
UPPER AND LOWER BOUNDS FOR CSISZÁR f−DIVERGENCE
IN TERMS OF HELLINGER DISCRIMINATION AND

APPLICATIONS

S.S. DRAGOMIR

Abstract. In this paper we point out an upper and a lower bound for the
Csiszár f−divergence of two discrete random variables in terms of the Hellinger
discrimination. Some paricular cases for the Kullback-Leibler distance, trian-
gular discrimination, χ2−distance and the Rényi α−entropy, etc.. are consid-
ered.

1. Introduction

Given a convex function f : [0,∞) → R, the f−divergence functional

(1.1) If (p, q) =
n

∑

i=1

qif
(

pi

qi

)

,

was introduced by Csiszár [1]-[2] as a generalized measure of information, a “dis-
tance function” on the set of probability distribution Pn. The restriction here to
discrete distributions is only for convenience, similar results hold for general distri-
butions. As in Csiszár [1]-[2], we interpret undefined expressions by

f (0) = lim
t→0+

f (t) , 0 f
( 0

0

)

= 0,

0 f
(a

0

)

= lim
ε→0+

εf
(a

ε

)

= a lim
t→∞

f(t)
t , a > 0.

The following results (Theorems 1 and 2, and Corollary 1) were essentially given
by Csiszár and Körner [3].
Theorem 1. (Joint Convexity) If f : [0,∞) → R is convex, then If (p, q) is
jointly convex in p and q.
Theorem 2. (Jensen’s inequality) Let f : [0,∞) → R be convex. Then for any

p, q ∈ Rn
+ with Pn :=

n
∑

i=1
pi > 0, Qn :=

n
∑

i=1
qi > 0, we have the inequality

(1.2) If (p, q) ≥ Qnf
(

Pn

Qn

)

.

If f is strictly convex, equality holds in (1.2) iff

(1.3)
p1

q1
=

p2

q2
= ... =

pn

qn
.

It is natural to consider the following corollary.
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Corollary 1. (Nonnegativity) Let f : [0,∞) → R be convex and normalised, i.e.,

(1.4) f (1) = 0.

Then for any p, q ∈ Rn
+ with Pn = Qn, we have the inequality

(1.5) If (p, q) ≥ 0.

If f is strictly convex, equality holds in (1.5) iff

(1.6) pi = qi for all i ∈ {1, ..., n} .

In particular, if p, q are probability vectors, then Corollary 1 shows that, for
strictly convex and normalized f : [0,∞) → R that

(1.7) If (p, q) ≥ 0 and If (p, q) = 0 iff p = q.

We now give some more examples of divergence measures in Information Theory
which are particular cases of Csiszár f−divergences.

(1) Kullback-Leibler distance ([12]). The Kullback-Leibler distance D (·, ·)
is defined by

(1.8) D (p, q) :=
n

∑

i=1

pi log
(

pi

qi

)

.

If we choose f (t) = t ln t, t > 0, then obviously

(1.9) If (p, q) = D (p, q) .

(2) Variational distance (l1−distance). The variational distance V (·, ·) is
defined by

(1.10) V (p, q) :=
n

∑

i=1

|pi − qi| .

If we choose f (t) = |t− 1|, t ∈ R+, then we have

(1.11) If (p, q) = V (p, q) .

(3) Hellinger discrimination ([13]). The Hellinger discrimination h2 (·, ·) is
defined by

(1.12) h2 (p, q) :=
1
2

n
∑

i=1

(
√

pi −
√

qi)
2 .

It is obvious that if f (t) = 1
2

(√
t− 1

)2
, then

(1.13) If (p, q) = h2 (p, q) .

(4) Triangular discrimination ([24]). We define triangular discrimination
between p and q by

(1.14) ∆ (p, q) =
n

∑

i=1

|pi − qi|2

pi + qi
.

It is obvious that if f (t) = (t−1)2

t+1 , t ∈ (0,∞), then

(1.15) If (p, q) = ∆ (p, q) .
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(5) χ2−distance. We define the χ2−distance (chi-square distance) by

(1.16) Dχ2 (p, q) :=
n

∑

i=1

(pi − qi)
2

qi
.

