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Introduction

Let us consider the sets of continuous, convex, starshaped, or superadditive
functions on [0; b] given by:

C(b) = ff : [0; b] �! R; f(0) = 0; f continuousg;

K(b) = ff 2 C(b); f(tx+(1� t)y) � tf(x)+(1� t)f(y);8x; y 2 [0; b]; t 2 [0; 1]g;

S�(b) =

�
f 2 C(b); f(x)

x
� f(y)

y
; 0 < x < y � b

�
;

and

S(b) = ff 2 C(b); f(x) + f(y) � f(x+ y);8x; y; x+ y 2 [0; b]g;

respectively. A.M. Bruckner and E. Ostrow have proven in [1] the strict inclu-
sions:

K(b) � S�(b) � S(b):

These inclusions were extended with some results of preservation of the above
properties by the arithmetic integral mean

A (f) (x) =
1

x

Z x

0

f (t) dt:

A function f is said to have the property "P" in the mean if A(f) has the
property "P". Denoting by MK(b);MS�(b) and MS(b) the sets of functions
which are convex, starshaped, respectively superadditive in the mean, in [1] was
proved that

K(b) �MK(b) � S�(b) � S(b) �MS�(b) �MS(b);

which was named in [2] as the hierarchy of convexity of functions.
In [3] was proved a �rst hierarchy of convexity of sequences. Let us

consider the sets of convex, starshaped, or superadditive sequences given by:

K = f(an)1n=0; an+2 � 2an+1 + an � 0; n � 0g ;

S� =

�
(an)

1
n=0;

an � a0
n

� an+1 � a0
n+ 1

; n � 1
�
;

S = f(an)1n=0; an+m + a0 � an + am; n;m 2 Ng :

We say that the sequence (an)1n=0 has the property "P" in the mean, if the
sequence (An)1n=0 has the property "P", where:

An =
a0 + � � �+ an

n+ 1
:
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Denoting by MK;MS� and MS the sets of sequences which are convex, star-
shaped, respectively superadditive in the mean, in [3] was proved that

K �MK � S� � S �MS� �MS:

In [4] and [5] this hierarchy was generalized by proving that the sequence
(An)

1
n=0 given by:

An =
p0a0 + � � �+ pnan
p0 + � � �+ pn

n � 0

is convex(or starshaped) for any convex ( respectively starshaped) sequence (an)1n=0
if and only if:

pn = p0

�
u+ n� 1

n

�
n � 0

where u > 0 is arbitrary and:�
v

0

�
= 1;

�
v

n

�
=
1

n!

n�1Y
k=0

(v � k)k � 1; v 2 R:

In this case:

An = A
u
n =

Pn
k=0

�
u+k�1

k

�
ak�

u+n
n

� :

We say that the sequence (an)1n=0 has the property "P" in u-mean if (A
u
n)
1
n=0 has

the property P . Denoting byMuK;MuS� andMuS the sets of sequences which
are convex, starshaped, respectively superadditive in u-mean, it was proved that
if 0 < v < u; then hold the strict inclusions:

K �MvK �MuK � S� �MvS� �MuS�:

The inclusion in S or MuS is more complicated to study. Some results can be
found in [6].

I am also the author or coauthor of other thirty papers with subject related
to the hierarchy of convexity of sequeces. We have studied high order hierar-
chies, hierarchy of supermultiplicity of sequences in a semigroup, inequalities, or
applications. Most of those papers were published with more than twenty years
ago, in Romanian of other less known journals. As I got demands of copies of
some of these papers, I decided to o¤er them with open access.
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THE REPRESENTATION OF n-CONVEX SEQUENCES

GH. TOADER

1. The mathematical literature is quite rich in papers which treat prob-

lems of the following type: for two sets of sequences,K 0 andK 00 construct

a transformations A with the property that A(K 0) ⊆ K 00. Usually, such

a transformation is given by a triangular matrix:

kpm,ik, i = 1, . . . ,m for m = 1, 2, . . .

i.e., to the sequence a = (am)∞m=1 is attached A(a) = (Am(a))
∞
m=1 where:

Am(a) =
mX
k=1

pm,kak.

Many references to papers concerned to transformations that preserve

the n-convexity may be found in [3]. A characterization of such transfor-

mations is contained in [2], while [1] presents a characterization of the

transformations which map the set of p-monotone sequences in that of

q-monotone sequences.

Our aim is to construct a transformation of the set of n-positive se-

quences,R+
n = {(am)∞m=1 : am ≥ 0 for m > n}, in the setKn of n-convex
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sequences. In fact, the transformation is a bijection, so that it gives a rep-

resentation of n-convex sequences by means of n-positive sequences.

2. Let us to specify some notations and definitions used in what follows.

For a real sequence (am)∞m=1, the n-th order difference is defined by:

(1) ∆0am = am, ∆
nam = ∆n−1am+1 −∆n−1am.

Definition 1. A sequence (am)∞m=1 is said to be convex of order n (or

n-convex) if ∆nam ≥ 0 for all m.
The set of all n-convex sequences is denoted by Kn.

Definition 2. A sequence (cm)∞m=1 is said to be n-positive if cm ≥ 0
for m > n.

3. Before giving the main result, which we have already announced,

let us state some auxiliary lemmas, interesting by themselves. Although

they are simple enough, we do not find them in the specialized literature.

Lemma 1. If

am =
mX
i=1

bi for all m,

then

(2) ∆nam = ∆n−1bm+1 for any m and any n ≥ 1.

The proof is easy to do by induction. As a direct consequence we have:

Lemma 2. The sequence (am)∞m=1 is n-convex, if and only if there is a

sequence (bm)∞m=1 with the property that (bm)
∞
m=2 is convex of order n−1

and such that

(3) am =
mX
i=1

bi for all m ≥ 1.

Because 0-convexity means positivity, we will prove by induction
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Lemma 3. The sequence (am)∞m=1 is n-convex if and only if there is a

n-positive sequence (cm)∞m=1 such that:

(4) am =
mX
i=1

di,mci,

where the coefficients di,m do not depend on the two sequences.

Proof. By the lemma 2, a sequence (a1m)∞m=1 is 1-convex, if and only

if there is a 1-positive sequence (cm)∞m=1, such that:

(5) a1m =
mX
i=1

ci for m ≥ 1.

Then, by the same lemma, the sequence (a2m)
∞
m=1 is 2-convex if and

only if:

(6) a2m =
mX
i=1

a1i ,

where (a1m)
∞
m=2 is 1-convex. So, there is a 1-positive sequence (c

1
m)
∞
m=1

such that:

(7) a1m+1 =
mX
i=1

c1i for m ≥ 1.

Let us to denote a11 = c1 and c1i = ci+1 for i ≥ 1. Then, the sequence
(cm)

∞
m=1 is 2-positive and (7) becomes:

(70) a1m =
mX
i=2

ci for m ≥ 2

and, by (6), we have for m ≥ 2:

a2m = a11 +
mX
i=2

a1i = c1 +
mX
i=2

iX
j=2

cj = c1 +
mX
j=2

mX
i=j

cj,

3



or:

(8) a2m =

⎧⎪⎨⎪⎩
c1 for m = 1,

c1 +
mX
j=2

(m− j + 1)cj for m ≥ 2.

Now suppose that a sequence is n-convex, if and only if there is a

n-positive sequence (cm)∞m=1 such that:

(9) anm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX
i=1

pni,mci for m < n,

n−1X
i=1

qni,mci +
mX
i=n

rni,mci for m ≥ n,

where the coefficients pni,m, q
n
i,m and rni,m are independent on the two se-

quences.

By the lemma 2, the sequence (an+1m )∞m=1 is convex of order n+1 if and

only if is a sequence (anm)
∞
m=1 such that (a

n
m)
∞
m=2 is n-convex and:

(10) an+1m =
mX
i=1

ani for any m ≥ 1.

But then, as in (9), we must have a n-positive sequence (c0m)
∞
m=1 such

that, for m ≥ 1:

(11) anm+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX
i=1

pni,mc
0
i for m < n,

n−1X
i=1

qni,mc
0
i +

mX
i=n

rni,mc
0
i for m ≥ n.

If we denote:

an1 = c1 and c0i = ci+1 for i ≥ 1
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the sequence (cm)∞m=1 is n+ 1-positive. Moreover, if we replace i + 1 by

i and, after that, m+ 1 by m, from (11) we get for m ≥ 2:

(12) anm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX
i=2

pni−1,m−1ci for m− 1 < n,

nX
i=2

qni−1,m−1ci +
mX

i=n+1

rni−1,m−1ci for m− 1 ≥ n.

From (10) and (12) we have:

a) for m = 1:

an+11 = an1 = c1;

b) for 1 < m < n+ 1:

an+1m = an1 +
mX
i=2

ani = c1 +
mX
i=2

iX
j=2

pnj−1,i−1cj

= c1 +
mX
j=2

mX
i=j

pnj−1,i−1cj =
mX
j=1

pn+1j,m cj;

c) for m ≥ n+ 1:

an+1m = an1 +
nX
i=2

ani +
mX

i=n+i

ani

= c1 +
nX
i=2

iX
j=2

pnj−1,i−1cj +
mX

i=n+1

"
nX

j=2

qnj−1,i−1cj +
mX

j=n+1

rnj−1,i−1cj

#

= c1 +
nX

j=2

nX
i=j

pnj−1,i−1cj +
nX

j=2

mX
i=n+1

qnj−1,i−1cj +
mX

j=n+1

mX
i=j

rnj−1,i−1cj

=
nX

j=1

qn+1j,m cj +
mX

j=n+1

rn+1j,m cj .

This completes the induction and, moreover, gives us the following

recurrence relations:

(13) pn+11,m = 1, pn+1j,m =
mX
i=j

pnj−1,i−1 for 2 ≤ j ≤ m < n+ 1;
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(14) qn+11,m = q, qn+1j,m =
nX
i=j

pnj−1,i−1 +
mX

i=n+1

qnj−1,i−1 for 2 ≤ j ≤ n;

(15) rn+1j,m =
mX
i=j

rnj−1,i−1 for j ≥ n+ 1.

Using these relations, we may prove the following:

Theorem 1. A sequence (am)∞m=1 is n-convex, if and only if there is

a n-positive sequence (cm)∞m=1, such that:

(16) am =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mX
i=1

µ
m− 1
i− 1

¶
ci for m < n,

n−1X
i=1

µ
n− 1
i− 1

¶
ci +

mX
i=n

µ
m+ n− i− 1

n− 1
¶
ci for m ≥ n.

Proof. Let:

(17) s0(m) = m, sj(m) =
mX
i=1

sj−1(i) for j ≥ 1.

From (13) we have successively:

pn1,m = p1,m = 1,

pn2,m =
mX
i=2

pn−11,i−1 =
mX
i=2

p1,i−1 = p2,m = m− 1 = s0(m− 1),

pn3,m =
mX
i=3

p2,i−1 = p3,m =
mX
i=3

s0(i− 2) = s1(m− 2).

Now suppose that for any n and m:

(18) pnj,m = pj,m = sj−2(m− j + 1).

Again by (13) we have then:

pnj+1,m =
mX

i=j+1

pn−1j,i−1 =
mX

i=j+1

sj−2(i− 1− j + 1) = pj+1,m

6



=

m−jX
i=1

sj−2(i) = sj−1(m− j),

that is (18) is true for any j ≥ 2.
Similarly, from (14) we have:

qn1,m = q1,m = 1 = p1,m,

qn2,m =
nX
i=2

pn1,i−1 +
mX

i=n+1

qn1,i−1 =
mX
i=2

p1,i−1 = p2,m.

Supposing:

(19) qnj,m = pj,m,

from (14) and (13) we have:

qnj+1,m =
n−1X
i=j+1

pn−1j,i−1 +
mX
i=n

qn−1j,i−1 =
n−1X
i=j+1

pj,i−1 +
mX
i=n

pj,i−1 = pj+1,m,

that is (19) holds.

As we saw in (8):

r2j,m = m− j + 1 = s0(m− j + 1) for 2 ≤ j ≤ m.

From (15) we have for j ≥ 3:

r3j,m =
mX
i=j

r2j−1,i−1 =
mX
i=j

s0(i− j + 1) =

m−j+1X
i=1

s0(i) = s1(m− j + 1).

Let us suppose that:

(20) rnj,m = sn−2(m− j + 1).

Then

rn+1j,m =
mX
i=j

rnj−1,i−1 =
mX
i=j

sn−2(i− j + 1) =

m−j+1X
i=1

sn−2(i),

that is, by induction for n, the assumption (20) is proved.

7



To finish the proof of the theorem, it is enough to determine the coef-

ficients sk(m). We have:

s1(m) =
mX
i=1

s0(i) =
mX
i=1

i =
m(m+ 1)

2
=

µ
m+ 1

2

¶
.

Let us suppose that:

(21) sk(m) =

µ
m+ k

k + 1

¶
.

Then:

sk+1(m) =
mX
i=1

sk(i) =
mX
i=1

µ
i+ k

k + 1

¶
=

µ
m+ k + 1

k + 2

¶
.

From (9), (18), (19) and (21) we have (16).
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A HIERARCHY OF CONVEXITY FOR SEQUENCES

GH. TOADER

An interesting property, called in [4] "hierarchy of convexity", was

proved, for functions, by A.M. Bruckner and E. Ostrow in [3]. The main

aim of this paper is to prove that this hierarchy is also valid in the case

of sequences.

We begin by the definitions of sequence classes which we consider in

what follows. We also prove representation theorems for some of this

classes.

Definition 1. A sequence (an)∞n=0 is called convex if its second order

differences:

(1) ∆2an = an+2 − 2an+1 + an

are positive for any n ≥ 0.
Although we have given in [7] a general representation theorem, for

making a minor change in the formulation of the result, we prefer, in this

particular case, to deduce it from the following:

1



Lemma 1. If the sequence (an)∞n=0 is given by:

(2) an =
nX

k=0

(n− k + 1)bk

then:

(3) ∆2an = bn+2.

The proof follows by a simple computation, hence it is omitted. Because

the relation (2) is equivalent with:

(20) b0 = a0, bn = an −
n−1X
k=0

(n− k + 1)bk for n ≥ 1

any sequence may be represented in this form and from lemma 1 we

deduce:

Lemma 2. The sequence (an)∞n=0 is convex if and only if bn ≥ 0 for
n ≥ 2 in the representation (2).
Definition 2. A sequence (an)∞n=0 is called starshaped if it satisfies:

(4)
an−1 − a0
n− 1 ≤ an − a0

n
for any n ≥ 2.

Remark 1. As it was proved by N. Ozeki (see [5]), a convex sequence

(an)
∞
n=0, with a0 = 0, has the property:

(40)
an−1
n− 1 ≤

an
n
.

Although this property may be easily put in connection with the similar

property of functions, the definition of starshaped sequences we have not

found neither in [5] nor elsewhere. We prefer the relation (4) instead of

(4’) to allow a0 6= 0.
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Lemma 3. The sequence (an)∞n=0 is starshaped if and only if it may be

represented by:

(5) an = n
nX

k=1

ck
k
− (n− 1)c0

with ck ≥ 0 for k ≥ 2.
Proof. We denote c0 = a0 and c1 = a1. From (4), for n = 2, we have:

a2 ≥ 2a1 − a0 = 2c1 − c0

that is, there exists a number c2 ≥ 0 such that:

a2 = 2c1 − c0 + c2 = 2(c1 + c2/2)− c0.

Suppose that (5) is valid for a natural n. From (4), for n+1, we have:

an+1 ≥ n+ 1

n
an − 1

n
a0

that is, for some cn+1 ≥ 0:

an+1 = cn+1 +
n+ 1

n
an − 1

n
a0

= cn+1 + (n+ 1)
nX

k=1

ck
k
−
µ
n2 − 1
n

+
1

n

¶
c0 = (n+ 1)

n+1X
k=1

ck
k
− nc0.

So, the lemma is proved by induction.

Lemma 4. If the sequence (an)∞n=0 is represented by (5), then:

(6) ∆2an = cn+2 − n

n+ 1
cn+1.

Definition 3.The sequence (an)∞n=0 is called superadditive if it verifies:

(7) an+m + a0 ≥ an + am, for any n,m ∈ N.
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Remark 2. As it is done in [2] for functions, we added the term a0

in the first side of the relation (7) to avoid the restriction: a0 ≤ 0. As a
matter of fact, this change is unimportant since from (7) follows that the

sequence (a0n)
∞
n=0 given by a

0
n = an − a0, satisfies the usual relation:

(70) a0n+m ≥ a0n + a0m.

The following result, deduced from [6], is easily to check up:

Lemma 5. The sequence (an)∞n=0 is superadditive if it may be repre-

sented by:

(8) a0 = d0, an = d0 +
nX

k=1

hn
k

i
dk, for n ≥ 1

with dk ≥ 0 for k ≥ 1, where [x] denotes the integer part of x.
Remark 3. Any sequence (an)∞n=0 may be represented by (8). It is

superadditive if and only if every dn verifies:

(9) dn ≥ − min
p=1,...,[n/2]

n−1X
k=2

µhn
k

i
−
hp
k

i
−
∙
n− p

k

¸¶
dk

but (9) becomes dn ≥ 0 only for prime values of n.
Definition 4. The sequence (an)∞n=0 has the property "P" in the mean,

if the sequence (An)
∞
n=0 has the property "P", where:

(10) An =
a0 + · · ·+ an

n+ 1
.

Lemma 6. The sequence (an)∞n=0 is mean-convex if and only if it may

be represented by:

(11) an =
nX

k=0

(2n− k + 1)ek

with ek ≥ 0 for k ≥ 2.
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Proof. By lemma 2, the sequence (an)∞n=0 is mean-convex if and only

if the sequence (An)
∞
n=0 may be represented under the form:

(12) An =
nX

k=0

(n− k + 1)ek

with ek ≥ 0 for k ≥ 2. From (10) we have:

(13) a0 = A0, an = (n+ 1)An − nAn−1 for n ≥ 1.

Combining (12) and (13), by a simple calculation we get (11).

Lemma 7. If the sequence (an)∞n=0 is represented by means of (11),

then:

(14) ∆2an = (n+ 3)en+2 − nen+1.

Lemma 8. The sequence (an)∞n=0 is mean-starshaped if and only if it

may be represented by:

(15) an = (n+ 1)fn + 2n
n−1X
k=1

fk
k
− (2n− 1)f0

where fk ≥ 0 for k ≥ 2.
The proof is based, like that of lemma 6, on the relation (13), and uses

for An the representation (5).

In what follows we denote by S1, S2, S3, S4, S5 and S6 the sets of convex,

mean-convex, starshaped, superadditive, mean-starshaped, respectively

mean-superadditive sequences. The main result, similar to that of [3], is

given by the following:

Theorem. The following inclusions:

(16) S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 ⊂ S6

5



hold, each of them being strictly.

Proof. (i) Let us suppose that the sequence (an)∞n=0 is represented as

in (2) and also as in (11). Then, from (3) and (14) we deduce:

(17) bn+2 = (n+ 3)en+2 − nen+1

that is:

b2 = 3e2 and (n+ 3)en+2 = bn+2 + nen+1.

So, if bn ≥ 0 for n ≥ 2, then en ≥ 0 for n ≥ 2. By lemmas 2 and 6,
if the sequence (an)∞n=0 is convex, it is mean-convex, i.e. S1 ⊂ S2. The

inclusion is strictly because we have, for example, b3 = 4e3 − e2, and so

e2 = 1 and e3 = 0 give us b3 = −1 < 0.
(ii) Let us represent the sequence (an)∞n=0 under the forms (11) and

(5). From (14) and (6) we have:

(18) (n+ 3)en+3 − nen+1 = cn+2 − n

n+ 1
cn+1

that is:

c2 = 3e2, c3 = 4e3 + 1/2 · e2
and:

cn = (n+ 1)en +
1

n− 1
n−1X
k=2

(k − 1)ek

what may be proved by induction. So, en ≥ 0 for n ≥ 2 implies cn ≥ 0
for n ≥ 2, i.e. by lemmas 3 and 6, S2 ⊂ S3. On the other hand, for c2 = 3

and c3 = 0, we have e3 = −1/8 < 0, that is the above inclusion is strictly.
(iii) Let us suppose that the sequence (an)∞n=0 is in S3. Then, on the

basis of the representation given by the lemma 3:

an+m − a0 − an − am = n
n+mX
k=n+1

ck
k
+m

m+nX
k=m+1

ck
k
≥ 0

6



that is (an)∞n=0 is in S4. The inclusion S3 ⊂ S4 is strictly because the

sequence with the general term an = [n/2] is, by lemma 5, in S4 but:

a3 − a0
3

− a2 − a0
2

= −1
6
< 0

so that it is not in S3.

(iv) Let the sequence (an)∞n=0 be in S4. Then:

an + a0 ≥ ak + an−k for k = 1, . . . , n− 1

that is:

(n− 1)(an + a0) ≥ 2
n−1X
k=1

ak

or:

an ≥ 2

n− 1
n−1X
k=1

ak − a0.

So:

An −A0
n

=

nX
k=1

ak − na0

n(n+ 1)
≥

µ
1 +

2

n− 1
¶ n−1X

k=1

ak − (n+ 1)a0

n(n+ 1)

=

n−1X
k=1

ak − (n− 1)a0

n(n− 1) =
An−1 −A0

n− 1
i.e. (an)∞n=0 is in S5. The inclusion S4 ⊂ S5 is, in his turn, strictly because

if (an)∞n=0 is represented through (5) we have:

a4 + a0 − a3 − a1 = 5c4 − 4
3
c3 + c2 < 0

for c4 = c2 = 0, c3 = 1.

7



(v) The inclusion S5 ⊂ S6 follows from (iii). His strictness also follows

by taking An = [n/2], that is:

an = (n+ 1)
hn
2

i
− n

∙
n− 1
2

¸
which gives a sequence in S6 but not in S5.

Remark 4. As follows from [5], N. Ozeki has proved, by other means,

the inclusion S1 ⊂ S2, and, in the case a0 = 0, S1 ⊂ S3.

Remark 5. If we set the sequence (an)∞n=0 in the form (15), we have:

an+m + a0 − an − am = n(fn+m − fn) +m(fn+m − fm)

+fn+m + fn + fm + 2n
n+m−1X
k=n+1

fk
k
+ 2m

m+n−1X
k=m+1

fk
k
.

Taking into account the inclusion S4 ⊂ S5, this means that in order

to get a superadditive sequence (an)∞n=0 it is necessary to use in (15)

a sequence (fn)∞n=0 with fn ≥ 0 for n ≥ 2, and it is sufficiently that

the sequence (fn)∞n=1 be increasing. In spite of this result and that given

in the remark 3, we have unfortunately no satisfactory formula for the

representation of superadditive sequences.

Remark 6. The theorem may be used to simplify some of the proofs

from [3].
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APPROXIMATION AND CONVEXITY, Cluj-Napoca, 1983, 167-168

α-CONVEX SEQUENCES

GH. TOADER

In [3] we have shown that the "hierarchy of convexity" established

for functions by A.M. Bruckner and E. Ostrow in [1], is also valid for

sequences. In [4] we have extended this hierarchy, inserting between the

set of convex sequences and that of starshaped sequences an infinity

of sets of sequences, namely sequences with convex weighted arithmetic

means. In this paper we also insert an infinity of sets of sequences between

the set of convex sequences and that of starshaped sequences, by defining

α-convex sequences. Such a definition was given for analytic functions by

P.T. Mocanu in [2].

Let us recall the following:

Definition 1. A sequence (an)∞n=0 is called:

a) convex, if:

(1) ∆2an = an+2 − 2an+1 + an ≥ 0, for n ≥ 0;

b) starshaped, if:

(2)
an+1 − a0
n+ 1

≥ an − a0
n

, for n ≥ 1.

1



Now for any α ∈ [0, 1] we give the following:
Definition 2. A sequence (an)∞n=0 is called α-convex if the sequence:µ

α(an+1 − an) + (1− α)
an − a0

n

¶∞
n=1

is increasing.

Obviously we have:

Lemma 1. The sequence (an)∞n=0 is α-convex, if and only if:

(3) α∆2an + (1− α)

µ
an+1 − a0
n+ 1

− an − a0
n

¶
≥ 0, for n ≥ 1.

Lemma 2. The sequence (an)∞n=0 is α-convex if and only if the se-

quence:

(an − a0 + α[n(an+1 − an)− (an − a0)])
∞
n=0

is starshaped.

It can be also proved:

Lemma 3. Any α-convex sequence is starshaped.

Lemma 4. The sequence (an)∞n=0 is α-convex (for α > 0) if and only

if it may be represented by:

(4) an = n
nX

k=1

bk
k
− (n− 1)b0, for n ≥ 0

with

(5) bn+2 ≥
∙
1− 1

α(n+ 1)

¸
bn+1, for n ≥ 0, b2 ≥ 0.

Theorem. If a sequence if α-convex, then it is also β-convex for any

0 ≤ β ≤ α.

2



Remark. Obviously 1-convexity means convexity and 0-convexity

means starshapedness. So, the theorem gives an infinite chain of sequence

classes between the set of convex sequences and that of starshaped se-

quences. Every inclusion is proper because of (5).
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SEMINARUL "THEODOR ANGHELUŢĂ", Cluj-Napoca, 1983, 219-222

A TRANSFORMATION THAT PRESERVES SOME
SEQUENCE CLASSES

GH. TOADER

Abstract. Se demonstrează că dacă transformarea (2) păstrează

clasa de şiruri definită de (9), atunci ponderile pn sunt de forma (4).

Aplicăm rezultatul la şirurile α-convexe.

In [2] are exposed more results on convex sequences, that is sequences

(xn)
∞
n=0 with the property:

(1) ∆2xn = xn+2 − 2xn+1 + xn ≥ 0 for n ≥ 0.

Some of these results deal with the preservation of convexity by matrix

transformations and particularly by weighted arithmetic means. So is the

following characterization theorem from [7], which we present in the form

given in [1] because in [7] the sequences are indexed starting from 1 not

from 0 as we do. The difference seems minor but it allows a simplification

of the results.

Theorem 0. The sequence (Xn)
∞
n=0 given by:

(2) Xn =
p0x0 + · · ·+ pnxn
p0 + · · ·+ pn

for n ≥ 0

1



is convex for any convex sequence (xn)∞n=0 if and only if:

(3) pn =

n−1Y
k=0

(kp0 + p1)

n!pn−10

for n ≥ 2

with p0 > 0 and p1 > 0 arbitrary.

In [4] we put (3) in the form:

(4) pn = p0

µ
u+ n− 1

n

¶
for n ≥ 0

where u > 0 is arbitrary (in fact it is p1/p0) and:

(5)

µ
v

0

¶
= 1,

µ
v

n

¶
=
1

n!

n−1Y
k=0

(v − k) for k ≥ 1, v ∈ R.

In this form, the proof of Theorem 0 is simpler and (2) becomes:

(6) Xu
n =

nX
k=0

µ
u+ n− 1

n

¶
xkµ

u+ n

n

¶ .

In [5] we proved that (4) characterizes also the transformations that

preserve starshaped sequences, i.e. sequence (xn)∞n=0 with the property:

(7) D1xn =
xn+1 − x0
n+ 1

− xn − x0
n

≥ 0 for n ≥ 1.

In what follows we generalize the necessity part of the result to some

other sequence classes.

For some fixed functions a, b, c, d : N→ R, let us denote:

(8) Txn = a(n)xn+2 + b(n)xn+1 + c(n)xn + d(n)x0

and consider the set:

(9) S = {(xn)∞n=0; Txn ≥ 0, ∀ n ≥ 0}.

2



Theorem 1. If (kn)∞n=0 ∈ S for any k ∈ R and for (xn)∞n=0 ∈ S, (2)

gives an (Xn)
∞
n=0 in S, then there is an u > 0 such that the weights pn

be given by (4).

Proof.We first observe that (kn)∞n=0 ∈ S for any real k, if and only if:

(10) a(n)(n+ 2) + b(n)(n+ 1) + c(n)n = 0.

Then, denoting by:

Xn =

k
nX
i=0

ipi

nX
i=0

pi

from the hypothesis we deduce that (Xn)
∞
n=0 is in S. Taking u = p1/p0,

we have:

p1 = p0u = p0

µ
u

1

¶
.

As for n = 0, (10) becomes:

2a(2) + b(2) = 0

and

X0 = 0, X1 =
ku

1 + u
, X2 = k

up0 + 2p2
p0(1 + u) + p2

we have:

TX0 = k

∙
a(2)

up0 + 2p2
p0(1 + u) + p2

+ b(2)
u

1 + u

¸
= ka(2)

∙
up0 + 2p2

p0(1 + u) + p2
− 2u

1 + u

¸
.

So TX0 ≥ 0 for any k, if and only if:

(up0 + 2p2)(1 + u)− 2u[p0(1 + u) + p2] = 0

3



or:

p2 =
u(1 + u)

2
p0 = p0

µ
u+ 1

2

¶
.

Assume (4) valid for n ≤ m+ 1. Then:

Xm =

k
mX
i=0

i

µ
u+ i− 1

i

¶
µ
u+m

m

¶ = k

u
mX
i=1

µ
u+ i− 1
i− 1

¶
µ
u+m

m

¶ =
kum

u+ 1
.

In the same manner:

Xm+1 =
ku(m+ 1)

u+ 1

and

Xm+2 = k

up0

µ
u+m+ 1

m

¶
+ (m+ 2)pm+2

p0

µ
u+m+ 1

m+ 1

¶
+ pm+2

.

Hence, by (10):

TXm = ka(m)

⎡⎢⎢⎣up0
µ
u+m+ 1

m

¶
+ (m+ 2)pm+2

p0

µ
u+m+ 1

m+ 1

¶
+ pm+2

− u(m+ 2)

u+ 1

⎤⎥⎥⎦
and so TXn ≥ 0 for any k if and only if it is zero, that is:

pm+2 = p0
u

m+ 2

∙
(m+ 2)

µ
u+m+ 1

m+ 1

¶
− (m+ 1)

µ
u+m+ 1

m+ 1

¶¸
= p0

µ
u+m+ 1

m+ 2

¶
.

So, by induction, (4) is valid for any n.

In [6] we have given the following:

Definition. The sequence (xn)∞n=0 is called α-convex (with α ≥ 0) if:

(11) α∆2xn + (1− α)D1xn ≥ 0 for n ≥ 0.
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Consequence. If (Xn)
∞
n=0 given by (2) is α-convex for any α-convex

sequence (xn)∞n=0, then there is an u > 0 such that pn be given by (4).

Proof. For xn = kn, we have:

α∆2xn + (1− α)D1xn = 0

so that it is α-convex and we may apply Theorem 1.

In [3] we have considered, beside convex and starshaped sequences,

also superadditive sequences, that is sequences (xn)∞n=0 that satisfy:

(12) xn+m + x0 ≥ xn + xm for any n,m ≥ 0.

Although their definition is not of the form (8) and (9), may be proved:

Theorem 2. If (Xn)
∞
n=0 given by (2) is superadditive for any superad-

ditive sequence (xn)∞n=0, then pn are of the form (4) for some u > 0.

As we stated above, for convex and starshaped sequences we proved

in [4] and [5] a converse of Theorem 1. In the case of superadditivity we

can prove only the weaker result:

Lemma. If (xn)∞n=0 satisfies:

(13) xn+1 + x0 ≥ xn + x1

and (Xn)
∞
n=0 is given by (6), for some u > 0, then this also verifies the

relation (13).

Proof. From (13) we have:

xn+1 − xk ≥ (n− k + 1)(x1 − x0)

5



and so:

Xn+1+X0−Xn−X1 =

µ
u+ n

n+ 1

¶ nX
k=0

µ
u+ k − 1

k

¶
(xn+1 − xk)µ

u+ n

n

¶µ
u+ n+ 1

n+ 1

¶ +u
x0 − x1
u+ 1

≥ u(x1 − x0)

(u+ 1)

µ
u+ n+ 1

n

¶ ∙(n+ 1)µu+ n

n

¶
− u

µ
u+ n

n− 1

¶¸
+
u(x0 − x1)

u+ 1
= 0.
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metic means of real sequences, Matem. Vesnik 9(24), 1972, 205-212.

Department of Mathematics

Technical University

3400 Cluj-Napoca

Romania

6
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APPROXIMATION AND CONVEXITY, Cluj-Napoca, 1984

"Babeş-Bolyai" University Preprint 6(1984), 199-202

SOME GENERALIZATIONS OF CONVEXITY FOR
SEQUENCES

GH. TOADER AND Ş. ŢIGAN

In [1] it is defined the mean-convexity and it is proved that this gen-

eralizes the convexity.

A sequence (an)∞n=0 is called mean-convex if the sequence (Cn)
∞
n=0 of

Cesaro means

(1) Cn =
a0 + · · ·+ an

n+ 1

is convex, that is:

(2) ∆2Cn = Cn+1 − 2Cn+1 + Cn ≥ 0, ∀ n ≥ 0.

The first generalization that we propose in this paper consists in the

substitution of (1) by a simpler mean:

(3) An =
an + an+1

2

or, more generally by:

(4) Ap
n =

an + pan+1
1 + p

,

1



where p is a given nonnegative real number.

It is easy to prove:

Theorem 1. If the sequence (an)∞n=0 is convex then (A
p
n)
∞
n=0 is also

convex, for any p ≥ 0.
Remark 1. If we denote by S the set of convex sequences and by

Sp = {(an)∞n=0 : (Ap
n)
∞
n=0 ∈ S},

the Theorem 1 means:

(5) S ⊂ Sp, ∀ p ≥ 0.

It is also easy to prove the following representation theorem:

Theorem 2. The sequence (an)∞n=0 belongs to S
p if and only if

an =
nX

k=0

bk,

where the sequence (bn + pbn+1)
∞
n=1 is nondecrasing.

Remark 2. As it was proved in [1], the sequence (Ap
n)
∞
n=0 is convex if

and only if:

(6) Ap
n =

nX
k=0

(n− k + 1)ck, ck ≥ 0, for k ≥ 2.

Using this result we may find simpler representation theorems. So we

have:

Theorem 3. The sequence (an)∞n=0 belongs to S1 if and only if:

(7) an = 2
n−1X
k=0

∙
n+ 1− k

2

¸
ck + (−1)nc0, ck ≥ 0 for k ≥ 2

([ ] denotes the integer part).

2



Remark 3. It is easy to see that there is no inclusion relation between

Sp and Sq if p 6= q. Also there is no relation between a set Sp with p > 0

and the set of starshaped sequences, or that of superadditive sequences

(see [3]).

From this point of view, the mean (1) is better than (3), because for

the mean (1) such relations between Sp and Sq are valid (see [1]).

Remark 4. The mean (3) may be also generalized by iteration, or by

taking:

(40) An =
1

k

k−1X
i=0

an+i.

