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Abstract. Using the Taylor representation with integral remainder, we point

out some approximations of two mappings generalising Csiszár f−divergence.

1. Introduction

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2],
Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and
Rao [8], Rao [9], Lin [10], Csiszár [11], Ali and Silvey [13], Vajda [14], Shioya and
Da-te [14] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [9],
genetics [15], finance, economics, and political science [16], [17], [18], biology [19],
the analysis of contingency tables [20], approximation of probability distributions
[21], [22], signal processing [23], [24] and pattern recognition [25], [26]. A number of
these measures of distance are specific cases of Csiszár f -divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set Γ and the σ−finite measure µ are given. Consider the set of all
probability densities on µ to be Ω :=

{
p|p : Γ → R, p (x) ≥ 0,

∫
Γ

p (x) dµ (x) = 1
}
.

The Kullback-Leibler divergence [2] is well known among the information diver-
gences. It is defined as:

(1.1) DKL (p, q) :=
∫

Γ

p (x) log
[
p (x)
q (x)

]
dµ (x) , p, q ∈ Ω,

where log is to base 2.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv, Hellinger
distance DH [2], χ2−divergence Dχ2 , α−divergence Dα, Bhattacharyya distance
DB [3], Harmonic distance DHa, Jeffreys distance DJ [1], triangular discrimination
D∆ [36], etc... They are defined as follows:

(1.2) Dv (p, q) :=
∫

Γ

|p (x)− q (x)| dµ (x) , p, q ∈ Ω;
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(1.3) DH (p, q) :=
∫

Γ

∣∣∣√p (x)−
√

q (x)
∣∣∣ dµ (x) , p, q ∈ Ω;

(1.4) Dχ2 (p, q) :=
∫

Γ

p (x)

[(
q (x)
p (x)

)2

− 1

]
dµ (x) , p, q ∈ Ω;

(1.5) Dα (p, q) :=
4

1− α2

[
1−

∫
Γ

[p (x)]
1−α

2 [q (x)]
1+α

2 dµ (x)
]

, p, q ∈ Ω;

(1.6) DB (p, q) :=
∫

Γ

√
p (x) q (x)dµ (x) , p, q ∈ Ω;

(1.7) DHa (p, q) :=
∫

Γ

2p (x) q (x)
p (x) + q (x)

dµ (x) , p, q ∈ Ω;

(1.8) DJ (p, q) :=
∫

Γ

[p (x)− q (x)] ln
[
p (x)
q (x)

]
dµ (x) , p, q ∈ Ω;

(1.9) D∆ (p, q) :=
∫

Γ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.

For other divergence measures, see the paper [5] by Kapur or the book on line [7]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f−divergence is defined as follows [11]

(1.10) Df (p, q) :=
∫

Γ

p (x) f

[
q (x)
p (x)

]
dµ (x) , p, q ∈ Ω,

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived. All the above distances (1.1) − (1.9), are particular instances of Csiszár
f−divergence. There are also many others which are not in this class (see for
example [5] or [7]). For the basic properties of Csiszár f−divergence see [8]-[11].

In [12], Lin and Wong (see also [10]) introduced the following divergence

(1.11) DLW (p, q) :=
∫

Γ

p (x) log
[

p (x)
1
2p (x) + 1

2q (x)

]
dµ (x) , p, q ∈ Ω.

This can be represented as follows, using the Kullback-Leibler divergence:

DLW (p, q) = DKL

(
p,

1
2
p +

1
2
q

)
.

Lin and Wong have established the following inequalities

(1.12) DLW (p, q) ≤ 1
2
DKL (p, q) ;

(1.13) DLW (p, q) + DLW (q, p) ≤ Dv (p, q) ≤ 2;

(1.14) DLW (p, q) ≤ 1.

In [14], Shioya and Da-te improved (1.12)− (1.14) by showing that

DLW (p, q) ≤ 1
2
Dv (p, q) ≤ 1.
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For classical and new results in comparing different kinds of divergence measures,
see the papers [1]-[14] where further references are given.

