Contents
| Preface | V |
| Chapter 1. Generalisations of Ostrowski Inequality and Applications | 1 |
| 1.1. Introduction | 1 |
| 1.2. Generalisations for Functions of Bounded Variation | 3 |
| 1.3. Generalisations for Functions whose Derivatives are in L¥ | 15 |
| 1.4. Generalisation for Functions whose Derivatives are in Lp | 28 |
| 1.5. Generalisations in Terms of L1-norm | 42 |
| Bibliography | 53 |
| Chapter 2. Integral Inequalities for n -Times Differentiable Mappings | 55 |
| 2.1. Introduction | 55 |
| 2.2. Integral Identities | 56 |
| 2.3. Integral Inequalities | 64 |
| 2.4. The Convergence of a General Quadrature Formula | 71 |
| 2.5. Grüss Type Inequalities | 75 |
| 2.6. Some Particular Integral Inequalities | 80 |
| 2.7. Applications for Numerical Integration | 104 |
| 2.8. Concluding Remarks | 118 |
| Bibliography | 119 |
| Chapter 3. Three Point Quadrature Rules | 121 |
| 3.1. Introduction | 121 |
| 3.2. Bounds Involving at most a First Derivative | 123 |
| 3.3. Bounds for n -Time Differentiable Functions | 186 |
| Bibliography | 211 |
| Chapter 4. Product Branches of Peano Kernels and Numerical Integration | 215 |
| 4.1. Introduction | 215 |
| 4.2. Fundamental Results | 217 |
| 4.3. Simpson Type Formulae | 224 |
| 4.4. Perturbed Results | 226 |
| 4.5. More Perturbed Results Using d -Seminorms | 235 |
| 4.6. Concluding Remarks | 241 |
| Bibliography | 243 |
| Chapter 5. Ostrowski Type Inequalities for Multiple Integrals | 245 |
| 5.1. Introduction | 245 |
| 5.2. An Ostrowski Type Inequality for Double Integrals | 249 |
| 5.3. Other Ostrowski Type Inequalities | 263 |
| 5.4. Ostrowski Inequality for Hölder Type Functions | 273 |
| Bibliography | 281 |
| Chapter 6. Some Results for Double Integrals Based on an Ostrowski Type Inequality | 283 |
| 6.1. Introduction | 283 |
| 6.2. The One Dimensional Ostrowski Inequality | 284 |
| 6.3. Mapping Whose First Derivatives Belong to L¥(a,b ) | 284 |
| 6.4. Numerical Results | 289 |
| 6.5. Application For Cubature Formulae | 290 |
| 6.6. Mapping Whose First Derivatives Belong to Lp (a,b ). | 293 |
| 6.7. Application For Cubature Formulae | 296 |
| 6.8. Mappings Whose First Derivatives Belong to L1(a,b ). | 298 |
| 6.9. Integral Identities | 301 |
| 6.10. Some Integral Inequalities | 305 |
| 6.11. Applications to Numerical Integration | 312 |
| Bibliography | 315 |
| Chapter 7. Product Inequalities and Weighted Quadrature | 317 |
| 7.1. Introduction | 317 |
| 7.2. Weight Functions | 318 |
| 7.3. Weighted Interior Point Integral Inequalities | 319 |
| 7.4. Weighted Boundary Point (Lobatto)Integral Inequalities | 332 |
| 7.5. Weighted Three Point Integral Inequalities | 339 |
| Bibliography | 351 |
| Chapter 8. Some Inequalities for Riemann-Stieltjes Integral | 353 |
| 8.1. Introduction | 353 |
| 8.2. Some Trapezoid Like Inequalities for Riemann-Stieltjes Integral | 355 |
| 8.3. Inequalities of Ostrowski Type for the Riemann-Stieltjes Integral | 372 |
| 8.4. Some Inequalities of Grüss Type for Riemann-Stieltjes Integral | 392 |
| Bibliography | 401 |