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Preface

A chapter in the book “Inequalities Involving Functions and Their
Integrals and Derivatives”, Kluwer Academic Publishers, 1991, by Mitri-
nović, Pečarić and Fink is devoted to integral inequalities involving
functions with bounded derivatives, or, Ostrowski type inequalities.
This topic has now become a special domain in the Theory of Inequal-
ities, there having been published many powerful results and a large
number of applications in Numerical Integration, Probability Theory
and Statistics, Information Theory and Integral Operator Theory.

The first monograph devoted to Ostrowski type inequalities and
applications for quadrature rules was written by members of the Re-
search Group in Mathematical Inequalities and Applications (RGMIA,
see http://rgmia.vu.edu.au) in 2002. The book was entitled “Ostrowski
Type Inequalities and Applications in Numerical Integration”, edited by
S.S. Dragomir & Th. M. Rassias, Kluwer Academic Publishers. The
main aim of this monograph was to present some selected results of Os-
trowski type inequalities for univariate and multivariate real functions
and their natural application to the error analysis of numerical quadra-
ture for both simple and multiple integrals as well as for the Riemann-
Stieltjes integral. Due to space limitations, however, no attempt was
made to present applications in other domains, more specifically, in
Probability Theory.

It can be observed that Ostrowski type inequalities may also be
successfully used to obtain various tight bounds for the expectation,
variance and moments of continuous random variables defined over a
finite interval. This had been noted in the late 1990’s by many au-
thors including members of the RGMIA located at Victoria University,
Melbourne, Australia (see for instance the RGMIA Res. Rep. Coll.,
http://rgmia.vu.edu.au/reports.html for the years 1998-1999). The do-
main is now rich with results whose beneficial value will increase by
being presented in a unified manner. This will then provide to all in-
terested in Inequalities in Applied Probability Theory & Statistics, a
primer of results and techniques that may well need further attention
and polishing so as to obtain the best possible bounds and estimates.

v
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It is from this view point that the current book is written and it is
intended to be useful to both graduate students and established re-
searchers working in Probability Theory & Statistics, Analytic Integral
Inequalities and their applications in demography, economics, physics,
biology, and other scientific areas.

The chapter outlines are given below and it is intended that they
can be read independently if desired.

The first two chapters are concerned with natural applications to
cumulative distribution functions (CDFs) and expectations for ran-
dom variables (RVs) over a finite interval. The results use the latest
Ostrowski type integral inequalities for functions that are of: bounded
variation, convex, Hölder continuous, Lipschitzian or absolutely contin-
uous. The tools used are both the Riemann-Stieltjes integral and the
Lebesgue integral. Chapter 3 investigates the use of trapezoidal or cor-
rected trapezoidal type inequalities developed recently in parallel with
Ostrowski type inequalities for various classes of functions including the
ones mentioned previously, but also for classes of much smoother func-
tions whose second, third or fourth derivatives belong to the Lebesgue
spaces Lp for p = 1. Chapter 4, deals with Grüss type or pre-Grüss type
integral inequalities which provide error bounds for approximating the
integral mean of a product (of two functions) in terms of the product of
the integral means (for each individual function). Such inequalities are
useful when the integral means of the individual functions are known
or are more convenient to calculate. They also provide more accurate
approximations, since the bounds are expressed in terms of the oscil-
lation of a function rather than its sup norm that is usually not as
tight. Utilising this type of estimate, various bounds for mathematical
expressions incorporating the CDFs and the expectations are provided.
Elementary and simple-looking bounds for the variance of continuous
RVs are presented in Chapter 5. The tools used here are mostly Grüss
and pre-Grüss type inequalities and some recent results obtained by
the authors in connection with the problem of bounding the Čebyšev
functional in its integral version over finite intervals in terms of various
quantities and under certain assumptions for the involved integrable
functions. Finally, in Chapter 6, by employing Taylor type expansions
for n-time differentiable CDFs, various bounds involving the variance
of a continuous random variable defined on a finite interval that are
more accurate in terms of order of convergence, are outlined.

The book is self-contained in the sense that the reader needs only to
be familiar with basic real analysis, integration theory and probability
theory. All inequalities used in the text are explicitly stated and ap-
propriately referenced. A comprehensive list of references on which the
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book is based is presented, complemented by other relevant literature
that will allow the interested reader to be introduced to open prob-
lems, including the necessity to extend some of the obtained results to
probability density functions defined on unbounded intervals.

Last, but no means least, the authors would like especially thank
Professor George Anastassiou from Memphis University for his con-
stant encouragement to write the book and whose numerous comments
have been implemented in the final version.

The Authors
Melbourne, November 2004





CHAPTER 1

Ostrowski Type Inequalities for CDFs

1. An Inequality of the Ostrowski Type for CDFs

1.1. Inequalities. Let X be a random variable taking values in
the finite interval [a, b], with cumulative distribution function (CDF)
F (x) = Pr (X ≤ x) .

The following theorem holds [9].

Theorem 1. Let X and F be as above, then we have the inequality∣∣∣∣Pr (X ≤ x)− b− E (X)

b− a

∣∣∣∣(1.1)

≤ 1

b− a

[
[2x− (a+ b)] Pr (X ≤ x) +

∫ b

a

sgn (t− x)F (t) dt

]
≤ 1

b− a
[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ 1

2
+

∣∣x− a+b
2

∣∣
(b− a)

for all x ∈ [a, b] . All the inequalities in (1.1) are sharp and the constant
1
2

is the best possible.

Proof. Consider the kernel p : [a, b]2 → R given by

(1.2) p (x, t) :=

{
t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.

The Riemann-Stieltjes integral
∫ b
a
p (x, t) dF (t) exists for any x ∈ [a, b]

and the formula of integration by parts for Riemann-Stieltjes integral
gives: ∫ b

a

p (x, t) dF (t)(1.3)

=

∫ x

a

(t− a) dF (t) +

∫ b

x

(t− b) dF (t)

1
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= (t− a)F (t)|xa −
∫ x

a

F (t) dt+ (t− b)F (t)|bx −
∫ b

x

F (t) dt

= (b− a)F (x)−
∫ b

a

F (t) dt.

On the other hand, the integration by parts formula for the Riemann-
Stieltjes integral also gives:

E (X) :=

∫ b

a

tdF (t) = tF (t)|ba −
∫ b

a

F (t) dt(1.4)

= bF (b)− aF (a)−
∫ b

a

F (t) dt

= b−
∫ b

a

F (t) dt.

Now, using (1.3) and (1.4), we get the equality

(1.5) (b− a)F (x) + E (X)− b =

∫ b

a

p (x, t) dF (t)

for all x ∈ [a, b] .

Now, assume that ∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a

sequence of divisions with ν (∆n) → 0 as n→∞, where

ν (∆n) := max
{
x

(n)
i+1 − x

(n)
i : i = 0, ..., n− 1

}
.

If p : [a, b] → R is continuous on [a, b] and ν : [a, b] → R is monotonic

nondecreasing, then the Riemann-Stieltjes integral
∫ b
a
p (x) dν (x) exists

and ∣∣∣∣∫ b

a

p (x) dν (x)

∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
ν
(
x

(n)
i+1

)
− ν

(
x

(n)
i

)]∣∣∣∣∣(1.6)

≤ lim
ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (ν (x(n)
i+1

)
− ν

(
x

(n)
i

))
=

∫ b

a

|p (x)| dν (x) .
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Using (1.6) we have:∣∣∣∣∫ b

a

p (x, t) dF (t)

∣∣∣∣(1.7)

=

∣∣∣∣∫ x

a

(t− a) dF (t) +

∫ b

x

(t− b) dF (t)

∣∣∣∣
≤
∣∣∣∣∫ x

a

(t− a) dF (t)

∣∣∣∣+ ∣∣∣∣∫ b

x

(t− b) dF (t)

∣∣∣∣
≤
∫ x

a

|t− a| dF (t) +

∫ b

x

|t− b| dF (t)

=

∫ x

a

(t− a) dF (t) +

∫ b

x

(b− t) dF (t)

= (t− a)F (t)|xa −
∫ x

a

F (t) dt

− (b− t)F (t)|bx +

∫ b

x

F (t) dt

=

[
[2x− (a+ b)]F (x)−

∫ x

a

F (t) dt+

∫ b

x

F (t) dt

]
= [2x− (a+ b)]F (x) +

∫ b

a

sgn (t− x)F (t) dt.

Using the identity (1.5) and the inequality (1.7), we deduce the first
part of (1.1) .

We know that∫ b

a

sgn (t− x)F (t) dt = −
∫ x

a

F (t) dt+

∫ b

x

F (t) dt.

As F (·) is monotonic nondecreasing on [a, b] , we can state that∫ x

a

F (t) dt ≥ (x− a)F (a) = 0

and ∫ b

x

F (t) dt ≤ (b− x)F (b) = b− x

and then ∫ b

a

sgn (t− x)F (t) dt ≤ b− x for all x ∈ [a, b] .
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Consequently, we have the inequality

[2x− (a+ b)]F (x) +

∫ b

a

sgn (t− x)F (t) dt

≤ [2x− (a+ b)]F (x) + (b− x)

= (b− x) (1− F (x)) + (x− a)F (x)

= (b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)

and the second part of (1.1) is proved.
Finally,

(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)

≤ max{b− x, x− a} [Pr (X ≥ x) + Pr (X ≤ x)]

=
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣
and the last part of (1.1) is also proved.

We now assume that the inequality (1.1) holds for a constant c > 0
instead of 1

2
, then,∣∣∣∣Pr (X ≤ x)− b− E (X)

b− a

∣∣∣∣(1.8)

≤ 1

b− a

[
[2x− (a+ b)] Pr (X ≤ x) +

∫ b

a

sgn (t− x)F (t) dt

]
≤ 1

b− a
[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ c+

∣∣x− a+b
2

∣∣
b− a

for all x ∈ [a, b] .
Choose the random variable X such that F : [0, 1] → R,

F (x) :=

 0 if x = 0

1 if x ∈ (0, 1]
.

We then have:

E (X) = 0,

∫ 1

0

sgn (t)F (t) dt = 1

and by (1.8) , for x = 0, we get

1 ≤ c+
1

2

which shows that c = 1
2

is the best possible value.
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Remark 1. Taking into account the fact that

Pr (X ≥ x) = 1− Pr (X ≤ x) ,

then from (1.1) we get the equivalent inequality∣∣∣∣Pr (X ≥ x)− E (X)− a

b− a

∣∣∣∣(1.9)

≤ 1

b− a

[
[2x− (a+ b)] Pr (X ≤ x) +

∫ b

a

sgn (t− x)F (t) dt

]
≤ 1

b− a
[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ 1

2
+

∣∣x− a+b
2

∣∣
b− a

for all x ∈ [a, b] .

Remark 2. The following particular cases are also interesting:

(1.10)

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− b− E (X)

b− a

∣∣∣∣
≤
∫ b

a

sgn

(
t− a+ b

2

)
F (t) dt ≤ 1

2

and

(1.11)

∣∣∣∣Pr

(
X ≥ a+ b

2

)
− E (X)− a

b− a

∣∣∣∣
≤
∫ b

a

sgn

(
t− a+ b

2

)
F (t) dt ≤ 1

2
.

The following corollary can be useful in practice (see also [9]).

