
SOME INEQUALITIES FOR THE CSISZÁR Φ-DIVERGENCE

S.S. DRAGOMIR

Abstract. Some inequalities for the Csiszár Φ-divergence and applications
for the Kullback-Leibler, Rényi, Hellinger and Bhattacharyya distances in In-
formation Theory are given.

1. Introduction

Given a convex function Φ : R+ → R+, the Φ-divergence functional

IΦ (p, q) :=
n

∑

i=1

qiΦ
(

pi

qi

)

(1.1)

was introduced in Csiszár [1], [2] as a generalized measure of information, a “dis-
tance function” on the set of probability distributions Pn. The restriction here to
discrete distribution is only for convenience, similar results hold for general distri-
butions.

As in Csiszár [2], we interpret undefined expressions by

Φ (0) = lim
t→0+

Φ(t) , 0Φ
(

0
0

)

= 0,

0Φ
(a

0

)

= lim
ε→0+

Φ
(a

ε

)

= a lim
t→∞

Φ(t)
t

, a > 0.

The following results were essentially given by Csiszár and Körner [3].

Theorem 1. If Φ : R+ → R is convex, then IΦ (p, q) is jointly convex in p and q.

The following lower bound for the Φ−divergence functional also holds.

Theorem 2. Let Φ : R+ → R+ be convex. Then for every p, q ∈ Rn
+, we have the

inequality:

IΦ (p, q) ≥
n

∑

i=1

qiΦ









n
∑

i=1
pi

n
∑

i=1
qi









.(1.2)

If Φ is strictly convex, equality holds in (1.2) iff
p1

q1
=

p2

q2
= ... =

pn

qn
.(1.3)
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Corollary 1. Let Φ : R+ → R be convex and normalized, i.e.,

Φ(1) = 0.(1.4)

Then for any p, q ∈ Rn
+ with

n
∑

i=1

pi =
n

∑

i=1

qi,(1.5)

we have the inequality

IΦ (p, q) ≥ 0.(1.6)

If Φ is strictly convex, equality holds in (1.6) iff pi = qi for all i ∈ {1, ..., n}.

In particular, if p, q are probability vectors, then (1.5) is assured. Corollary 1
then shows, for strictly convex and normalized Φ : R+ → R, that

IΦ (p, q) ≥ 0 for all p, q ∈ Pn.(1.7)

The equality holds in (1.7) iff p = q.
These are “distance properties”. However, IΦ is not a metric: It violates the

triangle inequality, and is asymmetric, i.e, for general p, q ∈ Rn
+, IΦ (p, q) 6=

IΦ (q, p).
In the examples below we obtain, for suitable choices of the kernel Φ, some of the

best known distance functions IΦ used in mathematical statistics [4]-[5], information
theory [6]-[8] and signal processing [9]-[10].

Example 1. (Kullback-Leibler) For

Φ(t) := t log t, t > 0;(1.8)

the Φ−divergence is

IΦ (p, q) =
n

∑

i=1

pi log
(

pi

qi

)

,(1.9)

the Kullback-Leibler distance [11]-[12].

Example 2. (Hellinger) Let

Φ(t) =
1
2

(

1−
√

t
)2

, t > 0.(1.10)

Then IΦ gives the Hellinger distance [13]

IΦ (p, q) =
1
2

n
∑

i=1

(
√

pi −
√

qi)
2 ,(1.11)

which is symmetric.

Example 3. (Renyi) For α > 1, let

Φ(t) = tα, t > 0.(1.12)

Then

IΦ (p, q) =
n

∑

i=1

pα
i q1−α

i ,(1.13)

which is the α−order entropy [14].
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Example 4. (χ2−distance) Let

Φ(t) = (t− 1)2 , t > 0.(1.14)

Then

IΦ (p, q) =
n

∑

i=1

(pi − qi)
2

qi
(1.15)

is the χ2−distance between p and q.

Finally, we have

Example 5. (Variation distance). Let Φ (t) = |t− 1| , t > 0. The correspond-
ing divergence, called the variation distance, is symmetric,

IΦ (p, q) =
n

∑

i=1

|pi − qi| .

For other examples of divergence measures, see the paper [22] by J.N. Kapur,
where further references are given.