It is clear that if f (t) = (t− 1)2, t ∈ [0,∞), then

(1.17) If (p, q) = Dχ2 (p, q)

(6) Rényi α−order entropy ([14]). The α−order entropy (α > 1) is defined
by

(1.18) Rα (p, q) :=
n

∑

i=1

pα
i q1−α

i .

It is obvious that if f (t) = tα (t ∈ (0,∞)) , then

(1.19) If (p, q) = Rα (p, q) .

For other examples of divergence measures, see the paper [22] by J. N. Kapur
where further references are given.

2. Some Inequalities Between Csiszár f−Divergence and Hellinger
Discrimination

In the recent paper [28], the author proved the following inequality for Csiszár
f−divergence:

Theorem 3. Let Φ : R+ → R be differentiable convex. Then for all p, q ∈ Rn
+ we

have the inequality:

(2.1) Φ′ (1) (Pn −Qn) ≤ IΦ (p, q)−QnΦ(1) ≤ IΦ′

(

p2

q
, p

)

− IΦ′ (p, q) ,

where Pn :=
n
∑

i=1
pi > 0, Qn :=

n
∑

i=1
qi > 0 and Φ′ : (0,∞) → R is the derivative of

Φ.
If Φ is strictly convex and pi, qi > 0 (i = 1, ..., n) , then the equality holds in (2.9)
iff p = q,

If we assume that Pn = Qn and Φ is normalised, then we obtain the simpler

(2.2) 0 ≤ IΦ (p, q) ≤ IΦ′

(

p2

q
, p

)

− IΦ′ (p, q) .

Applications for particular divergences which are instances of Csiszár f−divergence
were also given.

Asimilar result of the above theorem has been presented in antoher paper by the
author [29].

Theorem 4. Let Φ, p, q be as in Theorem 3. Then we have the inequality

(2.3) 0 ≤ IΦ (p, q)−QnΦ
(

Pn

Qn

)

≤ IΦ′

(

p2

q
, p

)

− Pn

Qn
IΦ′ (p, q) .

If Φ is strictly convex and pi, qi > 0 (i = 1, ..., n), then the equality holds in (2.3)
iff p1

q1
= ... = pn

qn
.
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Obviously, if Pn = Qn and Φ is normalised, then (2.3) becomes (2.2).
The following result concerning an upper and a lower bound for the Csiszár

f−divergence in terms of the Kullback-Leibler distance D (p, q) holds.
As in [30], we will say that the mapping f : C ⊂ R→ R, where C is an interval,

(in [30], the definition was considered in general normed spaces) is

(i) α−lower convex on C if f − α
2 · |·|

2 is convex on C;
(ii) β−upper convex on C if β

2 · |·|
2 − f is convex on C;

(iii) (m,M)−convex on C (with m ≤ M) if it is both m−lower convex and
M−upper convex.

In [30], amongst others, the author has proved the following result for Csiszár
f−divergence.
Theorem 5. Let Φ : R+ → R and p, q ∈ Rn

+ with Pn = Qn.
(i) If Φ is α-lower convex on R+, then we have the inequality

(2.4)
α
2
·Dχ2 (p, q) ≤ IΦ (p, q)−QnΦ(1) .

(ii) If Φ is β−upper convex on R+, then we have the inequality

(2.5) IΦ (p, q)−QnΦ(1) ≤ β
2
·Dχ2 (p, q) .

(iii) If Φ is (m, M)−convex on R+, then we have the following sandwich in-
equality

(2.6)
m
2
·Dχ2 (p, q) ≤ IΦ (p, q)−QnΦ(1) ≤ M

2
·Dχ2 (p, q) ,

where Dχ2 (·, ·) is the χ2−divergence.
Of course, if Φ is normalised, i.e., Φ (1) = 0 and p, q are probability distributions,

then we get the simpler inequalities:

(2.7)
α
2
·Dχ2 (p, q) ≤ IΦ (p, q) , IΦ (p, q) ≤ β

2
·Dχ2 (p, q)

and

(2.8)
m
2
·Dχ2 (p, q) ≤ IΦ (p, q) ≤ M

2
·Dχ2 (p, q) .

In [30], some applications for particular instances of Csiszár f−divergences were
also given.

