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Abstract. We consider the approximation of the Csiszár f–divergence when

f or its first derivative is a function of bounded variation. The approximants
are suggested by numerical integration theory.

1. Introduction

In this article we complete a chain of ideas developed in three companion papers
[5]–[7] concerning measures of the divergence between two probability measures
p = (p1, . . . , pn), q = (q1, . . . , qn) defined over a common set of events. Different
applications have provoked different measures. A wide spectrum of measures in use
has been subsumed by Csiszár [1]–[3]: the Csiszár f–divergence between p and q is
defined by the functional

If (p, q) :=
n∑

i=1

qif(pi/qi).

Two important instances, which we shall invoke shortly, are the variational distance
V (p, q) and the chi–squared divergence Dχ2(p, q), for which

f(u) = |u− 1|m

with m = 1, 2 respectively. We address the situation in which there exist constants
r, R with

(1.1) 0 < r < 1 < R < ∞ and r ≤ pi/qi ≤ R for i = 1, . . . , n.

Our initial work [5] assumed the individual values pi, qi are not known. The
following result was derived.

Theorem A. Suppose f : [r, R] → R is absolutely continuous and that the deriva-
tive f

′
: [r, R] → R is essentially bounded, that is, f

′ ∈ L∞[r, R]. Then under the
condition (1.1) we have∣∣∣∣∣∣If (p, q)− 1

R− r

R∫
r

f(t)dt

∣∣∣∣∣∣
≤

[
1
4

+
1

(R− r)2

{
Dχ2(p, q) +

(
R + r

2
− 1

)2
}]

(R− r)
∥∥∥f

′
∥∥∥
∞

≤ 1
2
(R− r)

∥∥∥f
′
∥∥∥
∞

.
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The two companion papers in this volume consider the approximation question:
how closeness of f and g is reflected in closeness of If and Ig. Suppose

f∗(u) := f(1) + (u− 1)f
′
(

1 + u

2

)
.

The following was derived in [6].

Theorem B. Suppose f : [r, R] → R with f
′

absolutely continuous on [r, R] and
f
′′ ∈ L∞[r, R]. If (1.1) holds, then

|If (p, q)− If∗(p, q)| ≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

(R− 1)(1− r)

≤ 1
16

∥∥∥f
′′
∥∥∥
∞

(R− r)2.

Similarly define

f†(u) := f(1) +
u− 1

2
f
′
(u).

The following was shown in [7].

Theorem C. Suppose f : [r, R] → R with f
′

absolutely continuous on [r, R] and
f
′′ ∈ L∞[r, R]. If (1.1) applies, then∣∣If (p, q)− If†(p, q)

∣∣ ≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)− 1
4 ‖f ′′‖∞

If0(p, q)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

Dχ2(p, q)

≤ 1
4

∥∥∥f
′′
∥∥∥
∞

(R− 1)(1− r)

≤ 1
16

∥∥∥f
′′
∥∥∥
∞

(R− r)2,

where

f0(u) :=
[
f
′
(u)− f

′
(1)

]2

.

These and further results in [6] and [7] assume the absolute continuity of f
′
(or

higher derivative) and essential boundedness of f
′′

(or higher derivative). In this
concluding contribution we weaken these assumptions to the bounded variation of
f or f

′
and derive analogues of Theorems A, B, C. We shall employ inter alia the

following useful lemma, which is a special case of Proposition 1 of [6].

Lemma A. If (1.1) is satisfied, then

V (p, q) ≤ 2(R− 1)(1− r)
R− r

≤ R− r

2
.

The first inequality is an equality if and only if for each i either pi/qi = r or
pi/qi = R. The second inequality is an equality if and only if R + r = 2.
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In Section 2 we give a basic Ostrowski–type inequality for functions of bounded
variation and use this to obtain a trapezoidal inequality for functions of bounded
variation. In Section 3 we deduce analogues of Theorems A–C and in Section 4 we
give two illustrative examples.

2. Preliminaries

We start with the following proposition which provides an Ostrowski–type in-
equality for mappings of bounded variation. This has been established by one of
the present authors in the preprint [4]. We give a simple proof.

Proposition 1. Suppose g : [a, b] → R is of bounded variation on [r, R]. Then for
all x ∈ [a, b],

(2.1)

∣∣∣∣∣∣
b∫

a

g(t)dt− g(x)(b− a)

∣∣∣∣∣∣ ≤
[
b− a

2
+

∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(g) ≤ (b− a)
b∨
a

(g),

where
b∨
a
(g) denotes the total variation of g on [a, b]. The constant 1/2 is best–

possible.