2. Other Inequalities for the Csiszár Φ-Divergence

We start with the following result.

Theorem 3. Let Φ : R+ → R be differentiable convex. Then for all p, q ∈ Rn
+ we

have the inequality

Φ′ (1) (Pn −Qn) ≤ IΦ (p, q)−QnΦ(1) ≤ IΦ′

(

p2

q
, p

)

− IΦ′ (p, q) ,(2.1)

where Pn :=
n
∑

i=1
pi > 0, Qn :=

n
∑

i=1
qi > 0 and Φ′ : (0,∞) → R is the derivative of

Φ.
If Φ is strictly convex and pi, qi > 0 (i = 1, ..., n), then the equality holds in (2.1)
iff p = q.

Proof. As Φ is differentiable convex on R+, then we have the inequality

Φ′ (y) (y − x) ≥ Φ(y)− Φ(x) ≥ Φ′ (x) (y − x)(2.2)

for all x, y ∈ R+.
Choose in (2.2) y = pi

qi
and x = 1, to obtain

Φ′
(

pi

qi

)(

pi

qi
− 1

)

≥ Φ
(

pi

qi

)

− Φ(1) ≥ Φ′ (1)
(

pi

qi
− 1

)

(2.3)

for all i ∈ {1, ..., n}.
Now, if we multiply (2.3) by qi ≥ 0 (i = 1, ..., n) and sum over i from 1 to n, we

can deduce
n

∑

i=1

(pi − qi)Φ′
(

pi

qi

)

≥ IΦ (p, q)−QnΦ(1) ≥ Φ′ (1) (Pn −Qn)

and as
n

∑

i=1

(pi − qi)Φ′
(

pi

qi

)

= IΦ′

(

p2

q
, p

)

− IΦ′ (p, q) ,



4 S.S. DRAGOMIR

the inequality in (2.1) is thus obtained.
The case of equality holds in (2.2) for a strictly convex mapping iff x = y and

so the equality holds in (2.1) iff pi
qi

= 1 for all i ∈ {1, ..., n}, and the theorem is
proved.

Remark 1. In the above theorem, if we would like to drop the differentiability
condition, we can choose instead of Φ′ (x) any number l = l (x) ∈

[

Φ′− (x) ,Φ′+ (x)
]

and the inequality will still be valid. This follows by the fact that for the convex
mapping Φ : R+ → R+ we have

l2 (x) (x− y) ≥ Φ(x)− Φ(y) ≥ l1 (y) (x− y) , x, y ∈ (0,∞) ;

where l1 (y) ∈
[

Φ′− (y) ,Φ′+ (y)
]

and l2 (x) ∈
[

Φ′− (x) , Φ′+ (x)
]

, where Φ′− is the left
and Φ′+ is the right derivative of Φ respectively. We omit the details.

The following corollary is a natural consequence of the above theorem.

Corollary 2. Let Φ : R+ → R+ be convex and normalized. If Φ′ (1) (Pn −Qn) ≥
0, then we have the positivity inequality

0 ≤ IΦ (p, q) ≤ IΦ′

(

p2

q
, p

)

− IΦ′ (p, q) .(2.4)

The equality holds in (2.4) for a strictly convex mapping Φ iff p = q.

Remark 2. Corollary 2 shows that the positivity inequality (1.6) holds for a larger
class of (p, q) ∈ Rn

+ than that one considered in Corollary 1, namely, for (p, q) ∈
{

Rn
+ × Rn

+ : Pn = Qn
}

.

We have the following theorem as well.

Theorem 4. Assume that Φ is differentiable convex on (0,∞). If p(j), q(j) (j = 1, 2)
are probability distributions, then for all λ ∈ [0, 1] we have the inequality

0 ≤ λIΦ

(

p(1), q(1)
)

+ (1− λ) IΦ

(

p(2), q(2)
)

(2.5)

−IΦ

(

λp(1) + (1− λ) q(1), λp(2) + (1− λ) q(2)
)

≤ λ (1− λ)
n

∑

i=1

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

[

Φ′
(

p(1)
i

q(1)
i

)

− Φ′
(

p(2)
i

q(2)
i

)]

,

where Φ′ is the derivative of Φ.