Corollary 1. Under the above assumptions, we have

1

b− a

[
a+ b

2
− E (X)

]
≤ Pr

(
X ≤ a+ b

2

)
(1.12)

≤ 1

b− a

[
a+ b

2
− E (X)

]
+ 1.

Proof. From the inequality (1.10) , we get

−1

2
+
b− E (X)

b− a
≤ Pr

(
X ≤ a+ b

2

)
≤ 1

2
+
b− E (X)

b− a
.
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But

−1

2
+
b− E (X)

b− a
=
−b+ a+ 2b− 2E (X)

2 (b− a)

=
1

b− a

[
a+ b

2
− E (X)

]
and

1

2
+
b− E (X)

b− a
= 1 +

b− E (X)

b− a
− 1

2

= 1 +
2b− 2E (X)− b+ a

2 (b− a)

= 1 +
1

b− a

[
a+ b

2
− E (X)

]
and the inequality is proved.

Remark 3. Let 0 ≤ ε ≤ 1, and assume that

(1.13) E (X) ≥ a+ b

2
+ (1− ε) (b− a) ,

then

(1.14) Pr

(
X ≤ a+ b

2

)
≤ ε.

Indeed, if (1.13) holds, then by the right-hand side of (1.12) we get

Pr

(
X ≤ a+ b

2

)
≤ 1

b− a

[
a+ b

2
− E (X)

]
+ 1

≤ (ε− 1) (b− a)

b− a
+ 1 = ε.

Remark 4. Also, if

(1.15) E (X) ≤ a+ b

2
− ε (b− a)

then, by the right-hand side of (1.12) ,

Pr

(
X ≤ a+ b

2

)
≥
[
a+ b

2
− E (X)

]
· 1

b− a

≥ ε (b− a)

(b− a)
= ε

and so

(1.16) Pr

(
X ≤ a+ b

2

)
≥ ε, ε ∈ [0, 1] .
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The following corollary is also interesting (see also [9]):

Corollary 2. Under the assumptions of Theorem 1,

1

b− x

∫ b

a

[
1 + sgn (t− x)

2

]
F (t) dt(1.17)

≥ Pr (X ≥ x)

≥ 1

x− a

∫ b

a

[
1− sgn (t− x)

2

]
F (t) dt

for all x ∈ (a, b) .

Proof. From the inequality (1.1) we have

Pr (X ≤ x)− b− E (X)

b− a

≤ 1

b− a

[
[2x− (a+ b)] Pr (X ≤ x) +

∫ b

a

sgn (t− x)F (t) dt

]
which is equivalent to

(b− a) Pr (X ≤ x)− [2x− (a+ b)] Pr (X ≤ x)

≤ b− E (X) +

∫ b

a

sgn (t− x)F (t) dt,

that is,

2 (b− x) Pr (X ≤ x) ≤ b− E (X) +

∫ b

a

sgn (t− x)F (t) dt.

As

b− E (X) =

∫ b

a

F (t) dt

then from the above inequality we deduce the first part of (1.17) .
The second part follows by a similar argument from

Pr (X ≤ x)− b− E (X)

b− a

≥ − 1

b− a

[
[2x− (a+ b)] Pr (X ≤ x) +

∫ b

a

sgn (t− x)F (t) dt

]
.

The details are omitted.
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Remark 5. If we put x = a+b
2

in (1.17) , then we get

1

b− a

∫ b

a

[
1 + sgn

(
t− a+ b

2

)]
F (t) dt(1.18)

≥ Pr

(
X ≥ a+ b

2

)
≥ 1

b− a

∫ b

a

[
1− sgn

(
t− a+ b

2

)]
F (t) dt.

1.2. Applications for a Beta Random Variable. A Beta ran-
dom variable X with parameters (p, q) has the probability density func-
tion

f (x; p, q) :=
xp−1 (1− x)q−1

B (p, q)
; 0 < x < 1,

where Ω = {(p, q) : p, q > 0} and B (p, q) :=
∫ 1

0
tp−1 (1− t)q−1 dt.

We have, further, that

E (X) =
1

B (p, q)

∫ 1

0

x · xp−1 (1− x)q−1 dx =
B (p+ 1, q)

B (p, q)
,

and so

E (X) =
p

p+ q
.

Let X be a Beta random variable with parameters (p, q) . Then we
have: ∣∣∣∣Pr (X ≤ x)− q

p+ q

∣∣∣∣ ≤ 1

2
+

∣∣∣∣x− 1

2

∣∣∣∣
and ∣∣∣∣Pr (X ≥ x)− p

p+ q

∣∣∣∣ ≤ 1

2
+

∣∣∣∣x− 1

2

∣∣∣∣
for all x ∈ [0, 1] and particularly∣∣∣∣Pr

(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣ ≤ 1

2

and ∣∣∣∣Pr

(
X ≥ 1

2

)
− p

p+ q

∣∣∣∣ ≤ 1

2

respectively.
The proof follows by application of Theorem 1.
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2. Random Variables whose PDFs Belong to L∞ [a, b]

2.1. Inequalities. Let X be a random variable with the probabil-
ity density function f : [a, b] ⊂ R→R+ and with cumulative distribu-
tion function F (x) = Pr (X ≤ x) .

The following theorem holds [13].

Theorem 2. Let f ∈ L∞ [a, b] and put ‖f‖∞ = sup
t∈[a,b]

f (t) < ∞.

Then we have the inequality:

(1.19)

∣∣∣∣Pr (X ≤ x)− b− E (X)

b− a

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f‖∞

or equivalently,

(1.20)

∣∣∣∣Pr (X ≥ x)− E (X)− a

b− a

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f‖∞

for all x ∈ [a, b] . The constant 1
4

in (1.19) and (1.20) is sharp.

Proof. Let x, y ∈ [a, b], then

|F (x)− F (y)| =
∣∣∣∣∫ y

x

f (t) dt

∣∣∣∣ ≤ |x− y| ‖f‖∞

which shows that F is ‖f‖∞−Lipschitzian on [a, b] .

Consider the kernel p : [a, b]2 → R given by (1.2). The Riemann-

Stieltjes integral
∫ b
a
p (x, t) dF (t) exists for any x ∈ [a, b] and the for-

mula of integration by parts for Riemann-Stieltjes integral gives:

(1.21)

∫ b

a

p (x, t) dF (t) = (b− a)F (x)−
∫ b

a

F (t) dt.

The integration by parts formula also gives

(1.22) E (X) = b−
∫ b

a

F (t) dt.

Now, using (1.21) and (1.22), we get the equality

(1.23) (b− a)F (x) + E (X)− b =

∫ b

a

p (x, t) dF (t) ,

for all x ∈ [a, b] .
Now, assume that

∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x(n)

n = b
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is a sequence of divisions with ν (∆n) → 0 as n→∞, where

ν (∆n) := max
{
x

(n)
i+1 − x

(n)
i : i = 0, ..., n− 1

}
.

If p : [a, b] → R is Riemann integrable on [a, b] and ν : [a, b] → R is
L-Lipschitzian (Lipschitzian with the constant L), then we have∣∣∣∣∫ b

a

p (x) dν (x)

∣∣∣∣(1.24)

=

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
ν
(
x

(n)
i+1

)
− ν

(
x

(n)
i

)]∣∣∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (x(n)
i+1 − x

(n)
i

) ∣∣∣∣∣∣
ν
(
x

(n)
i+1

)
− ν

(
x

(n)
i

)
x

(n)
i+1 − x

(n)
i

∣∣∣∣∣∣
≤ L lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (x(n)
i+1 − x

(n)
i

)
= L

∫ b

a

|p (x)| dx.

Applying the inequality (1.24) for the mappings p (x, ·) and F (·) ,we
get ∣∣∣∣∫ b

a

p (x, t) dF (t)

∣∣∣∣ ≤ ‖f‖∞
∫ b

a

|p (x, t)| dt

= ‖f‖∞
[∫ x

a

(t− a) dt+

∫ b

x

(b− t) dt

]
= ‖f‖∞

[
(x− a)2 + (b− x)2

2

]

=

[
1

4
(b− a)2 +

(
x− a+ b

2

)2
]
‖f‖∞

for all x ∈ [a, b] .
Finally, by the identity (1.23) we deduce that for all x ∈ [a, b],∣∣∣∣F (x)− b− E (X)

b− a

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f‖∞

which proves (1.19) .
Now, taking into account the fact that

Pr (X ≥ x) = 1− Pr (X ≤ x) ,

the inequality (1.20) is also obtained.
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To prove that the constant 1
4

is best, assume that the inequality
(1.19) holds with a constant c > 0, that is,

(1.25)

∣∣∣∣Pr (X ≤ x)− b− E (X)

b− a

∣∣∣∣ ≤
[
c+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f‖∞

for all x ∈ [a, b] .
Assume that X0 is a random variable having the probability density

function f0 : [0, 1] → R given by f0 (t) = 1, then we find that

Pr (X0 ≥ x) = x, (x ∈ [0, 1]), E (X0) =
1

2
, and ‖f0‖∞ = 1.

Consequently, (1.25) becomes∣∣∣∣x− 1

2

∣∣∣∣ ≤ c+

(
x− 1

2

)2

for all x ∈ [0, 1] .

Choosing x = 0, we get c ≥ 1
4

and the result is proved.

The above theorem has some interesting corollaries for the expec-
tation of X (see also [13]).

Corollary 3. Under the above assumptions, we have the double
inequality

(1.26) b− 1

2
(b− a)2 ‖f‖∞ ≤ E (X) ≤ a+

1

2
(b− a)2 ‖f‖∞ .

Proof. We know that

a ≤ E (X) ≤ b.

Now, choose x = a in (1.19) to obtain∣∣∣∣b− E (X)

b− a

∣∣∣∣ ≤ 1

2
(b− a) ‖f‖∞

that is,

b− E (X) ≤ 1

2
(b− a)2 ‖f‖∞ ,

which is equivalent to the first inequality in (1.26) .
Also, choose x = b in (1.19) to get∣∣∣∣1− b− E (X)

b− a

∣∣∣∣ ≤ 1

2
(b− a) ‖f‖∞

which reduces to:

E (X)− a ≤ 1

2
(b− a)2 ‖f‖∞ ,

proving the second inequality (1.26).
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Remark 6. We know that

1 =

∫ b

a

f (x) dx ≤ (b− a) ‖f‖∞

which gives

‖f‖∞ ≥ 1

b− a
.

If we assume that ‖f‖∞ is not too large, say,

(1.27) ‖f‖∞ ≤ 2

b− a
,

then

a+
1

2
(b− a)2 ‖f‖∞ ≤ b

and

b− 1

2
(b− a)2 ‖f‖∞ ≥ a

which shows that the inequality (1.26) is a tighter inequality than a ≤
E (X) ≤ b when (1.27) holds.

Another equivalent inequality to (1.26) , which can be more useful
in practice, is the one following (see also [13]).

Corollary 4. With the above assumptions,

(1.28)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ (b− a)2

2

(
‖f‖∞ −

1

b− a

)
.

Proof. From the inequality (1.26),

b− a+ b

2
− 1

2
(b− a)2 ‖f‖∞ ≤ E (X)− a+ b

2

≤ a− a+ b

2
+

1

2
(b− a)2 ‖f‖∞ ,

giving,

−(b− a)2

2

(
‖f‖∞ −

1

b− a

)
≤ E (X)− a+ b

2

≤ (b− a)2

2

(
‖f‖∞ −

1

b− a

)
,

which is exactly (1.28) .