Another generalization of convexity is given by the following:

Definition 1. The sequence (an)∞n=0 is called weakly quasi-convex if

(8) an ≤ max{an−1, an+1}, ∀ n ≥ 1.

If the equality is excluded from (8) the sequence (an)∞n=0 is called

strictly quasi-convex.

We have directly:

Theorem 4. The sequence (an)∞n=0 is

a) weakly qausi-convex if and only if:

(9) an =
nX

k=0

bk,

where bk > 0 implies bk+1 ≥ 0, for k > 1;

b) strictly quasi-convex if and only if in (9), bk > 0 implies bk+1 > 0,

for k > 1, and at most one bk is zero.
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Definition 2. The sequence (an)∞n=0 is unimodal (strictly unimodal)

if (ak)nk=0 is nonincreasing (decreasing) and (ak)
∞
k=n+1 is nondecreasing

(respectively, increasing), for some n ≥ 0.
Consequence 1. The sequence (an)∞n=0 is strictly quasi-convex if and

only if it is strictly unimodal.

Remark 5. An unimodal sequence is weakly quasi-convex but the

converse assertion is false. For instance, the sequence: 2,1,2,2,1,2,2,1,. . . is

weakly quasi-convex but it is not unimodal. To amend this situation, we

consider also the following:

Definition 3. The sequence (an)∞n=0 is called quasi-convex if for any

0 ≤ n < m < p, we have:

(10) am ≤ max{an, ap}.

Theorem 5. The sequence (an)∞n=0 is quasi-convex if and only if in

the representation (9), bk > 0 implies bk+i ≥ 0, for any k, i > 1.
Consequence 2. The sequence (an)∞n=0 is quasi-convex if and only if

it is unimodal.

Theorem 6. The following implications hold:

a) strictly convex ⇒ strictly quasi-convex;

b) convex ⇒ quasi-convex;

c) strictly quasi-convex ⇒ quasi-convex;

d) quasi-convex ⇒ weakly quasi-convex.

Theorem 7. If the sequence (an)∞n=0 is quasi-convex (weakly quasi-

convex, respectively strictly quasi-convex) then so is also the sequence

(Ap
n)
∞
n=0, for any p ≥ 0.

It can be proved as in the case of the functions (see [2]) the following:

4



Theorem 8. If (an)∞n=0 is a positive convex sequence and (bn)∞n=0 is a

strictly positive, concave sequence, then the sequence (an/bn)∞n=0 is quasi-

convex.
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ON SOME INEQUALITIES INVOLVING CONVEX
SEQUENCES

D. ANDRICA, I. RAŞA AND GH. TOADER

(CLUJ-NAPOCA)

Several inequalities connected with convex sequences are known. Let

us mention those of Nanson [4], Steinig [6] and Ozeki (see [2]). In what

follows, we shall use a simple method which allows the substitution of

the conditions

(1) ∆2an = an+2 − 2an+1 + an ≥ 0, for n ≥ 1,

that characterize convex sequences, by

(2) m ≤ ∆2an ≤M, for n ≥ 1.

The obtained inequalities are not only more general, but, as we shall

see on some examples, they strengthen the initial inequalities. The same

method was used for functions in [5] and [1].
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Before presenting the main results, let us give a representation theorem

of sequences that satisfy (2). A more general result is given in [7], but we

sketch here the proof which is simple in this particular case.

Theorem 1. The real sequence (an)n≥1 satisfies (2) if and only if there

is a sequence (bn)n≥1 which verifies

(3) m ≤ bn ≤M, for n > 2

such that

(4) an =
nX

k=1

(n− k + 1)bk, for any n ≥ 1.

Proof. Any sequence (an)n≥1 may be written as (4) by taking

b1 = a1, bn = an −
n−1X
k=1

(n− k + 1)bk, for n ≥ 2.

Because (4) implies

(5) ∆2an = bn+2

the conditions (2) and (3) are equivalent.

The method which gives the results what follow is based on a simple

remark: if the sequence (an)n≥1 satisfies (2), then the sequences (cn)n≥1

and (dn)n≥1 given by

(6) cn = an −m
n2

2
, dn =M

n2

2
− an

are convex. So, we can apply to these the results valid for convex se-

quences. To complete the proofs one requires only some simple calcula-

tions which we omit. As a matter of fact, we content ourselves to present

2



for exemplification only two results: the first obtained from the inequality

of Nanson [4], the second from that of Steinig [6].

Theorem 2. If the sequence (an)n≥1 satisfies (2), then for any n ≥ 1
hold

(7)
2n+ 1

6
m ≤ a1 + a3 + · · ·+ a2n+1

n+ 1
−a2 + a4 + · · ·+ a2n

n
≤ 2n+ 1

6
M

and

(8)
n(2n+ 1)

6
m ≤ a1 − a2 + a3 − a4 + · · ·+ a2n+1

−a1 + a3 + · · ·+ a2n+1
n+ 1

≤ n(2n+ 1)

6
M

Applications. Let an = an−1. Then ∆2an = an−1(a − 1)2. If a > 1,

then m = (a− 1)2 and (7) gives us

(9)
1 + a2 + · · ·+ a2n

n+ 1
− a+ a3 + · · ·+ a2n−1

n
≥ 2n+ 1

6
(a− 1)2

This is an improvement of an inequality of Wilson (see [3]).

From (8) it follows

(10) 1−a+a2−a3+ · · ·+a2n− 1 + a2 + · · ·+ a2n

n+ 1
≥ n(2n+ 1)

6
(a−1)2

which is an improvement of an inequality of Steinig [6]. If 0 < a < 1,

then m = 0 and M = (a− 1)2, so that (7) and (8) give

(11) 0 ≤ 1 + a2 + · · ·+ a2n

n+ 1
− a+ a3 + · · ·+ a2n−1

n
≤ 2n+ 1

6
(a− 1)2,

respectively

(12) 0 ≤ 1− a+ a2 − a3 + · · ·+ a2n − 1 + a2 + · · ·+ a2n

n+ 1

≤ n(2n+ 1)

6
(a− 1)2.
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STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XXIX, 1984, 43-46

GENERALIZED CONVEX SEQUENCES

GH. TOADER

The notion of convexity was generalized in many ways. Some of these

generalizations are based on the geometric interpretation of convexity

and resort to an alteration of the finite differences. In this case it was

impossible to transpose them for high order convexities. In this paper,

we propose another generalization of convexity based on the notion of

finite differences. For the moment we study the convexity of sequences of

elements of an abelian group.

Let (X,+) be an abelian group and (xm)∞m=1 a sequence of elements of

X. With usual notations, we define the finite differences by the relations:

(1) ∆0xm = xm, ∆n+1xm = ∆nxm+1 −∆nxm for n ≥ 0.

One proves by induction, as in the classical case, the validity of the

following relation:

(2) ∆nxm =
nX
i=0

(−1)n−i
µ
n

i

¶
xm+i

where the second member must be interpreted in the natural way by

means of the operation of the group. In fact, finite differences defined for

sequences of elements of a commutative field was considered previously

1



by M.D. Torres in [10], but obviously a group structure is enough for our

purpose.

Let P be an arbitrary proper subset of X.

Definition 1. The sequence (xm)∞m=1 is said to be P − n-convex if

∆nxm ∈ P for any m.

Before passing to the study of the notion just introduces, let us give

some examples.

Example 1. For the group (R,+) with P = R+ we obtain the usual

n-convexity (see [5] for more references).

Example 2. In the same group, for P = {0} we obtain n-polynomial

sequences (met especially in the case of functions). Particularly, for n = 2

one get the arithmetical progressions.

Example 3. Ju.N. Subbotin has considered in [8] the set of the se-

quences with the property: |∆nxm| ≤ 1 for any m. This may be obtained
by choosing P = [−1, 1].
Example 4. The case (R−{0}, ·) with P = [1,∞) corresponds to log-

arithmic n-convexity. In fact, one obtains a generalization of this because

the sequences so defined need not to be positive.

Example 5. In the same group, but with P = {1} we obtain sequences
which can call logarithmic n-polynomial. Particularly, for n = 2 one get

geometrical progressions.

Example 6. In the group (Q−{0}, ·) with P = N we obtain sequences
which we name n-divisible.

Remark 1. Although the way which we have chosen to arrive at the

definition 1 is suitable, the following method may be regarded more nat-

ural. Let (P,+) be a semigroup and (xm)∞m=1 be a sequence of elements

2



of P . We say that xm has finite difference of first order if there is d ∈ P

such that xm+1 = xm + d. In this case we denote d by ∆1xm. Similarly

may exist the differences of higher order. A sequence is named n-convex

if all his elements have differences of order n. This method is suggested

by example 6.

Remark 2. Analogously, we may define the convexity of a function

with values in a group (in which we have fixed certain subset P ).

Although the definition 1 seems to be too general, we may transpose for

it all the results which we obtained in [9] concerning the representation

of n-convex sequences. We begin with the following useful result which

is easy to prove by induction:

Lemma 1. If the sequences (xm)∞m=1 and (ym)
∞
m=1 are related by:

(3) xm =
mX
i=1

yi for m ≥ 1

then:

(4) ∆nxm = ∆n−1ym+1 for n ≥ 1.

As a direct consequence, we have:

Lemma 2. The sequence (xm)∞m=1 is P−n-convex if and only if there is
a sequence (ym)∞m=1 such that holds (3) and (ym)

∞
m=2 be P−n−1-convex.

To formulate the following result (which may be obtained by successive

application of lemma 2) we need the following:

Definition 2. The sequence (ym)∞m=1 is a n − P sequence if ym ∈ P

for m > n.

3



Lemma 3. There are the natural numbers pnm,i (for any n,m and i ≤
m) such that a sequence (xm)∞m=1 is P − n-convex if and only if it may

be represented by:

(5) xm =
mX
i=1

pnm,iyi for any m

with a n− P sequence (ym)∞m=1.

In [9] we have determined the numbers pnm,i for the usual case of n-

convex sequences (example 1). We shall see that they are generally valid.

We prove first:

Lemma 4. For an arbitrary sequence (ym)∞m=1, define the sequence

(xm)
∞
m=1 by:

(6) xm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mX
i=1

µ
m− 1
i− 1

¶
yi for m < n

n−1X
i=1

µ
n− 1
i− 1

¶
yi +

mX
i=n

µ
n+m− i− 1

n− 1
¶
yi for m ≥ n.

Then:

(7) ∆nxm = yn+m for any m ≥ 1

and

(70) ∆kx1 = yk+1 for k < n.

4



Proof. We shall prove only the relations (7) for m < n. The other

cases may be proved analogously. From (2) and (6) we have:

∆nxm =
n−m−1X
j=0

(−1)n−j
µ
n

j

¶m+jX
i=1

µ
m+ j − 1

i− 1
¶
yi

+
nX

j=n−m
(−1)n−j

µ
n

j

¶ n−1X
i=1

µ
m+ j − 1

i− 1
¶
yi +

m+jX
i=n

µ
m+ n+ j − i− 1

n− 1
¶
yi

or, changing the order of addition:

∆nxm =
m−1X
i=1

yi

nX
j=0

(−1)n−j
µ
n

j

¶µ
m+ j − 1

i− 1
¶

+
n−1X
i=m

yi

nX
j=i−m

(−1)n−j
µ
n

j

¶µ
m+ j − 1

i− 1
¶

+
n+mX
i=n

yi

nX
j=i−m

(−1)n−j
µ
n

j

¶µ
m+ n+ j − i− 1

n− 1
¶
.

the first sum missing for m = 1. Because, for any m and n we have:

(8)
mX
j=0

(−1)m−j
µ
m

j

¶µ
n+ j

k

¶
= 0, if k < m and k ≤ n

(as is proved, for example, in [7] p.48), the first sum is zero. Making in

the other two sums the changement of variable: j = i −m + k, by (8),

we get (7).

So we get the coefficients pnm,j from lemma 3, that is:

Theorem 1. A sequence (xm)∞m=1 is P − n-convex if and only if there

is a n− P sequence (ym)∞m=1 such that (6) holds.

Remark 3. In the usual case of n-convex sequences, in [9] we found the

representation (6) by induction from lemmas 2 and 3. Taking in account

the lemma 4, we can obtain a similar representation by solving the system

5



of equations (7) and (7’) (see [1]). Prof. A. Lupaş pointed out to me "the

fundamental formula of transformation of divided differences" given by

T. Popoviciu in [6], from which (6) may be also deduced if we make the

notations (7) and (7’). In [2] and [3] may be also found some formulas

related to Popoviciu’s formula.

Remark 4. As is usually done in defining the logarithmic-convexity

(see [4] for αm-convexity also), we may assume that the transformed

sequence, by some fixed function, is convex. That is, given the set M ,

the group (X,+), the set P ⊂ X, and the function f :M → X, we may

define the f − F − n-convexity of a sequence (xm)∞m=1 from M , taking

∆0xm = f(xm). For example, for f : R−{0}→ R defined by f(x) = 1/x

and the addition on R, we obtain "harmonic progressions" for P = {0}
and a related convexity for P = [0,∞). If f is injective, we may obtain
also the representation of such sequences using f−1 : f(M)→M .
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STARSHAPED SEQUENCES

GH. TOADER

In [4] we have shown that the "hierarchy convexity" established, for

the functions by A.M. Bruckner and E. Ostrow in [1], is also valid for se-

quences. Starting from a property proved in [7] and generalized in [2], we

have extended in [6] this hierarchy, inserting between the set of convex se-

quences and that of starshaped sequences an infinity of sets of sequences.

In this paper we prove similar results for starshaped sequences.

Let us recall some definitions and some results from [4] and [6] which

we need in what follows.

Definition 1. A sequence (an)∞n=0 is called:

a) convex, if:

(1) ∆2an = an+2 − 2an+1 + an ≥ 0, for n ≥ 0;

b) starshaped, if it satisfies:

(2) D1an =
an+1 − a0
n+ 1

− an − a0
n

≥ 0, for n ≥ 1;

1



c) superadditive, if:

(3) an+m + a0 ≥ an + am, for any n and m.

Definition 2. The sequence (an)∞n=0 has the property "P" in the mean,

if the sequence (An)
∞
n=0 has the property "P", where:

(4) An =
a0 + · · ·+ an

n+ 1
, for n ≥ 0.

Remark 1. Denoting by S1, S2, S3, S4, S5 and S6 the sets of convex,

mean-convex, starshaped, superadditive, mean-starshaped, respectively

mean-superadditive sequences, we have proved in [4] the proper inclu-

sions:

(5) S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 ⊂ S6.

As it is shown in [3], N. Ozeki has proved that S1 ⊂ S2 and, if a0 = 0,

S1 ⊂ S3. As a matter of fact, we attached a0 in (2) and (3) just to allow

a0 6= 0 in (5).
Remark 2. Instead of the arithmetic mean (4), in [7] is considered

the weighted mean:

(6) An =
p0a0 + · · ·+ pnan
p0 + · · ·+ pn

with pn > 0 for n ≥ 0. The result from [7] was put in [6] in the following
simpler form: the sequence (An)

∞
n=0 is convex for any convex (an)

∞
n=0 if

and only if there is an u > 0 such that:

(7) pn = p0

µ
u+ n− 1

n

¶
, for n ≥ 1

2



where:

(8)

µ
v

0

¶
= 1,

µ
v

n

¶
=
1

n!

n−1Y
k=0

(v − k), for n ≥ 1, v ∈ R.

In this case:

(9) An = Au
n =

nX
k=0

µ
u+ k − 1

k

¶
akµ

u+ n

n

¶ .

Definition 3. The sequence (an)∞n=0 is u-mean-convex if (A
u
n)
∞
n=0 is

convex. The set of all u-mean-convex sequences is denoted by Su
2 .

In [6] we have proved:

Theorem 1. If 0 < v < u, then hold the strict inclusions:

(10) S1 ⊂ Su
2 ⊂ Sv

2 ⊂ S3.

For some fixed functions f, g, h, k : N→ R, let us denote by:

(11) Tan = f(n)an+2 + g(n)an+1 + h(n)an + k(n)a0

and consider the set:

(12) S = {(an)∞n=0 : Tan ≥ 0, ∀ n ≥ 0}.

We have proved in [5] the following general result:

Lemma 1. If (cn)∞n=0 ∈ S for any real c and if (6) gives an (An)
∞
n=0

in S for any (an)∞n=0 from S, then there is an u > 0 such that the weights

pn be given by (7).
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Consequence. If (An)
∞
n=0 given by (6) is starshaped for any star-

shaped (an)∞n=0 then the weights pn are given by (7) with u > 0 adequate

chosen.

Definition 4. The sequence (an)∞n=0 is u-mean-starshaped if (Au
n)
∞
n=0,

given by (9) is starshaped. The set of u-mean-starshaped sequences is

denoted by Su
5 .

Lemma 2. The sequence (an)∞n=0 is u-mean-starshaped if and only if

it may be represented by:

(13) a0 = c0, a1 = (1 + 1/u)c1 − c0/u,

an =
³
1 +

n

u

´
cn + n

µ
1 +

1

u

¶ n−1X
k=1

ck
k
−
³
n− 1 + n

u

´
c0, for n ≥ 2

where ck ≥ 0 for k ≥ 2.
Proof. As it is proved in [4], a sequence (an)∞n=0 is starshaped if and

only if it may be represented by:

(14) an = n
nX

k=1

bk
k
− (n− 1)b0

with bk ≥ 0 for n ≥ 2. So, (an)∞n=0 is u-mean-starshaped if and only if
(Au

n)
∞
n=0 may be represented by:

(140) Au
n = n

nX
k=1

ck
k
− (n− 1)c0

with ck ≥ 0 for k ≥ 2. But, from (9), we have:µ
u+ n− 1

n

¶
an =

µ
u+ n

n

¶
Au
n −

µ
u+ n− 1
n− 1

¶
Au
n−1

that is:

(15) an =
³
1 +

n

u

´
Au
n −

n

u
Au
n−1.

4



From (14’) and (15) we get (13).

Remark 3. It was proved in [4] that if the sequence (an)∞n=1 is repre-

sented by (14), then:

(16) ∆2an = bn+2 − n

n+ 1
bn+1.

It is easy to check also the following results:

Lemma 3. If the sequence (an)∞n=0 is represented by (13), then:

(17) ∆2a0 =

µ
1 +

2

u

¶
c2,

∆2an =

µ
1 +

n+ 2

u

¶
cn+2 − n

n+ 1

µ
1 +

2n+ 3

u

¶
cn+1 +

n− 1
u

cn, for n > 0.

Theorem 2. If 0 < v < u, then the strict inclusions hold:

(18) S3 ⊂ Su
5 ⊂ Sv

5 .

Proof. (i) Let us suppose that the sequence (an)∞n=0 is represented as

in (13) and also as in (14). This may be done for every sequence. Then,

from (16) and (17) we deduce:

b2 =

µ
1 +

2

u

¶
c2

and

bn+2 − n

n+ 1
bn+1 =

µ
1 +

n+ 2

u

¶
cn+2 − n

n+ 1

µ
1 +

2n+ 3

u

¶
cn+1

+
n− 1
u

cn

5



for n ≥ 1, which give, by induction:

cn =
u

u+ n
bn +

n(n− 2)
(u+ n)(n− 1)cn−1, for n ≥ 2.

So, if bn ≥ 0 for n ≥ 2, we obtain, step by step, cn ≥ 0 for n ≥ 2. That
is S3 ⊂ Su

5 . The inclusion is proper because we have:

b3 =

µ
1 +

3

u

¶
c3 − 2

3u
c2

which yields b3 < 0 for c2 = 1 and c3 = 0.

(ii) Now suppose that the sequence (an)∞n=0 is represented by (13) and

by:

(130) a0 = d0, a1 = (1 + 1/v)d1 − d0/v,

an = (1 + n/v)dn + n

µ
1 +

1

v

¶ n−1X
k=1

dk
k
−
³
n− 1 + n

v

´
d0, for n ≥ 2.

From (17) we have:

(1 + 2/u)c2 = (1 + 2/v)d2

and for n ≥ 1:µ
1 +

n+ 2

u

¶
cn+2 − n

n+ 1

µ
1 +

2n+ 3

u

¶
cn+1 +

n− 1
u

cn

=

µ
1 +

n+ 2

v

¶
dn+2 − n

n+ 1

µ
1 +

2n+ 3

v

¶
dn+1 +

n− 1
v

dn.

So, again by induction:

dn =
v(u+ n)

u(v + n)
cn +

v(u− v)

u

n!

n− 1
n−1X
k=2

(k − 1)ck
k!(v + k) . . . (v + n)
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Since u > v, if ck ≥ 0 for n ≥ 2, then dn ≥ 0 for n ≥ 2. Hence, by
Lemma 2, Su

5 ⊂ Sv
5 . The inclusion is proper because:

c3 =
u(v + 3)

v(u+ 3)
d3 +

3

2

u(v − u)

v(u+ 2)(u+ 3)
d2

and d3 = 0, d2 > 0 give c3 < 0.

Remark 4. For u = 1, Su
5 = S5, so that S4 ⊂ S15 . By Theorem 2, we

have also:

(19) S4 ⊂ Su
5 , for 0 < u < 1.

As we shall prove by the following examples, there is no inclusion

between S4 and Su
5 for u > 1.

Example 1. For an = [n/2], where [x] denotes the integer part of x,

we have:

D1Au
2 =

u(1− u)

6(u+ 2)(u+ 3)

so that (an)∞n=0 is in S4 (see [4]) but not in Su
5 for u > 1.

Example 2. For an arbitrary sequence of the form (13) we have:

an + a0 − an−1 − a1 =
³
1 +

n

u

´
cn +

u− n2 + 3n− 1
u(n− 1) cn−1

+

µ
1 +

1

u

¶ n−2X
k=2

ck
k
.

For any u > 0 there is an n0 such that n20 − 3n + 1 > u. Hence, if we

take ck = 0 for k 6= n0 − 1 and cn0−1 = 1, we get a sequence (an)
∞
n=0 in

Su
5 but not in S4.
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metic means of real sequences, Mat. Vesnik, 9(24), 205-212 (1972).

Department of Mathematics

Technical University

3400 Cluj-Napoca

Romania

8



ITINERANT SEMINAR ON FUNCTIONAL EQUATIONS,

APPROXIMATION AND CONVEXITY, Cluj-Napoca, 1985
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ON p, q-CONVEX SEQUENCES

I. Ž. MILOVANOVIĆ, J. E. PEČARIĆ AND GH. TOADER

(NIŠ, BEOGRAD, CLUJ-NAPOCA)

In this paper we give the representation and some properties of p, q-

convex, of p, q-starshaped and of p, q-superadditive sequences. We also

prove some relations among their classes.

The p, q-differences are natural generalizations of finite differences (of

order two). They are defined for any real sequence (an)n≥0 by:

(1) Lpq(an) = an+2 − (p+ q)an+1 + pqan.

Definition 1. A real sequence (an)n≥0 is called p, q-convex if:

(2) Lpq(an) ≥ 0, ∀ n ≥ 0.

For some problems about p, q-differences and p, q-convex sequences one

can consult the papers [1], [2] and [3].

An example of p, q-convex sequence, which plays an important place

in what follows is given by the following result that is easy to verify.

1



Lemma 1. The sequence:

(3) wn =

⎧⎨⎩
pn − qn

p− q
, if p 6= q

npn−1, if p = q

satisfies the relation:

(4) Lpq(wn) = 0, ∀ n ≥ 0.

Theorem 1. The sequence (an)n≥0 is p, q-convex if and only if it may

be represented by:

(5) an =
nX
i=0

wn−i+1bi, n ≥ 0

where wi is given by (3) and

(6) bi ≥ 0 for i ≥ 2.

Proof. Any sequence (an)n≥0 may be represented by (5) with a invari-

ant sequence (bn)n≥0. Because from (5) and (4) we get:

(7) Lpq(an) = bn+1, n ≥ 0

the conditions (7) and (6) and equivalent.

Corollary 1. A sequence (an)n≥0 satisfies the relation:

(70) Lpq(an) = 0, ∀ n ≥ 0

if and only if it may be represented by:

(700) an = wn+1b0 + wnb1

where b0 and b1 are arbitrary real numbers.

2



Lemma 2. A sequence (an)n≥0 verifies:

(8)
an+1 − yn+1a0

wn+1
≥ an − yna0

wn
, ∀ n ≥ 1

where (yn)n≥1 is a given real sequence, if and only if (an)n≥0 can be rep-

resented by:

(9) an = wn

nX
i=1

ci
ui
+ (yn − wny1)c0

where y0 = 1 and

(10) ai ≥ 0 for i ≥ 2.

The proof may be done by induction. It is also easy to verify:

Corollary 2. If (an)n≥0 is represented by (9), then:

(11) Lpq(an) = cn+2 − pq
wn

wn+1
cn+1 + Lpq(yn)c0.

Lemma 3. The relation (8) is verified by any pq-convex sequence

(an)n≥0 if and only if:

(12) Lpq(yn) = 0, ∀ n ≥ 0.

Proof. If the sequence (an)n≥0 is pq-convex and verifies (8), by (7) and

(11) we have:

(13) bn+2 = cn+2 − pq
wn

wn+1
bn+1 + Lpq(vn)c0.

Then (6) implies (10) if and only if holds (12).

3



Remark 1. So (yn)n≥0 is given by (5’). To get yn = 1, ∀ n if p = q = 1,

we choose b0 = 1 and b1 = −(p+ q)/2, that is:

(14) yn =
pn + qn

2
.

Definition 2. The sequence (an)n≥0 is called pq-starshaped if it verifies

(8), where (yn)n≥0 is given by (14).

Remark 2. So, a pq-starshaped sequence is represented by (9) and

(10). If we denote by Kpq the set of all pq-convex sequences and by S∗pq

the set of all pq-starshaped sequences, from Lemma 3, we deduce:

Theorem 2. Holds the strict inclusion:

(15) Kpq ⊂ S∗pq.

Definition 3. The sequence (an)n≥0 is said to be pq-superadditive if

it satisfies the relation:

(16) an+m − ynam − yman + (2ynym − yn+m)a0 ≥ 0

for any n,m ≥ 0.
Let us denote by Spq the set of all pq-superadditive sequences.

Theorem 3. Holds the inclusion:

(17) S∗pq ⊂ Spq.

Proof. For n = 0, (16) is verified for any sequence. Suppose 0 < n <

m. As:

(18) ynwm + ymwn = wn+m

4



if (an)n≥0 is given by (9), then:

an+m − ynam − ynan + (2ynym − yn+m)a0 = ymwn

n+mX
i=n+1

ci
wi

which is positive because of (10).

Remark 3. For p = q = 1, all the result of this paper were proved in

[4].
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STARSHAPEDNESS AND SUPERADDITIVITY
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1. The convexity of high order of sequences is well known (see [2]). In

[6] we have also defined a starshapedness (of order two) which may be

extended to an arbitrary order.

In what follows, by (an) we mean a real sequence for n = 0, 1, . . . . The

finite differences of the sequence (an) are defined inductively by:

(1) ∆0an = an, ∆
k+1an = ∆kan+1 −∆kan, k ≥ 0, n ≥ 0.

Definition 1. A sequence (an) is said to be convex of order r if∆ran ≥
0 for any n ≥ 0.
Let us denote by Kr the set of all convex of order r sequences. In [7]

we have proved the following:

Lemma 1. A sequence (an) is inKr if and only if it may be represented

by:

(2) an =
nX

k=0

µ
n+ r − k − 1

r − 1

¶
bk

1



where bk ≥ 0 for k ≥ r.

Consequence 1. If (an) is represented by (2), then:

(3) ∆ran = bn+r.

Definition 2. The sequence (an) is said to be starshaped of order r ifµ
an+1 − a0
n+ 1

¶
∈ Kr−1.

If we denote by S∗r the set of all starshaped of order r sequences, from

Lemma 1 we obtain:

Lemma 2. A sequence (an) ∈ S∗r if and only if it may represented by:

(4) an = n
nX

k=1

µ
n+ r − k − 2

r − 2

¶
ck + c0, n ≥ 0

with ck ≥ 0 for k > r.

Consequence 2. If the sequence (an) is represented by (4) then:

(5) ∆ran = (n+ r)cn+r − ncn+r−1, n ≥ 0.

Proof. Applying (3) to (4) we get:

(6) ∆r−1an+1 − a0
n+ 1

= cn+r.

Putting x0 = a0 and xn+1 = (an+1 − a0)/(n+ 1), we have:

an = nxn + a0, n ≥ 0

and so:

∆ran = n∆rxn + r∆r−1xn+1 = n∆cn+r−1 + rcn+r

which gives (5).

In [7] we have also proved the following:

2



Theorem 1. The sequence (An) given by:

(7) An =
p0a0 + · · ·+ pnan
p0 + · · ·+ pn

, pi > 0 for i ≥ 0

is convex of order r for any (an) ∈ Kr if and only if there is an n > 0

such that:

(8) pn = p0

µ
u+ n− 1

n

¶
, for n ≥ 1

where:

(9)

µ
v

0

¶
= 1,

µ
v

n

¶
=

v(v − 1) . . . (v − n+ 1)

n!
, n > 0, v ∈ R.

If it is so, then:

(70) An = Au
n =

nX
k=0

µ
u+ k − 1

k

¶
ak/

µ
u+ n

n

¶
.

If we denote byMuKr the set of all sequences (an) such that (7’) gives

a sequence (Au
n) in Kr, in [7] was proved:

Lemma 3. A sequence (an) is in MuKr if and only if it may be rep-

resented by:

(10) an =
nX

k=0

µ
n+ r − k − 2

r − 2

¶µ
n+ r − k − 1

r − 1 +
n

u

¶
dk, n ≥ 0

where dk ≥ 0 for k ≥ 0.
Consequence 3. If (an) is given by (10) then:

(11) ∆ran =
n+ r + u

u
dn+r −

n

u
dn+r−1, n ≥ 0.

Theorem 2. For any u > 0 hold the following strict inclusions:

(12) Kr ⊂MuKr ⊂ S∗r .
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Proof. The first inclusion was proved in [7]. To prove the second,

suppose (an) be represented by (10) and by (4). This is possible for any

sequence. Then (11) and (5) gives:

(13)
n+ r + u

u
dn+r −

n

u
dn+r−1 = (n+ r)cn+r − ncn+r−1, n ≥ 0.

Thus cr = [(r + u)/(ru)]dr and generally, by induction:

cn+r =
n+ r + u

u(n+ r)
dn+r + n!

n−1X
k=0

dr+k
k!(r + k)

.

So, if dn ≥ 0 it follows also cn ≥ 0 for n ≥ r, thus the inclusion

is proved. That it is strictly also follows from (13) by choosing cr =

1/r + 1/u, cr+1 = 0, because we get dr+1 = −1/r.
Remark 1. For sequences with a0 = 0, the inclusion Kr ⊂ S∗r , was

proved in [1], although the definition of starshapedness of order r is miss-

ing there.

2. In fact, the starshapedness is a convexity with one point fixed.

So that we can consider also other types of starshapedness, fixing more

points, as was done for functions in [3]. Starting from the following for-

mula for divided differences:

[x0, x1, . . . , xn; f ] = [x0, . . . , xp; [xp+1, . . . , xn, x; f ]]

we have:

[0, 1, . . . , p, n+p+1, . . . , n+r; f ] = [n+p+1, . . . , n+r; [0, 1, . . . , p, x; f ]].

As:

[0, 1, . . . , p, x; f ] =
f(x)

x(x− 1) . . . (x− p)
+
(−1)p+1

p!

pX
i=0

(−1)i
µ
p

i

¶
f(i)

x− i

4



=
(−1)p
p!

pX
i=0

(−1)i
µ
p

i

¶
f(x)− f(i)

x− i

we give the following:

Definition 3. The sequence (an) is called (p+ 1)-starshaped of order

r (with p+ 1 < r) if the sequence:Ã
(−1)p
p!

pX
i=0

(−1)i
µ
p

i

¶
an+p+1 − ai
n+ p− i+ 1

!
belong to Kr−p−1.

If we denote by S
(p+1)∗
r the set of all (p + 1)-starshaped of order r

sequences, we have:

Lemma 4. The sequence (an) belongs to S
(p+1)∗
r if and only if it may

be represented by:

an =
n!

(n− p− 1)!
(−1)p
p!

pX
i=0

(−1)i
µ
p

i

¶
cp,i
n− i

+
nX

i=p+1

µ
n+ r − p− i− 2

r − p− 2

¶
cp,i

where cp,i ≥ 0 for i ≥ r.

Proof. By definition, the sequence (an) ∈ S
(p+1)∗
r if and only if (ap,n) ∈

Kr−p−1, where:

(15) ap,n =
(−1)p
p!

pX
i=0

(−1)i
µ
p

i

¶
an+p+1 − ai
n+ p− i+ 1

=
n!an+p+1
(n+ p+ 1)!

+
(−1)p+1

p!

pX
i=0

(−1)i
µ
p

i

¶
ai

n+ p− i+ 1
.

From Lemma 1, we have thus:

(16) ap,n =
nX

k=0

µ
n+ r − p− k − 2

r − p− 2

¶
c0k

5



with c0k ≥ 0 for k ≥ r − p − 1. Putting cp,i = ai for i = 0, . . . , n and

cp,p+i+1 = c0i for i = 0, . . . , n, from (15) and (16) we get (14).

Consequence 4. If (an) is represented by (14) then:

(17) ∆ran = (p+ 1)!

min{n,p+1}X
j=0

(−1)i
µ
n

j

¶µ
r + n− 1
p+ 1− i

¶
cp,r+n−j.

Proof. If we denote by:

(18) (a)0 = 1, (a)k = a(a+ 1) . . . (a+ k − 1),

and also by:

xn = an, n = 0, . . . , p, rn+p+1 = rp,n, n = 0, . . .

from (15) we have:

an = (n− p)p+1xn +
(−1)p
p!

pX
i=0

(−1)i
µ
p

i

¶
ai
(n− p)p+i
n− 1 , n ≥ 0.

As ∆i(n− p)p+1 = (p− i+ 2)i(n− p+ i)p−i+1 for i ≤ p+ 1 (and zero

for i > p + 1), and from (16) we have ∆r−p−1ap,n = c0n+r−p−1, that is

∆r−p−1xn+p+1 = cp,n+r, we get:

(19) ∆ran =

p+1X
i=0

µ
r

i

¶
(p− i+ 2)i(n− p+ i)p−i+1∆

p−i+1cp,n+r−p+i−1.

6



Of course, for n ≤ p, (n− p+ i)p−i+1 = 0 if i = 0, . . . , p− n, thus:

∆ran =
n+1X

i=p−n+1

µ
r

i

¶
(p+ 1)!

(p− i+ 1)!

n!