Proof. Using the inequality (2.2) , we may state

Φ′
(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)

(2.6)

≥ Φ

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

)

− Φ

(

p(1)
i

q(1)
i

)

≥ Φ′
(

p(1)
i

q(1)
i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)
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and

Φ′
(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)

(2.7)

≥ Φ

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

)

− Φ

(

p(2)
i

q(2)
i

)

≥ Φ′
(

p(2)
i

q(2)
i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)

.

Multiply (2.6) by λq(1)
i and (2.7) by (1− λ) q(2)

i and add the obtained inequalities
to get

n
∑

i=1

Φ′
(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

) [

λq(1)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)

(2.8)

+ (1− λ) q(2)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)]

≥ IΦ

(

λp(1) + (1− λ) p(2), λq(1) + (1− λ) q(2)
)

−λIΦ

(

p(1), q(1)
)

− (1− λ) IΦ

(

p(2), q(2)
)

≥
n

∑

i=1

[

λq(1)
i Φ′

(

p(1)
i

q(1)
i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)

+ (1− λ) q(2)
i Φ′

(

p(2)
i

q(2)
i

)(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)]

.

However,

λq(1)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)

+(1− λ) q(2)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)

= −
λ (1− λ)

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

+

λ (1− λ)

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

= 0,

which shows that the first membership in (2.8) is zero.
In addition,

λq(1)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(1)
i

q(1)
i

)

= −
λ (1− λ)

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

,



6 S.S. DRAGOMIR

and

(1− λ) q(2)
i

(

λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

− p(2)
i

q(2)
i

)

= −
λ (1− λ)

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

,

and then, the second membership in (2.4) is

−λ (1− λ)
n

∑

i=1

∣

∣

∣

∣

∣

p(1)
i p(2)

i

q(1)
i q(2)

i

∣

∣

∣

∣

∣

λq(1)
i + (1− λ) q(2)

i

[

Φ′
(

p(1)
i

q(1)
i

)

− Φ′
(

p(2)
i

q(2)
i

)]

,

which proves the theorem.

Remark 3. The first inequality in (2.5) is actually the joint convexity property of
IΦ (·, ·) which has been proven here in a different manner than in [3].

3. Applications for Some Particular Φ−Divergences

Let us consider the Kullback-Leibler distance given by (1.9)

KL (p, q) :=
n

∑

i=1

pi log
(

pi

qi

)

.(3.1)

Consider the convex mapping Φ (t) = − log t, t > 0. For this mapping we have
the Csiszár Φ−divergence

IΦ (p, q) =
n

∑

i=1

qi

[

− log
(

pi

qi

)]

(3.2)

=
n

∑

i=1

qi log
(

qi

pi

)

= KL (q, p) .

The following inequality holds.

Proposition 1. Let p, q ∈ Rn. Then we have the inequality

Qn − Pn ≤ KL (q, p) ≤
n

∑

i=1

q2
i

pi
−Qn.(3.3)

The case of equality holds iff p = q.

Proof. Since Φ (t) = − log t, then Φ′ (t) = − 1
t , t > 0. We have

IΦ′

(

p2

q
, p

)

=
n

∑

i=1

pi ·



− 1
(

p2
i

qi

)

· 1
pi



 = −Qn,

IΦ′ (p, q) =
n

∑

i=1

qi ·

[

− 1
pi
qi

]

= −
n

∑

i=1

q2
i

pi
,

and then, from (2.1), we get

− (Pn −Qn) ≤ KL (q, p) ≤ −Qn +
n

∑

i=1

q2
i

pi
,

which is the desired inequality (3.3).
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The case of equality is obvious taking into account that − log is a strictly convex
mapping on (0,∞).

The following result for the Kullback-Leibler distance also holds.

Proposition 2. Let p, q ∈ Rn. Then we have the inequality

Pn −Qn ≤ KL (p, q) ≤ Pn −Qn + KL (q, p)−KL
(

p,
p2

q

)

.(3.4)

The case of equality holds iff p = q.

Proof. As Φ (t) = t log (t), then Φ′ (t) = log t + 1. We have

IΦ (p, q) = KL (p, q) ,

IΦ′

(

p2

q
, p

)

= Ilog(·)+1

(

p2

q
, p

)

= Pn + Ilog(·)

(

p2

q
, p

)

.