The following result concerning an upper and a lower bound for the Csiszár
f−divergence in terms of the Hellinger discrimination h2 (p, q) holds. These results
will complement, in a sense, the ones presented above.
Theorem 6. Assume that the generating mapping f : (0,∞) → R is normalized,
i.e., f (1) = 0 and satisfies the assumptions

(i) f is twice differentiable on (r,R), where 0 ≤ r ≤ 1 ≤ R ≤ ∞,
(ii) there exists the real constants m, M such that

(2.9) m ≤ t
3
2 f ′′ (t) ≤ M for all t ∈ (r,R) .

If p, q are discrete probability distributions verifying the assumption

(2.10) r ≤ ri :=
pi

qi
≤ R for all i ∈ {1, ..., n} ,
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then we have the inequality

(2.11) 4mh2 (p, q) ≤ If (p, q) ≤ 4Mh2 (p, q) .

Proof. Define the mapping Hm : (0,∞) → R, Hm (t) = f (t)− 2m
(√

t− 1
)2

. Then
Hm (·) is normalised, twice differentiable and since

(2.12) H ′′
m (t) = f ′′ (t)− m

t
3
2

=
1

t
3
2

(

t
3
2 f ′′ (t)−m

)

≥ 0

for all t ∈ (a, b), implied by the first inequality in (2.9). Thus, the mapping Hm (·)
is convex on (r,R) .

Applying the nonnegativity property of the Csiszár f−divergence functional for
Hm (·) and the linearity, we may state that

0 ≤ IHm (p, q) = If (p, q)− 2mI(√·−1)2 (p, q)(2.13)

= If (p, q)− 4mh2 (p, q) ,

from where we get the first inequality in (2.11).
Define HM : (0,∞) → R, HM (t) = 2M

(√
t− 1

)2 − f (t) which obviously is
normalised, twice differentiable and, by (2.9), convex on (r,R).

Applying the nonnegativity property of Csiszár f−divergence for IHM , we obtain
the second part of (2.11). �

The following theorem concerning the convexity property of the Csiszár f−divergence
also holds.

Theorem 7. Assume that f satisfies the assumptions (i) and (ii) from Theorem
6. If p(j), q(j) (j = 1, 2) are probability distributions satisfying (2.10), that is,

(2.14) r ≤ p(j)
i

q(j)
i

≤ R for all i ∈ {1, ..., n} and j ∈ {1, 2} ,

then

(2.15) r ≤ λp(1)
i + (1− λ) p(2)

i

λq(1)
i + (1− λ) q(2)

i

≤ R for all i ∈ {1, ..., n} and λ ∈ [0, 1]

and

4m
[

h2
(

λp(1) + (1− λ) p(2), λq(1) + (1− λ) q(2)
)

(2.16)

−λh2
(

p(1), q(1)
)

− (1− λ) h2
(

p(2), q(2)
)

]

≤ If

(

λp(1) + (1− λ) p(2), λq(1) + (1− λ) q(2)
)

−λIf

(

p(1), q(1)
)

− (1− λ) If

(

p(2), q(2)
)

≤ 4M
[

h2
(

λp(1) + (1− λ) p(2), λq(1) + (1− λ) q(2)
)

−λh2
(

p(1), q(1)
)

− (1− λ) h2
(

p(2), q(2)
)

]

for all λ ∈ [0, 1].
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Proof. By (2.14), we have

(2.17) rλq(1)
i ≤ λp(1)

i ≤ λRq(1)
i for all i ∈ {1, ..., n}

and

(2.18) r (1− λ) q(2)
i ≤ (1− λ) p(2)

i ≤ R (1− λ) q(2)
i for all i ∈ {1, ..., n} .

Summing the above (2.17) and (2.18), we obtain (2.15).
It is already known that the mappings Hm, HM as defined in Theorem 6 are

convex and normalised.
Applying the “Joint Convexity Principle” for IHm (·, ·), i.e.,

IHm

(

λ
(

p(1), q(1)
)

+ (1− λ)
(

p(2), q(2)
))

(2.19)

≤ λIHm

(

p(1), q(1)
)

+ (1− λ) IHm

(

p(2), q(2)
)

and rearranging the terms, we end up with the first inequality in (2.16).
The second inequality follows likewise if we apply the same property to the

Csiszár f−divergence IHM (·, ·).
We omit the details. �

Remark 1. If m > 0 in (2.9), then the inequality (2.11) is a better result than the
positivity property of Csiszár divergence. The same will apply for the joint convexity
of Csiszár divergence if m > 0.