Proof. Using the integration by parts formula for a Riemann–Stieltjes integral, we

have that
x∫
a

(t− a)dg(t) and
b∫

x

(t− b)dg(t) exist and that

x∫
a

(t− a)dg(t) = g(x)(x− a)−
x∫

a

g(t)dt

and
b∫

x

(t− b)dg(t) = g(x)(b− x)−
b∫

x

g(t)dt

for all x ∈ [a, b]. Addition provides

g(x)(b− a)−
b∫

a

g(t)dt =

x∫
a

(t− a)dg(t) +

b∫
x

(t− b)dg(t)

for all x ∈ [a, b].
Now if p, g : [a, b] → R with p continuous and g of bounded variation, then∫ b

a
p(t)dg(t) exists and ∣∣∣∣∣∣

b∫
a

p(t)dg(t)

∣∣∣∣∣∣ = sup
t∈[a,b]

|p(t)|
b∨
a

(g).
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Hence ∣∣∣∣∣∣g(x)(b− a)−
b∫

a

g(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

a

(t− a)dg(t) +

b∫
x

(t− b)dg(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
x∫

a

(t− a)dg(t)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b∫

x

(t− b)dg(t)

∣∣∣∣∣∣
≤ sup

t∈[a,x]

|t− a|
x∨
a

(g) + sup
t∈[x,b]

|t− b|
b∨
x

(g)

= (x− a)
x∨
a

(g) + (b− x)
b∨
x

(g)

≤ max{x− a, b− x}

[
x∨
a

(g) +
b∨
x

(g)

]

=
[
b− a

2
+

∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(g),

and the first inequality in (2.1) is proved. The second follows, since |x− (a + b)/2| ≤
(b− a)/2.

Suppose that (2.1) holds with a constant c > 0, that is,

(2.2)

∣∣∣∣∣∣
b∫

a

g(t)dt− g(x)(b− a)

∣∣∣∣∣∣ ≤
[
c(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(g)

for all x ∈ [a, b], and define g1 : [a, b] → R by

g1(x) =
{

1 if x = (a + b)/2
0 otherwise.

Then g1 is of bounded variation on [a, b] and

b∨
a

(g1) = 2,

b∫
a

g1(t)dt = 0.

Put g = g1 and x = (a + b)/2 in (2.2). Then we get 1 ≤ 2c, which shows that
c = 1/2 is best–possible. �

Proposition 2. If g : [a, b] → R is of bounded variation, then for all x1, x2 ∈ [a, b],

(2.3)

∣∣∣∣∣∣
b∫

a

g(t)dt− b− a

2

2∑
i=1

g(xi)

∣∣∣∣∣∣ ≤
[

b− a

2
+

1
2

2∑
i=1

∣∣∣∣xi −
a + b

2

∣∣∣∣
]

b∨
a

(g).

Proof. This follows by putting x = xi in Proposition 1, summing over i and then
using the triangle inequality. �
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Lemma 1. Suppose f : [r, R] → R is differentiable, so that f
′

is of bounded
variation on [r, R]. If r < 1 < R and x ∈ [r, R], then

(2.4)
∣∣∣∣f(x)− f(1)− x− 1

2

[
f
′
(1) + f

′
(x)

]∣∣∣∣ ≤ |x− 1|
R∨
r

(f
′
).

Proof. For x ≥ 1, we set g = f
′
, x1 = a = 1 and x2 = b = x in (2.3) to derive∣∣∣∣f(x)− f(1)− x− 1

2

[
f
′
(1) + f

′
(x)

]∣∣∣∣ ≤ (x− 1)
x∨
1

(f
′
) ≤ (x− 1)

R∨
r

(f
′
).

Similarly if x < 1, we set g = f
′
, x1 = a = x and x2 = b = 1 in (2.3) to derive∣∣∣∣f(1)− f(x)− 1− x

2

[
f
′
(1) + f

′
(x)

]∣∣∣∣ ≤ (1− x)
1∨
x

(f
′
) ≤ (1− x)

R∨
r

(f
′
).

The desired result follows in both cases. �

3. Main results

Theorem 1. If f : [r, R] → R is of bounded variation and (1.1) applies, then∣∣∣∣∣∣If (p, q)− 1
R− r

R∫
r

f(t)dt

∣∣∣∣∣∣(3.1)

≤

[
1
2

+
1

R− r

n∑
k=1

∣∣∣∣pi −
r + R

2
· qi

∣∣∣∣
]

R∨
r

(f)

≤
{

1
2

+
1

R− r

[
V (p, q) +

∣∣∣∣r + R

2
− 1

∣∣∣∣]} R∨
r

(f)

≤
[
1 +

1
R− r

· V (p, q)
] R∨

r

(f)

≤ 3
2

R∨
r

(f).

Proof. The choices g = f , x = pi/qi (i = 1, ..., n), a = r, b = R in (2.1) give∣∣∣∣∣∣f
(

pi

qi

)
− 1

R− r

R∫
r

f(t)dt

∣∣∣∣∣∣ ≤
[
1
2

+
1

R− r

∣∣∣∣pi

qi
− r + R

2

∣∣∣∣] R∨
r

(f)

for all i ∈ {1, ..., n}.
If we multiply by qi and sum over i, we obtain via the generalized triangle

inequality that∣∣∣∣∣∣If (p, q)− 1
R− r

R∫
r

f(t)dt

∣∣∣∣∣∣ ≤
[

1
2

+
1

R− r

n∑
i=1

qi

∣∣∣∣pi

qi
− r + R

2

∣∣∣∣
]

R∨
r

(f),

whence we have the first inequality in (3.1).
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The second follows from
n∑

i=1

qi

∣∣∣∣pi

qi
− 1−

(
r + R

2
− 1

)∣∣∣∣ ≤ n∑
i=1

qi

∣∣∣∣pi

qi
− 1

∣∣∣∣ +
∣∣∣∣r + R

2
− 1

∣∣∣∣
= V (p, q) +

∣∣∣∣r + R

2
− 1

∣∣∣∣
and the third from ∣∣∣∣r + R

2
− 1

∣∣∣∣ ≤ R− r

2
.

The final inequality follows by Lemma A. �

The following corollary emphasizes better the approximation aspect of the the-
orem.

Corollary 1. Let f : [0, 2] → R be a mapping of bounded variation. If η ∈ (0, 1)
and p(η) and q(η) are probability distributions satisfying∣∣∣∣pi(η)

qi(η)
− 1

∣∣∣∣ ≤ η for all i ∈ {1, ..., n},

then

If (p(η), q(η) =
1
2ε

1+η∫
1−η

f(t)dt + Rf (p, q, η)

and the reminder term Rf satisfies

|Rf (p, q, η)| ≤ 1
2

[
1 +

1
η
V (p(η), q(η))

] 1+η∨
1−η

(f).

We note that the best inequality we can get from (2.1) is

(3.2)

∣∣∣∣∣∣
b∫

a

g(t)dt− g

(
a + b

2

)
(b− a)

∣∣∣∣∣∣ ≤ b− a

2

b∨
a

(g),

which arises for x = (a + b)/2.
We now turn to a comparison theorem which encapsulates bounded–variation

analogues of Theorems B and C.

Theorem 2. Suppose f : [r, R] → R is differentiable and so f
′

is of bounded
variation. If (1.1) applies, then

(3.3) |If (p, q)− If∗(p, q)| ≤ 1
2
V (p, q)

R∨
r

(f
′
) ≤ R− 1

4

R∨
r

(f
′
),

(3.4)
∣∣If (p, q)− If†(p, q)

∣∣ ≤ V (p, q)
R∨
r

(f
′
) ≤ R− 1

2

R∨
r

(f
′
).
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Proof. Taking (3.2) with g = f
′
, a = 1, and b = x ∈ [r, R] gives

|f (x)− f∗(x)| ≤ |x− 1|
2

x∨
1

(f
′
) ≤ |x− 1|

2

R∨
r

(f
′
)

for all x ∈ [r, R]. The first inequality in (3.3) follows by putting x = pi/qi, multiply-
ing by qi, summing over i = 1, . . . , n and using the generalized triangle inequality.
The second inequality is given by Lemma A.

The proof of (3.4) follows similarly from (2.4). �

Both parts may be viewed in terms of approximation. Thus for (3.3) we have
the following.

Corollary 2. Suppose f : [0, 2] → R has its first derivative of bounded variation.
If η ∈ (0, 1) and p(η), q(η) are probability distributions satisfying,∣∣∣∣pi(η)

qi(η)
− 1

∣∣∣∣ ≤ η for all i ∈ {1, ..., n},

then
If (p(η), q(η) = If∗((p(η), q(η)) + Rf (p, q, η)

and the reminder Rf is such that

|Rf (p, q, η)| ≤ 1
2
V (p(η), q(η))

1+η∨
1−η

(f
′
) ≤ η

2

1+η∨
1−η

(f
′
).

4. Examples

Suppose (1.1) holds and f : [r, R] → R is given by f(u) = u lnu, so that If (p, q)
is the Kullback–Leibler distance

D(p, q) :=
n∑

i=1

pi ln(pi/qi).

We have
R∫

r

f(t)dt =
1
4

[
R2 lnR2 − r2 ln r2 −

(
R2 − r2

)]
=

R2 − r2

4
ln

[
I

(
R2, r2

)]
,

where I(a, b) is the identric mean of two positive numbers a, b and is given by

I(a, b) :=

{
a if b = a

1
e

(
bb

aa

)1/(b−a)

otherwise .

Also
R∨
r

(f) =

b∫
a

∣∣∣f ′
(t)

∣∣∣ dt =

b∫
a

|ln(et)| dt =: λ(r, R).
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If 0 < r ≤ 1/e, then

λ(r, R) =

1/e∫
r

[− ln(et)] dt +

R∫
1/e

ln(et)dt

= −1
e

1/e∫
r

ln(et)d(et) +
1
e

R∫
1/e

ln(et)d(et).

Since
β∫

α

lnx dx = ln I(α, β) for α, β > 0,

we have

λ(r, R) = −1
e

ln
[
I

(
r, e−1

)]
+

1
e

ln
[
I(e−1, R)

]
= ln

[
I(e−1, R)
I(r, e−1)

]1/e

.

If on the other hand 1/e < r < 1, then

λ(r, R) =

R∫
r

ln(et)dt =
1
e

ln I(r, R) = ln [I(r, R)]1/e .

Thus (3.1) gives∣∣∣∣D(p, q)− R + r

4
ln

[
I

(
R2, r2

)]∣∣∣∣
≤

[
1
2

+
1

R− r

n∑
i=1

∣∣∣∣pi −
r + R

2
· qi

∣∣∣∣
]

λ(r, R)

≤
{

1
2

+
1

R− r

[
V (p, q) +

∣∣∣∣r + R

2
− 1

∣∣∣∣]}
λ(r, R)

≤
[
1 +

1
R− r

V (p, q)
]

λ(r, R)

≤ 3
2
λ(r, R).

Also

If∗(p, q) =
n∑

i=1

(pi − qi) ln
(

pi + qi

2qi

)
and

R∨
r

(f
′
) =

R∫
r

∣∣∣f ′′
(t)

∣∣∣ dt =

R∫
r

dt

t
= ln

(
R

r

)
.
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Hence by (3.3) we have

∣∣∣∣∣D(p, q)−
n∑

i=1

(pi − qi) ln
(

pi + qi

2qi

)∣∣∣∣∣ ≤ 1
2
V (p, q) ln

(
R

r

)
≤ R− r

4
(lnR− ln r)

=
(R− r)2

4L(r, R)
,

where L(a, b) is the logarithmic mean which for positive arguments a, b is given by

L(a, b) :=
{

a if b = a
b−a

ln b−ln a otherwise.

Therefore we have the inequality

∣∣∣∣∣D(p, q)−
n∑

i=1

(pi − qi) ln
(

pi + qi

2qi

)∣∣∣∣∣ ≤ 1
4
· R− r

L(r, R)
V (p, q) ≤ (R− r)2

4L(r, R)
.

Finally suppose f : [r, R] → R is given by f(u) = |u− 1|, so If (p, q) becomes
the variational distance

V (p, q) :=
n∑

i=1

|pi − qi| .

We have

1
R− r

R∫
r

f(t)dt =
1

R− r

R∫
r

|u− 1| du

=
1

R− r

 1∫
r

(1− u)du +
1

R− r

R∫
1

(u− 1) du


=

1
R− r

[
(r − 1)2

2
+

(R− 1)2

2

]
=

1
R− r

[
(R− r)2

4
+

(
r + R

2
− 1

)2
]

and

R∨
r

(f) =
1∨
r

(f) +
R∨
1

(f) = 1− r + R− 1 = R− r.
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By (3.1) we have∣∣∣∣∣V (p, q)− 1
R− r

[
(R− r)2

4
+

(
r + R

2
− 1

)2
]∣∣∣∣∣

≤

[
1
2

+
1

R− r

n∑
i=1

∣∣∣∣pi −
r + R

2
· qi

∣∣∣∣
]

(R− r)

≤
{

1
2

+
1

R− r

[
V (p, q) +

∣∣∣∣r + R

2
− 1

∣∣∣∣]}
(R− r)

≤
[
1 +

1
R− r

V (p, q)
]

(R− r)

≤ 3(R− r)
2

.
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