(n− p+ i− 1)!∆
p−i+1cp,n+r−p+i−1

=
nX

j=0

µ
r

p− n+ j + 1

¶
(p+ 1)!

µ
n

j

¶
∆n−jcp,r+j

= (p+ 1)!
nX
i=0

iX
j=0

µ
r

p− n+ j + 1

¶µ
n

j

¶
(−1)n−i

µ
n− j

i− j

¶
cp,r+i

= (p+ 1)!
nX
i=0

(−1)n−icp,r+i
µ
n

i

¶ iX
j=0

µ
r

p− n+ j + 1

¶µ
i

i− j

¶

= (p+ 1)!
nX
i=0

(−1)n−i
µ
n

i

¶µ
r + i

p− n+ i+ 1

¶
cp,r+i

In the last equality we have used Vandermonde’s relation (see [5]).

Putting n− i = j, we get (17), because min{n, p+1} = n in this case. If

n > p, (19) leads again to (17), on the same way with min{n, p + 1} =
p+ 1.

Remark 2. For p = 0, we have S1∗r = S∗r and the relations (14) and

(17) one reduces to (4) and (5).

Theorem 3. For any 1 ≤ p ≤ r − 2, we have:

(20) Sp∗
r ⊂ S(p+1)∗r .

Proof. Consider a sequence (an) represented by (14) for p and p+ 1.

Then (17) gives:

(21)

min{n,p}X
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p− j

¶
cp−1,r+n−j

7



= (p+ 1)

min{n,p+1}X
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
cp,r+n−j.

Denote:

(22) cp,r+n =
nX

k=0

xr+kr+ncp−1,r+k, n ≥ 0.

For n ≤ p, we have:
nX

j=0

(−1)j
µ
n

j

¶µ
r + n− j

p− j

¶
cp−1,r+n−j

= (p+ 1)
nX

j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶ p−jX
k=0

xr+kr+n−jcp−1,r+k

or
nX

k=0

(−1)n−k
µ
n

k

¶µ
r + k

p− n+ k

¶
cp−1,r+k

= (p+ 1)
nX

k=0

cp−1,r+k

n−kX
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
xr+kr+n−j.

Thus, for k = 0, . . . , n we must have:

(23)
n−kX
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
xr+kr+n−j =

(−1)n−k
p+ 1

µ
n

k

¶µ
r + k

p− n+ k

¶
.

So, for k = n we get xr+nr+n = 1/(r − p+ n), and generally:

(24) xr+n−kr+n =
1

k + 1

µ
n

k

¶
/

µ
r − p+ n

k + 1

¶
.

Analogously, for n > p, from (21) we get:
pX

j=0

(−1)j
µ
n

j

¶µ
r + n− j

p− j

¶
cp−1,r+n−j

= (p+ 1)

p+1X
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶ n−jX
k=0

xr+kr+n−jcp−1,r+k

8



or
nX

k=n−p
(−1)n−k

µ
n

k

¶µ
n+ k

p− n+ k

¶
cp−1,r+k

= (p+ 1)
nX

k=0

cp−1,r+k

min{n−k,p+1}X
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
xr+kr+n−j.

Thus:

(25)

p+1X
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
xr+kr+n−j = 0, for k = 0, . . . , n− p− 1

and

(26)
n−kX
j=0

(−1)j
µ
n

j

¶µ
r + n− j

p+ 1− j

¶
xr+kx+n−j

=
(−1)n−k
p+ 1

µ
n

k

¶µ
r + k

p− n+ k

¶
, k = n− p, . . . , n.

As above, we get xr+kr+n ≥ 0, thus cp,n ≥ 0 if cp−1,n ≥ 0 for n ≥ r and so

the desired inclusion.

3. In the hierarchy of convexity from [6] appears also the superadditiv-

ity. To extend it at an arbitrary order r, we have as model the inequalities

proved for functions (convex of order r) by T. Popoviciu in [4] and much

later by P. M. Vasíc in [9]. So we give the following:

Definition 4. The sequence (an) is superadditive of order r if for any

indices n1, . . . , nr > 0 holds:

(27)
rX

k=0

(−1)r−k
X

(i1,...,ik)

ani1+nik ≥ 0

where the second sum is extended to
µ
r

k

¶
possible choices of indices

i1, . . . , ik from 1, . . . , r and reduces at a0 for k = 0.

9



Remark 3. Let us denote by Sr the set of all superadditive of order r

sequences. For r = 2 we have proved in [6] that K2 ⊂ S∗2 ⊂ S2. Also, for

r = 3, we have proved in [8] that:

(29) K3 ⊂ S∗3 ⊂ S3 ⊂ S2∗3

The properties proved in [4] and [9] for functions means that: Kr ⊂ Sr.

From Theorem 2 and Theorem 3 we have:

(29) Kr ⊂ S1∗r ⊂ S2∗r ⊂ · · · ⊂ S(r−1)∗r .

From (28) we suppose that hold also the inclusion:

(30) Si
r ⊂ Sr ⊂ S(i+1)∗r

but we can’t yet prove it.
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ON A GENERAL INEQUALITY FOR CONVEX
SEQUENCES

GH. TOADER, J.E. PEČARIĆ, I.Z. MILOVANOVIĆ

The finite differences of a real sequence a = (a1, a2, . . . , ) are defined

by:

∆1an = an+1 − an, ∆
man = ∆1(∆m−1an), ∇man = (−1)m∆man.

The sequence a is said to be convex of order m if ∆man ≥ 0 for n ≥ 1.
In [2] J.E. Pečaríc proved the following:

Theorem 1. Let p = (p1, . . . , pn) be a real n-tuple (n > m). The

inequality:

(1)
nX
i=1

piai ≥ 0

holds for every sequence a convex of order m, if and only if:

(2)
nX
i=1

(i− 1)(k)pi = 0, k = 0, 1, . . . ,m− 1

1



and

(3)
nX
i=k

(i− k +m− 1)(m−1)pi ≥ 0, k = m+ 1, . . . , n

where:

(4) x(0) = 1, x(k) = x(x− 1) . . . (x− k + 1), k ≥ 1.

Remark. An analogous result was proved for functions (convex of

order m) by T. Popoviciu (see [3] and [1]). Using a method from [4], we

can give the representation of the n-tuple p.

Theorem 2. The inequality (1) holds for any sequence a, convex of

order m, if and only if:

(5) pk = ∇mqk, k = 1, . . . , n

where:

(6) qk = 0, for k = 1, . . . ,m and k = n+ 1, . . . , n+m

and

(7) qk ≥ 0, for k = m+ 1, . . . , n.

Proof. If we put:

(8)
nX
i=k

(i− k +m− 1)(m−1)pi = (m− 1)(m−1)qk, k = m+ 1, . . . , n

then (3) is equivalent to (7) and (2) gives the first part of (6). To get (5)

from (8) for k = n−m+ 1, . . . , n, we must add the second part of (6).
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ON THE HIERARCHY OF CONVEXITY
OF ORDER THREE OF SEQUENCES

GH. TOADER

1. In the paper [4] we have proved a hierarchy of convexity for se-

quences, analogous with that known for functions. In this paper we prove

similar properties in the case of the convexity of order three. This case

underlines more clear the way for further generalizations.

Let a = (an) (n = 0, 1, . . . ) be a real sequence. The finite differences

of the sequence (an) are defined inductively by:

(1) ∆0an = an, ∆
k+1an = ∆kan+1 −∆kan (k ≥ 0, n ≥ 0).

Definition 1. A sequence (an) is said to be convex of order 3 if∆3an ≥
0, for any n ≥ 0.
Simplifying a result from [5], we have:

1



Lemma 1. If the sequence (an) is given by:

(2) an =
nX

k=0

µ
n− k + 2

2

¶
bk

then:

(3) ∆3an = bn+3, n ≥ 0.

Consequence 1. The sequence (an) is convex of order 3 if and only

if in his representation (2) it has bn ≥ 0 for n ≥ 3.
In [4] we have introduced the following notion:

Definition 2’. The sequence (an) is called starshaped if it satisfies

(4)
an+1 − a0
n+ 1

≥ an − a0
n

, for n ≥ 1.

Remark 1. As (4) means that the sequence ((an+1 − a0)/(n + 1)) is

increasing, that is convex of order 1, we extend this definition to the

following:

Definition 2. The sequence (an) is called starshaped of order 3 if the

sequence ((an+1 − a0)/(n+ 1)) is convex (of order 2).

Lemma 2. The sequence (an) is starshaped of order 3 if and only if it

may be represented by:

(5) an = n
nX

k=1

(n− k + 1)ck + c0, for n ≥ 0

where ck ≥ 0 for k ≥ 3.
Consequence 2. If the sequence (an) is represented by (5), then:

(6) ∆3an = (n+ 3)cn+3 − ncn+2, n ≥ 0.

2



Proof. From (5) we have:

∆1an = (n+ 1)cn+1 +
nX

k=1

(2n− k + 2)ck

then:

∆2an = (n+ 2)cn+2 + 2
n+1X
k=1

ck

and so (6).

Remark 2. In the hierarchy of convexity occurs also the superaddi-

tivity: a sequence (an) is called superadditive if:

(70) an+m + a0 ≥ an + am, for any n,m ≥ 0.

We introduce here an analogous notion for order three:

Definition 3. The sequence (an) is called superadditive of order 3 if

it satisfies the relation:

(7) p3n,m,p(a) = an+m+p − an+m − am+p − ap+n + an + am + ap − a0 ≥ 0

for any n,m, p ≥ 0.
Remark 3. The relation (7) suggests Elawka’s inequality (see [2]).

Definition 4. The sequence (an) is said to be 2-starshaped of order 3

if it satisfies the relation:

(8)
an+3 − a0
n+ 3

≥ an+2 − a1
n+ 1

, for any n ≥ 0.

Lemma 3. The sequence (an) is 2-starshaped of order 3 if and only if

it may be represented by:

(9) an = n(n− 1)
nX

k=2

dk + nd1 − (n− 1)d0, n ≥ 0

where dk ≥ 0 for k ≥ 3.
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Proof. Any sequence may be represented by (9). Then:

an+3 − a0
n+ 3

− an+2 − a1
n+ 1

= (n+ 2)dn+3

which shows that (8) is equivalent with dn ≥ 0 for n ≥ 3.
Consequence 3. If a sequence (an) is represented by (9) then:

(10) ∆3an = (n+ 2)(n+ 3)dn+3 − 2n(n+ 2)dn+2 + n(n− 1)dn+1.

Let us denote by K3, S∗3 , S3 and S2∗3 the sets of sequences convex

of order 3, starshaped of order 3, superadditive of order 3, respectively

2-starshaped of order 3.

Theorem 1. Hold the following inclusions:

(11) K3 ⊂ S∗3 ⊂ S3 ⊂ S2∗3 .

Proof. a) Any sequence (an) may be represented by (2) and by (5).

Then from (3) and (6) we get:

bn+3 = (n+ 3)cn+3 − ncn+2, n ≥ 0.

If (an) is in K3, then bn ≥ 0 for n ≥ 3, thus c3 = b3/3 ≥ 0 and by
mathematical induction cn ≥ 0 for n > 3. So (an) is also in S∗3 .

b) If (an) is represented by (5) and cn ≥ 0 for n ≥ 3 then:

D3
n,m,p(a) =

=n

"
n

n+pX
k=n+1

ck+

n+p+mX
k=n+p+1

(n+m+ p− k + 1)ck−
n+mX
k=n+1

(n+m− k + 1)ck

#

+m

"
p

m+nX
k=m+1

ck+

n+m+pX
k=n+m+1

(n+m+ p−k + 1)ck−
m+pX

k=m+1

(m+ p− k + 1)ck

#
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+p

"
n

p+mX
k=p+1

ck+

m+p+nX
k=m+p+1

(n+m+ p− k + 1)ck−
p+nX

k=p+1

(n+ p− k + 1)ck

#
Supposing n < m < p < m+ n:

p3n,m,p(a) =
mX

k=n+1

n(k− n− 1)ck +
pX

k=m+1

[n(k− n+ 1) +m(k−m− 1)]ck

+
n+mX
k=p+1

[n(k − n− 1) +m(k −m− 1) + p(k − p− 1)]ck

+

n+pX
k=n+m+1

[2nm+ p(k − p− 1)]ck +
m+pX

k=n+p+1

n(n+ 2p+ 2m− k + 1)ck

+

m+p+nX
k=m+p+1

(n+m+ p)(n+m+ p− k + 1)ck

As n ≥ 1 and ck ≥ 0 for k ≥ 3, we get D3
n,m,p(a) ≥ 0. Similarly may

be proved the case n < m < n+m < p. If we have an equality between

the parameters, one or more sums will not appear in the expression of

D3
n,m,p(a). Thus S

∗
3 ⊂ S3.

c) From (7) we have:

an − an−1 − ak+1 − an−k + ak + an−k−1 + a1 − a0 ≥ 0

for k = 1, . . . , n− 2. By addition we get:

(n− 2)(an − an−1 + a1 − a0) + 2(a1 − an−1) ≥ 0

which is (8).

Remark 4. If a0 = 0, the inclusion K3 ⊂ S∗3 was proved in [4], by

other means, even in the case of the convexity of order r. For functions,

the inclusion Kr ⊂ Sr was also proved by T. Popoviciu in [3] and much

later by P.M. Vasíc in [7].
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2. The hierarchy of convexity from [4] was enlarged in [6]. Let us to

complete also (11) in the same manner. For this, to any sequence (an)

and any real u > 0, we attach the sequence (Au
n) given by:

(12) Au
n =

nX
k=0

µ
u+ k − 1

k

¶
ak/

µ
u+ n

n

¶
where:

(13)

µ
v

0

¶
= 1,

µ
v

n

¶
= v(v − 1) . . . (v − n+ 1)/n!, n ≥ 1, ∀ v ∈ R.

Definition 5. The sequence (an) has the property P in the u-mean if

the sequence (Au
n) has the property P .

Let us to denote by MuK3, MuS∗3 , M
uS3 and MuS2∗3 the sets of

sequences which are convex, starshaped, superadditive respectively 2-

starshaped of order 3 in the u-mean.

Lemma 4. The sequence (an) is in MuK3 if and only if it may be

represented by:

(14) an =
nX

k=0

(n+ 1− k)

µ
n

u
+

n− k

2
+ 1

¶
ek

with ek ≥ 0 for k ≥ 3.
Proof. The sequence (an) is inMuK3 if and only if (Au

n) is in K3, that

is:

(15) Au
n =

nX
k=0

µ
n− k + 2

2

¶
ek, ek ≥ 0, for k ≥ 3.

But (12) gives:

(16) an = Au
n +

n

u
(Au

n −Au
n−1).

From (15) and (16) we get (14).

6



Similarly we can prove:

Lemma 5. A sequence (an) is in MuS∗3 if and only if it may be repre-

sented by:

(17) an = n
nX

k=1

µ
n− k + 1 +

2n− k

n

¶
fk + f0

with fk ≥ 0 for k ≥ 3.
Lemma 6. A sequence (an) is in Mus2∗3 if and only if it may be rep-

resented by:

(18) an = n(n− 1)
³
1 +

n

u

´
gn

+n(n− 1)
µ
1 +

2

u

¶ n−1X
k=2

gk + (1 + 1/u)ng1 − (n− 1 + n/u)g0

where gk ≥ 0 for k ≥ 3.
Consequence 4. If the sequence (an) is given:

a) by (14), then:

(19) ∆3an =

µ
n+ 3

u
+ 1

¶
en+3 −

n

u
en+2, for n ≥ 0;

b) by (17), then:

(20) ∆3an = (n+ 3)

µ
1 +

n+ 3

u

¶
fn+3

−n
µ
1 +

2n+ 5

u

¶
fn+2 +

n(n− 1)
u

fn+1, n ≥ 0;

c) by (18), then:

(21) ∆3an = (n+ 2)(n+ 3)

µ
1 +

n+ 3

u

¶
gn+3

−n(n+ 2)
µ
2 +

3n+ 7

u

¶
gn+2

7



+n(n− 1)
µ
1 +

3n+ 5

u

¶
gn+1 −

n

u
(n− 1)(n− 2)gn, n ≥ 0.

Theorem 2. For any u > 0, hold the following inclusions:

(22)

K3 ⊂ S∗3 ⊂ S3 ⊂ S2∗3

∩ ∩ ∩
MuK3 ⊂ MuS∗3 ⊂ MuS3 ⊂ MuS2∗3

Proof. a) Let (an) be represented by (2) and by (14). Then (3) and

(19) give:

(23) bn+3 =

µ
n+ 3

u
+ 1

¶
en+3 −

n

u
en+2, n ≥ 0.

That is, if bk ≥ 0 for k ≥ 3, it follows that ek ≥ 0 for k ≥ 3. By

Consequence 1 and Lemma 3, it results the inclusion K3 ⊂MuK3.

b) If (an) is represented by (5) and by (17), from (6) and (20) follows:

(24) (n+ 3)cn+3 − ncn+2 = (n+ 3)

µ
1 +

n+ 3

u

¶
fn+3

−n
µ
1 +

2n+ 5

u

¶
fn+2 + n(n− 1)fn+1/u.

We get f3 = u/(u+ 3)c3 and generally, by induction:

fn+3 =
u

u+ n+ 3
cn+3 +

n+2X
k=3

un(n− 1) . . . (k − 2)
(u+ n+ 3) . . . (u+ k)

ck

so that ck ≥ 0 implies fk ≥ 0, for k ≥ 3. By Lemma 2 and Lemma 5, we
have S∗3 ⊂MuS∗3 .

c) Suppose (an) represented by (9) and by (18). From (10) and (21)

we have:

(25) (n+ 2)(n+ 3)dn+3 − 2n(n+ 2)dn+2 + n(n− 1)dn+1 =

8



= (n+ 2)(n+ 3)gn+3 − n(n+ 2)

µ
2 +

3n+ 7

u

¶
gn+2

+n(n− 1)
µ
1 +

3n+ 5

u

¶
gn+1 − n(n− 1)(n− 2)/ugn.

That is g3 = u/(u + 3)d3 and generally, supposing gn =
nX

k=3

xkndk, we

get, by induction:

gn+3 =
u

u+ n+ 3
dn+3 +

n+2X
k=3

un(n− 1) . . . (k − 2)
(u+ n+ 3) . . . (u+ k)

dk.

So, if dk ≥ 0 for k ≥ 3, we have also gk ≥ 0 for k ≥ 3. By Lemma 3
and Lemma 6, S2∗3 ⊂MuS2∗3 . The other inclusions from (22) were proved

in Theorem 1, or are its direct consequences.

Remark 5. It is natural to suppose also the inclusion S3 ⊂ MuS3

but we cannot yet prove it. In exchange we give the following additional

results:

Theorem 3. Hold the following inclusions:

(26) MuK3 ⊂ S∗3

and

(27) MuS∗3 ⊂ S2∗3 .

Proof. a) Let (an) be represented by (14) and by (5). Then (19) and

(6) give:

(28) (u+ n+ 3)/uen+3 − n/uen+2 = (n+ 3)cn+3 − ncn+2, n ≥ 0

9



that is c3 = (u+ 3)/3ue3 and generally:

cn+3 =
u+ n+ 3

u(n+ 3)
en+3 +

n+2X
k=3

n(n− 1) . . . (k − 2)
(n+ 3)(n+ 2) . . . k

ek.

So, if en ≥ 0 for n ≥ 3, we have also cn ≥ 0 for n ≥ 3. By Lemma 3
and Lemma 2 we get (26).

b) If (an) is given by (17) and (9), the relations (20) and (10) give:

(29) (n+3)(u+ n+3)/ufn+3 − n(u+2n+ 5)/ufn+2+ n(n− 1)/ufn+3

= (n+ 2)(n+ 3)dn+3 − 2n(n+ 2)dn+2 + n(n− 1)dn+1, n ≥ 0.

Thus:

dn+3 =
u+ n+ 3

u(n+ 2)
fn+3 +

u+ 1

u(n+ 1)(n+ 2)

n+2X
k=3

(k − 2)fk.

So, again, fk ≥ 0 implies dk ≥ 0 for k ≥ 3 and by Lemma 5 and

Lemma 3 we have (27).

Theorem 4. If 0 < u < v then:

(30)

MvK3 ⊂ MvS∗3 ⊂ MvS3 ⊂ MvS2∗3

∩ ∩ ∩
MuK3 ⊂ MuS∗3 ⊂ MuS3 ⊂ MuS2∗3

Proof. a) Let (an) be represented by (14) and by:

(140) an =
nX

k=0

(n+ 1− k)

µ
n

v
+

n− k

2
+ 1

¶
e0k.

Then, by (19) we have:

(u+ n+ 3)/uen+3 − n/uen+2 = (v + n+ 3)/ve0n+3 − n/ve0n+2,

10



and so:

en+3 =
u(v + n+ 3)

v(u+ n+ 3)
e0n+3 + (v − u)u/v

n+2X
k=3

n(n− 1) . . . (k − 2)
(u+ n+ 3) . . . (u+ k)

e0k.

As v > u, if e0n ≥ 0 for n ≥ 3, we have also en ≥ 0. By Lemma 4,
MvK3 ⊂MuK3.

b) Now let (an) be represented by (17) and also by:

(170) an = n
nX

k=1

µ
n− k + 1 +

2n− k

v

¶
f 0k + f 00.

From (20) we have:

(n+ 3)(u+ n+ 3)/ufn+3 − n(u+ 2n+ 5)/ufn+2 + n(n− 1)/ufn+1

= (n+ 3)(v + n+ 3)/vf 0n+3 − n(v + 2n+ 5)/vf 0n+2 + n(n− 1)vf 0n+1.

As above we get:

fn+3 =
u(v + n+ 3)

v(u+ n+ 3)
f 0n+3 + (v − u)u/v

n+2X
k=3

n(n− 1) . . . (k − 2)
(u+ n+ 3) . . . (u+ k)

f 0k

thus, by Lemma 5: MvS∗3 ⊂MuS∗3 .

c) If (an) is represented by (18) and by:

(180) an = n(n− 1)
³
1 +

n

v

´
g0n + n(n− 1)

µ
1 +

2

v

¶ n−1X
k=2

g0k

+n

µ
1 +

1

v

¶
g01 − (n− 1 + n/v)g00

from (21) we get:

(n+ 2)(n+ 3)(u+ n+ 3) : ugn+3 − n(n+ 2)(2u+ 3n+ 7) : ugn+2

+n(n− 1)(u+ 3n+ 5) : ugn+1 − n(n− 1)(n− 2) : ugn

= (n+ 2)(n+ 3)(v + n+ 3) : vg0n+3 − n(n+ 2)(2v + 3n+ 7) : vg0n+2

11



+n(n− 1)(v + 3n+ 5) : vg0n+1 − n(n− 1)(n− 2) : vg0n.

Thus:

gn+3 =
u(v + n+ 3)

v(u+ n+ 3)
g0n+3 + (v − u)u : v

n+2X
k=3

n(n− 1) . . . (k − 2)
(u+ n+ 3) . . . (u+ k)

g0k

and, by Lemma 6, MvS2∗3 ⊂MuS2∗3 .

Remark 6. The method of demonstration can be used to prove the

strictness of all the inclusions.

These inclusions (together with those left yet unproved) show a large

hierarchy for the convexity of order three. In what follows we show that

it is the largest possible of this type.

Theorem 5. If the sequence (An) given by:

(31) An =
p0a0 + · · ·+ pnan
p0 + · · ·+ pn

, n ≥ 0

(where pk > 0 for n ≥ 0) is convex (starshaped, superadditive respectively
2-starshaped) of order 3 for any sequence (an) with the same property,

then the sequence (pn) must be of the form:

(32) pn = p0

µ
u+ n− 1

n

¶
, n ≥ 0

where u = p1 : p0.

Proof. The sequence (a0n) given by:

(33) a0n = cn(n− 1)

is in K3 (thus it is also in S∗3 , in S3 and in S2∗3 ) so that (A
0
n) given by:

(310) A0n =

c
nX
i=0

i(i− 1)pi
nX
i=0

pi

12



must be in S2∗3 for any c ∈ R. But this happens if and only if:

(34)

n+3X
i=2

i(i− 1)pi

(n+ 3)

p+3X
i=0

pi

=

n+2X
i=2

i(i− 1)pi

(n+ 1)
n+2X
i=0

pi

, for any n ≥ 0.

For n = 0 we have thus the condition:

(35) p3 =
2p2(p0 + p1 + p2)

3(p0 + p1)
.

Analogously:

(330) a00n = cn

gives a sequence in K3, so that:

(3100) A00n =

c
nX
i=0

ipi

nX
i=0

pi

defines a sequence in S2∗3 for any c, which implies:

(340)

n+3X
i=1

ipi

(n+ 3)

p+3X
i=0

pi

=
1

n+ 1

⎡⎢⎢⎢⎢⎣
n+2X
i=1

ipi

n+2X
i=0

pi

− p1
p0 + p1

⎤⎥⎥⎥⎥⎦ , n ≥ 0.

For n = 0 this gives:

(350) p3 =
(p0 + p1 + p2)[p2(4p0 + p1)− p1(p0 + p1)]

3[(p0 + p1)2 − p0p2]

From (35) and (35’) we have successively:

2p2[(p0 + p1)
2 − p0p2] = (p0 + p1)[p2(4p0 + p1)− p1(p0 + p1)]

13



and

2p0p
2
2 − p2(p0 + p1)(p1 − 2p0)− p1(p0 + p1)

2 = 0

that is:

p2 =
p1(p0 + p1)

2p0
.

Putting u = p1 : p0, we get (32) for n = 0, 1, 2 and 3 (the last one from

(35)). Supposing (32) valid for n ≤ m+ 2 we obtain:

A0n = cn(n− 1)u : (u+ 2), for n ≤ m+ 2

and

A0m+3 = c

∙
(m+ 2)(m+ 3)pm+3 + p0u(u+ 1)

µ
u+m+ 2

m

¶¸
/

/

∙
pm+3 + p0

µ
u+m+ 2

m+ 2

¶¸
because:

(36)
nX

k=0

µ
v + k

k

¶
=

µ
v + n+ 1

n

¶
.

That is (34) becomes:

(m+ 2)(m+ 3)pm+3 + p0u(u+ 1)

µ
u+m+ 2

m

¶
(m+ 3)

∙
pm+3 + p0

µ
u+m+ 2

m+ 2

¶¸ =
u(m+ 2)

u+ 2

which gives for pm+3 the same representation (32).

Remark 7. If pn is given by (32), then (31) becomes (12) because of

(36).
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A GENERAL HIERARCHY OF CONVEXITY
OF SEQUENCES

GH. TOADER

1. Introduction

In this paper we define some measures: of the convexity, of the star-

shapedness and of the superadditivity of a sequence. For sets, a measure

of nonconvexity was given by J. Eisenfeld and V. Kalshmikantham in

[2]. But our definitions are like that given by Gr.S. Sălăgean in [3] for

complex functions. That is, they offer the possibility of evaluation of the

deviation from a given property, but also of his strengthening. So we use

them to introduce more classes of sequences and then we prove a hierar-

chy among them. This generalizes the hierarchy proved in [4] (which is

similar with that given for functions by A.M. Bruckner and E. Ostrow in

[1]) and even that from [5].
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2. Notations and definitions

For a real sequence a = (ak)k≥0 we consider the following differences:

Ci(a) = ai+2 − 2ai+1 + ai

Di(a) =
ai+2 − a0
i+ 2

− ai+1 − a0
i+ 1

and

Pij(a) = ai+j − ai − aj + a0.

With their help, we can define the well known classes of sequences:

K = {a : Ci(a) ≥ 0, ∀ i ≥ 0}

S∗ = {a : Di(a) ≥ 0, ∀ i ≥ 0}

and

S = {a : Pij(a) ≥ 0, ∀ i, j > 0}

that is the sets of convex, starshaped, respectively superadditive se-

quences. We shall consider also the class:

W = {a : Pi1(a) ≥ 0, ∀ i > 0}

of weak superadditive sequences.

They suggest also the definition of the following measures:

a) of convexity, given by:

kn(a) = inf{Ci(a) : 0 ≤ i ≤ n− 2}

b) of starshapedness, given by:

s∗n(a) = inf{Di(a) : 0 ≤ i ≤ n− 2}
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c) of superadditivity, given by:

sn(a) = inf{Pij(a)/ij : 0 ≤ i, j, i+ j ≤ n};

d) of weak superadditivity, given by:

wn(a) = inf{Pi1(a)/i : 0 < i < n}.

These measures permit the consideration of the following classes of

sequences:

Knp = {a : kn(a) ≥ p}

S∗np = {a : s∗n(a) ≥ p}

Snp = {a : sn(a) ≥ p}

and

Wnp = {a : wn(a) ≥ p}.

For p = 0 and n arbitrary we get the previous classes.

3. Main results

We begin by indicating a method for the determination of the above

measures for a given sequence.

3.1. Lemma. a) If the sequence a is represented by:

(1) ai =
iX

j=0

(i− j + 1)bj, 0 ≤ i ≤ n

then:

kn(a) = inf{bi : 2 ≤ i ≤ n};

3



b) If a is given by:

(2) ai = i
iX

j=1

cj + c0, 0 ≤ i ≤ n,
iX

j=1

cj = 0, i < 1

then:

s∗n(a) = inf{ci : 2 ≤ i ≤ n};

c) If a is represented by:

(3) ai =
iX

j=2

fj + if1 − (i− 1)f0, 0 ≤ i ≤ n

then:

wn(a) = inf{fi/(i− 1) : 2 ≤ i ≤ n}.

Proof. From (1) we have: Ci(a) = bi+2. From (2) also: Di(a) = ci+2,

and from (3): Pi1(a) = fi+1. All these give the desired conclusions.

3.2. Theorem. For any sequence a we have:

(4) kn(a) ≤ 2s∗n(a) ≤ sn(a) ≤ wn(a).

Proof. Any sequence amay be represented by (1) and so, for i ≤ n−2:

Di(a) =
1

(i+ 1)(i+ 2)

i+2X
j=2

(j − 1)bj ≥
kn(a)

(i+ 1)(i+ 2)

i+2X
j=2

(j − 1) = 1

2
kn(a)

which gives the first part of (4). Similarly, using (2), we have, for i+j ≤ n:

Pij(a) = i

i+jX
l=i+1

cl + j

j+iX
l=j+1

cl ≥ 2ijs∗n(a)

which gives the second part of (4). The last inequality from (4) is obvi-

ously.
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3.3. Corollary. For every natural n and every real p hold the following

inclusions:

Knp ⊂ S∗n,p/2 ⊂ Snp ⊂Wnp.

3.4. Remark. This result is more eloquent than a similar one from

[4].

4. Weighted arithmetic means

In [6] are characterized the weight sequences p = (pi)i≥0 with the

property that the sequence A = (Ai)i≥0 given by:

(5) Ai = (p0a) + · · ·+ piai)/(p0 + · · ·+ pi)

is convex for any sequence a = (ai)i≥0. In [5], we have specified and

extended this result. Now we want to generalize the result to the classes

defined here, giving also a simpler proof.

4.1. Theorem. If the sequence A given by (5) is in Kn0, S
∗
n0, Sn0 re-

spectively Wn0 for any sequence a from the same set, then there is an

u > 0 such that:

(6) pi = p0

µ
u+ i− 1

i

¶
, 0 ≤ i ≤ n

where: µ
v

0

¶
= 1,

µ
v

i

¶
=

v(v − 1) . . . (v − i+ 1)

i!
, i ≥ 1.

Proof. For any c ∈ R, the sequence a given by ai = ci, i ≥ 0 is in
Kn0, S

∗
n0, Sn0 andWn0. By the hypothesis and Corollary 3.3, the sequence

5



A0 given by:

A0i = c

Ã
iX

j=0

jpj

!
/

Ã
iX

j=0

pj

!
is in Wn0. But c being of arbitrary sign, this implies that, for i < n:

(7)

Ã
i+1X
j=1

jpj

!
/

Ã
i+1X
j=0

pj

!
−
Ã

iX
j=1

jpj

!
/

Ã
iX

j=0

pj

!
− p1

p0 + p1
= 0.

For i = 1 we get:

p2 = p1(p0 + p1)/2p0.

Putting p1/p0 = u, we have (6) for i ≤ 2. Supposing it valid for i ≤ m

and using:
iX

j=0

µ
v + j

j

¶
=

µ
v + i+ 1

i

¶
the relation (7) becomes for i = m:∙

p0u

µ
u+m

m− 1

¶
+ (m+ 1)pm+1

¸
/

∙
p0

µ
u+m

m

¶
+ pm+1

¸
=

= u

µ
u+m

m− 1

¶
/

µ
u+m

m

¶
+

u

u+ 1

which gives pm+1 of the form (6).

4.2. Remark. Taking pm of the form (6), Ai becomes:

(8) Ai = Au
i =

iX
j=0

µ
u+ j − 1

j

¶
aj/

µ
u+ i

i

¶
.

If we denote by Au = (Au
i )i≥0, we can consider also the following

measures (of u-mean):

kun(a) = kn(A
u), s∗un (a) = s∗n(A

u), sun(a) = sn(A
u), wu

n(a) = wn(A
u).
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4.3. Theorem. For any sequence a = (ai)i≥0 and any 0 < v < u, we

have the following relations:

(9) kn(a) ≤ (1 + 2/u)kun(a) ≤ (1 + 2/v)kvn(a) ≤ 2s∗n(a)

(10) s∗n(a) ≤ (1 + 2/u)s∗un (a) ≤ (1 + 2/v)s∗vn (a)

and

(11) wn(a) ≤ (1 + 2/u)wu
n(a) ≤ (1 + 2/v)wv

n(a).

Proof. i) Let a be given by (1) and Au by:

(12) Au
i =

iX
j=0

(i− j + 1)duj , i ≥ 0.

Then we have:

(13) ai = (1 + i/u)Au
i − (i/u)Au

i−1 =
iX

j=0

[i(1 + 1/u)− j + 1]duj

and so:

(14) Ci(a) = bi+2 = [1 + (i+ 2)/u]d
u
i+2 − (i/u)dui+1, i ≥ 0

which gives, by mathematical induction:

dui =
u

u+ i
bi + u

i−1X
j=2

(i− 2) . . . (j − 1)
(u+ i) . . . (u+ j)

bj.

Hence, for i ≤ n:

dui ≥
"

u

u+ i
+

u(i− 2)!
(u+ i) . . . (u+ 2)

i−1X
j=2

µ
u+ j − 1
j − 2

¶#
kn(a) =

u

u+ 2
kn(a)

and Lemma 3.1 gives the first inequality from (9).
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ii) Taking (12) for u and v, (14) gives:µ
1 +

i+ 2

u

¶
dui+2 −

i

u
dui+1 =

µ
1 +

i+ 2

v

¶
dvi+2 −

i

v
dvi+1

and by induction

dvi+2 =
v(u+ i+ 2)

u(v + i+ 2)
dui+2 + (u− v)

v

u

i+1X
j=2

i . . . (j − 1)
(v + i+ 2) . . . (v + j)

duj .