This corollary provides the mechanism for finding a sufficient con-
dition, in terms of ‖f‖∞ , for the expectation E (X) to be close to the
midpoint of the interval, a+b

2
(see also [13]).
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Corollary 5. Let X and f be as above and ε > 0. If

(1.29) ‖f‖∞ ≤ 1

b− a
+

2ε

(b− a)2

then, ∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ ε.

The proof is obvious and hence the details are omitted.
The following corollary of Theorem 2 also holds (see also [13]).

Corollary 6. Let X and f be as above, then:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣(1.30)

≤ 1

4
(b− a) ‖f‖∞ +

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤ 3

4
(b− a) ‖f‖∞ −

1

2
.

Proof. If we choose x = a+b
2

in (1.19) , then we have:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− b− E (X)

b− a

∣∣∣∣ ≤ 1

4
(b− a) ‖f‖∞ ,

which is clearly equivalent to∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
≤ 1

4
(b− a) ‖f‖∞ .

Using the triangle inequality, we get∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)
− 1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
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≤
∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
+

∣∣∣∣ 1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
≤ 1

4
(b− a) ‖f‖∞ +

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤ 3

4
(b− a) ‖f‖∞ −

1

2
and the desired inequality is obtained.

Remark 7. A similar result applies for

Pr

(
X ≥ a+ b

2

)
,

and the details are omitted.
Finally, the following result holds (see also [13]).

Corollary 7. Let X and f be as above, then:

(1.31)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤ 1

4
(b− a)2 ‖f‖∞ + (b− a)

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣ .
Proof. As in the above Corollary 6, we have

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤
∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
+

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣
≤ 1

4
(b− a) ‖f‖∞ +

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣ ,
from which we get (1.31) .

Remark 8. If we assume that f is continuous on [a, b] , then F
is differentiable on (a, b) and we get, in view of Ostrowski’s inequality,
(see for instance [86]),∣∣∣∣F (x)− 1

b− a

∫ b

a

F (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f‖∞
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for all x ∈ [a, b] .

Using the identity (1.22) we recapture the inequality (1.19) and
(1.20) for random variables whose probability density functions are
continuous on [a, b] .

2.2. Application for a Beta Random Variable. Assume that
X is a Beta random variable with parameters (p, q) as defined in (1.2).
We observe that for 0 < p < 1,

‖f (·, p, q)‖∞ = sup
x∈(0,1)

[
xp−1 (1− x)q−1

B (p, q)

]
= ∞.

Assume that p, q ≥ 1, then we find that

df (x, p, q)

dx

=
1

B (p, q)

[
(p− 1)xp−2 (1− x)q−1 − (q − 1)xp−1 (1− x)q−2]

=
xp−2 (1− x)q−2

B (p, q)
[(p− 1) (1− x)− (q − 1)x]

=
xp−2 (1− x)q−2

B (p, q)
[− (p+ q − 2)x+ (p− 1)] .

We observe that for p, q > 1, df(x,p,q)
dx

= 0 if and only if x0 = p−1
p+q−2

.

We therefore have df(x,p,q)
dx

> 0 on (0, x0) and df(x,p,q)
dx

< 0 on (x0, 1) .
Consequently, we see that

‖f (·, p, q)‖∞ = f (x0; p, q) =
(p− 1)p−1 (q − 1)q−1

B (p, q) (p+ q − 2)p+q−2 .

On the other hand we have

E (X) =
1

B (p, q)

∫ 1

0

x · xp−1 (1− x)q−1 dx =
B (p+ 1, q)

B (p, q)
.

Upon employing the familiar relationships B (p, q) = Γ(p)Γ(q)
Γ(p+q)

and

Γ (z + 1) = zΓ (z), (z ∈ C� {−1,−2,−3, ...}), where Γ denotes the
well-known Gamma Function, it is easy to see that

E (X) =
p

p+ q
.

Finally, using Theorem 2, we can state the following.
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Let X be a Beta random variable with the parameters (p, q), (p, q) ∈
[1,∞)× [1,∞), then we have the inequality∣∣∣∣Pr (X ≤ x)− q

p+ q

∣∣∣∣ ≤
[

1

4
+

(
x− 1

2

)2
]

(p− 1)p−1 (q − 1)q−1

B (p, q) (p+ q − 2)p+q−2

and ∣∣∣∣Pr (X ≥ x)− p

p+ q

∣∣∣∣
≤

[
1

4
+

(
x− 1

2

)2
]

(p− 1)p−1 (q − 1)q−1

B (p, q) (p+ q − 2)p+q−2

where x ∈ [0, 1] . In particular,∣∣∣∣Pr

(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣ ≤ 1

4
· (p− 1)p−1 (q − 1)q−1

B (p, q) (p+ q − 2)p+q−2

and ∣∣∣∣Pr

(
X ≥ 1

2

)
− p

p+ q

∣∣∣∣ ≤ 1

4
· (p− 1)p−1 (q − 1)q−1

B (p, q) (p+ q − 2)p+q−2 ·

3. Random Variables whose PDFs Belong to Lp [a, b] , p > 1

3.1. Inequalities. The following theorem holds [76].

Theorem 3. Let X be a random variable with the probability den-
sity function f : [a, b] ⊂ R→R+ and with cumulative distribution func-
tion F (x) = Pr (X ≤ x) . If f ∈ Lp [a, b] , p > 1, then we have the
inequalities ∣∣∣∣Pr (X ≤ x)− b− E (X)

b− a

∣∣∣∣(1.32)

≤ q

q + 1
‖f‖p (b− a)

1
q

[(
x− a

b− a

) 1+q
q

+

(
b− x

b− a

) 1+q
q

]
≤ q

q + 1
‖f‖p (b− a)

1
q

for all x ∈ [a, b] , where 1
p

+ 1
q

= 1.
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Proof. By Hölder’s integral inequality we have

|F (x)− F (y)| =
∣∣∣∣∫ y

x

f (t) dt

∣∣∣∣(1.33)

≤
∣∣∣∣∫ y

x

dt

∣∣∣∣ 1q ∣∣∣∣∫ y

x

|f (t)|p dt
∣∣∣∣ 1p

≤ |x− y|
1
q ‖f‖p ,

for all x, y ∈ [a, b] , where p > 1, 1
p

+ 1
q

= 1 and

‖f‖p :=

(∫ b

a

|f (t)|p dt
) 1

p

is the usual p−norm on Lp [a, b] .
The inequality (1.33) shows, in fact, that the mapping F (·) is of

the r −H−Hölder type, i.e.,

(1.34) |F (x)− F (y)| ≤ H |x− y|r , for all x, y ∈ [a, b]

with 0 < H = ‖f‖p and r = 1
q
∈ (0, 1).

Integrating the inequality (1.33) over y ∈ [a, b] we get successively∣∣∣∣F (x)− 1

b− a

∫ b

a

F (y) dy

∣∣∣∣(1.35)

≤ 1

b− a

∫ b

a

|F (x)− F (y)| dy ≤ 1

b− a
‖f‖p

∫ b

a

|x− y|
1
q dy

=
1

b− a
‖f‖p

[∫ x

a

(x− y)
1
q dy +

∫ b

x

(y − x)
1
q dy

]
=

1

b− a
‖f‖p

[
(x− a)

1
q
+1

1
q

+ 1
+

(b− x)
1
q
+1

1
q

+ 1

]
=

q

q + 1
· 1

b− a
‖f‖p

[
(x− a)

1
q
+1 + (b− x)

1
q
+1
]

=
q

q + 1
‖f‖p (b− a)

1
q

[(
x− a

b− a

) 1
q
+1

+

(
b− x

b− a

) 1
q
+1
]

for all x ∈ [a, b] .
Since

E (X) = b−
∫ b

a

F (t) dt

then, by (1.35) , we get the first inequality in (1.32) .
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For the second inequality, we observe that(
x− a

b− a

) 1
q
+1

+

(
b− x

b− a

) 1
q
+1

≤ 1, for all x ∈ [a, b]

and the theorem is completely proved.

Remark 9. The inequalities (1.32) are equivalent to∣∣∣∣Pr (X ≥ x)− E (X)− a

b− a

∣∣∣∣(1.36)

≤ q

q + 1
‖f‖p (b− a)

1
q

[(
x− a

b− a

) 1+q
q

+

(
b− x

b− a

) 1+q
q

]
≤ q

q + 1
‖f‖p (b− a)

1
q , for all x ∈ [a, b] .

Corollary 8. ([76]) Under the above assumptions, we have the
double inequality

(1.37) b− q

q + 1
‖f‖p (b− a)1+ 1

q ≤ E (X) ≤ a+
q

q + 1
‖f‖p (b− a)

1
q
+1 .

Proof. We know that a ≤ E (X) ≤ b.
Now, choose in (1.32) x = a to get∣∣∣∣b− E (X)

b− a

∣∣∣∣ ≤ q

q + 1
‖f‖p (b− a)

1
q

i.e.,

b− E (X) ≤ q

q + 1
‖f‖p (b− a)1+ 1

q ,

which is equivalent to the first inequality in (1.37) .
Alternatively, let x = b in (1.32) to give:∣∣∣∣1− b− E (X)

b− a

∣∣∣∣ ≤ q

q + 1
‖f‖p (b− a)

1
q

so
E (X)− a ≤ q

q + 1
‖f‖p (b− a)

1
q
+1 ,

which is equivalent to the second inequality in (1.37) .

Remark 10. By Hölder’s integral inequality,

1 =

∫ b

a

f (t) dt ≤ (b− a)
1
q ‖f‖p ,

which gives

‖f‖p ≥
1

(b− a)
1
q

.
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Now, if we assume that ‖f‖p is not too large, such that

(1.38) ‖f‖p ≤
q + 1

q
· 1

(b− a)
1
q

then we get

a+
q

q + 1
‖f‖p (b− a)

1
q
+1 ≤ b

and

b− q

q + 1
‖f‖p (b− a)1+ 1

q ≥ a,

which shows that the inequality (1.37) is a tighter inequality than a ≤
E (X) ≤ b when (1.38) holds.

Another equivalent inequality to (1.37) , which can be more useful
in practice, is the following (see also [76]):

Corollary 9. With the above assumptions, we have:

(1.39)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ (b− a)

[
q

q + 1
‖f‖p (b− a)

1
q − 1

2

]
.

Proof. From (1.37) we have:

b− a+ b

2
− q

q + 1
‖f‖p (b− a)1+ 1

q

≤ E (X)− a+ b

2

≤ a− a+ b

2
+

q

q + 1
‖f‖p (b− a)1+ 1

q .

That is,

b− a

2
− q

q + 1
‖f‖p (b− a)1+ 1

q

≤ E (X)− a+ b

2

≤ −b− a

2
+

q

q + 1
‖f‖p (b− a)1+ 1

q ,

which is equivalent to∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ q

q + 1
‖f‖p (b− a)1+ 1

q − b− a

2

= (b− a)

[
q

q + 1
‖f‖p (b− a)

1
q − 1

2

]
and the inequality (1.39) is proved.
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This corollary provides the possibility of finding a sufficient condi-
tion, in terms of ‖f‖p (p > 1) , for the expectation E (X) to be close

to the interval midpoint, a+b
2

(see also [76]).