As we know that I− log(·) (p, q) = KL (q, p) (see (3.2)), then we have that

Ilog(·)

(

p2

q
, p

)

= −KL
(

p,
p2

q

)

.

In addition, we have

IΦ′ (p, q) = Ilog(·)+1 (p, q) = Qn + Ilog(·) (p, q)

= Qn −KL (q, p)

and then, by (2.1), we can state that

Pn −Qn ≤ KL (p, q) ≤ Pn −Qn −KL
(

p,
p2

q

)

Qn + KL (q, p)

and the inequality (3.4) is obtained.
The case of equality holds from the fact that the mapping Φ (t) = t log t is strictly

convex on (0,∞).

Now, let us consider the α−order entropy of Rényi (see (1.13))

Dα (p, q) :=
n

∑

i=1

pα
i q1−α

i , α > 1(3.5)

and p, q ∈ Rn
+.

We know that Rényi’s entropy is actually the Csiszár Φ−divergence for the
convex mapping Φ (t) = tα, α > 1, t > 0 (see Example 3).

The following proposition holds.

Proposition 3. Let p, q ∈ Rn
+. Then we have the inequality

α (Pn −Qn) ≤ Dα (p, q)−Qn ≤ α
[

Dα (p, q)−Dα

(

q
2−α

α , p−1
)]

.(3.6)

The case of equality holds iff p = q.

Proof. Since Φ (t) = tα, then Φ′ (t) = αtα−1.
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We have

IΦ′

(

p2

q
, p

)

=
n

∑

i=1

pi

[

α ·
(

p2
i

qipi

)α−1
]

= α
n

∑

i=1

pi

(

pi

qi

)α−1

= α
n

∑

i=1

q1−α
i pα

i = αDα (p, q)

and

IΦ′ (p, q) =
n

∑

i=1

qi

[

α ·
(

pi

qi

)α−1
]

= α
n

∑

i=1

pα−1
i q2−α

i = αDα

(

q
2−α

α ,
1
p

)

.

Using the inequality (2.1), we have

α (Pn −Qn) ≤ Dα (p, q)−Qn ≤ α
[

Dα (p, q)−Dα

(

q
2−α

α ,
1
p

)]

and the inequality (3.6) is proved.
The case of equality holds since the mapping Φ (t) = tα is strictly convex on

(0,∞) for α > 1.

Consider now the Hellinger discrimination (see for example [22])

h2 (p, q) =
1
2

n
∑

i=1

(
√

pi −
√

qi)
2 ,

where p, q ∈ Rn
+.

We know that Hellinger discrimination is actually the Csiszár Φ−divergence for
the convex mapping Φ (t) = 1

2

(√
t− 1

)2
.

We may state the following proposition.

Proposition 4. Let p, q ∈ Rn
+. Then we have the inequality

0 ≤ h2 (p, q) ≤ 1
2

[Pn −Qn] +
1
2

[

n
∑

i=1

qi

(√

qi

pi
−

√

pi

qi

)

]

.(3.7)

The equality holds iff p = q.

Proof. As Φ (t) = 1
2

(√
t− 1

)2
, we have Φ′ (t) = 1

2 −
1

2
√

t
and Φ′′ (t) = 1

4 ·
1√
t3

> 0
(t ∈ (0,∞)) which shows that Φ is indeed strictly convex on (0,∞).
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We also have:

IΦ (p, q) = h2 (p, q) ,

IΦ′

(

p2

q
, p

)

=
n

∑

i=1

pi





1
2
− 1

2
√

p2
i

qipi





=
1
2
Pn −

1
2

n
∑

i=1

√
piqi =

1
2

[

Pn −
n

∑

i=1

√
piqi

]

IΦ′ (p, q) =
n

∑

i=1

qi





1
2
− 1

2
√

pi
qi



 =
1
2

[

Qn −
n

∑

i=1

qi

√

qi

pi

]

and as Φ′ (1) = 0 and Φ (1) = 0, then, by (2.1) applied for Φ as above, we deduce
(3.7). The case of equality is obvious by the strict convexity of Φ.