In [50], the authors introduced the following divergence measure

(1.15) Hf (p, q; t) :=
∫

χ

p (x) f

[
tq (x) + (1− t) p (x)

p (x)

]
dµ (x) ,

where p, q ∈ Q and t ∈ [0, 1].
It is obvious that this measure can be represented in terms of Csiszár f−divergence,

namely, we have the representation

(1.16) Hf (p, q; t) = Df (p, tq + (1− t) p)

for all p, q ∈ Q and t ∈ [0, 1].
The following properties of Hf (·, ·; ·) hold (see [50]).

Theorem 1. Assume that the mapping f : [0,∞) → R is convex and p, q ∈ Q.
Then

(i) Hf (p, q; ·) is convex on [0, 1];
(ii) We have the inequality

(1.17) Hf (p, q; t) ≤ Df (p, q) for all t ∈ [0, 1]

and the bounds

(1.18) inf
t∈[0,1]

Hf (p, q; t) = Hf (p, q; 0) = 0

and

(1.19) sup
t∈[0,1]

Hf (p, q; t) = Hf (p, q; 1) = Df (p, q) ;

(iii) The mapping Hf (p, q; ·) is monotonic nondecreasing on [0, 1].
In the same paper [50], the authors introduced the following divergence

(1.20) Ff (p, q; t) =
∫

χ

∫
χ

p (x) p (y) f

[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
dµ (x) dµ (y) ,

where p, q ∈ Ω and t ∈ [0, 1].
The properties of this mapping are embodied in the following theorem.

Theorem 2. Under the assumptions of Theorem 1, we have
(i) Ff (p, q; ·) is symmetrical about 1

2 , i.e.,

(1.21) Ff (p, q; t) = Ff (p, q; 1− t) for all t ∈ [0, 1] ;

(ii) Ff (p, q; ·) is convex on [0, 1];
(iii) We have the bounds

sup
t∈[0,1]

Ff (p, q; t) = Ff (p, q; 0) = Ff (p, q; 1) = Df (p, q) ;(1.22)

inf
t∈[0,1]

Ff (p, q; t) = Ff

(
p, q;

1
2

)
(1.23)

=
∫

χ

∫
χ

p (x) p (y) f

[
q (x) p (y) + p (x) q (y)

2p (x) p (y)

]
dµ (x) dµ (y) ≥ 0;

(iv) Ff (p, q; ·) is nondecreasing on
[
0, 1

2

]
and nonincreasing on

[
1
2 , 1

]
;
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(v) We have the inequalities

(1.24) Ff (p, q; t) ≥ max {Hf (p, q; t) ,Hf (p, q; 1− t)}

for all t ∈ [0, 1].
In this paper we point out some estimates for the divergence measures Ff (·, ·; ·)

and Hf (·, ·; ·).

2. Some Estimates for n−Time Differentiable Mappings

We use the following lemma (see also [48]).

Lemma 1. Let f : I ∈ R → R (I interval of R) be such that f (n) is absolutely
continuous on I. Then for all x, a ∈̊I (̊I is the interior of I) we have the inequality∣∣∣∣∣f (x)− f (a)−

n∑
k=1

(x− a)k

k!
f (k) (a)

∣∣∣∣∣(2.1)

≤



1
(n+1)!

∥∥f (n+1)
∥∥
∞ |x− a|n+1 if f (n+1) ∈ L∞ (I) ;

1

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α
|x− a|n+ 1

β if f (n+1) ∈ Lα (I) ,

α > 1, 1
α + 1

β = 1;
1
n!

∥∥f (n+1)
∥∥

1
|x− a|n ,

where ‖·‖α (α ∈ [1,∞]) are the usual Lebesgue norms on I, i.e.,

‖g‖α : =
(∫

I

|g (x)|α dx

) 1
α

, α ≥ 1

‖g‖∞ : = ess sup
x∈I

|g (x)| .

Proof. We start with the Taylor representation with the integral remainder

(2.2) f (x) = f (a) +
n∑

k=1

(x− a)k

k!
f (k) (a) +

1
n!

∫ x

a

(x− t)n
f (n+1) (t) dt

for all a, x ∈̊I.
Using the properties of modulus, we have∣∣∣∣∣f (x)− f (a)−

n∑
k=1

(x− a)k

k!
f (k) (a)

∣∣∣∣∣(2.3)

≤ 1
n!

∣∣∣∣∫ x

a

|x− t|n
∣∣∣f (n+1) (t)

∣∣∣ dt

∣∣∣∣ =: M
(
f (n+1); a, x

)
.

Obviously, we have

M
(
f (n+1); a, x

)
≤ ess sup

t∈I

∣∣∣f (n+1) (t)
∣∣∣ 1
n!

∣∣∣∣∫ x

a

|x− t|n dt

∣∣∣∣(2.4)

=
1

(n + 1)!

∥∥∥f (n+1)
∥∥∥
∞
|x− a|n+1

for all a, x ∈̊I.
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In addition, by the use of the Hölder integral inequality, we have

M
(
f (n+1); a, x

)
≤ 1

n!

∣∣∣∣∫ x

a

|x− t|nβ
dt

∣∣∣∣ 1
β

∣∣∣∣∣
∫ β

α

∣∣∣f (n+1) (t)
∣∣∣α dt

∣∣∣∣∣
1
α

(2.5)

=
1
n!

∥∥∥f (n+1)
∥∥∥

α

[
(x− a)nβ+1

nβ + 1

] 1
β

=
1

n! (nβ + 1)
1
β

∥∥∥f (n+1)
∥∥∥

α
|x− a|n+ 1

β ,

α > 1,
1
α

+
1
β

= 1,

and finally

M
(
f (n+1); a, x

)
≤ 1

n!
|x− a|n

∣∣∣∣∫ x

a

∣∣∣f (n+1) (t)
∣∣∣ dt

∣∣∣∣(2.6)

≤ 1
n!
|x− a|n

∥∥∥f (n+1)
∥∥∥

1
.

Now, by (2.3) - (2.6), we deduce the desired inequality (2.1).

The following corollary will be useful in what follows.

Corollary 1. Assume that f is as above and a, b ∈̊I. Then for all λ ∈ [0, 1] , we
have the inequality:

∣∣∣∣∣f (λb + (1− λ) a)− f (a)−
n∑

k=1

λk (b− a)k

k!
f (k) (a)

∣∣∣∣∣(2.7)

≤



λn+1|b−a|n+1

(n+1)!

∥∥f (n+1)
∥∥
∞ if f (n+1) ∈ L∞ (I) ;

λ
n+ 1

β |b−a|n+ 1
β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥
∞ if f (n+1) ∈ Lα (I) ,

α > 1, 1
α + 1

β = 1;
λn|b−a|n

n!

∥∥f (n+1)
∥∥

1
.

We can now point out the following estimation result for the mapping Hf (p, q; ·).

Theorem 3. Assume that the mapping f : [0,∞) → R is such that f (n) is absolutely
continuous on [r, R] , where 0 ≤ r ≤ 1 ≤ R < ∞. If p, q ∈ Ω and

(2.8) r ≤ q (x)
p (x)

≤ R a.e. on χ,
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then we have the inequality∣∣∣∣∣Hf (p, q; t)− f (1)−
n∑

k=1

tkf (k) (1)
k!

Dχk (p, q)

∣∣∣∣∣(2.9)

≤



tn+1‖f(n+1)‖∞
(n+1)! D|χ|n+1 (p, q) if f (n+1) ∈ L∞ [r, R] ;

t
n+ 1

β ‖f(n+1)‖
α

n!(nβ+1)
1
β

D
|χ|n+ 1

β
(p, q) if f (n+1) ∈ Lα [r, R] ,

α > 1, 1
α + 1

β = 1;
tn‖f(n+1)‖1

n! D|χ|n (p, q) ,

≤



tn+1(R−r)n+1

(n+1)!

∥∥f (n+1)
∥∥
∞

t
n+ 1

β (R−r)
n+ 1

β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α

tn(R−r)n

n!

∥∥f (n+1)
∥∥

1
,

where

Dχk (p, q) :=
∫

χ

(q (x)− p (x))k

pk−1 (x)
dµ (x) , k = 1, ...

and

D|χ|r (p, q) :=
∫

χ

|q (x)− p (x)|r

pr−1 (x)
dµ (x) , r ≥ 0

and the Lebesgue α−norms are taken on [r, R].

Proof. Apply inequality (2.1) for λ = t ∈ [0, 1], b = q(x)
p(x) , x ∈ χ and a = 1, to get

∣∣∣∣∣∣∣f
(

t · q (x)
p (x)

+ (1− t)
)
− f (1)−

n∑
k=1

tk
(

q(x)
p(x) − 1

)k

k!
f (k) (1)

∣∣∣∣∣∣∣(2.10)

≤



tn+1| q(x)
p(x)−1|n+1

(n+1)!

∥∥f (n+1)
∥∥
∞ ;

t
n+ 1

β | q(x)
p(x)−1|n+ 1

β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α
;

tn| q(x)
p(x)−1|n

n!

∥∥f (n+1)
∥∥

1
;

≤



tn+1(R−r)n+1

(n+1)!

∥∥f (n+1)
∥∥
∞ ;

t
n+ 1

β (R−r)
n+ 1

β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α
;

tn(R−r)n

n!

∥∥f (n+1)
∥∥

1
,

for a.e. x ∈ χ.
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If we multiply (2.10) by p (x) ≥ 0, integrate on χ and use the properties of the
integral, then we get∣∣∣∣∫

χ

p (x) f

(
tq (x) + (1− t) p (x)

p (x)

)
dµ (x)

−f (1)−
n∑

k=1

tkf (k) (1)
k!

∫
χ

(q (x)− p (x))k

pk−1 (x)
dµ (x)

∣∣∣∣∣

≤



tn+1‖f(n+1)‖∞
(n+1)!

∫
χ
|q(x)−p(x)|n+1

pn(x) dµ (x) ;

t
n+ 1

β ‖f(n+1)‖
α

n!(nβ+1)
1
β

∫
χ
|q(x)−p(x)|n+ 1

β

p
n+ 1

β
−1

(x)
dµ (x) ;

tn‖f(n+1)‖1
n!

∫
χ
|q(x)−p(x)|n

pn−1(x) dµ (x) ,

≤



tn+1(R−r)n+1

(n+1)!

∥∥f (n+1)
∥∥
∞

t
n+ 1

β (R−r)
n+ 1

β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α

tn(R−r)n

n!

∥∥f (n+1)
∥∥

1
,

and the theorem is proved.

Remark 1. If n = 0, then, basically, for an absolutely continuous mapping f :
[r, R] ⊂ [0,∞) → R, we have:

|Df (p, tq + (1− t) p)− f (1)|(2.11)

≤



t ‖f ′‖∞ Dv (p, q)

t
1
β ‖f ′‖α D

|α|
1
β

(p, q)

‖f ′‖1

≤


t ‖f ′‖∞ (R− r)

t
1
β (R− r)

1
β · ‖f ′‖α

‖f ′‖1

for all t ∈ [0, 1], where Dv (p, q) =
∫

χ
|p (x)− q (x)| dµ (x).

If n = 1, and taking into account that Dχ (p, q) = 0, then by (2.5) we get for the
mappings whose derivatives f ′ are absolutely continuous that

|Df (p, tq + (1− t) p)− f (1)|(2.12)

≤



t2‖f ′‖∞
2 Dχ2 (p, q) if f ′ ∈ L∞ [r, R]

t
β+1

β ‖f ′‖
α

(β+1)
1
β

D
|χ|

β+1
β

(p, q) if f ′ ∈ Lα [r, R]

t ‖f ′‖1 Dv (p, q)

for all t ∈ [0, 1].
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Of course, if we assume that f is convex and normalised, then the left hand side
of both (2.11) and (2.12) will become

0 ≤ Df (p, tq + (1− t) p)

and the inequalities (2.11) and (2.12) will provide some upper bounds for the map-
ping Hf (p, q; t), t ∈ [0, 1].

Remark 2. If we assume that f ′′ is absolutely continuous, then from (2.9) we
obtain ∣∣∣∣Hf (p, q; t)− f (1)− t2

2
f ′′ (1)Dχ2 (p, q)

∣∣∣∣(2.13)

≤



t3‖f ′′′‖∞
6 D|χ|3 (p, q) if f ′′′ ∈ L∞ [r, R] ;

t
2β+1

β ‖f ′′′‖
α

2(2β+1)
1
β

D
|χ|2+

1
β

(p, q) if f ′′′ ∈ Lα [r, R] ,

α > 1, 1
α + 1

β = 1;
t2‖f ′′′‖1

2 D|χ|2 (p, q) ,

which provides an approximation of Hf (p, q; t) by a quadratic in t whose coefficient
is dependent on the χ2 -distance of p and q.

We also note that Theorem 3 contains, as a particular case (for t = 1), an
approximation of the Csiszár f−divergence. Namely,

Corollary 2. With the assumptions of Theorem 3, we have∣∣∣∣∣Df (p, q)− f (1)−
n∑

k=1

f (k) (1)
k!

Dχk (p, q)

∣∣∣∣∣(2.14)

≤



‖f(n+1)‖∞
(n+1)! D|χ|n+1 (p, q)

‖f(n+1)‖
α

n!(nβ+1)
1
β

D
|χ|n+ 1

β
(p, q)

‖f(n+1)‖1
n! D|χ|n (p, q)

≤



‖f(n+1)‖∞
(n+1)! (R− r)n+1

‖f(n+1)‖
α

n!(nβ+1)
1
β

(R− r)n+ 1
β

‖f(n+1)‖1
n! (R− r)n

.

We also know that for t = 1
2 , we obtain the generalised Lin-Wong f−divergence

LWf (p, q) := Df

(
p,

1
2
p +

1
2
q

)

and so, from (2.9), we may state the following estimation for the Lin-Wong f−divergence.
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Corollary 3. With the assumptions of Theorem 3, we have∣∣∣∣∣LWf (p, q)− f (1)−
n∑

k=1

tkf (k) (1)
2kk!

Dχk (p, q)

∣∣∣∣∣(2.15)

≤



‖f(n+1)‖∞
2n+1(n+1)!D|χ|n+1 (p, q) if f (n+1) ∈ L∞ [r, R] ;

‖f(n+1)‖
α

2
n+ 1

β n!(nβ+1)
1
β

D
|χ|n+ 1

β
(p, q) if f (n+1) ∈ Lα [r, R] ,

α > 1, 1
α + 1

β = 1;
‖f(n+1)‖1

2nn! D|χ|n (p, q) .

Remark 3. Similar particular cases for n = 0, n = 1 and n = 2 may be stated,
but we omit the details.

The following theorem also holds.

Theorem 4. Assume that the mapping f : [0,∞) → R is such that f (n) is absolutely
continuous on [r, R], where 0 ≤ r ≤ 1 ≤ R < ∞. If p, q ∈ Ω and

(2.16) r ≤ q (x)
p (x)

≤ R a.e. on χ,

then we have the inequality∣∣∣∣∣Ff (p, q; t)−Df (p, q)−
n∑

k=1

tk

k!
D

(∗)
f(k) (p, q)

∣∣∣∣∣(2.17)

≤



tn+1

(n+1)!D
(∗)
n+1 (p, q)

∥∥f (n+1)
∥∥
∞ if f (n+1) ∈ L∞ [r, R] ;

t
n+ 1

β

n!(nβ+1)
1
β

D
(∗)
n+ 1

β

(p, q)
∥∥f (n+1)

∥∥
α

if f (n+1) ∈ Lα [r, R] ,

α > 1, 1
α + 1

β = 1;
tn

n! D
(∗)
n (p, q)

∥∥f (n+1)
∥∥

1

≤



tn+1

(n+1)! (R− r)n+1 ∥∥f (n+1)
∥∥
∞ if f (n+1) ∈ L∞ [r, R] ;

t
n+ 1

β

n!(nβ+1)
1
β

(R− r)n+ 1
β

∥∥f (n+1)
∥∥

α
if f (n+1) ∈ Lα [r, R] ,

α > 1, 1
α + 1

β = 1;
tn

n! (R− r)n ∥∥f (n+1)
∥∥

1
,

where

D
(∗)
f(k) (p, q) =

∫
χ

∫
χ

(
det

[
p (y) q (y)
p (x) q (x)

])k

[p (x)]k−1 [p (y)]k−1
f (k)

(
q (y)
p (y)

)
dµ (x) dµ (y) , k = 1, ....



10 N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND A. SOFO

D(∗)
s (p, q) =

∫
χ

∫
χ

∣∣∣∣det
[

p (y) q (y)
p (x) q (x)

]∣∣∣∣s
[p (x)]s−1 [p (y)]s−1 dµ (x) dµ (y) , s > 0

and the α−norms are taken on [r, R].

Proof. We choose in Corollary 1, b = q(x)
p(x) , a = q(y)

p(y) , x, y ∈ χ to obtain

∣∣∣∣f (
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

)
− f

(
q (y)
p (y)

)

−
n∑

k=1

tk
(

q(x)
p(x) −

q(y)
p(y)

)k

k!
f (k)

(
q (y)
p (y)

)∣∣∣∣∣∣∣

≤



tn+1

(n+1)!

∣∣∣ q(x)
p(x) −

q(y)
p(y)

∣∣∣n+1 ∥∥f (n+1)
∥∥
∞

t
n+ 1

β

n!(nβ+1)
1
β

∣∣∣ q(x)
p(x) −

q(y)
p(y)

∣∣∣n+ 1
β ∥∥f (n+1)

∥∥
α

tn

n!

∣∣∣ q(x)
p(x) −

q(y)
p(y)

∣∣∣n ∥∥f (n+1)
∥∥

1

for all x, y ∈ χ and t ∈ [0, 1], which is clearly equivalent to

∣∣∣∣f (
tp (y) q (x) + (1− t) p (x) q (y)

p (x) p (y)

)
− f

(
q (y)
p (y)

)
(2.18)

−
n∑

k=1

tk

k!
·

(
det

[
p (y) q (y)
p (x) q (x)

])k

[p (x)]k [p (y)]k
f (k)

(
q (y)
p (y)

)∣∣∣∣∣∣∣∣∣

≤



tn+1

(n+1)! ·

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n+1

[p(x)]n+1[p(y)]n+1

∥∥f (n+1)
∥∥
∞

t
n+ 1

β

n!(nβ+1)
1
β
·

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n+ 1

β

[p(x)]
n+ 1

β [p(y)]
n+ 1

β

∥∥f (n+1)
∥∥

α

tn

n! ·

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n

[p(x)]n[p(y)]n

∥∥f (n+1)
∥∥

1

for all x, y ∈ χ and t ∈ [0, 1].
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If we multiply (2.18) by p (x) p (y) ≥ 0 for x, y ∈ χ, integrate over x and y on χ
and use the properties of the integral, we obtain∣∣∣∣∫

χ

∫
χ

p (x) p (y) f

(
tp (y) q (x) + (1− t) p (x) q (y)

p (x) p (y)

)
dµ (x) dµ (y)

−
∫

χ

∫
χ

p (x) p (y) f

(
q (y)
p (y)

)
dµ (x) dµ (y)

−
n∑

k=1

tk

k!

∫
α

∫
χ

(
det

[
p (y) q (y)
p (x) q (x)

])k

[p (x)]k−1 [p (y)]k−1
f (k)

(
q (y)
p (y)

)
dµ (x) dµ (y)

∣∣∣∣∣∣∣∣∣

≤



tn+1

(n+1)!

∥∥f (n+1)
∥∥
∞ ·

∫
χ

∫
χ

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n+1

[p(x)]n[p(y)]n dµ (x) dµ (y)

t
n+ 1

β

n!(nβ+1)
1
β

∥∥f (n+1)
∥∥

α
·
∫

χ

∫
χ

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n+ 1

β

[p(x)]
n+ 1

β
−1

[p(y)]
n+ 1

β
−1

dµ (x) dµ (y)

tn

n!

∥∥f (n+1)
∥∥

1
·
∫

χ

∫
χ

∣∣∣∣∣∣det

 p (y) q (y)
p (x) q (x)

∣∣∣∣∣∣
n

[p(x)]n−1[p(y)]n−1 dµ (x) dµ (y) ,

which is clearly equivalent to the first inequality in (2.17).
The second inequality is obvious by the fact that∣∣∣∣q (x)

p (x)
− q (y)

p (y)

∣∣∣∣ ≤ R− r for all x, y ∈ χ.

The theorem is thus completely proved.
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[43] I. CSISZÁR, A note on Jensen’s inequality, Studia Sci. Math. Hung., 1 (1966), 185-188.
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