Using the inequality (2.2) which holds for Φ, a differentiable convex and nor-
malised function, for p, q probability distributions, we can state the following the-
orem as well.
Theorem 8. Let f : [0,∞) → R be a normalised mapping. That is, f (1) = 0 and
satisfies the assumption

(i) f is twice differentiable on (r,R), where 0 ≤ r ≤ 1 ≤ R ≤ ∞;
(ii) there exists the constants m,M such that

(2.20) m ≤ t
3
2 f ′′ (t) ≤ M for all t ∈ (r,R) .

If p, q are discrete probability distributions verifying the assumption

(2.21) r ≤ ri :=
pi

qi
≤ R for all i ∈ {1, ..., n} ,

then we have the inequality

If ′

(

p2

q
, p

)

− If ′ (p, q)− 2MC (p, q) + 4Mh2 (p, q)(2.22)

≤ If (p, q)

≤ If ′

(

p2

q
, p

)

− If ′ (p, q)− 2mC (p, q) + 4mh2 (p, q) ,

where C (p, q) :=
n
∑

i=1
(qi − pi)

√

qi
pi

.

Proof. We know (see the proof of Theorem 6), that the mapping Hm : [0,∞) → R,
Hm (t) := f (t) − 2m

(√
t− 1

)2
is normalised, twice differentiable and convex on

(r,R).
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If we apply the second inequality from (2.2) for Hm, we may write

(2.23) IHm (p, q) ≤ IH′
m

(

p2

q
, p

)

− IH′
m

(−p, q) .

However,

IHm (p, q) = If (p, q)− 4mh2 (p, q) ,

IH′
m

(

p2

q
, p

)

= I
f ′(·)−4m

�
1
2−

1
2
√
·

�(

p2

q
, p

)

= If ′

(

p2

q
, p

)

− 2m + 2mI 1√
·

(

p2

q
, p

)

= If ′

(

p2

q
, p

)

− 2m + 2m
n

∑

i=1

pi





1
√

p2
i

qi
· 1

pi





= If ′

(

p2

q
, p

)

− 2m + 2m
n

∑

i=1

pi

√

qi

pi

= If ′

(

p2

q
, p

)

− 2m + 2m
n

∑

i=1

√
piqi

and

IH′
m

(p, q) = If ′ (p, q)− 2m + 2mI 1√
·
(p, q)

= If ′ (p, q)− 2m + 2m
n

∑

i=1

qi





1
√

pi
qi





= If ′ (p, q)− 2m + 2m
n

∑

i=1

qi

√

qi

pi

and then, by (2.23), we obtain

If (p, q)− 4mh2 (p, q)

≤ If ′

(

p2

q
, p

)

− 2m + 2m
n

∑

i=1

pi

√

qi

pi
− If ′ (p, q) + 2m− 2m

n
∑

i=1

qi

√

qi

pi
,

which is equivalent to the second inequality in (2.22).
If we consider HM (t) := 2M

(√
t− 1

)2 − f (t), t ≥ 0, then we observe that
HM (·) is normalised, twice differentiable and convex on (r,R). Applying the second
inequality from (2.2), we deduce the first part of (2.22). �

The above results have natural applications when the Hellinger distance is com-
pared with a number of other divergence measures arising in Information Theory.

3. Some Particular Cases

Using Theorem 6, we shall be able to point out the following particular cases
which are of interest in Information Theory.
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Proposition 1. Let p, q be two probability distributions with the property that

(3.1) 0 < r ≤ pi

qi
=: qi ≤ R < ∞ for all i ∈ {1, ..., n} .

Then we have the inequality

(3.2) 4
√

rh2 (p, q) ≤ D (p, q) ≤ 4
√

Rh2 (p, q) .

Proof. Consider the mapping f : (0,∞) → R, f (t) = t ln t. Then

f ′′ (t) =
1
t
, t ∈ (0,∞) .

Consider the mapping g : [r,R] → R, g (t) = t
3
2 · 1

t = t
1
2 . Then

inf
t∈[r,R]

g (t) =
√

r, sup
t∈[r,R]

g (t) =
√

R.