Consider now the Bhattacharyya distance ( see for example [22])

B (p, q) =
n

∑

i=1

√
piqi,

where p, q ∈ Rn
+.

We know that for the convex mapping f (t) = −
√

t, we have

IΦ (p, q) = −
n

∑

i=1

qi

√

pi

qi
= −B (p, q) .

We may state the following proposition.

Proposition 5. Let p, q ∈ Rn
+. Then we have the inequality

1
2

(Qn − Pn) ≤ Qn −B (p, q) ≤ 1
2

n
∑

i=1

qi

(√

qi

pi
−

√

pi

qi

)

.(3.8)

The case of equality holds iff p = q.

Proof. As Φ (1) = −
√

t, t > 0, then Φ′ (t) = − 1
2
√

t
and Φ′′ (t) = 1

4
√

t3
, t > 0, which

also shows that Φ (·) is strictly convex on (0,∞). We also have

IΦ′

(

p2

q
, p

)

=
n

∑

i=1

pi



− 1

2
√

p2
i

qipi



 = −1
2

n
∑

i=1

√
piqi = −1

2
B (p, q) ,

IΦ′ (p, q) = −1
2

n
∑

i=1

qi
1

√

pi
qi

= −1
2

n
∑

i=1

qi

√

qi

pi

and as Φ′ (1) = − 1
2 , Φ (1) = −1, then by (2.1) applied for the mapping Φ as defined

above, we deduce (3.8).
The case of equality is obvious by the strict convexity of Φ.
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4. Further Bounds for the Case when Pn = Qn

The following inequality of Grüss type is well known in the literature as the
Biernacki, Pidek and Ryll-Nardzewski inequality (see for example [23]).

Lemma 1. Let ai, bi (i = 1, ..., n) be real numbers such that

a ≤ ai ≤ A, b ≤ bi ≤ B for all i ∈ {1, ..., n} .(4.1)

Then we have the inequality:
∣

∣

∣

∣

∣

1
n

n
∑

i=1

aibi −
1
n2

n
∑

i=1

ai

n
∑

i=1

bi

∣

∣

∣

∣

∣

≤ 1
n

[n
2

]

(

1− 1
n

[n
2

]

)

(A− a) (B − b) ,(4.2)

where [x] denotes the integer part of x.

The following inequality holds.

Theorem 5. Let Φ : R+ → R+ be differentiable convex. If p, q ∈ Rn
+ are such that

Pn = Qn and

m ≤ pi − qi ≤ M, i = 1, ..., n(4.3)

0 < r ≤ pi

qi
≤ R < ∞, i = 1, ..., n,(4.4)

then we have the inequality

0 ≤ IΦ (p, q)−QnΦ(1) ≤
[n
2

]

(

1− 1
n

[n
2

]

)

(M −m) (Φ′ (R)− Φ′ (r)) .(4.5)

Proof. From (2.1) we have

0 ≤ IΦ (p, q)−QnΦ(1) ≤
n

∑

i=1

(pi − qi)Φ′
(

pi

qi

)

.(4.6)

Applying (4.2) we have
∣

∣

∣

∣

∣

1
n

n
∑

i=1

(pi − qi)Φ′
(

pi

qi

)

− 1
n2

n
∑

i=1

(pi − qi)
n

∑

i=1

Φ′
(

pi

qi

)

∣

∣

∣

∣

∣

(4.7)

≤ 1
n

[n
2

]

(

1− 1
n

[n
2

]

)

(M −m) (Φ′ (R)− Φ′ (r))

as the mapping Φ′ is monotonic nondecreasing, and then

Φ′ (r) ≤ Φ′
(

pi

qi

)

≤ Φ′ (R) for all i ∈ {1, ..., n} .

As
n
∑

i=1
(pi − qi) = 0, we deduce by (4.6) and (4.7) the desired result (4.5).