So, for i ≤ n− 2:

dvi+2 ≥
v

u

"
u+ i+ 2

v + i+ 2
+

(u− v)i!

(v + i+ 2) . . . (v + 2)

i+1X
j=2

µ
v + j − 1
j − 2

¶#
kun(a)

=
v(u+ 2)

u(v + 2)
kun(a)

and applying again Lemma 3.1 we have the second inequality from (9).

iii) Taking v instead u in (13), we have for i ≤ n:

Di(a) = dvi+2/v + 1/[(i+ 1)(i+ 2)]
i+2X
j=2

(j − 1)dvj ≥ (1/v + 1/2)kvn(a)

that is the third inequality from (9).

iv) If a is given by (2), then:

Au
i =

ui

u+ 1

iX
j=1

cj − u/

µ
u+ i

i

¶ i+1X
j=2

µ
u+ j − 1
j − 2

¶
cj + c0

and thus:

Di(A
u) =

uci+2
u+ i+ 2

+
u

(u+ 2)

µ
u+ i+ 2

i

¶ i+1X
j=2

µ
u+ j − 1
j − 2

¶
cj.
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Hence, for i ≤ n:

Di(A
u) ≥

⎡⎢⎢⎣ u

u+ i+ 2
+

u

(u+ 2)

µ
u+ i+ 2

i

¶ i+1X
j=2

µ
u+ j − 1
j − 2

¶⎤⎥⎥⎦ s∗n(a)
=

u

u+ 2
s∗n(a)

which gives the first inequality from (10).

v) Let Au be given by:

(15) Au
i = i

iX
j=1

euj + eu0

Then, as in (13):

(16) ai = i(1 + i/u)eui + i(1 + 1/u)
i−1X
j=1

euj + eu0

and so:

(17) Ci(a) = (i+2)

µ
1 +

i+ 2

u

¶
eui+2−i

µ
1 +

2i+ 3

u

¶
eui+1−

i(i− 1)
u

eui .

Taking (15), (16) and (17) for u and v, we get:

(i+ 2)

µ
1 +

i+ 2

u

¶
eui+2 − i

µ
1 +

2i+ 3

u

¶
eui+1 +

i(i− 1)
u

eni =

= (i+ 2)

µ
1 +

i+ 2

v

¶
evi+2 − i

µ
1 +

2i+ 3

v

¶
evi+1 +

i(i− 1)
v

evi

hence, by mathematical induction:

evi+2 =
v(u+ i+ 2)

u(v + i+ 2)
eui+2 + (u− v)

v

u

i+1X
j=2

i . . . (j − 1)
(v + i+ 2) . . . (v + j)

euj

which gives, as in ii), the second inequality from (10).
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(vi) If a is given by (3) and Au by:

(18) Au
i =

iX
j=2

guj + igu1 − (i− 1)gu0

we have, as in (13):

ai = (1 + i/u)gui +
i−1X
j=2

guj + i(1 + 1/u)gu1 − [i(1 + 1/u)− 1]gu0

thus:

ai+1 − ai = (1 + (i+ 1)/u)g
u
i+1 − (i/u)gui + (1 + 1/u)(gu1 − gu0 )

and taking into account (3):

(19) fi+1 = (1 + (i+ 1)/u)g
u
i+1 − (i/u)gui , i ≥ 2.

As gu2 = (u/(u+ 2))f2, we get for i ≤ n:

gui =
u

u+ i
fi + u

i−1X
j=2

(i− 1) . . . j
(u+ i) . . . (u+ j)

fj

≥
"
u(i− 1)
u+ i

+ u
i−1X
j=2

(i− 1) . . . j
(u+ i) . . . (u+ j)

(j − 1)
#
wn(a) = uwn(a)

i− 1
u+ 2

which gives the first inequality from (11).

vii) Considering (18) for u and v, we have from (19):µ
1 +

i+ 1

u

¶
gui+1 −

i

u
gui =

µ
1 +

i+ 1

v

¶
gvi+1 −

i

v
gvi , i ≥ 2

and

gv2 =
v(u+ 2)

u(v + 2)
gu2 .

So, for i ≤ n:

gvi =
v(u+ i)

u(v + i)
gui + (u− v)

v

u

i−1X
j=2

(i− 1) . . . j
(v + i) . . . (v + j)

guj

10



≥ v

u

"
u+ i

v + i
(i− 1) + (u− v)

i−1X
j=2

(i− 1) . . . j
(v + i) . . . (v + j)

(j − 1)
#
wu
n(a)

= (i− 1)v(u+ 2)
u(v + 2)

wu
n(a)

thus the second inequality from (11).

If we denote by MuKnp,M
uS∗np,M

uSnp and MuWnp the sets of the

sequences a with the property that the sequence Au, associated by (8),

belongs to Knp, S
∗
np, Snp respectively Wnp, we have the following:

4.4. Corollary. For any 0 < v < u, n ∈ N and p ∈ R, denoting by
p ∗ u = pu/(u+ 2), hold the following inclusions:

Knp ⊂MuKn,pu ⊂MvKn,pv ⊂ S∗n,p/2 ⊂ MuS∗n,(p/2)∗u ⊂ MvS∗n,(p/2)∗v

∩ ∩ ∩
Snp MuSn,p∗u MvSn,p∗v

∩ ∩ ∩
Wnp ⊂ MuWn,p∗u ⊂ MvWn,p∗v

4.5. Remark. Among these sets may exist also other inclusions. For

example, in [4] it was proved that for u = 1 (which corresponds to the

usual arithmetic mean in (8)) and p = 0:

Kn0 ⊂M1Kn0 ⊂ S∗n0 ⊂ Sn0 ⊂M1S∗n0 ⊂M1Sn0.

Hence Sn0 ⊂ MuS∗n0 for u < 1. In [5] it is proved that there is no

relation between Sn0 and MuS∗n0 for u > 1.
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ON THE REPRESENTATION OF CONVEX SEQUENCES

J. E. PEČARIĆ, GH. TOADER AND I. Ž. MILOVANOVIĆ

(BEOGRAD, CLUJ-NAPOCA, NIŠ)

Let (am)n≥1 be a sequence of real numbers and the operator∆k defined

as usual by:

∆0am = am, ∆k+1am = ∆kam+1 −∆kam, k ≥ 0.

The sequence (am)n≥1 is said to be convex of order n (or n-convex) if

∆nam ≥ 0 for m ≥ 1.
In [1] it was proved the following identity:

mX
i=1

piai =
nX

k=1

mX
i=1

µ
i− 1
k − 1

¶
pi∆

k−1a1

+
mX

k=n+1

mX
i=1

µ
i− k + n− 1

n− 1

¶
pi∆

nak−m.

For p1 = · · · = pm−1 = 0 and pm = 1, we obtain the Taylor’s formula

for sequences:

(1) am =
nX

k=1

µ
m− 1
k − 1

¶
∆k−1a1

1



+
mX

k=n+1

µ
m+ n− k − 1

n− 1

¶
∆nak−n, for m > n

and

(2) am =
mX
k=1

µ
m− 1
k − 1

¶
∆k−1a1, for m ≤ n.

In [4] it is given the following definition: a sequence (cm)n≥1 is said to

be n-positive if cm ≥ 0 for m > n. The formulas (1) and (2) suggest the

following representation of n-convex sequences:

Theorem 1. A sequence (am)n≥1 is n-convex if and only if there is a

n-positive sequence (cm)n≥1 such that:

(3) am =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mX
i=1

µ
m− 1
i− 1

¶
ci, for m ≤ n

nX
i=1

µ
m− 1
i− 1

¶
ci +

mX
i=n+1

µ
m+ n− i− 1

n− 1

¶
ci, for m > n.

Lemma 1. If the sequence (am)m≥1 is represented by (3), then for

k = 1, . . . , n− 1:

(4) ∆kam =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m+kX
i=k+1

µ
m− 1

i− k − 1

¶
ci, for m < n− k + 2

nX
i=k+1

µ
m− 1

i− k − 1

¶
ci

+
m+kX
i=n+1

µ
m+ n− i− 1
n− k − 1

¶
ci, for m ≥ n− k + 2

and

(5) ∆kam = cm+k, for m ≥ 1, k = n.
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Proof. The relation (4) can be proved by induction. As:

∆n−1am =
m+n−1X
i=n

ci

we have also (5).

From (1), (2) and Lemma 1 it results not only Theorem 1 but also the

following generalization of it:

Theorem 2. A sequence (am)m≥1 is convex of order p, p + 1, . . . , n

if and only if it may be represented by (3) with a p-positive sequence

(cm)m≥1.

In [4] and [6] are given two other representation theorems but they

cannot be generalized as was (3) in the theorem 2 (or it is more difficult

to do it).

In [6] it is given the following definition: a sequence (am)m≥1 is said to

be starshaped of order n if ((am+1− a1)/m)m≥1 is convex of order n− 1.
From Theorem 2 we obtain:

Theorem 3. A sequence (am)m≥1 is starshaped of orders p, p+1, . . . , n

if and only if there is a p-positive sequence (dm)m≥1 such that:

(6) am =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m− 1)
mX
j=2

µ
m− 2
j − 2

¶
dj + d1, for m ≤ n

(m− 1)
"

nX
j=2

µ
m− 2
j − 2

¶
dj

+
mX

j=n+1

µ
m+ n− j − 2

n− 2

¶
dj

#
+ d1, for m > n.
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If (am)m≥1 is given by (3) then, for N > m:

NX
m=1

qmam =
nX
i=1

ci

NX
m=i

µ
m− 1
i− 1

¶
qm +

nX
i=n+1

ci

NX
m=i

µ
m+ n− i− 1

n− 1

¶
qm.

From Theorem 2, we obtain so a result from [3]:

Theorem 4. The inequality:

(7)
NX

m=1

qmam ≥ 0

holds for every sequence (am)m≥1 convex of orders p, p + 1, . . . , n if and

only if (qm)Nm≥1 satisfies:

NX
m=i

µ
m− 1
i− 1

¶
qm = 0 for i = 1, . . . , p

NX
m=i

µ
m− 1
i− 1

¶
qm ≥ 0 for i = p+ 1, . . . , n

NX
m=i

µ
m+ n− i− 1

n− 1

¶
qm ≥ 0, for i = n+ 1, . . . , N.

Similarly, from Theorem 3 we get a result from [2]:

Theorem 5. The inequality (7) holds for every sequences (am)m≥1

starshaped of orders p, . . . , n if and only if (qm)Nm=1 satisfies:

NX
m=1

qm = 0,
NX

m=j

(m− 1)
µ
m− 2
j − 2

¶
qm = 0 for j = 2, . . . , p,

NX
m=j

(m− 1)
µ
m− 2
j − 2

¶
qm ≥ 0 for j = p+ 1, . . . , n,

4



NX
m=j

(m− 1)
µ
m+ n− j − 2

n− 2

¶
qm ≥ 0 for j = n+ 1, . . . , N.

Finally we remark that all these results may be generalized following

the ideas from [5]. Also the operator ∆k may be replaced by ∇k.
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THE RESOLUTION OF SOME INEQUATIONS
WITH FINITE DIFFERENCES

GH. TOADER

Let us consider the linear equation with finite differences:

(1) Lp(xn) =

pX
i=0

ci∆
ixn =

pX
j=0

djxn+j = 0, n ≥ 0,

where dp and d0 does not vanish. As one knows (see [1]), the resolution

of this equation is related to the solutions of the algebraic equation:

(2) Lp(t
n)/tn =

pX
i=0

dit
i = dp

pY
i=1

(t− ti).

In what follows, we shall deal with the set of convex sequences in

respect to the operator Lp, that is:

Km(t1, . . . , tp) = {(xn)mn=0 : Lp(xn) ≥ 0, 0 ≤ n ≤ m− p}

or:

K(t1, . . . , tp) = {(xn)n≥0 : Lp(xn) ≥ 0, n ≥ 0}.

The case t1 = · · · = tp = 1, corresponds to the usual convexity of order

p (that is Lp = ∆p). In [8] we have proved that a sequence x = (xn)n≥0

1



is convex of order p if and only if it may be represented by:

xn =
nX
i=0

µ
n+ p− i− 1

p− 1

¶
yi, with yi ≥ 0 for i ≥ p.

Such representations were also given in [10], in the case p = 2, for any

t1 and t2. We want to extend this result to the general case.

A leading part will be played by the sequence (un)n≥0 defined by:

Lp(un) = 0, ∀ n ≥ 0; u0 = · · · = up−2 = 0, up−1 = 1/dp.

For example, if t1 = · · · = tp, then un = (t
n
1/dp)

µ
n

p− 1

¶
and if ti 6= tj

for i 6= j, then

un = (1/dp)

pX
k=1

⎡⎢⎣tnk/ pY
i=1
i6=k

(tk − ti)

⎤⎥⎦ .
Lemma 1. If:

(2) xn =
nX
i=0

un+p−i−1yi

then:

Lp(xn) = yn+p.

Proof. From (1) and (2) we have:

Lp(xn) =

pX
j=0

dj

n+jX
i=0

un+j+p−i−1yi

=
nX
i=0

Ã
pX

j=0

djun+j+p−i−1

!
yi +

n+pX
i=n+1

Ã
pX

j=n+1

djun+j+p−i−1

!
yi

=
nX
i=0

Lp(un+p−i−1)yi −
p−1X
k=1

Ã
k−1X
j=0

djup+j−k−1

!
yn+k + dpup−1yn+p = yn+p.

2



Remark 1. As from (2) we obtain:

yn = dp

"
xn − xn−1 −

n−1X
i=0

(un+p−i−1 − un+p−i−2)yi

#

it results the following:

Lemma 2. Let P ⊂ R. We have Lp(xn) ∈ P for every n ≥ 0, if and
only if (xn)n≥0 is represented by (2) with yi ∈ P for i ≥ p.

Lemma 3. The sequence (xn)n≥0 verifies the equation:

Lp(xn) = zn, n ≥ 0

if and only if it is represented by (2) with yi = zi−p for i ≥ p.

Theorem 1. The sequence (xn)mn≥0 belongs to Km(t1, . . . , tp) if and

only if it may be represented by (2) with yi ≥ 0 for p ≤ i ≤ m− p.

Remark 2. Some other sequences can also be represented using (2).

For example, in [9] we have given the following definition: the sequence

x = (xn)n≥0 is starshaped of order p if ∆p−1((xn+1 − x0)/(n + 1)) ≥ 0,
for n ≥ 0. So, the sequence x is starshaped of order p if and only if it
may be represented by:

xn = y0 + n
nX

k=1

µ
n+ p− k − 2

p− 2

¶
yk, with yk ≥ 0 for k ≥ p.

Remark 3. In what follows, we are interested in the determination of

the dual cone of Km(t1, . . . , tp), i.e.

K∗
m(t1, . . . , tp) =

(
(an)

m
n=0 :

mX
n=0

anxn ≥ 0, ∀ x ∈ Km(t1, . . . , tp)

)
.

As it is stated even in [2], results of this nature were obtained for the

first time by T. Popoviciu (see [7]).
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Theorem 2. The sequence (an)mn=0 belongs to K∗
m(t1, . . . , tp) if and

only if it satisfies the relations:

(3)
mX
n=k

anun+p−k−1 = 0 for k = 0, . . . , p− 1

and

(4)
mX
n=k

anun+p−k−1 ≥ 0 for k = p, . . . ,m.

Proof. From (2) we have:

(5)
mX
n=0

anxn =
mX
n=0

an

nX
k=0

un+p−k−1yk =
mX
k=0

yk

mX
n=k

un+p−k−1an ≥ 0.

As yk is of arbitrary sign for k = 0, . . . , p− 1, but it is nonnegative for
k = p, the relation (5) is equivalent with (3) and (4).

Remark 4. For Lp = ∆p the result may be find in [2] (in the special

case p = 2) and in [6] (in the general case). In [10] we have put the result

in a more convenient form. We want to do the same thing for the general

case. For this we need the operator:

L∗p(xn) =

pX
j=0

dp−jxn+j.

Theorem 3. The sequence (an)mn=0 belongs to K∗
m(t1, . . . , tp) if and

only if it may be represented by:

(6) an = L∗p(bn), for n = 0, . . . ,m

with

(7) bn ≥ 0 for p ≤ n ≤ m; bn = 0 for n ≤ p− 1 or n > m.

4



Proof. If we put:

(8)
mX
n=k

un+p−k−1an = bk

from (3) and (4) we have (7). But (8) may be written as:⎡⎢⎢⎢⎢⎢⎣
up−1 up up+1 . . . up+m−1

0 up−1 up . . . up+m−2

. . . . . . . . . . . . . . .

0 0 0 . . . up−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a0

a1

. . .

am

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

b0

b1

. . .

bm

⎤⎥⎥⎥⎥⎥⎦
which gives:⎡⎢⎢⎢⎢⎢⎣

a0

a1

. . .

am

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

dp dp−1 dp−2 . . . 0

0 dp dp−1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . dp

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b0

b1

. . .

bm

⎤⎥⎥⎥⎥⎥⎦
that is (6).

Remark 5. If Lp = ∆p, then L∗p = ∇p = (−1)p∆p, and we get the

result from [10]. The transition from the conditions (3) and (4) to (6) and

(7) remind the Minkowski-Farkas Lemma [11], but it does not represent

a simple consequence of it, we needing the conditions bn = 0 for n =

0, . . . , p− 1.
Remark 6. Let the triangular matrix Q = (qn,k)n=0,1,...

k=0,...,n
. It defines

a transformation in the set of sequences: to any sequence x = (xn)n≥0

corresponds the sequence X = Q(x) = (Xn)n≥0 given by:

(9) Xn =
nX

k=0

qn,kxk.

We have the following problem: what are the matrices Q with the

property that x ∈ Km(t1, . . . , tp) implies Q(x) ∈ Km(t1, . . . , tp). For this

5



we need:

Lp(Xn) =

pX
i=0

di

n+iX
k=0

qn+i,kxk

=
nX

k=0

Ã
pX

i=0

diqn+i,k

!
xk +

n+pX
k=n+1

Ã
pX

i=k−n
diqni,k

!
xk ≥ 0

for any 0 ≤ n ≤ m − p if x ∈ Km(t1, . . . , tp). This means that the

sequences an = (ank)
n+p
k=0 given by:

ank =

pX
i=j

diqn+i,k, for k = 0, . . . , n+ p, j = max{0, k − n}

belong to K∗
n+p(t1, . . . , tp). From (3) and (4) we have the following:

Theorem 4. The sequence X given by (9) is in Km(t1, . . . , tp) for any

x ∈ Km(t1, . . . , tp) if and only if:

pX
i=0

di

n+iX
k=1

uk+p−l−1qn+i,k = 0, l = 0, . . . , p− 1

pX
i=j

di

n+iX
k=1

uk+p−l−1qn+i,k ≥ 0, l = p, . . . , n+ p, j = max{0, 1− n}

for every 0 ≤ n ≤ m− p.

Remark 7. For Lp = ∆p such results may be found in [3] and [4] and

for L2 arbitrary in [5]. We want to put the result in another form, using

the theorem 3.

Theorem 5. The matrix Q has the property Q(x) ∈ Km(t1, . . . , tp) for

any x ∈ Km(t1, . . . , tp) if and only if, for every 0 ≤ n ≤ m− p, there is

a nonnegative sequence vn = (vnk )k≥0 such that v
n
k = 0 for k < p and for

k > n+ p, with the property that:
pX
i=j

diqn+i,k = L∗p(v
n
k ), for k = 0, . . . , n+ p, j = max{0, k − n}.

6



Remark 8. So qi,j may be chosen arbitrarily for i = 0, . . . , p− 1 and
j = 0, . . . , i and then, taking vn as it is requested by the theorem 5, we

can build, step by step, qn,k for n = p, p+ 1, . . . and k = 0, . . . , n.
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Bolyai Univ., Preprint Nr.6(1985), 227-234.
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ON SOME PROPERTIES OF CONVEX SEQUENCES

GH. TOADER

In [4] we have shown that the "hierarchy of convexity" established

for the functions by A.M. Bruckner and E. Ostrow in [1], is also valid

for sequences. Particularly we have proved that every convex sequence

is mean-convex and every mean-convex sequence is starshaped. Starting

from a property proved in [5], in this paper we shall extend this hierarchy,

inserting between the set of convex sequences and that of starshaped

sequences an infinity of sets of sequences.

Let us recall some definitions and some results.

Definition 1. A sequence (an)∞n=0 is called:

a) convex, if:

(1) ∆2an = an+2 − 2an+1 + an ≥ 0, for n ≥ 0;

b) mean-convex, if the sequence (An)
∞
n=0 is convex, where:

(2) An =
a0 + · · ·+ an

n+ 1
, for n ≥ 0;

c) starshaped, if it satisfies:

(3)
an−1 − a0
n− 1 ≤ an − a0

n
, for n ≥ 2.

1



Remark 1. We adopted (3) instead of:

(30)
an−1
n− 1 ≤

an
n

to allow a0 6= 0.
We have proved in [4] representation formulas for these sequence

classes. They are contained in the following:

Theorem 1. A sequence (an)∞n=0 is convex, mean-convex, respectively

starshaped if and only if it may be represented by:

(4) an =
nX

k=0

(n− k + 1)bk,

(5) an =
nX

k=0

(2n− k + 1)ck

respectively:

(6) an = n
nX

k=1

dk
k
− (n− 1)d0

with bk ≥ 0, ck ≥ 0 and dk ≥ 0 for k ≥ 2.
Remark 2. If the sequence (an)∞n=0 is represented by (4), (5) or (6)

then:

(7) ∆2an = bn+2,

(8) ∆2an = (n+ 3)cn+2 − ncn+1

respectively:

(9) ∆2an = dn+2 −
n

n+ 1
dn+1.

2



Using these relations we have proved in [4] the validity of the strict

inclusions:

(10) S1 ⊂ S2 ⊂ S3

where S1, S2 and S3 denote the sets of convex, mean-convex, respectively

starshaped sequences. By other means N. Ozeki has proved (see [3]) that

S1 ⊂ S2, and, if a0 = 0, S1 ⊂ S3.

Remark 3.Wewant now to recall the result from [5] mentioned before,

but it is more convenient for us to present it in the form given in [2]

because in [5] the sequence is indexed starting from 1 not from 0 as we

do. The result is given by the following:

Theorem A. The sequence (An)
∞
n=0 given by

(11) An =
p0a0 + · · ·+ pnan
p0 + · · ·+ pn

, for n ≥ 0

is convex for any convex sequence (an)∞n=0 if and only if:

(12) pn =

n−1Y
k=0

(kp0 + p1)

n!pn−10

, for n ≥ 2

with p0 > 0 and p1 > 0 arbitrary.

We want to put (12) in a more natural form and also to simplify the

proof of Theorem A given in [5]. We begin with:

Lemma 1. In order that the sequence (An)
∞
n=0 given by (11) be convex

for any convex sequence (an)∞n=0 it is necessary that:

(13) pn = p0

µ
u+ n− 1

n

¶
, for n ≥ 0

3



where u > 0 is arbitrary, and:

(14)

µ
v

0

¶
= 1,

µ
v

n

¶
=
1

n!

n−1Y
k=0

(v − k), for n ≥ 1, v ∈ R.

In this case:

An = Au
n =

nX
k=0

µ
u+ k − 1

k

¶
akµ

u+ n

n

¶ . (15)

Proof. We proceed by induction. If we put p1/p0 = u, then p1 =

p0u = p0

µ
u

1

¶
. Suppose (13) is valid for n = 0, 1, . . . ,m,m+ 1. Since the

sequence (an)∞n=0 given by an = cn is convex for any real c, the attached

sequence (An)
∞
n=0 must also be convex. We have:

Am =

mX
k=0

µ
u+ k − 1

k

¶
ak

mX
k=0

µ
u+ k − 1

k

¶ =

mX
k=0

µ
u+ k − 1

k

¶
ckµ

u+m

m

¶

=

cu
mX
k=1

µ
u+ k − 1
k − 1

¶
µ
u+m

m

¶ =

cu

µ
u+m

m− 1

¶
µ
u+m

m

¶ =
cum

u+ 1

because:

(16)
mX
k=0

µ
v + k

k

¶
=

µ
v +m+ 1

m

¶
.

By the same way:

Am+1 =
cu(m+ 1)

u+ 1

4



and

Am+2 =

cup0

µ
u+m+ 1

m

¶
+ c(m+ 2)pm+2

p0

µ
u+m+ 1

m+ 1

¶
+ pm+2

that is:

∆2Am =
c

p0

µ
u+m+ 1

m+ 1

¶
+ pm+2

∙
m+ 2

u+ 1
pm+2 −

p0u

m+ 1

µ
u+m+ 1

m

¶¸
.

Since c is arbitrary, we have ∆2Am ≥ 0 if and only if the expression in
brackets vanishes, that is:

pm+2 = p0
u(u+ 1)

(m+ 1)(m+ 2)

µ
u+m+ 1

m

¶
= p0

µ
u+m+ 1

m+ 2

¶
.

We will prove the sufficiency of the condition (13) in a more general

context (Theorem 3).

Definition 2. A sequence (an)∞n=0 is called u-mean-convex if the se-

quence (Au
n)
∞
n=0 given by (15) is convex. The set of all u-mean-convex

sequences is denoted by Su
2 .

Theorem 2. A sequence (an)∞n=0 is u-mean-convex if and only if it

may be represented by:

(17) an =
nX

k=0

∙
n

µ
1 +

1

u

¶
− k + 1

¸
ck

where ck ≥ 0 for k ≥ 2.
Proof. From (15) we have:µ

u+ n− 1
n

¶
an =

µ
u+ n

n

¶
Au
n −

µ
u+ n− 1
n− 1

¶
Au
n−1

that is:

(18) an =
³
1 +

n

u

´
Au
n −

n

u
Au
n−1.

5



If (Au
n)
∞
n=0 ∈ S1, by Theorem 1, it may be represented by:

Au
n =

nX
k=0

(n− k + 1)ck, ck ≥ 0 for n ≥ 2.

Hence we obtain from (18);

an =
³
1 +

n

u

´
cn +

n−1X
k=0

h³
1 +

n

u

´
(n− k + 1)− n

u
(n− k)

i
ck

=
³
1 +

n

u

´
ck +

n−1X
k=0

³
n− k + 1 +

n

u

´
ck

which is (17).

Remark 4. For u = 1, Su
2 = S2, and (17) reduces to (5).

Lemma 2. If the sequence (an)∞n=0 is represented by (17), then:

(19) ∆2an =

µ
1 +

n+ 2

u

¶
cn+2 −

n

u
cn+1, for n ≥ 0.

Proof. we have directly from (17):

an+1 − an =

µ
1 +

n+ 1

u

¶
cn+1 +

nX
k=0

µ
1 +

1

u

¶
ck

and then:

∆2an = (an+2 − an+1)− (an+1 − an)

=

µ
1 +

n+ 2

u

¶
cn+2 +

µ
1 +

1

u

¶
cn+1 −

µ
1 +

n+ 1

u

¶
cn+1

that is (19).

Theorem 3. If 0 < v < u, then we have the strict inclusions:

(20) S1 ⊂ Su
2 ⊂ Sv

2 ⊂ S3.
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Proof. (i) Let us suppose that the sequence (an)∞n=0 is represented as

in (4) and also as in (17). This may be done for every sequence. Then

from (7) and (19) we deduce:

(21) bn+2 =

µ
1 +

n+ 2

u

¶
cn+2 −

n

u
cn+1, for n ≥ 0

that is:µ
1 +

2

u

¶
c2 = b2 and

µ
1 +

n+ 2

u

¶
cn+2 = bn+2 +

n

u
cn+1, n ≥ 1.

So, if bn ≥ 0 for n ≥ 2, then cn ≥ 0 for n ≥ 2. By the theorems 1 and
2, if the sequence (an)∞n=0 is convex, it is u-mean-convex, i.e. S1 ⊂ Su

2 for

any u > 0. The inclusion is proper because we have, for example:

b3 =

µ
1 +

3

u

¶
c3 −

1

u
c2

which with c2 = 1 and c3 = 0 yields b3 = −1/u < 0.

(ii) Now suppose that the sequence (an)∞n=0 is represented by (17) and

by:

(170) an =
nX

k=0

∙
n

µ
1 +

1

v

¶
− k + 1

¸
ek.

From (19) we have:

(22)

µ
1 +

n+ 2

u

¶
cn+2 −

n

u
cn+1 =

µ
1 +

n+ 2

v

¶
en+2 −

n

v
en+1

for n ≥ 0, which gives successively:

e2 =
v(u+ 2)

u(v + 2)
c2,

e3 =
v(u+ 3)

u(v + 3)
c3 +

v(u− v)

u(v + 2)(v + 3)
c2

7



and supposing:

(23) en+1 =
v(u+ n+ 1)

u(v + n+ 1)
cn+1 +

nX
k=2

xn+1k ck

one obtains also:

en+2 =
v(u+ n+ 2)

u(v + n+ 2)
cn+2 +

n

v + n+ 2
en+1 −

vn

u(v + n+ 2)
cn+1

=
v(u+ n+ 2)

u(v + n+ 2)
cn+2+

vn(u− v)

u(v + n+ 2)(v + n+ 1)
cn+1+

nX
k=2

n

v + n+ 2
xn+1k ck.

That is, by induction, if u > v all the coefficients xn+1k in (23) are

positive and so if cn ≥ 0 for n ≥ 2 then en ≥ 0 for n ≥ 2. By Theorem 2

this means Su
2 ⊂ Sv

2 . The inclusion is proper because:

c3 =
u(v + 3)

v(u+ 3)
e3 +

u(v − u)

v(u+ 2)(u+ 3)
e2

and e3 = 0, e2 > 0, for example, give c3 < 0.

(iii) If (an)∞n=0 is represented by (17’) and by (6), from (9) and (19) it

results:

(24)

µ
1 +

n+ 2

v

¶
en+2 −

n

v
en+1 = dn+2 −

n

n+ 1
dn+1

for n ≥ 0, or:

d2 =

µ
1 +

2

v

¶
e2,

d3 =

µ
1 +

3

v

¶
e3 +

1

2
e2

and generally:

dn =
³
1 +

n

v

´
en +

1

n− 1

n−1X
k=1

(k − 1)ek,

8



which may be proved by induction. As above, en ≥ 0 for n ≥ 2 implies
dn ≥ 0 for n ≥ 2, that is, by the theorem 1 and 2, Sv

2 ⊂ S3. Since:µ
1 +

3

v

¶
e3 = d3 −

v

2(v + 2)
d2,

d3 = 0 and d2 > 0 give e3 < 0, that is the above inclusion is proper.

Remark 5. The first inclusion, S1 ⊂ Su
2 , gives implicitely the suffi-

ciency part of the theorem A.

We finish by giving another result which combines the convexity and

the starshapedness.

Theorem 4. If the sequence (an)∞n=0 is convex, then for any integers

n ≥ 2 and 0 ≤ q ≤ n− 2 and any real s ≥ 0 we have:

(25)
an − aq+1 + s(aq+1 − aq)

n− q − 1 + s
≥ an−1 − aq+1 + s(aq+1 − aq)

n− q − 2 + s
.

Proof. Since for any k ≥ 0 we have: ak+2 − 2ak+1 + ak ≥ 0, then for
any pk ≥ 0 and any 0 ≤ q ≤ n− 2:

(26)
n−2X
k=q

pk+2(ak+2 − 2ak+1 + ak) ≥ 0

or:
nX

k=q+2

pksk − 2
n−1X

k=q+1

pk+1ak +
n−2X
k=q

pk+2ak ≥ 0

that is, if q ≤ n− 4:

(27) pnan + (pn−1 − 2pn)an−1

+
n−2X

k=q+2

(pk − 2pk+1 + pk+2)ak + (pq+3 − 2pq+2)aq+1 + pq+2aq ≥ 0.

9



Choose the sequence (pk)nk=q+2 such that:

pk − 2pk+1 + pk+2 = 0, for k = q + 2, . . . , n− 2

that is:

pk = pq+2 + (k − q − 2)(pq+3 − pq+2)

or denoting: pq+2 = p ≥ 0, pq+3 − pq+2 = r > 0, we have from (27):

[p+ (n− q − 2)r]an − [p+ (n− q − 1)r]an−1 + (r − p)aq+1 + paq ≥ 0

or:

[p+ (n− q − 2)r]
h
an − aq+1 +

p

r
(aq+1 − aq)

i
≥ [p+ (n− q − 1)r]

h
an−1 − aq+1 +

p

r
(aq+1 − aq)

i
and hence we have (25) for s = p/r. For q = n− 2 and q = n− 3, (25)
may be put in the form:

an − 2an−1 + an−2 ≥ 0

respectively:

s[(an − an−1)− (an−2 − an−3)] + (an − 2an−1 + an−2) ≥ 0

that is (25) is valid also for them.

Taking s = 1 we obtain the following:

Corollary. If the sequence (an)∞n=0 is convex and 0 ≤ q ≤ n− 2, then:

(250)
an − aq
n− q

≥ an−1 − aq
n− 1− q

.

10
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ON AN INEQUALITY OF NANSON

I. Ž. MILOVANOVIĆ, J. E. PEČARIĆ AND GH. TOADER

(NIŠ, BEOGRAD, CLUJ-NAPOCA)

In this paper we give a generalization of the following inequality of

Nanson [1] (see also [2]) for the case of p, q-convex sequences:

Theorem 1. If the real sequence a = (a1, . . . , a2n+1) is convex, then

(1)
a1 + a3 + · · ·+ a2n+1

n+ 1
≥ a2 + a4 + · · ·+ a2n

n

with equality if and only if a represents an arithmetic progression.

Definition. A real sequence a = (a1, a2, . . . ) is p, q-convex (p, q > 0)

if Lpq(an) ≥ 0 for n ≥ 1, where

(2) Lpq(an) = an+2 − (p+ q)an+1 + pqan.

Remark 1. For p = q = 1 we get the usual notion of convexity. In

[4] we have shown that a remarkable place in the theory of p, q-convex

1



sequences is played by the sequence w = (w1, w2, . . . ) given by

(3) wn =

⎧⎨⎩
pn − qn

p− q
if p 6= q

npn−1 if p = q.

For example, we have proved:

Lemma 1. The sequence a satisfies the relation

(4) Lpq(an) = 0, n = 1, . . . , n

if and only if

(5) an = uwn + vwn+1

where u and v are arbitrary real numbers.

Theorem 2. If the real sequence a = (a1, a2, . . . , a2n+1) is p, q-convex,

then:

(6)
(pq)na1 + (pq)

n−1a3 + · · ·+ a2n+1
wn+1

≥ (pq)
n−1a2 + (pq)n−2a4 + · · ·+ a2n

wn

with equality if and only if a satisfies (4).

Proof. Since

a2k+1 − (p+ q)a2k + pqa2k−1 ≥ 0, k = 1, . . . , n

and

a2k+2 − (p+ q)a2k+1 + pqa2k ≥ 0, k = 1, . . . , n− 1,

we have the inequalities:

(7)
nX

k=1

wkwn−k+1
(pq)k−1

(a2k+1 − (p+ q)a2k + pqa2k−1) ≥ 0

2



and

(8)
n−1X
k=1

wkwn−k
(pq)k−1

(a2k+2 − (p+ q)a2k+1 + pqa2k) ≥ 0.

Because:

(9) wk+1wn−k − pqwkwn−k−1 = wn

adding (7) and (8) we obtain:

pqwn

n+1X
k=1

a2k−1
(pq)k−1

− wn+1

nX
k=1

a2k
(pq)k−1

≥ 0

which is (6).

Remark 2. For

(10) sn = w1 + · · ·+ wn

we have

(11) Lpq(sn) = 1.

So we obtain the following:

Lemma 2. If the real sequence a = (a1, a2, . . . ) satisfies:

(12) m ≤ Lpq(an) ≤M, n = 1, 2, . . .

then the sequences (bn) and (cn), n = 1, 2, . . . , given by

(13) bn =Msn − an, cn = an −msn,

are p, q-convex.

Theorem 3. If the sequence a satisfies (12), then

(14) mzn ≤ (pq)
na1 + · · ·+ a2n+1

wn+1
− (pq)

n−1a2 + · · ·+ a2n
wn

≤Mzn

3



where

(15) zn =

wn +
n−1X
k=1

(pq)n−kwk(wn−k+1 + wn−k)

wnwn+k

Proof. Because (bn) and (cn), n = 1, 2, . . . , given by (13), are p, q-

convex, we may apply (6). Taking into account (11), we can make with

(sk), k = 1, 2, . . . , the same operations as in the proof of Theorem 2 and

we get (14) and (15).

Corollary. Since for p = q = 1, wn = n, (6) becomes (1) and (14) an

inequality proved in [3], where zn =
2n+ 1

6
.
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CONVEX SEQUENCES AND FOURIER SERIES

GH. TOADER

1. Introduction

In their book [11], A.W. Roberts and D.E. Varberg have proposed, for

an independent study project, the convex sequences and have given as

basic references two books on trigonometric series: [1] of N.K. Bary and

[19] of A. Zygmund. In what follows, we use the results given in these

books and also in that of R. Edwards [4], regarding the properties of con-

vex sequences useful in Fourier series. We remind also some recent papers

which define other classes of sequences. For the first two of these classes

we give representation theorems and study some of their properties.

2. Notations and definitions

Given the sequence (an)n≥0 we consider the first and the second finite

differences:

∆an = an+1 − an

1



and

∆2an = an+2 − 2an+1 + an.

In what follows we shall refer at a lot of sequence classes. We give

now some of them, which are well known: the set of all real sequences,

that of bounded sequences, of convergent sequences, of null-sequences,

of decreasing sequences, of sequences with bounded variation, of convex

sequences and of quasiconvex sequences, respectively:

S = {a : a = (an)n≥0, an ∈ R}

B = {a ∈ S : ∃ m, |an| ≤ m,∀ n ≥ 0}

C = {a ∈ B : an → l, for n→∞}

C0 = {a ∈ B : an → 0, for n→∞}

D = {a ∈ S : an+1 ≤ an, for n ≥ 0}

BV =

(
a ∈ S :

X
n≥0

|∆an| <∞
)

K = {a ∈ S : ∆2an ≥ 0, for n ≥ 0}

Q =

(
a ∈ S :

X
n≥0
(n+ 1)|∆2an| <∞

)
.

Let us also denote by A0 = A∩C0, where A is any class of sequences.
Before ending, we remark that quasiconvexity is also used in another

sense, analogues with that given for functions (see [16]).
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3. Trigonometric series

For a given sequence a ∈ S, we consider the trigonometric series:

a0/2 +
X
n≥1

an cosnx,
X
n≥1

an sinnx

which are usually called cosine respectively sine series.

For their convergence it is necessary that the sequence a ∈ C0. IfX
n≥0

|an| < ∞ the series converge absolutely, but this condition is too

strongly. Using Abel’s lemma, in [1] it is proved that if a ∈ BV0 the

series converge at least for x 6= 2kπ, k ∈ Z. This happens for example
for sequences from D0.

But, even if the series are convergent, they are not necessarily Fourier

series. For the sine series in [1] it is proved that it is a Fourier series if

and only if:
X
n≥1

an/n <∞. If we pass to the cosine series, this condition

is only sufficient (to be a Fourier series) and other sufficient conditions

(other classes of sequences) may be also find. The first one was K0 given

by W.H. Young in [18]. The second was Q0 finded by A.N. Kolmogorov

in [10]. The third example is the class T0 of S.A. Telyakovskii [14]: the

sequence a = (an)n≥0 belongs to T if there is a sequence b = (bn)n≥0 ∈ D0

such that |∆an| ≤ bn and
X
n≥0

bn < ∞. Other classes were given in [3],

[5], [6], [7], [8], [9], [13] and their relationships are analysed in [17].

For some of these classes it is also proved that the convergence of the

Fourier series to the limit function holds even in the L1 norm if and only

if: lim
n→∞

an lnn = 0 (see [1] and []2]).
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4. Bounded convex sequences

In [4] it is proved that if the sequence a is convex and bounded, then

it is decreasing, lim
n→∞

n∆n = 0 and
X
n≥0
(n+ 1)∆2an = a0 − lim

n→∞
an.

Taking into account the result from [15] we obtain the following rep-

resentation theorem for such sequences.

4.1. Theorem. The sequence a = (an)n≥0 is in K ∩ B if and only if

there is a sequence b = (bn)n≥0 such that:

(1) an =
nX

k=0

(n− k + 1)bk, n ≥ 0

(2) bk ≥ 0 for k ≥ 2

(3) n
nX

k=0

bk → 0, n→∞

and

(4)
X
k≥0
(k + 1)bk+2 <∞.

Proof. Any sequence a may be represented by (1). As this gives:

∆an =
n+1X
k=0

bk and ∆2an = bn+2

the sequence is convex if and only if holds (2). From ∆2an ≥ 0 for n ≥ 0
we get:

∆a0 ≤ ∆a1 ≤ · · · ≤ ∆an ≤ . . .

If ∆ap = c > 0 for some p ≥ 0, it results that ∆an ≥ c for n ≥ p, thus:

(5) an = a0 +
n−1X
k=0

∆ak ≥ a0 +

p−1X
k=0

∆ak + (n− p)c, n > p

4



hence an →∞ for n→∞.
So ∆an ≤ 0 for n ≥ 0 and hence ∆an → l ≤ 0 (n →∞). If l < 0, we

have ∆an ≤ l < 0, for every n ≥ 0, thus an ≤ a0 + nl and so an → −∞
(n→∞). Hence if a ∈ B ∩K, the sequence (∆an)n≥0 increases at zero.

Thus a ∈ D ∩B ⊂ C. From (5) we have:

X
k=0

(−∆ak) <∞, (−∆ak)k≥0 ∈ D0

and by the theorem of Olivier (see [12]), we have n∆an → 0, that is (3).

Applying to (5) Abel’s summation formula, we get:

(6) an − a0 =
n−1X
k=0

∆ak = n∆an−1 −
n−2X
k=0

(k + 1)∆2ak

and from (3) we have:

X
k=0

(k + 1)∆2ak = a0 − lim
n→∞

an

which gives (4).

Conversely, if (an)n≥0 is given by (1), then (2) guarantees that it is

from K, while (3), (4) and (6) give:

lim
n→∞

an = a0 −
X
k≥0
(k + 1)bk+2

that is a ∈ C ⊂ B.

4.2. Corollary. The following inclusion holds:

K ∩B ⊂ C ∩D ∩BV ∩Q.

5



4.3. Corollary. The sequence a belongs to K0 if and only if there is a

sequence b such that (1), (2), (3) hold and

(40)
X
k≥0
(k + 1)bk+2 = a0.

4.4. Theorem. The sequence a is quasiconvex if and only if there is

a sequence b such that hold: (1) and

(7)
X
n≥0
(n+ 1)|bn+2| <∞.

Proof. Any sequence may be represented by (1) and it implies ∆2an =

bn+2, which gives the equivalence.

4.5. Theorem. If the sequence a is quasiconvex, then the following

properties are equivalent:

(i) a ∈ BV

(ii) a ∈ B

(iii) (n∆an)n≥0 ∈ B.

Proof. The implication (i)⇒ (ii) holds for any sequence a from S as:

|an| =
¯̄̄̄
¯a0 +

n−1X
k=0

∆ak

¯̄̄̄
¯ ≤ |a0|+

n−1X
k=0

|∆ak|, n ≥ 0.

(ii) ⇒ (iii) Suppose a given by (1) and:

|an| ≤M,∀ n ≥ 0;
X
n≥0
(n+ 1)|bn+2| ≤ L.

Then:

|n∆an| =
¯̄̄̄
¯n

n+1X
k=0

bk

¯̄̄̄
¯

6



=

¯̄̄̄
¯
n+1X
k=0

(n− k + 2)bk − (2b0 + b1) +
n+1X
k=2

(k − 1)bk −
n+1X
k=2

bk

¯̄̄̄
¯

≤ |an+1|+ |a1|+
n+1X
k=2

(k − 1)|bk|+
n+1X
k=2

|bk| ≤ 2(M + L).

(iii) ⇒ (i) Suppose:X
n≥0
(n+ 1)|∆2an| ≤ L; |n∆an| ≤M, ∀ n ≥ 0.

From Abel’s summation formula, in [4] it is proved that for any a ∈ S:

nX
k=0

|∆ak| ≤ (n+ 1)|∆an|+
nX

k=0

k|∆2ak|

and so: X
k≥0

|∆ak| ≤ 2M + L.

In [4] it is proved the "only if" part of the following:

4.6. Theorem. The sequence a ∈ Q if convergent if and only if:

(n∆an)n≥0 ∈ C0.

Proof. As a ∈ Q, the series:
X
n≥0
(n+ 1)∆2an is absolutely convergent

and so the affirmation follows from (6). Moreover, we have:

lim
n→∞

an = a0 −
X
n≥0
(n+ 1)∆2an.

4.7. Corollary. The sequence a belongs to Q0 if and only if there is a

sequence b such that hold (1), (7), (3) and (4’).
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JESSEN’S INEQUALITY FOR SEQUENCES

GH. TOADER

Abstract. În lucrare se demonstrează că o funçtională liniară şi

continuă A este pozitivă pentru orice şir convex de ordin n dacă şi

numai dacă ea verifică relaţiile (5) şi (6) pentru şirurile "test" ce au

componentele date de (1).

A very large extension of the well known inequality of Jensen for convex

function was given by B. Jessen in [2]. Some generalizations of Jessen’s

inequality are analysed in [1]. In [8] we have succeeded in transposing the

result to convexity of higher order. We have proved that a function f is

convex of order n if and only if:

f(A(c)) ≤ A(f) (where e(x) = x)

for every continuous linear functional A with the properties:

p(A(e)) = A(p), ∀ p polynomial of degree n− 1

and

wn
c (A(e)) ≤ A(wn

c ), ∀ c ∈ (a, b)

1



where

wn
c (x) =

(
0 for x < c

(x− c)n−1 for x ≥ c.

To pass to sequences, we must note that the inequality of Jessen has

generally no meaning in this case. But, as we have remarked in [8], there is

a bijection between the functionals which satisfy Jessen’s inequality and

the positive functionals on the set of convex functions. For sequences we

follow this second way, which was initiated by T. Popoviciu (see [6]). For

"finite" sequences some results are given in [9]. A possibility for passing

to infinite sequences was remarked in [3] and used in [4] and [5].

Let Kn be the space of all n-convex sequences, that is of sequences

(xm)m≥0 with the property that ∆nxm ≥ 0 for every m, where:

∆0xm = xm, ∆nxm = ∆n−1xm+1 −∆n−1xm, n ≥ 1.

In [7] we have given the following result:

Theorem 1. A sequence (xm)m≥0 is in Kn if and only if it may be

represented by:

xm =
mX
k=0

µ
m+ n− k − 1

n− 1

¶
yk

where yk ≥ 0 for k ≥ n.

This result may be put in another form. In the vector space S of all

sequences, it is considered the metric d defined by:

d(x, y) =
∞X
k=0

2−k
|xk − yk|

1 + |xk − yk|

for x = (xk)k≥0 and y = (yk)k≥0.

If we consider the sequences e0m = (e
0
m,k)k≥0 given by:

e0m,m = 1, e0m,k = 0 for k 6= m

2



we have, for any sequence x = (xk)k≥0:

x = lim
p→∞

pX
k=0

xke
0
k =

∞X
k=0

xke
0
k

where the limit is taken in the metric d. For n-convex sequences we look

for other "basic" sequences.

For an n > 0, let us consider the sequences enm = (enm,k)k≥0 with the

components:

(1) enm,k =

µ
n−m+ k − 1

n− 1

¶
where

µ
m

k

¶
= 0 if m < k. It can be proved that, for every fixed n, the

sequences en0 , e
n
1 . . . give a base for S (as it was for n = 0).

We may use ∆ as an operator, ∆ : S → S, given by:

∆x = (∆xk)k≥0, for x = (xk)k≥0.

We have: ∆enm = en−1m−1 and so:

∆penm = en−pm−p, 1 ≤ p ≤ n.

If we denote by:

S+ = {x = (xk)k≥0 : xk ≥ 0, ∀ k ≥ 0}

the set of n-convex sequences is given by:

Kn = {x ∈ S : ∆nx ∈ S+}.

For the sequence:

xm = y0e
n
0 + · · ·+ yme

n
m, m ≥ n

we have:

∆nxm = yne
0
0 + · · ·+ yme

0
m−n = (yn, . . . , ym, 0, . . . )

3



and so we get the following:

Theorem 2. The sequence x is in Kn if and only if:

(2) x = lim
m→∞

(y0e
n
0 + · · ·+ yme

n
m), ym ≥ 0 for m ≥ n.

Using the representation theorem, we can prove the following result:

Theorem 3. Let the functional A : S → R be superadditive, positively
homogeneous and upper semicontinuous. In order that A(x) ≥ 0 for every
x ∈ Kn it is necessary and sufficient that:

(3) A(enm) ≥ 0 for m ≥ 0

and

(4) A(−enm) ≥ 0 for 0 ≤ m < n.

Proof. From the theorem 2 we have that enm ∈ Kn, ∀ m ≥ 0 and

−enm ∈ Kn for 0 ≤ m < n, so that the conditions (3) and (4) are necessary.

They are also sufficient. Indeed, let us take an x ∈ Kn. By the theorem

2 we have (2), which gives:

A(y0e
n
0 + · · ·+ yme

n
m) ≥ A(y0e

n
0) + · · ·+A(yme

n
m)

= |y0|A((sgny0)en0) + · · ·+ |yn−1|A((sgnyn−1)enn−1)

+ynA(e
n
n) + · · ·+ ymA(e

n
m) ≥ 0.

As A is upper semicontinuous, it follows that A(x) ≥ 0.
Consequence. Let A : S → R be a continuous linear functional. In

order that A(x) ≥ 0 for every x ∈ Kn it is necessary and sufficient that:

(5) A(enm) ≥ 0 for m ≥ n

4



and

(6) A(enm) = 0 for 0 ≤ m < n.
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[1] P.R. Beesack, J.E. Pečaríc, On Jessen’s inequality for convex functions, J. Math.

Anal. Appl. 110(1985), 536-552.

[2] B. Jessen, Bemaerkinger on konvekse Funktioner of Ulighedermellen Middel-

vaerdier, I. Mat. Tidsskrift B(1931), 17-28.

[3] I.B. Lackovíc, Lj.M. Kocíc, Approximation in discrete convexity cones, Numerical

Methods and Approximation Theory (G.V. Milovanovíc, ed.), Univ. of Niš, 1984,

119-123.
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1. Let us consider the linear recurrence of order p:

(1) Lp(xn) =

pX
j=0

djxn+j = 0, n ≥ 0

where dp = 1 and d0 6= 0. As it is known (see [2]), the representation of
the sequences which satisfy this relation is related to the solutions of the

algebraic equation:

(2) Lp(t
n)/tn =

pX
j=0

djt
j =

pY
j=1

(t− tj).

For example, we shall use the sequence (un)n≥0 defined by:

(3) Lp(un) = 0, ∀ n ≥ 0, u0 = · · · = up−2 = 0, up−1 = 1.

1



If the roots of (2) are si multiple of order qi, for i = 1, . . . , r (with

q1 + · · ·+ qr = p), then:

un =
rX

i=1

Pi(n)s
n
i

where Pi is a polynomial of degree qi and
rX

i=1

Pi(j)s
j
i = uj for j = 0, . . . , p− 1.

So, if r = 1, that is t1 = · · · = tp = s, then:

un = sn
µ

n

p− 1
¶

and if r = p, that is ti 6= tj for i 6= j, then:

un =

pX
j=1

⎡⎢⎣tnj / pY
i=1
i6=j

(tj − ti)

⎤⎥⎦ .
References to other methods of representation of recurrent sequences

may be found in [1].

Our basic method of study is furnished by the following result which

may be proved by simple computation (see [16]):

Lemma 1. If the sequence (xn)n≥0 is represented by:

(4) xn =
nX
i=0

un+p−i−1yi

where (un)n≥0 is given by (3), then:

Lp(xn) = yn+p.

If (xn)n≥0 is given, then (yn)n≥0 may be found, step by step, from (4),

so that we get:

2



Lemma 2. Let P ⊂ R. In order that Lp(xn) ∈ P for every n ≥ 0 it
is necessary and sufficient that (xn)n≥0 be represented by (4) with yi ∈ P

for i ≥ p.

Corollary 1. The sequence (xn)n≥0 verifies the relations:

Lp(xn) = zn, n ≥ 0

if and only if it is represented by (4) with yi = zi−p for i ≥ p.

Corollary 2. The sequence (xn)n≥0 verifies the relation (1) if and only

if it is represented by:

(5) xn =

pX
i=0

un+p−i−1yi.

On the vector space S of all sequences, let us consider the shift operator

E defined for any x = (xn)n≥0 by:

Ex = x0 = (x0n)n≥0, x00 = 0, x0n = xn−1, n ≥ 1.

If we define the sequence:

(6) up = (up−1+n)n≥0

the relation (5) may be written as:

x =

p−1X
i=0

yiE
iup

where E0x = x and Ei is obtained by the composition of i exemplars of

E. Thus we have:

Corollary 3. The sequences:

up, Eup, . . . , Ep−1up

3



form a basis for the subspace of sequences which verify (1).

2. In what follows, we shall deal with the cone of convex sequences in

respect to the operator Lp, that is:

Km(Lp) = {(xn)mn=0 : Lp(xn) ≥ 0, 0 ≤ n ≤ m− p}

or

K(Lp) = {(xn)n≥0 : Lp(xn) ≥ 0, n ≥ 0}.

The case t1 = · · · = tp = 1 corresponds to the usual convexity of

order p as Lp = ∆p (see [12]). We have given the representation of these

(ordinary) convex sequences in [15], for the case p = 2 (and L2 arbitrary)

in [9] and for the general case in [16]. This follows from Lemma 1.

Theorem 1. a) The sequence (xn)mn=0 belongs to Km(Lp) if and only

if it may be represented by (4), with yi ≥ 0 for p ≤ i ≤ m− p.

b) The sequence (xn)n≥0 belongs to K(Lp) if and only if it may be

represented by (4) with yi ≥ 0 for i ≥ p.

The result from part b) may be reformulated if we consider (as it was

done in [5] and then in [10], [11] and [17]) the metric d on S, defined by:

d(x, y) =
∞X
n=0

2−n
|xn − yn|

1 + |xn − yn|

for x = (xn)n≥0 and y = (yn)n≥0. Let us also put:

Lp(x) = (Lp(xn))n≥0.

We have at once:

Lemma 3. If up is given by (6) then:

Lp(E
kup) = 0 for 0 ≤ k ≤ p− 1

4



and

Lp(E
kup) = (δn,k−p)n≥0 for k ≥ p

where δn,k is Kronecker’s symbol.

Theorem 2. The sequence x belongs to K(Lp) if and only if:

(7) x = lim
n→∞

xn =
∞X
n=0

xn

where

xn =
nX

k=0

ykE
kup, with yk ≥ 0 for k ≥ p

and the limit is taken in respect to the metric d.

Proof. As Enup has the first n components zero, any sequence x is

the limit of such a linear combination (in fact, x and xn have the same

first n+ 1 components). But

Lp(x
n) = (yp, . . . , yn, 0, 0, . . . )→ Lp(x)

so that x is in K(Lp) if and only if yn ≥ 0 for n ≥ p.

3. In [16] we have also characterized the elements of the dual cone of

Km(Lp) that is:

K∗
m(Lp) =

(
(an)

m
n=0 :

mX
k=0

akxk ≥ 0, ∀ (xk)mk=0 ∈ Km(Lp)

)
.

As it is stated in [3], such results were obtained for the first time for

convex functions by T. Popoviciu (see [14] for more references).

They were transposed for convex sequences by J.E. Pečaríc in [13].

A constructive characterization is given in [20]. The representation for

p = 2 is given in [8]. The general case follows easy from Theorem 1.
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Theorem 3. The sequence (an)mn=0 belongs to K∗
m(Lp) if and only if it

satisfies the relations:
mX
n=k

anun+p−k−1 = 0 for 0 ≤ k ≤ p− 1

and
mX
n=k

anun+p−k−1 ≥ 0 for p ≤ k ≤ m.

Using Theorem 2 we can transpose the result for the case of m infinite.

But, as in [17] we want to deal with a more general case. We remind some

definitions. The functional A : S → R is said to be:

a) superadditive, if:

A(x+ y) ≥ A(x) +A(y), ∀ x, y ∈ S;

b) positively superhomogeneous, if:

A(ax) ≥ aA(x), ∀ x ∈ S, a ≥ 0;

c) upper semicontinuous, if:

(8) lim sup
n→∞

A(xn) ≤ A
³
lim
n→∞

xn
´
.

Theorem 4. Let A : S → R be a superadditive, positively superho-

mogenous, upper semicontinuous functional. In order that A(x) ≥ 0 for
every x ∈ K(Lp) it is necessary and sufficient that:

(9) A(Ekup) ≥ 0 for k ≥ 0

and

(10) A(−Ekup) ≥ 0 for 0 ≤ k < p.

6



Proof. From the theorem 2, we have Ekup ∈ K(Lp) for k ≥ 0 and also
−Ekup ∈ K(Lp) for 0 ≤ k < p, so that the conditions (9) and (10) are

necessary. They are also sufficient. For an x ∈ K(Lp) we have (7) and so,

for n > p:

A(xn) = A(y0u
p + y1Eu

p + · · ·+ ynE
nup)

≥ A(y0u
p) +A(y1Eu

p) + · · ·+A(ynE
nup)

≥ |y0|A((sgny0)up) + · · ·+ |yp−1|A((sgnyp−1)Ep−1up)

+ypA(E
pup) + · · ·+ ynA(E

nup) ≥ 0
thus, from (8), A(x) ≥ 0.
Corollary 4. Let A : S → R be a linear and continuous functional. In

order that A(x) ≥ 0 for every x ∈ K(Lp) it is necessary and sufficient

that:

A(Ekup) = 0 for 0 ≤ k < p

and

A(Ekup) ≥ 0 for k ≥ p.

We remark that in this corollary R can be replaced by an arbitrary

linear topological space with a "positive" cone.

If we don’t work with divergent series, Corollary 4 takes the following

form. Let us denote:

K∗(Lp) =
n
a = (an)n≥0, ∃ n0 : an = 0 if n > n0

and ax =
∞X
n=0

anxn ≥ 0, ∀ x = (xn)n≥0 ∈ K(Lp)
o
.

7



Corollary 5. The finally null sequence a belongs to K∗(Lp) if and only

if:

aEkup = 0 for 0 ≤ k < p

and

aEkup ≥ 0 for k ≥ p.

We point out that these results generalize the corresponding theorems

from [5] and [17].

4. We can further generalize these results as follows. Let A : S → S

be a continuous linear operator on S and Lp, L
0
q two linear recurrences

of the form (1). The problem is when holds:

(11) A(K(Lp)) ⊂ K(L0q).

Theorem 5. If A : S → S is a linear continuous operator, then (11)

holds if and only if:

L0q(A(E
kup)) = 0 for 0 ≤ k < p

and

L0q(A(E
kup)) ≥ 0 for k ≥ p.

Proof. As Ekup ∈ K(Lp) for k ≥ 0 and −Ekup ∈ K(Lp) for 0 ≤
k < p, the conditions are necessary. They are also sufficiently. Indeed, let

x ∈ K(Lp). By (7), x = lim
n→∞

xn, where xn =
nX

k=0

ykE
kup and yk ≥ 0 for

k ≥ p. So:

L0q(A(x)) = lim
n→∞

L0q(A(xr))

8



= lim
n→∞

nX
k=0

yk · L0q(A(Ekup)) = lim
n→∞

nX
k=p

yk · L0q(A(Ekup)) ≥ 0.

We remark that A is usually given by a double infinite matrix A =

(ank)n,k≥0 with the property that for any n ≥ 0 there is a kn such that

ank = 0 for k > kn. If x = (xk)k≥0 then

A(x) =

Ã ∞X
k=0

ankxk

!
n≥0

.

The case of triangular matrices, that is kn = n, was studied, for Lp =

L0q = ∆ in [4] and [7]. His special case of generalized arithmetic means

is effectively solved: the case p = 2 in [21] and in an improved form in

[18], while the general case was initiated in [6] and accomplished in [19].

We shall give this result in the next paragraph. Also, the case L2 = L02

is studied in [8].

5. Let q = (qn)n≥0 be a sequence of positive numbers. It defines an

operator Q : S → S by: if x = (xn)n≥0 then Q(x) = X = (Xn)n≥0 is

given by:

Xn = (q0x0 + · · ·+ qnxn)/(q0 + · · ·+ qn).

We denote by Lp = K(∆p) the set of (ordinary) p-convex sequences.

In [19] we have proved that Q(Kp) ⊂ Kp if and only if:

(12) qn = q0

µ
v + n− 1

n

¶
, n ≥ 1

with v = q1/q0, where:µ
w

0

¶
= 1,

µ
w

n

¶
=

w(w − 1) . . . (w − n+ 1)

n!
for n ≥ 1.

Let us denote by MvKp the set of sequences x with the property that

Q(x) ∈ Kp, where q is given by (12). In [19] it is proved that x ∈MvKp

9



if and only if:

xn =
nX

k=0

µ
n+ p− k − 2

p− 2
¶µ

n+ p− k − 1
p− 1 +

n

v

¶
zk, zk ≥ 0 for k ≥ p.

This may be transcript as follows:

Lemma 4. The sequence x belongs to MvKp if and only if:

x =
∞X
k=0

∙µ
1 +

p− 1
v

¶
Ekup +

k − p+ 1

v
Ekup−1

¸
zk, zk ≥ 0 for k ≥ p.

As in the other cases this gives:

Theorem 6. The linear continuous functional A : S → R verifies the

condition A(x) ≥ 0 for every x ∈MvKp if and only if:

(v + p− 1)A(Ekup) + (k − p+ 1)A(Ekup−1) = 0 for 0 ≤ k < p

and

(v + p− 1)A(Ekup) + (k − p+ 1)A(Ekup−1) ≥ 0 for k ≥ p.

In the special case p = 2, v = 1 this result is given in [11].
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sequences, Babeş-Bolyai Univ. Preprint 7(1985), 57-58.
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ON THE CONVEXITY OF HIGH ORDER
OF SEQUENCES

GH. TOADER

Abstract. We improve some results of Lackovíc and Simíc [2] con-

cerning the weighted arithmetic means that preserve the convexity

of high order of sequences.

In [1] and [3] a characterization is given for triangular matrices which

define transformations in the set of sequences preserving convexity of

order r. In the particular case of weighted arithmetic means, explicit

expressions were given before in Lackovíc and Simíc [2]. In this paper we

improve the results from [2] generalizing some of the properties that we

proved in [7] for the convexity of order two.

At the beginning, let us specify some notation and definitions which

will be used throughout the paper.

Let a = (an) (n = 0, 1, . . . ) be a real sequence. The r-th order difference

of the sequence a is defined by:

(1) ∆0an = an, ∆ran = ∆r−1an+1 −∆r−1an

(r = 1, 2, . . . , n = 0, 1, . . . ).
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Definition 1. A sequence a = (an) is said to be convex of order r if

∆ran ≥ 0 for all n ∈ N.
Let p = (pn) be a sequence of positive numbers. If defines a transfor-

mation P in the set of sequences: any sequence a = (an) is transformed

into the sequence P (a) = A = (An) given by:

(2) An =
p0a0 + · · ·+ pnan
p0 + · · ·+ pn

(n = 0, 1, . . . )

Definition 2. The transformation P is said to be r-convex if the

sequence A = P (a) is convex of order r for any sequence a convex of

order r.

In [2] the following theorem is given:

Theorem 0. The transformation P is r-convex if and only if the se-

quence p = (pn) is given by:

pn =
(r − 1)!pr−1

n!(p0 + · · ·+ pr−2)n−r+1

n−2Y
k=r−2

(k + 1)(p0 + · · ·+ pr−2) + (r − 1)pr−1

for n ≥ r, with p0, . . . , pr−1 arbitrary positive numbers.

Remark 1. For a0 = 0 and an = (3 + 6n− 2n2)/3 if n ≥ 1, we have
∆3a0 = 1 and ∆3an = 0 if n ≥ 1, so that the sequence (an) is convex of
order 3. Let us choose for r = 3: p0 = 6, p1 = 1 and p2 = 7/2. From (3)

we get p3 = 7/2 and so from (2), we have A0 = 0, A1 = 1/3, A2 = 1 and

A3 = 1, that is ∆3A0 = −1. Hence the result from Theorem 0 is not valid
in this form. To amend it, we begin by putting (3) in a simpler shape.

For this we use the following notation:

(4)

µ
u

0

¶
= 1,

µ
u

n

¶
=

u(u− 1) . . . (u− n+ 1)

n!
, for n ≥ 1

where u is an arbitrary real number.
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Lemma 1. If the transformation P is r-convex, then the sequence (pn)

must be given by:

(5) pn = pr−1

µ
u+ n− 1
n− r + 1

¶
/

µ
n

r − 1
¶
, for n ≥ r

where:

(6) u =
(r − 1)pr−1

p0 + · · ·+ pr−2
, pk > 0 for k = 0, . . . , r − 1.

Proof. Because (5) is only a transcription of (3) using (4) and (6),

the result was proved in [2]. However we sketch here another proof by

mathematical induction. As in [2] we use the sequence an = cn(n −
1) . . . (n − r + 2) for which we have ∆ran = 0 for any n. Hence it is

convex of order r for any real c, and so must be (An) too. But this

happens if and only if for c = 1 we have ∆rAn = 0 for any n. For n = 0

we get pr = pr−1(u+ r− 1)/r which is (5) for n = r. Suppose (5) is valid

for n ≤ m. To obtain An for r ≤ n ≤ m, we must calculate:

nX
k=0

pk =
r−2X
k=0

pk + pr−1 +
nX

k=r

pk

= pr−1

"
r − 1
u

+ 1 +
n−rX
i=0

µ
u+ r + i− 1

i+ 1

¶
/

µ
r + i

i+ 1

¶#
.

From this it can be shown, by mathematical induction, that:

(7)
nX

k=0

pk = pr−1
n− r + 2

u

µ
u+ n

n− r + 2

¶
/

µ
n

n− r + 1

¶
.

So:

An =
u(r − 1)!
u+ r − 1

µ
n

r − 1
¶
, n ≤ m

3



and

Am+1 =

∙
pr−1(r − 1)!

µ
u+m

m− r + 1

¶
+ pm+1(r − 1)!

µ
m+ 1

r − 1
¶¸

/

∙
pr−1

m− r + 2

u

µ
u+m

m− r + 2

¶
/

µ
m

m− r + 1

¶
+ pm+1

¸
.

From ∆rAm−r+1 = 0, we obtain (5) for m+ 1, and so for every n.

Lemma 2. If the sequence (an) is given by:

(8) an =
nX

k=0

µ
n+ r − k − 1

r − 1
¶
bk,

then

(9) ∆ran = bn+r (n = 0, 1, . . . )

Remark 2. This result is connected with some relations from [1] and

[6]. Because any sequence may be put in the form (8), we obtain a rep-

resentation theorem simpler than that given in [6]:

Corollary 1. The sequence (an) is convex of order r if and only if in

its representation (8), it has bn ≥ 0 for n ≥ r.

Lemma 3. If the transformation P is r-convex, then for every n ≤ r:

(10)
n−1X
k=0

pk = npn/u.

Proof. Let (An) be represented by:

(11) An =
nX

k=0

µ
n+ r − k − 1

r − 1
¶
ck.
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Then:

an =

Ã
An

nX
i=0

pi −An−1
n−1X
i=0

pi

!
/pn.

If

qn =
1

pn

n−1X
k=0

pk

then:

an = An+qn(An−An−1) =
nX

k=0

∙µ
n+ r − i− 1

r − 1
¶
+ qn

µ
n+ r − i− 2

r − 2
¶¸

ci

for n ≥ 1 and a0 = A0 = c0. So:

∆ra0 =
rX

j=0

(−1)j
µ
r

j

¶
ar−j

=
r−1X
j=0

(
r−1X
i=0

∙µ
2r − j − i− 1

r − 1
¶
+ qr−j

µ
2r − j − i− 2

r − 2
¶¸

ci

)
(−1)j

µ
r

j

¶
+(−1)rc0

=
rX

i=0

(
r−iX
j=0

∙µ
2r − j − i− 1

r − 1
¶
+ qr−j

µ
2r − j − i− 2

r − 2
¶¸
(−1)j

µ
r

j

¶)
ci

+

(
r−1X
k=0

∙µ
2r − j − 1

r − 1
¶
+ qr−j

µ
2r − j − 2

r − 2
¶¸
(−1)j

µ
r

j

¶
+ (−1)r

)
c0.

But, as it is proved in [5]:
nX

j=0

(−1)j
µ
n

j

¶
jp = 0 for p < n

and hence:
nX

j=0

(−1)j
µ
r

j

¶
Q(j) = 0

for any polynomial Q of degree less than n. So:

(12)
mX
j=0

(−1)j
µ
r

j

¶µ
m+ r − j − 1

r − 1
¶
= 0 for m = 1, . . . , r

5



because:
mX
j=0

(−1)j r!

j!(r − j)!
·(m+ r − j − 1)!
(r − 1)!(m− j)!

=
r

m

mX
j=0

(−1)j
µ
m

j

¶µ
m+ r − j − 1

m− 1
¶

and
µ
m+ r − j − 1

m− 1
¶
is a polynomial of degree m− 1 in j. Hence:

∆ra0 = cr +
rX

i=0

"
r−iX
j=0

(−1)j
µ
r

j

¶µ
2r − j − i− 2

r − 2
¶
qr−j

#
ci

+
r−1X
j=0

(−1)j
µ
r

j

¶µ
2r − j − 2

r − 2
¶
qr−jc0.

As the coefficient of cr is 1+qr > 0, ∆ra0 ≥ 0 implies ∆rA0 = cr ≥ 0 if
and only if the coefficients of ci are zero for i = 0, . . . , r−1. For i = r−1
we have: (r−1)qr− rqr−1 = 0 and as (6) means qr−1 = (r−1)/u, we also
have qr = r/u. Assuming (10) valid for r−j (j = 0, . . . ,m−1; m < r−1)
it may be deduced for r −m, because we have:

mX
j=0

(−1)j
µ
r

j

¶µ
m+ r − j − 2

r − 2
¶
(r − j) = 0, for m < r − 1

and
r−1X
j=0

(−1)j
µ
r

j

¶µ
2r − j − 2

r − 2
¶
(r − j) = 0

which may be verified as in (12).

Theorem 1. The transformation P is r-convex if and only if the se-

quence (pn) is given by:

(13) pn = p0

µ
u+ n− 1

n

¶
, for n ≥ 1, with u = p1/p0.

6



Proof.Necessity. Lemma 1 and Lemma 3 give the necessary conditions

(5) and (10). From (10) we have: u = p1/p0 for n = 1, and p2 = u(p0 +

p1)/2 = p0

µ
u+ 1

2

¶
; supposing (13) valid for n ≤ m < r − 1, (10) gives:

pm+1 =
up0

m+ 1

mX
k=0

µ
u+ k − 1

k

¶
= p0

u

m+ 1

µ
u+m

m

¶
= p0

µ
u+m

m+ 1

¶
that is, (13) holds for n ≤ r − 1. Hence, from (5) we also get:

pn = p0

µ
u+ r − 2
r − 1

¶µ
u+ n− 1
n− r + 1

¶
/

µ
n

r − 1
¶
= p0

µ
u+ n− 1

n

¶
for n ≥ r.

Sufficiency. With (13), the sequence (2) becomes:

(14) An =

"
nX

k=0

µ
u+ k − 1

k

¶
ak

#
/

µ
u+ n

n

¶
and so we have the relation:

(15) an = An + n(An −An−1)/u, for n > 0.

Taking An of the form (11), from (15) we obtain:

(16) an =
nX

k=0

µ
n+ r − k − 2

r − 2
¶µ

n+ r − k − 1
r − 1 +

n

u

¶
ck.

Because ∆rAn = cn+r, applying to (15) the known relation (see [4]):

∆r(anbn) =
rX

i=0

µ
r

i

¶
∆ian∆

r−ibn+i

we obtain:

(17) ∆ran = (n+ r + u)u−1cn+r − nu−1cn+r−1, n ≥ 1.

7



From the proof of Lemma 3 we have: ∆ra0 = cr(r + u)/u, that is (17)

is valid for n = 0 too. Assuming (an) given by (8), (9) is valid; thus:

(18) br = (r + u)/u, bn+r = (n+ r + u)/ucn+r − n/ucn+r−1.

Hence, if bn ≥ 0 for n ≥ r, then also cn ≥ 0 for n ≥ r; that is, if (an)

is convex of order r, so is (An) too.

Remark 3. The sufficiency part of Theorem 1 was also proved in [1].

In what follows we improve also this result. Let us denote by Kr the set

of all sequences convex of order r and by Ku
r the set of all sequence (an)

with the property that (14) gives a sequence (An) in Kr.

Theorem 2. If 0 < v < u then the following strict inclusions hold:

Kr ⊂ Ku
r ⊂ Kv

r .

Proof. The first inclusion was proved in Theorem 1. Its strictness

follows from (18): the positivity of cn (n ≥ r) does not imply that of bn.

Now suppose (an) given by (16) and also by:

an =
nX

k=0

µ
n+ r − k − 2

r − 2
¶µ

n+ r − k − 1
r − 1 +

n

v

¶
dk.

So (17) holds and ∆ran = (n+ r + v)v−1dn+r − nv−1dn+r−1 that is:

(n+ r + v)/vdn+r − nv−1dn+r−1 = (n+ r + u)u−1cn+r − nu−1cn+r−1

Hence dr =
v(r + u)

u(r + v)
cr and generally, by mathematical induction:

(19) dr+n =
u+ r + n

v + r + n
· cr+n
uv

+
u− v

uv

n−1X
i=0

cr+i
n− i+ 1

µ
n

i

¶
/

µ
v + r + n

n− i+ 1

¶
;

8



that is, cn ≥ 0 for n ≥ r implies dn ≥ 0 for n ≥ r and so, if (an) is in

Ku
r , it is also in Kv

r . That the inclusion Ku
r ⊂ Kv

r is strict follows also

from (19) as above.
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[3] A. Lupaş, On convexity preserving matrix transformations, Ibid. No.634-677

(1979), 208-213.

[4] D.S. Mitrinovíc, I.B. Lackovíc, M.S. Stankovíc, Addenda to the monograh "Ana-

lytic inequalities", II, Ibid. No.634-677(1979), 3-24.

[5] I.J. Schwatt, An introduction to the operations with series, 2nd ed., Chelsea New

York, 1924.

[6] Gh. Toader, The representation of n-convex sequences, Anal. Numer. Theor. Ap-

prox. 10(1981), 113-118.

[7] Gh. Toader, On some properties of convex sequences, Mat. Vesnik 38(1986), 103-

111.

Department of Mathematics

Technical University

3400 Cluj-Napoca

Romania

9



Mathematica — Revue d’Analyse Numérique

et de Théorie de l’Approximation

L’Analyse Numérique et la Théorie de l’Approximation

Tome 19, no. 1, 1990, pp. 53-58

PROPERTIES OF BOUNDED CONVEX SEQUENCES

I. Ž. MILOVANOVIĆ, M. A. KOVAČEVIĆ, GH. TOADER

Abstract. Some properties of the bounded convex sequences of or-

der m = 2 are considered in this paper. As it is shown, these proper-
ties are in direct connection with the convergence of a certain class

of series.

1. Introduction

When studying convergence conditions, summability and other prop-

erties of series the knowledge of sequence properties is of a decisive im-

portance. Due to their specific nature, different classes of sequences, for

example classes of bounded, convergent, convex, starshaped and other se-

quences (see for example [1]-[16]) are studied hardly. In this paper some

properties of bounded convex sequences with order of convexity m(= 2)
and their relation with a certain class of real series is considered.

1



Let us first introduce some notation and definitions. Denote by Sm the

class of real sequences (an), n ∈ N0, with the following properties

(1.1) M2 5 a 5M1, n = 0, 1, . . . (M1,M2 = const.),

and

(1.2) ∇ran = 0, r = 2, . . . ,m, (m = 2), n = 0, 1, . . .

where

∇ran = (−1)r∆ran, (∆an = an+1 − an, ∆ran = ∆(∆r−1an)).

Let (s)p = s(s + 1) . . . (s + p − 1) and V r
n =

µ
n+ r

r

¶
for each p =

1, 2, . . . , s = 0, 1, . . . , n = 0, 1, . . . . We shall also quote some results,

known in the literature which are in relation to those obtained in this

paper.

For sequences belonging to S2 class, the following result is proved in

paper [13]:

Theorem A. The sequence (an), n ∈ N0, belongs to S2 class if and

only if there is a sequence (bn), n ∈ N0, such that

an =
nX

k=0

(n− k + 1)bk, n = 0,

bk ≥ 0 for k = 2,

n
nX

k=0

bk → 0, n→∞,

∞X
k=0

(k + 1)bk+1 < +∞.

The following results can be found, for example in the paper [10]:

2



Theorem B. Let the sequence (an), n ∈ N0, satisfy the following

properties: lim
n→∞

an = 0 and ∇2an = 0 for n = 0, 1, . . . . Then ∇an = 0,

lim
n→∞

n∇an = 0 and
∞X
n=0

(n+ 1)∇2an =
∞X
n=0

∇an = a0.

Theorem C. For any convergent series
∞X
n=1

an, we have nan → 0 in

the sense of Cesàro.

The following result is given in monograph [3]:

Theorem D. If a sequence (an), n ∈ N0, belongs to S2 class, then:

(a) the sequence (an), n ∈ N0 is decreasing;

(b) lim
n→∞

n∇an = 0;

(c) the series
∞X
n=0

(n+ 1)∇2an is a convergent one and its sum is a0 −
lim
n→∞

an.

2. Main results

Before presenting the main results of this paper, we shall prove several

lemmas giving specific properties of the sequences belonging to Sm class.

Lemma 1. If a sequence (an), n ∈ N0, belongs to Sm (m ≥ 2) class
then the following inequality

(2.1) 0 5 ∇ran 5 (M1 −M2)
V r
n

V 2r
n

= (M1 −M2)
(2r)!

r!(n+ r + 1)r
,

holds for r = 1, . . . ,m− 1.
Proof. As ∇ran = 0, for r = 2, . . . ,m the inequality

(2.2) ∇r−1an = ∇r−1an+1 (n = 0, 1, . . . )

3



is valid. According to Theorem D we conclude that the following impli-

cation

(2.3) (an) ∈ S2 ⇒∇an = 0

holds.

As (an), n ∈ N0, belongs to Sm class ∇ran = 0 holds for r = 2, . . . ,m,
then, taking into account (2.3), we prove the left inequality in (2.1). The

right side of the inequality (2.1) shall be proved bymeans of mathematical

induction. For r = 1 we have

(M1 −M2)V
1
n = (M1 −M2)(n+ 1)

=M1(n+ 1)−M2(n+ 1) =
nX

k=0

ak −M2(n+ 1)

=
nX

k=0

(k+1)∇ak +(n+1)an+1−M2(n+1) = ∇an
nX

k=0

(k+1) = V 2
n∇an,

i.e.

0 5 ∇an 5 (M1 −M2)
V 1
n

V 2
n

.

Let us suppose that (2.1) is valid for some r = p (1 5 p 5 m− 2), i.e.

(2.4) 0 5 ∇pan 5 (M1 −M2)
V p
n

V 2p
n

.

According to equality
kX
i=0

V s
i = V s+1

k and the inductive assumption

(2.4) we have

(M1 −M2)V
p+1
n = (M1 −M2)

nX
k=0

V p
k =

nX
k=0

V 2p
k ∇pak

=
nX

k=0

V 2p+1
k ∇p+1ak + V 2p+1

n ∇pan+1 = ∇p+1anV
2p+2
n ,
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i.e.,

∇p+1an = (M1 −M2)
V p+1
n

V 2p+2
n

,

which had to be proved.

Using Abel’s lemma we directly obtain the following result:

Lemma 2. For each sequence of real numbers (an), n ∈ N0, the equal-

ity

(2.5) an = a0 −
nX

k=1

V k
n−k∇kan−k −

n−p−1X
k=0

V p
k∇p+1ak,

Ã
0X

k=1

= 0

!
,

holds, where p < n.

Lemma 3. Let the sequence (an), n ∈ N0, belong to the class Sm

(m = 2). Then, equalities

(2.6) lim
n→∞

V k
n−k∇kan−k = 0,

for k = 1, . . . ,m− 1, and

(2.7) lim
n→∞

nX
k=0

V m−1
k ∇mak = a0 − lim

n→∞
an

hold.

Proof. For m = 2 Lemma 3 is proved in Theorem A (i.e. Theorem D).

Assume that Lemma 3 holds for k = 1, . . . ,m− 2. According to Lemma
2 we have:

an = a0 −
m−2X
k=1

V k
n−k∇kan−k −

n−m+1X
k=0

V m−2
k ∇m−1ak,

and by the inductive assumption

lim
n→∞

V k
n−k∇kan−k = 0

5



for k = 1, . . . ,m − 2. On this basis, we conclude that the series
∞X
k=0

V m−2
k ∇m−1ak is a convergent one. According to Theorem C we obtain

a sequence (nV m−2
n ∇m−1an), i.e. (V m−1

n ∇m−1an) which tends to zero in

Cesàro sense. In other words the equality

(2.8) lim
n→∞

V m−1
0 ∇m−1a0 + · · ·+ V m−1

n ∇m−1an
n+ 1

= 0,

holds. Let us prove that the sequence (V m−1
n ∇m−1an) tends toward zero.

Assume that it is not true. Then, there would be a constant C(= 0)

such that beginning from some index n the inequality V m−1
n ∇m−1an = C

holds. According to (2.2) for each k 5 n the following inequality

∆m−1ak ≥ ∇m−1an =
C

V m−1
n

holds. On the other hand, the relation

V m−1
0 ∇m−1a0 + · · ·+ V m−1

n ∇m−1an
n+ 1

= C
V m
n

(n+ 1)V m−1
n

−→
n→∞

C

m
6= 0,

is in opposition with equality (2.8). It contradicts the assumption that

the sequence (V m
n ∇m−1an) does not tend to zero. It also means that

(2.6) holds even for k = m− 1. If we substitute p = m− 1 in (2.5), the
assumption (2.7) is directly obtained from the equality

n−mX
k=0

V m−1
k ∇mak = a0 −

m−1X
k=1

V k
n−k∇kan−k − an.

From paper [14] we directly obtain the following result.

Lemma 4.The sequence of real numbers (an), n ∈ N0, has the property

∇ran = 0, if and only if there is a sequence (bn), n ∈ N0, so that bn = 0

6



for n = r for which equality

(2.9) an = (−1)r
nX

k=0

V r−1
n−k bk

holds.

According to the given lemmas we immediately obtain the following

result:

Theorem 1. The sequence (an), n ∈ N0, belongs to Sm class if and

only if there is a sequence (bn), n ∈ N0, such that:

(2.10) an = (−1)m
nX

k=0

V m−1
n−k bk

(2.11) (−1)m+j
nX

k=0

V m−j−1
n−k bk = 0 for j = 2, . . . ,m− 1, n ≥ j

(2.12) bk = 0 for k = m,

(2.13) V k
n−k

nX
i=0

V n−k−1
n−i bi

n→∞−→ 0, for k = 1, . . . ,m− 1,

and

(2.14)
∞X
k=0

V m−1
k bk+m is convergent.

Corollary 1. The sequence of real numbers (an), n ∈ N0, has the

following properties ∇ran = 0, for r = 2, . . . ,m and lim
n→∞

an = 0, if and

only if there is a sequence (bn), n ∈ N0, such that properties (2.10)-(2.13)

and
∞X
k=0

V m−1
k bk+m = a0 are satisfied.
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STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XXXV, 4, 1990, 3-8

A HIERARCHY OF SUPERMULTIPLICITY OF
SEQUENCES IN A SEMIGROUP

GH. TOADER

Abstract. In this paper are defined the classes of convex, star-

shaped and supermultiplicative sequences in a semigroup. Also some

relations among them are proved.

1. Introduction

In [1] it was proved that all the convex functions are starshaped and

these are all superadditive. This property was named in [4] hierarchy of

convexity of functions. In [7] we have proved a similar property for real se-

quences and now we want to transpose it to sequences from a semigroup.

But it seems to me to be more adequate to call the property "hierarchy

of supermultiplicity" because all the sequences are supermultiplicative.

In the nest paragraph we shall given the notions relative to semigroups

which we need in what follows. Some of them are taken from [3] but

the others can be new because we couldn’t find them in the accessible

literature. Then we define the classes of convex, starshaped and super-

multiplicative sequences in a semigroup and prove some relations among

them.
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2. Semigroups

By a semigroup (G, ·) we shall mean a non-empty set G on which is

defined an associative binary operation. We suppose that the semigroup

is commutative and has an identity e, thus:

ex = x, ∀ x ∈ G.

A semigroup can have a zero, that is an element z with the property:

zx = z, ∀ x ∈ G.

If xx = x, the element x is called idempotent.

A basic relation which we need in what follows is the divisibility:

a|b⇔ ∃ x ∈ G, b = ax.

Also, we shall consider semigroups in which some kinds of reductions

are valid.

Definition 1. The semigroup (G, ·) is cancellative if:

(1) xa = xb⇒ a = b.

We remind that for the product of n elements, each equal to x, it is

used the notation xn.

Definition 2. The semigroup (G, ·) has radical if:

(2) xn = yn ⇒ x = y.

Definition 3. The semigroup (G, ·) preserves the divisibility if:

(3) xn|yn ⇒ x|y.

2



Remark 1. Some results are immediate. If (G, ·) is a group then it
is cancellative and preserves the divisibility. If every element of (G, ·) is
idempotent, the semigroup has radicals and preserves the divisibility but

is non cancallative. Also, if (G, ·) has a zero element it is non cancellative.
We show by examples some relations between the three definitions.

Example 1. The ensemble of subsets of a non-empty set X with

respect to intersectuon is a non cancellative semigroup but which has

radicals and preserves the divisibility (any element is idempotent).

Example 2. The set of classes bk of integers congruent modulo 4 with
respect to addition represents a cancellative semigroup which preserves

the divisibility (in fact it is a group) but which has no radical as:

b2 + b2 = b0 + b0 = b0.
Example 3. In the semigroup generated by the transformation:

t =

⎛⎝ 1 2 3 4 5

2 3 4 5 3

⎞⎠
in respect to composition, we have: (t2)2t = t2 and (t2)3 = t3, but t2tk 6= t

for any k ≥ 0, thus the semigroup is non cancellative, has no radical and
do not preserves the divisibility.

To give examples of semigroups which satisfy all the conditions (1)-(3),

we consider also the next notion:

Definition 4. The semigroup (G, ·) has the base B if it is satisfies

the following condition:

(4) ∀ x ∈ G− {e}, ∃ !n ≥ 1, ∃ !p1, . . . , pn ∈ B,

3



∃ !k1, . . . , kn ≥ 1 : x =
nY
i=1

pkii .

Remark 2. As in the case of a vectorial space, a base of a semigroup

generates him. From the unicity of the representation in (4), it follows

also that the base is an independent set in the sense that if p, q ∈ B

then p - qn for no n ≥ 1. We must suppose p0 = e, ∀ p ∈ B. So we can

represent any two elements of G by the same elements of the base B but

with non-negative powers:

x =
nY
i=1

pkii , y =
nY
i=1

phii , ki, hi ≥ 0.

It remains true that x = y if and only if ki = hi, i = 1, . . . , n. We have

also some consequences:

Lemma 1. If the semigroup (G, ·) has a base, then hold the following
implications for every x, y, z ∈ G, m,n ≥ 1:
a) xn = xm ⇒ n = m;

b) xz = yz ⇒ x = y;

c) xn = yn ⇒ x = y;

d) xn|yn ⇒ x|y.
Proof. All the affirmations follow from the unicity of the representa-

tion in the base B. For example, for the last implication, we suppose that

yn = xnz where:

x =
nY
i=1

pkii , y =
nY
i=1

phii , z =
nY
i=1

pjii .
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Then nhi = nki + ji, for i = 1, . . . , n. So ji = ngi, where gi = hi − ki,

and putting:

w =
nY
i=1

pgii

we have y = xw, thus x|y.
Remark 3. Thus, if the semigroup has a base it is cancellative, has

radicals and preserves the divisibility. But, because of the property a),

it cannot be finite. Examples of semigroups with base are (N,+) with

B = {1} and (N, ·) with the base consisting of all prime numbers.

3. Sequences in a semigroup

Let (xn)n≥1 be a sequence of elements of the semigroup (G, ·).
Definition 5.The sequence (xn)n≥1 is convex if it verifies the relation:

(5) x2n|xn+1xn−1, ∀ n ≥ 1.

Lemma 2. a) If:

(6) xn =
nY
i=1

yn−i+1i , n ≥ 1

where (yn)n≥1 is arbitrary, then the sequence (xn)n≥1 is convex.

b) If (G, ·) is cancellative, then every convex sequence may be repre-
sented by (6) with adequate (yn)n≥1.

Proof. a) From (6) we deduce:

xn+1xn−1 = x2nyn+1

that is (7).
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b) For n = 1, (6) is x1 = y1, which we consider. Suppose (6) valid for

n ≤ m. Then (5) gives an ym+1 such that:

mY
i=1

y
2(m−i+1)
i ym+1 = xm+1

m−1Y
i=1

ym−ii

and by cancellation we get (6) for n = m+ 1.

Definition 6. A sequence (xn)n≥1 is called starshaped if:

(7) xn+1n |xnn+1, ∀ n ≥ 1.

Lemma 3. a) If the sequence (xn)n≥1 is starshaped, then it may be

represented by:

(8) x(n−1)!n = zn!1

nY
i=2

z
n!/i(i−1)
i

with an adequate sequence (zn)n≥1.

b) If (G, ·) has radicals and the sequence (xn)n≥1 is represented by (8)
then it is starshaped.

Proof. a) We take z1 = x1. Suppose (8) be valid for m− 1. Then (7)
gives a zm+1 such that:

xmm+1 = xm+1m zm+1.

So:

xm!m+1 = z
(m+1)!
1

mY
i=2

z
(m+1)!/i(i−1)
i z

(m−1)!
m+1

that is (8).

b) From (8) we have:

xn!n+1 = x(n+1)(n−1)!n z(n−1)!n

and taking the (n− 1)!-th radical we get (7).
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Definition 7. A sequence (xn)n≥1 is called supermultiplicative if it

verifies the relation:

(9) xnxm|xn+m, ∀ n,m ≥ 1.

Remark 4. We can consider also the sequences (xn)n≥0 but then the

relation (7) must be replaced by:

(70) xn+1n |xnn+1x0, ∀ n ≥ 0

and (9) by:

(90) xnxm|xn+mx0, ∀ n,m ≥ 0.

Otherwise we must suppose x0 = e.

Lemma 4. If the sequence (xn)n≥1 is given by:

(10) xn =
nY
i=1

w
[n/i]
i , n ≥ 1

where (wn)n≥1 is an arbitrary sequence and [x] represents the integer part

of x, then it is supermultiplicative.

Proof. We can write:

xnxm =
n+mY
i=1

w
[n/i]+[m/i]
i

because [n/i] = 0 for i > n. As:

[(n+m)/i] ≥ [n/i] + [m/i]

it follows (9).

Remark 5. In [6] we have stated that for (N, ·) the representation
(10) is also necessary for supermultiplicity. The problem was also posed

in [5] and a result analogous with that from (6) was "proved" in [2]. But

7



as we have remarked in [7], a condition like (10) is not necessary even in

the case of the semigroup (R,+). The affirmation is valid in all the cases.

Example 4. For a fixed p ∈ G and the sequence of integers (cn)n≥1

we consider:

xn = p

n

i=1
ci[n/i]

.

If ci ≥ 0, ∀ i, it follows that it is represented by (10) with:

wi = pci .

But the sequence (xn)n≥1 can be supermultiplicative also for some

negative values of ci and then it cannot be represented by (10). For

example we can take c1 = c2 = c3 = 1 = −c4 and then:

ck ≥ − min
p=1,...,n−1

n−1Y
k=2

µhn
k

i
−
hp
k

i
−
∙
n− p

k

¸¶
ck

to get a supermultiplicative sequence.

4. A hierarchy of supermultiplicity of sequences

Let us denote by K,S∗ and S the set of convex, starshaped respective

supermultiplicative sequences from (G, ·). Let also denote by K 0 and

S∗
0
the set of sequences from (G, ·) which may be represented by (6)

respectively by (8).

Theorem. a) For every semigroup (G, ·) hold the inclusions:

(11) K 0 ⊂ S∗ ⊂ S∗
0
.

b) If (G, ·) preserves the divisibility, then holds also:

(12) S∗
0 ⊂ S.

8



Proof. a) If the sequence (xn)n≥1 is in K 0, it may be represented by

(6) and so:

xn−1n = xnn−1

nY
k=2

yk−1k

thus it belongs to S∗. The second inclusion follows from Lemma 3.

b) From (8) we get:

x
(m+n−1)!
m+n = x(m+n−1)!m · x(m+n−1)!n

m+n−1Y
k=m+1

z
m(m+n−1)!/k(k−1)
k

·
n+m−1Y
k=n+1

z
n(m+n−1)!/k(k−1)
k z

(m+n−2)!
n+m

and as the semigroup preserves the divisibility, we deduce that the se-

quence (xn)n≥1 is supermultiplicative, that is we get (12).

Corollary. If the semigroup (G, ·) is cancellative and preserves the
divisibility then hold the inclusions:

K ⊂ S∗ ⊂ S.

Proof. Indeed, then K = K 0 and (11) and (12) are valid.

Remark 6. In the case (R,+) more results may be found in [7].
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INVARIANT TRANSFORMATIONS
OF p, q-CONVEX SEQUENCES

GH. TOADER

1. Introduction

A sequence a = (an)n≥0 is called p, q-convex if:

Lpq(an) = an+2 − (p+ q)an+1 + pqan ≥ 0, ∀ n ≥ 0.

The set of p, q-convex sequences is denoted by Kpq. For p = q we have

proved in [4] the following:

1.1. Theorem. If the sequence P (a) = (An)n≥0 given by:

(1) An = (p0p
na0 + p1p

n−1a1 + · · ·+ pnan)/(p0 + · · ·+ pn)

is in Kpp for every a = (an)n≥0 from Kpp, then there is an u > 0 such

that:

(2) pn = p0

µ
u+ n− 1

n

¶
, ∀ n ≥ 0,

1



where: µ
v

0

¶
= 1,

µ
v

n

¶
=

v

n

µ
v − 1
n− 1

¶
, n ≥ 1.

Are also known more general transformations of following type: given

an infinite triangular positive matrix P = (pnk)0≤k≤n and a sequence

a = (an)n≥0, one defines the transformed sequence P (a) = (An)n≥0 by:

(3) An =
nX

k=0

pnkak.

One knows more characterizations of matrices p which give invariant

transformation of Kpq that is with the property:

(4) a ∈ Kpq ⇒ P (a) ∈ Kpq

(see for example [1], [2] or [3]). But non of them offers concret examples

like (2) for p 6= q. As we have shown in [4] there is no example similar

with (1) in this case. It is the aim of this paper to give an example of

invariant transformation of Kpq for p 6= q which has a form more general

than (1) but more special than (3).

2. Results

We need a notation and some results which are well known or may be

found in [4]. Let us denote:

K0
pq = {w = (wn)n≥0 : Lpq(wn) = 0, ∀ n ≥ 0}.

2.1. Lemma. The sequence w = (wn)n≥0 belongs to K0
pq for p 6= q if

and only if there are the numbers A and B such that:

wn = Apn +Bqn, ∀ n ≥ 0.

2



2.2. Lemma. If the transformation defined by (3) satisfies (4) then it

verifies also:

(5) w ∈ K0
pq ⇒ P (w) ∈ K0

pq.

2.3. Theorem. For p 6= q there are sequences (pk)k≥0 and (zn)n≥0

such that the transformation P (a) = (An)n≥0 given by

(6) An =
nX

k=0

pkan−k/zn, n ≥ 0

has the property (5).

Proof. Taking into account Lemma 1, we must find A,B,C,D such

that:

(7)
nX

k=0

pkp
n−k/zn = Apn +Bqn

and

(8)
nX

k=0

pkq
n−k/zn = Cpn +Dqn.

Letting p0 = z0 = 1, for n = 0 and n = 1 we find from (7) and (8)

that:

A = (p+ p1 − qz1)/z1(p− q),

B = (pz1 − p− p1)/z1(p− q),

C = (q + p1 − qz1)/z1(p− q),

D = (pz1 − q − p1)/z1(p− q).
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Subtracting (8) from (7) we get:

zn =
n−1X
k=0

pk(p
n−k − qn−k)/((A− C)pn + (B −D)qn)

= z1

Ã
p
n−1X
k=0

pkp
n−1−k − q

n−1X
k=0

pkq
n−1−k

!
/(pn − qn)

= z1(pzn−1(Ap
n−1 +Bqn−1)− qzn−1(Cp

n−1 +Dqn−1))/(pn − qn)

= z1zn−1(p
n−1(Ap− Cq) + qn−1(Bp−Dq))/(pn − qn).

Thus:

zn = zn−1((p+ q + p1)(p
n−1 − qn−1)− pqz1(p

n−2 − qn−2))/(pn − qn).

For n = 2 we get:

z2 = z1(p+ q + p1)/(p+ q).

If we put:

p1 = r(p+ q)

it follows:

z2 = z1(r + 1).

Then:

z3 = z2((p
2 + q2)(r + 1) + pq(2r + 2− z1))/(p

2 + pq + r2).

If we choose:

z1 = r + 1

we have:

z2 = (r + 1)
2, z3 = (r + 1)

3

and generally:

(9) zn = zn−1(r + 1) = (r + 1)
n.

4



From (7) we have:

pn = (Ap
n +Bqn)zn − p

n−1X
k=0

pkp
n−1−k

= (Apn +Bqn)zn − p(Apn−1 +Bqn−1)zn−1

= (1 + r)n−1((Apn +Bqn)(r + 1)− p(Apn−1 +Bqn−1))

= (r + 1)n−1(rApn +Bqn−1(q + rq − p))

thus

pn = (r + 1)
n−2(pn + qn + r(pn+1 − qn+1)/(p− q)).

So, with (pn)n≥0 given by (10) and (zn)n≥0 by (9), r arbitrary, the

transformation defined by (6) verifies (5).
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LOGARITMICALLY CONVEX SEQUENCES

GH. TOADER

1. Introduction

Let (an)n≥0 be a real sequence of strictly positive numbers. It is called

convex if:

an+1 − 2an + an−1 ≥ 0, ∀ n ≥ 1

and logarithmically convex (see [1]) if:

a2n ≤ an−1an+1, ∀ n ≥ 1.

As it is easy to see, the sequence (an)n≥0 is logarithmically convex if

and only if (log an)n≥0 is convex so that it is also called log-convex.

We can remark that the sequence (an)n≥0 is convex if and only if:

an ≤ A(an−1, an+1), ∀ n ≥ 1

1



and it is log-convex if and only if:

an ≤ G(an−1, an+1), ∀ n ≥ 1

where A and G denote the arithmetic mean respectively the geometric

mean.

In what follows we define the convexity in respect to an arbitrary

mean, generalizing the above convexities. Also we transpose for this case

some results proved in [2] for the usual convexity. By example we define

starshapedness and superadditivity and establish some relations between

them.

2. Means

We begin by giving some definitions and results related to means. By

a mean we understand a function M : R2+ → R+ with the property:

min(a, b) ≤M(a, b) ≤ max(a, b), ∀ a, b > 0.

For example, the power means are defined by:

Pr(a, b) = ((a
r + br)/2)1/r, for r 6= 0

and

P0(a, b) = G(a, b) = (ab)1/2.

We have also:

P1 = A and P−1 = H (the harmonic mean).

More generally, for a strictly monotonic function f : R+ → R+ we get

a quasi-arithmetic mean (see [1]) defined by:

Af(a, b) = f−1((f(a) + f(b))/2).
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For f = fr, where fr(x) = xr if r 6= 0 and f0(x) = log x, we have

Afr = Pr.

Given two means M and N we write M < N if M(a, b) < N(a, b) for

a 6= b. For example (see again [1]) we have Af < Ag if and only if f

is increasing and fg−1 is Jensen concave or f is decreasing and fg−1 is

Jensen convex. As a consequence we have:

Pr < Ps iff r < s.

3. M-convex sequences

Let M be a mean. We consider the following:

3.1. Definition. The sequence (an)n≥0 is called M-convex if:

an ≤M(an−1, an+1), ∀ n ≥ 1.

Of course, A-convexity means convexity and G-convexity is log-

convexity. Also for M = max we get the quasi-convexity which we have

studied in [4]. For M = min we obtain only constant sequences.

We denote by KM the set of M-convex sequences. Directly from the

definition we get the following result.

3.2. Lemma. If the means M and N are in the relation M < N then

it is valid the inclusion:

KM ⊂ KN.

3.3. Consequence. We have the inclusions:

KH ⊂ KG ⊂ KA
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and more generally:

KAf ⊂ KAg

if f is increasing and fg−1 is concave or f is decreasing and fg−1 is

convex.

Also, as we did in [4] in the case of quasi-convexity, we can define a

stronger variant of convexity.

3.4. Definition. The sequence (an)n≥0 is strongly M-convex if:

an ≤M(am, ap), for 0 < m < n < p.

We denote by sKM the set of stronglyM-convex sequences. Of course,

for every mean M we have:

sKM ⊂ KM

and generally the inclusion is proper. For example, the sequence given

by:

an = n, n ≥ 0

belongs to KA but not to sKA. So a convex sequence doesn’t satisfy:

an ≤ (am + ap)/2, for 0 < m < n < p arbitrary

but, as we have proved in [3] it verifies the relations:

an ≤ ((p− n)am + (n−m)ap)/(p−m), 0 < m < n < p.

Analogously, a log-convex sequence has the property:

ap−mn ≤ ap−nm an−mp for 0 < m < n < p.
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4. Starshapedness and superadditivity

In [2] we have considered together with the set of convex sequences

K = KA, the set of starshaped sequences:

S∗ = {(an)n≥0 : (an − a0)/n ≤ (an+1 − a0)/(n+ 1), n ≥ 1}

and that of superadditive sequences:

S = {(an)n≥0 : an + am ≥ an+m + a0, ∀ n,m ≥ 1}.

Also we have proved the inclusions:

(1) K ⊂ S∗ ⊂ S.

Let f be strictly increasing. We remark that the sequence (an)n≥0 is

Af -convex if:

(2) f(an) ≤ (f(an−1) + f(an+1))/2.

We can give also the following:

4.1. Definition. The sequence (an)n≥1 is said to be Af -starshaped if:

(3) f(an)/n ≤ f(an+1)/(n+ 1), ∀ n ≥ 1

and it is called Af -superadditive if it satisfies:

(4) f(an) + f(am) ≤ f(an−m), ∀ n,m ≥ 1.

For f decreasing we take the converse inequalities in (2), (3) and (4).

Let us denote by S∗Af the set of Af -starshaped sequences and by

SAf the set of Af -superadditive sequences. From (1) we deduce also the

inclusions:

KAf ⊂ S∗Af ⊂ SAf .
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For example if f = log we get the implications:

a2n ≤ an−1an+1, ∀ n ≥ 1⇒ a1/nn ≤ a
1/(n+1)
n+1 , ∀ n ≥ 1

⇒ anam ≤ an+m, ∀ n,m ≥ 1.

Given two strictly monotonic functions f and g, we have in Conse-

quence 3.3 conditions for the validity of the inclusion:

KAf ⊂ KAg.

Similarly we have:

4.2. Lemma. If f and g are strictly increasing and gf−1 is positively

subhomogeneous, then:

S∗Af ⊂ S∗Ag.

Proof. If the sequence (an)n≥1 belong to S∗Af then:

f(an) ≤ f(an+1)n/(n+ 1).

As gf−1 is increasing and positively subhomogeneous, we get:

g(an) ≤ gf−1((n/(n+ 1))f(an+1)) ≤ (n/(n+ 1))g(an+1)

thus (an)n≥1 is also in S∗Ag.

4.3. Lemma. If f and g are increasing and gf−1 is superadditive,

then:

SAf ⊂ SAg.

Proof. If

f(an+m) ≥ f(an) + f(am)

6



as gf−1 is increasing and superadditive, we have:

g(an+m) ≥ gf−1(f(an) + f(am)) ≥ g(an) + g(am).

Also we have some variants in the case when one or two of the functions

f and g are decreasing.

For example we have the inclusions:

KH ⊂ S∗H ⊂ SH

∩ ∪ ∪
K ⊂ S∗ ⊂ S

but no relation between S∗ and S∗G or S∗G and S∗H.
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PROBLEMS AND SOLUTIONS

This section publishes problems and solutions believed to be new

and interesting. Problems are designated by P1,P2,. . . , and solutions

by P1S1,P2S2,. . . , and remarks by P1R1,P2R2,. . . . Correspondence re-

garding this section should be sent to the Problems Editor, Professor S.A.

Vanstone, Department of Combinatorics and Optimization, University of

Waterloo, Waterloo, Ontario, Canada, N2L3G1. In case several similar

solutions are received, solutions may be edited by credits given to the

individual contributors.

P279S2 - Gh. Toader (Cluj-Napoca, Romania)

In answering a problem of T. Popoviciu, we proved in [3] the following

result. A sequence of positive integers (an : n ≥ 1) has the property

(1) anam|an+m, n,m ≥ 1

if and only if there exists a sequence of natural numbers (bn : n ≥ 1) such
that

(2) an =
nY
i=1

b
[n/i]
i , n ≥ 1.

1



We have also proposed that the same problem be studied in an ar-

bitrary semigroup. As we remarked in [4], for the case of the additive

semigroup of positive real numbers, a representation similar to (2) is

sufficient but not necessary for the corresponding relation (1).

At the 24-th International Symposium on Functional Equations, R. D.

Snow raised the same question (see [2]) and a solution was published in

[1].

The sequence (an : n ≥ 1) has the property (1) if and only if it can be
represented by

(3) an =
Y
i

p j cj(pi)[n/j]

i

where (pi : j ≥ 1) is the sequence of prime numbers, (cj : j ≥ 1) is a
sequence of natural numbers and the product over i is finite.

As is easy to verify, the representations (2) and (3) are equivalent.

They are sufficient but not necessary for the validity of (1). The last

assertion is proved by a simple counter-example. If we take

a1 = 2, a2 = 2
3, a3 = 2

5, a4 = 2
6

we can continue to get a sequence which satisfies (1) but in the represen-

tation given by (3) we have

c1 = c2 = c3 = −c4 = 1.

That is, c4 < 0.

Instead of these inexact results we can prove only the following less

effective characterization.

2



Theorem. The sequence (an : n ≥ 1) has the property (1) if and only
if in its representation

(4) an =
Y
i

pqini

the sequences (qin : n ≥ 1) are superadditive for every fixed value of i.
Remark. The sequence (qin : n ≥ 1) can be represented by

qin =
nX

j=1

cij[n/j].

As a consequence of (4) above, it is superadditive if and only if

cin = − min
p=1,2,...,[n/2]

Ã
n−1X
k=2

([n/k]− [p/k]− [(n− p)/k])cik

!
.

Of course, this last inequality is true if cin ≥ 0 for all n, i, but this is
necessary only for prime values of n.
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1. Introduction

Let S be the set of all real sequences a = (a0, a1, . . . ), S1 the set of all

convex sequences (S1 ⊂ S) and S2 the set of all mean-convex sequences,

i.e. A = (A0, A1, . . . ) ∈ S1, where

An =
a0 + · · ·+ an

n+ 1
(n = 0, 1, . . . ).

The set S of all sequences becomes a vector space if it is supplied

by addition and multiplication by scalars in the usual way. Namely, for

λ ∈ R and arbitrary x, y ∈ S, where x = (x0, x1, . . . ) and y = (y0, y1, . . . )

we put λx = (λx0, λx1, . . . ), x + y = (x0 + y0, x1 + y1, . . . ). Denote by

en = (en0, en1, . . . ) where

enk =

(
0, n 6= k

1, n = k
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the basic sequences in S. (For example e0 = (1, 0, . . . ), e1 = (0, 1, . . . )).

Metric in S is introduced as follows

(1.1) d(x, y) =
+∞X
k=0

2−k
|xk − yk|

1 + |xk − yk| .

It is easy to see that every sequence u = (u0, u1, . . . ) from the metric

space (S, d) is the limit of sequences

(1.2) u(n) =
nX

k=0

ukek

in the sense of metric (1.1), i.e. lim d(u(n), u) = 0.

Therefore, every u ∈ S can be represented in the form

(1.3) u =
+∞X
k=0

ukek.

Let E0 =
+∞X
n=0

en, E1 =
+∞X
n=0

nen and Wn =
+∞X
k=n

(2k − n + 1)ek for

n = 2, 3, . . . Let L be linear operator defined on S with values in F (D)

- the set of all real functions f : D→ R, where D ⊂ R. We also suppose
that L is continuous, i.e. for every a(n) → a (n → +∞), it holds that
L(a(n))→ L(a) (n→ +∞).
The purpose of this work is to determine the necessary and sufficient

conditions for a real sequence p = (p0, p1, . . . ) such that the inequality

(1.4)
nX

k=0

pkak ≥ 0,

holds for all sequences a = (a0, a1, . . . ) ∈ S2. Besides, we shall state the

necessary and sufficient conditions for linear operator L, defined on S2,

to be positive.
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2. Main result

Theorem 1. Let p = (p0, p1, . . . ) ∈ S be given arbitrary. Inequality

(1.4) holds for every sequence a from S2 if and only if the following

conditions

(2.1)
nX

k=0

pk = 0,

(2.2)
nX

k=1

kpk = 0,

(2.3)
nX

j=k

(2j − k + 1)pj ≥ 0 for k = 2, 3, . . . , n,

are fulfilled.

Proof. Suppose that (1.4) holds. The sequences a = (c, c, . . . ) and

−a = (−c,−c, . . . ), c = const., belong to S2, so necessity of (2.1) follows.
Further, a = (0, 1, . . . ) and −a = (0,−1, . . . ) also belongs to S2 so, from
(1.4) we get that (2.2) is necessary. Finally, the sequences a = (a0, a1, . . . )

where a0 = · · · = ak = 0, aj = 2j−k+1, j = k+1, . . . , n and k = 1, . . . , n

belong to S2 so, conditions (2.3) are necessary too.

The sufficiency of the conditions (2.1), (2.2), (2.3) is a consequence of

the following identity:

nX
k=0

pkak = a0

nX
k=0

pk + 2(∆A0)
nX

k=0

kpk

+
nX

k=2

Ã
nX

j=k

(2j − k + 1)pj

!
∆2Ak−2. ¤

Remark 1. Results, analogous to those explained in Theorem 1, but

for different classes of sequences are proved in [1-10].
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Theorem 2. a) Every sequence a(n) = (a(n)0 , a
(n)
1 , . . . ) of the form

(2.4) a(n) = α(n)E0 + β(n)E1 +
nX

k=2

γ
(n)
k Wk (n = 0, 1, . . . )

where α(n), β(n) ∈ R, γ(n)k ≥ 0 (k = 0, 1, . . . ) for fixed n, is mean-convex.
b) Every sequence a ∈ S2 is a limit (in d-metric) of sequences u(n)

given by (2.4).

c) Let L : S → F (D) be a continuous linear operator. Then, for every

a (a ∈ S) the implication

(2.5) a ∈ S2 ⇒ L(a) ≥ 0

holds, if and only if

(2.6) L(E0) = L(E1) = 0 and L(Wn) ≥ 0 for n = 2, 3, . . .

Proof. a) This assertion follows from (2.4) directly.

b) In virtue of representation

an = a0 + 2n(∆A0) +
n−1X
k=0

(2n− k − 1)∆2Ak,

(see [11]), we get

a = a0e0 + a1e1 +
+∞X
n=2

Ã
a0 + 2n∆A0 +

n−2X
k=0

(2n− k − 1)∆2Ak

!
en

= a0

+∞X
n=0

en + 2∆A0

+∞X
n=0

nen +
+∞X
n=2

Ã
+∞X
k=n

(2k − n+ 1)ek

!
∆2An−2.

Using this identity we can get, that every sequence a ∈ S2, is a limit

of sequences a(n), where

a(n) = a0E0 + 2E1∆A0 +
nX

k=2

Wk∆
2Ak−2
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in metric space (S2, d).

c) Suppose that (2.5) holds. By the fact that the sequences +E0, −E0,
+E1, −E1,Wn, for n = 2, 3, . . . , belong to S2, we get that the conditions

(2.6) are necessary. If we suppose that the conditions (2.6) are fulfilled,

then

L(a) = L

µ
lim

n→+∞
a(n)

¶
= lim

n→+∞
L(a(n))

= lim
n→+∞

Ã
α(n)L(E0) + β(n)L(E1) +

nX
k=2

γ
(n)
k L(Wk)

!
≥ 0

from which we see that the conditions (2.6) are sufficient. ¤
Remark 2. Results, analogous to those explained in Theorem 2, but

for different classes of sequences are proved in [2], [5].
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A MEASURE OF CONVEXITY OF SEQUENCES

GH. TOADER

1. Introduction

In [1] a hierarchy of convexity of functions is proved which we have

transposed in [4] for convexity of sequences and in [3] for p, q-convexity

of sequences. But this hierarchy is also related to some linear transforma-

tions that preserves the convexity. Though there are some characteriza-

tions of such transformations (see [2] and [6]) there is no concrete example

in the case of p, q-convexity. We shall give here such examples in the case

p = q. We have generalized the result of [4] in [5] with the help of a mea-

sure of convexity. We want to transpose it now to p, p-convexity which

we call here only p-convexity. In fact it can be deduced from ordinary

convexity by some transformations. But we give here direct proofs.

2. A hierarchy of p-convexity of sequences

For a real sequence x = (xi)i≥0 we consider the p-differences (of order

two) defined by:

cpi(x) = xi+2 − 2pxi+1 + p2xi.

1



The sequence x is called p-convex if cpi(x) ≥ 0, ∀ i ≥ 0. This is a

generalization of the convexity which corresponds to p = 1. In [3] we have

also defined generalizations of starshapedness and of superadditivity: the

sequence x is said to be p-starshaped if:

dpi(x) = (xi+2/p
i+2 − x0)/(i+ 2)− (xi+1/pi+1 − x0)/(i+ 1) ≥ 0, ∀ i ≥ 0

or p-superadditive if:

apij(x) = xi+j − pixj − pjxi + pi+jx0 ≥ 0, ∀ i, j ≥ 0.

We shall denote by Kp, S
∗
p and Sp the sets of p-convex, p-starshaped

respectively p-supperadditive sequences. Let us consider also the set of

weakly p-superadditive sequences:

Wp = {x; api1(x) ≥ 0, ∀ i ≥ 0}.

The first form of the hierarchy of p-convexity is represented by the

following chain of inclusions:

(1) Kp ⊂ S∗p ⊂ Sp ⊂Wp.

We don’t prove it now because we shall give stronger results in what

follows.

3. A measure of p-convexity

As we have done in [5] for the case p = 1, we define the following

measures:

(a) of p-convexity, by:

kpn(x) = min{(cpix)/pi+2, 0 ≤ i ≤ n− 2}

(b) of p-starshapedness, by:

s∗pn(x) = min{2dpi(x), 0 ≤ i ≤ n− 2}
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(c) of p-superadditivity, by:

spn(x) = min{apij(x)/ijpi+j, 0 < i, j, i+ j ≤ n}

(d) of weakly p-superadditivity, by:

wpn(x) = min{api1(x)/ipi+1, 0 < i < n}.

Lemma 1. (a) If the sequence x is represented by:

(2) xi =
iX

j=0

(i− j + 1)pi−jbj

then:

kpn(x) = min{bi/pi, 2 ≤ i ≤ n}.
(b) If x is given by:

xi = ipi
iX

j=1

bj − (i− 1)pib0

then:

s∗pn(x) = min{2bi, 2 ≤ i ≤ n}.
(c) If x is given by:

(4) xi =
iX

j=2

pi−jbj + ipi−1b1 − (i− 1)pib0

then:

wpn(x) = min{bi+1/ipi+1, 1 ≤ i < n}.

Proof. From (2) we have:

cpi(x) = bi+2

from (3):

dpi(x) = bi+2
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and from (4) also:

api1(x) = bi+1.

Lemma 2. For every sequence x, every p > 0 and n ≥ 2, we have:

(5) kpn(x) ≤ s∗pn(x) ≤ spn(x) ≤ wpn(x).

Proof. Every sequence x may be represented by (2) and so, for i ≤
n− 2:

dpi(x) =
1

(i+ 1)(i+ 2)

i+2X
j=2

(j − 1) bj
pj
≥ kpn(x)

(i+ 1)(i+ 2)

i+2X
j=2

(j − 1)

which gives the first part of (5). But the sequence x may be also repre-

sented by (3) and so:

apij(x) = pi+j

"
i

i+jX
k=i+1

bk + j

j+iX
k=j+1

bk

#
≥ pi+jijs∗pn(x)

which gives the second inequality from (5). The last one is obvious.

Remark 1. The defined measures permit the consideration of the

following classes of sequences:

Kpan = {x; kpn(x) ≥ a}

S∗pan = {x; s∗pn(x) ≥ a}

Span = {x; spn(x) ≥ a}

Wpan = {x; wpn(x) ≥ a}.
If the corresponding conditions are fulfilled for any n we renounce at

this index getting the sets: Kpa, S
∗
pa, Spa and Wpa. For a = 0 we find also

the sets from (1). But from Lemma 2 we have the following generalization

of (1).
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Theorem 1. For every p > 0, n ≥ 2 and a real, hold the following

inclusions:

(6) Kpan ⊂ S∗pan ⊂ Span ⊂Wpan.

Remark 2. Let us consider also the following classes of sequences:

K0
p = {x; cpi(x) = 0, ∀ i ≥ 0}

S∗0p = {x; dpi(x) = 0, ∀ i ≥ 0}
S0p = {x; apij(x) = 0, ∀ i, j ≥ 0}
W 0

p = {x; api1(x) = 0, ∀ i ≥ 0}
Zp = {x; ∃ a, b ∈ R, xi = pi(ai+ b), ∀ i ≥ 0}.

From Lemma 1 we deduce that K0
p = S∗0p = Zp. Also Zp ⊂ S0p ⊂ W 0

p

and from:

cpi(x) = ai,i+1,1(x)− pap,i,1(x)

we deduce W 0
p ⊂ K0

p , thus:

K0
p = S∗0p = S0p =W 0

p = Zp.

4. Invariant transformations

In [5] are indicated all the weight sequences a = (ai)i≥0 which define a

transformation Ta of sequence by Ta(x) = (Xi)i≥0, where:

(7) Xi = (a0x0 + · · ·+ aixi)/(a0 + · · ·+ ai)

with the property that it preserves the classes K1, S
∗
1 , S1 or W1. In [2]

and [6] one can found characterization of such transformations (even of

more general type) which preserves the p-convexity, but no example is

known. One reason may be that there is no transformation of type (7).
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A more general transformation may be given by a triangular matrix

A = (aij)0≤j≤i putting TA(x) = (Xi)i≥0 where:

Xi = ai0x0 + · · ·+ aiixi.

Lemma 3. If the transformation TA preserves one of the sets Kp, S∗p ,

Sp or Wp then it preserves also the set Zp.

Proof. If, for example, TA preserves Kp, then for every x ∈ Zp ⊂ Kp

we have:

cpi(TA(±x)) = ±cpi(TA(x)) ≥ 0, ∀ i ≥ 0
that is TA(x) ∈ K0

p = Zp.

Lemma 4. If the transformation Ta given by Ta(x) = (Xi)i≥0, where:

Xi = (aix0 + ai−1x1 + · · ·+ a0xi)/(i+ 1)

preserves the set Zp then:

ai = a0p
i.

Proof. If Ta(Zp) ⊂ Zp, there are the real numbers A,B,C and D such

that:

(8) ia0p
i + · · ·+ ai−1p = (i+ 1)pi(Ai+B)

and

(9) a0p
i + · · ·+ ai−1p+ ai = (i+ 1)p

i(Ci+D).

For i = 0 and i = 1 it follows:

A = a0/2, B = 0, C = (a1 − a0p)/2p, D = a0

and for i = 2:

a1 = a0p, a2 = a0p
2.
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Subtracting (8) from (9) we get:

ai = a0p
i(i− 1) + a1p

i−1(i− 2) + · · ·+ ai−2p2 − a0(i+ 1)(i− 2)pi/2

which gives, by mathematical induction:

ai = a0p
i.

This result suggests to consider a more general case.

Theorem 2. If the transformation Ta given by Ta(x) = (Xi)i≥0, with:

(10) Xi = (a0p
ix0 + a1p

i−1x1 + · · ·+ aixi)/(a0 + · · ·+ ai)

preserves the set Zp, then there is a v > 0 such that:

(11) ai = a0

µ
v + i− 1

i

¶
, ∀ i ≥ 0

where µ
v

0

¶
= 1,

µ
v

i

¶
=

v

i

µ
v − 1
i− 1

¶
, i ≥ 1.

Proof. We must find the numbers A and B such that:

(12) (iai + (i− 1)ai−1 + · · ·+ a1)p
i = (a0 + · · ·+ ai)(Ai+B)pi.

For i = 0 we have B = 0 and for i = 1 we get also A = a1/(a0 + a1).

Then i = 2 gives:

a2 = a1(a0 + a1)/2a0

and putting a1 = va0 we have (11) for i ≤ 2. From (12) we deduce:

ai =
i−1X
k=0

(iv − k(v + 1))ak/i
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which gives relation (11) for every i. For this one used the mathematical

induction and the relation:

iX
j=0

µ
v + j

j

¶
=

µ
v + i+ 1

i

¶
.

Remark 3. Taking in (10) ai as given by (11), it becomes:

(13) Xi = Xv
i =

iX
j=0

µ
v + j − 1

j

¶
pi−jxj/

µ
v + i

i

¶
.

WritingXv = (Xv
i )i≥0 = Av(x) we can consider the following measures

(in v-mean) of sequences:

kvpn(x) = kpn(X
v), s∗vpn(x) = s∗pn(X

v),

svpn(x) = spn(X
v), wv

pn(x) = wpn(X
v).

Theorem 3. For any sequence x = (xi)i≥0 and any 0 < v < u we have

the following relations:

(14) kpn(x) ≤ (1 + 2/u)kupn(x) ≤ (1 + 2/v)kvpn(x) ≤ s∗pn(x)/p
2

(15) s∗pn(x) ≤ (1 + 2/u)s∗upn(x) ≤ (1 + 2/v)s∗vpn(x)

and

(16) wpn(x) ≤ (1 + 2/u)wu
pn(x) ≤ (1 + 2/v)wv

pn(x).

Proof. (i) Let x be given by (2) and Xu by:

(17) Xu
i =

iX
j=0

(i− j + 1)pi−jbuj , i ≥ 0.
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Then from (13) we have also:

(18) xi =
u+ i

u
Xu

i − p
i

u
Xu

i−1 =
iX

j=0

(i(i+ 1/u)− j + 1)pi−jbuj

and so:

(19) cpi(x) = bi+2 = (1 + (i+ 2)/u)b
u
i+2 − ipbui+1/u.

This gives, step by step:

bui
pi
=

u

u+ i

bi
i
+ u

i−1X
j=2

(i− 2) . . . (j − 1)
(u+ i) . . . (u+ j)

bj
pj

thus, for i ≤ n:

bui
pi+2

≥
Ã

u

u+ i
+ u

i−1X
j=2

(i− 2) . . . (j − 1)
(u+ i) . . . (u+ j)

!
kpn(x)

=

Ã
u

u+ i
+

u(i− 2)!
(u+ i) . . . (u+ 2)

i−1X
j=2

µ
u+ j − 1
j − 2

¶!
kpn(x) =

u

u+ 2
kpn(x)

and hence, by Lemma 1, we have the first inequality from (14).

(ii) Taking (17) for v and u, (19) gives:µ
1 +

i+ 2

u

¶
bui+2 −

ip

u
bui+1 =

µ
1 +

i+ 2

v

¶
bvi+2 −

ip

v
bvi+1

and so, by mathematical induction:

bvi+2
pi+2

=
v(u+ i+ 2)

u(v + i+ 2)

bui+2
pi+2

+ (u− v)
v

u

i+1X
j=2

i . . . (j − 1)
(v + i+ 2) . . . (v + j)

buj
pj
.

Hence, for i ≤ n− 2:
bvi+2
pi+4

≥ v

u

Ã
u+ i+ 2

v + i+ 2
+

(u− v)i!

(v + i+ 2) . . . (v + 2)

i+1X
j=2

µ
v + j − 1
j − 2

¶!
kupn(x)

=
v(u+ 2)

u(v + 2)
kupn(x)

thus obtaining the second inequality from (14).
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(iii) Taking v instead of u in (18), we have for i ≤ n:

dpi(x) = (1/v)(b
v
i+2/p

i+2) +

Ã
i+2X
j=2

(j − 1)bvj/pj
!
/((i+ 1)(i+ 2)).

Hence:

dpi(x)/p
2 ≥

Ã
1/v +

i+2X
j=2

(j − 1)/((i+ 1)(i+ 2))
!
kvpn(x)

= (1/v + 1/2)kvpn(x)

that is the last inequality from (14).

(iv) If x is given by (3), then (13) gives:

Xu
i /p

i=
ui

u+ 1

iX
j=1

bj−
µ
u/

µ
u+ i

i

¶¶ iX
j=2

µ
u+ j − 1
j − 2

¶
bj−b0

µ
ui

u+ 1
− 1
¶

thus:

dpi(X
u) =

ubi+2
u+ i+ 2

+
u

(u+ 2)

µ
u+ i+ 2

i

¶ i+1X
j=2

µ
u+ j − 1
j − 2

¶
bj

and so, for i ≤ n− 2:

2dpi(X
u) ≥

⎛⎜⎜⎝ u

u+ i+ 2
+

u

(u+ 2)

µ
u+ i+ 2

i

¶ i−1X
k=0

µ
u+ k + 1

k

¶⎞⎟⎟⎠ s∗pn(x)

=
u

u+ 2
s∗pn(x)

which gives the first inequality from (15).

(v) Let Xu be given as in (3) by:

(20) Xu
i = ipi

iX
j=1

buj − (i− 1)pibu0 .
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Then as in (18) we have:

xi/p
i = i(1 + i/u)bui + i(1 + 1/u)

i−1X
j=1

buj + (1− i(1 + 1/u))bu0

and so:

cpi(x)/p
i+2 = (i+2)(1+(i+2)/u)bui+2−i(1+(2i+3)/u)bui+1+i(i−1)bui /u.

Taking it for 0 < v < u, we get:

(i+ 2)(1 + (i+ 2)/u)bui+2 − i(1 + (2i+ 3)/u)bui+1 + i(i− 1)bui /u

= (i+ 2)(1 + (i+ 2)/v)bvi+2 − i(1 + (2i+ 3)/v)bvi+1 + i(i− 1)bvi /v
thus, by mathematical induction:

bvi+2 =
v(u+ i+ 2)

u(v + i+ 2)
bui+2 + (u− v)

v

u

i+1X
j=2

i . . . (j − 1)
(v + i+ 2) . . . (v + j)

buj

which gives as in (ii) the second inequality from (15).

(vi) If x is given by (4) and Xu by:

xui =
iX

j=2

pi−jbuj + ipi−1bu1 − (i− 1)bu0pi

we have as in (18):

xi =

µ
1 +

i

u

¶
bui +

i−1X
j=2

buj p
i−j+pi−1i

µ
1 +

1

u

¶
bu1+

µ
1− i

µ
1 +

1

u

¶¶
bu0p

i

and so, for i > 1:

(21) apil(x) = bi+1 = ((1 + (i+ 1)/u)b
u
i+1 − (pi/u)bui

and

ap11(x) = b2 = (1 + 2/u)b
u
2 .
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By mathematical induction it follows that:

bui =
u

u+ i
bi + u

i−1X
j=2

(i− 1) . . . jpi−j
(u+ i) . . . (u+ j)

bj

thus, using Lemma 1:

bui
(i− 1)pi =

u

u+ i

bi
(i− 1)pi + u

i−1X
j=2

(i− 2) . . . (j − 1)
(u+ i) . . . (u+ j)

bj
(j − 1)pi

≥
Ã

u

u+ i
+

u(i− 2)!
(u+ i) . . . (u+ 2)

i−1X
j=2

µ
u+ j − 1
j − 2

¶!
wpn(x) =

u

u+ 2
wpn(x)

which gives the first inequality from (16).

(vii) Taking (20) for u and v, we have from (21):

(1 + (i+ 1)/u)bui+1 − (pi/u)bui = (1 + (i+ 1)/v)bvi+1 − (pi/v)bvi , i ≥ 2

and

bv2 =
v(u+ 2)

u(v + 2)
bu2 .

So, step by step, we get for i ≤ n:

bvi =
v(u+ i)

u(v + i)
bui +

v(u− v)

u

i−1X
j=2

(i− 1) . . . jpi−j
(v + i) . . . (v + j)

buj

or, using again Lemma 1:

bvi
(i− 1)pi =

v(u+ i)

u(v + i)

bui
(i− 1)pi +

v(u− v)

u

i−1X
j=2

(i− 2) . . . (j − 1)
(v + i) . . . (v + j)

buj
(j − 1)pj

≥
Ã
v(u+ i)

u(v + i)
+

v(u− v)(i− 2)!
u(v + i) . . . (v + 2)

i−1X
j=2

µ
v + j − 1
j − 2

¶!
wu
pn(x)

=
v(u+ 2)

u(v + 2)
wu
pn(x)

getting the last inequality from (16).
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Remark 4. Let us denote by MvKpan, MvS∗pan, M
vSpan and MvWpan

the sets of sequences x with the property that the sequence Xv given by

(13) belongs to Kpan, S∗pan, Span, Wpan, respectively. For a = 0 and n un-

bounded, we denote them by MvKp, MvS∗p , M
vSp, MvWp, respectively.

From Theorem 3 we have the following:

Corollary 1. For every p > 0, 0 < v < u, n ≥ 2 and a real, we have

the following inclusions:

Kpan ⊂MuKp,af(u),n ⊂ MvKp,a(v),n

∩
S∗p,ap2,n ⊂MuS∗p,ap2f(u),n ⊂MvS∗p,ap2f(v),n
∩ ∩ ∩

Sp,ap2,n MuSp,ap2f(u),n MvSp,ap2f(v),n

∩ ∩ ∩
Wp,ap2,n ⊂MuWp,ap2f(u),n ⊂MvWp,ap2f(v),n

where f(n) = n/(n+ 2).

Corollary 2. For every p > 0 and 0 < v < u we have the inclusions:

Kp ⊂MuKp ⊂MvKp ⊂ S∗p ⊂MuS∗p ⊂MvS∗p
∩ ∩ ∩
Sp MuSp MvSp

∩ ∩ ∩
Wp ⊂MuWp ⊂MvWp.

Remark 5. Among these sets other inclusions may also exist. For

example in [4] it is proved that for p = 1 and u = 1 (which corresponds

to the arithmetic mean):

K1 ⊂M1K1 ⊂ S∗1 ⊂ S1 ⊂M1S∗1 ⊂M1S1.
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ALEXANDER’S OPERATOR FOR SEQUENCES

GH. TOADER

PRESENTED BY P. KENDEROV

Abstract. In this paper we define two weak types of starshaped

sequences. One of them shows a close connection between starshaped

and superadditive sequences, while the other one is used for the de-

termination of linear operators which conserve some sequence classes.

We obtain so a discrete operator of Alexander type.

1. Introduction

Sequences with some special properties can occur in many unexpected

branches. For example, if the positive sequence (an)n≥1 has the property:

(k + 1)ak+1 ≤ kak, ∀ k ≥ 1,

then the complex function f defined by f(z) = z+ a2z
2+ . . . (a1 = 1) is

close-to-convex and a similar condition implies that f is a starlike func-

tion (see [6]). Also convex, quasiconvex and other sequences are used in

the theory of Fourier series (see [3] for many references), giving conditions

for summability.
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In this paper we deal with more classes of sequences. The following

sets are well known (see for example [4]): the set of convex sequences:

K = {(xn)n≥0 : xn+2 − 2xn+1 + xn ≥ 0, ∀ n ≥ 0}

and also that of superadditive sequences:

S = {(xn)n≥0 : xn+m + x0 ≥ xn + xm, ∀ n,m ≥ 1}.

In [7] we have considered the set of starshaped sequences:

S∗ = {(xn)n≥0 : (xn − x0)/n ≤ (xn+1 − x0)/(n+ 1), ∀ n ≥ 1}

proving also that:

(1) K ⊂ S∗ ⊂ S.

Then we have used in [9] a weaker form of superadditivity introducing

the set:

W = {(xn)n≥0 : xn+1 + x0 ≥ xn + x1, ∀ n ≥ 1}.

Here we define also two weaker kinds of starshapedness and establish

their relations with the previous notions.

In [10] there are characterized the weighted arithmetic means that

preserve the convexity. We have obtained a simpler characterization in

[8] and then we have proved that it is also valid for the preservation of

the starshapedness or the superadditivity (see [9]). In what follows we

want to determinate all the linear positive operators of another special

type which conserve one of the above properties. Thus we get a discrete

operator which resembles Alexander’s integral operator used in the theory

of complex functions (see for example [5]).
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2. Weakly starshaped sequences

Define the following two sets of sequences:

J∗ = {(xn)n≥0 : xnm − x0 ≥ n(xm − x0), ∀ n,m ≥ 1}

and

V ∗ = {(xn)n≥0 : xn − x0 ≥ n(x1 − x0), ∀ n ≥ 1}.

The first of them can be considered as a Jensen starshapedness and

the second as a very weak kind of starshapedness. We have obviously:

S∗ ⊂ J∗ ⊂ V ∗

but we want to combine it with (1). Before doing this we add also the

set of linear (or zero) sequences:

Z = {(xn)n≥0 : ∃ a, b ∈ R, xn = an+ b, ∀ n ≥ 0}.

Lemma 1. The following inclusions:

(2)

Z ⊂ K ⊂ S∗ ⊂ S ⊂ W

∩ ∩
J∗ ⊂ V ∗

hold.

Proof. The inclusions S ⊂ J∗ and W ⊂ V ∗ can be proved by mathe-

matical induction. The other relations are in (1) or are obvious.

Remark 1. The inclusions:

S∗ ⊂ S ⊂ J∗

3



show a close connection between starshapedness and superadditivity. In

fact a superadditivity sequence verifies even a stronger inequality than

that used in the definition of J∗, namely:

xn − x0 ≥ [n/m](xm − x0), n ≥ m,

where [x] denotes the integer part of x.

We have given in [7] a representation formula for sequences from K: a

sequence (xn)n≥0 belongs to K is and only if

xn =
nX

k=0

(n− k + 1)yk, with yk ≥ 0 for k ≥ 2.

Also we have used representation formulas for sequences from S∗ and

in [9] for those from W . We add here such formulas for sequences from

S, J∗ and V ∗. Each of them is easy to verify.

Lemma 2. Every sequence (xn)n≥0 can be represented by:

(3) xn = n
nX

k=1

zk − (n− 1)z0, for n ≥ 0.

It belongs to:

i) S∗ if and only if

(4) zk ≥ 0 for k ≥ 2;

ii) S if and only if

n
n+mX
k=n+1

zk +m
m+nX

k=m+1

zk ≥ 0, for n,m ≥ 1;

iii) J∗ if and only if

(5)
nmX

k=n+1

zk ≥ 0, for n ≥ 1, m ≥ 2;

4



iv) W if and only if

nzn+1 +
n+1X
k=2

zk ≥ 0, for n ≥ 1;

v) V ∗ if and only if

2nX
k=n+1

zk ≥ 0, for n ≥ 1.

Remark 2. For sequences from W and V ∗ we have also simpler rep-

resentations:

(6) xn =
nX

k=2

wk + nx1 − (n− 1)x0, with wk ≥ 0, for k ≥ 2,

respectively:

(7) xn = vn + nx1 − (n− 1)x0, with vn ≥ 0, for n ≥ 2,

both valid for n ≥ 2.

3. Linear operators

Let Q = (qnm)0≤m≤n be a strictly positive triangular matrix. For a

sequence x = (xn)n≥0 consider the associated sequence LQ(x) defined by:

LQ
n (x) =

nX
k=0

qnkxk, ∀ n ≥ 0.

We get so a linear operator LQ defined on the space of all real se-

quences with values in the same space. It is also isotonic, that is LQ(x)

is positive if x is positive. Given a set X of sequences, an usual problem

is to characterize the matrices Q with the property that X is invariant

under LQ, that is LQ(X) ⊂ X. We have such characterizations for the

5



set K of convex sequences (see [1] and [2]). We have also the following

general result:

Lemma 3. If one of the sets K,S∗, S,W, J∗ or V ∗ is invariant under

LQ, then Z is also invariant with respect to it.

Proof. Let x be an arbitrary sequence from Z. If the set

X ∈ {K,S∗, S,W, J∗, V ∗}

is invariant under LQ, as x ∈ X, we have LQ(x) ∈ X. By (2) we get

LQ(x) ∈ V ∗. But −x also belongs to Z, which gives LQ(x) ∈ Z.

In what follows we want to give explicitly the matrices Q with the

property that Z is invariant under LQ, supposingQ of some special types.

We begin with the case of weighted arithmetic means studied in [8] and

[10]. Let p = (pn)n≥0 be a strictly positive sequence. For any sequence

x = (xn)n≥0 we define the sequence Ap(x) of weighted arithmetic means

of x by:

(8) Ap
n(x) =

nX
k=0

pkxk

nX
k=0

pk

, ∀ n ≥ 0.

We note that one can define a matrix Q using p by:

qnm =
pm
nX

k=0

pk

, 0 ≤ m ≤ n.

Lemma 4. The inclusion:

(9) Ap(Z) ⊂ Z

6



is valid if and only if there is an u ≥ 0 such that:

(10) pn = p0

µ
u+ n− 1

n

¶
, ∀ n ≥ 0,

where µ
v

0

¶
= 1,

µ
v

n

¶
=

v(v − 1) . . . (v − n+ 1)

n!
, n ≥ 1.

Proof. If (9) holds, we must have a, b ∈ R such that:

(11)

nX
k=0

kpk

nX
k=0

pk

= an+ b, ∀ n ≥ 0.

For n = 0 we get b = 0 and n = 1 gives a = p1/(p0 + p1) so that (11)

becomes:

(12)
nX

k=0

kpk =

np1

nX
k=0

pk

p0 + p1
, ∀ n ≥ 0.

Thus, by subtraction, we have:

(n+ 1)pn+1 = (p1/p0)
nX

k=0

pk.

Denoting p1/p0 = u, we obtain, again by subtraction:

pn+1 =
pn(u+ n)

n+ 1

which gives (10).

Conversely, if pn is given by (10) then (9) is valid, because (12) means

Ap(z) = (u/(u+ 1))z, where z = (n)n≥0.
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The second case which we study is obtained by putting qnk = pk. Thus

we have the linear operator Bp defined by:

Bp
n(x) =

nX
k=0

pkxk, ∀ n ≥ 0.

We denote by:

Z0 = {(xn)n≥0 : ∃ a, xn = an, ∀ n ≥ 0}.

Lemma 5. i) There is no sequence p with property:

(13) Bp(Z) ⊂ Z;

ii) The operator Bp satisfies the inclusion:

Bp(Z0) ⊂ Z0

if and only is

pn = p1/n, ∀ n ≥ 1.

Proof. To obtain (13) it is necessary and sufficient that for arbitrary

a and b there exist constants c, d, e and f such that:
nX

k=0

akpk = cn+ d,
nX

k=0

bpk = en+ f, n ≥ 0.

For n = 0 we have d = 0, bp0 = f and for n ≥ 1: anpn = c, bpn = e.

Since b 6= 0 leads to a contradiction, we must have b = 0, e = 0, c = ap1

and pn = p1/n.

Remark 3. Taking p1 = 1, we get an operator which we denote simply

by B, thus:

(14) Bn(x) =
nX

k=1

xk/x, ∀ n ≥ 1.
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As we pointed out in the introduction, this operator resembles Alexan-

der’s integral operator.

4. A hierarchy of starshapedness

In what follows we want to investigate the sufficiency of the previous

conditions. First, we denote:

MuT = {x : Ap(x) ∈ T},

where T is an arbitrary set of sequences and Ap is given by (8) with p

taken as in (10). We have proved in [8] and [9] that:

(15)

K ⊂ MuK ⊂ S∗ ⊂ S ⊂ W

∩ ∩
MuS∗ ⊂ MuS ⊂ MuW

that is, the condition is sufficient for the sets K,S∗ and W . We try

to extend this result by taking into account (2). But, as in the case of

the set S, we are not able to prove the inclusion J∗ ⊂ MuJ∗ because

the representation given by (3) and (5) for the sequences of J∗ is too

complicated.

Lemma 6. For every u ≥ 0 the inclusion:

V ∗ ⊂MuV ∗

is valid.

Proof. Let x = (xn)n≥0 be an arbitrary sequence of V ∗. It may be

represented as in (7) by:

xn = vn + nx1 − (n− 1)x0

9



with v0 = v1 = 0 and vn ≥ 0 for n ≥ 2. So:

Au
n(x) =

nX
k=0

µ
u+ k − 1

k

¶
xkµ

u+ n

n

¶

=
nX

k=0

µ
u+ k − 1

n

¶
vkµ

u+ n

n

¶ + (x1 − x0)nu/(u+ 1) + x0

= wn + nAu
1(x)− (n− 1)Au

0(x),

where w0 = w1 = 0 and wn ≥ 0 for n ≥ 2, that is Au(x) ∈ V ∗.

To use the operator B given by (14), taking into account Lemma 5, we

must use only sequences which have the first item zero. So, for a given

set T of sequences, we denote by:

T0 = {x = (xn)n≥0, x ∈ T, x0 = 0}

its subset with desired property. Also we denote:

M0T0 = {x : B(x) ∈ T0}.

We get the following characterizations:

Lemma 7. The sequence (xn)n≥1 belongs to:

i) M0K0 iff xn+1/(n+ 1) ≥ xn/n, for n ≥ 2;
ii) M0S∗0 iff

nX
k=1

(xn/n− xk/k) ≥ 0 for n ≥ 2;
iii) M0W0, iff xn/n ≥ x1 for n ≥ 2;
iv) M0V ∗0 , iff

nX
k=2

(xk/k − x1) ≥ 0 for n ≥ 2.
Proof.

We have only to compute:
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i) Bn+2(x)− 2Bn+1(x) +Bn(x) = xn+2/(n+ 2)− xn+1/(n+ 1);

ii) Bn+1(x)/(n+ 1)−Bn(x)/n =

nxn+1/(n+ 1)−
nX

k=1

xk/k

n(n+ 1)
;

iii) Bn+1(x)−Bn(x)−B1(x) = xn+1/(n+ 1)− x1;

iv) Bn(x)− nB1(x) =
nX

k=1

xk/k − nx1 =
nX

k=1

(xk/k − x1).

Lemma 8. The inclusions

(16)

K0 ⊂ S∗0 ⊂ S0 ⊂ W0 ⊂ V ∗0

∩ ∩
M0K0 ⊂ M0S∗0 ⊂ M0S0 ⊂ M0W0 ⊂ M0V ∗0

hold.

Proof. The inclusions from the first and the second lines follow from

(2), while S∗0 ⊂ M0K0 and V ∗0 ⊂ M0W0 are proved in assertions i)

respectively iii) of Lemma 7.

Remark 4. It is easy to see that a superadditive sequence satisfies the

condition ii) of Lemma 7 for n = 2, 3, 4, 5, so we conjecture that:

S0 ⊂M0S∗0 .

To the contrary, W0 6⊂ M0S0. For example, the sequence x given by

x1 = 0, xn = 1 for n ≥ 2, belongs to W0, but not to M0S0.

Also we can combine the diagrams (15) and (16).

Lemma 9. For every u > 0 the inclusions:

MuS∗0 ⊂ MuS0 ⊂ MuW0 ⊂ MuV ∗0

∩ ∩ ∩
M0S∗0 ⊂ M0S0 ⊂ M0W0 ⊂ M0V ∗0

hold.

11



Proof. i) If x = (xn)n≥0 ∈MuS∗0 , the using (3) and (4) we can repre-

sent Au(x) by:

Au
n(x) = n

nX
k=1

zk, with zk ≥ 0 for k ≥ 2.

But then, as in [9], we have:

(17) xn =
³
1 +

n

u

´
Au
n(x)−

n

u
Au
n−1(x),

hence

xn = n

Ã
(n− 1)zn + (u+ 1)

nX
k=1

zk

!
/u.

We deduce that:

xn + 1

n+ 1
− 1

n

nX
k=1

xk
k
=

µ
1 +

n+ 1

u

¶
zn+1 +

nX
k=2

k − 1
u

zk ≥ 0,

that is x ∈M0S∗0 .

ii) If x ∈MuW0, we have by (6):

Au
n(x) =

nX
k=2

wk + nw1, with wk ≥ 0 for k ≥ 2

if n ≥ 2 and Au
1(x) = w1. Then x1 = (1 + 1/u)w1 and for n ≥ 2, from

(17):

xn = nw1 +
nX

k=2

wk +
n

u
(w1 + wn) ≥ n(1 + 1/u)w1 = nx1,

that is x ∈M0W0.

iii) For x ∈MuV ∗0 we have from (7) Au
1(x) = v1 and:

Au
n(x) = vn + nv1, with vn ≥ 0 for n ≥ 2.

12



So x1 = (1 + 1/u)v1 and from (17):

xn =
³
1 +

n

u

´
vn − n

u
vn−1 + n

µ
1 +

1

u

¶
v1.

Thus:
nX

k=2

(xk/k − x1) = vn/u+
nX

k=2

vk/k ≥ 0

and by Lemma 7, x ∈M0V ∗0 .

We summarize the above results in the following:

Theorem. For arbitrary u ≥ 0 we have the inclusions:

K0 ⊂ S∗0 ⊂ S0 ⊂ W0 ⊂ V ∗0

∩ ∩
∩ M0K0 ⊂ M0S∗0 ⊂ M0S0 ⊂ M0W0 ⊂ M0V ∗0

∪ ∪ ∪
MuK0 ⊂ MuS∗0 ⊂ MuS0 ⊂ MuW0 MuV ∗0
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SUPERMULTIPLICATIVE SEQUENCES
IN SEMIGROUPS

GH. TOADER

1. Real sequences

In [1], solving the problem [2], the following result is proved:

Let (an)n≥1 be a sequence of real numbers satisfying the relation

an+m ≤ an + am, ∀ n,m ≥ 1. Then

(1)
nX

k=1

ak
k2
≥ an

n

nX
k=1

1

k
.

We can analyse this result by taking into account some definitions and

results from [4]. There we have considered the sets of starshaped and of

superadditive sequences defined by

S∗ =
½
(an)n≥1 :

an
n
≤ an+1

n+ 1
, ∀ n ≥ 1

¾
respectively:

S = {(an)n≥1 : an+m ≥ an + am, ∀ n,m ≥ 1}

and we have proved the proper inclusion

(2) S∗ ⊂ S.
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Now, multiplying inequality (1) by −1, we get
nX

k=1

1

k

³an
n
− ak

k

´
≥ 0

which is obviously valid for any sequence from S∗, but the result of [1]

means that it holds even for all sequences from S.

Starting from this remark, in [8] we have posed the problem of deter-

mination of positive weight sequences (pk)k≥1 with the property that:

(3)
nX

k=1

pk
³an
n
− ak

k

´
≥ 0, ∀ n ≥ 1

for every sequence (an)n≥1 ∈ S. In what follows we want to generalize

the results from [8] for the case of sequences in a semigroup which we

have considered in [5].

2. Sequences in a semigroup

Remarking that the relation ≥ can be interpreted as a relation of divis-
ibility in the additive semigroup of the positive reals, we have transposed

in [5] some of the results of [4] for semigroups.

Let (G, ·) be a semigroup, that is the binary operation · : G×G→ G

is associative. We suppose also that the semigroup is commutative and

has an identity

We consider the usual divisibility relation

a|b⇔ ∃ c ∈ G, b = ac.

Let (xn)n≥1 be a sequence of elements of (G, ·). In [5], we have called
this sequence:

a) starshaped if

xn+1n |xnn+1, ∀ n ≥ 1;
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b) supermultiplicative if

xnxm|xn+m, ∀ n,m ≥ 1.

In what follows we replace the definition of starshapedness by a

stronger one:

xmn |xnm, ∀ n < m

and denote by S∗G and SG the set of starshaped, supermultiplicative re-

spectively, sequences from (G, ·).
If the semigroup has some properties, a relation like (2) can be valid.

For example, in [5] we have proved that if (G, ·) preserves the divisi-
bility, that is

xn|yn ⇒ x|y
then

S∗G ⊂ SG

holds.

By analogy with relation (3), for every sequence (xn)n≥1 ∈ S∗G and

every sequence of natural numbers (qn)n≥1 we have

(4)

Ã
nY

k=1

xqkk

!n

|x
n

k=1
kqk

n .

We denote by WG the set of sequence (qn)n≥1 of natural numbers with

the property that (4) is valid for every sequence (xn)n≥1 from SG. We

remark that WG is an "integer" cone, that is, it is closed with respect to

addition and multiplication by positive integer numbers.

Lemma 1. The constant sequence given by

qn = 2, ∀ n ≥ 1

3



belongs to WG.

Proof. For every sequence (xn)n≥1 from SG we have

xkxn−k|xn, 1 ≤ k ≤ n

thus
nY

k=1

x2k|xn+1n

or Ã
nY

k=1

x2k

!
|x

n

k=1
2k

n .

Remark 1. In the case of usual superadditive sequences, we have

proved a similar result in [8].

Remark 2. For noninteger sequences (qk)k≥1, we must find other types

of formulations. So, for the sequence defined by qk = 1/k, we have the

following:

Conjecture. If the sequence (xn)n≥1 belongs to SG, then, for every

n ≥ 1, we have

(5)
nY

k=1

x
n!
k
k |xn!n .

We can prove it for small values of n (say n ≤ 10). For example, for
n = 5 we use

x4x1|x5, x2x3|x5, x1x22|x5 and x51|x5
at the power 30, 40, 10 respectively 16 and then multiplied. Also we can

verify (5) for the sequences (xn)n≥1 of the subset TG of SG defined as

TG =

(
(xn)n≥1 : xn =

nY
i=1

w
[ni ]
i , wi ∈ G, ∀ i, n ≥ 1

)
,

where [x] denotes the integer part of x. We have proved in [5] that TG is

a proper subset of SG.
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Lemma 2. Every sequence (xn)n≥1 of TG verifies (5).

Proof. We have

nY
k=1

x
n!
k
k =

nY
k=1

Ã
nY
i=1

w
[ki ]
i

!n!
k

=
nY
i=1

w

n

k=1
[ki ]

n!
k

i

thus (5) is fulfilled because

nX
k=1

1

k

∙
k

i

¸
≤
hn
i

i
, ∀ n, i ≥ 1

(see [3]).

Remark 3. For the case of superadditive sequences we made this

conjecture in [7] and the corresponding special case of Lemma 2 we have

proved in [8].

Remark 4. In [6] another kind of starshapedness and superadditivity

related to the logarithmic convexity is defined. So, if the function f :

R+ → R+ is strictly increasing, we say that the sequence (an)n≥1 is

i) f -starshaped if

f(an)

n
≤ f(an+1)

n+ 1
, ∀ n ≥ 1;

ii) f -superadditive if

f(an) + f(am) ≤ f(an+m), ∀ n,m ≥ 1.

For example, log-starshapedness means

a1/nn ≤ a
1/(n+1)
n+1 , ∀ n ≥ 1

and it implies log-superadditivity, i.e.

anam ≤ an+m, ∀ n,m ≥ 1.

5



By Lemma 1, this last relation implies
nY

k=1

ak ≤ a(n+1)/2n , ∀ n ≥ 1.

The conjecture means, for this case, that every log-superadditive se-

quence verifies
nY

k=1

a
1/k
k ≤ an, ∀ n ≥ 1,

which is obviously true for log-starshaped sequences.
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ON CHEBYSHEV’S INEQUALITY
FOR SEQUENCES

GH. TOADER

Abstract. We give improved versions of Chebyshev’s inequality for

starshaped sequences, valid also for convex sequences.

1. Introduction

The classical Chebyshev’s inequality for sequences, as it may be found

in [4], asserts that is a = {aj|1 ≤ j ≤ n} and b = {bj|1 ≤ j ≤ n} are
increasing sequences, then the following inequality is true:

(1)
nX

j=1

aj

nX
k=1

bk ≤ n
nX

j=1

ajbj.

For convex sequences a and b, Pečaríc proved in [5] the analogous

inequality

(2) n
nX

j=1

ajbj −
nX

j=1

aj

nX
k=1

bk

≥ 12

n2 − 1

nX
k=1

µ
k − n+ 1

2

¶
ak

nX
j=1

µ
j − n+ 1

2

¶
bj.

In [7] Seymour and Welsh give the following generalization of Cheby-

shev’s inequality: if p = {pj|1 ≤ j ≤ n} is log convex and a and b are

1



increasing sequences, then

(3)
nX

j=1

pjaj

nX
k=1

pkbk ≤
nX

j=1

pj

nX
k=1

pkakbk.

In [1] Beck and Krogdahl proved a 2-dimensional version of this result.

But it is known (see [3]) that the inequality (3) is also valid for all

positive sequences p, and not only for those log convex. Moreover, in [2]

the relation (3) is proved under weaker conditions on a and b: replace

monotonicity by monotonicity in p-mean (to be explained below). Also

the classical Chebyshev’s inequaloty (1) was generalized in [6] in a similar

sense, but the result is not comparable with that of [2].

In this paper we want to improve (3) in the case of convexity, but of

the sequences a and b and not of p. In fact, the result is proved even for

starshaped sequences and not only for convex ones. We also generalize in

the same direction some results from [2], [6].

2. Definitions and auxiliary results

A sequence a = {aj|1 ≤ j ≤ n} is said to be
i) convex, if

aj+1 ≤
aj + aj+2

2
for j = 1, . . . , n− 2,

ii) log convex, if it is positive and

a2j+1 ≤ ajaj+2 for j = 1, . . . , n− 2,

iii) starshaped, if

aj
j
≤ aj+1

j + 1
for j = 1, . . . , n− 1.

2



We recall that a log convex sequence is also convex (as follows from

the inequality between the arithmetic and the geometric mean). Also we

have the following result.

Lemma 1. If the sequence a = {aj|1 ≤ j ≤ n} is convex and a1 ≤ a2/2

then it is starshaped.

The proof can be done by induction. Usually, one supposes that the

sequence a starts, not with a1, but with a0 = 0 (or a0 ≤ 0). This is only
to get the condition a1 ≤ a2/2.

Let p = {pj|1 ≤ j ≤ n} be a fixed positive sequence. The sequence
a = {aj|1 ≤ j ≤ n} is said to be increasing in p-mean if the sequence

Ã
jX

k=1

pkak/

jX
k=1

pk

!n

j=1

is increasing. If pj = 1 for all j, we say that the sequence is increasing in

1-mean or simply increasing in mean. Of course, an increasing sequence

is increasing in p-mean.

The result of [2] cited above, may be formulated as follows.

Theorem A. If the sequences a and b are increasing in p-mean then

the inequality (3) is valid. If one of the sequences is increasing in p-mean

and the other is decreasing in p-mean then the reverse inequality holds.

To obtain an improved variant of this result for some sequences, we give

the following definition: the sequence a is said to be starshaped in p-mean

if the sequence {aj/j|1 ≤ j ≤ n} is increasing in p-mean. Obviously, we

have the following result.

Proposition. All starshaped sequences are starshaped in p-mean.

We need also the following results.

3



Lemma 2. The sequence a = {aj|1 ≤ j ≤ n} is increasing in p-mean

if and only if

(4) aj+1 ≥
jX

k=1

pkak/

jX
h=1

ph for j = 1, . . . , n− 1.

Proof. We have
j+1X
k=1

pkak/

j+1X
h=1

ph −
jX

k=1

pkak/

jX
h=1

pj

=

Ã
aj+1 −

jX
k=1

pkak/

jX
h=1

ph

!
pj+1/

j+1X
k=1

pk,

which gives the desired result as the sequence p is positive.

Lemma 3. If the sequence a = {aj|1 ≤ j ≤ n} is increasing in p-mean
and the positive sequence q = {qj|1 ≤ j ≤ n} is decreasing in p-mean,

then the sequence Ã
jX

k=1

pkqkak/

jX
h=1

phqh

!n

j=1

is increasing.

Proof. We have to use only (4) and Theorem A.

Corollary 1. If the sequence a is increasing (starshaped) in p-mean,

then it is also increasing (respectively starshaped) in pq-mean for every

positive decreasing sequence q, where pq = {pjqj|1 ≤ j ≤ n}.
We also need the result of [6] given by:

Theorem B. If the sequence a verifies the conditions

(5)
1

m

mX
j=1

aj ≤
1

n

nX
j=1

aj for m < n

and the sequence b is increasing, then the inequality (1) is valid.

4



We see that (5) is a condition weaker than the 1-mean monotonicity,

because we compare all the means only with the last mean (n is fixed).

3. Main results

We want to prove (3), and even a stronger inequality, for starshaped

sequences.

Theorem 1. If the sequence p is positive and the sequences a and b

are starshaped then the following inequality holds:

(6)
nX
i=1

i2pi

nX
j=1

pjaj

nX
k=1

pkbk ≤
Ã

nX
j=1

jpj

!2 nX
k=1

pkakbk.

If aj = bj = 1 for 1 ≤ j ≤ n we have the inequality in (6).

Proof. Applying (3) for the weight sequence {j2pj|1 ≤ j ≤ n} and the
increasing sequences {aj/j|1 ≤ j ≤ n} and {bj/j|1 ≤ j ≤ n} we get

(7)
nX

j=1

jpjaj

nX
k=1

kpkbk ≤
nX

j=1

j2pj

nX
k=1

pkakbk.

Again (3) for the sequences {jpj|1 ≤ j ≤ n}, {aj/j|1 ≤ j ≤ n} and
{j|1 ≤ j ≤ n} gives

(8)
nX

j=1

pjaj

nX
k=1

k2pk ≤
nX

j=1

jpj

nX
k=1

kpkak.

Using (7) and (8), for a and b, we have (6).

Remark. From (3) we also deduce

nX
j=1

pj

nX
k=1

k2pk ≥
Ã

nX
j=1

jpj

!2
,

which means that (6) is really stronger than (3).
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Remark 2. By Lemma 1, the inequality (6) is also valid for (log)

convex sequences with the property that a1 ≤ a2/2.

Corollary 2. If the sequences a and b are starshaped, then

(9)
nX

j=1

aj

nX
k=1

bk ≤
3n(n+ 1)

2(2n+ 1)

nX
j=1

ajbj.

Of course, (9) is obtained from (6) by taking pj = 1, for all j. On

the other hand, as (n + 1)/(2n + 1) ≤ 3

5
for n ≥ 2, from (9) we get an

improvement of (1) for starshaped (or convex) sequences:

Corollary 3. If the sequences a and b are starshaped then, for n > 1,

we have the inequality

(10)
nX

j=1

aj

nX
k=1

bk ≤
9

10
n

nX
j=1

ajbj.

We can replace 0.9 be a smaller constant cq if we desire the inequality

(10) only for n > q, and of course cq → 0.75 as q →∞.
Let us consider the sequences ei = {ji|1 ≤ j ≤ n}, for i ≥ 1.
Theorem 2. If the sequence p is positive and the sequences a and b

are starshaped in e2p-mean, then the inequality (6) is valid.

Proof. Using Theorem A for the sequences {aj/j|1 ≤ j ≤ n} and
{bj/j|1 ≤ j ≤ n} and the weight sequence e2p, we get (7). Then, from
Corollary 1 we deduce that the sequences a and b are also starshaped in

e1p-mean. So, we can use again Theorem A for the sequences {aj/j|1 ≤
j ≤ n} and e1 and the weight sequence e1p obtaining (8). Employing it,

and a similar inequality for b, in (7) we have (6).

Also we can generalize Theorem B by introducing a weight sequence.

6



Theorem 3. If the sequence p is such that
mX
j=1

pj > 0 for all m ≤ n,

and a verifies the condition

(11)
mX
j=1

pjaj/
mX
k=1

pk ≤
nX

j=1

pjaj/
nX

k=1

pk for all m < n,

then the inequality (3) is valid for all increasing sequences b.

Proof. If we define Pm and Am by

Pm =
mX
j=1

pj and Am =
mX
j=1

pjaj,

condition (11) becomes Am ≤ (Pman)/Pn and then we get

nX
j=1

pjajbj = Anbn −
n−1X
m=1

Am(bm+1 − bm)

≥ bnAn −
n−1X
m−1

Pm(bm+1 − bm)An/Pn

= (An/Pn)
nX

m=1

pmbm

which is (3).

Remark 3. There is also a version of this theorem for starshaped se-

quences. On the other hand, in all the results of this paper the increasing

monotonicity can be replaced by decreasing monotonicity. In fact, it can

be generalized even by a property of synchronism. The sequences a and

b are synchronous if

(ai − aj)(bi − bj) ≥ 0 for 1 ≤ j < j ≤ n.

If the above inequality is reversed so are the inequalities (1) and (3).

7
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ON THE DUAL CONE OF A CONE OF SEQUENCES

J.E. PEČARIĆ AND GH. TOADER

Abstract. In the paper there are generalized or adapted some re-

sults from the paper [1] to the case of a cone of sequences.

1991 Mathematics Subject Classification. 26A51.

1. Introduction

Let Sn denote the set of finite real sequences (ak)nk=0. As it is known

(see [2]), a subset Kn ⊆ Sn is called a cone if:

(pak)
n
k=0 ∈ Kn, for every p ≥ 0, (ak)

n
k=0 ∈ Kn.

The cone Kn is convex if:

(ak + bk)
n
k=0 ∈ Kn for all (ak)nk=0, (bk)

n
k=0 ∈ Kn.

The dual cone K∗
n of Kn is defined by:

K∗
n =

(
(pk)

n
k=0 ∈ Sn :

nX
k=0

pkak ≥ 0, ∀ (ak)nk=0 ∈ Kn

)
.

As it is stated in [2], characterizations of the elements of a dual cone

were obtained for the first time for convex functions by T. Popoviciu

1



(see [5] for more references). They were transposed for convex sequences

by J.E. Pečaríc in [4]. In [6] we can find more results and references to

papers in which it is determined the dual cone of some cones of sequences.

Essentially the cones Kn which are considered in these papers consist in

different kinds of convex or of starshaped sequences.

In this paper we want to generalize and to transpose to above context

the results from [1].

2. Some results of M.P. Drazin

The finite differences ∆k are defined for any sequence (ai)i≥0 recur-

rently by:

∆0ai = ai, ∆
1ai = ai+1 − ai, ∆

kai = ∆1(∆k−1ai), k ≥ 2, i ≥ 0.

M.P. Drazin proved in [1] the following results:

i) For any sequence (ai)i≥0 and any y holds:

nX
i=0

µ
n

i

¶
yiai = (−1)n

nX
j=0

µ
n

j

¶
(−1− y)j∆n−jaj, n ≥ 0. (1)

ii) If:

(−1)n−j∆n−jaj ≥ 0, for 0 ≤ j ≤ n,

with at least one inequality, then:

nX
i=0

µ
n

i

¶
yiai > 0, for y > −1. (2)

iii) If:

∆n−jaj ≥ 0, for 0 ≤ j ≤ n,

2



with at least one inequality, then:

(−1)n
nX
i=0

µ
n

i

¶
yiai > 0, for y < −1. (3)

3. A new proof

Let us remind the following notation:

i(k) = i(i− 1) . . . (i− k + 1).

In [2] and [3] are given two identities which we can use for proving and

generalizing (1):

nX
i=0

piai =
nX

k=0

Ã
1

k!

nX
i=k

i(k)pi

!
∆ka0 (1)

and

nX
i=0

piai =
nX

k=0

Ã
1

(n− k)!

kX
i=0

(n− i)(n−k)pi

!
(−1)(n−k)∆n−kak. (5)

For pi =
µ
n

i

¶
yi, (5) becomes:

nX
i=0

µ
n

i

¶
yiai = (−1)n

nX
k=0

(−1)k
Ã

kX
i=0

µ
n− i

n− k

¶µ
n

i

¶
yi

!
∆n−kak

= (−1)n
nX

k=0

µ
n

k

¶
(−1− y)k∆n−kak,

i.e. (1).

Similarly, for pi =
µ
n

i

¶
yn−i, (4) gives:

nX
i=0

µ
n

i

¶
yn−iai =

nX
k=0

µ
n

k

¶
(1 + y)n−k∆ka0.

3



4. The main results

Let r = (rk)nk=0, rk ∈ {0, 1} be a given sequence. We define:

Kn,r = {(ak)nk=0 : (−1)rk∆ka0 ≥ 0, for 0 ≤ k ≤ n},

and

Ln,r = {(ak)nk=0 : (−1)rk∆n−kak ≥ 0, for 0 ≤ k ≤ n}.

Obviously Kn,r and Ln,r are convex cones. Using (4) we have the fol-

lowing result:

Theorem 1. If pk (k = 0, 1, . . . , n) are real numbers such that:

(−1)rk
nX
i=k

i(k)pi ≥ 0, for 0 ≤ k ≤ n,

then (pk)nk=0 ∈ K∗
n,k.

Also, using (5) we get:

Theorem 2. If the real numbers pk (k = 0, 1, . . . , n) are such that:

(−1)rk+n−k
kX
i=0

(n− i)(n−k)pi ≥ 0, for 0 ≤ k ≤ n,

then (pk)nk=0 ∈ L∗n,r.

Consequence. Let f be a function continuous on [0, n], differentiable

n times in (0, n), positive for x = n and

(−1)kf (k)(x) ≥ 0, for 1 ≤ k ≤ n, n− k < x < n.

If the real numbers pk (k = 0, 1, . . . , n) are such that:

kX
i=0

(n− i)(n−k)pi ≥ 0, for k = 0, 1, . . . , n (6)

4



then:
nX
i=0

pif(i) ≥ 0.

Proof. From (5) we have:

nX
i=0

pif(i) =
nX

k=0

1

(n− k)!

Ã
kX
i=0

(n− i)(n−k)pi

!
(−1)n−k∆n−kf(k).

As it is proved in [1], for k = 0, 1, . . . , n− 1, there is a xk ∈ (k, n) such
that:

∆n−kf(k) = f (n−k)(xk).

We can consider also xn = n and from (6) we get the result. ¤
As an application, we can prove the following generalization of a propo-

sition from [1]:

Theorem 3. Let f1, . . . , fq be given continuous functions on the in-

terval 0 ≤ x ≤ n, each differentiable n times in the open interval and

positive for x = n; suppose also that:

(−1)kf (k)j (x) ≥ 0, j = 1, . . . , q; k = 1, . . . , n; n− k ≤ x ≤ n.

If pk (k = 0, 1, . . . , n) are real numbers verifying (6) then:

nX
i=0

pi

Ã
qY

j=1

fj(i)

!
≥ 0.

As in [1], this result can be illustrated by the set of functions:

fj(x) = (1 + ajx)
−bj , j = 1, . . . , q

where aj and bj can be any positive numbers.

5
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LALESCU SEQUENCES

Gh. Toader

The convergence of some sequences related to the Lalescu sequences is studied.

The Romanian mathematical journal Gazeta Mathematică (Bukarest) ap-
pears monthly since 1895. In one of the first volumes, more exactly in a number
from 1900 (see [6]), T.Lalescu has proposed, as problem 579, the study of a
sequence with the general term

Ln =
n+1
p
(n+ 1)!− n

√
n!.

It is called now Lalescu sequence, at least by Romanian mathematicians,
and many variants of it have appeared during this century in the same journal. The
first one was considered as the problem 2042 (see [5]) and has the general term

In = (n+ 1)
n+1
p
(n+ 1)− n n

√
n.

We relate to them also a third sequence given by

Jn =
(n+ 1)n

nn−1
− nn−1

(n− 1)n−2
which appears as the problem 4600 (see [7]). At the end of this paper we will give
some other sequences which have appeared in the last years.

We begin by indicating a general result giving the limit of a sequence which
looks like the sequences mentioned above. The method of proof is that used in the
first published solution for Lalescu’s problem. This was forget and many other
more sophisticated solutions were considered (see [1] for more information).

We study sequences with the general term

xn = yn − zn

where
lim
n→∞ yn = lim

n→∞ zn =∞, lim
n→∞

yn
zn
= 1.

Theorem 1. If there exist the positive constants b and c such that

lim
n→∞

zn
nc
= z > 0, lim

n→∞

µ
yn
zn

¶nb
= y > 0,

1991 Mathematics Subject Classification: 40A05
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26 Gh. Toader

then

lim
n→∞(yn − zn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (c < b),

z ln y (c = b),

∞ (c > b, y > 1),

−∞ (c > b, y < 1).

Proof. We write

yn − zn =

yn
zn
− 1

ln

µ
yn
zn

¶ zn
nc

nc−b ln
µ
yn
zn

¶nb

and use the hypotheses and the well known result lim
n→∞

t− 1
ln t

= 1

Example 1. The sequence

xn =
(n+ p)n

nn−k
− nn−h

(n− p)n−h−k

has a finite limit if and only if k = 1 and in this case the limit is pep(h + k − p).
Indeed, in this case

yn =
(n+ p)n

nn−k
, zn =

nn−h

(n− p)n−h−k

and so
lim
n→∞

yn
nk
= ep

while

lim
n→∞

µ
yn
zn

¶n
= lim

n→∞

Ãµ
n+ p

n

¶h+k µ
n2 − p2

n2

¶n−h−k!n
q = ep(h+k−p).

Taking p = k = h = 1 we get the sequence (Jn) with limit e.

To study the sequences (Ln) or (In) we want to apply Theorem 1 to a sequence
with the general term

xn = n+1
√
pn+1 − n

√
qn.

Theorem 2. If the positive sequences (pn) and (qn) have the infinite limits and
for some c > 0 satisfy

lim
n→∞

pn+1
ncpn

= p > 0,
qn
pn
= q > 0

then

lim
n→∞

¡
n+1
√
pn+1 − n

√
qn
¢
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (c < 1),

p

e
ln

e

q
(c = 1),

∞ (c > 1, q < ec),

−∞ (c > 1, q > ec).
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Proof. We take yn = n+1
√
pn+1, zn = n

√
qn. Of course

lim
n→∞

qn+1
ncqn

= lim
n→∞

qn+1
pn+1

pn+1
ncpn

pn
qn
= p

and so

lim
n→∞

zn
nc

= lim
n→∞

n

r
qn
nnc

= lim
n→∞

qn+1

(n+ 1)(n+1)c
nnc

qn

= lim
n→∞

qn+1
ncqn

µ
n

n+ 1

¶(n+1)c
=

p

ec
.

We have used the well known implication

lim
n→∞

xn+1
xn

= 1 ⇒ lim
n→∞

n
√
xn = 1.

Also

lim
n→∞

µ
yn
zn

¶n
= lim

n→∞
pn+1
ncpn

nc

n+1
√
pn+1

pn
qn

=
ec

q
.

thus we can apply Theorem 1 with b = 1.

We use in what follows only a special case of this result.

Consequence. If the positive sequence (pn) is such that

lim
n→∞

pn+1
npn

= p > 0

then
lim
n→∞ (

n+1
√
pn+1 − n

√
pn ) =

p

e
.

With its help we can find the limit of some sequences given in the above
mentioned journal Gazeta Matematica. First of all, for pn = n! we get the sequence
(Ln) with limit 1/e and for pn = nn+1 we get (In) with limit 1. If pn = n2n/n!

we have a sequence given in [2] with limit e. Taking pn = Γ

µ
n+ 1

2

¶
we get the

sequence from [4] having limit 1/e. Also for pn =
3
√
n!n2n we have the sequence

given in [3] with limit 1/ 3
√
e and the list of examples can be continued.
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