Therefore, applying the inequality (2.11) with m =
√

r, M =
√

R, we obtain
(3.2). �

Remark 2. The following inequality is well known in the literature (see for example
Dacunha-Castelle [25]):

(3.3) D (p, q) ≥ 2h2 (p, q)

for any p, q probability distributions.
From the first inequality in (3.2) we have the inequality

(3.4) D (p, q) ≥ 4
√

rh2 (p, q)

We remark that if 4
√

r ≥ 2, i.e., r ≥ 1
4 , then the inequality (3.4) is better than

(3.3).
The following proposition also holds.

Proposition 2. Let p, q be two probability distributions with the property (3.1).
Then we have the inequality:

(3.5)
4√
R

h2 (p, q) ≤ D (q, p) ≤ 4√
r
h2 (p, q) .

Proof. Consider the mapping f : [r,R] → R, f (t) = − ln t. Define g (t) =
t

3
2 f ′′ (t) = 1√

t
. Then obviously

sup
t∈[r,R]

g (t) =
1√
r
, inf

t∈[r,R]
g (t) =

1√
R

.

In addition,

If (p, q) = −
n

∑

i=1

qi ln
(

pi

qi

)

=
n

∑

i=1

qi ln
(

qi

pi

)

= D (q, p) .

Now, using the inequality (3.2), we get the desired inequality (3.5). �

The following result for the χ2−distance also holds.
Proposition 3. Let p, q be two probability distributions satisfying the condition
(3.1). Then we have the inequality:

(3.6) 8r
3
2 h2 (p, q) ≤ Dχ2 (p, q) ≤ 8R

3
2 h2 (p, q) .
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Proof. Consider the mapping f : (0,∞) → R, f (t) = (t− 1)2. Define g : [r,R] →
R, g (t) = t

3
2 f ′′ (t) = 2t

3
2 . Obviously,

sup
t∈[r,R]

g (t) = 2R
3
2 and inf

t∈[r,R]
g (t) = 2r

3
2 .

Since
If (p, q) = Dχ2 (p, q) ,

then, applying the inequality (2.11) with m = 2r
3
2 , M = 2R

3
2 , we get the desired

inequality (3.6). �

Now, let us consider the J−divergence [26]

J (p, q) =
n

∑

i=1

(pi − qi) ln
(

pi

qi

)

.

The following proposition holds.
Proposition 4. Let p, q be two probability distributions. Then we have the inequal-
ity

(3.7) 8h2 (p, q) ≤ J (p, q) .

Proof. Consider the mapping f : (0,∞) → R, f (t) = (t− 1) ln t. Define g : [r,R] →
R,

g (t) = t
3
2 f ′′ (t) = t

1
2 +

1

t
1
2
≥ 2,

which shows that
inf

t∈(0,∞)
g (t) = 2.

Since
If (p, q) = J (p, q) ,

then, applying the inequality (2.11) with m = 2, we get the desired inequality. �

If we know more about ri := pi
qi

(i = 1, ..., n), i.e., the condition (3.1) holds, then
we can point out an upper bound for the J (·, ·) as follows:
Proposition 5. If 0 < r ≤ ri ≤ R < ∞ for all i ∈ {1, ..., n}, then we have the
inequality

(3.8) J (p, q) ≤ 4max
{√

r +
1√
r
,
√

R +
1√
R

}

h2 (p, q) .

Proof. As above, we have

g (t) = t
1
2 +

1

t
1
2
.

For the mapping h (u) = u + 1
u , we have

h′ (u) =
u2 − 1

u2 ,

which shows that the mapping is strictly decreasing on (0, 1) and strictly increasing
on (1,∞) Therefore

sup
t∈[r,R]

g (t) = max [g (r) , g (R)] = max
{√

r +
1√
r
,
√

R +
1√
R

}

.

Applyig Theorem 6 we deduce the desired result. �
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Remark 3. We observe that

√
R +

1√
R
−
√

r − 1√
r

=

(√
R−

√
r
)(√

rR− 1
)

√
rR

and then the inequality (3.8) can be rewritten in the equivalent form as

(3.9) J (p, q) ≤ 4h2 (p, q)×











√
R + 1√

R
if R ≥ 1

r

√
r + 1√

r if 1 ≤ R < 1
r

.

Let us now consider the harmonic distance

M (p, q) :=
n

∑

i=0

2piqi

pi + qi
.

The following proposition holds.

Proposition 6. Let p, q be two probability distributions. Then we have the inequal-
ity

(3.10) 0 ≤ 1−M (p, q) ≤ 1
2
h2 (p, q) .

Proof. Consider the function f : (0,∞) → R, f (t) = 1− 2t
t+1 . Then

f ′ (t) = − 2

(1 + t)2
, f ′′ (t) =

4

(t + 1)3
.

Define the mapping

g (t) = t
3
2 f ′′ (t) =

4t
3
2

(t + 1)3
.

A simple calculation shows that

g′ (t) =
6
√

t (1− t)

(t + 1)4
.

Consequently, the mapping g is increasing on the interval (0, 1) and decreasing on
(1,∞). Moreover,

sup
t∈(0,∞)

= g (1) =
1
2

and If (p, q) = 1−M (p, q) .

Applying the inequality (2.11) for M = 1
2 , we deduce (3.10). �

If we know more about ri := pi
qi

, that is, the condition (3.1) holds, then we can
improve the first inequality in (3.10) as follows.

Proposition 7. Assume that the probability distributions p, q satisfy (3.1). Then
we have the inequality

(3.11) 16min

{

r
3
2

(r + 1)3
,

R
3
2

(R + 1)3

}

h2 (p, q) ≤ 1−M (p, q) .
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Proof. Taking into account that the mapping g (t) = 4t
3
2

(t+1)3 is monotonic increasing
on (0, 1) and decreasing on (1,∞), we may assert that

inf
t∈[r,R]

g (t) = min {g (r) , g (R)} = 4 min

{

r
3
2

(r + 1)3
,

R
3
2

(R + 1)3

}

.

Using the inequality (2.11), we deduce the desired lower bound (3.11). �

Remark 4. Similar results can be stated by Applying Theorem 8, but we omit the
details.
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[3] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memory-
less Systems, Academic Press, New York, 1981.

[4] J.H. JUSTICE (editor), Maximum Entropy and Bayssian Methods in Applied Statistics,
Cambridge University Press, Cambridge, 1986.

[5] J.N. KAPUR, On the roles of maximum entropy and minimum discrimination information
principles in Statistics, Technical Address of the 38th Annual Conference of the Indian Society
of Agricultural Statistics, 1984, 1-44.

[6] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy
functions, IEEE Transactions on Information Theory, 28 (1982), 489-495.

[7] R.G. GALLAGER, Information Theory and Reliable Communications, J. Wiley, New York,
1968.

[8] C.E. SHANNON, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948),
370-423 and 623-656.

[9] B.R. FRIEDEN, Image enhancement and restoration, Picture Processing and Digital Filter-
ing (T.S. Huang, Editor), Springer-Verlag, Berlin, 1975.

[10] R.M. LEAHY and C.E. GOUTIS, An optimal technique for constraint-based image restora-
tion and mensuration, IEEE Trans. on Acoustics, Speech and Signal Processing, 34 (1986),
1692-1642.

[11] S. KULLBACK, Information Theory and Statistics, J. Wiley, New York, 1959.
[12] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Annals Math. Statist.,

22 (1951), 79-86.
[13] R. BERAN, Minimum Hellinger distance estimates for parametric models, Ann. Statist., 5

(1977), 445-463.
[14] A. RENYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math.

Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961.
[15] S.S. DRAGOMIR and N.M. IONESCU, Some converse of Jensen’s inequality and applica-

tions, Anal. Num. Theor. Approx., 23 (1994), 71-78.
[16] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen’s discrete inequality for differen-

tiable convex mappings and applications in information theory, Math. Comput. Modelling,
24 (2) (1996), 1-11.

[17] S.S. DRAGOMIR and C.J. GOH, Some counterpart inequalities in for a functional associated
with Jensen’s inequality, J. of Ineq. & Appl., 1 (1997), 311-325.

[18] S.S. DRAGOMIR and C.J. GOH, Some bounds on entropy measures in information theory,
Appl. Math. Lett., 10 (1997), 23-28.

[19] S.S. DRAGOMIR and C.J. GOH, A counterpart of Jensen’s continuous inequality and ap-
plications in information theory, RGMIA Preprint,
http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi
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