The following inequalities for particular distances are valid.
1. If p, q ∈ R+

n are such that the conditions (4.3) and (4.4) hold, then we have
the inequalities

0 ≤ KL (q, p) ≤
[n
2

]

(

1− 1
n

[n
2

]

)

(M −m)
R− r
rR

,(4.8)
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and

0 ≤ KL (p, q) ≤
[n
2

]

(

1− 1
n

[n
2

]

)

(M −m)
[

log
(

R
r

)]

.(4.9)

2. If p, q are as in (4.3) and (4.4), we have the inequality (α ≥ 1)

0 ≤ Dα (p, q)−Qn ≤ α
[n
2

]

(

1− 1
n

[n
2

]

)

(M −m)
(

Rα−1 − rα−1) .(4.10)

3. If p, q are as in (4.3) and (4.4), we have the inequality

0 ≤ h2 (p, q) ≤ 1
2

[n
2

]

(

1− 1
n
·
[n
2

]

)

(M −m)

√
R−

√
r√

rR
.(4.11)

4. Under the above assumptions for p and q, we have

0 ≤ Qn −B (p, q) ≤ 1
2

[n
2

]

(

1− 1
n

[n
2

]

)

(M −m)

√
R−

√
r√

rR
.(4.12)

Using the following Grüss’ weighted inequality.

Lemma 2. Assume that ai, bi (i = 1, ..., n) are as in Lemma 1. If qi ≥ 0,
n
∑

i=1
qi =

1, then we have the inequality
∣

∣

∣

∣

∣

n
∑

i=1

qiaibi −
n

∑

i=1

qiai

n
∑

i=1

qibi

∣

∣

∣

∣

∣

≤ 1
4

(A− a) (B − b) .(4.13)

We may prove the following converse inequality as well.

Theorem 6. Let Φ : R+ → R+ be differentiable convex. If p, q ∈ Rn
+ are such that

Pn = Qn and

0 < r ≤ pi

qi
≤ R < ∞, i = 1, ..., n,(4.14)

then we have the inequality

0 ≤ IΦ (p, q)−QnΦ(1) ≤ 1
4

(R− r) [Φ′ (R)− Φ′ (r)] .(4.15)

Proof. From (2.1) we have

0 ≤ IΦ (p, q)−QnΦ(1) ≤
n

∑

i=1

(pi − qi)Φ′
(

pi

qi

)

(4.16)

=
n

∑

i=1

qi

(

pi

qi
− 1

)

Φ′
(

pi

qi

)

.

As Φ′ (·) is monotonic nondecreasing, then

Φ′ (r) ≤ Φ′
(

pi

qi

)

≤ Φ′ (R) for all i ∈ {1, ..., n} .

Applying (4.13) for ai = pi
qi
− 1, bi = Φ′

(

pi
qi

)

, we obtain
∣

∣

∣

∣

∣

n
∑

i=1

qi

(

pi

qi
− 1

)

Φ′
(

pi

qi

)

−
n

∑

i=1

qi

(

pi

qi
− 1

) n
∑

i=1

qiΦ′
(

pi

qi

)

∣

∣

∣

∣

∣

(4.17)

≤ 1
4

(R− r) [Φ′ (R)− Φ′ (r)]
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and as
n

∑

i=1

qi

(

pi

qi
− 1

)

= 0,

then, by (4.16) and (4.17) we deduce (4.15).

The following inequalities for particular distances are valid.
1. If p, q are such that Pn = Qn and (4.14) holds, then

0 ≤ KL (q, p) ≤ (R− r)2

4rR
(4.18)

and

0 ≤ KL (q, p) ≤ 1
4

(R− r)2 ln
(

R
r

)

.(4.19)

2. With the same assumptions for p, q, we have

0 ≤ Dα (p, q)−Qn ≤
α
4

(R− r)
(

Rα−1 − rα−1) (α ≥ 1) ;(4.20)

0 ≤ h2 (p, q) ≤ 1
8

(R− r)

√
R−

√
r√

Rr
(4.21)

and

0 ≤ Qn −B (p, q) ≤ 1
8

(R− r)

√
R−

√
r√

Rr
.(4.22)

Remark 4. Any other Grüss type inequality can be used to provide different bounds
for the difference

∆ :=
n

∑

i=1

(pi − qi)Φ′
(

pi

qi

)

.

We omit the details.
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[21] S.S. DRAGOMIR, J. ŠUNDE and M. SCHOLZ, Some upper bounds for relative entropy and
applications, Comp. and Math. with Appl. (in press).

[22] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances
in Management Studies, 3 (1984), No. 1, 1-16.
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