Corollary 10. Let X and f be as above and ε > 0. If

‖f‖p ≤
q + 1

2q
· 1

(b− a)
1
q

+
ε (q + 1)

q (b− a)1+ 1
q

then ∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ ε.

The details are omitted.
The following corollary of Theorem 3 also holds (see also [76]):

Corollary 11. Let X and f be as above, then:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣
≤ q

2
1
q (q + 1)

‖f‖p (b− a)
1
q +

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ .
Proof. If, in (1.32) , x = a+b

2
, we get∣∣∣∣Pr

(
X ≤ a+ b

2

)
− b− E (X)

b− a

∣∣∣∣ ≤ q

2
1
q (q + 1)

‖f‖p (b− a)
1
q ,

which is clearly equivalent to:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
≤ q

2
1
q (q + 1)

‖f‖p (b− a)
1
q .

Using the triangle inequality, this becomes:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)
− 1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
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≤
∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2
+

1

b− a

(
E (X)− a+ b

2

)∣∣∣∣
+

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤ q

2
1
q (q + 1)

‖f‖p (b− a)
1
q +

1

b− a

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
and the corollary is proved.

Finally, the following result also holds (see also [76]):

Corollary 12. With the above assumptions, we have:∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ q

2
1
q (q + 1)

‖f‖p (b− a)1+ 1
q

+ (b− a)

∣∣∣∣Pr

(
X ≤ a+ b

2

)
− 1

2

∣∣∣∣ .
The proof is similar and we omit the details.
For some related results see [25].

3.2. Applications for A Beta Random Variable. Let X be
a Beta Random Variable with parameters (s, t) as defined in (1.2).
Observe that, for p > 1,

‖f (·; s, t)‖p =
1

B (s, t)

(∫ 1

0

τ p(s−1) (1− τ)p(t−1) dτ

) 1
p

=
1

B (s, t)

(∫ 1

0

τ p(s−1)+1−1 (1− τ)p(t−1)+1−1 dτ

) 1
p

=
1

B (s, t)
[B (p (s− 1) + 1, p (t− 1) + 1)]

1
p ,

provided

p (s− 1) + 1, p (t− 1) + 1 > 0,

namely,

s > 1− 1

p
and t > 1− 1

p
.

Now, using Theorem 3, we can state the following:
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Let p > 1 and X be a Beta random variable with the parameters
(s, t) , s > 1− 1

p
, t > 1− 1

p
, then we have:

(1.40)

∣∣∣∣Pr (X ≤ x)− t

s+ t

∣∣∣∣
≤ q

q + 1

[
x

1+q
q + (1− x)

1+q
q

]
[B (p (s− 1) + 1, p (t− 1) + 1)]

1
p

B (s, t)

for all x ∈ [0, 1] .
In particular, we have∣∣∣∣Pr

(
X ≤ 1

2

)
− t

s+ t

∣∣∣∣
≤ q

2
1
q (q + 1)

[B (p (s− 1) + 1, p (t− 1) + 1)]
1
p

B (s, t)
.

The proof follows by Theorem 3 choosing f (x) = f (x; s, t) , x ∈
[0, 1] and taking E (X) = s

s+t
.

4. Better Bounds for an Inequality of the Ostrowski Type

4.1. Introduction. In 1938, A. Ostrowski [112] (see also [110, p.
468]) proved the following inequality

(1.41)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)M

for all x ∈ [a, b], provided that f is differentiable on (a, b) and |f ′ (t)| ≤
M for all t ∈ (a, b).

Using the following representation, which has been obtained by
Montgomery in an equivalent form [110, p. 565],

(1.42) f (x)− 1

b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

p (x, t) f ′ (t) dt

for all x ∈ [a, b], provided that f is absolutely continuous on [a, b] and

p (x, t) :=

 t− a if t ∈ [a, x]

t− b if t ∈ (x, b}
, (x, t) ∈ [a, b]2 ,

we can put, in place of M in (1.41), the sup norm of f ′, namely, ‖f ′‖∞
where

‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| ,



4. BETTER BOUNDS FOR AN INEQUALITY OF THE OSTROWSKI TYPE 23

provided that f ′ ∈ L∞ [a, b].
In [88], Dragomir and Wang, using the Grüss inequality, proved the

following perturbed version of Ostrowski’s inequality:

(1.43)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)

b− a

(
x− a+ b

2

)∣∣∣∣
≤ 1

4
(b− a) (Γ− γ)

for all x ∈ [a, b], provided the derivative f ′ satisfies the condition

(1.44) γ ≤ f ′ (t) ≤ Γ on (a, b) .

Using a pre-Grüss inequality, Matić, Pečaric and Ujević [108] im-
proved the constant 1

4
, in the right hand member of (1.43), with the

constant 1
4
√

3
.

An upper bound in terms of the second derivative has been pointed
out by Barnett and Dragomir in [12].

For two mappings g, h : [a, b] → R, define the Čebyšev functional
as

(1.45) T (g, h) :=
1

b− a

∫ b

a

g (t)h (t) dt

− 1

b− a

∫ b

a

g (t) dt · 1

b− a

∫ b

a

h (t) dt,

provided the involved integrals exist.
By use of (1.45), we improve the Matić-Pečaric-Ujević result by

providing a better bound for the first membership of (1.43) in terms
of Euclidean norms. Since the bound in (1.43) will apply for abso-
lutely continuous mappings whose derivatives are bounded, the new
inequality will also apply for the larger class of absolutely continuous
mappings whose derivative f ′ ∈ L2 [a, b].

4.2. The Results. The following theorem holds [23].

Theorem 4. Let f : [a, b] → R be an absolutely continuous map-
ping whose derivative f ′ ∈ L2 [a, b], then we have the inequality∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)

b− a

(
x− a+ b

2

)∣∣∣∣(1.46)

≤ (b− a)

2
√

3

[
1

b− a
‖f ′‖2

2 −
(
f (b)− f (a)

b− a

)2
] 1

2
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≤ (b− a) (Γ− γ)

4
√

3
if γ ≤ f ′ (t) ≤ Γ for a.e. t on [a, b]

)
for all x ∈ [a, b].

Proof. Using Korkine’s identity,

(1.47) T (g, h) =
1

2 (b− a)2

∫ b

a

∫ b

a

(g (t)− g (s)) (h (t)− h (s)) dtds,

we obtain from (1.45) and (1.47),

(1.48)
1

b− a

∫ b

a

p (x, t) f ′ (t) dt

− 1

b− a

∫ b

a

p (x, t) dt · 1

b− a

∫ b

a

f ′ (t) dt

=
1

2 (b− a)2

∫ b

a

∫ b

a

(p (x, t)− p (x, s)) (f ′ (t)− f ′ (s)) dtds.

As

1

b− a

∫ b

a

p (x, t) f ′ (t) dt = f (x)− 1

b− a

∫ b

a

f (t) dt,

1

b− a

∫ b

a

p (x, t) dt = x− a+ b

2

and

1

b− a

∫ b

a

f ′ (t) dt =
f (b)− f (a)

b− a
,

then, by (1.48), we get the identity,

(1.49) f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)

b− a

(
x− a+ b

2

)
=

1

2 (b− a)2

∫ b

a

∫ b

a

(p (x, t)− p (x, s)) (f ′ (t)− f ′ (s)) dtds

for all x ∈ [a, b].
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Using the Cauchy-Buniakowski-Schwartz inequality for double in-
tegrals, we can write,

(1.50)
1

2 (b− a)2

∫ b

a

∫ b

a

(p (x, t)− p (x, s)) (f ′ (t)− f ′ (s)) dtds

≤
(

1

2 (b− a)2

∫ b

a

∫ b

a

(p (x, t)− p (x, s))2 dtds

) 1
2

×
(

1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2
dtds

) 1
2

.

However,

1

2 (b− a)2

∫ b

a

∫ b

a

(p (x, t)− p (x, s))2 dtds

=
1

b− a

∫ b

a

p2 (x, t) dt−
(

1

b− a

∫ b

a

p (x, t) dt

)2

=
1

b− a

[∫ x

a

(t− a)2 dt+

∫ b

x

(t− a)2 dt

]
−
(
x− a+ b

2

)2

=
1

b− a

[
(x− a)3 + (b− x)3

3

]
−
(
x− a+ b

2

)2

=
(b− a)2

12

and

1

2 (b− a)2

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s))
2
dtds

=
1

b− a
‖f ′‖2

2 −
(
f (b)− f (a)

b− a

)2

.

Consequently, by (1.49) and (1.50), we deduce the first inequality in
(1.46).

If γ ≤ f ′ (t) ≤ Γ for a.e. t ∈ (a, b), then, by the Grüss inequality,
we have:

0 ≤ 1

b− a

∫ b

a

(f ′ (t))
2
dt−

(
1

b− a

∫ b

a

f ′ (t) dt

)2

≤ 1

4
(Γ− γ)2 ,

and the last inequality in (1.46) is obtained.
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Corollary 13. ([23]) With the above assumptions, from (1.46)
with x = a+b

2
, we have the mid-point inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(1.51)

≤ (b− a)

2
√

3

[
1

b− a
‖f ′‖2

2 −
(
f (b)− f (a)

b− a

)2
] 1

2

(
≤ (b− a) (Γ− γ)

4
√

3
if γ ≤ f ′ (t) ≤ Γ a.e. t on [a, b]

)
.

Remark 11. Since L∞ [a, b] ⊂ L2 [a, b] (and the inclusion is strict),
then we remark that the inequality (1.46) can be applied also for the
mappings f whose derivatives are unbounded on (a, b), but f ′ ∈ L2 [a, b].

4.3. Applications for CDFs. Let X be a random variable hav-
ing the PDF f : [a, b] → R+ and cumulative density function F :
[a, b] → [0, 1], i.e.,

F (x) =

∫ x

a

f (t) dt, x ∈ [a, b] .

We have the following inequality [23].

Theorem 5. With the above assumptions and if the PDF f ∈
L2 [a, b], then we have the inequality∣∣∣∣F (x)− b− E (X)

b− a
− 1

b− a

(
x− a+ b

2

)∣∣∣∣(1.52)

≤ 1

2
√

3

[
(b− a) ‖f‖2

2 − 1
] 1

2(
≤ (b− a) (M −m)

4
√

3
if m ≤ f ≤M a.e. on [a, b]

)
for all x ∈ [a, b], where E (X) is the expectation of X.

Proof. Put F instead of f in (1.46), to get∣∣∣∣F (x)− 1

b− a

∫ b

a

F (t) dt− F (b)− F (a)

b− a

(
x− a+ b

2

)∣∣∣∣(1.53)

≤ (b− a)

2
√

3

[
1

b− a
‖f‖2

2 −
(
F (b)− F (a)

b− a

)2
] 1

2

(
≤ (b− a) (M −m)

4
√

3
if m ≤ f (t) ≤M a.e. t on [a, b]

)
.
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As F (a) = 0, F (b) = 1, and∫ b

a

F (t) dt = b− E (X) ,

then, by (1.53), we easily deduce (1.52).

Corollary 14. ([23]) With the above assumptions, we have:∣∣∣∣Pr

(
X ≤ a+ b

2

)
− b− E (X)

b− a

∣∣∣∣(1.54)

≤ 1

2
√

3

[
(b− a) ‖f‖2

2 − 1
] 1

2(
≤ (b− a) (M −m)

4
√

3
where m ≤ f ≤M are as above

)
.

Let X be a Beta random variable with parameters (p, q), then we
know that

E (X) =
p

p+ q
and

‖f (·; p, q)‖2
2 =

∫ 1

0

x2(p−1) (1− x)2(q−1)

B2 (p, q)
dx =

B (2p− 1, 2q − 1)

B2 (p, q)
.

By Theorem 5, we then have the inequality,

(1.55)

∣∣∣∣Pr (X ≤ x)− p

p+ q
− x+

1

2

∣∣∣∣
≤ 1

2
√

3
· [B (2p− 1, 2q − 1)−B2 (p, q)]

1
2

B (p, q)

for all x ∈ [0, 1].





CHAPTER 2

Other Ostrowski Type Results and Applications
for PDFs

1. Ostrowski’s Inequality for Functions of Bounded Variation

1.1. Introduction. In [59], the author proved the following in-
equality of the Ostrowski type for functions of bounded variation.

Theorem 6. Let f : [a, b] → R be a function of bounded variation

on [a, b] and denote by
∨b
a (f) its total variation on [a, b] . For any

x ∈ [a, b], one has the inequality:

(2.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f) .

The constant 1
2

is best possible in the sense that it cannot be replaced
by a smaller one.

The above inequality (2.1) has, as a particular case, the mid-point
inequality.

The corresponding version for the generalised trapezoid inequality
was obtained in [36].

Theorem 7. With the assumptions in Theorem 6,

(2.2)

∣∣∣∣(x− a) f (a) + (b− x) f (b)

b− a
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f)

for any x ∈ [a, b] .
Here the constant 1

2
is also the best possible in the above sense.

The above inequality (2.2) incorporates the trapezoid inequality.
In [99], Guessab and Schmeisser developed a generalised model

incorporating both the mid-point and trapezoid inequality as special
cases. They have proved amongst others, the following companion of
Ostrowski’s inequality.

29
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Theorem 8. Assume that the function f : [a, b] → R is of the
M − r−Hölder type with r ∈ (0, 1], namely,

(2.3) |f (t)− f (s)| ≤M |t− s|r for any t, s ∈ [a, b] .

For each x ∈
[
a, a+b

2

]
, one has the inequality

(2.4)

∣∣∣∣f (x) + f (a+ b− x)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

[
2r+1 (x− a)r+1 + (a+ b− 2x)r+1

2r (r + 1) (b− a)

]
M.

This inequality is sharp for each admissible x. Equality is obtained if
and only if f = ±Mf∗ + c, with c ∈ R and

(2.5) f∗ (t) =


(x− t)r , for a ≤ t ≤ x

(t− x)r , for x ≤ t ≤ 1
2
(a+ b)

f∗ (a+ b− t) , for 1
2
(a+ b) ≤ t ≤ b.

Remark 12. For r = 1, f is Lipschitzian with constant L > 0, and
since

4 (x− a)2 + (a+ b− 2x)2

4 (b− a)
=

1

8
+ 2

(
x− 3a+b

4

b− a

)2
 (b− a)

then, by (2.4), we get the following companion of Ostrowski’s inequality
for Lipschitzian functions,

(2.6)

∣∣∣∣f (x) + f (a+ b− x)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

1

8
+ 2

(
x− 3a+b

4

b− a

)2
 (b− a)L,

for any x ∈
[
a, a+b

2

]
.

The constant 1
8

is the best possible in (2.6).

By substituting x = 3a+b
4

into the above inequality, we obtain the
following trapezoid type inequality, which is the best in the class,

(2.7)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

8
(b− a)L.

The constant 1
8

here is also best possible in the above sense.
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For a recent monograph devoted to Ostrowski type inequalities, see
[86].

The main aim of the next section is to provide a sharp bound for
the difference

f (x) + f (a+ b− x)

2
− 1

b− a

∫ b

a

f (t) dt,

where f is assumed to be of bounded variation.

1.2. Some Integral Inequalities. The following identity holds
[47].

Lemma 1. Assume that the function f : [a, b] → R is of bounded
variation on [a, b] , then we have the equality

(2.8)
1

2
[f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

=
1

b− a

[∫ x

a

(t− a) df (t) +

∫ a+b−x

x

(
t− a+ b

2

)
df (t)

+

∫ b

a+b−x
(t− b) df (t)

]
for any x ∈

[
a, a+b

2

]
.

Proof. Obviously, all the Riemann-Stieltjes integrals from the right
hand side of (2.8) exist because the functions (· − a) ,

(
· − a+b

2

)
and

(· − b) are continuous on these intervals and f is of bounded variation.
Using the integration by parts formula for Riemann-Stieltjes inte-

grals, we have, for any x ∈
[
a, a+b

2

]
, that∫ x

a

(t− a) df (t) = f (x) (x− a)−
∫ x

a

f (t) dt,

∫ a+b−x

x

(
t− a+ b

2

)
df (t)

= f (a+ b− x)

(
a+ b

2
− x

)
− f (x)

(
x− a+ b

2

)
−
∫ a+b−x

x

f (t) dt

and ∫ b

a+b−x
(t− b) df (t) = (x− a) f (a+ b− x)−

∫ b

a+b−x
f (t) dt.

Summing the above equalities we deduce (2.8).
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Remark 13. A version of this identity for piecewise continuously
differentiable functions has been obtained in [99, Lemma 3.2].

The following companion of Ostrowski’s inequality holds [47].

Theorem 9. Assume that the function f : [a, b] → R is of bounded
variation on [a, b] , then we have the inequalities:

(2.9)

∣∣∣∣12 [f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ 1

b− a

[
(x− a)

x∨
a

(f) +

(
a+ b

2
− x

) a+b−x∨
x

(f)

+ (x− a)
b∨

a+b−x

(f)

]

≤



[
1

4
+

∣∣∣∣∣x− 3a+b
4

b− a

∣∣∣∣∣
]

b∨
a

(f)

[
2

(
x− a

b− a

)α
+

(
a+b
2
− x

b− a

)α] 1
α

×

[[
x∨
a

(f)

]β
+

[
a+b−x∨
x

(f)

]β
+

[
b∨

a+b−x
(f)

]β] 1
β

,

if α > 1, 1
α

+ 1
β

= 1[
x− a+ b−a

2

b− a

]
max

{
x∨
a

(f) ,
a+b−x∨
x

(f) ,
b∨

a+b−x
(f)

}
for any x ∈

[
a, a+b

2

]
, where

∨d
c (f) denotes the total variation of f

on [c, d] . The constant 1
4

is the best possible in the first branch of the
second inequality in (2.9).

Proof. We use the fact that for a continuous function p : [c, d] →
R and a function v : [a, b] → R of bounded variation, one has the
inequality

(2.10)

∣∣∣∣∫ d

c

p (t) dv (t)

∣∣∣∣ ≤ sup
t∈[c,d]

|p (t)|
d∨
c

(v) .

Taking the modulus in (2.8) we have∣∣∣∣12 [f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
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≤ 1

b− a

[∣∣∣∣∫ x

a

(t− a) df (t)

∣∣∣∣+ ∣∣∣∣∫ a+b−x

x

(
t− a+ b

2

)
df (t)

∣∣∣∣
+

∣∣∣∣∫ b

a+b−x
(t− b) df (t)

∣∣∣∣]
≤ 1

b− a

[
(x− a)

x∨
a

(f) +

(
a+ b

2
− x

) a+b−x∨
x

(f) + (x− a)
b∨

a+b−x

(f)

]
=: M (x)

and the first inequality in (2.9) is obtained.
Now, observe that

M (x)

≤ 1

b− a
max

{
x− a,

a+ b

2
− x

}[ x∨
a

(f) +
a+b−x∨
x

(f) +
b∨

a+b−x

(f)

]

=
1

b− a

[
1

4
(b− a) +

∣∣∣∣x− 3a+ b

4

∣∣∣∣] b∨
a

(f)

and the first branch in the second inequality in (2.9) is proved.
Using Hölder’s discrete inequality we have (for α > 1, 1

α
+ 1

β
= 1)

that

M (x) ≤ 1

b− a

[
(x− a)α +

(
a+ b

2
− x

)α
+ (x− a)α

] 1
α

×

[ x∨
a

(f)

]β
+

[
a+b−x∨
x

(f)

]β
+

[
b∨

a+b−x

(f)

]β 1
β

giving the second branch in the second inequality.
Finally, we have

M (x) ≤ 1

b− a
max

{
x∨
a

(f) ,
a+b−x∨
x

(f) ,
b∨

a+b−x

(f)

}

×
[
(x− a) +

(
a+ b

2
− x

)
+ (x− a)

]
,

which is equivalent to the last inequality in (2.9).
The sharpness of the constant 1

4
in the first branch of the second

inequality in (2.9) will be proved in a particular case later.
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Corollary 15. With the assumptions in Theorem 9, we have the
trapezoid inequality

(2.11)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(f) .

The constant 1
2

is the best possible in (2.11).

Proof. The proof follows from the first inequality in (2.9) on
choosing x = a. For the sharpness of the constant, assume that (2.11)
holds with a constant A > 0, i.e.,

(2.12)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ A

b∨
a

(f) .

If we choose f : [a, b] → R with

f (x) =


1 if x = a,

0 if x ∈ (a, b) ,

1 if x = b,

then f is of bounded variation on [a, b] and

f (a) + f (b)

2
= 1,

∫ b

a

f (t) dt = 0, and
b∨
a

(f) = 2,

giving in (2.12) 1 ≤ 2A, thus A ≥ 1
2

and the corollary is proved.

Remark 14. The inequality (2.11) was first proved in a different
manner in [70].

Corollary 16. With the assumptions in Theorem 9, one has the
midpoint inequality

(2.13)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(f) .

The constant 1
2

is the best possible in (2.13).

Proof. The proof follows from the first inequality in (2.9) on
choosing x = a+b

2
. For the sharpness of the constant, assume that

(2.13) holds with a constant B > 0, so that

(2.14)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ B ·
b∨
a

(f) .
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If we choose f : [a, b] → R with

f (x) =


0 if x ∈

[
a, a+b

2

)
,

1 if x = a+b
2
,

0 if x ∈
(
a+b
2
, b
]
,

then f is of bounded variation on [a, b] , and

f

(
a+ b

2

)
= 1,

∫ b

a

f (t) dt = 0, and
b∨
a

(f) = 2,

giving in (2.14), 1 ≤ 2B, thus B ≥ 1
2
.

Remark 15. The inequality (2.13) was first proved in a different
manner in [58].

The best inequality we can get from Theorem 9, on using the bound
provided by the first branch in the second inequality in (2.9), is incor-
porated in the following corollary [47].

Corollary 17. With the assumptions in Theorem 9, one has the
inequality:

(2.15)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

4

b∨
a

(f) .

The constant 1
4

is best possible.

Proof. Follows by Theorem 9 on choosing x = 3a+b
4
.

To prove the sharpness of the constant 1
4
, assume that (2.15) holds

with a constant C > 0, so that

(2.16)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ C ·
b∨
a

(f) .

Consider the function f : [a, b] → R, given by

f (x) =

 1 if x ∈
{

3a+b
4
, a+3b

4

}
,

0 if x ∈ [a, b] \
{

3a+b
4
, a+3b

4

}
.

Then f is of bounded variation on [a, b] ,

f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

= 1,

∫ b

a

f (t) dt = 0
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and
b∨
a

(f) = 4,

giving in (2.16) 4C ≥ 1, thus C ≥ 1
4
.

This example can be used to prove the sharpness of the constant 1
4

in (2.9) as well.

1.3. Applications for CDFs. LetX be a random variable taking
values in the finite interval [a, b] , with probability density function
f : [a, b] → [0,∞) and with cumulative distribution function F (x) =
Pr (X ≤ x) =

∫ x
a
f (t) dt.

We give the following theorem [47].

Theorem 10. With the above assumptions,∣∣∣∣12 [F (x) + F (a+ b− x)]− b− E (X)

b− a

∣∣∣∣(2.17)

≤ 1

b− a

{(
2x− 3a+ b

4

)
[F (x)− F (a+ b− x)] + (x− a)

}
≤ 1

4
+

∣∣∣∣∣x− 3a+b
4

b− a

∣∣∣∣∣ ,
for any x ∈

[
a, a+b

2

]
, where E (X) denotes the expectation of X.

Proof. If we apply Theorem 9 for F, which is monotonic nonde-
creasing, we get∣∣∣∣12 [F (x) + F (a+ b− x)]− 1

b− a

∫ b

a

F (t) dt

∣∣∣∣(2.18)

≤ 1

b− a

[
(x− a)F (x) +

(
a+ b

2
− x

)
× (F (a+ b− x)− F (x)) + (x− a) (1− F (a+ b− x))

]
≤ 1

4
+

∣∣∣∣∣x− 3a+b
4

b− a

∣∣∣∣∣ .
Since

E (X) =

∫ b

a

tdF (t) = b−
∫ b

a

F (t) dt,

then by (2.18) we get (2.17) and the theorem is proved.

In particular, we have [47]:
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Corollary 18. With the above assumptions,∣∣∣∣12
[
F

(
3a+ b

4

)
+ F

(
a+ 3b

4

)]
− b− E (X)

b− a

∣∣∣∣ ≤ 1

4
.

2. Inequalities for Absolutely Continuous Functions

2.1. Some Integral Inequalities. The following identity holds
[64].

Lemma 2. Assume that f : [a, b] → R is an absolutely continuous
function on [a, b], then we have the equality

(2.19)
1

2
[f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

=
1

b− a

∫ x

a

(t− a) f ′ (t) dt+
1

b− a

∫ a+b−x

x

(
t− a+ b

2

)
f ′ (t) dt

+
1

b− a

∫ b

a+b−x
(t− b) f ′ (t) dt,

for any x ∈
[
a, a+b

2

]
.

Proof. Using the integration by parts formula for Lebesgue inte-
grals, we have∫ x

a

(t− a) f ′ (t) dt = f (x) (x− a)−
∫ x

a

f (t) dt,

∫ a+b−x

x

(
t− a+ b

2

)
f ′ (t) dt

= f (a+ b− x)

(
a+ b

2
− x

)
− f (x)

(
x− a+ b

2

)
−
∫ a+b−x

x

f (t) dt

and ∫ b

a+b−x
(t− b) f ′ (t) dt = (x− a) f (a+ b− x)−

∫ b

a+b−x
f (t) dt.

Summing the above equalities, we deduce the desired identity (2.19).

Remark 16. The identity (2.19) was obtained in [99, Lemma 3.2]
for the case of piecewise continuously differentiable functions on [a, b] .

The following result holds [64].
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Theorem 11. Let f : [a, b] → R be an absolutely continuous func-
tion on [a, b] , then,∣∣∣∣12 [f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.20)

≤ 1

b− a

[∫ x

a

(t− a) |f ′ (t)| dt

+

∫ a+b−x

x

∣∣∣∣t− a+ b

2

∣∣∣∣ |f ′ (t)| dt+

∫ b

a+b−x
(b− t) |f ′ (t)| dt

]
:= M (x)

for any x ∈
[
a, a+b

2

]
.

If f ′ ∈ L∞ [a, b] , then we have the inequalities

(2.21) M (x)

≤ 1

b− a

[
(x− a)2

2
‖f ′‖[a,x],∞ +

(
a+ b

2
− x

)2

‖f ′‖[x,a+b−x],∞

+
(x− a)2

2
‖f ′‖[a+b−x,b],∞

]

≤



[
1
8

+ 2
(
x− 3a+b

4

b−a

)2
]

(b− a) ‖f ′‖[a,b],∞[
1

2α−1

(
x−a
b−a

)2α
+
(
x−a+b

2

b−a

)2α
] 1

α

×
[
‖f ′‖β[a,x],∞ + ‖f ′‖β[x,a+b−x],∞ + ‖f ′‖β[a+b−x,b],∞

] 1
β

(b− a)

if α > 1, 1
α

+ 1
β

= 1,

max

{
1
2

(
x−a
b−a

)2
,
(
x−a+b

2

b−a

)2
}

×
[
‖f ′‖[a,x],∞ + ‖f ′‖[x,a+b−x],∞ + ‖f ′‖[a+b−x,b],∞

]
(b− a)

for any x ∈
[
a, a+b

2

]
.

The inequality (2.20), the first inequality in (2.21) and the constant
1
8

are sharp.

Proof. The inequality (2.20) follows by Lemma 2 on taking the
modulus and using its properties.

If f ′ ∈ L∞ [a, b] , then∫ x

a

(t− a) |f ′ (t)| dt ≤ (x− a)2

2
‖f ′‖[a,x],∞ ,
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x

∣∣∣∣t− a+ b

2

∣∣∣∣ |f ′ (t)| dt ≤ (a+ b

2
− x

)2

‖f ′‖[x,a+b−x],∞ ,

∫ b

a+b−x
(b− t) |f ′ (t)| dt ≤ (x− a)2

2
‖f ′‖[a+b−x,b],∞

and the first inequality in (2.21) is proved.
Denote

M̃ (x) :=
(x− a)2

2
‖f ′‖[a,x],∞ +

(
a+ b

2
− x

)2

‖f ′‖[x,a+b−x],∞

+
(x− a)2

2
‖f ′‖[a+b−x,b],∞

for x ∈
[
a, a+b

2

]
.

First, observe that

M̃ (x) ≤ max
{
‖f ′‖[a,x],∞ , ‖f ′‖[x,a+b−x],∞ , ‖f ′‖[a+b−x,b],∞

}
×

[
(x− a)2

2
+

(
a+ b

2
− x

)2

+
(x− a)2

2

]

= ‖f ′‖[a,b],∞

[
1

8
(b− a)2 + 2

(
x− 3a+ b

4

)2
]

and the first inequality in (2.21) is proved.
Using Hölder’s inequality for α > 1, 1

α
+ 1

β
= 1, we also have

M̃ (x) ≤

{[
(x− a)2

2

]α
+

(
x− a+ b

2

)2α

+

[
(x− a)2

2

]α} 1
α

×
[
‖f ′‖β[a,x],∞ + ‖f ′‖β[x,a+b−x],∞ + ‖f ′‖β[a+b−x,b],∞

] 1
β
,

giving the second inequality in (2.21).
Finally, we also observe that

M̃ (x) ≤ max

{
(x− a)2

2
,

(
x− a+ b

2

)2
}

×
[
‖f ′‖[a,x],∞ + ‖f ′‖[x,a+b−x],∞ + ‖f ′‖[a+b−x,b],∞

]
.

The sharpness of the inequalities mentioned follows from Theorem 11
for k = 1. We omit the details.
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Remark 17. If in Theorem 11 we choose x = a, then we get

(2.22)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

4
(b− a) ‖f ′‖[a,b],∞

with 1
4

as a sharp constant (see for example [86, p. 25]).

If in the same theorem we now choose x = a+b
2
, then we get∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.23)

≤ 1

8
(b− a)

[
‖f ′‖[a,a+b

2 ],∞ + ‖f ′‖[a+b
2
,b],∞

]
≤ 1

4
(b− a) ‖f ′‖[a,b],∞

with the constants 1
8

and 1
4

being sharp. This result was obtained in
[51].

It is natural to consider the following corollary.

Corollary 19. With the assumptions in Theorem 11, we have the
inequality:

(2.24)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ 1

8
(b− a) ‖f ′‖[a,b],∞ .

The constant 1
8

is the best possible.

The case when f ′ ∈ Lp [a, b] , p > 1 is embodied in the following
theorem.

Theorem 12. Let f : [a, b] → R be an absolutely continuous func-
tion on [a, b] so that f ′ ∈ Lp [a, b] , p > 1. If M (x) is as defined in
(2.20), then we have the bounds:

(2.25) M (x) ≤ 1

(q + 1)
1
q

[(
x− a

b− a

)1+ 1
q

‖f ′‖[a,x],p

+ 2
1
q

(
a+b
2
− x

b− a

)1+ 1
q

‖f ′‖[x,a+b−x],p

+

(
x− a

b− a

)1+ 1
q

‖f ′‖[a+b−x,b],p

]
(b− a)

1
q
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≤ 1

(q + 1)
1
q



[
2
(
x−a
b−a

)1+ 1
q + 2

1
q

(
a+b
2
−x

b−a

)1+ 1
q

]
×max

{
‖f ′‖[a,x],p , ‖f ′‖[x,a+b−x],p , ‖f ′‖[a+b−x,b],p

}
(b− a)

1
q

[
2
(
x−a
b−a

)α+α
q + 2

α
q

(
a+b
2
−x

b−a

)α+α
q

] 1
α

×
[
‖f ′‖β[a,x],p + ‖f ′‖β[x,a+b−x],p + ‖f ′‖β[a+b−x,b],p

] 1
β

(b− a)
1
q

if α > 1, 1
α

+ 1
β

= 1,

max

{(
x−a
b−a

)1+ 1
q , 2

1
q

(
a+b
2
−x

b−a

)1+ 1
q

}
×
[
‖f ′‖[a,x],p + ‖f ′‖[x,a+b−x],p + ‖f ′‖[a+b−x,b],p

]
(b− a)

1
q

for any x ∈
[
a, a+b

2

]
.

Proof. Using Hölder’s integral inequality for p > 1, 1
p
+ 1

q
= 1, we

have∫ x

a

(t− a) |f ′ (t)| dt

≤
(∫ x

a

(t− a)q dt

) 1
q

‖f ′‖[a,x],p =
(x− a)1+ 1

q

(q + 1)
1
q

‖f ′‖[a,x],p ,

∫ a+b−x

x

∣∣∣∣t− a+ b

2

∣∣∣∣ |f ′ (t)| dt ≤ (∫ a+b−x

x

∣∣∣∣t− a+ b

2

∣∣∣∣q dt)
1
q

‖f ′‖[x,a+b−x],p

=
2

1
q
(
a+b
2
− x
)1+ 1

q

(q + 1)
1
q

‖f ′‖[x,a+b−x],p

and ∫ b

a+b−x
(b− t) |f ′ (t)| dt ≤

(∫ b

a+b−x
(b− t)q dt

) 1
q

‖f ′‖[a+b−x,b],p

=
(x− a)1+ 1

q

(q + 1)
1
q

‖f ′‖[a+b−x,b],p .

Summing the above inequalities, we deduce the first bound in (2.25).
The last part may be proved in a similar fashion to Theorem 11,

and we omit the details.
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Remark 18. If in (2.25) we choose α = q, β = p, 1
p
+ 1

q
= 1, p > 1,

then we get the inequality

(2.26) M (x) ≤ 2
1
q

(q + 1)
1
q

(x− a

b− a

)q+1

+

(
a+b
2
− x

b− a

)q+1
 1

q

× (b− a)
1
q ‖f ′‖[a,b],p

for any x ∈
[
a, a+b

2

]
.

Remark 19. If in Theorem 12 we choose x = a, then we get the
trapezoid inequality

(2.27)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

2
·
(b− a)

1
q ‖f ′‖[a,b],p

(q + 1)
1
q

.

The constant 1
2

is the best possible (see for example [86, p. 42]).

Indeed, if we assume that (2.27) holds with a constant C > 0,
instead of 1

2
, i.e.,

(2.28)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ C ·
(b− a)

1
q ‖f ′‖[a,b],p

(q + 1)
1
q

,

then for the function f : [a, b] → R, f (x) = k
∣∣x− a+b

2

∣∣ , k > 0, we
have

f (a) + f (b)

2
= k · b− a

2
,

1

b− a

∫ b

a

f (t) dt = k · b− a

4
,

‖f ′‖[a,b],p = k (b− a)
1
p ;

and by (2.28) we deduce∣∣∣∣k (b− a)

2
− k (b− a)

4

∣∣∣∣ ≤ C · k (b− a)

(q + 1)
1
q

,

giving C ≥ (q+1)
1
q

4
. Letting q → 1+, we deduce that C ≥ 1

2
, and the

sharpness of the constant is proved.
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Remark 20. If in Theorem 12 we choose x = a+b
2
, then we get the

midpoint inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.29)

≤ 1

2
· (b− a)

1
q

2
1
q (q + 1)

1
q

[
‖f ′‖[a,a+b

2 ],p + ‖f ′‖[a+b
2
,b],p

]
≤ 1

2
· (b− a)

1
q

(q + 1)
1
q

‖f ′‖[a,b],p , p > 1,
1

p
+

1

q
= 1.

In both inequalities the constant 1
2

is sharp in the sense that it
cannot be replaced by a smaller constant.

To show this fact, assume that (2.29) holds with C,D > 0, i.e.,∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.30)

≤ C · (b− a)
1
q

2
1
q (q + 1)

1
q

[
‖f ′‖[a,a+b

2 ],p + ‖f ′‖[a+b
2
,b],p

]
≤ D · (b− a)

1
q

(q + 1)
1
q

‖f ′‖[a,b],p .

For the function f : [a, b] → R, f (x) = k
∣∣x− a+b

2

∣∣ , k > 0, we have

f

(
a+ b

2

)
= 0,

1

b− a

∫ b

a

f (t) dt =
k (b− a)

4
,

‖f ′‖[a,a+b
2 ],p + ‖f ′‖[a+b

2
,b],p = 2

(
b− a

2

) 1
p

k = 2
1
q (b− a)

1
p k,

‖f ′‖[a,b],p = (b− a)
1
p k;

and then by (2.30) we deduce

k (b− a)

4
≤ C · k (b− a)

(q + 1)
1
q

≤ D · k (b− a)

(q + 1)
1
q

,

giving C,D ≥ (q+1)
1
q

4
for any q > 1. Letting q → 1+, we deduce

C,D ≥ 1
2

and the sharpness of the constants in (2.29) is proved.
The following result is useful in providing the best quadrature rule

in the class for approximating the integral of an absolutely continuous
function whose derivative is in Lp [a, b] [64].
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Corollary 20. Assume that f : [a, b] → R is an absolutely con-
tinuous function so that f ′ ∈ Lp [a, b] , p > 1, then

(2.31)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ 1

4

(b− a)
1
q

(q + 1)
1
q

‖f ′‖[a,b],p ,

where 1
p

+ 1
q

= 1.

The constant 1
4

is the best possible.

Proof. The inequality follows by Theorem 12 and Remark 18 on
choosing x = 3a+b

4
.

To prove the sharpness of the constant, assume that (2.31) holds
with a constant E > 0, and so,

(2.32)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ E · (b− a)

1
q

(q + 1)
1
q

‖f ′‖[a,b],p .

Consider the function f : [a, b] → R,

f (x) =



∣∣∣∣x− 3a+ b

4

∣∣∣∣ if x ∈
[
a, a+b

2

]
∣∣∣∣x− a+ 3b

4

∣∣∣∣ if x ∈
(
a+b
2
, b
]
.

It follows that f is absolutely continuous and f ′ ∈ Lp [a, b] , p > 1. We
also have

1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
= 0,

1

b− a

∫ b

a

f (t) dt =
b− a

8
,

‖f ′‖[a,b],p = (b− a)
1
p ,

and then, by (2.32), we obtain:

b− a

8
≤ E

(b− a)

(q + 1)
1
q

giving E ≥ (q+1)
1
q

8
for any q > 1, i.e., E ≥ 1

4
, and the corollary is

proved.
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If one is interested in obtaining bounds in terms of the 1−norm for
the derivative, then the following result may be useful [64].

Theorem 13. Assume that the function f : [a, b] → R is absolutely
continuous on [a, b] . If M (x) is as in equation (2.20), then we have
the bounds

(2.33) M (x) ≤
(
x− a

b− a

)
‖f ′‖[a,x],1

+

(
a+b
2
− x

b− a

)
‖f ′‖[x,a+b−x],1 +

(
x− a

b− a

)
‖f ′‖[a+b−x,b],1

≤



[
1

4
+

∣∣∣∣∣x− 3a+b
4

b− a

∣∣∣∣∣
]
‖f ′‖[a,b],1

[
2

(
x− a

b− a

)α
+

(
a+b
2
− x

b− a

)α] 1
α

×
[
‖f ′‖β[a,x],1 + ‖f ′‖β[x,a+b−x],1 + ‖f ′‖β[a+b−x,b],1

] 1
β

if α > 1, 1
α

+ 1
β

= 1,[
x+ b−3a

2

b− a

]
max

[
‖f ′‖[a,x],1 , ‖f ′‖[x,a+b−x],1 , ‖f ′‖[a+b−x,b],1

]
.

The proof is as in Theorem 11 so we omit the details.

Remark 21. By the use of Theorem 12, for x = a, we get the
trapezoid inequality (see for example [86, p. 55])

(2.34)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

2
‖f ′‖[a,b],1 .

If in (2.33) we also choose x = a+b
2
, then we get the mid point inequality

(see for example [86, p. 56])

(2.35)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

2
‖f ′‖[a,b],1 .

The following corollary also holds [64].

Corollary 21. With the assumption in Theorem 12, one has the
inequality:

(2.36)

∣∣∣∣∣f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

4
‖f ′‖[a,b],1 .
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2.2. Applications for PDFs. Summarising some of the results
in Section 2, we may state that for f : [a, b] → R being an absolutely
continuous function, we have the inequality

(2.37)

∣∣∣∣12 [f (x) + f (a+ b− x)]− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤



[
1
8

+ 2
(
x− 3a+b

4

b−a

)2
]

(b− a) ‖f ′‖[a,b],∞ if f ′ ∈ L∞ [a, b]

2
1
q

(q+1)
1
q

[(
x−a
b−a

)q+1
+
(

a+b
2
−x

b−a

)q+1
] 1

q

(b− a)
1
q ‖f ′‖[a,b],p ,

if p > 1, 1
p

+ 1
q

= 1, and f ′ ∈ Lp [a, b] ;[
1
4

+
∣∣∣x− 3a+b

4

b−a

∣∣∣] ‖f ′‖[a,b],1 ,

for all x ∈
[
a, a+b

2

]
.

Now, let X be a random variable taking values in the finite interval
[a, b] , with the probability density function f : [a, b] → [0,∞) and with
the cumulative distribution function F (x) = Pr (X ≤ x) =

∫ x
a
f (t) dt.

The following result holds [64].

Theorem 14. With the above assumptions, we have the inequality

(2.38)

∣∣∣∣12 [F (x) + F (a+ b− x)]− b− E (X)

b− a

∣∣∣∣

≤



[
1
8

+ 2
(
x− 3a+b

4

b−a

)2
]

(b− a) ‖f‖[a,b],∞ if f ∈ L∞ [a, b]

2
1
q

(q+1)
1
q

[(
x−a
b−a

)q+1
+
(

a+b
2
−x

b−a

)q+1
] 1

q

(b− a)
1
q ‖f‖[a,b],p ,

if p > 1, 1
p

+ 1
q

= 1, and f ∈ Lp [a, b] ;[
1
4

+
∣∣∣x− 3a+b

4

b−a

∣∣∣] ,
for any x ∈

[
a, a+b

2

]
.

Proof. The proof follows by (2.37) on choosing f = F and taking
into account that

E (X) =

∫ b

a

tdF (t) = b−
∫ b

a

F (t) dt.

In particular, we have [64]:
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Corollary 22. With the above assumptions, we have

(2.39)

∣∣∣∣12
[
F

(
3a+ b

4

)
+ F

(
a+ 3b

4

)]
− b− E (X)

b− a

∣∣∣∣
≤


1
8
(b− a) ‖f‖[a,b],∞ if f ∈ L∞ [a, b]

1
4
· (b−a)

1
q

(q+1)
1
q
‖f‖[a,b],p , if p > 1, 1

p
+ 1

q
= 1, and f ∈ Lp [a, b] ;

1
4
.

3. Ostrowski’s Inequality for Convex Functions

3.1. Introduction. The result known in the literature as Ostrowski’s
inequality [112], see (1.41) will again be utilised in this section.

The following Ostrowski type result holds (see [89], [90] and [92]).

Theorem 15. Let f : [a, b] → R be absolutely continuous on [a, b],
then, for all x ∈ [a, b], we have:

(2.40)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤



[
1
4

+
(
x−a+b

2

b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x−a
b−a

)p+1
+
(
b−x
b−a

)p+1
] 1

p
(b− a)

1
p ‖f ′‖q

if f ′ ∈ Lq [a, b] , 1
p

+ 1
q

= 1, p > 1;[
1
2

+
∣∣∣x−a+b

2

b−a

∣∣∣] ‖f ′‖1 ;

where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b], i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖r :=

(∫ b

a

|g (t)|r dt
) 1

r

, r ∈ [1,∞).

The constants 1
4
, 1

(p+1)
1
p

and 1
2

are all sharp in the sense that they

cannot be replaced by smaller quantities.

The above inequalities can also be obtained from Fink’s result in
[96] on choosing n = 1 and performing some appropriate computations.

If we drop the condition of absolute continuity and assume that f
is Hölder continuous, then we can state the following result (see [78]):
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Theorem 16. Let f : [a, b] → R be of r −H−Hölder type, i.e.,

(2.41) |f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] ,

where r ∈ (0, 1] and H > 0 are fixed, then, for all x ∈ [a, b] , we have
the inequality:

(2.42)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ H

r + 1

[(
b− x

b− a

)r+1

+

(
x− a

b− a

)r+1
]

(b− a)r .

The constant 1
r+1

is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the
following version of Ostrowski’s inequality for Lipschitzian functions
(with L instead of H) (see [71])

(2.43)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)L.

Here the constant 1
4

is also best.
Moreover, if one drops the continuity condition of the function, and

assumes that it is of bounded variation, then the following result may
be stated (see [59]).

Theorem 17. Assume that f : [a, b] → R is of bounded variation

and denote by
∨b
a (f) its total variation, then

(2.44)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f)

for all x ∈ [a, b].
The constant 1

2
is the best possible.

If we assume that f is monotonically increasing, then the inequality
(2.44) may be improved in the following manner [63] (see also [31]).
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Theorem 18. Let f : [a, b] → R be monotonic nondecreasing, then
for all x ∈ [a, b], we have the inequality:∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.45)

≤ 1

b− a

{
[2x− (a+ b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}
≤ 1

b− a
{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] .

All the inequalities in (2.45) are sharp and the constant 1
2

is the best
possible.

In the next section we establish an Ostrowski type inequality for
convex functions. Applications for PDFs are also provided.

3.2. The Results. The following theorem providing a lower bound

for the Ostrowski difference
∫ b
a
f (t) dt − (b− a) f (x) for convex func-

tion f (·) holds [53].

Theorem 19. Let f : [a, b] → R be a convex function on [a, b], then
for any x ∈ (a, b) , we have the inequality:

(2.46)
1

2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
≤
∫ b

a

f (t) dt− (b− a) f (x) .

The constant 1
2

in the left hand side of (2.46) is sharp.

Proof. It is easy to see that for any locally absolutely continuous
function f : (a, b) → R, we have the identity

(2.47)

∫ x

a

(t− a) f ′ (t) dt+

∫ b

x

(t− b) f ′ (t) dt = f (x)−
∫ b

a

f (t) dt,

for any x ∈ (a, b) where f ′ is the derivative of f which exists a.e. on
(a, b) .

Since f is convex, then it is locally Lipschitzian and thus (2.47)
holds. Moreover, for any x ∈ (a, b) , we have the inequalities

(2.48) f ′ (t) ≤ f ′− (x) for a.e. t ∈ [a, x]
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and

(2.49) f ′ (t) ≥ f ′+ (x) for a.e. t ∈ [x, b] .

If we multiply (2.48) by t− a ≥ 0, t ∈ [a, x] , and integrate over [a, x],
we get

(2.50)

∫ x

a

(t− a) f ′ (t) dt ≤ 1

2
(x− a)2 f ′− (x)

and if we multiply (2.49) by b − t ≥ 0, t ∈ [x, b] , and integrate over
[x, b] , we also have

(2.51)

∫ b

x

(b− t) f ′ (t) dt ≥ 1

2
(b− x)2 f ′+ (x) .

Finally, if we subtract (2.51) from (2.50) and use the representation
(2.47) we deduce the desired inequality (2.46).

Now, assume that (2.46) holds with a constant C > 0 instead of 1
2
,

so that,

(2.52) C
[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
≤
∫ b

a

f (t) dt− (b− a) f (x) .

Consider the convex function f0 (t) := k
∣∣t− a+b

2

∣∣, k > 0, t ∈ [a, b] ,
then

f ′0+

(
a+ b

2

)
= k, f ′0−

(
a+ b

2

)
= −k, f0

(
a+ b

2

)
= 0

and ∫ b

a

f0 (t) dt =
1

4
k (b− a)2 .

If in (2.52) we choose f0 as above and x = a+b
2
, then we get

C

[
1

4
(b− a)2 k +

1

4
(b− a)2 k

]
≤ 1

4
k (b− a)2 ,

which gives C ≤ 1
2
, and the sharpness of the constant is proved.

Now, recall the following inequality, which is well known in the
literature as the Hermite-Hadamard inequality for convex functions,
holds:

(HH) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2
.

The following corollary which improves the first Hermite-Hadamard
inequality (HH) holds [53].
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Corollary 23. Let f : [a, b] → R be a convex function on [a, b],
then

0 ≤ 1

8

[
f ′+

(
a+ b

2

)
− f ′−

(
a+ b

2

)]
(b− a)(2.53)

≤ 1

b− a

∫ b

a

f (t) dt− f

(
a+ b

2

)
.

The constant 1
8

is sharp.

The proof is obvious by the above theorem. The sharpness of the
constant is obtained for f0 (t) := k

∣∣t− a+b
2

∣∣ , t ∈ [a, b] , k > 0.
When x is a point of differentiability, we can state the following

corollary as well.

Corollary 24. Let f be as in Theorem 19. If x ∈ (a, b) is a point
of differentiability for f , then

(2.54)

(
a+ b

2
− x

)
f ′ (x) ≤ 1

b− a

∫ b

a

f (t) dt− f (x) .

Remark 22. If f : I ⊆ R → R is convex on I and if we choose
x ∈̊I (̊I is the interior of I), b = x+ h

2
, a = x− h

2
, h > 0, for a, b ∈ I,

from (2.46), we have,

(2.55) 0 ≤ 1

8
h2
[
f ′+ (x)− f ′− (x)

]
≤
∫ x+h

2

x−h
2

f (t) dt− hf (x) ,

and the constant 1
8

is sharp in (2.55).

The following result, providing an upper bound for the Ostrowski

difference
∫ b
a
f (t) dt− (b− a) f (x) , also holds [53].

Theorem 20. Let f : [a, b] → R be a convex function on [a, b] ,
then for any x ∈ [a, b] , we have the inequality:

(2.56)

∫ b

a

f (t) dt− (b− a) f (x)

≤ 1

2

[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

The constant 1
2

is sharp.

Proof. If either f ′+ (a) = −∞ or f ′− (b) = +∞, then the inequality
(2.56) evidently holds true.

Assume that f ′+ (a) and f ′− (b) are finite.
Since f is convex on [a, b] , we have

(2.57) f ′ (t) ≥ f ′+ (a) for a.e. t ∈ [a, x]
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and

(2.58) f ′ (t) ≤ f ′− (b) for a.e. t ∈ [x, b] .

If we multiply (2.57) by t− a ≥ 0, t ∈ [a, x] , and integrate over [a, x] ,
we deduce

(2.59)

∫ x

a

(t− a) f ′ (t) dt ≥ 1

2
(x− a)2 f ′+ (a)

and if we multiply (2.58) by b − t ≥ 0, t ∈ [x, b] , and integrate over
[x, b] , we also have

(2.60)

∫ b

x

(b− t) f ′ (t) dt ≤ 1

2
(b− x)2 f ′− (b) .

Finally, if we subtract (2.59) from (2.60) and use the representation
(2.47), we deduce the desired inequality (2.56).

Now, assume that (2.56) holds with a constant D > 0 instead of 1
2
,

i.e.,

(2.61)

∫ b

a

f (t) dt− (b− a) f (x)

≤ D
[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

If we consider the convex function f0 : [a, b] → R, f0 (t) = k
∣∣t− a+b

2

∣∣ ,
then we have f ′− (b) = k, f ′+ (a) = −k and by (2.61) we deduce for

x = a+b
2

that

1

4
k (b− a)2 ≤ D

[
1

4
k (b− a)2 +

1

4
k (b− a)2

]
,

giving D ≥ 1
2
, and the sharpness of the constant is proved.

The following corollary, related to the Hermite-Hadamard inequal-
ity, is interesting as well [53].

Corollary 25. Let f : [a, b] → R be convex on [a, b], then

0 ≤ 1

b− a

∫ b

a

f (t) dt− f

(
a+ b

2

)
(2.62)

≤ 1

8

[
f ′− (b)− f ′+ (a)

]
(b− a)

and the constant 1
8

is sharp.
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Remark 23. Denote B := f ′− (b), A := f ′+ (a) and assume that
B 6= A, i.e., f is not constant on (a, b), then

(b− x)2B − (x− a)2A

= (B − A)

[
x−

(
bB − aA

B − A

)]2

− AB

B − A
(b− a)2

and by (2.56) we get

(2.63)

∫ b

a

f (t) dt− (b− a) f (x)

≤ 1

2
(B − A)

{[
x−

(
bB − aA

B − A

)]2

− AB

(B − A)2 (b− a)2

}

for any x ∈ [a, b] .
If A ≥ 0 then x0 = bB−aA

B−A ∈ [a, b] and by (2.63) we get, choosing

x = bB−aA
B−A , that

(2.64) 0 ≤ 1

2

AB

B − A
(b− a) ≤ f

(
bB − aA

B − A

)
− 1

b− a

∫ b

a

f (t) dt.

Remark 24. If f : I ⊆ R → R is convex on I and if we choose
x ∈̊I, b = x+ h

2
, a = x− h

2
, h > 0 such that a, b ∈ I, then from (2.56)

we deduce:

0 ≤
∫ x+h

2

x−h
2

f (t) dt− hf (x)(2.65)

≤ 1

8
h2

[
f ′−

(
x+

h

2

)
− f ′+

(
x− h

2

)]
,

and the constant 1
8

is sharp.

3.3. Inequalities for Integral Means. The following result in
comparing two integral means has been obtained in [53].
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Theorem 21. Let f : [a, b] → R be a convex function and c, d ∈
[a, b] with c < d, then we have the inequalities

a+ b

2
· f (d)− f (c)

d− c
− df (d)− cf (c)

d− c
+

1

d− c

∫ d

c

f (x) dx(2.66)

≤ 1

b− a

∫ b

a

f (t) dt− 1

d− c

∫ d

c

f (x) dx

≤
f ′− (b)

[
(b− d)2 + (b− d) (b− c) + (b− c)2]

6 (b− a)

−
f ′+ (a)

[
(d− a)2 + (d− a) (c− a) + (c− a)2]

6 (b− a)
.

Proof. Since f is convex, then for a.e. x ∈ [a, b], we have (by
(2.54)) that

(2.67)

(
a+ b

2
− x

)
f ′ (x) ≤ 1

b− a

∫ b

a

f (t) dt− f (x) .

Integrating (2.67) on [c, d] we deduce

(2.68)
1

d− c

∫ d

c

(
a+ b

2
− x

)
f ′ (x) dx

≤ 1

b− a

∫ b

a

f (t) dt− 1

d− c

∫ d

c

f (x) dx.

Since

1

d− c

∫ d

c

(
a+ b

2
− x

)
f ′ (x) dx

=
1

d− c

[(
a+ b

2
− d

)
f (d)−

(
a+ b

2
− c

)
f (c) +

∫ d

c

f (x) dx

]
then by (2.68) we deduce the first part of (2.66).

Using (2.56), we may write for any x ∈ [a, b] that

(2.69)
1

b− a

∫ b

a

f (t) dt− f (x)

≤ 1

2 (b− a)

[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.
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Integrating (2.69) over [c, d] , we deduce

(2.70)
1

b− a

∫ b

a

f (t) dt− 1

d− c

∫ d

c

f (x) dx

≤ 1

2 (b− a)

[
f ′− (b)

1

d− c

∫ d

c

(b− x)2 dx

−f ′+ (a)
1

d− c

∫ d

c

(x− a)2 dx

]
.

Since

1

d− c

∫ d

c

(b− x)2 dx =
(b− d)2 + (b− d) (b− c) + (b− c)2

3

and

1

d− c

∫ d

c

(x− a)2 dx =
(d− a)2 + (d− a) (c− a) + (c− a)2

3
,

then, by (2.70), we deduce the second part of (2.66).

Remark 25. If we choose f (x) = xp, p ∈ (−∞, 0) ∪ [1,∞)\ {−1}
or f (x) = 1

x
or even f (x) = − lnx, x ∈ [a, b] ