte (1,0),Vx e}
Sb)={feC®);flx+y) = f(z)+ f(y), Va,y,x+y € I}

It is known that:
K(b) C Sx(b) C S(b). (1)

In [1], A.M. Bruckner and E.Ostrow have extended these inclusions as follows. The Cesdro
operator A : C'(b) — C(b) is defined by:

AN@ =1 [ 1o A© =0,

We denote by MK (b), MS « (b) and MS(b) the sets of functions f with the property that
A(f) is in K (b), in S * (b) respectively in S(b). The result from [1] is that for any b > 0,

hold the strict inclusions:
K(b) Cc MK(b) C S*(b) C S(b) C MSx(b) C MS(b). (2)

Using the Ceséro type operator A, : C(b) — C(b) defined by:

%m@—i/%ﬂmw

.Z'U’O

1



we have given in [5] a generalization of (2). Let us denote by M“K(b), M"S * (b) and
M™S(b) the sets of functions f € C(b) with the property that A, (f) belongs to K (b), S*(b)
respectively S(b). Then, for any b > 0 and say 0 < u < v, hold the inclusions:

K(b) © MYK®) C MUK(®) c  S=(b)  S(b)

N N
MvS « (b) MvS(b)
N

M"S % (b) M"S(b).
To obtain a further generalization we can use the following nonlinear operator, studied,

for example by C.Mocanu in [3] and [4]:

AN = [ [ pog o] "

If p is an arbitrary positive real number, the function f must be positive. We will denote
by C1(b), K4+(b), S+ * (b) and S4(b) the sets of positive functions from the corresponding
classes. We remark that for p > 0, Ay, : C;(b) — C(b) but for

neN, Ay, : Cb) — C(b).

Lemma 1.1. If Ay, (f) € K(b) for any f € K(b), then there is an u > 0 and a real ¢
such that:

g9(z) = ca®. (3)
Proof. As fo(z) = ax is convex for any a, so must be also:
Fo() [ ! /m £ ’(t)dt} v
o\r)=a|——= g
9(@) Jo
By (1) Fy is also superadditive and a being of arbitrary sign, this means that Fp is additive

(for a = 1). Thus: N
{Tlx) /0 t”g’(t)dt] R

which gives (3).
For g given by (3), we denote the operator Ay, by A, that is:

u [T 1/p
A $)@) = [ [ et rera] (®)
L= Jo
As it is done in [3], making the substitution:
t = ks'/v
the relation (4) becomes:
! 1/p
Au(Pla) = [ [ st (5)
We need some well known results (see [5]): O



Lemma 1.2. If the convex function f is differentiable, then f’ is nondecreasing.

Lemma 1.3. The function f is starshaped if and only if f/1; is nondecreasing.
So we can prove the following:

Theorem 1.1. For any b,u > 0 and any p > 1, hold the inclusions:

Kb) C M“PE () C S« () C  Si(b)
N
MePS 5, (b) C M“PS,(b).

If p is replaced a natural number n > 1, we can renounce at the lower index +.

Proof. 1. If f € K4(b), then for any x,y € I and any ¢ € (0, 1), we have by (5):
1
Aup(f)(tz+ (1 =t)y) < [/ (k4 (1 = t)y)s™*)ds] /P <
0

1
< /0 £ (@) + (1 — ) f(ys /) Pds] P <

<t Aup(f)(@) + (1 = 1) Aup(f)(y)

which means that f € M“PK_ (b). We have used Mnkowski’s inequality (see [2]),

for what we need p > 1.

2. From (4) we have:

e f () = (27 Aup(f) (@) + pu™ (27 Aup(f) ()P
A (N @)

So, if f € M*“PK,(b) by Lemmas 2 and 3, f/1; is nondecreasing that is f € S« (b).

3. The inclusions S *4 (b) C S4(b) and M™PS x, (b) C M*PS,(b) follow from (1).

4. If f € S*4 (b),t € (0,1) and = € I we have:

1
Aup(f)() = | /0 f2(tarst ) ds) P < t Ay (f)(2)

that is f € M"™PS %, (b).

Remark 1.1. The inclusion: S+ (b) C M™PS,(b) is valid for p < 1.



Indeed, if f € S, (b):

1
AP +9) = [ 170G+ p)sti)as e >
0
1
= ([ U@ + s > Au(P)la) + Auy 1)),
To apply the Minkovski’s inequality in this sense we need 0 < p < 1.

Remark 1.2. From some results proved in [4] we deduce inclusion relations between the

classes M™PS x (b) if u or p decreases. We don’t know if similar results hold for other

classes.
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In [4] T.Popoviciu has proved that if the function f : [0,b] — R satisfies the conditions:
(i) f(0)=0
(ii) f has the (n — 1) th derivative
(iit) (—1)""1 £ is increasing

then for any x1,...,z, € [0,b] distinct and such that z1 + --- + x,, < b it verifies:

n
Zg_l)k_IZf(xi1+"'+xik)20 (1)
k=1 (k)
where Y f(xi, +- - -+, ) denotes the sum over all the combination of class k of x1, ..., x,.

(k)
For some values of n the result was generalized for n-convex functions. This was proved

by M.Petrovi¢ in [3] for n = 2, by P.M. Vasi¢ in [6] for n = 3 and by J.D.Keckié¢ in [2] for
n = 4.
On the other hand, for n = 2, the result was again generalized by A.M. Bruckner and
E.Ostrow in [1], proving (1) for starshaped functions (a simple proof may be also found
in [5]). In this paper we want to prove similar results for n = 3 and 4. Also we pass to an
arbitrary interval [a, b].

Let us remind that the divided difference (of order n) on the distinct points

(zo, 21, ...,y is defined recurrently by:

[o; f] = f(x0), [x0, - @ns ] = [21, o, @03 f])/ (0 — 2).

We consider the set of n-convex functions (or convex of order n):

Kn{a? b] = {f [a,b] — R, [37071'17- . -7e'13n;f] >0,

Vo, € [a,b] distinct }



and that of n-starshaped functions (or starshaped of order n) on [a, b]:

Srla, bl ={f :[ab] — R, [a,x1,...,2n; f] >0,
Vxi,..., Ty € [a,b] distinct }

By analogy with the definition for n = 2 and generalizing the inequality (1), we define

also the class of n-superadditive functions (or superadditive of order n) on [a, b]:

Spla,b] =A{f :[a,b] — R, Vzx1,..., 2z, € (a,b] distinct

suchthatx1 +---+x, —na<b—a

n

DYDY i o @i, — (k= 1)a) + (=1)"f(a) > 0},
(k)

k=1

We see that if a = 0 and f(0) = 0 the relation of definition of n-superadditive functions
reduces at (1) multiplied by (—1)"*+1.
The result of M. Petrovi¢, P.M. Vasi¢ and J.D.Kecki¢ means that:

K,[0,b] C S,[0,0], for n = 2,3,4.
We prove the stronger result:

Theorem 0.1. For any interval [a,b] hold the inclusions:
Kyla,b] C Syla,b] C Syla,b], forn=2,3,4.

Proof. The first inclusion is obvious for every n. To prove the second inclusion, for n = 2

we have:

f+y—a)=fz) = fy) + f(a) =
fxty—a)—fla)
T+y—2a T—a

= (z—a)(la,z+y—a; f] = [a,z; f])+

(x+y — 2a)
oy W)~ f(a)
(y )7?/_&
+y—ala.z+y—a fl-[ay f]) = (—a)(y —a)
‘([a,x,az+y—a;f]+[a,y,x—i—y—a;f])

and so f € S3a,b] implies f € Sa[a, b].



For n = 3 we deduce:
fo+y+z—20)— flz+y—a)— flz+z—a)— fly+z—a)+
+fe)+fy)=Ffz) - fla) = (f@+y+z—2a) = flz+y—a) - f(z) + fa)) = (fz+ 2z —a)-
—f(@) = f(z) + fla)) = (f(y+ 2 —a) = f(y) — f(z) + fla) =
=(z+y—2a)(z—a)(la,z+y—a,z+y+z—2a; fl+
+a,z,x+y+ 2z —2a; f]) — (x — a)(z — a)([a,z, 2 + 2z — a; f]+
tlo,zz+z—af]) = (y—a)z—a)(a,y,y + 2z —a; fl+

tlo,zy+z—af])=(@—-a)(z—a)(a,z+y—az+y+2z—2af]-

—la,z+y—a,z+z—a;f]+a,x+y—a,z+2z—a;f]-

—la,x, v+ z—a;f]+[a,z,x +y+2z—2a; f] —[a,z,x + 2z —a; f])+

+y—a)(z—a)(la,z+y—az+y+z—2af]l-[a,x+y—ay+z—afl+
+lo,z+y—ay+z—afl—lay,y+z—afl+]a,z,2+y+2z— 20 f]-
—la,z,y+z-a;f]) = (z—a)ly—a)(z—a)
e,z +y—a,x+z—a,x+y+z—2a;fl+[a,z,x +y—a,x+2z—a; f]+
+la,z,c+z—a,x+y+z—2af]+[a,x+y—a,y+z—a,x+y+z-—2af]+
+la,y,c+y—ay+z—a fl+a,z,y+z—a,x+y+2z—2a;f])
=(x—-a)(y—a)(z—a)(la,z,x+y—a,z+2z—a; f]+
+la,y,x+y—ay+z—a;fl+]a,z,x+z—ay+z—a;f]+
+la,z+y—a,y+z—a,x+y+z—2af|]+[a,v+y—ay+
z—a,x+y+z—2afl+a,x+z—a,y+z—a,x+y+z—2a;f])
because
[a,z,2+2z—a,x+y+z—2a f|+[a,2,y+2z—a,c+y+2z—2a; f] =
=la,z,c+z—ay+z—a fl+e,x+z—a,y+z—a,x+y+z—2a;f]
as .
[a,z+z—ay+z—a,x+y+z—2a;f]—la,z2,y+2z—a,z+y+z—2a;f]=
=la,z,c+z—a,x+y+z—2a;f]-la,z,x+z—a,y+z—a;f]=
=(x—-a)fa,z,x+z—a,y+z—a,z+y+z—2a;f].
Thus f € S3[a,b] implies f € Ss[a, b].

For n = 4 we can continue on this way or we may remark that the function f is

n-superadditive on [a,b] if and only if the function f,, defined by fo(z) = f(a + z), is



n-superadditive on [0,b — a]. Thus it is enough to prove the property for a = 0. Thus:
fz+y+z4+w)—flz+y+2)— fle+y+w)— fr+z+w)—
—fly+z+w)+flz+y) +flz+2)+ fle+w)+ fly+2)+

+fy+w)+ fz+w) - f@) - fly) — —f(z) = fw) + f(0) =
=(f@+ty+ztw) - flz+y+z)- fl@ty+w) - flz+w)+

T f(@+y)+ f(2) + f(w) = F(0)) = (f(z + 2+ w) — flz+2)-

— flz+w) = f(z+w)+ f(z) + f(2) + fw) = f(0)) = (fly+ 2+ w)—

—fly+2) = fly+w) = flz+w) + f(y) + f(z) + f(w) = f(0)) =

= (x+yzw(0,z +y,z+y+ 2z, +y+w f]+[0,2,2 +y+ 2z 2 +w; fl+

+0,w,c+y+w,w+z fl+[0,x+y+z,2+y+wz+y+z+w; fl+
+0,z+y+z,z+w,r+y+z+w; fl+[0,x+y+w,z+w,x+y+z+w; f])—

—zzw([0,z,x + z,z +w; f] + [0, 2,z + 2,z + w; f] + [0, w, x + w, z + w; f]+

+0,z+z,z+w, x4+ z+w; fl+[0,x+z,z+w, x4+ z4+w; f]+ [0,z +w,z+w,z+ 2+ w; f])
—yzw(0,y,y+ 2,y +wi fl+ 0,2,y + 2,2+ w; f] + [0,w,y + v,z +w; f]+

+[0,y+z,y+twy+z4+w, fl+0,z4+y,z+w,y+z+w; f]+[0,y+w,z+w,y+z+w;f])
=zzw(0,z+y,z+y+z,x+y+w; fl+0,z,2+y+z,2z+w; f]+[0,w,z+y+ww+ 2z fl+

+ 0w,z +y+wz4+w; fl+0,z+y+z,x+y+wr+y+z4+w, fl+0,z+w,z+y+z,2+y+z
+w; fl+ [0, z4+w,z+y+w,z+y+z+w; f]—[0,z,2+2,2z+w; f] —[0,2,2 + 2,2 + w; f]—
—[0,w,x+w,z+w; fl - [0,z + z,z +w,x+z+w; f] — [0, + 2,2 + w,x + z +w; f]—
—[0,w,x+w,z4+w; f]—[0, 2+ z,z +w,x + z+w; f] — [0, + 2,2 + w,x + z + w; f]—

— 0,24y, z+w,z+z+w; f]) +yzw([0,z+z,x +y+z,2+y+w; f]+[0,2,2 +w,z+y+ 2

+w; f]+ [0,w,z +w,x +y+w; fl+ [0,z +y+z,2+y+w,z+y+z+w; fl+[0,z+w,x+y+ 2
z+y+z4+w; fl0,z+wrx+y+w,z+y+z+w; f]—[0,y,y+ 2,y + w; f]

—0,w,y+w,z+w; f]—[0,y+z,y+wy+z+w;, f]—[0,y+zz2+wy+z+w —[0,y+w, 2+
+w,y+z+w)=zzw(0,z+y+z,2+y+w,z+y+z+w f]—[0,x24+y+z,2+y+we+ 2+ w;f]
O,z4+y+z,xe+ytwezt+y+z+w, fl—[0,z+z,z+y+w,z+z+w; fl+[0,x+z,2+y+w,x+ 2+
w; flI0,x 4+ z,x +w,x+ z+w; fl+ [0, 24w,z +y+z,x+y+z+w; fl—[0,z+w,z+y+ 2,2+ 2+ w; f]
+0,z+w,z+y+z,x+z4+w f]—[0,z+w,z+z,x+z+w; fl+[0,z4+w,z+y+w,z+y+2z+w;f]
—0,z+w,z+y+w,x+z4+w; fl+[0,z+w,z+y+wz+z+w; f]—[0,z+w,z+w x+ 2+ w; f]
+[0,w,z+w,z+y+w; f]—[0,w,z4+w,x+w; f]+1[0,z,z+w,x+y+ 2z f] —[0,2,2 + w,x + z; f]
+0,z+y,c+y+z,e+y+w fl-0,z+y,z+z,x+y+w fl+[0,z+y,c+z,2+y+w; fl—
—[0,z, x4+ z,x +y+w|+[0,z,x+ z,z +y+w| — 0,2,z + 2,z + w; f] + yzw-
-([0,x+y+z,x—|—y—|—w,x+y+z+w;f]é[O,:z:—|—y—|—z,x—l—y—|—w,x—|—y+z—l—w;f]—i—[O,a:—i—y—l—z,x—i—
y+twytztw fl-[0y+tzz+tytwytztwfl+0y+zotytwy+z+w fl-[0,y+zy+w,
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0,z+yz+y+zrt+ytw fl-0,z+yy+tzrt+ytw fl+0,z+yy+2z+y+w; fl-
0,z +y,y+zy+w fl+[0,z+y,y+zy+w —[0,y,y+ z,y+w; f]+1[0,2,2 + w,
c+y+zfl—[0,z,z+w,y+ 2z fl+[0,w,z+w,x+y+w; f] — [0,w,z+w,y +w; f]) =
zyzw([0,z +y+z,2+y+wr+z+w,c+y+z+w; fl+[0,24+z,2+y+z,2+y+ w;f]
0,24z, +w,z+y+w,x+z+w; fl+[0,z+w,z+y+z,x+z+wz+y+z+w;f]+]0,2z+
w,r+z, e +y+z,x+z+w fl+0,z+wr+y+wr+z+wr+y+z+w; fl+[0,2+w, 2+ w,
r+yt+wx+z+wfl+0,w,z+w,z+wx+y+w; fl+1[0,z,2+z22z+w,z+y+ 2z f]+
0, z+y,z+z,x4+y+z,o+y+w; fl+[0,z,x2+y,x+z,z+y+w; fl]+[0,z,2+ 2,2 +w,z+y + w; f]
+0,z+y+z,x+yt+wy+ztw,rct+y+z+w fl+0,zc4+y,z+z,c+y+z,0+y+w; fl]+[0,y+z,
r+y+z,otytwytzt+w fl+0y+z,y+wrty+wyt+z+w fl+0,z+w,z+y+2,y+z
+w,r+y+z+w fl+[0,z4+wy+z,x+y+z,o+y+z+w fl+[0,z2+w,r+y+w z+y+w,
r4+y+z4+w fl+[0,z+4w,y+wr+y+wy+z+w fl+0,z+y,y+z,0+y+z,2+y+2+w; fl+
0,z 4+y,y+z,y+wz+y+w fl+0,y,x+y,y+z,y+w; f]+[0,z,y+z22z+wz+y+zf]+[0,w,
y+w,z +w,x +y+w; f]).
Hence f € S[0,b] implies f € S4[0, b]. O
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CONVEXITY AND FUNCTIONALS

Gh.TOADER

1 Convexity

There are many generalizations of the convexity of real functions. Some of them are sur-

veyed in [7]. Let us recall here those which we use in what follows. We denote by:

Cla,b] ={f : [a,b] — R, continuous}
Kla, bl = {f € Cla,b]; f(tz + (1 —t)y) <tf(z)+ (1 -1)f(y),
Vt e I, Yx,y € [a,b]}, where I =[0,1]
Qla,b] = {f € Cla,b]; f(tx+ (1 —1t)y <maz (f(z), f(y)),
Yy, x € [a,b], Vt € I}
C(b) = {f € C[0,], f(0) =0}
Kp(b) ={f € C(b); f(tz+p(l—1t)y) <tf(x)+p(l—1)f(y), Vt e,
Va,y € [0,b]} forpel
K;(b) =}f € C®); f(tz+sy) <tf(z) +sf(y), V(t,5) € J,
Va,y € [0,b]}, with J C I x I
5%(b) = Ko(b)
S) ={f€Cb); flx+y) = fz)+ fy), Va,y, z+y € (0,0}
the sets of continuous, convex, quasi-convex functions on [a, b], respectively continuous,
p-convex, j-convex, starshaped, superadditive functions on [0,b] with f(0) = 0.
Taking into account all these classes of functions, we are led naturally to the following

general definition.

Let L be a set of functionals defined on a set M of functions.

Definition 1.1. A function f € M s said to be convexr with respect to the set L (or
L-convez) if:
A(f) >0, VA€ L.



We denote by LT M the set of L-convex functions from M.

Remark 1.1. A similar definition is given in [2] and [3] for the elements of a vector space

but having in view other problems.

It is easy to indicate the sets of functionals which define each of the above classes. We

use mainly the functional of evaluation, given by:

Then, the sets of convex, p-convex, .J-convex, starshaped, superadditive and quasi-convex

functions are defined respectively by the sets of functionals:
K={tE; +(1-t)Ey — By (1—1)y; t €1, 2,y € [a,b]}
Ky ={tE; +p(1 —t)Ey — Epyipa—tyy; t €1, 7,y €[0,b]}
K; ={tE; + sEy — Eyygy; (t,s) € J, z,y € [0,b]}
S*={tE; — Ey; t€ I, x €[0,b]}
S ={Epty — Ex — Ey; z,y, x+y €[0,b]}
Q = {maz(Ey, Ey) — Bty (1-0)ys t €1, 2,y € [a,0]}.

We have thus:

K*Cla,b] = Kla, b], K;C(b) = Kp(b),

and so on .

2 Inequalities
As it is known for K|a, b] (see [14] and [10] the set of functionals:
LT ={A:M —R; A(f)>0,Vfec L "M}

may be generally much more rich than L.
What we can say in general about it? We shall indicate three way for construction of
elements from L.

If we consider the convex conical span of the set L:

cone (L)={A: M — R; 3t1,...,t, >0, FAy,..., A, € L,
A=t A1+ +taAn}

we have easily the following:



Lemma 2.1. For every set of functionals L, holds the inclusion:
cone(L) C L.
Also we can consider a generalized adherence of cone (L) by:
clecone(L) ={A: M — R; ¥Yn € N, JA, € cone(L), Vf e M
A() = Jim inf Au(D)}
Then we have also:

Lemma 2.2. For every set L, holds:
clecone(L) C L.

Definition 2.1. Two sets of functionals L and L' are in relation L' > L it for every
B € L' there is an A € L such that B(f) > A(f) for every f € M.

Lemma 2.3. If L' > L then L' C L.

There are many papers which prove inequalities for convex functions. In fact, they
establish the belonging of some functional to the corresponding set L. We want to analyse
some of them from this point of view.

We begin with the most familiar of them, the inequality of Jensen:if f is a convex

function on [a,b], z1,...,zy € [a,b] and c1, ..., ¢, are positive constants, then:

n n n n
f(ZCkxk/ ch) <> @)/ Y
k=1 k=1 k=1 k=1
This is equivalent with the belonging to K of the functional:

n n
Jn = ZCkEIk/ZCk — Exn
k=1 k=1

where we have denoted:
m m
X = chxk/ch.
k=1 k=1

Writing J,, as:

n

n
k=2 =1

it result that:
JIn € cone(K).



Another well-known inequality is that of Hadamard: for f € K][a, b] hold the relations:

f(a;_b —b— /f9:cdx< ) 1)

To prove it we show that:
(E + Eb)/2 — M, ,by Ma,b - E(a+b)/2 S clcone(K)
where we have denoted by M, ; the functional defined by:

bia/abf(x)dx

But (Eq + Ep)/2 — Mg is the (punctual) limit of the following sequence of functionals:

Ma,b(f) -

1 1 1<
§Ea + §Eb - ; Eor1-1/2)(b—a)/n =

Ey —

1 ”[ z+1/2 +2’—1/2 E”i“/2a+i_1/2b]
n

n n

while M,y — E(44p)/2 may be obtained as the limit of the sequence:

1 n—1
o ( > Eoyin+ Ea—ih) = Btz =
=0

1

(Ea+th + Ep_in — 2E(CL + b)/?)

1 —
“ o
K2

—0

where h = (b — a)/2n. As these are elements of cone(K )4, the results follow.

3 Hierarchies of convexity
On this way we can also easily compare two convexity classes.
Lemma 3.1. We have LTM C L;M if and only if Ly C Lf.

Remark 3.1. Lemmas 1 — 3 offer methods for obtaining such subsets Lo.

Definition 3.1. For the two subsets J and H of I x I, the relation J > H means that for
any (t,s) € H there is an (i,r) € J with s <r. Also H > 0 means that H > I x {0}.

Theorem 3.1. Hold the following relations:
(a) S* C K on C(b)

(b) S* C K, on C(b)



(c) S* C Kj on C(b)if J>0

(d) Q > K in Cla,b]

(¢) if p < q then K, C K, on C(b)

(f) if J>H >0 then Ky C K; on C(b)
(9) S C cone(S*) on C(b).

Proof. (a), (b) and (c) follow by taking y = 0.
(d) We have for any f € Cla, b]:
max(Ex(f), By(f)) = Etpr-t)y () = [t + (1 = t)maz(E — z(f),
Ey(f)) = Eror—tyy(f) 2 tE(f) + (1 =) Ey(f) — By 1—t)y(f)
(e) For p < ¢, it follows:
tE — x4 p(1— t)Ey — Eppi1pyy =

tEe + (1 = ) Ep/qy — Ererqu—t)@/ay + 31 =) (/) Ev — Epyq)y)
that is, it belongs to cone (K,) because S* C K, by (b).
(f) If J > H, then for (t,s) € H there is an (¢,r) € J with r > s. So:
s
tE, + SEy - Et:c+sy =th, + TE(s/T)y — Etx+(s/r)y + T(;Ey - E(s/r)y)

and the conclusion follows because S* C K.

(g) fz,y, z+y € [0,0]:

z Y
E:r+y — by — Ey = x—_i_yEery —Ey + FE:r+y - Ey =
_[_* Y
- |:.’L' + yEery B EJCL—‘FU(QZ_HJ)} [:L‘ + Y Tty Ex+y (x+y)] '
These relations give the following known results: U

Theorem 3.2. Hold the following inclusions:

K1(b) = K(b) C S*(b) C S(b), (see[l]land[8])
Ky(b) C Ky(b) if ¢ > p, (see[T]or[11])

K;(b) € Kp(b)if J > H >0 (see[7]or[9])
Kla,b] C Q[a,b].

In [12] we have generalized the first chain of inclusions for convexity of higher order.
Let us remind that the divided differences (on the distinct points zg,z1,...) are defined

recurrently by:

[$0§.ﬂ = f($0)7[$07'--yxn;f] = ([x(]v"‘vxn—l;f]_
—[z1, . @0 f)/ (20 — 20).
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One considers the set of functions convex of order n:

Knla,b] ={f : [a,0] = R, [z0,...,zn; f] 20,

Vo, ...,z € [a,b]distinct}

the set of starshaped of order n functions:

Silanb] = 1+ [a,b] = R, a1, .., f] 2 0,

Vzy,..., Ty € [a,b]distinct}
and that of functions superadditive of order n:
Snla,b] ={f : [a,b] = R, Vz1,...,z, € (a,b] distinct and

n
1+ -+ zp —na < b — aimplies Z(—l)nih'
k=0

Y @i+ i, — (k- 1)a) > 0}
(k)

where Z(k) means the sum over all the combinations of indices for k¥ > 0 and f(a) for
kE=0.

These sets of functions are defined by the sets of functionals:

K, = {[zo,z1,...,%n;]); %0, 21, ..., Ty € [a,b] distinct }
Sy =A{la,z1,. .., xn; 21, ..., 20 € (a,b] distinct }
respectively:
n
So={> ()" "> Ep +- 4wy, —k—1a;
k=0 (k)
T1,..., Ty € [a,b] distinct ;21 + -+ + x, —na < b—a}.
Obviously:
Sy C Ky, Vn.

In [12] we have prove that:

Erry-a—Ee —Ey+ Ey=(z—a)(y —a)(la,z, 2 +y —a; ]+
+la,y,z+y—a])

Evvytz—20 — Bovy—a— Ertzea— Eyrzea+ Ex + By + E, — Ey =
=(z—-a)ly—a)(z—a)(la,z,x +y—a,x+2z—a;]+
+[a,y,x4+y—a,y+z—a;’ ]+ a,z,x+2—a,y+2z—a; ]+
+a,c+y—a,x+z—a,x+y+z—2a; ]+
+a,z+y—ay+z—a,x+y+z—2a; ]|+
+a,x+z—a,y+z—a,xz+y+z—2a;])

6



and analogously every functional from Sy can be expressed as a sum of 4! functionals from
Sy, Thus:
Sy C cone(Sy) forn =2,3,4.

So we have proved:

Theorem 3.3. For every interval [a,b] hold the inclusions:
K,la,b] C S;[a,b] C Syla,b], forn=2,3,4.
These inclusions generalize the relations:
K,la,b] C Sy[a,b]

proved for n = 2 by M.Petrovi¢ in [5], for n = 3 by P.M. Vasic¢ in [13] and for n = 4 by
J.D. Kcekié in [4]. So they also generalize the corresponding results of T.Popoviciu from
[6].

Taking into account these results, we can remark that in some cases an inequality is
valid in more general conditions than those in which it is given. So are those form [5], [13]
and [4]. We remind here that from [4] which generalizes all of them: if f € K,[0, b], then
for every m > n, x; € [0,0], i =1,...,m,z1 + -+ + T, < b, holds:

n—1

n—k m — k —1

f($]_+"'+$m)+2(—1) (n—k—l) Zf(J% +---4a;) >0.
k=0 (k)

In fact this is valid for every function f from S,[0,b] and it follows even from the original

proof.
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A Hierarchy of convexity of order three of functions

Gh.TOADER
The divided differences on the distinct points xg, 1, ... are defined recurrently by:
[:BOaf] = f(xO)v [xﬂaxla"wwn;f] = ([xﬂa"wmnfl;f] - [xlv" . 7$naf])/(x0 —.’L'n)

Using them we can define the following sets:

C(b) ={f:[0,b] — R, f(0) =0, continuous}
K, (b) ={f € C(b), [z0,-..,2n; f] >0, Yaq,..., 2, € [0,0]}
SHb)={feC®), [0,x1,...,xn; f] >0, Vo1,..., 2, € [0,0]}
Sn(b) ={f € C(b), Yx1,...,z, € [0,b] distinct, z1+ -+ z, < b,

D DY Fw 4 @i,) > 0}
k=1 (k)
that is of continuous, n-convex, n-starshaped respectively n-superadditive functions. By
Z(k) f(zi, + x;,) we have denoted the sum over all the combinations of indices 1 < i3 <
19 < - <dg <.
We study the problem of transformation of functions by the weighted mean A, :
C(b) — C(b), defined by:

Ag(f) () = rlx) /0 "0 F@t, Ay(f)(0) =0 (1)

where g has a continuous first derivative and g(0) = 0. An important particular case is

given by the Cesdro type operator defined by:

u

A(f)(w) = 2 / " f()dt, Au(£)(0) = 0, (1)

T~ Jo

We can consider the sets M"K,,(b), M™S}(b) and M™S,,(b) of functions f with the prop-
erty that A,(f) belongs to K, (b), S} (b) respectively S, (b).



For n =2 and v = 1 it was proved in [2] that:
Ka(b) € MKy (b) € S3(b) C Sa(b) € M*S5(b) € M'S,(b).

This was called "hierarchy of convexity". Using some results from [3] we have extended in

[4] these results proving that for n = 2 and 0 < u < v hold the inclusions:

Ka(b) C MYKs(b) C M"Ks(b) C S5(b) C Sa(b)

N N
MPSE(b)  C MPSy(b)
N

MUSE(b)  C MUSa(b).

In this paper we study analogous property for greather n starting from the result proved

in [5] that for n = 3 and 4 hold the inclusions:
K, (b) C S} (b) C Sn(b). (2)

Theorem 0.1. If Ay(f) € K, (b) (S} (b) or Si(b)) for any f of K, (b) (S} (b) respectively
Sn(b)) with n = 3 or 4, then there is an u > 0 and a real ¢ such that:

g(z) =c-a" (3)
that is Ag = A,.

Proof. Let us denote by P, the set of all polynomials of degree at most n. As +p €
K, (b) (Sk(b) or S,(b)) for any p € p,—1, by (2) it means that for n = 3 (or n = 4)
Ag(£p) = £A,(p) € S,(b), that is (see [1]) Ay(p) € Pn—1. We denote ex(z) = z* and
Ay(er) = pi. From (1) we deduce:

J'(@)/9(x) = p(x) /(=" — py(x)). (4)

If n =3, we have k =1 and 2 and (4) gives:

Phi(@)/ (@ = pi(e)) = py(x)/ (2 — p2(2)). ()

We denote: py(z) = ay + bpx + o and multiplying in (5) and equalizing the coefficients

of 23 we get ¢; — 0. For n = 4, we have k = 1,2 and 3 hence (4) gives:

pi(@)/(z = pi(2)) = py(x) /(262 — pa(x)) = ph(2)/(2° — p3(2)).

Denoting: pi(z) = ax + bxx + cxx? + dia3, from the first and the last report we get dy = 0,
from the second and the third report we get do = 0 and then, from the first and the second

2



report we get c; = 0.

So, for k =1 and n = 3 or 4, the relation (4) becomes:

g'(2)/9(x) =b1/(x — bz — a1)

that is:
g(x) = [ka(l = by) — ag]/ 070,

As g(0) =0, we get (3).
Theorem 0.2. For any b,u > 0 and any n, hold the inclusions:
Kn(B) © MUK (), S3(8) © MUS5(b), Sulb) € M Sy (b).

Proof. Making (as in [3]) the substitution:

(1’) becomes:

As we know:

(w0, @1,y f] =) f ()
where p,(z) = (x — zg)(z —x1) ... (x — ). So:

[.’Eg,.’L’l, .. $n,Au(f)] = ZM =

k=0 p"xk)

1/u
1/uy féUkS -~
p /kas ds_/o Z Po(zy)
k=0""M k=0 T
—/0 [azgs/ Yoy TS l/u,f]ds.

Thus A,(f) € Kn(b) if f € K,(b) and A, (f) € S;5(b) if f € Sk(b). Also:

n n

DS Al 4 ) = 3 "kZ/flm-
k=0

k=0 =

(Tiy + -+ xi,))ds = / Z(_l)n_k Zf(sl/u(xil oty ))ds
‘ (k)

hence A, (f) € By(f) if f € S,(b).



Theorem 0.3. For any b,u > 0 and n = 3 or 4, hold the inclusions:

Kn(b) C S5(b) C Sn(b)
N N N
MUK, (b) C MUuS%(b) C MUS,(b).

Proof. The inclusions from the first line is given in (2) and these of the second line follows

from these. The other inclusions are proved in Theorem 3. O
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ON SOME INTEGRAL INEQUALITIES FOR CONVEX
FUNCTIONS

Gh.TOADER

The integral inequalities can be proved starting from the interpretation of definite

integral as a summation process. In some cases it may be used an arbitrary integral summ
and apply a corresponding discrete result.
Such are, for example, the integral inequality of Jensen or the inequality between two
integral quasi-arithmetic means (see [1]). In more complicated cases we prove that the
discrete result is valid for a sequence of divisions having the norm tending to zero. So we
have proved in [7] the Hermite-Hadamard inequality (see [5]).

This paper we want to prove analogously a generalization of this inequality given
by L.Fejér in [3] and also to improve an integral inequality from [4]. It is interesting to
analise how the hypotheses are used in these demonstrations. The result will also follow

for integrable Jensen convex functions, not only for convex functions.

Theorem 0.1. If f : [a,b] — R is (Jensen) convex and the function h : [a,b] — R is

positive and symmetric with respect to (a + b)/2, then:

f(“;b)s/abf(x dx// )z < LA (M

Proof. The inequalities (1) are equivalent with:

b a
[ @ = 1(“52)hia)ds = 0 @)
and X
/ (F(a) + F(b) — 2/ (2)h(x)dz > 0. (3)

To prove them, we use for every n the equidistant division with 2n knots. Denoting k =

(b — a)/2n we consider the sum:

Sl—kz Fla+ ki) (a;b>)h(a+ki).
z;én



As:h(a + ki) = h(b — ki), we get:

n—1
. . a+b .
Sy = k;(f(a+ ki) + f(b— ki) — 2f< . ))h(a+ ki) > 0,
because f is Jensen convex and h positive. Analogously, using the sum:
2n
Sy =k > (f(a)+ f(b) — 2f(a+ ki))h(a + ki) =
iZn
n—1

2n 2n
we get (3). O

Remark 0.1. This is the inequality of L.Fejér for convex functions. Taking h(x) =1 we
get the inequality of Hermite-Hadamard.

Theorem 0.2. If the function f : [a,b] — |[c,d] is increasing and (Jensen) convex and

g,h:]c,d) — [0,00) are such that g/h is increasing, then:

b b f() f(b)
x))dx h(f(x))dx x)dx h(z)dzx. 4
/ag<f<>> //a (f()) S/f(a)g()//f(a)() (4)

Proof. For every n we consider the equidistant knots (x,)}_,, that is 211 —2 = (b—a)/n.
We use them for the integrals of the left part of the inequality while for those of the right

port we use the knots (f(xy))};_, f being increasing. To prove (4) we have so to show that:

be S g Fan)) S 9 Flan) (Flenn) — F(an)
= = . (5)
b=a S~ h(f(xx) X h(f (@) (f(@rir) — Flar)
k=0 k=0
We use Abel’s identity:
n—1 n—1
Zak: br = ap(bo + -+ + bp—1 + Z(ak —ap—1)(bg + -+ bp1)
k=0 k=1

and the simple equivalences valid for positive numbers:

pT +qy

>
pz + qw -

>~ iff

SEES
SIS

2



and
PEEW 2 gy
pz + quw Z

z
Denoting f(zy+1) — f(zr) = Af(zx) and Af (zp1 — Af(wr) = A% f (), we get:

X
<=,

g =

S DI @)  Afo) S (@) + S A2 (@) S o(f @)
k=0 _ F=0 = = -
n—1 n—1 n—1 n—1 -
> 9(f(@e)Af(ze)  Af(wo) X2 h(f(zk) 30 A2 f(wi1) 3o 9(f(xk))
k=0 F=0 iz1 =i
n—1
> 9(f(zk))
=
— n—1 ’
> h(f(z))
k=0
because:
9(f(@n1) o 9 (@n2) +9(f(wn1)) o o 9 (@) +---+9(f(zn1))
hg(f(xn-1)) = h(f(zn-2)) + b(f(zn-1)) = = h(f(z0)) + -+ h(f(¥n-1))

and A2f(z;) > 0, the function f being Jensen convex. O

Remark 0.2. The inequality (4) was proposed as a problem in [5] for g(x) = z2 and
h(z) = x. It was proved in [2] for g(x) = =" and h(x) = x* with v > s. In this form it was
proved in [4] but under the assumption of differentiability of f.

Finally we note that the inequality (4) can give some results analogous with those of
H. Thunsdorff generalized by L.Berwald or those of A.M.Fink (see [6]).
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MEANS AND CONVEXITY

Gh.TOADER

1 Introduction

In this paper we consider a notion of convexity with respect to a power mean called-
r-convexity. We generalize Hermite-Hadamard’s inequality for functions with r-convexe
inverse. Then we apply it for the study of the monotony of the "relative growth" of
generalized logarithmic means. We try to analyse so the position of the mean values of
two numbers between those numbers.

As moust of the definitions and results which we need may be found in the book of

P.S. Bullen, D.S.Mitrinovi¢ and P.M. Vasi¢ [1] we content ourself to refer mainly at it.

2 Means

We shall use in what follows some means of two positive numbers 0 < a < b. They all
belong to the familly of extended mean values defined by K.B. Stolarsky (see [1], p.345)
for r # s, rs # 0 by:

Eya(ab) = ((r/s) (4% —a®) /(17 — "))/

the definition for other values being obtained by taking limits.

As special cases we have the power means:
P. =FE, 9 forr #0

and
Py(a,b) = G(a,b) = (a-b)'/?

then the generalized logarithmic means defined by:
L, =FEi,q1, forr#1, r#0

but
L_y(a,b) = L(a,b) = (b—a)/(logb — loga)

1



and

Lo(a,b) = r(a,b) = (1/e)(b*/a®)*/ =)
Also we use weighted power means defined for 0 <t¢ < 1 by:
Py(a,b) = (ta" + (1 — t)b")Y7 if r £ 0
and
Pot(a,b) = Gy(a,b) = a'b* .

For t = 1/2 we get the usual power means and for » = 1 the weighted arithmetic mean
Prt = At.
Among the properties of these means we are interested in their monotony with respect

to the parameter. So we have (see [1], p.159) for r < s:
P.(a,b) < Py(a,b), 0 <t <1 (1)

and also (see [1] p.347):
L,(a,b) < Ls(a,b). (2)

3 r-Convexity

Let us consider the following notion: we said that the positive function f : [a,b] — R is

r-convex if:

f(At(X> Y)) S Prt(f(X)af(Y))7 VX>Y € [av b]: te [07 1]'

As we can remark, this notion differs from a similar one given in [1] called r-mean convexity.
From [1] we deduce that if f is r-convex then it is also s-convex for every s > r. Also

from the definition we deduce that f is r-convex if and only if:
a) f" is convex, for r > 0;
b) log f is convex, for r = 0 and
c) f" is concave for r < 0

Thus 0-convexity is in fact logarithmic convexity.
The paper [3] deals with functions which have logarithmic convex inverse. We consider
also functions with r-convex inverse. Let us denote by K, [a, b] the set of positive, strictly

increasing functions with r-convex inverse defined on [a, b]. We have:
K, [a,b] C K [a,b], forr < s. (3)

It is also easy to check the following;:



Lemma 3.1. If the positive function f is twice differentiable then it belongs to K, [a, D]
if and only if:

f(x)>0and1+af"(z)/f (z) <r, Vo € [a,b] (4)

Integrating the differential equation obtained from (4) we get functions which can be

considered to be r-linear. As a special case we have:

Lemma 3.2. The function f, defined by:

" —a”, r>0
fr(z) = {logz —loga, r=0 (5)
a" —x", r <0

has the properties:

fr(@) >0, fi(z) >0, 1 +af)(x)/fi(z) =7, Yz > a.

4 Hermite-Hadamard’s inequality

For a function f : [a,b] — R consider the integral arithmetic mean defined by:

b
A(fra,b) = / f(@)dz/ (b - a).

Hermite-Hadamard’s inequality (see [1], p.30) gives for a concave function f the evaluation:

(f(a) + f(0))/2 < A(f;a,0) < f((a+D)/2). (6)

Also H.-J. Seiffert proved in [3] that for a function f from K| [a, b] holds:
A(fsa,b) < F(T(a,D)). (7)
We remark that from (2) it follows:
I(a,b) = Lo(a,b) < Li(a,b) = (a+b)/2

thus (7) improves the right side of (6) for this special case.
We can do the same thing for functions from K [a,b] with r # 0.

In the proof of the relation (7) it is used the following result, proposed as a problem
by R.Euler in [2]:

lim (H(c+ (i — 1)/n))1/” = I(c,c+1), Ve > 0. 8)

n—oo \ 4
=1

The expression from the first member of (8) is a geometric mean (of n numbers). We can

prove a similar relation to (8) for an arbitrary power mean.

3



Lemma 4.1. Ifr # 0 and ¢ > 0 then:

lim (i(ch inl)r)w — L(e,c+ 1), 9)

n—o0 \ 4
=1

Proof. 1f r > 0, the mean value theorem of the differential calculus applied to the function

flx)=(z+ 1) = >0, gives:
((x + 1)r+1 — :L‘H_l)/(?“ +) <(z4+1) < ((z+ 2)rt (x + 1)T+1)/(r +1). (10)

For n > 1/¢, we get by addition:

Lr<c— %,c%—l— %) < (i(c%— @))w < Ly(c,c+1)

hence (9). For r < 0,7 # —1, we have to do minor changes in the proof, while for r = —1

we must replace (10) by:
log(z +2) —log(z +1) < (x +1)"! < log(z + 1) — log .

Finally we remark that the case r = 0, excepted from (9), is contained in (8).

Replacing (8) by (9) in the proof of (7) given in [3] we get: O
Theorem 4.1. If the function f belongs to K, [a,b] then:
A(f;a,0) < f(Ly(a,b)). (11)
Let us remark that the function f, defined by (5) verifies:
a(fria,b) = fr(Lr(a,b)). (12)
We can improve also the left inequality from (6) for the same class of functions.
Theorem 4.2. If the function f belongs to K, [a,b] then:

A(f;a,b) >
> (f(a)(®" — Ly(a,b)) + f(D)(Ly(a,b) —a"))/(b" —a").

(13)

ifr#0 and
A(f;a,0) = (f(a)(L(a,b) — a) + f(b)(b— L(a,b)))/(b — a) (14)

if r=0.



Proof. For t € |a,b] we have:

F(b) — f(8) £(t) — f(a)
IO =50 =i’ " Fo— i@’ (15)
So, if » > 0, (f~!)" being convex:
L= f0) =),
R0 @ T - f@)”
f0 > L0 =@, @) =)

br —a” br —ar
It is also valid for » < 0. by integration we get (13). For r = 0; log(f~!) is convex and
(15) gives:

f(b) - f#) f(t) — f(a)
8L o0~ ra) B T () 8"
Isolating f(t) and integrating we get (14). O

5 The relative growth

We consider the following expression:

L7 (a,b)—a” r 40
D,9a, b) _ { br—a” 7é

b—L(a,b) _
3 r=20.

which we call relative growth of L. It is easy to see that:
0 < Dy(a,b) <1, Vr; Di(a,b) =1/2.
Theorem 5.1. Ifr < s and 0 < a,b then:
Dy (a,b) > Ds(a,b). (16)

Proof. As the function f, given by (5) belongs to K, [a,b] and r < s, from (3) it follows
that it is also in K [a,b] and so (12), (13) and (14) implies:

A(fr;a,0) = fr(Lr(a,b)) > fr(b)Ds(a,b)

which gives (16). In fact we must consider separately the cases: 0 <7 <s, 0 =7 <s, r <

s=0andr <s<0. O

Remark 5.1. From (2) it follows that the evaluation given by (11) is improved by decreas-
ing the value of the parameter r. The same conclusion is valid for (13) and (14) if we take
into account (16). On the other hand, from (4) we deduce that for a strictly increasing and
continuously twice differentiable function, there is a sufficiently large r for which (11) and
(13) be valid.



Remark 5.2. An inequality similar to (16) for power means was proved by A.J.Goldman
(see [1], p.203). On the other hand we remark that (16) contains many inequalities between
means. For example, for r > 1 it is equivalent with L,(a,b) > P,(a,b) and for 0 <r < 1
it gives Ly(a,b) < Py(a,b). Forr <0 < s we get:

E,r+1(a,b) < L(a,b) < Eg ¢41(a,b).
All these relations may be found in [1]. We also have:
Lyy,y1(a,b)L(a,b) < G*(a,b), forr < —1
but the converse inequality for —1 < r < 0.

Remark 5.3. From 0 < D,(a,b) < 1 we deduce that it may be preferable to use instead
D, the differences D, — 1/2, that is:

Li(a,b) = PI(a,b)

br_ar

(a,b) — L(a,b)

b—a ’

forr #£0; A

r=20

where A = Ay 5. These are between —1/2 and 1/2 and are decreasing upon r, as D, is.
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A NEW IMPROVEMENT OF JENSEN’S INEQUALITY

S.S.Dragomir and Gh. TOADER

Refinements of Jensen’s discrete inequality and applications for arithmetic mean -

geometric mean inequality are given.

1 INTRODUCTION

Let X be a real linear space, C be a convex subset of X and f : C — R a convex mapping

on C. The following inequality is known in literature as Jensen’s inequality:

An(f(y);p) = f(An(y;p)) (1)

where y = (y1,...,Yn) € C", p = (p1,...,pn) € R} with P, = p1,...,pp > 0, f(y) =
(f(ybaf(yn)) € R™ and

An(y;p) = piti/pn-
i=1
In the paper [6], the first author has established the following refinement of (1):

Theorem 1.1. Let f,p,y be as above and ¢ = (q1,-..,qx) € Rﬁ with Qr, = q1,...,q, >0
for 1 <k <mn. Then:

n k
A F@ip) 2 Y pipad (X 4w /Qu) /PR 2 F(Anlyip).

i1yeyip=1
For g = 1(1 < k < n) the result was proved in [9]. In this paper we will point out
other refinement of (1) and also we will apply these results to improve some well-known

inequalities (see also [1], [4-6] and [9].

2 THE MAIN RESULTS

Suppose that f and p are as above and let t = (¢1,...,t,) € [0,1]". We define the following

weighted means:

AD (f(x);pst) =Y pipjpef (b + (1 — t)z;) /D5
i jk=1



AR (f(x : Z pip;f(An(t; p)zi + (1 — An(t; p)z)) /10,
i,5,k=1

and
Ag) sz t p i+ (1 - An(t;p)An(m;p))/pn-
We prove the following theorem which improves Jensen’s result (1).

Theorem 2.1. Let f be a real convex mapping on the convex set C, x € C", p € R} with
P, >0 andt € [0,1]". Then we have the inequalities:

An(f(2);p) = AP (f(2);pit) > AD(f(x)ipst) >
> AW (f(2);pit) > f(An(z;p)).

Proof. Since f is convex on C, hence for all ¢, € [0,1] and z;, z; € C we have the inequality:

(2)

tkf<513z) + (1 — tk)f > f(tkflfz + (1 — tk)flfj).

Multiplying with p;p;pr > 0 and summing after 4, j, k we derive:

> pipipk(tef (@) + (1 —tg) f( Z pipjprf (trwi + (1 — tg)xj).

i,5,k=1 i,5,k=1
n

D (trf (@) + (1= t) f(x;))pipipr = v > pif (@),

i k=1 i—1
the first inequality in (2) is proven.

For the second inequality we remark that:

AD(f(x)ipst) =Y pinf(Zpk:(tk +(1- tk)%‘)/&) /P2

ij=1 k=1

By Jensen’s inequality (1) for y, = tyz; + (1 — t5)x;, we obtain:

Zpkf tpx; + 1 — tk)a:J/P > f(Zpk trxr; + (1 — tk)a:j/Pn>.

k=1

Multiplying with p;p; > 0 and summing after < and j, we have:
AR (f(x);pit) = A (f(2);pst).
Now, observe that, by Jensen’s inequality for y; = A, (¢t;p)z; + (1 — Ap(t;p))z;, we have:
Zp] n(tip)r + (1 — An(t;p)aj)/Pn > f(Zp] n(t;p)xi+

+ (1= Au(tp)2;)/Pa) = F(An(t:p)as + (1 = An(t;p) An(ws p))

2



which implies the third inequality from (5).

The last inequality is also obvious from Jensen’s inequality (1) applied for y; =
An(t;p)wi + (1 — An(t; p)) An(t; p).
In the theory of inequalities, the famous inequality between the arithmetic mean and the

geometric mean:
n n
an(w) =Y wi/n > [[ 2" = gu(2) (3)
i=1 i=1

valid for every sequence x of positive real numbers, occupies a central place. Many au-
thors have tried to establish (3) in a variety of ways and also to find different extensions,

refinements and counterparts (see[7-8]). O

Further on we shall consider the weighted arithmetic and geometric means of x with

weights p:

Ap(z;p) = sz‘l‘z‘/Pn, Gn(z;p) = (H:L‘Ii”")l/p" where p; >0(i=1,...,n)
i=1 i=1

and we will point out a refinement of the following arithmetic-geometric inequality:
An(f(x);p) = Gu(f(2);p) (4)
for a class of real functions f.

Corollary 2.1. Let f be a strictly positive convexr mapping on C which is also logarith-
mically concave on C' (that is in f is concave on C').

Then one has the inequalities:

where

=1

GO (f(x);pit) = ([] (F(An(tsp)as + (1 — An(t; p))aj(a; p))PePr) V%
ij=1

GO (f@)ipit) = ( [ (fF(tawi+ (1 — ty)ay)persme) /P
ij.k=1

respectively, where t € [0, 1]".

The proof of the second part of (5) follows by the above theorem for the concave

mapping in f.We will omit the details.



3 APPLICATIONS

1. Let x and p be as above. Then the following refinement of the arithmetic mean-geometric

mean inequality is valid:
An(w;p) > G (w5p3t) > G (w3 pit) > G (w5p5t) > Go(w; p)

for all t € [0, 1]™.
2. If x € R™ and p is above, then for all s > 1 we have inequalities:
An(|2]%p) > AQ (|2]%; p) = AP (|2 p) >
AV (2% p) > |An(z; p)[*

for all t € [0, 1]™.
3. In [11] C.L.wang has proved the following inequality:

An(z;p)/An(1 — z;p) > Gp(z;p)/Gn(1 — z;p)

where z; € (0,1/2)(i = 1,...,n), which shows that Ky Fan’s inequality (3,p.5):

an(@)/an(1 = 2) > gu(@)/gu(1 — @), 0 < 21 < 1/2

also holds for weighted means.

On the other hand, by Chebyshev’s inequality (see [8]), it is clear that:

Ap(z/(1—x);p) > Ap(x;p)/An(l — x5 p)

which shows that Wang’s inequality may be regarded as a refiment of arithmetic mean-
geometric mean inequality (4) for the mapping f(x) := x/91 — x) on the interval (0,1/2).

Now let us consider the mapping f : (0,1/2] — (0,00) given by f(z) = (z/(1 —
x))", r > 1. It is clear that this mapping is convex and logarithmically concave, therefore

we have the following is convex of inequalities:

An((z/(1 = 2))"5p) > AP ((96/(1 —z))"spit) =
> AP ((@/(1—a)"spst) > AD((w/(1—2))spst) >
> (An(z;p)/An(1 —z;p))" = (fo)(fv, t)/GN (1 - x;p;t)" >
> (G (w;p0) /G (1 — w3 p; 1) >
> G (w;p; 1) /G (1 — ;p; 1)) > (G(w;p) /Gn(1 = 2;p))”
for all ¢ in [0, 1]™.
Remark 3.1. The above inequalities contain refinements of Wang’s inequality and thus
of Ky Fan’s result.

For other improvements of this well-known result see [6].
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INTEGRAL AND DISCRETE INEQUALITIES

GH. TOADER

1. INTRODUCTION

In [8] we have proved some integral inequalities showing that the in-
equalities are valid for a sequence of integral sums with norm tending
to zero. In this paper, starting from some integral inequalities, we prove
discrete versions.

To avoid complications related to the integrability, we suppose all the
functions which appear in what follows to be continuous. The following
results were considered in [§]:

Theorem A. If the function f : [a,b] — R is Jensen convex, h :

la,b] — R is positive and symmetric with respect to (a + b)/2, then:

/ ('2”)) </ ' f(a)h(x)de/ / ha)de < L@ IO

2



Theorem B. If the function f : [a,b] — [c,d] is increasing and Jensen

convex and g, h : [¢,d] — [0,00) are such that g/h is increasing, then:
f(®) f(®)

(1) / d:z:// ))dx </ g(m)dm// h(x)dx
fla) f(a)

Remark 1. The first theorem was proved by L. Fejér in [2] and for
h(z) = 1 it gives the inequality of Hermite-Hadamard. The inequality
(1) was proposed as a problem by A. Lupas in [5] for g(z) = z? and
h(x) = z. It was proved by L. Daia in [1] for g(x) = 2" and h(x) =
with » > s. In the form (1) it was given by I. Gavrea in [3] but under
the assumption of differentiability of f. We have shown in [8] that the
inequality is valid without this last condition.

The following result was given by J. Kolumban and C. Mocanu in [4].

Theorem C. If the functions f,g,h : [a,b] — R are positive, g is

increasing and differentiable, g(a) > 0 and:
/ FUOR(E)dE < / FORD)dL, Y 7 € [a,1]
then for 0 <p < q:

/ PRt < / PO, ¥z € [a,b).

2. FINITE DIFFERENCES

For a sequence (z)7_;, we consider the finite differences of order one:

A;xk:xkﬂ,—xk, 1<k<k+p<n



and of order two:
A2 2 = Tpiprg— (1Hq/D)Trip+(g/p)1r, 1<k <k+p<k+p+tq<n

We denote simply Aj = A! and A} = A%
A sequence (z)}_; is increasing if Alz, > 0for 1 < k < n—1, but

this is equivalent with the condition:
A;xkzO, forl<k<k+p<n

as:
(2) AZIJZL‘]C = ZAka—f—i—l-

Analogously, the sequence (z)7_; is said to be convex if A2z, > 0 for

1 <k <n—2 and this is equivalent with:
A2 x>0, for 1<k<k+p<k+p+q<n

because we have:
Lemma 1. For every k,p and q:

q p—1

(3) Ajy = iN Ty i1+ (0/D) Y A Tk

i=1 =1
hold.
Proof. We have:

A2 = ALy — (q/p) Ak

and using (2):
q ' p
(4) Apre =Y Nwpprian—(g/p)Y> Awpija
i=1 j=1

3



Applying Abel’s identities:

q q—1
> yi=> iy i+ aqn
i=1 i=1
respectively
p p—1
D =py= ) A
j=1 j=1

for the two sums of (8), we get:

q—1

2 - A2 1
AL E A Ty prgi1 T QA Tpyy
i=1

p—1
_<q/p) <pA1~Tk+pl - ZjA2xk+jl>

j=1
thus (3).

Remark 2. Relation (3) is similar with that given by T. Popoviciu in
[7] for divided differences.

3. DISCRETE INEQUALITIES

We begin with a discrete version of Fejer’s inequality. We say that the

sequence (p;)7; is symmetric if:
Pi = Pn—i+1 for1 <i<n.

Theorem 1. If the sequence (x;)!_, is conver and (p;)}_, is symmetric

and positive, then:

b n
(5) (T(nr1)/2) + Tnr2)/2)) /2 < Z%Pz/ sz' < (14 ,)/2

=1 =1

where [a] denotes the integer part of a.
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Proof. As A2

i 1n—iT1 > 0, we have:
(n—1Dz; < (i — D, + (n—i)xy.
Putting n — 7 + 1 instead ¢ we get:
(n—Dapip1 < (n—i)a,+ (i — 1)y
and by addition:
Ti+ Tpip1 < T1+ Ty

Multiplying by p; = pn_;+1 and adding for ¢ = 1,...,n we get the
second part of (5). For the first part we consider separately the case of n

odd or n even. So, if n =2m+1,as A2, .. z; >0, we have:
2Tmy1 < X + Tomyo—y

Multiplying by p; = pami2—; and adding for ¢ = 1,...,2m + 1 we get:

2m+1 2m+1
Z IEipz‘/ Z Di 2 Tyl = (575[(2m+2)/2] + $[(2m+3)/2])/2-
i=1 i=1

For n = 2m, we have:

m—i+1,m—i

hence
T + Tyl < Ty + Tom—iy1-

Multiplying by p; = po,—_ir1 and adding for ¢ =1, ..., 2m, we obtain:

Z%‘pz‘/ Zpi > (T + Tmg1)/2 = (Ti2m1)/2) T Tl2mt2)/2)/2-



Remark 3. For p, = 1 (i = 1,...,n) we get a discrete variant of
Hermite-Hamard inequality. On the other hand, inequality (5) can be
used for the proof of Fejer’s integral inequality.

Passing to theorem B, we can see that inequality (1) holds if and only

if for every natural n, denoting;:
ri=a+(—-1)(b—a)/n, i=1,...,n+1
we have the inequality:
(6)
Zg( ;) /Zh (x;)) < Zg () A f (= /Zh (z:)) A f ()
i=1

But we can prove a much stronger result which generalizes also
Cauchy’s inequality and Chebyshev’s inequality (see [6]). We say that

the sequences (a;)"_, and (b;)!, are synchrone if:
(ai—aj)(bi—bj)ZO, ’LSZ,]STL

Theorem 2. If the sequences (y;)"_; and (g;)'_, are strictly positive

and (x;/y;)"y and (p;/q;)i, the synchrone, then:

(7) Z%pi Zyi% > ZIjC]z‘ Zyipi-
i—1 i—1 i—1 i—1

Proof. As:
(i/yi — 23 /y;)(pi/ @i — pj/a;) > 0
we have:
TipiYiq; — TiqYiPi — Tidi¥YiP; + TipiYigi = 0
and adding consecutively for ¢ = 1,...,n and then for j = 1,...,n we

get (7).



Remark 4. This is a discrete variant of an integral inequality of M.
Fujiwara (see [6]). For p; = z; and ¢; = y;, i = 1,. .., n, we have Cauchy’s
inequality and for y; = ¢; = 1,7 =1, ..., n, we have Chebyshev’s inequal-
ity.

If the sequence (p;)i1}! is convex, then the sequence (Alp;)™, is in-
creasing and taking ¢; = 1 for 7 = 1,...,n, we have the following result
which also implies (6):

Consequence. If the sequence (y;)!, is strictly positive, (x;/y;), is

)n—‘rl

increasing and (p; convex, then:

Z z; A'p; Z Yi = Z yiA'p; Z x;.
i—1 i—1 i—1 i—1

To prove a discrete version of theorem C we need the following:

Lemma 2. If the sequence (b;)?_, is positive and decreasing, then:

k
ZaiZm,ngn

=1

implies:

n

Z aibi 2 mbl.

=1

Proof. Using Abel’s identity, we have:

n n—1 k
S ah =S (z) = be) + 3 it
=1

k=1 i=1 i=1

n—1
m <Z bk—bk+1 —|—b > :mbl.
k=1

7



Theorem 3. If the sequences (z;)"_, and (z;)"_; are positive and (y;)?,

18 strictly positive and increasing, then:

k k
ZI?%‘ < Zygzi, Vk=1,...,n
i=1 i—1
implies:

k k
fozi < nyzi, Vk=1,...,n
i=1 i=1

for0 <p<q.
Proof. We use Holder’s inequality:

n n 1/r n 1/s
Zakbkg (Z%) (Zbkks> , r>1, 1/r+1/s=1
k=1 k=1 k=1

for r = q/p and s = q¢/(q — p). So:

() - (St

=1

< (Zx”’z@/y’”/ )q/’“ (ﬁ;y” zz-)m (Zx ai/yi ) (Zy z1> _p

= <zk:yfzi—zk:zi(y —af) [yl ) (ZyZ) (Zy2>

i=1 i=1
because, by hypothesis

k

D i —ahzu >0, Vk

i=1
and (1/y! P)™, is decreasing, hence, by Lemma 2:

k

S — o)zl > 0

=1
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FUJIWARA’S INEQUALITY FOR FUNCTIONALS

Gh.TOADER

Abstract

Fujiwara’s inequality generalizes both Cauchy’s and Chebyshev’s inequalities. Here
we give its variant for linear isotonic functionals. Also we prove the monotonicity
and the superadditivity of an operator related to the inequality, obtaining so some

refinements of it.

1 Introduction

>From [4] we can deduce an inequality proved by M.Fujiwara in [1]: If f1/f2 and g1/g2

are monotone in the same sense on (a,b) then

A(f191)Af292) = A(f192) A(f291)

where
b
AP = [ fayia,

Taking fo = g2 = e, where e(z) = 1 for x € [a, b], we get Chebyshev’s inequality, while for
g1 = f1 and g2 = f2 we have Cauchy’s inequality.

In what follows we want to generalize Fujiwara’s inequality for arbitrary linear positive
functionals A. We also prove in this general case some properties of monotonicity and of

superadditivity of the operator D’ defined by

D'(A)(f1, f2, 91, 92) = A(f191) A(foga) — A(f192) A fogn)

which are known in some special cases (see for example [3] and [7]).

2 Functionals

Let E be an arbitrary set, F/(E) be the set of real-valued functions defined on E and
denote also F; (F) the subset of positive functions from F(FE).



Usually one considers linear positive functionals on F/(E) but we take the apparently

weaker conditions of sublinearity and isotony. So we consider the set of functionals

M (E) ={A: F(E) — R; A(tf + s9) < tA(f) + sA(9),
Vi, s e R,Vf,g € F(E) and A(f)>0,Vfe Fi(E)}.

As ordinary examples of such functionals we can consider

A(f) = Zpif(:ni), with p>0 and z; € E (1)

i=1

and X
A(f) :/ p(z)f(x)dx, with p>0 on [a,b] (2)

but also others deduced by Minkowski’s inequality or by Mulholand’s inequality (see [4]).
We shall use in what follows an order relation on M, (E) defined by

A>B if A(f)=B(f), Vf € Fy(E).
Lemma 2.1. If A> B and f,g € F.(E), f >g, then A(f)> B(g).

Proof. As f — g € Fy(E) we get

0<A(f —g) < A(f) — Alg)

and from A > B and g > 0 we have also A(g) > B(g). O

3 Fujiwara’s Inequality

The condition from Chebyshev’s inequality that the functions f and g are monotone in
the same sense can be weakned by the following definition: The functions f,g € F(FE) are

synchrone if
(f(z) = f(¥)(9(z) —g(y)) =0, Vz,y€E.

By analogy, we shall say that the pairs of functions (f1, f2) and (g1, g2) are synchrone if

filz)  fi(y)
fa(z)  fa(y)

g1(z) 9iy)

0, Vux, E. 3
g2(z)  g2(y) - ve ¥

Theorem 3.1. If the pairs of functions (f1, f2) and (g1, g2) are synchrone and
A,B € M, (FE) then

A(f191)B(f292) + A(f292) B(f191) > A(f192) B(f291) + A(f291)B(f192)- (4)



Proof. The inequality (3) gives

fi(@)g1(z) f2(y)92(y) + f2(x)g2(z) f1(y)91(y)
= fi(@)g2() f2(y)91(y) — fa(z)g1(x) f1(y)g2(y) > 0.

Considering that A maps the functions of variable z and then B those of variable y, we
get (4). O

(5)

Consequence 3.1. If the pairs of functions (f1, f2) and (g1, g2) are synchrone and
A€ M, (FE) then

A(f191)A(f292) = A(f192) A(f291)- (6)

Consequence 3.2. (Fujiwara’s inequality). If fi/f2 and gi/g2 are monotone in the same
sense, fa,g2 >0 and A € M, (E) then (6) holds.

Consequence 3.3. (Cauchy’s inequality). If A € M, (E) then

A(f)A(g%) = (A(f9)), Vf.g € F(E).
Consequence 3.4. (Chebyshev’s inequality). If the functions f,g € F(FE) are synchrone
and A € My (E), then

A(fg)A(e) = A(f)A(g)-

Proof. To get these consequences we need to consider in (4) the special case A = B.
Moreover f1 = g1 = f and fo = go = ¢ for Consequence 3.3 respectively f1 = f,g1 = ¢
and fo = g2 = e for Consequence 3.4. The hyphothesis of Consequence 3.2 assure the

synchronism of the pairs (f1, f2) and (g1, g2).
Usually the consequences are stated for A given by (1) or (2). O

Consequence 3.5. If the differentiable function f is convexr and g/h is increasing then
A(f 9)A(h) = A ) A(g), VA € M (E). (7)

Consequence 3.6. If the differentiable function f : [a,b] — R is convexr and increasing
and the functions g and h are defined on [f(a), f(b)] and g/h is increasing, then
b £(b) b f(®)
[ att@yds [ “h@doz [“hit@)ds [ gtopds )
a f(a) a f(a)
Proof. The inequality (7) follows from (6) as f /e is increasing. Then (8) may be obtained
by taking in (7)
f)
Alg) = [ gla)da,
f(a)
O
As we have proved in [8], the inequality (8) is valid without the differentiability of f.

There we give also its history.



4 The Operator D

To formulate and to prove the following results we introduce the operators D and D with

expressions deduced from (4) respectively (6).

D(A, B)(f1, f2, 91, 92) = A(f191) B(f292) + A(f292) B(f191)
— A(f192)B(f291) — A(f291) B(f1g2)

and
DI(A)(flv f2791792) = (1/2)D(A7 A)(fb f2791792)-

Theorem 4.1. If the functionals A, A", B, B’ € M (E) are such that A > A and B> B
then

D(A, B)(f1, f2,91,92) > D(A", BY(f1, f2, 91, 92) 9)

for every synchrone pairs of functions (f1, f2) and (g1,92)-

Proof. >From (5) and A > A" we have

A(fr91) f2)92(y) + A(f292) fr(1)91(y) — A(fr92) fo(y)g1(y)
— Alf291) LW)92(y) = A'(f191) f2(4)92(y) + A (f292) f1 (1) 91.(v)
— A (f192) ()1 (y) — A (f291) f1(y)g2(y) > 0

and then Lemma 1 applied for B = B’ gives (9). O
Consequence 4.1. If the functionals A A € M, (E) are comparable, A > A, then

D'(A)(f1, f2,91.92) > D' (A)(f1, f2. 91, 92) (10)
for every synchrone pairs of functions (f1, f2) and (g1, 92)-

Example 1. If for fixed p; > 0 and z; € E,i = 1,...,n, we denote
An(f) = pif ()
i=1
we have

A > A1 for k=2,....n

thus, by (10)

D/(An)<f17f2791792) > Dl(An—l)(f17f2791792)
ZZD,(AQ) 17,]02791792)20

for the synchrone pairs (f1, f2) and (g1, g2)-

This result is known in some special cases as one can see in [7].
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Theorem 4.2. If A,A'",B,B € M, (E) then

D(A+ A", B+ B)(f1, f2,91,92) > D(A, B)(f1, f2, 91, 92)

) (11)
+ D(A >B )(f17f2791792)

for every synchrone pairs of functions (f1, f2) and (g1, 92)-

Proof. As

D(A“‘A,»B +B,)(fl>f2791792) - D(A7 B)(flaf??.glag2) - D(A’>Bl)(flaf27glag2)
= D(Aa B,)(f17f2791>g2) +D(AlvB)(f17f2791792)

the relation (11) follows from (4). O

Consequence 4.2. If A, A" € M, (E) then

D' (A+ A)(f1, fo, 91.92) = D (A)(f1. f2, 91, 92) + D (A)(f1, fo. 91, 2) (12)

for every synchrone pairs of functions (f1, f2) and (g1, 92)-

Example 2.For a finite index set I and fixed p; > 0 and x; € F for ¢ € I, we denote

Ar(f) =i € Ipif ().

From (12) we deduce that if I and J are disjoint then

D' (Arug)(f1, far 91, 92) > D' (A1) (f1, f2, 91, 92) + D (As)(f1, for 91, 92)

for (f1, f2) and (g1,92) synchrone pairs. This result is also known in some special cases
(see [3], [7]).
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ON CHEBYSHEV’S INEQUALITY FOR FUNCTIONALS

Gh.TOADER

1 Introduction

Let E be an arbitrary set and F'(E) be the set of real-valued functions defined on E. Let
also Ly (E) be the set of all isotonic linear functionals defined on F(E), thus of all the
functionals A : F(E) — R with the properties:

A(tf +sg) = tA(f) + sA(g), Vt,s e R, Vf,g € F(E)

and
A(f) >0, Vfe F(E), f>0.

Common examples of elements of L (E) are:

A(f) = pif (@), pi > 0,z € Bii €1 (1)

el
and

b
A(f) = / p(z)f(z)dz, p(z) > 0, z € [a,b] = E. (2)

Two functions f, g € F(FE) are said to be synchrone if:

(f(@) = fw)(g(x) —g(y)) = 0, Yo,y € E. (3)
The following result is known as Chebyshev’s inequaltiy.

Theorem 1.1. If A is an isotonic linear functional, the functions f,g are syncrone and
p 18 positive, then:

A(pfg)A(p) = A(pf)A(pg). (4)

Proof. Multiplying (3) by p(x)p(y) > 0, we have:

p(@) f(2)g(z)p(y) + p(x)p(y) f(Y)g9(y) — p(x) f(2)p(y)g(y)—
— p(x)g(x)p(y) f(y) > 0.

Y

1



Applying A to the functions of variable  and then again to those of variable y, we get
(4).

The classical inequality was given by taking A of the form (1) or (2) and the functions
f and g both increasing.In what follows we obtain similar results for starshaped or convex

functions. We improve so some results from [1], [3], [4] and [5]. O
2 Chebyshev’s inequality for starshaped functions
Let E be a set of positive numbers and the functions e, € F((E) be defined by:

ex(z)=2F z€E, k=0,1,2,...

A function f € F(FE) is said to be starshaped if f/e; is increasing (see [2]). If 0 € E we
must have, of course, f(0) = 0.

In [5] it is proved that if A from Ly (FE) and f and g are starshaped, then:

A(fg)A(e2) > Alerf)A(er9).

We want to put this inequality in another form, more similar to (4).

Theorem 2.1. If A € L (F),p is positive and f and g are starshaped then:

Alpfg)A*(per) > A(pes) A(pf) A(pg)- (5)
Proof. As f/es and g/e; are increasing, (4) with the weight function pes gives:
A(pfg)A(pez) = A(perf)A(perg).

Again (4) with the weight function pe; and the increasing functions f/e; and e; gives:
A(pfei)A(per) = A(pf)A(pez)

and so we get (5). O

Remark 2.1. >From (4) we have also:

A(pea)A(p) > A*(per)

so that (5) is stronger then (4) for starshaped functions.



3 Dunkel’s and Anderson’s inequalities
In [3], O.Dunkel passed in Chebyshev’s inequality at more functions.
We can obtain it easily from (4) by mathematical induction.

Theorem 3.1. If the functions fi,..., fm € F(E) are increasing, p is positive and A €
L+(E), then:

Apfi.. fm)A" (D) = Apfr) ... AP fm)- (6)

>From it we obtain also the following generalization for starshaped functions:

Theorem 3.2. If the function p is positive, fi,...,fm € F(E) are starshaped and A is

an isotonic linear functional, then:

Afi-.. fm)A™ (pe1) > A(pem)ASf1) - ADfm) (7)
holds.

Proof. Taking (6) the weight function pe,, and the increasing functions fi/e1, ..., fi /€1

we have:
Apfi - fm) A" pem) > A(pem—1f1) - - - Apem—1.fn)- ®)
Applying (4) to the weight function pe; and the increasing functions f;/e; and e,,—1 we
get:
A(pem-1fi)Alpe — 1) = A(pem)A(pfi)-
so that we obtain (7). O

Remark 3.1. As was proved in [2], every convex function is starshaped. So, the inequality
(7) is valid also for convex functions. Thus the theorem 3 generalize a result from [4] which

contains Anderson’s inequality from [1].
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A HIERARCHY OF CONVEXITY OF HIGHER ORDER
OF FUNCTIONS
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For the beginning, let us consider the following classes of continuous functions:
Kala,b] ={f € Cla,b] : [z,y,2 f] 20, Yz, y,2 € [a, ]}
Ssla,b;c) ={f € Cla,b] : [¢,z,y; f] > 0,Vz,y € [a,b]}
Sala, b ] ={f € Cla,b] : (f(z +y —¢) = f(x) = f(y)+
)& —c)(y—c) =0, Yo,y € [a,b]}
J3la,byc] ={f € Cla,b] : [¢, (x4 ¢)/2,z; f] > 0, Vx € [a,b]}
that is of convex, starshaped, superadditive respectively J-starshaped (Jensen starshaped)
of order two relative to the point ¢ € [a,b]. In the definition are used divided differences
which are given recurrently by:
[zo; f1 = f(20), [T0, %15, Tn, Tnt1; ] =
= ([21,- ., @na1s fl = [wo, - @0 f1)/ (@041 = 20)-
Lemma 0.1. For any c € [a,b] there hold the inclusions:

Kjla,b] C S5[a,b;c] C Sala,b;c] C J5[a,b;c].
Proof. The first inclusion is obvious. For the second inclusion we use the relation (see
[10]):
fle+y—o = fl@) - fy) + f(0)/(z )y —c) =
c,x,x +y—c fl+[cy,z+y—cfl

The last inclusion follows from the remark that:

e (@ +)/2,3: f] = 2 (2) — 2/ (a + ¢)/2) + F(e)) /(& — ) =
(10557 o) 2 (5w r9) /(57 )

Thus it can be obtained if we take for x and y the value (z + ¢)/2 in the definition of

superadditive functions. O



Remark 0.1. For a = ¢ =0 the first two inclusions were proved in [2]. To our knowlege,
the consideration of the J-starshaped functions and thus the last inclusion is new. In [2]
there is also studied (for a = ¢ =10, f(0) =0) the problem of preservation of the properties

of functions by the arithmetic integral mean:
1 €T
A =1 [ 50 A00) =0 (1)
If we denote by MF the set of functions f with the property that A(f) belongs to the
class F', the result of [2] is:
K5[0,b] € M K[0,b] C S5[0,b;0] C MS5[0,b;0] C
C MS; [O, b; 0]
which is called hierarchy of convexity. Starting from [6], in [9] we have extended this result
considering transformations more general than that given by (1). In what follows we want

to do same thing for the convexity of higher order.

To avoid some complications, we consider the case a = ¢ = 0. Thus, let us denote by:
Cb)={f:[0,0] — R, f(0) =0, f continue}
Kn(b) ={f €C(b)
Sa(b) ={f €C(b)
Sn(b) ={f € C(b):Vr1,...,2 € (0,0],

n

S ED"EY flwi A+ ay) > 0}
(k)

Cxoy .oy Ty f] >0, Yo, ...,y distinet in [0,0]}

[0,2z0,...,2n; f] >0, Vz1,...,2, distinct in [0,b]}

k=1

R0 = (f €0t): [0.5,2 i f] 20, v € 08,

the sets of continuous, convex, starshaped, superadditive respectively J-starshaped of order

n-functions. By > f(x;, +--- + ;) we denote the sum over all the combinations of class
(k)
kof x1,...,2,.

Lemma 0.2. For every n > 2 and every b > 0 the inclusions hold:
Kn(b) C S5(b) C Su(b) C Jp(b) > (2)

Proof. The first inclusion follows by the definitions. The second was proved in a weaker
form by T.Popoviciu in [8]. For n = 3 it was proved in [4] and for n < 4 in [10]. For an
arbitrary n it was proved in [4] and for n < 4 in [10]. For an arbitrary n it was proved in
the unpublished dissertation of I.B.Lackovi¢ and restarted without proof in [7]. A proof

will appear also in [3]. The last inclusion may be obtained from the condition:

n

DD a4 @i,) 20
(k)

k=1

2



which for 1 = - -+ = x,, = x/n becomes:

34 (2)7(E) = () R 20

Remark 0.2. Like in [9], we want to find the differentiable functions
g:[0,0] — R, ¢(0) = 0 such that the weighted arithmetic integral mean:

i) /0 g 00t (3)

Wo(P)e) = -

preserves the classes of functions defined above.

Theorem 0.1. If W,(f) € K,(b) (S;(b) or Sy(b)) for any
f € Kn(b) (Sk(b) respectively Sy (b)) then there is a u > 0 and a real ¢ such that:

g(a) = c-a" (4)

Proof. Let us denote by P, the set of all polynomials of degree at most n. As +p belongs
to Ky (b) (S5(b) or Sy(b)) for any p € P,_1, it follows by (2) that W,(+p) = £W,(p) €
Sp(b). Thus, by the functional characterization of polynomials given by M.Fréchet (see
[1]), Wy(p) € Po-1.

Let us write ey (z) = 2¥ and W, (ex) = py. From (3) we deduce:

i

9@ __ n@ k=1,...,n—1 (5)

g(z)  ex(z) —pr(z)’

or, if we consider:
n—1
pr(z) = Zakj$]7
Jj=0
we havefor 1 <k <m<n-1:

n—1 - n—1 -
Y jarix)” Jmjrl ™
j:1 ]21

n—1 ) n—1 B
zk — 3" apjad am — 3 amjad
j=0 7=0

Thus:

n—1 n—1 n—1 n—1
(a:m— E amjxj> E jakix]A(xk— g akja:]> E jamjazjfl.
Jj=0 Jj=1 j=0 j=1

For m = n — 1 equalizing the coefficients of 2273

we get:
agp—1 =0 for k<n-—1

3



Then, for m = n — 2 and the power 2n — 5, we deduce also:
agn—2=0 for k<n-—2.
and generally, step by step:
ag; =0  for k<j.

Thus:
p1(z) = aio + anx

and from (5), with £ = 1, we have:

g (x) ail
g(x)  x— (a0 + anx)

hence, as g(0) = 0, we get (4). O

Remark 0.3. As concerns the class J)5(b), the condition £Wy(p) € Ji(b) leads to a
functional equation in a single variable which may have non-polynomial solutions without
auziliary conditions (see [2]). However, for n =2 we get Schrider’s equation:

h(2x) = 2h(z) which has the unique continuously differentiable solution h(x) = cx, that is
we get again (4).

Remark 0.4. For g(z) = c-x" the transformation (3) becomes a Cesdro type operator:

&mmzﬂ/%“mw. (6)

A 0
We consider the sets M“K,(b), M"S}(b), M"S,(b) and M*“J}(b) of functions f with
the property that A,(f) belongs to K, (b), S} (b), Sn(b), respectively J(b). The following
results prove that the condition (4) is also sufficient for the preservation of the above

classes of functions.
Theorem 0.2. For every b,u > 0 and every n > 2, the inclusions hold:
(a) K,(b) C MK, (b)
(b) Su(b) € M"S;(b)
(c) Sn(b) € M"S,(b)
(d) J5(b) C M"J5(b).

Proof. Making (as in [6] the substitution:t = - s/, (6) becomes:

AAM@—Af@WWw
4



x
(20, 21, Tn; f] = 2 ]{/((xi))
where
p(x) = (z —x0)(x — 1) ... (T — )
we have:

[J:o,:nl,...,xn;Au(f)]:Zm/o f(xksl/“)ds:

k=0

1
- / s”/“[xgsl/“, . ,xnsl/“; flds
0

which proves the inclusions (a),(b) and (d). The inclusion (c) follows from the relation:

n n 1
Z(_l)nik ZAu(f)(xn +et xlk) = Z(_l)nik Z/ f(($i1+
k=1 (k) k=0 (k) 70

1 n
et xik)sl/u)ds - / Z(_l)n_k Z @iy + -+ xik)sl/u)ds'
0 k=0 (k)

Consequence.For every b,u > 0 and n > 2, the inclusions hold:

K,(b) < Sib) < Spb) < JxD).
N N N N
M"K,(b) C M“S:i(b) < M“S,(b) C M"J:(D).
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SOME INEQUALITIES FOR m-CONVEX FUNCTIONS

S.S. DRAGOMIR and Gh.TOADER

Rezumat -Cateva inegalitati pentru functii m-convexe. Functiile m-convexe
au fost definite in [4]. Ele au alurd intermediara celei de convexitate si celei de stelaritate.
Pentru aceste functii in lucrare se demonstreaza inegalitéti de tip Jensen si de tip Hermite-
Hadamard.

1 Introduction
We will follow the paper [5].
Let X be a real linear space, I = [@, 1] and m > 0 a fixed real number.

Definition 1.1. A set D C X will be called m-convex if for any x,y € S and any t € 1
we have tx +m(1 —t)y € D.

The following two lemmas which describe some properties of m-convex sets hold.

Lemma 1.1. If m > 1,0 € D and D is m-convezx, then for any x € D, t > 0 we have
tr € D.

Taking into account this property, in what follows we shall consider only m € I. The

value m = 1 corresponds to convexity and m = 0 to starshapendness.
Lemma 1.2. If D is m-convexr and 0 < m < 1, then D is also n-convez.

Now, let D be a m-convex set in the linear space X with m € I. Transporting the idea

from [3] to the real case, in [4] it was introduced the following class of functions.

Definition 1.2. A function f: D — R is said to be m-convex if for every x,y € D and
t € I it verifies the condition:

[z +m(l —t)y) <tf(z) +m(l—1)f(y).

Here again, m = 1 gives convex functions and m = 0 starshaped functions.
As it is shown in [5], it is natural to suppose 0 € D and f(0) < 0.

Now we recall some fundamental properties of m-convex functions (see[5]).

1



Lemma 1.3. The function f: D — N is m-convex if and only if the set:

epi(f) ={(z,y) € DX R, y > f(x)}
18 Mm-convez.
Lemma 1.4. If f is m-convex then it is starshaped.

Theorem 1.1. If f is m-convexr and 0 < n <1 then f is n-convex.

2 Jensen’s inequality for m-convex functions.

We will prove the following inequality of Jensen’s type.
Theorem 2.1. Let X be a linear space, m € [0,1] and D C X is a m-convex set in X. If

f: D — R is a m-convex function, then for allp; >0 and x; € D(i =1,...,n) we have:

n n
Zpimiflxi |/ P, € D, where P,= Zpi
i=1 i=1

and the following inequality:
P pim i [ P) <3 i (i) | P (1)
i=1 i=1

holds.

Proof. We proceed by mathematical induction. If n = 2, the statement follows by the
definition. Suppose that (1)holds for "n — 17, i.e.

n—1 n—1
f(z%mi_lyi / Qn—l) <> am ™ (i) / Qna

n—1 .

where S ¢m*ly; / Qn_1 is assumed to be in D, provided that ¢; > 0, y; € D and

i=1

' n—1

Qn-1= 2 g;i- Now:
i=1

1 < i D1 P o - -
5> _pim' i = e+ (1 - F) > pim Pz /> ps
i=1 n nt =2 i=2

n =

and since:

n n n
Zpimi_%i / Epi e D itfollows Zpimi_l:zzi / P, € D.
=2 i=2 i=1



By the above considerations we have that:

f<zn:29z‘mil$z’ / Pn) = f(%an +m (1 - —) sz P / i%) <
i=1 =2
P o)+ (1= 1) (zpz ) zp) < B gan)

n

m= > S pim () / S pi= Y it [ Py
=2 =2 i=2 i=1

and the theorem is proved. O
Corollary 2.1. In the above assumptions for D, f,m and xz;(i = 1,...,n) we have that
n .

Smlx; /n € D and:

i=1

Application 1. Let m € I and x;,p; >0 fori=1,...,n).

The one has the inequalities:
n q n
(Zpimlilxi) <pit > pim'lal, Vg > 1
i=1 i=1

and

1 - - 1\ U/Pa
1+ Fn ZpimZ Ti > (H(wz + 1)m’ pz') .

i=1 i=1
The proof of the above inequalities follows by (1) choosing the functions
f:[0,00) — [0,00), f(x) = x? respectively f : [0,00) — (—00,0], f(x) = —In(z + 1)

which are m-convex. A second result is contained in the next theorem.

Theorem 2.2. Let X be a linear space, m € I and D a m-convex set in X. If f : D — R

is a m-convez function, then for all p; > 0,x; € D, one has the inequalities:

1 & 1 & _
7+ m( -t zpz Pnzpimz ;) sfnzp@-ml !
<t—2pjm3 i +m(l —t)— Z:plm‘7 1%) P2 Z Dip;-

,Jl

mHI 2 f (b + m(l — t)aj) < (t+m(l - 1)) PQsz m'” Isz ().

=1

Proof. By the definition of m-convex functions, one has:
fltzr +m(l —t)a;) <t- f(z;) +m(l —1t)- f(z;) for all i,je{l,...,n}

3



By multiplying with m/ _1pj > 0 and summing over j to 1 at n, one has:

o sz " lf(t—Zp]m” Yo+ m(l—t)— Zp]mﬂ x]>§

n

1 N
P LS R 4 (1~ )a) < 4 S i

i,j=1 " j=1

E N (IR TS W D

= (t+m(1—1)) sz P Zpimi_lf(:zzi).
=1

On the other hand, by Jensen’s inequality for m-convex functions, we deduce:

B Z im' 1f<t—2pjm3 Loy +m(1 —t)— ijmj 1xj> >
( sz (t—Zp]mJ lx] +m(l—t)— Zp]mj x]>) =
= f((t—i—m (1-1)) sz P Zpimiflxi)
™ i=1

and the theorem is proved. O

Remark 2.1. If we assume that m = 1, we obtain a refinement of Jensen’s inequality
established in [2].

Corollary 2.2. In the above assumptions for D, f and x; we have for all m € [0,1) the

mequalities:

f((t +m(l—t)(1—mn) % Z”:mlx> -

1—m ‘
=1

1< m" —1 1<
_E i—1 . — _E: g1,
n < 1m f(t 1xl—i—m(1 t)n, m x])<

J
% i m 72 f(tr; + m(l — t)z;) < (t+m{d — )1 = m?) > mi ().

i,j=1

IN

IA

The following applications also hold.



Application 2. Let x;,p; > 0,9 > 1 and m € I. Then one has the inequalities:

(t 4 m(1— 1) (zpz )q(ipimumi)qg
< Pi~ 1me’ 1( Zp mi~ xz—l—m (1—1) ijmj $J>q§

=1 7=1
< p2a—2 Z pipym 2z (te; + m(1 — t)z;)?

1,7=1

n n
< (t+m(1—t))P*—2 Z mp; Z mjflpja:?.
i=1 j=1

Application 3.Let z;,p; > 0 and m € (0, 1]. Then one has the inequalities:

1 n ) n )
(t+m(l—1)55 > pim'™ piml‘lxi +1>
P2
" =1 i
IN1/P,

n n i—
ta; - (1 — 1) pim
> ( | | (F; E pim’ T ———= E pim! ta; + 1) )

Jj=1 7=1

\Y

i\ 1P
> (T (s +m1 = ya; + 1™ )

The proofs follow by Theorem 3 applied to the m-convex functions f : [0,00) —
[0,00), f(xz) =a% (¢ > 1) respectively f :[0,00) — (—00,0], f(z) = —In(z + 1).

Note that Theorem 2.1 and Theorem 2.2 give also some interesting inequalities in a
normed linear space.

Application 4.Let (X, || -||) be a normed space, p; > 0 with p, >0, z; € X, me I
and ¢ > 1. Then one has the inequalities:

q n
mzflxi < ngl Zpimilexin
=1
and
q q
(t+m(1—1t)) (sz ) m Tyl <

n q
tzpjmj_lzz:i +m(l—1t) ijmj_lxj <

j=1 j=1

~1 1
< P Zpimz
=1

n
< P22 pipym 7R s+ (1 — )| <
ij=1

< (t+m(l P2q22m pzzm il |,



The proofs follow by the above theorems for the m-convex function f: X — R, f(z) =

|-

3 Some integral inequalities for m-convex functions.

In what follows we consider only functions defined on the real interval [0, b] and denote by
K, (b) the set of m-convex functions on [0, b] such that f(0) < 0 (see also [5]).
The following lemmas hold:

Lemma 3.1. The function f is in K, (b) if and only if
f(x) —mf(y)

fm(@) = T —my
is increasing on (my, b] fory € [0,b].
Lemma 3.2. If f is differentiable in [0,b] then f € K, (b) if and only if:

F ) > L@ =mi)

T —my

for x> my.
The following integral inequality for m-convex functions holds.

Theorem 3.1. Let f : [0,00) — R be a m-convez integrable function with m € (0, 1] and

0 <a<b<oo. Then one has the inequality:

b
[ e < 3(5@) + 10) + m(Flafm) + F6/m) ¢

b—a J,

Proof. Since f is m-convex, we have:

which gives:
flta+ (1 =1)b) <tf(a)+m(l—1)f(b/m)
and

f(tb+ (1 —t)a) <tf(b) +m(l —1)f(a/m)

for all ¢ € I. Integrating on I we get:

/0 f(ta+ (1= 0)b)dt < (f(a) +mf(b/m))/2
and

1
/0 F(th + (1= t)a)dt < (F(b) +mf(a/m))/2.

/Olf(ta+(1—t Vit = /ftb+(1—t _a/f

but




Thus, adding the above inequalities,we obtain (2).

Remark 3.1. >From the proof we deduce that holds also a better evaluation:

b
[ H@)ds < min{(5(@) + m6/m)/2 (F0) + mf(a/m) 2}

Theorem 3.2. Let f : [0,00) — R be a m-convez differentiable function with m € 90, 1].
Then for all 0 < a < b one has the inequalities:

m —a . b — ma —a—m a
) 2t f ) < 2 [ sty < LI T g

Proof. Using Lemma 6, we have for all x,y > 0 with x > my that:
(@ —my)f (z) > f(z) — mf(y). (4)
Choosing in the above inequality x = mb and a < y < b, then x > my and:
(mb — my) f (mb) > f(mb) —mf(y).

Integrating over y on [a, b], we get:

-

, b
fmwzwﬂmww—m/f@@

thus the first inequality of (3). Putting in (4) y = a and then integrating on [a, b] one gets
the second inequality of (3). O

Remark 3.2. The second inequality from (3) is also valid for m = 0, while (2) is not. For

m =1 it is identical with (2) and represents a part of Hermite-Hadamard’s inequality.
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THE PRESERVATION OF THE CONVEXITY OF FUNCTIONS
Josip E. Pecaric Gh. Toader

1 Introduction

Let us consider the classes of continuous, convex, starshaped and superadditive

functions defined respectively by:
C()={f:[0,0] = R, f(0) =0, f continuous}

K@) ={feC®); ftr+ (1 —t)y) <tf(z)+ (1 —-1)f(y),vt € (0,1),
Vo, y € [0,0]}
S*(b) ={f € C) | f(tx) <tf(x), Vt € [0,1], z € [0,b]}

Sb) ={f € CO) |f(x+y) = flx) + f(y), Va,y, z+y € [0,b]}.
In [2] it is proved that all these classes are preserved by the arithmetic integral

mean A defined by

A(f)(x) = i/o F(®)dt, for > 0, A(F)(0) = 0.
Moreover, if for a given set F' of functions we denote by:
MF ={f e C(b) |A(f) € F},
in [2] it is proved that for any positive b the following strict inclusions hold:
K(b) c MK(b) C S*(b) C S(b) C MS*(b) C MS(D).

1



Simple proofs of these relations are also given in [5].

References [3] and [4] consider the integral operator W, defined by

W) = = [ 00t W,(1)0) = 10 (1)

g9(x) — g
where g is a given differentiable function. In [5] it is proved that if W, preserves
one of the classes K (b), S*(b), or S(b), then the function g is necessarily of the form

g(x) = kx* for some u > 0 and some k # 0. If we denote the resulting operator by
Ay N
(% _
AP =25 [ e e )

0
and if for a given set F' of functions we set M“F = {f € C(b) : A,(f) € F}, then
it is proved that for any positive numbers b and v hold the inclusions:

K®b) ¢ M“K®b) < S*b) < S
N N
M"S*(b) < M"S(b)

A similar result was proved for some classes of generalized convexity of order two in
[6] and [7] and for convexity, starshapedness and superadditivity of higher order in
8].

Analyzing all these results, we can produce a general scheme that we want to

consider in what follows.

2 A Class of Generalized Convex Functions

Let D = (djk)nm be a n x m matrix and C' = (¢;),, be a given n vector with the

property that ¢; +---+ ¢, = 0. Let

k=1

D(b) =X = {(ﬂﬁk)m| Zd]kxk S [O,b], j= 1,...,77,}

and then, for any X from D(b), the functional Lop(-)(X) : C(b) — R defined by

Lop(f)(X) =) ¢f (Z dj”"k)
j=1 k=1
Using them, we can define a general class of convex functions
Ken(b) = { € C[0.8] | Lop(f)(X) > 0, VX € D(b)}.

2



By adequate choice of C' and D we get the sets of Jensen convex functions and
of superadditive functions, usual or generalized, and of any order. For example the

condition of superadditivity of f € C[0,b] is
f(l’l + ZL'Q) — f(.Il) — f(.l’g) + f(O) Z 0, V]Il,ZEQ, T1+ T € [0, b]

and it becomes that given in the definition of S(b) for f from C(b). In [8] we have
considered also superadditivity of order n > 2. For example f € C0, 0] is said to be

superadditive of order 3 if
f(e1+ 22 +23) — f(v1 +22) — f(21 +23) — fla +23) + f(21)+

+f(x2) + f(x?)) - f(O) 2 07 vxla‘r%x?n 1+ T2+ 123 € [07 b]

For convexity and starshapedness we must refer at Remark 3.
The condition on C assures that the class K¢ D(b) is nonempty because it con-
tains the constant functions. But we need a more precise condition. For this, let us

denote by P, the set of polynomials of degree at most g.
Definition 2.1. The class Kcp(f) =0 if and only if f € P,.

Remark 2.1. The determination of the value of ¢ for C' and D given is a problem
of functional equations. Of course, necessary conditions are Lop(ex) = 0 for k =
0,...,q, and Lop(egi1) # 0 where ex(z) = 2 for k > 0. But it is a difficult
problem to prove that they are also sufficient or to find simpler conditions. For
some results and references see [1, pages. 129-131]. For example if Lop(f)(X) =
i ¢jf(z1 4 (j — 1)z3), the value of ¢ is less than 1 plus the order of multiplicity of
fc;lle root t = 1 in the equation ¢; + cot + -+ - + c,t" 1 = 0.

3 Main Results

We want to determine those functions g that give an integral operator W,, defined

by (1), which preserves the class Kcp(b). We have the following result:

Theorem 3.1. If the class of functions Kop(b) is well defined and W, preserves it,

then there is a positive number u such that g(x) = va™ YV € [0, b].



PROOF. For any p from F,, because p and —p belong to Kcp(b), we have W, (p)
and W,(—p) also in K¢p(b) and this is equivalent to Lep(Wy(p))(X) =0
VX € D(b). Thus Wy(p) is in P, as Kcp(b) is well defined. Let Wy(ey,) = pj, for
k =1,...,q. Differentiating these relations we get
g _ n
9(@) —g(0)  ex(x) — pi(z)
or, if we set pi(x) = aro + @ + - - - + apgx?, we have for 1 <k < h <gq

q q q q
zh — E ap;x’ 5 jaij]_l =z = E ay;x’ E jahjxj_l.
j=0

J=1 J=1 J=1

for z€ (0,8, k=1,...,q (3)

For h = q equating the coefficients of 2241

we get ap, = 0 for k > ¢. Then for
h = ¢ — 1 and the power 2¢ — 3, we deduce also a;,—1 = 0 for K < ¢ — 1 and by
induction ay; = 0 for k < j. Thus p1(z) = aip + annz and from (3) with £ = 1, we

have
ai

)
g(x) —g(0) =z —(aw +anw)

which gives the result.
Using such a weight function we denote the resulting operator by A,. It is given

by (2). Also we introduce the following class of functions
M"Kop(b) = {f € C(b) | Au(f) € Kop(b)}-

Theorem 3.2. IftX belongs to D(b) for any t € [0,1] and any X € D(b), there for
any positive u we have Kop(b) C M“Kepb.

1
PROOF .Substituting t = xs'/* in A, (f) we get A,(f)(x) = [ f(xs*/*ds. So, for
0
any X from D(b)

Lep(Au())(X) =) ¢A (Zd kak)

7j=1
_icj/ (UUdea}k)dS
j=1
1 m
= /chf (Z djkxksl/“> ds
= k=1
— [ Len(n)(xs s = 0

0



because f is from K¢op(b) and s/*“X from D(b).

Remark 3.1. The condition [0,1] x D(b) C D(b) holds, for example, if the matriz

D 1is positive.

Remark 3.2. If instead C and D we use families of vectors C' and of matrice D, all
the above results remain valid. So we obtained similar theorems for various sets of
convez or of starshaped functions. For example, the function f € C|0,b] is starshaped
if tf(x) — ft(z)+ (1 —1)f(0) > 0Vz € [0,b] for every t € [0,1] that is we have a set

of conditions.
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SUPERADDITIVITY AND HERMITE-HADAMARD’S
INEQUALITIES

Gh.Toader

Rezumat -Superaditivitate si inegalititile lui Hermite-Hadamard. Im-
bun&tdtim in anumite sensuri inegalitatile lui Hermite-Hadamard, valabile pentru funtii
convexe pe [a, b]

f(A(a,b)) < A(f;a,b) < A(f(a), (b))

unde A(f;a,b) reprezintd media aritmetics integrald a functiei f pe [a, b], iar A(a,b) media
aritmeticd a numerelor a si b. De exemplu A(f;a,b) se inlocuieste cu o functionald liniard
izotond, simetricd intr-un anume sens. De asemenea, inegalititile se demonstreazd pentru

clase mai largi de functii, care le includ pe cele convexe.

1 An inequality for superadditive functions.

Let us consider the sets of continuous, convex, starahaped respectively superadditive func-
tions on [a, b] given by:
Cla,b] = {f: [a,b] — R, f continuous}
Kla,b) ={f € Cla,b]; f(tx + (1 = )y) < tf(x)+ (1—1)f(y),
Va,y € [a,b], Vt € [0,1]}
St[a,b] = {f € Cla,b]; (f(z) — f(a))/(z —a) <
(f(y) = fla))/(y —a), a <z <y <b}

respectively

Sla,b] = {f € Cla,b]; f(z) + f(y) < f(z+y —a) + f(a),
Ve, y,x +y—a € |a,bl}.

For a = 0 we denote by C(b), K(b),St(b) respectively S(b) the corresponding sets of
functions, submitted also to the condition f(0) = 0. A.M. Bruckner and E.Ostrow have

1



proved in [1] the strict inclusions:
K (b) C St(b) C S(b)

Simple proofs and generalizations of the results of [1] may be found in [5].

Starting from some properties of superadditive sequences (see [6]) at the 31th interna-
tional Symposium on Functional Equations (August 22-28, 1993, Debrecen, Hungary) we
have proposed the following problem: find some positive functions p of Cla,b], different
from the identity function, with the property that the inequality:

INe [M - @] dt >0, v € [0,) 1)
0

x

hold for every f € S(b).
Of course, for f € St(b) the inequality (1) is valid for all positive p. On the other side,
for the identity function, p(z) = x, (1) is valid for all f € S(b). Indeed we have:

Lemma 1.1. For every f € S(b) holds the inequality:

/ " rmar < 29 v e 0.4 @)
0 2
Proof. We have:

)+ flz—1) < f(z), vt € [0,2].

Integrating on [0, x| we get (2). O

Remark 1.1. We can write (2) as:

L f(x) + 7(0)
5[ < HEE 3)

which is one of Hermite-Hadamard’s inequalities, as we see at once.

2 Hermite-Hadamard’s inequalities

Let us denote by A(f;a,b) and A(a,b) the integral arithmetic mean of f on [a, b] respec-

tively the arithmetic mean of a and b given by:

b
Alfia,b) = / f(x)da

and
Ala,b) = “‘2”).




The inequalities of Hermite-Hadamard, valid for every function f from Kla,b] are:

f(A(a,b)) < A(f;a,b) < A(f(a), f(b)). (4)

In (3) we see that the second inequality of (4) holds for all f in S(b). In fact it is valid for

all superadditive functions, even of a weak kind.

Definition 2.1. The function f is called weakly superadditive on [a,b] if it verifies:

fla+t)+ f(b—1) < fla) + f(b), ¥t €[0,(b—a)/2]. (5)
Let us denote by wSJa,b] the set of all these functions.
Theorem 2.1. The inequality
A(f;a,b) < A(f(a), f(b)) (6)
is valid for every f of wS|a,b].
Proof. Integrating (5) on 0,b — a], where it is valid in fact, we get (6). O
Similarly we can extend the set of functions for which the first inequality of (4) is valid.

Definition 2.2. The function f is weakly Jensen convez on [a,b] if:

f(a—i—t);‘f(b—t)zf(a—;b),v]fe[O’b;a] -

We denote by wJ[a,b] the set of all such functions.
Theorem 2.2. If f € wJ[a,b] then:

A(f;a,b) > f(A(a,b)). (8)
Proof. In fact (7) is valid for ¢ € [0,b — a] and integrating on this interval, we get (8). O

We can characterize the functions from wS|a, b] and those from w.J[a, b]. For this we

begin with the following;:

Lemma 2.1. For every function f € Cla,b] we can determine two functions fi, fa :
[0,(b—a)/2] — R such that:

filx —a) ,for x¢€ a,a;b
f(x) = 9)
f1<b;a>+f2(b_7a>—f1(b—fﬁ) , for $€<a—2i_b,b



Proof. Of course:
Al) = fla+t) for te[0,(b—a)/2]
and
fot) = f((b—a)/2) +c— f(b—1t) for t€[0,(b—a)/2]
where ¢ is an arbitrary real number. O

Using it we can obtain the desired characterizations, which permit also the construction

of such functions.

Theorem 2.3. The function f belongs to:

wS|a,b] if and only if
J1(t) = f1(0) < fa(t) — f2(0);
wdla,b] if and only if

i) = fi((b—a)/2) > fo(t) — f2((b— a)/2).
Remark 2.1. If we take in (9) f1 = fa arbitrary, we get a function f with the property:

fla+t)+f(b—1t) = fla) + f(b) = 2f((a +1)/2), VL € [0, (b —a)/2]

thus it is contained in wS[a,b] NwJ[a,b], as are also all the convex functions.

3 Symmetric linear functionals

The inequalities (4) were generalized in [3] replacing the integral arithmetic mean A(f;a, b)
by an arbitrary isotonic linear functional but also with the modification of the first and of
the last terms. In what follows we want to do the same change of A(f;a,b) but with the
preservation of the inequalities (4). And this will be done, as in the previous paragraph,
not only for convex functions.
Let L(-,a,b) : Cla,b] — R be an isotonic linear functional, that is, for ¢,s € R,
f.g € Cla,b]:
L(f;a,b) >0 if f>0

L(tf + sg;a,b) = tL(f;a,b) + sL(g; a,b).

Analysing the proofs of Theorem 1 (or Lemma 2) and Theorem 2 we see that for our
intention we can use a special type of functionals. If f € Cla,b] we denote by f_ the

function defined by:
f-(z)=fla+b—2z) for z€]a,bl.



Definition 3.1. The functional L(-,a,b) is symmetric if:
L(f-;a,b) = L(f;a,b), Vf € Cla,b].

Theorem 3.1. If L(-,a,b) is a symmetric isotonic linear functional, with L(1;a,b) = 1,

then:
L(f;a,b) < A(f(a), f(), Vf € wS[a,b]

and
L(f;a,b) > f(A(a,)), VewJ[a,b].

Proof. Indeed (5) is equivalent with:

f@)+ f-(x) < fla)+ f(b) for x€la,b]

and (9) with:
f(@) + f-(x) 2 2f(A(a, b)) for € [a,b]

and we have only to apply the functional L(-,a,b). O

Remark 3.1. If g € Cla,b] is symmetric with respect to A(a,b), the functional defined
by:
b b
Lifiab) = [ @@y | [ gle)ds
a a

satisfies all the hypothesis of Theorem 4. So we get a generalization of Hermite-Hadamard’s
inequalities which include the result of L.Fejér from [2] (established also only for convex

functions).
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ON AN INEQUALITY OF SEITZ

Gh.Toader

1 Introduction

In [2] we find the following inequality proved by G.Seitz in 1937 which contains both
Cauchy’s and Chebyshev’s inequalities: let * = (z1,...,20),y = (Y1,---,Yn),2 =

(21,...,2n) and u = (u1,...,uy) be given sequences of real numbers and let a;;(i,j =
1,...,n) be given real numbers. If for every pair of numbers 4, j(i < j) and for every pair
r,s(r < s)
x T |z z Ari  Qpj
i Jlo|er s >0 and T4 rj > 07 (1)
Yi Y Uy Us Qs;  Qsj
then:
n n
D GiTizy ). GijYiZ)
i,5=1 i,j=1
n > =5 (2)
D Gy ) GijYiu;
ij=1 ij=1

In what follows we want to generalize this inequality for positive linear functionals as it

was done in [1] in the case of Griiss’inequality and in [4] in that of Chebyshev’s.

2 Functionals

Let E be an arbitrary set and F(E) be the set of real-valued functions defined on E.
Instead of linearity and positivity of functional we consider the apparently weaker

conditions of sublinearity and isotony, that is the set of functionals:

M (E)={A: F(E) — RIA(tf + sg) < tA(f)+ sA(g), Vt,s € R, Vf,g € F(E)
A(f) =0, VfeF(E),f >0}

Usually one takes:
n

A(f)=) f(@:), m€B, i=1,...,n (3)

1=1



or

We shall use an order relation on M, (E):

Definition 2.1. The functional A € My (E) is called to be greater than B € M, (E) and
write A > B if A(f) > B(f) for every positive function f € F(E).

It is easy to check the validity of the following:
Lemma 2.1. If A> B and f > g > 0 then A(f) > B(g).

Finally we consider a kind of product of two functionals. If A € M, (E;) and B €
M (E5) we denote by AB the functional defined as follows: for p € F(E; x E2) we have
B(p) = q € F(E;) where q(z) = B(p(z,.)) and then AB(p) = A(g). We get so a functional
from My (E; X E3).

3 Inequalities

Taking into account the condition (1) we consider the following:

Definition 3.1. We say that the functions p, f1, fo, 91,92 are synchrone on FE1 X Es if
p € F(Ey X E3), f1, f2 € F(E1), 91,92 € F(E2) and:

i) fily)
fo(z)  fa(y)

|o1(s) an(?)

>0 5
g2(5) g2(t)] )

for every x,y € E1 and s,t € Fs.

Theorem 3.1. If the functions p, f1, f2, g1, g2 are synchrone on E1 X Es and
A,B S M+(E1), C, D e M+(E2) then:

T(A’Bach)(pvflaf2591792)20 (6)
where:

T(A,B,C,D)(p, f1, f2, 01, 92) = AC(pf191) BD(pfag2) + AC(pf292) BD(p, f1,91)
— AC(pf192)BD(pf291) — AC(pf2g1) BD(p f192)
+ AD(p, f191)BC(pf2g2) + AD(pf292) BC(pfi91)

— AD(pf192)BC(pfag1) — AD(pf291)BC(pf1g2)-



Proof. >From (5) we have:

p(x, s) fr(@)g1(s)p(y 1) f2(y)g2(t) + p(, ) f2(x) g2
—p(x,t) f1(z)g2(D)p(y, 8) f2(y)g1(s) — p(, s) fa(z)g1(3)p(y, t) fi( )
+ p(@, t) f1(2)g1(O)p(y, 5) f2(y)g2(5) — p(x, 5) fa(@)g2(s)p(y t) f1(y) g1 (F)

—p(z,8) f1(2)g2(5)p(y, 1) f2(4) 91 (t) — p(, 1) f2(2) g1 (t)P(Y, 8) f1(y) g2(s) =

Applying successively the functionals C, D, A, B to functions of variable s, t, x respectively
y we get (6). O

Y)g1(s)

(#)g2(t)p(y; ) f1(y) g1 (
( ) f2(2) 91 ( )f1(y)g2(t)
( () g2(

S

Consequence 3.1. If the functions p, f1, f2, 91, g2 are synchrone on E1 X Es and
Ae M (Ey),C € My(E) then:

S(A, C)(ps f1; f2,91,92) 2 0 (8)

where:

S(A,C)(p, f1, f2,91,92) = AC(pf191)AC(pfage) — AC(pf192)AC (pf2g1)

Remark 3.1. It follows from (6) because:

S(A,C)(p, f1, f2,91,92) = T(A, A, C, C)(p, f1, f2, 91, g2) /4.

This result is still a large generalization of the inequality (2). Even if we take A and C of
the form (3) they can be different.

Consequence 3.2. If the functions p, f1, f2, g1, 92 are synchrone on Ey X Eo and
A€ My(E) then:

AA(pf191)AA(pfage) > AA(pfrg2)AA(pfagr).

Remark 3.2. This is a direct generalization of (2). If we take now:
Q(x)a Zf y==x
p(z,y) =
0, if y # x,
the above results can be transposed to functions of a single variable.

Definition 3.2. The functions q, f1, f2,91,92 € F(FE) are synchrone on E if:

filz)  fi(y)
fa(z)  fo(y)

9r(@) 91(y)

>0, Vx,y € F.
g2(x) g2(y

q(z)q(y)




Consequence 3.3. If the functions q, f1, f2,91,92 are synchrone on E and A € M, (F)
then:

A(g, f191)A(af292) = Alafig2) A(afag1)-
Consequence 3.4. If the functions f,g are increasing and q is positive on E then:
A(af9)Alq) = Alaf)A(gq)
for Ae M, (FE).
Consequence 3.5. If the function q is positive and A € M (E) then:
Alaf?)Alag®) = (Alafg))*.

Remark 3.3. For A given by (4) the Consequence 3.3 gives an inequality of Fujiwara
(see [2]). Their particular cases given by the consequences 4 and 5 represent Chebyshev’s

respectively Cauchy’s inequalities (see also [2]).

4 The operators 17" and S

We prove now some properties of monotony of the operators T and S generalizing known

results.

Theorem 4.1. If the functions p, f1, fa, g1, g2 are synchrone on Ey X Fs and the functionals
A,B,A'",B' € M,(E,),C,D,C",D" € M, (E3) are such that:

A>A, B>B Cc>C,D>D,

then:
T(A>B7C> D)(pa f1>f2>glvg2) > T(AlaBlvc,>Dl)(pa flvavglng)'

Proof. We start by using the relation C' > C" for the function of variable s given by (7).
Then we use the lemma for the pairs D > D', A > A’ respectively B > B' for successively

resulting functions of variable ¢,z and . O

Consequence 4.1. If the functions p, f1, f2, g1, g2 are synchrone on E1 x Ey and A, A’ €
M, (E,),C,C" € My (Es) are such that:

A> A, C>C,

then
S(A7 C)<p7 fluf??glagQ) Z S(AI7C,)(p7 f17f2791792)-



ExXAMPLE 1 If we denote:

n

An(f) = flai), wi€ By, i=1,....n

i=1
and .
Cin(g) = Zg(yi), yi € ko, 3=1,...,m,
j=1
we have
Ay > A1 for k=2,...,n
and
Chn>Chq for h=2,....m
thus:

S(Ak7 Ch)(pu f17 f2791592) > S(Au C])(p) f17 f27glvg2)

for every set of synchrone functions p, fi, f2, 91,92 on F1 X Fo and indices: 1 <i< k< n

and 1 < j < h < m. For example, taking equal indices we get:

S(Ana Cn)(p’ f17 f2791792) (An—la Cn—l)(p) f17 f2a91792) > ...

> S
> S(A2,Co)(p, f1, f2,91,92) 2 0
which gives a refinement of (2). Such results are known relative to the inequality of Cheby-
shev (see [3]).

In what follows we consider the special case F; = F2 = E and we denote S(A, A) by
S(A). Thus:

S(A)(p, f1, f2, 91, 92) = AA(pf191)AA(pfage) — AA(pfrg2) AA(pfagr)-

Theorem 4.2. If the functions p, f1, f2, g1, g2 are synchrone on ExX E and A, B € M, (F)
then:

S(A+B)(pa f1>f27917g2) > S(A)(p, f17f2a91792) + S(B)(p, f17f2791792)' (9)

Proof. This follows by (6) because, if we omit the argument (p, f1, f2,91,92), i.e. if we
write S(A) fOI' S(A)<p7 f17f2791792) and T(A7B7C7 D) fOI' T(A7BJC7 D)<p7 f17f2791792)7



we have:

S(A+B) — S(A) — s(B) = ~(T(A, A, A, B) + T(A, A, B, A) + T(A, B, A, A)

_1

4

+T(B,A,A,A)+T(A,A,B,B)+T(A, B, A,B)
+T(A,B,B,A)+T(B,A,A,B)+T(B,A,B,A)
+T(B,B,A,A)+T(A,B,B,B)+T(B, A, B,B)
+T(B,B,A,B)+T(B,B,B,A)) =

i(ZT(A, A, A, B) +2T(B, A, A, A) + T(A, A, B, B)
1+ AT(A, B, A, B) + T(B, B, A, A) + 2T(A, B, B, B)
+2T(B, B, B, A)) > 0.

EXAMPLE 2 For a finite index set I and fixed points x; € E, i € I, we denote:

Ar(f) =" f(=).

il

From (9) we deduce that if the index sets I and J are disjoint then:

S(AAUJ)(pa flvf?vglag2) > S(A[)(p7 flvf?vglng) + S(AJ)(p7 f17f2791792)

for the functions p, fi, f2, g1, g2 which are synchrone on F x E. Such properties are also
known for other inequalities (see [3]).
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REFINEMENTS OF JENSSEN’S INEQUALITY

Gh.Toader, S.S.Dragomir

1 Jessen’s inequality

Let f be a real convex function defined on [a, b]. The classical Hermite-Hadamard’s

inequality (see [9]) asserts that:

This inequality was generalized (see [1], [7], and [10]) for an arbitrary isotonic linear

functional, i.e., a functional A : C|a,b] — R with the properties:
(i) A(tf +sg) =tA(f) +sA(g) for t,s € R, f,g € Cla,b];
(i) A(f) > 0if f(z) >0 for all z € [a, b].

The result from [7] is: if f is convex and A is an isotonic linear functional with
A(1) =1, then

f(A(e)) < A(f(e)) < (b= A(e)) f(a) + (Ale) — a) f()]/(b— a) (2)

where e(x) = x for x € [a, b].
Note that taking in (2)

A =5 [ 1@ @

we get (1), so the inequality (2) generalizes, for isotonic linear functionals, the well
known Jessen’s inequality.
In turn, the inequality (2) was generalized in [1] where the function e was replaced

by an arbitrary one.



2 Some refinements

The following lemma is proved in [10]:

Lemma 2.1. Let X be a real linear space and C C X be a convex subset. If
f: C — R is convex then for all v,y € C' the mapping g, ,(t) :== f(tx + (1 —t)y)

is convex on [0, 1].

Using this result, the authors proved a generalization of (2) for functions defined
on an arbitrary linear space.
Another result of this type was established in [6].

Analogously we can prove the following lemma:

Lemma 2.2. If f : [a,b] — R is convex, then for every t € [0,1] and every
y € [a,b], the function g, : [a,b] — R given by g.,(z) == f(tx + (1 — t)y) is

COMVET.

Further on we will use the following convention:

if the functional A acts on the function

g(x) = f(xy, . Ty ),

where all the variables except for x; are fixed, then we denote

A(g) = Axi(f(x1, .o @iy ).

Applying the inequality (2) to the convex function g, from Lemma 2, we get:

Theorem 2.1. Let [ : [a,b] — R be a continuous convex function and A be an
isotonic linear functional with A(1) = 1. Then for every t € [0,1] and for every

y € la, b] the inequalities

f(tA(e) + (1 = t)y) < Auo(f(tz + (1 = t)y)) < (4)
<

[(b— A(e)) f(ta + (1 = t)y) + (Ale) — a) f(tb+ (1 = )y)]/ (b — a)

hold.

We can obtain another variant of (4) generalizing the method used in [3] (see
also [5]).



Lemma 2.3. Assume that the function [ : [a,b] — R is continuous convex and

the functional A is linear and isotonic. Then the function H, : [0,1] — R defined
by
Hy(t) := Ao f(tz + (1 = 1)y)l, v € [a, 0]

is convex on [0, 1].

Proof. Let x,y € |a,b] and ¢, su,v € [0,1] and u + v = 1, then we have

f((ut +vs)z 4+ (1 —ut —wvs)y) = f(ulte + (1 —t)y) +
+o(sz 4+ (1= s)y)) < uf(te + (1 =1)y) +of(sz + (1= s)y),

because f is convex. Because the functional A is linear and isotonic it is increasing

and so
H,(ut +vs) <uH,y(t) +vHy(s).

Now we prove

Theorem 2.2. If the function f : [a,b] — R is continuous convex and the func-
tional A is linear, isotonic with A(1) = 1, then the function Hy : [0,1] — R defined
by

Ho(t) := Az (f(tz + (1 — 1) Ale))

has the following properties:
(i) Ho is convex on [0, 1];

(i) it has the bounds
sup Ho(1) = A(f(e))

t€(0,1]
and
inf Ho(t) = Ho(0) = f(A(e));
te(0,1]
(i1i) Hy is nondecreasing on [0, 1].
Proof. (i) It follows from Lemma 3 by taking y = A(e).

In order to get (ii) let us notice that
fltr+ (1 =1)A(e)) < tf(z)+ (1 —1)f(Ale)), t€][0,1]

3



and so

Ho(t) < tA(f) + (1 —1)f(A(e)) < A(f) = Ho(1)

Because from (2) we have f(A(e)) < A(f). On the other hand the function A :
[a,b] — R, given by h(x) := f(tx+ (1 —t)A(e)), is convex for every fixed ¢ € [0, 1]
and so, again by (2)

Ho(t) = A(h) = h(A(e)) = f(Ale)) = Ho(0)

what gives (ii).
(iii) Let 0 < t; <ty < 1. Then by the convexity argument for Hy and by (ii) one

has:
[Ho(tz) — Ho(t1)]/(t2 — t1) > [Ho(t1) — Ho(0)]/t1 > 0

what shows that Hy is increasing on (0, 1) and by (ii) also in [0, 1]. O

Remark 2.1. Obviously the above theorem gives a generalization of the result from
[3] (see also [5]). On the other hand the statement (ii) can be written as:

f(A(e)) < Au[f(tx + (1 —t)Ale))] < A(f) ()
which represent a refinement of Jessen’s inequality.

APPLICATION.If the function f : [a,b] — R is convex, x1,...,z, € [a,b] and

p1,- -, Pp are strictly positive weights, then denoting

mi= Zpkxk/ Zpk,
k=1 k=1
we have the inequality
> pef(an) = > pef (@ +m)/2).
k=1 k=1

Indeed, it follows from (5) for A(f) :=> 7 pef(zk)/ D p_y pr and t = 1/2.

Remark 2.2. Notice that, this inequality follows also from an inequality of Fuchs
(see also [8]), so we get another proof of it.



3 Iteration of Jessen’s inequality

We will start with the following lemma:

Lemma 3.1. If the function f : [a,b] — R is continuous convezx and the functional

A is linear and isotonic, then the function Gy : [a,b] — R given by
Gulw) i= Ayl + (1= t)y)
is convex for all t € [0, 1].
The proof is similar to that one of Lemma 2.3 and we will omit the details.

Theorem 3.1. Let [ : [a,b] — R be a continuous conver functions and A, B are

two isotonic linear functionals with A(1) = 1 and B(1) = 1. Then one has the
imequalities

f(tA(e) + (1 = t)B(e)) < By(f(tA(e) + (1 —t)y))

< By(Au(f(tr + (1 = t)y)) < tA(f) + (1 = 1) B(f)

< [(b—=B(e))f(a) + (Ble) = a)f(0)]/(b - a)

+t(B(e) — Ale))(f(a) = £(b))/(b—a

Proof. Applying the inequality (2) to the convex functions given by the previous

IN

(6)

+ A

~—~—

lemmas we have:
A (f(te + (1 =t)y)) > f(tA(e) + (1 —t)y)
and then
By (A (f(tz + (1 = 1)y))) = By (f(tA(e) + (1 = t)y)) = f(tA(e) + (1 —t)B(e)).

Thus, we get the first and the second inequality in (6).

Further on, from
flte+ 1 =t)y) < tf(z) + (1 —1)f(y)
we deduce succesively that
A (f(tz + (1 = t)y)) < tA(f) + (1 =) f(y)

and
By(A(f(tx + (1 - t)y))) < tA(f) + (1 =) B(f)
getting so the second inequality from (2). O

5



Corollary 3.1. If f : [a,b] — R is a continuous convex function and A an isotonic
linear functional with A(1) =1, then

f(A(e)) < Ay (f(tA(e) + (1 = t)y)) < Ay(A(f(tz + (1 = 1)y)) <
< A(f) <[(b—Ale) f(a) + (Ale) —a) f(D)]/(b — a)

for all t € ]0,1].

Remark 3.1. These inequalities also give a refinement of Jenssen’s inequality. they

generalize some results from [1-5], given for the mapping from (3).
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1. Let g € C[0,00) be such that ¢g(0) = 0, ¢’(0+) exists and g > 0 on
(0, 00). Denote

Ay ={feC0,00): f(0)=0, f' >0}

and
Ay ={f €C?0,00): f(0)=0, f'>0, f">0}

A.M. Fink has considered in [1] the inequalities

1 I
5 [ s < Kt [ s (1

1



where K;(g) denotes the best possible constant for which (1) holds for
all f € A;, 7 =1or j=2. He proved that

Ki(g) =sup{i sup M} @)

g(u) O<v<u U

u>0
and
B 2u G(v)
Folg) = sup { 7 s Z @

where G(v) = / g(s)ds. If K;(g) = oo, there is no inequality (1).
0
This paper contains some extensions of these results and some appli-
cations to other inequalities.

2. Consider the inequalities

1 / ¢ 1 !
——— | hi(f(s dsSK-—/h f(s))ds 4
g]_<f(t)) 0 1( ( )) ]g2f<t) 0 2( ( )) ( )
where K; denotes the best possible constant for which (4) holds for all

[ €A
We proceed as in [1]. Let u = f(¢) and change the variables in the
integrals by v = f(s). One gets

“ hl(v) B hg(v) 1 ’
/0 lgl(u) K192<u) f/(f_1<v))d <0.

If fisin Aj, then (f!)" belongs to B;, where

By ={h € (C]0,00), h >0}
and
By ={h € C'0,00), h >0, b <0}.
The following lemmas were also proved in [1].

2



Lemma 1. Let p be a continuous function on [a,b]. Then
b
/ p(v)h(v)dv <0, ¥V h € By

if and only if

p(v) <0, Vv € la,b.

Lemma 2. Let p be continuous. Then
b
/ p(v)h(v)dv <0, V h € By

if and only if

p(v) = / p(s)ds <0, V v € [a,b].

Using them we can deduce the values of K in (4).
Theorem 1. Let g1, g2, h1, he € C[0,00) be positive on (0,00). Then

K = sup {gz(U) s hl(v)}

91(u) o<vzu ha(v)

u>0
and
g2(u) Hy(v) }
Ks =su su
2 u>Ig {91 (U) 0<vI§)u H2 (U)
where

If K; = o0, the inequality (4) does not exist.
Remark 1. Multivariate versions of the above results can also be

obtained, but we omit the details.



Remark 2. Consider the reverse inequality in (1):

1
g(f(#))

Apply Theorem 1 with g;(t) = hi(t) = t, g2(t) = ha(t) = g(t). We
deduce that

1 t ¢ -
5 | 10 < s [ atronas =12

~—

ki(g) = sup {& sup L}

u>0 U o<v<u g(U)

and

k2(g) = sup {% s Gv(; } :

In particular, let g(t) = ¢* If 0 < a < 1, then k1(g) = 1 and k2(g) =
1+a

. It is known from [1] that for a > 1,

2

Ki(g9) =1 and Ks(g) = T a

More generally, we have the following

Corollary 1. If a > b, then for every f € A; (j =1,2) holds

1 Lo 1 t
o J, 170 < K [ o
where K; =1 and Ky = b+—1
a+1

3. We also obtain an interesting consequence of the Theorem 1 if we
choose g; = H; for j =1, 2.

Corollary 2. Let hy, hy € C[0,00) be positive on (0,00). Then for all
f € A; holds

[ atrtsps

Ammw%<&_m___
/0 ho(s)ds

[ -
/ hy(s)ds
0



where the best possible constants K; are

Hg (U) hl (U) }
K{ =su su
1 {Hl (1) oo Do (0)
respectively
Hy(u) Hi(v) }
Ky =su su
2 u>13 {Hl(u> 0<vI§)u Hy(v)
where

H
We remark that if Fl is increasing, then K, = 1. This happens, for
2

: eh .
instance, if . is increasing. Indeed, we have
2

{Hl(v)]/_ ha(v) {hl(v) Hi(v)

Hy(v)] ~ Ha(o) |halo) HQM =0

4. We can apply the same method to produce analogous inequalities
on an arbitrary interval [a,b]. We use only the sufficiency part of the
lemmas, so that the constants are not necessarily optimal.

Let h; : [¢,d] — R for ¢ = 1,2, be continuous functions. Denote
Ai(a,b) ={f : [a,b] — [¢,d]; f' >0}

and
As(a,0) = {f :[a,b] = [e,d]; f'>0, f">0}.

We have
Theorem 2. If hy > 0, then for all f € A;(a,b), j =1,2, holds

/ab hi(f(s))ds < M; /ab ha(f(s))ds

5



where

hi(v)
M, = su
P 2 ha(v)
and
H
My = sup 1(U>

e<v<d H2(U).

Proof. As in the proof of Theorem 1, making the change of variable

v = f(s), we have

D /hl dS_M/h2

- /f ) = M)l o
So Dy < 0 if hy(v) < Mjhy(v) for all v, which gives the value of M;.
As in the proof of Lemma 2, for f € As(a,b), the mean value theorem

gives an u € (a,b) such that

1 flu)
D2 - hl v)— Mghg v)|dv
/f 7 (v) (0)]

7@ Jro
7 f:[m( ) = Mha(w)ld

~ [ty 73] [ o= it
Fp o ) = Mt

Thus, Dy < 0 if
f(w) f(w)
/ hy(v)dv < Mg/ ho(v)dv
f

(a) f(a)

which justifies the given value of M,. Following the lines of the above

proof, we deduce also the next



H
Corollary 3. If Fl is increasing, then for every f € As(a,b) holds
2

[ matrenas [ natsionas

f(0) f(0) '
/ hi(s)ds / ho(s)ds
f(a) f(a)

h .
Remark 3. As we have seen in the paragraph 3, if s increasing,

so is also Fl Thus Corollary 3 improves an inequality from [3], where it
2
is given also a history of this result which started as a problem proposed

in [2] for a special case.
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Abstract

We generalize some inequalities of Seiffert, Pearce, Pecari¢ and Dragomir.
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1 Introduction

For 0 < a < b, let us denote by

Gla.b) = (@b} Ala,b)= "7
and oub
a
Hia.b) =
(a,0) a+b’

the geometric mean, the arithmetic mean respectively the harmonic

mean of a and b.
In [5] H.J. Seiffert proved the following result.

Theorem A. Let f : |a,b] — R be a Riemann—integrable pos-
itive function and g : [G(a,b), A(a,b)] — R a strictly positive

73
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increasing function. Then the inequality

holds, where h(t) = G(t,a+b—1).

This result was generalized in [3] where, in the definition of h,
the geometric mean was replaced by other concrete means (power
means, extended logarithmic means or integral power means). We
go further with this generalization considering some abstract means
and also replacing the integral by a functional. So the results re-
member those from [6].

We deal also with some results of other type. In [1] some in-
equalities related to Hermite-Hadamard’s inequality are proved.

Theorem B. Let f be a differentiable convex function on [a, b|.

i) If f'(G(a,b)) > 0, then

b
[ @ > §(Gla,b)

i) If f'(H(a,b)) > 0 then

b
L[ fa)de > f(H(a,b)) .

b_a/a

In what follows we generalize also these results in more di-
rections.
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2 A property of some means

Let p : [a,b] — R be a positive Riemann—integrable function.
As it is known, the expression

_aa/p

represents the integral arithmetic mean of p on [a, b]. If p is strictly
increasing, then

My(a,b) = p~(my(a, b))

defines a mean of a and b. For example, taking p(t) = t" we get
the extended logarithmic mean.
We want to study the functions:

hy(z) = my(z,a+b— )

and
H,(z) = My(x,a+b—1z).

They are symmetric, so that we study them only on |a, A(a, b)).

Theorem 1 . Ifp is a convex function on |a,b| then

p(A(a, b)) < hp(@ < mp(a, b) , a<z<b.
Proof. We have
hy(r) =
2 1 ath—z pla+b—x)+ p(x)
— t)dt —
a+b—2x |la+b—2x ! p(t) 2

It follows from Hermite-Hadamard’s inequality (see [6]) that h' is
negative on |a, A(a,b)] for p convex. Thus h, is decreasing on
la, A(a, b)] which gives the desired inequalities.
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Corollary 1 . If p is a strictly increasing convexr function
then
Afa,b) < Hy(x) < My(a,b) , forallz .
Let us also considere some means defined otherwise. Let ¢ be

a positive function on [a, b]. The expression

b
no(a,b) = q(a) ; q(b)
represents the discrete arithmetic mean of g on [a,b]. If a is strictly

increasing, then

NQ(a7 b) = q_l(n(J(av b))
defines a quasi—arithmetic mean of the numbers a and 6. We study
also the functions

ko(x) =ny(z,a+b—x)
and

K z)=Nyx,a+b—1z).
Theorem 2 . If q is a convex function on |a,b], then
q(A(a,b)) < ky(x) <nyla,b) , a<z<b.

Proof. For the first inequality we have
r+a+b—x
oAa,b) =g (")
q(z)+qgla+b— 1)

2
The second inequality follows from

<

=ng(r,a+b—1x).

b—x T —a
b
—d@) o —a(b)

q(z) <
and
T —a b—=x

gla+b—1x) < —




Gheorghe Toader , Ioan Rasa 7

Corollary 2 If q is a strictly increasing convex function, then

Afa,b) < K, (x) < Ny(a,b) , a<z<b.

3 The result of Seiffert

We generalize the result of Theorem A for an increasing func-
tional, i.e. a functional L : Cla,b] — R with the property

L(f) < Lig) it f(z)<glz) , a<z<b

Common examples of such functionals are the isotonic linear func-
tionals (see the next paragraph) but here we have other examples.
The monotony of L implies that if

m< fle) <M , for a<x<b

then
L(m) < L(f) < L(M) .

So we have the following properties.

Corollary 3 If L is an increasing functional on Cla,b] and p
a convex function on |a,b|, then

L(p(A(a,b))) < L(hy) < L(my(a, b)) .

Corollary 4 If L is an increasing functional on Cla,b] and q
a convex function on |a,b|, then

L(q(A(a,0))) < L(ky) < L(ny(a, b)) .
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Corollary 5 If L is an increasing functional on C|a,b] and p
a strictly increasing convez function on |a,b], then

L(A(a,b)) < L(H,) < L(M,(a,b)) .

Corollary 6 If L is an increasing functional on Cla,b] and q
is a strictly increasing convex function on |a,b], then

L(A(a,b)) < L(K,) < L(N,(a,})) .

Example. Let f be a Riemann integrable positive function on
la, b] and g be a strictly increasing continuous function on [c, d]. If
for continuous functions h : |a, b] — [c, d] we define

[ F@glh(e)de
[ f(t)dt

we get an increasing functional L,. So Corollary 3 gives the fol-

Ly(h)

lowing result. If p is a convex function on [a, b], then

(1) 9(p(Ala,0))) < Ly(hy) < g(my(a, b)) .
If moreover p is supposed to be strictly increasing, replacing g by
g(p™h), we get the inequality

9(Ala,b)) < Ly(Hy) < g(My(a,)) .

For p(x) = 2" with r > 1 we get the Theorem 2 from [3]. If we take
in (1) p(x) = w"(z) and replace g(x) by g(x%), we have Theorem
3 from [3]. Analogously, from Corollary 4, we deduce that if ¢ is a
convex function on [a, b], then

9(q(A(a,b))) < Ly(ky) < g(ng(a,b)) .
If ¢ is also strictly increasing, replacing g by g(q~!), we have

9(Ala, b)) < Ly(K,) < g(Ny(a,b))
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which for ¢(z) = 2", r > 1, gives an improvement of Theorem 1
from [3] because we have renonced at the assumption of differen-
tialbility of g.

Remark 1 If the convexity and/or the increasing monotony
18 repleaced by concavity respectively by decreasing monotony,
we get the same or the reversed inequalities.

4 The result of Dragomir

First of all let us generalize the result from [1] for an isotonic
linear functional L. That is, let L be a functional defined on C'la, 0]
with the properties

Llaf+89) = aL(f)+6L(g), Vo, € R, 6 € R,Vf,g € Cla, b

and

L(f)>0 , YfeClab, f>0.

We make also the unessential assumption L(1) = 1, where the
first 1 is the constant function with the values 1. We have the
following improvement of of Jessens inequality (see [2]).

Theorem 3 [l L is an isotonic linear functional on C|a,b] and
f 1s a diferentiable convex function on |a,b|, then

L(f) Z sup{f(t) : [L(e) — t]f'(t)} = f(L(e))
where e(x) = x, for x in |a,b].

Proof. We use the same basic inequality as in [1]. The function
f being differentiable convex, then

f@) = f(t)+ (@ =0)f(t) , Vz,t€lab
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Of course L is increasing and if we apply it for the functions of
variable = we get

L(f) = f(t) + [L(e) = t]f'(t)
which gives the desired result.
Corollary 7 If L and f satisfy the above conditions and t <
L(e), f'(t) 2 0 then L(f) = f(t).
We remark that for

1 b
L(f)=A(f) = b_a/f(x)dx
we have L(e) = A(a,b). So if we denote by P, the power mean
defined by

1
-

fzzfxmm:(“;”)

for r # 0 and Py = G, it is known that for r < 1, P. < A. Thus
f'(P(a,b)) >0 = A(f) > f(Pi(a,b)).

For r = 0 and r = —1 we get Theorem B.

For this last case of A(f), we give also another generalization
of this theorem. It is based on the following result from [4].
Theorem C. Let f be a differentiable convex function on |a, b]

and
c=inf{z € [a,b] : f'(x) >0} .
Then
b
AP = 5= [ fa)de = max{ f(z) 2 € I}
where

a+b (b—c)? a+b (c—a)
2 2b—a)’ 2 +2@—@

We deduce the following consequence.

Iy =
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Theorem 4 Let f be a differentiable convez function on [a, b)].

If forr < 1,

f'(b—2(b — a)(A— PB,)) >0
or forr > 1,

flla+2(b—a)(P, — A)) >0
then

A(f) > [(Pa,b))

Proof. The conditions assure that . € Iy and so the result
follows from Theorem C.

Corollary 8 Let f be a differentiable convex function on |a,b].
Then

flo—vb—a(Vb—+a) >0 = A(f) > f(G(a,b)).

and
f (b— b—0 2;3) >0 = A(f) 2 [(H(a.b) .
Remark 2 As
b—vb—a(vVb—a) > Vab
and

the corollary 8 improves Theorem B.
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STUDIA UNIV. ”BABES-BOLYAI”, MATH., 42(1997), 2,103-108.
ON THE INEQUALITY OF HERMITE-HADAMARD
GH.TOADER

Abstract. One considers a notion of convexity with respect of a function h, called
h- convexity. One improves the Hermite-Hadamard inequality for functions with

h-convex inverse, generalizing a result of H.-J.Seiffert.

1 Introduction

We consider a notion of convexity with respect to a function h, called
h-convexity.We improve Hermite-Hadamard’s inequality for functions with
h-convex inverse. For h(x) = 2" we obtain the result from [9] which includes the
results of H.-J.Seiffert from [8] and that of H.Alzer from [1].The proof is like that of
[1] and not like those of [8] and [9].

To formulate them we need more definitions on functionals and means.

2 Functionals

Let £ be a nonempty set and F'(E) be a linear space of real-valued functions defined
on E. A functional T : F(E) — R is linear if:

T(tf+sg)=tT(f)+sT(g), Vt,s €R, f,g € F(E).
It is isotonic if:
T(f) >0, Vf € F(E), f > 0.

We shall suppose also that T'(1) = 1, where the first "1" denotes the constant

function f(x) =1, Vo € E. Here as in what follows, if we use T'(f), we assume that

f e F(E).



Common examples of such functionals are given by:

1(4) = [ fam/ [ dam

and . .
T(f) = Zpk:f(ﬂ?k)/Zpk
k=1 k=1
where m is a positive measure on E and p, >0, z, € E for k=1,...,n.

A.Lupas has generalized in [4] Hermite-Hadamard’s inequality for isotonic linear

functionals but we need it in a more general form given in [2].

Theorem 2.1. If the function f is convex on [c,d] and the functional T is isotonic
and linear on F(E), with T(1) = 1, then for every function
g: E — [e,d] we have T'(g) € [c,d] and:

f(T(g)) <T(f(9)) < l(d=T(9)f(c) +(T(g) = ) f(A)]/(d =¢).  ((1))

For F = [a,b] = [¢,d] and g(x) = x we get the result from [4]. In the special
case when T is the integral arithmetic mean W, defined for a continuous on [a, b]

function f by:

b
W(fiat) = [ fla)ds

the inequality (1) becomes Hermite-Hadamard’s inequality:

fla+)/2) <W(f;a,0) <[f(a) + f(b)]/2 ((2))

3 Means

In what follows we use some quasi-arithmetic means. If A is a positive strictly
monotone function defined on the set of positive numbers and ¢ € [0, 1], we de-

note:

Anel(@,y) = h™H(th(z) + (1 = )h(y)).

If h is the identity function we get the usual weighted arithmetic mean A;, which

for t = 1/2 becomes the arithmetic mean A.



For h(z) = e.(x) = 2", r # 0, we have the power means:
Pz, y) = (ta" + (1 —t)y")/".
For r = 0 one takes h(z) = eo(z) = log z, getting the (weighted) geometric mean:
Pou(w,y) = Gi(w,y) = 2"y "
It is easy to verify (see [3]) that:
Api(z,y) < Agy(z,y), Yo,y >0, 0,t € [0,1] ((3)
if and only if:
i) g is increasing and g(h™!) is convex, or:
ii) g is decreasing and g(h~!) is concave.

As shown by J.G.Mikusinski (see [3],p.31) if g and h are twice differentiable and

g,k are never zero, then the above conditions hold if and only if:
g /g =h/n.
In the special case of the power means we see that they are increasing, that is:
Py(x,t) < Poy(z,y) if r<s,te(0,1), x#uy.

We use also the family of generalized logarithmic means defined for r different from
—1 and 0 by:

Lules) = [ =2/ )y — )]
but
Lo(z,y) = I(z,y) = (1/e)(y¥ /a")"/ =)

is the identical mean, and

L y(2,y) = L(z,y) = (y — z)/(logy — log x)

the logarithmic mean. For y = x all the means have the value z. This family is also
increasing:

Lr(x - y) < Ls(‘rhy) Zf r<s,zr 7A Y. ((4))



4 (Generalized convexity

Using the quasi-arithmetic means we can define a notion of convexity generalizing

the logarithmic convexity.

Definition 4.1. The positive function f € Cla,b| is called h-convex if:

f(Auz,y)) < Ani(f(2), [(y)), Yo,y € [a,b].

In addition to the usual convexity (with h = e;) and the logarithmic convexity
(where h = log = €g), C.Das has considered in his Ph.D.Thesis (see [5]) the case of
harmonic convexity by taking A~ = e_;. The notion of e,-convexity was considered
in [9] under the name of r-convexity.

Of course, the function f is h-convex if and only if i(f) is convex for h increasing
and concave for h decreasing. So (3) holds if and only if h~! is g-convex. Thus, the
above definition is in concordance with that of logarithmic convexity but differs from
a definition accepted in [3, pp.30-31].

>From the above remarks we deduce that every h-convex function is also g-
convex if and only if h~! is g-convex. In the special case of the power means it
follows that if r < s every e,-convex function is also es- convex. This is generalizes

the relation between logarithmic convexity and convexity.

5 A result of Seiffert

In what follows we suppose that 0 < a < b. In [8] H.-J. Seiffert proved that if

f" € Cla,b] is strictly increasing and f~! is log-convex then:

W(f,a,b) < f(I(a,b)). ((5))

We remark that if f~! is log-convex then f is also concave but (5) improves the

corresponding inequality from (2) because by (4):
I=Ly< L;=A.

Also, H. Alzer proved in [1] a related result: if f € Cfa,b] is strictly increasing and
1/f~1 is convex, then:
W(f;a,b) > f(L(a,b)).
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The result of H.-J. Seiffert is related to eg-convexity and that of H. Alzer to e_;-

concavity. In what follows we shall generalize these results.

Theorem 5.1. If the function f : [a,b] — [c,d] and h : [a,b] — R are strictly

1

increasing, f~' is h-convex and the functional T is isotonic and linear on F([a, b)),

with T'(1) = 1, then:

and

Extracting from each inequality 7'(f) we get (6).0

Remark 5.1. If h™! is g-convex, (6) gives:

T(h) — h(a)
h(b) — h(a)

>

and

So if we pass from g-convexity to h-convexity the class of functions for which (6)

is valid is diminished but the evaluations are improved.

Consequence 5.1. If the function f € Cla,b] is strictly increasing and f~1 is
log-convex then:

fla)[L(a,b) —a] + f(b)[b — L(a,b)]
b—a

< W(f;a,b) < f(I(a,b)). ((7))

Proof. We have h = log and

logh—al
ng%m:b%z_z%“:1

so that (6) gives (7).
We remark that (7) offers a companion inequality to Seiffert’s inequality (5). O



Consequence 5.2. If the function f € Cla,b] is strictly increasing and f~' is
e.-convex, with r # 0, then:

fla)[” = Li(a, b)] + f(b)[L7(a, b) — a']
br —a”

< W(f;a,0) < f(L:(a,b)).

Remark 5.2. This result was proved otherwise in [9]. As we have shown there, the
conditions of the consequences are catisfied by twice differentiable functions f if and
only if:

v f"(x)
/(@)

We obtain so a class of functions which can be very interesting because the second

f(x)>0 and 1+ <r, Vz € [a,b]. ((8))

relation of (8) is analogous with that satisfied by complex convex functions (see [7],
pp.255-256).

Also the relation (8) shows that an inequality of J.D.Keckic and I.B.Lackovic
(see [6], pp.367-368) can be deduced from (6).
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ABSTRACT. This paper contains a survey of the properties of a class
of real functions, which is intermediate between the class of convex
functions and the class of starshaped functions. We present some

known as well as new results or new proofs and examples.
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1. INTRODUCTION

Let R be the real axis and let / C R be an interval (closed or not,

bounded or not). A function f: I — R is said to be convezr on I if

Oz + (1= Ny) < Af(z) + (1= A)f(y), (1)

for all z,y € I and all A € [0, 1].
The function f is called starshaped on I if

fAz) < Af(x), (2)
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for all z € I and all A € [0,1]. For A = 0 we get f(0) < 0, which also
implies 0 € I.

The aim of this survey paper is to analyze an intermediate concept,
which connects the property of convexity with that of starshapedness by
means of a parameter « € [0, 1]. This concept was introduced in [9] and it
was inspired by the notion of a-convexity defined for complex functions
in [3]. We shall present here some results obtained in [1], [4], [7], [9] and

[10] as well as some new results or new proofs.

2. a-STAR-CONVEX FUNCTIONS

We begin with the definition and some general properties of a-star-
convex functions.
Definition 1. [9] Given « € [0, 1], the function f : I — R is said to

be a-star-convex on I if
fOx+ (1= XNay) < Af(z)+ (1= Naf(y), (3)

for all z,y € I and all A € [0, 1].

Remark 1. If o = 1, then (3) reduces to (1), i.e. an 1-star-convex
function is convex. If a = 0, then (3) reduces to (2), i.e. a O-star-convex
function is starshaped. As in this last case, in [10] it was shown that it

is natural to put the conditions
0 €I and f(0) <O. (4)

In fact, taking z = y = 0 from (3) we get the second part of (4) but
only for o # 1. Remark that y € I implies ay € I and so for a € (0,1)
we have (0,y] C I. This gives



Lemma 1. If f is a-star-convex on I, 0 € I, then f is starshaped on

Proof. For any = € [ and A € [0, 1] we have
fOa) = fAz+ (1= Na-0) <Af(2) + (1= Naf(0) < Af(z). O

Theorem 1. If f is a-star-convex on I, 0 € I and 0 < 5 < «, then f
18 also [B-star-conver.

Proof. If z,y € I and A € [0, 1], then by using Lemma 1 we deduce

«

fAx+ 1 —=Npy)=f ()\x +(1— /\)a@>
s
<A@+ (= Naf (2y) <47+ (1= 057, O
Remark 2. A.W. Roberts and D.E. Varberg [6] defined the class of
functions f : I — R that satisfi the condition

f(sz+ty) < sf(z)+tf(y)

forall x,y € I and all (s, t) in a given set M. Note that for example Jensen
convexity corresponds to M = {(1/2,1/2)}, superadditivity corresponds
to M = {(1,1)} and a-star-convexity is also of this type, with M given
by the segment joining the points A(1,0) and B(0, «).

Remark 3. The concept of a-star-convexity has the following geo-
metric interpretation. If y € [ is fixed and if we consider the point
M = M(ay,af(y)), then for all € I the graph I'; of the function
f in the interval [z,ay] or [ay,z] lies under the segment M P, where
P = P(xz, f(x)). This means that I'y is starshaped with respect to the
point M (see Figure 1).

In view of Theorem 1, in [4] it was given the following definition.

3



FIGURE 1

Definition 2. Given a starshaped function f : I — R we define the

order of star-convexity of f by
a=a*[f] =sup{p: [ is § — star-convex on [}. (5)

In this case we say that f is star-convex of order «.

Remark 4. The geometric interpretation mentioned in Remark 3 al-
lows us to obtain the order of star-convexity of the function f given by (5)
in the following way. Take a point P € I'; and starting from O = O(0,0)
let consider the point M on the segment OP at a longest distance from

O with the property that the graph I'y is starshaped with respect to M.

4



Then

a:a*[f]:inf{OO—]\;[: Perf}. (6)

Given a € [0,1] a natural problem is to find a function f such that
a*[f] = a. The answer to this problem is given by the following simple
example [4].

Example 1. Let o € (0,1] and let f : R, — R be defined by

-, if 0<ax<1;
r—2, if 1<2<2;
J(z) = C (x-2), if 9<s< it
2—« ) 5
l—f-a[x— —l—a}’ if +a§x,a>1.
L (0]
|
|
" n
|
1 |
|
1 [ |
] | T T -
]
|

FIGURE 2



If & = 0, then we take f(z) =0, for © > 2. The graph I'y is given in
Figure 2.

By using (5) and some elementary geometric considerations we easily
find that o*[f] = a. In Figure 2 we have OF/OA = OF/OC = « and
OK/OL > OF/OC, OG/OH > OFE/OA.

Remark 5. If @ > 1 the only functions with f(0) = 0 which are
a-star-convex are of the form fy(z) = ax and in this case o*[fy] = occ.
Hence the significant range for « in Definition 1 is the interval [0, 1].

Remark 6. As in the case of convex functions, in [1] the following

inequality of Jensen type is given: If f : I — R is an a-star-convex

function with condition (4) then for all p; > 0, with Zpi = 1 and all
=0
riel,1=0,1,...,n, we have

f(poxo+aprzr + - -+ a"pury) < pof(xo) +apif(z1) + -+ a"pof(xy).

3. THE BOUNDEDNESS OF STAR-CONVEX FUNCTIONS

It is known that a convex function is bounded on every compact in-
terval but a starshaped function is not. Let us study the boundedness of
a-star-convex functions.

Lemma 2. If the function f is starshaped on [0,b], then it is bounded
from above by M = max{0, f(b)}.

Proof. For every = € [0,b], there is a ¢ € [0, 1] such that = = tb. So we

have

flx) <tf) <M. O

Analogously we can prove the boundedness from above on [a,0] and

thus to deduce



Theorem 2. If the function f is a-star-convex on I, with o € [0,1],
then it is bounded from above on every closed interval of I.

It is easy to find examples of starshaped functions which are not
bounded from below, but for « strictly positive we have the following
result.

Theorem 3. If the function f : I — R is a-star-convex, with a €
(0, 1], then it is also bounded from below on every closed interval |a,b] C
I.

Proof. We have

f (a zo‘b) . (%(a +at) + %a(b - t))

< ﬂa+aﬂ+%aﬂb—ﬂ.

N —

If t € [0,b—a], we have a + at € [a,a+ a(b—a)] C [a,b], so that if we

denote by M the upper bound of f on [a,b], we get

P(az@)—%ﬂa+mﬂ

(5%) %]

hence m is a lower bound of f on [a,b]. O

fo—1) >

>

Ol 2o

4. THE LIPSCHITZ CONTINUITY OF a-STAR-CONVEX FUNCTIONS

It is easy to observe that a function f : [a,b] — R, with 0 € [a, ] is

starshaped on [a, b] if and only if f can be written in the form

xgy(z), if x € (0,0,
flx) =4 f0), if z=0,
zg_(x), if x € [a,0),



where f(0) < 0, g4+ : (0,0] — R and g_ : [a,0) — R are increasing
functions on (0,b] and [a, 0) respectively. From this representation it im-
mediately follows that f has at most a countable number of discontinuity
of the first kind. Moreover, the point = 0 can be a discontinuity point
of the second kind. We shall show that if « is strictly positive an a-star-
convex function is Lipschitz on certain interval.

Theorem 4. Let « € (0,1] and let a < b with 0 € [a,b]. If the function
[ :a,b] — R, is a-star-convex on [a,b], then f is Lipschitz continuous
on each compact interval K = [ay,as] C (aa, ab), where a; < as.

Proof. Since K C («aa,ab), there exists h > 0 such that K, = [a; —
ah,ay + ah] C (aa,ab), and hence K} = [a;/a — h,as/a + h] C (a,b).
Let my, be the greatest lower bound of f on K} and let M} be the least
upper bound of f on K}. From the definition of the least upper bound
there is a sequence (&,,),>1, With €, \, 0 and a corresponding sequence

(0)n>1, Tn € K}, such that M), —e,, = f(z,). Since az,, € K;, we have

My, —e, = f(z,) = f (éamn> > éf(axn) > émh,

hence aoM;, > my,.

Let denote by J (20+0), T (z0—0), f'(2040), and f'(xo—0) the upper-
right, upper-left, lower-right and lower-left Dini derivatives at xq € K
respectively. If in (3) we let x = g, y = zo/a+h and divide by (1—\)ah,
we deduce

fxo + (1 = Nah) = f(xo)

A (1 —=Xah

< af(xe/a+h) — f(xe+ (1 — AN)ah) < aMy, —my,
- ah - ah



and by letting A ' 1 we obtain

Oth — My

F (o +0) < o

s v Tg € K.
Analogously, if in (3) we let © = 29 and y = zo/a — h we deduce

— alM,

[ —0) > TR g € K
= ah

If in (3) we let © = zg — (1 — N)ah, y = xo/a + Ah and divide by

(1 — X)ah, then we get

f(xo) = f(xo — (1 = N)arh)
(1—=XNah

A

< af(zo/a+ M) — f(xo) < aMy —my,
- ah - ah ’

and by letting A " 1, we deduce

— OéMh — mp

f(xg—0) < " , V€ K.

Analogously, if in (3) we let © = 29 + (1 — N)ah and y = xo/a — Ah,

we obtain

oo+ 0) 2 =5

Therefore we deduce that f satisfies the Lipschitz condition with the
constant (aMy, —my,)/(ah) on K C (aa,ab). O

Corollary 1. [7] If f : [a,b] — R, with a < b, 0 € [a,b], is a-star-
convex, where a € (0, 1], then f is continuous on (aa,ab). In particular,
if f: R — R is a-star-convex then f is continuous on R, and Lipschitz

continuous on each compact interval of R.
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5. OTHER CHARACTERIZATIONS OF a-STAR-CONVEX FUNCTIONS

Suppose now that the function f has a right-hand derivative f'(x + 0)
and a left-hand derivative f’(z — 0) at each point z € I. If we let u =
Az 4 (1 — A)ay, then from (1) we obtain

fu) = f(z) < (L= Nef(y) — f(2)].
If u> =z, ie. ay > x, then we have

fw) = f@) _ af(y) - )

U—x - ay —x

and if we let A ' 1 we deduce

Y

f/(l'—i‘O) < ozf(y)—f(l‘)7

ay —

hence

f(y)ZﬂJrf'(erO) <y—§>, Vy>§.

«

In a similar way we obtain

f(z)

f(y)ZT‘i‘f’(x—O)(y—g), Vy<§.

The above results have the following geometric interpretation [4]: Take
a point P = P(z, f(x)) € 'y and consider the point @) on the ray OP

such that OP/OQ = 1/« (see Figure 1). Then the graph I'; lies above

the reunion of the half lines

GO x x
Y—T+f(x+0)<X—a>, x>

and
flz) | . z x
Y:T—i—f(x—())(X—a), X <=

(see Figure 2).
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From the geometric interpretation mentioned in Remark 3 we deduce
the following characterization of an a-star-convex function [9].

Theorem 5. The function f : I — R, with condition (4) is a-star-
convex on I if and only if for all y € I the function ¢, : I\ {ay} — R

defined by
f(z) —af(y)

T — oy

(7)

is increasing on each interval {z € I : = < ay} and {x € I : = > ay}.

py(z) =

If we suppose that the function f is differentiable on I, then from
Theorem 5 and (7) we deduce that f is a-star-convex on [ if and only if

for each x,y € I the following inequality holds

f(@) (@ —ay) = [f(x) — af(y)] =0
af'(x) — f(z) — alyf'(z) = f(y)] > 0. (8)

Since an a-star-convex function is necessarily starshaped we have
xf'(x) — f(x) > 0. If yf'(z) — f(y) <0 then (8) holds for all positive a.

If we suppose that yf'(z) — f(y) > 0, then from (8) we deduce

~ f(y)
f'(z) — f(x)
= U@ — 1)

() = f
x)—f
From this inequality we obtain in (5) of Definition 2 the following

®(z,y).

formula [4]:

0[] = inf {” @) 2@ )~ f) >0, 2y e f} .

yf'(@) = )
If there exist xg,yo € I such that zof'(xo) = f(zo) and yof'(xo) —
f(yo) > 0, then a*[f] = 0.
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Suppose now that x f'(xz) — f(z) > 0 for all x € I\ {0} (i.e. f is strictly
starshaped on I) and that f is twice differentiable on I. Then the system

0P 0P
i 0, ET 0
is equivalent to
fx) =0, f'(z)=f(y) (10)

Hence in certain cases o*[f] given by (9) can be obtained by solving
the system (10).
Example 2. [4] Let f: RT™ — R be defined by

f(z) = 2* — 52° + 92% — 52.

If we let g(z) = f(x)/x, then ¢'(z) = 32? — 10z + 9 > 0, hence f is
strictly starshaped on R. We also have

f'(z) = 42® — 152% + 182 — 5

and
f"(x) = 6(22* — 5z + 3).

The equation f”(z) = 0 has the roots x; = 1 and z» = 3/2. For
x1 = 1 equation f'(y) = f'(x1) has the root y; = 7/4 and we have
®(z1,11) = 512/539 ~ 0.949... For x5 = 3/2 equation f'(y) = f'(x2)
has the root y» = 3/4 and we have ®(z2,y,) = 16/17 = 0.941 ... Hence
from (9) we deduce o*[f] = 16/17.

The graph of the function f is given in Figure 1.
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6. HERMITE-HADAMARD INEQUALITIES

It is known that if f is convex on [a,b] then the following Hermite-

Hadamard inequalities

() < 2 [ < 19Oy

2
hold. A variant of (11) for a-star-convex functions was given in [1]. We
give here another one.

Theorem 6. If the function f is a-star-convex on [a, b] with o € (0,1],

/ i < 10/ "

then

ab—a

Proof. Integrating
flta+a(l —t)b) <tf(a)+a(l—1)f(b)

for t € [0,1] we get (12). O
Theorem 7. If the function f is a-star-conver on [a,b], a < b with

€ (0,1] then

atab

f<a+o‘b) < _Lta )/G”“ f(:z:)dx+oz2(16t0;) ﬁ f@)dr. (13)

2 ~ 2a(b—a atab
14+«

Proof. We have
f (a + ab) =f F(a + at) + %oz(b — t)}

2 2
1
< —fla+at)+ §ozf(b —t)
and integrating for ¢ € [0, (b —a)/(1 + )] we get (13). O
Note that if we take @ = 1 in (12) and (13) then we obtain (11).
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7. WEIGHTED ARITHMETIC MEANS

In [10] it was studied the problem of the conservation of a-star-

convexity by a weighted arithmetic mean of the form

1 X
Afx:—/g’tftdt. 14
ol f1(2) 7@ ), @) f(#) (14)
Let us denote by K, (b) the set of a-star-convex functions on [0, b],
such that f(0) = 0. In [10] the following results were obtained.

Theorem 8. If A,[f] € K,(b) for all f € K,(b) then
g(x) = ka7,
for some k # 0 and v > 0. In this case

M@ = A1) =L [T o= [ fasias

X

If we denote by M7 K, (b) the set of functions f with the property that
A, [f] € K,(b), then we have

Theorem 9. If0 < a < 3 < 1 andy > 0 then the following inclusions

Ki(b) < Kg(b) < Kuab) < Kob)
N N N N
M7K;(b) € MYKzg(b) € MYK,(b) C MYKy(b)

hold.

In fact an a-star-convex function can be mapped onto a [-star-convex

function with § > «, as was shown in [4] by the following example, for

v =1
Example 3. Let f: RT — R be defined by

f(z) 4 5z* — 202% + 272 — 10z

14



and let
1 X
Fla) =1 / F(O)dt = o* — 52® + 922 — 5a,
T Jo
which is the function given in Example 2. By using the system (10) we
obtain a*[f] = 0.302. .., while a*[F] = 16/17 = 0.941 . ..
8. STAR-CONVEXITY AND BERNSTEIN POLYNOMIALS

For a function f : [0,1] — R let us denote by B, (f) the Bernstein
polynomial of order n of f defined by

Bulf)e) = 3 Clat =yt (1) a0

A well known result of classical analysis (see D.D. Stancu [8] p.264)

asserts that if f is convex in [0, 1] then:

Bn(f)(z) = f(x), ¥V z €[0,1]. (15)

First we consider an example of a starshaped function not verifying
the inequality (15).
Example 4. Let f:[0,1] — R, be given by
—z, if x€][0,1/3]
fl) =4 22, if x€(1/3,2/3]
4z, if xe€(2/3,1].
We have

Bo(f)(z) = 20 + 22* < 4w = f(x), V 2 € (2/3,1).

But the function z — f(x)/z being increasing on (0, 1], f will be
starshaped on [0, 1].

15



In the following lemma of independent interest we give a generalization
of inequality (15) for a-star-convex functions, « € [0, 1]. Particularly, for
a = 1 one obtains again (15).

Lemma 3. Given o € [0,1], let us denote by S the real function

defined on [0,1] by
S%(x) = o, ¥z €[0,1].
If f is a-star-convez on, [0,1] then:
Bu(Sp - f)(@) = f(Ba(Sy - I)(2)), ¥V z €[0,1],

where J is the identity mapping on [0, 1].
Proof. If we let in the Jensen type inequality (mentioned in Remark

6)
pe=CFa*(1 —2)" % ap=k/n, k=0,1,...,n,

x being fixed in [0, 1] one obtains

n n

f (Z CSZL‘k(]. . x)n—kank/nﬁ> < CSZEk(l . l,)n—kank/nf (E) :
k=0

and this yields the conclusion. [

In [2] it was proved that if the starshaped function f : [0,1] — R,
verifies the properties f(0) = 0, f(x) > 0,V z € [0,1] and f € C]0,1],
then B, (f) is starshaped, B, (f)(0) = 0 and B,(f)(z) > 0,V x € [0, 1],
n=1,2,.... The proof in [2] can be extended with some minor changes
to a little more general setting. So, if f is an arbitrary starshaped function

on [0, 1] then B,(f) is also starshaped on [0, 1], for all n > 1.

16



Now, a natural problem is: Given an « € [0, 1] and a starshaped func-
tion f on [0,1] with a*(f) = «, does it follows that o*[B,(f)] = «,
n=1,2,...7 The answer is negative.

Example 5. Let f be defined on [0, 1] with f(0) = 0 a function such
that o*[f] = a € [0,1). Then: By(f)(z) = f(1)-z, and so B;(f) is convex.
On the other hand

Bahle) =2 (5 ) o+ [T - L2
and Bsy(f) is also a convex function on [0, 1]. However, f is not a convex
function.
Example 6. In this example the function f : [0,1] — R is starshaped

and Bs(f) is not convex. Letting
f(x) = 32" —102° + 112°, V z € [0, 1],

we have that f is starshaped and because f”(0) =22 > 0, (1) = -2 <

0, f is not convex on [0, 1]. The third Bernstein polynomial

8 20 8
B3<f)($) = gﬂ? + 51’2 — §I3

is starshaped but from Bs(f)”(0) = 40/9 > 0 and Bs(f)"(1) = —8/9 < 0,
it follows the non-convexity of Bs(f).

Let f be a continuous starshaped function on [0, 1]. We will be in-
terested to obtain informations on the order of star-convexity of B, (f),
n=1,2,..., when we know the order of star-convexity of f. For a par-
ticular case one obtains effectively a*[B,(f)]. A comparison of this order
to a*[f] € [0, 1] will be made. The study of the asymptotic behaviour of

the sequence (a*[B,,(f)])n>1 is our main purpose in the sequel.
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Lemma 4. Suppose that for the continuous function f on [0,1],

a*[f] < 1. Then

Proof. If o*[f] = 1, then f is convex on [0, 1] and from a well known
result [5], B,(f) is convex on [0,1], for all n < 1. Since o*[f] = 1, it
follows that there exists ny € N such that degree(B,(f)) > 2,V n > ny.
Then o*[B,,(f)] = 1, ¥ n > ng and in this case Lemma is proved. Let now
suppose that a*[f] < 1 and € > 0 be given. Because f isn’t (a*[f] + ¢)-

star-convex this means that there exist Ao, zo, o € [0, 1] such that

f()\o!l?()—f—(l—/\0)(Oé*[f]+€)y0)—>\0f(ZL’0>—(1—/\0)(()4*[f]+6)f(y0) =d> 0.

From the uniform convergence of (B,,(f)),>1 to f it follows that

Bn(f)(Xozo + (1 = Xo) (™[ f] + €)yo)

Bl £)a0) = (1= Xa)(a” ] + ) Bl £)() > 5 > 0

for all n > ng € N. This implies that B, (f) is not («*[f]+¢)-star-convex,

for n > ng and

lim o*[B,(f)] < «[f] +&, Ve>0. O

Remark 7. In particular it follows that if o*[f] = 0 then
Tim o*[B,(f)] = 0.
Example 7. Let f:[0,1] — R, be given by
f(z) = —22% + 52% + 6.

18



After some simple computations one obtains that o*[f] = 27/28. More-
over the infimum in formula (9) giving a*[f] is attained for z = 1 and
y=2/3.

The Bernstein polynomials B, (f) are

6n% + 5n — 2 —1)(bn —6 2(n—1 -2
G s=2 (= Dn=6) s 2An=Dn=2)
n n n

B (f)(x)

n=12,....1It follows that B,(f), n =1,2,..., is starshaped and

o*[Bo(f)] = 227 . (”njé:l(ﬁ 182)) Vn>6

Moreover the sequence (o*[B,,(f)])n>6 is decreasing and

lim o*[B,(f)] = 27/28 = o*[f].

n—oo

Also o*[B,(f)] > o*[f], ¥V n > 1 and the infimum in formula (9)
giving o*[B,,(f)] is attained for x = 1 and y = 2n/(3n —6), n > 6. In
this example we have that o*[B,(f)] > o*[f], V n > 1. We expect that
generally

lim o*[B,(f)] = a"[f].

Proposition 1. Let o € [0, 1] be fized and let (f,)n>1 be a sequence
of real functions on [0,1]. Suppose that o*[f,] > o, ¥ n > 1 and that
fn(x) = f(x), for any x € [0,1]. Then o*[f] > «.

Proof. Indeed, for a given pair (z,y) € [0,1]* making n — oo in the

inequality

faQAz + (1= Nay) < AMfa(z) + (1 = Nafa(y),
one obtains that o*[f] > a. O
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Example 8. Let f, : [0,1] — R be defined by
folx) = @4/n)z(x—1), Yz €l0,1], n=1,2,...

Then o*[f,] = 1, n = 1,2,... and the sequence (f,),>1 converges
uniformly to the null function g on [0, 1]. But a*[go] = co.
Lemma 5. a) Let f € CY0,1] be a strictly starshaped function. If
f(0) <0 then:
lim o*[B,(f)] = o”[f].
b) Let f € C?[0,1] be a strictly starshaped function. If f(0) = 0 and
1"(0) # 0, then:
lim o*[By(f)] = o"[f].

n—o0

Proof. a) Suppose that

lim o*[By(f)] = a < a*[f].

Let € > 0 be small enough such that a +2¢ < o*[f]. Then there exists
a sequence of indices (ny)g>1 such that
lim o*[B,, (/)] = a.
and for £ > kg € N we have
a*[Bp, (f)] € (a—¢e,a+¢). (16)

This means that for k > ko, B, (f) is not (a + 2¢)-star-convex. There

exist the sequences (7, )i>1, (Un, )k>1 of reals in [0, 1] with the property

—(a + 28) (Yn B, (f) (2n) = B () (ym,)) <0, (17)
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for all k > ky. We can suppose that the sequences (x,, )k>1, (Un, )k>1 are
convergent.
Let z = klim Ty Y = klim Yn,- Because B, (f) = f, Bn,(f) = f,

from (16) we obtain

of'(z) = f(x) = (a+2e)(yf () — f(y)) < 0. (18)

On the other hand from (16) and (17) it follows

ynank(f)/(xnk) - Bnk(f)(ynk) Z Oa vk Z ko-

Then yf'(x) — f(y) > 0. But, f being o*[f]-star-convex, from (18) we

have
zf'(x) — f(x) — (a+2¢)(yf'(x) — f(y) =0 (19)
and
zf'(z) — f(z) — ™ [fl(yf'(z) = f(y)) > 0.

From this and (19) we have:

(—a*[fl+a+2e)(yf'(x) = f(y)) = 0,

yf'(x) = f(y) =0 and 2f'(z) — f(z) =0, (20)

which contradicts f(0) < 0 or the strict starshapedness of f.
b) Suppose now that f € C?[0,1], f(0) = 0, f”(0) # 0. One observe
that f”(0) > 0. Indeed

£(0) = Tim f(2w) = 2f(2) + f(0) _ . 2 lf(2:c) B Lx)]

> 0.
z\0 72 \0 T

2z T
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Suppose that f”(0) = d > 0. Using the same arguments as in the case
a) and supposing that lim o*[B,(f)] = a < a*[f], we have again (20)
with x = kh_)rgo Tp, and ynlo}_)nolo Yny -

Now, from strictly starshapedness of f it follows that (20) yields z = 0.
But f/(0) = }:I{I%)f(l‘)/l‘ < f(2)/#, ¥ z € (0,1]. This means that y = 0
and x = y = 0. From f”(0) = d > 0 and from the continuity of f” it
follows that f is strictly convex on a neighbourhood of 0. More precise
f"(x) > d/2,¥ z €0,d] with 6 > 0 sufficiently small. From B, (f)" =
f" it follows that for k > ky € N, B, (f)"(z) > d/4, ¥V x € [0,]. Then
B, (f), is convex on [0,0] for k > ky. But for k > ke € N, 2, , y, € [0, 6]
and (17) will be contradicted for all k > k3 = max{ky, ko}. O

Theorem 10. If f verifies the conditions a) or b) in Lemma 5 then

lim o*[B,(f)] = a*[f]

n—oo
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THE ORDER OF A STAR-CONVEX FUNCTION

SILVIA TOADER

1. INTRODUCTION

In the first part of this paper we characterize the polynomials of
the fourth degree which are starshaped but not convex on [0,00). In
the second part, we determine the order of star-convexity of such a
polynomial. As a conclusion follows the main result that for every
p € (0,1) there are polynomials with the order of star-convexity equal
to p. Star-convex functions were defined in [3] and studied in [4], [1]
and [2].

2. STARSHAPED POLYNOMIALS

In what follows we consider real functions defined on [0,00). It is
known that such a function is called starshaped if it satisfies the con-
dition

f(tz) <tf(z), Vt€[0,1], Yz > 0.

Taking ¢ = 0, it follows that f(0) < 0, but we shall assume, as usual,
that f(0) = 0. It is easy to see that f is starshaped if and only if the
function ¢, defined by:

g(x) = f(z) /2, V>0
is increasing. It follows that if the function f is differentiable , it is
starshaped if and only if

f(z)> f(z)/x, Yo >0,
Let us use this condition for a polynomial
(1) f(z) = a1z + asx® + ... + a,a"
We have
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f(z) = f(x)/x = ax + 2a32% + ... + (n — 1)ayz™

so that it is easy to deduce that a polynomial of degree two or three is
starshaped if and only if a; > 0 respectively az > 0, as > 0. Also we
have the following

Lemma 2.1. A polynomial of degree four is starshaped if and only if
its coefficients satisfy one of the conditions

i) ay > 0 and a2 — 3asay <0,
or
ii) ag > 0, a3 > 0 and ay > 0.

Proof. In this case

f'(x) — f(2)/x = 2(az + 2azz + 3a,2?)

which is nonnegative for every positive x if a4 > 0 and if the second
degree factor has: i) at most one (double) real root, or ii) negative
roots.

3. CONVEX POLYNOMIALS

The function f is called convex on D if the following condition

fltz+ 1 =t)y) <tf(x)+ (1 —1)f(y), Yo,y € D, Vt € [0,1]

holds. It is well known that if a function is two times differentiable,
it is convex if and only if its second order derivative is nonnegative. So,
the polynomial (1) is convex on [0, 00) if and only if

f(x) = 2ay + 6azz + ... + n(n — 1)a,z" 2

is nonnegative for x > 0.
Again, a polynomial of degree two or three is convex on [0, 00) if and
only if as > 0, respectively az > 0 and as > 0. Further we have

Lemma 3.1. A polynomial of degree four is convex on [0,00) if and
only if its coefficients satisfy one of the following conditions

j) as > 0 and 3a2 — 8asay < 0;
or
JJ) CL4>0, agzoandagzo.
The proof is similar with that of Lemma 2.1.



THE ORDER OF A STAR-CONVEX FUNCTION 3

Remark 3.2. We look for polynomials which are starshaped but not
convex. This cannot happen for degrees less than four. But we have

Lemma 3.3. A polynomial (1) of degree four is starshaped but not
convez if and only if

(2) as > 0,a3 < O0andSazay < 3a3 < 9asay

Proof. By lemmas 2.1 and 3.1 f is starshaped but not convex if its
coefficients satisfy i) but not j) or jj). From i) we have a4 > 0 and
a3 < 3agay . But we must to avoid j), for which we need 3a2 > 8azay
and to avoid jj) for which we need a3 < 0, getting (2).

4. STAR-CONVEX POLYNOMIALS

Let p € [0,1]. A real function f defined on [0,00) was called in [3]
p-star-convex if

fltz+ (1 =t)py) <tf(z) + (1 —t)pf(y),Vo,y >0, vt € [0, 1].

Of course, for p = 1 we get convex functions and for p = 0 starshaped
functions.

In [3] also was proved that for 0< p < ¢ < 1, if f is g-star-convex
then it is also p-star-convex. So the definition of the order of star-
convexity of a function, given in [1], is well justified:

p(f) =sup{p € [0,1] : f is p — star — convex}.

In [3] and [4] it is proved that the function f is p-star-convex if and
only if for all y, the function ¢, defined by

py(x) = [f(x) —pfW)]/ (z — py)

is increasing on each interval [0,py) and (py,00). This gives the follow-
ing formula (see [1] or [2]):

L fal )~ )
) =i { S
or, if f is twice differentiable

@) - )
8 )= f{yf’(x)—f(y)

cyf'(x) > fy), =,y > 0} ,

;ﬂ@ﬁ=af@ﬂ=f@%%y>0}
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We use this result to determine the order of star-convexity of a poly-
nomial of fourth degree. First of all we remark that for each positive
constant ¢, p(cf) = p(f). So, we can choose an arbitrary coefficient for

4
x*.

Theorem 4.1. If the polynomial

(1) f(z) = 2*/12 + a3x® + a2® + ayx

is starshaped but not convex, that is its coefficients satisfy the condi-
tions

(2" as < 0, 8ay < 36a; < 9ay,
then its order of star-convexity is

p(f) = A2/(A2 + B)

where
Ay = 2Ta3 — (A + ag)? + 2a3V/A3,
B = (3A/2)?
with
(4) A = 9a3 — 2a;

Proof. The condition (2’) are given by (2) for ay = 1/12. To use (3)
we have to solve the system of equations
f'(@)=0,f(z) = f'(y).
The first equation
(5) f"(z) = 2* + 6azx + 2a; = 0
has the roots '
z; = —3az + (—1)'VA,i=1,2
where A is given by (4) and it is positive as it was assumed in (2’).
The second equation becomes (for i=1,2)

f'(y) = f(x:)
or
y* 4 (2; + 9as)y + 3asx; +4ay; =0
which has a solution z; and a second solution
yi = —2x; — 9as.

Taking into account (5) we obtain

zif (z:) — fla) = 2708 — (A + a)? + (—=1)'2a3V A3 = A;,
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then

fys) = 4x}/3 + 16asx? + 54a3x; — 729a3/4 + 4aya?

+36asasx; + 81a2a3 — 2a1x; — 9aqas3

giving

yif (x;) — fy;) = =227 — 25a327 — 8agx? — 8lasa?

—bdagazw; — 8lagas + (729/4)a;
= 2a3(9a3 — 2as)w; + 8a3 + (729/4)az — Thaqsa; = A; + B

where

B = (3A /2)%
Obviously B > Oand
Al_A2 = —4(13\/A3 > 0.

We want to prove that Ay > 0. This is equivalent with
(6) 27a3 — (9a3 — ag)® > —2azy/(9a3 — 2a5)3

The second member is obviously positive. To prove that the first
member is also positive we write it as

(3v/3a2 — 9a2 + a5)(3V/3a2 + 9a2 — ay)
= [(3v/3 = 5)a2 + ay — 4a2][3V/3a2 + (9a2 — 2a5) + ay)
and make use of (2" ). So (6) is equivalent with
(18aga3 — a3 — 54a3)® > 4a3(9a3 — 2a,)*
which reduces at
ay > 4aj
and this is true after (2" ). Thus 0 < A2 < A; and so (3) gives
S ETE ) m
A1+B A2+B Ay + B

Remark 4.2. For
f(z) = (z* — 52 + 92 — 51)/12

we get p(f) = 16/17 which was proved in [1] and [2]. There was also
given for each p € (0,1) a function f, such that p(f) = p. All these
functions are polygonal lines. Using Theorem 4.1 we can replace these
functions by polynomials (of fourth degree).

Theorem 4.3. For each p € (0,1)there is a polynomial f, such that
p(f) = p-
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Proof. We take f asin (1’ ) and look after the coefficients ay and a3 such
that

Ay =p(A2 + B)
thus
(7) 27a3 — 18A a3 + 8azVA3 = A*(8p+1)/(1 —p).

We add the condition
A =9a3 — 2ay = 1.
This is possible if
ag = (9a3 —1)/2 >0
or a3 < —1/3. But the equation (7) reduces then at
27a3 — 18a2 + 8as = (1 + 8p)/(1 — p)

which has a solution as even less than —1.
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1 Introduction.

Let us consider the inequality:

A(fr-- - fm) 2 KnA(f1) - A(fm) (1)

where

1
A(f) = / f(z)dz.

Classical Chebyshev’s inequality asserts that (1) is valid for increasing functions
f1y+s fm , with K, = 1. There are many papers that treat this inequality as
we can see in the syntheses [6] and [7]. In [1], B. J. Anderson has proved that
for convex functions (1) is valid with K,,, = 2™ /(m+1). We have shown in [10]
that Anderson’s inequality is in fact valid for starshaped functions.

Here we define general notions of convexity and of starshapedness which
include many of the known generalizations and prove inequalities of type (1) for
them. Moreover, we take for A an isotonic linear (or superlinear) functional.

2 Superlinear functionals

Let E be a non-empty set and L be a linear class of real-valued functions
defined on E . More exactly we assume that L contains the constant functions
and f,g € L implies that (af + 8g) € L for all a, S € R .

It is well known the following definition: an isotonic linear functional is a
functional A : L — R satisfying the conditions

A(af + Bg) = aA(f) + BA(g), for all f,ge L and o, € R



and
A(f) >0 for all positive f € L.

Common examples are given by :

A(f) = pif(zi),pi > 0,2; € E fori=1,..n,
=1

and

b
A(f) = / p(x) f(z)dz,p(x) >0 for x € E =a,b].

Many of the classical inequalities are given for isotonic linear functionals.
We shall consider here the case of Chebyshev’s inequality. Its classical variant
refers to pairs of increasing functions. Now it is used more often the following
generalization. The functions f, g € L are called synchronous if :

[£(t) = f(s)llg(t) = g(s)] = 0 forall s € E. (2)

We remind now the following general inequality of Chebyshev type. We
consider weight functions p , which is not essential but simplifies its later use. A
proof can be find, for example, in [9] or [10] , but we give it here for comparison
with the generalization what follows.

Theorem 1 If A: L — R s an isotonic linear functional, p € L is positive
and f,g € L are synchronous, then :

A(pfg)Alp) = Alpf)Alpg). (3)

Proof. Multiplying (2) by p(t)p(s) > 0, we have :

p(t)f()g)p(s) + p(t)p(s) f(s)g(s) = p(t) f()p(s)g(s) + p(t)g(t)p(s)f(s)-

Taking the functional A for functions of variable ¢ , we get

p(s)A(pfg) +p(s)f(s)g(s)A(p) = p(s)g(s)Af) + p(s)f(s)A(pg).

Using again A for functions of variable s, we get (3). =

Some of the classical inequalities can be also proved for a larger set of func-
tionals, that of isotonic sublinear functionals (see, for example [3]). This cannot
be done in our case, at least by following the same way as in the previous proof.
That’s why we consider another generalization of the linearity for which the
proof can be adapted.

An isotonic superlinear functional is a functional A : L — R satisfying the
conditions

A(f+9) = A(f) + Alg), for all fg e L;

Alaf) = aA(f), forall fe Land a>0



and
A(f) >0 for all positive f € L.

Of course, if f > g we have

A(f)=Alg+ f—g) > Alg) + A(f — g9) = A(g).

A typical example of isotonic superlinear functional is given by

A(f) = min {4;(f)}

1<i<n

where Aj,...,A, are arbitrary isotonic linear functionals. To get more ex-
amples, we have only to replace the maximum by minimum in the functionals
considered in [3]. Generally we can follow the same ideas as those used in the
case of sublinear functionals.

Let us denote by a the constant function with value « , that is a(z) =
a,Vx € E. We shall use in what follows functionals with the property

Such a functional is homogenous on constant functions, that is
A(al) = a¢A(1) for all « €R.

Moreover, it is also additive if one of the terms is a constant function. Indeed,
by superadditivity we have

A(f+1) = A(f) + A(1),

but also

A() = Af +1-1) > A(f +1) + A(-1)

that is
A(f+1) < A(f) + AQQ).

We can now prove the following Chebyshev type inequality.

Theorem 2 If A: L — R is an isotonic superlinear functional which is ho-
mogenous on constant functions and f,g € L are positive synchronous func-
tions, then :

A(fg)A(1) > A(f)A(g)- (4)
Proof. The relation (2) can be written as:
F)g(t) + f(s)g(s) = f(t)g(s) + g(t) f(s).
Taking the functional A for functions of variable ¢ , we get
A(fg) + f(s)g(s)A(1) = A(.fg + f(s)g(s)1) =
Ag(s)f + f(s)g) = g(s)A(f) + f(s)A(9)-



Using again A for functions of variable s, we get
2A(fg)A(1) = A(A(fg)1 + AQ1)fg) =

A(A(f)g + A(9)f) = A(A(f)g) + A(A(9)f) = 2A(f)A(9)
which gives (4). m

Remark 3 We need the positivity of f and g for the last equality.

3 Generalized convex functions.
Let us fix four functions g, h, «, 3, defined as follows:

g,8:lc,d =R h:[0,1] = R, a:[a,b] — [a,b]
Definition 4 The function f : [a,b] — [c,d] is called (g, h, o, B)-convex if:

g(fltz + (1 = t)a(y)]) < h(t)glf (@)] + [1 — h(t)]BLf ()]
for allt € 10,1] and z,y € [a,b] .

Choosing adequately the functions g, h, o, ,we get some known examples of
generalized convexity. Let us denote by e, the function defined (on different
sets) by eq(x) =27 .For ¢ =1 we write e; = e. We find that:

i) (e, e, e, e)-convexity means convexity, where e(x) = x ;

ii) (e, e, 0,0)-convexity means starshapedness;

iii) (e, eq,0, 0)-convexity means starshapedness with respect to e, ;

iv) (e, e, me, me)-convexity means m-convexity as we defined in [8] and used
in [4] ;

v) (ep, €q, me, me,)-convexity means (p, g, m)-convexity defined in [5] ;

vi) (g, e, e, g)-convexity means convexity with respect to g (for example log-
convexity) ;

vii) (e, pe, e, €)-convexity means p-convexity defined in [2].

To give a second definition, we make the same hypotheses on the functions
g, and 8 but assume that h : [a — b,b — a] — R and it preserves the sign e_
on the interval [a — b,0) and the sign ey on the interval (0,b — a.

Definition 5 The function f : [a,b] — [c,d] is called strongly (g, «, B)-starshaped
with respect to h if for any y € [a,b], the function F, given by

glf ()] = Bf ()]
hlz — a(y)]

is increasing on the interval [a,a(y)) if e~ =—1 and on (a(y),b] if e =+1
but it is decreasing on that interval in which this condition fails.

Fy(z) =




We have the following relation between these two notions, which is well
known in some of the special cases given above. We assume that the function h
is defined on a set which includes the intervals [0,1] and [a —b,b — a].

Theorem 6 i) If the function h is supermultiplicative, then every function f
which is (g, h, a, B) - convex is also strongly (g, a, 8)-starshaped with respect to
h .

it) If the function h is submultiplicative, then every function f which is
strongly (g, o, 8)-starshaped with respect to h s also (g, h,«, 3)-convexr.

.iii) If the function h is multiplicative, then every function [ is (g,h,, )
- convez if and only if it is strongly (g, «, )-starshaped with respect to h .

Proof. i) If f is (g,h,a, B)-convex, e = +1 and a(y) < z < = < b, then
there is a ¢t € (0, 1) such that z = tx + (1 — t)a(y). Thus:

glftz + (1 —taly))] - BIfly) _
hltz + (1 —t)aly) —aly)]  —

(
h@®)lg(f(x)) — B(S (y))]
hlt(z — a(y)]
For the last inequality we have used the positivity and the supermultiplicity of
h . Other cases can be treated in a similar way.
ii) Let f be strongly (g,«, )-starshaped with respect to h , e, = +1 |
a(y) <z <b and ¢t € (0,1). Putting z =tz + (1 — t)a(y) it follows that
a(y) <z<zandso Fy(z) < F,(z) or

glf bz + (1 = t)aly))] = B W] _ glf(@)] - Blf ()]
hlt(z — a(y))] hlz —a(y)]

As h is submultiplicative, we have h[t(z —a(y))] < h(z —a(y))h(t), which gives
the (g, h, a, §)-convexity of f. The other cases can be treated in a similar way.
iii) It is a simple consequence of i) and ii). m

Fy(z) =

IN

Remark 7 As it is known, under large hypotheses, the only multiplicative func-
tions h are e, with q > 0.

4  (Generalized starshaped functions.

If the conditions of the last definition are assumed only for y = a, the function
f is called (g, , 8)-starshaped with respect to h. We assume now that h :
[a—a(a),b—a(a)] — R and it preserves the sign e_ on the interval [a—«(a),0)
and the sign e on the interval (0,5 — a(a)].

Definition 8 The function f : [a,b] — [c,d] is called (g, «, B)-starshaped with
respect to h if the function F  given by

gl @)] - Blf ()]
B = —ata)]




is increasing on the interval [a,a(a)) if e~ =—1 and on (a(a),b] if e =+1
but it is decreasing on every interval in which this condition fails.

If f is (e,0,0)-starshaped with respect to h, we say simply that f is star-
shaped with respect to h. Of course, in this case 0 € [a, b].

‘We have the following Chebyshev type inequalities for generalized starshaped
functions. Consider E C (a(a),b] and assume that L contains the monotone
functions on E. For h given as above, we denote by A~ the function defined on
FE by:

h™(x) = hlz — a(a)].

For the simplification of the exposition, we use only isotonic linear functionals
on L and assume that h is positive on E , that is e, = +1. We can obtain
similar results for superlinear functionals. We can also take F C [a, a(a)).

Theorem 9 Let A be an isotonic linear functional on L and hy,hs € L be
positive increasing functions. If f; is (gi, o, B;)-starshaped with respect to h;
fori=1,2, then it is valid the inequality:

A(fr f3)A(hy ) A(hy ) = A(hy hy )A(f)A(f2), (5)
where f; (z) = g;[fi(z)] — B;[fi(a)] for i=1,2.

Proof. The functions F; = f; /h; are increasing. Chebyshev’s inequality
for F; and F, with weight hi h, gives:

A(f f2) Ay hy ) = A(hg [ AT f3)-
The same inequality for increasing functions Fi,h, and weight h] implies
A(hy [7)A(hy) = A(hy hy JA(f7)-

Similarly we get:
A(hy f3)A(hy) = A(hy hy )A(fS)-

Combining these inequalities we get (5). m

Corollary 10 Let A be an isotonic linear functional on L and hy,hy € L be
positive increasing functions. If f; is (gi, o, 0)-starshaped with respect to h;
fori=1,2 , then it is valid the inequality:

Al(g1 0 f1)(g2 o f2)]A(hy )A(hy ) > A(hy hy )A(g1 © f1)A(g2 © f2).

Corollary 11 Let A be an isotonic linear functional on L and hy,hy € L be
positive increasing functions. If f; is (g;,0,0)-starshaped with respect to h;
fori=1,2 , then it is valid the inequality:

Al(g1 0 f1)(g2 o f2)]A(h1)A(h2) > A(h1h2)A(g1 0 f1)A(g2 © f2).



Corollary 12 If the continuous function f; : [0,1] — R s starshaped with
respect to e,, fori=1,2 , then the following inequality:

! (p1+ D2+ 1)
/ofl(gn)f?(%)mZ p1+p2+1 /f dx/ fa(

holds.
The following generalization of Anderson’s inequality can be also proved.

Corollary 13 Let A be an isotonic linear functional on L and h € L be
a positive increasing function. If f; is starshaped with respect to h for each
1=1,2,...,m, then the following inequality is valid:

A(frfm)A™ (h) = A(W™)A(f1)---A(fm)-

Corollary 14 If the continuous functions f; : [0,1] — R are starshaped with
respect to e, fori=1,2,...,m , then the following inequality:

[ 5@ mtwte > EE e [ g

Remark 15 As in Anderson’s inequality, all the above results are wvalid for
corresponding generalized convex functions, but this is only a special case.

holds.
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Abstract

In what follows, a hierarchy of m - convexity is considered: we define
m - starshaped functions, m - superadditive functions, Jensen m - convex
functions, weak Jensen m - convex functions, Jensen m - superadditive
functions, and weak m - superadditive functions. Some inclusions between
such classes of functions are established. We also analyze the validity
of the Hermite-Hadamard inequality, and of the Chebyshev-Andersson
inequality for m-convex functions.
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1 Introduction

Let us consider the sets of continuous, convex, starshaped, and superadditive
functions on [a, b] given by:

Cla,b) ={f : [a,b)] — R, f continuous},
K[a’b] = {f € C[av b], f(tij(l*t)y) < tf(z)‘F(l*t)f(y),VIE, ye [av b}vt € [Oa 1]}7

§*(ab] = {f € Cla, b (:cx)_i”(a) < f(y;:i”(a)

,a<x<y<b},

and
Sla,b] = {f € Cla,b]; f(x)+ f(y) < f(x+y—a)+ f(a),Vo,y,x+y—a € [a,0]},

respectively. For a = 0 we denote by C(b), K(b), S*(b), and S(b) respectively,
the corresponding set of functions, restricted also under the condition f(0) = 0.
A .M. Bruckner and E. Ostrow have proven in [1] the strict inclusions:

K(b) C §*(b) © S(b).



These inclusions, extended with some results of preservation of the above prop-
erties by the arithmetic integral mean, are collectively referred to in [6] as the
hierarchy of convexity. Simple proofs and generalizations of the results of
[1] may be found in [8].

Let us remark that we can also define a superadditive function by

f@)+ fy) < fx+y—a)+ fa),Vo,y € [a,b],

thus assuming f € Cla,2b — a]. This is the preferred layout for superadditive
functions in what follows.

In [9], one of the many generalizations on the convexity of functions - called
m - convexity - was introduced. The set of m - convex functions is defined by:

Kmla,b] = {f € Cla,b]; f(tx + m(1 - t)y) < tf(z) +m(1 —1)f(y),
Va,y € [a,b],t € [0,1]}, m € [0, 1].
If a =0 and f(0) <0, we also obtain a hierarchy of convexity:
Kla,b] C Kyla,b] C K,la,b] C S*[a,b], for 1 >m >n>0.

A much larger generalization of convexity was given in [12] : the function
f:[a,b] — R is called (g, h, A\, p)—convex if

g(f(tz+ (1 =1)AY))) < h(t)g(f () +[L = h(B)]u(f(y)), Ve, y € [a,b], VE € [0, 1].

It is shown that more interesting results can be obtained for h(t) = ¢, with
a € [0,1]. This case was combined with the m - convexity in [5] giving the
(a,m)— convexity. In the next paragraph we define a hierarchy of (o, m)—
convexity. Taking a = 1, we obtain a more fruitful hierarchy of m — convexity.
Finally we study the Fejér inequality (generalization of the Hermite-Hadamard
inequality) and the Chebyshev-Andersson inequality for m — convex functions.

2 A hierarchy of (a, m)—convexity
The set of (o, m)— convex functions is defined by
Km.ala,b] = {f € Cla,b]; f(tx + m(1 = t)y) <t°f(z) +m(1 —t*)f(y),

Vz,y € [a,b],t € [0,1]}, m,a € [0,1].

Note that for ¢t = 0 and y = a we have the condition f(ma) < mf(a) meaning
that the function must be defined on ma < a. In fact, to assure that all the
definitions and results that follow are valid we will assume that the functions
are defined on [ma,2b — ma). Assuming o # 0, m # 0, we define the following
sets of functions:

f(x) —mf(a)

(x — ma)®

S;kn,a[a7b]:{fec[a7b]; a<2<$§b}7



called (a, m)— starshaped functions;
Sm.alab] = {f € Cla.bl; [f () — mf(a)] (x — ma)'=* + [f(y) — mf(a)]

(y —ma)'=® < [f(a+y —ma) — mf(a)] (z +y — 2ma) ~ Va,y € [a, 5]}

called (a, m)— superadditive functions;
Im.ala;b] = {f € Cla,b]; f(2x — ma) —mf(a) > 2% [f(z) — mf(a)],Vz € [a,b]},

called Jensen («, m)— starshaped functions;

(%amm:{feOMMJ<m:i¥W>

_ i@ +m (L mE)” —m] ()

B (1—|—mé)

called (o, m)— Jensen convex functions;
Hp,ola,b] {= f € Cla,b]; f(tx) < [m+ (t = m)*(1 = m)' =] f(x),

a<z<bm<t<l1},

,V%ye[a,b]},

called (a,m) — subhomogenous functions;

Hﬁ&mﬂ={f60mwﬁ<T:;Ex>

1—-m

<m ll—i—wl f(x),a<x<b},

called Jensen (a,m)— subhomogenous functions;
wSimala,b] = {f € Cla,0);[f(a+1t) = mf(a)] (a+t —ma) ™" +[f(b—1)

—mf(a)]- (b—t—ma)'"* <[f(b+ (1 —m)a) —mf(a)] (a+b—2ma) ",
vt e [0,(b—a)/2]},

called weak (a,m)—superadditive; and

L {f(a+t)+ [(1+m%)a—m]

ﬂb—w}>f("”(“+”*”“b‘”),WEﬂxw—avm},

1+m=

W ola, b = {f € Cla,bl;

called weak (a, m)— Jensen convex.
For these sets, we have the following main results.



Theorem 1 The following inclusions

Kimala,b] € S5, ola,b] € Siala,b] C J5

m,a[a’a b]a qua[a, b] g wSm,(l[a’a b]a
H;La[a, b] 2 Hm,a[av b] 2 K’m,a[aab] g Jm,a[a'a b] g H:ma[a'a b]

and
Im.al@, b C wip ola,b]

hold.
Proof. a) Taking f € K, «[a,b] and y = a we obtain
flat+m(1—t)y) —mf(a) <t*[f(z) —mf(a)].

Denoting zt +m(1 — t)y = z we prove that f € S}, ,[a,b]. b) Assuming that
f €8Sy, ala,b] we have

Jime f(z+y —ma) —mf(a)

[f(z+y—ma) —mf(a)] (z +y —2ma - (x +y — 2ma)”

f(z +y —ma) —mf(a) flz +y —ma) —mf(a)

(@ +y —2ma) = (z +y — 2ma)” (= —ma)+ (z +y—2ma)™
gy ST M@ SO i@,
(y ) > (@ —ma)” ( )+ (y —ma)® (y )

thus f € Sp.ola,b]. ¢) For f € Sy, ala,b] if we take z = y we obtain
2[f(x) — mf(a)] (z = ma)'~* < [f(2x — ma) - mf(a)] 2z — 2ma) ",

implying that f € J;;, ,[a,b]. d) For f € Sy, o[a,b] if we take v = a—t,y =b—1
we obtain f € wSm.ala,b]. €) If f € Ky ola,b] for t = mY*/ (14+m/e) we
deduce that f € Jy, o[a,b]. f) For f € Jp, o[a,b] if we take x = y we obtain that
feHy, la,b]. g) If fe Ky ala,b] for x =y we obtain

f(@(m+t(1—m)) < [t* + m(l —t%)] f(z)
and denoting m + t(1 — m) = s we deduce that f € Hy,,ala,b]. h) If f €
Hpola,b], for t = (m+m!'/*)/(1+m!'/*) it follows that f € Hy}, ,la,b]. k) For
f € Jm.ala,b] if we take . = a —t,y = b — t we obtain that f € wJy, o[a,b]. ®
3 A hierarchy of m—convexity

For a = 1 we obtain the following sets of functions:

f(x)—mf(a) > f(Z)—mf(a) a§z<x§b}

Sy la,b) = {f € Cla,bl;



called m — starshaped functions;

Smla,b] ={f € Cla,b]; f(z) + f(z) < f(z +y —ma) +mf(a),Vz,y € [a,0]},
called m — superadditive functions;

Jimla, 0] ={f € Cla,b]; f(2x —ma) = mf(a) > 2[f(z) - mf(a)], a <2 < b},
called Jensen m — starshaped functions;

) ¢ mlfte) 1)

Jm[a7b]:{f€C[a,b]5f<m1+m 1+m

wayemm@,

called m — Jensen convex functions;
H7n[a7b] = {f € C’[a,b],f(tx) S tf(ﬂ:), a S z S b7m S 3 S 1}7

called m — subhomogenous functions;

14+m

o= { e ot (215) < 20

called Jensen m — subhomogenous functions;
wSpma, b = {f € Cla,b]; fla+t)+ f(b—1t) < f(b+ (1 —m)a) + mf(a),

vt e [07 (b - CL)/Q]},

called weak m - superadditive; and

m[fla+t)+ f(b—1)]
’ 1+m

> (D) v e .0 a)/21).

wdmla,b] = {f € Cla, b]

1+m

called weak m - Jensen convex.
From the hierarchy of m — convexity we underline only some results.

Theorem 2 The following inclusions
K, [a,b] C S)la,b] C Spmla,b] € wSpla,b]

and
Hyla,b] 2 Hpyla,b] 2 Kyla,b] € Jyla,b] € wlp[a,b]

hold.

Moreover, in this simple case &« = 1 we can characterize the functions from
wSy,[a,b] and those from wJ,,[a,b]. For this we begin with the following:



Lemma 3 For every function f € Cla,b] we can determine two functions fy :
[a(l =m),(b+ (1 —2m)a)/2] — R and fo:[0,(b+ (1 —2m)a)/2] — R such
that:

fil@ = ma) for e [a, 5]
flay =4 fo (BHOG2me) 4 p (SrO2me)
—fa2(b+ (1 —m)z) for xe[<bb].

Proof. We can take:
f1(#) = fma +1),vt € [a(1 —m), (b+ (1 = 2m)a)/2]
and
f2(t) = f((b+a)/2) +c— f(b+a(l—m) —t),¥t € [0, (b+ (1 — 2m)a) /2],

where ¢ is an arbitrary real number. m
Using this lemma we can obtain the characterization and a method of con-
struction of functions from wSy,[a, ] and wJp,[a, b].

Theorem 4 The function f belongs to:
a) wSpyla,b] if and only if
filt+a(l —m)) —mfi(a(l —m)) < fo(t + a(l —m)) — f2(0);

b) wdy,[a,b] if and only if

filt+a(l —m))+ fi <b+(12_2m)a> - 1;mf1 (m(lbj:;jzm)>

> folt+a(l—m)) — fo (b+<12—2m)a) |

Corollary 5 The function f belongs to wSpm[a,b] if

fi(t) = f2(t), ¥t € [a(l —m), (b+ (1 — 2m)a)/2]

f (b+(1—2m)a> > 1—|—mf1 (m(b—am)).

2 2m 1+m

and

Corollary 6 The function f belongs to wJy,[a,b] if
fi(t) = f2(t),Vt € [a(l —m), (b+ (1 — 2m)a)/2]

and

f2(0) < mfi(a(l —m)).



Corollary 7 The function f belongs to wSy[a,b] NwJyla,b] if
f1(t) = f2(2),Vt € [a(l —m), (b+ (1 — 2m)a)/2]

f2(0) <mfi(a(l —m))

f (b+(1—2m)a> > 1+mf1 (m(b—am)>_

2 2m 1+m

and

Remark 8 For m =1 these results were proven in [11].

4 Fejér’s inequality

Let L(-,a,b) : Cla,b] — R be an isotonic linear functional, that is, for
t,s €R, f,g € Cla,bl:
L(fia,b) >0 if f=>0

L(tf + sg;a,b) = tL(f; a,b) + sL(g; a, b).
If f € Cla,b] we denote by f_ the function defined by:
fo(x)=fla+b—2x) for x€]Ja,bl.
Definition 9 The functional L(-,a,b) is symmetric if:
L(f-;a,b) = L(f;a,b), Vf € Cla,b].

Theorem 10 If L(-;a,b) is a symmetric isotonic linear functional, such that
L(1;a,b) =1, then:

L(f;a,0) < [f(b+ (1 =m)a) + mf(a)] /2, Vf € wSp[a, 0]

and
L(f;a,b) >

m+1f(m(a+b)

Tm ) , Vf € wdpa,b).

2m
Proof. Indeed in the first case we have
fla+t) + f(b—1t) = f(z) + [-(2)
< fb+ (1 —=m)a) +mf(a),Ve € [a,b]

while in the second:

fl@)+ f-(2) =

m+1f(m(a+b)

T ),Vze [a,b].

m

We need only to apply the functional L(-;a,b). ®



Corollary 11 If L(-;a,b) is a symmetric isotonic linear functional, such that
L(1;a,b) =1, then:

m+1f<m(a+b)

1+m><Lumm<uw+a—mw+mﬂmm,

2m
Vf € wSpla, b NwJpy[a,b].

Remark 12 If g € Cla,b] is symmetric with respect to %rb, the functional

defined by:
b b
Lifiab) = [ f@g)is | [ ga)ds
is a symmetric isotonic linear functional. As K, [a,b] C wSy[a,b] N wJy,a,b]
we obtained a generalization of the result of L. Fejér from [3] , thus also of the
Hermite-Hadamard inequality. The generalization is effective even for m = 1

as was pointed out in [11]. Other generalizations of the Hermite-Hadamard
inequality for m - convex functions were given in [2], [7], and [4].

5 Chebyshev-Andersson’s inequality

In [10] we have shown that Chebyshev-Andersson’s inequality is not only valid
for convex functions but also for starshaped functions . A general result of this
type was also proven in [12]. Let us now consider the case of (a, m)— starshaped
functions. Denote by e the function defined by e(z) = 2 and by ¢ the constant
function with value c.

Theorem 13 If A and B are isotonic linear functionals, f € Sy, ,[a,b] and
g € S, gla,b] then the following inequality holds:

A((e=ma)” (e = na)”) B((f = mf(a)) (g ~ ng(a)))

+B ((e = ma)* (e = na)’) A((f = mf(a)) (9 ng(a)))

< A((e=ma)” (9= ng(a))) B ((e —na)’ (f = mf(a))

+B (e = ma)* (g~ ng(@) A (e = na)” (f = mf(a))).
Proof. We have

[Lel=mie)_ £ =) (g e

(x — ma)® (z — ma)®

|9@) —ngla) glz)—mngla)| s\
[ (z — na)” (z —na)’ ]( . 20



or

(2 —ma)” (z = na)’ [f(z) — mf(a)] [g(x) — ng(a)]

— (2 = ma)” [g(2) — ng(a)] (x — na)” [f(z) - mf
—(z = na)’ [f(2) = mf(a)] (& — ma)* [g(z) - ng(a
+(z = ma)® (¢ — na)” [f(2) = mf(a)] [g(2) — ng(a)] =

If we now take the value of A for the functions of z and then the value of B for
the functions of z, we obtain the announced inequality. m

Remark 14 Taking A = B and/or m = n,a = [, we deduce some conse-
quences of the Chebyshev-Andersson type inequalities.
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Abstract

In what follows, a hierarchy of logarithmic (h,m) - convexity is con-
sidered: we define logarithmic (h,m) - starshaped functions, logarithmic
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1 Introduction

Let us consider the sets of continuous, convex, starshaped, and superadditive
functions on [a, b] given by:

Cla,b] ={f : [a,b] — R, f continuous},

Kla,b] = {f € Cla, b]; f(tz+(1-t)y) < tf(2)+(1-1t)f(y), Vo, y € [a,b],t € [0,1]},
S*a,b] = {f € Cla,b]; f(tz+(1—t)a) < tf(z)+(1-1t)f(a),Vx € [a,b],t € [0,1]},



and
Sla, bl = {f € Cla,b]; f(z)+ f(y) < fz+y—a)+ f(a),V2,y,z+y—a € [a,b]},

respectively. For a = 0 we denote by C(b), K(b), S*(b), and S(b) respectively,
the corresponding set of functions, restricted also under the condition f(0) = 0.
A M. Bruckner and E. Ostrow have proven in [1] the strict inclusions:

K(b) C §*(b) © S(b).

These inclusions, extended with some results of preservation of the above prop-
erties by the arithmetic integral mean, are collectively referred to in [2] as the
hierarchy of convexity. Simple proofs and generalizations of the results of
[1] may be found in [4].

Let us remark that we can also define a superadditive function by

f(x)+f(y) Sf(x+y—a)—|—f(a),Vm,y€ [ava

thus assuming f € Cfa,2b — a]. This is the preferred layout for superadditive
functions in what follows.

In [5], one of the many generalizations on the convexity of functions - called
m - convexity - was introduced. The set of m - convex functions is defined by:

Kula,b] = {f € Cla, b]; f(tz + m(1 - t)y) < tf(x) + m(l —)f(y),

v,y € [a,b],t € [0,1]}, m € [0,1].

A much larger generalization of convexity was given in [6] : the function
f i [a,b] — R belongs to K 5 x,u[a,b], oris (g, h, A, p)—convex if

g(f(tz+ (1 =1)A))) < h(t)g(f () +[L = h(B)]u(f(y)), Ve, y € [a,b], VE € [0, 1].

Here we define a hierarchy of convexity for it. The special case A(y) = u(y) =
my, h(t) = t* and g(x) = x was considered in [7]. Some other interesting special
cases will be considered here.

2 A hierarchy of (h, \, i)—convexity

The set of (h, \, u)— convex functions is defined by

Knaula, 0] ={f € Cla,b]; f(tx 4+ (1 = t)AM(y)) < h(t)f(z) + (1 = h(t))u(f(y)),
Va,y € [a,b],t € [0,1]}.

Note that for t = 0 and y = a , if A(0) = 0, we have the condition f(A(a)) <
1(f(a)) meaning that the function must be defined on A(a). In fact, to assure
that all the definitions and results that follow are valid we will assume that



A(a) < a and the functions are defined on [A(a),2b — A(a)]. We define also the
following sets of functions:
Shoaula, b ={f € Cla,b]; f(tz + (1 —t)A(a)) < h(t)f(x) + (1 — h(t))u(f(a)),
Vz € [a,b],t € [0,1]},
called (h, A\, u)— starshaped functions;

&@Amm—{fecmﬁkVu+y_Af&;§52&$+y_2M@)2
/(@) = p(f(@)l (@ = Ma)) | [f(y) = n(£(a))](y = Aa))
h(z — Aa)) h(y — Aa))
called (h, A, u)— superadditive functions; and

J;,/\,u[a’ b] — {f c C’[a, b]; f(th—(;\x(a))QK(Z')()f(a)) > f(hx()x_lg\(({l()a)')),vx c [a7 b]} ,

called Jensen (h, A\, u)— starshaped functions.
For these sets, we have the following main results.

wmyemw@7

Theorem 1 If the function h is supermultiplicative, that is it has the property
h(t-s) > h(t) - h(s),Vt, s >0,
then the following inclusions
Khoapula, 0] © S5 5 la, 0] © Spoxula, 0] € T 5 e, b,
hold.
Proof. a) For f € Kjula,b] and y = a we obtain f € S , ,[a,b]. b)
Assuming that f € S , [a,b] we have
flat+ (1 =t)Aa)) — p(f(a)) < h(t) [f(z) — p(f(a))].
Denoting xt + (1 — t)A(a) = z we deduce that

f@) = p(f(a)) o f(z) = p(f(a))
h(z—Xa)) ~ h(t)h(x—Na))

thus

f(@) = p(f(a)) o f(z) = p(f(a))
h(z = M) > h(z = \@)) Jfor AMa) < z <z <b.
So
[f (& +y — Aa)) — p(f(a)] (& +y — 2)\(a))

[z +y = Ma)) = p(f(a))
h(z+y—2X\(a))
=) > L) =Ty - xa)
thus f € Spula,b]. ¢) For f € Spapula,b] if we take = y we obtain that

fe J,’{’)\yﬂ[a,b}. n

n f@+y—Aa)) —p(f(a)
h(z+y—2\a))

(z — Aa)) +



3 A hierarchy of (h, m)—convexity

Taking A(y) = pu(y) = my, m € [0, 1], we have the set of functions:
Kn,mla,b] = {f € Cla,b]; f(tz + (1 = t)my) < h(t)f(x) + (1 = h(t))mf(y),
Y,y € [a,b],t € [0,1]},
Shomla, 0] = {f € Cla, bl; f(tx + (1 — t)ma) < h(t)f(x) + (1 = h(t))mf(a),
YV € [a,b],t € [0,1]},

(o +y - ma) — mf(@)] (2 +y— 2ma) _
h(z+y—2ma) -

Sh.mla,b] = {f € Cla,b;

[f(x) —mf(a)] (x —ma)  [f(y) —m[f(a)] (y —ma)
h(l’ — ma) + h(y _ ma) v, (BS [av b]} )
Ji mlab] = { feCla; L (2?2;”“)2;;3{ @1 (}f()x_rfni ()“) V€ [a, b]} .

In this case we can define some new sets of functions:

hmwﬂ={fECMMJ(ﬁﬁ:?)

<h (lfm> f@) +m {1 —h (linmﬂ f(y),Va,y € [a7b]},

called (h, m)— Jensen convex functions;

Himla,t) = {7 € Clotl 00) < [+ (1= mon (1) | 1),

a<z<bm<t<l1},

called (h,m) — subhomogenous functions; and

Hiloot] = {1 € Clalis (7

< [+ a-mn ({25 s ase <o),

called Jensen (h,m)— subhomogenous functions.
For these sets, we have the following main results.

Theorem 2 If the function h is supermultiplicative, then the following inclu-
stons

Kp,mla,b] € S ,[a,b] € Sh.mla,b] € J; . a, 0],
and
H}T,m[ch b} 2 H}L,m[a7 b} 2 Kh,TrL[ayb] g Jh,m[afa b] g H;,m[av b]
hold.



Proof. The first three inclusions were proved in the first theorem. a) If
[ € Kpmla,b] for t = m/(14+m) we deduce that f € Jj n[a,b]. b) For f €
Jh.mla, b] if we take x = y we obtain that f € H} [a,b]. g) If f € K}, [a,b] for
x = y we obtain 1

fl@(m +t(1—m)) < [h(t) + m(1 = h(t))] f(2)

and denoting m+t(1—m) = s we deduce that f € Hy, [a,b]. h) If f € Hy .[a,b],
for t = 2m/(1 4 m) it follows that f € H}  [a,b]. m

,m [

Remark 3 The special case when the function h is multiplicative, thus h(x) =
x® , was treated in [7].

4 A hierarchy of logarithmic (h, m) —convexity

It is easy to see that f € K, 5 a pla,b] if and only if go f € Kj, x u]a,b]. So we can
consider a hierarchy of (g, h, A, u) —convexity. Let us illustrate this by defining
a hierarchy of (In, h, m, m) —convexity, which we call a hierarchy of logarithmic
(h, m) —convexity.

We denote the following sets of functions:

LEpmla,b] = {f € Cla,b]; f(tz + (1 — tymy) < [f(@)]" - [f(y)) "™,
Va,y € [a,b],¢ € [0,1]},

LS;; la.b] = {f € Cla,b]; f(tz + (1 — tyma) < [f(2)]"D - [f(a)) "™,
Vz € [a,b],t € [0,1]},

LShm[a b = {f € Cla,b]; {fl”ry ma :| (@+y—2ma) N
(z—ma)
f(@) 17 [ f(y) e,
[f (a>’”] f(a)m} o,y € [0, B]},
f(2:c — ma)] Tererr] -
OR >

LJy mla,b] = {f € Cla, b]; [
f

0 e}
LJpmla,b] = {f e Cla,b: f <7m>

< ) (pm ] vy € o0}

LHjmla,b) = { 1 € Cla, ) f(ta) < [f(a)lm 0= G0




a<z<bm<t<l1},

and

Lt lont] = { 1 € Clatif (222

< f@)lmr el o <o <o)

) —

For these sets, we have the following main results.

Theorem 4 If the function h is supermultiplicative, then the following inclu-
S10MS

LK mla,b] C LS,’:ym[a,b] C LSh.mla,b] C LJ;;m[a,b],

and

LH}, ,,[a,b] 2 LHp mla,b] 2 LKy ma,b] C LJpmla,b] € LHy ., [a,b]

hold.
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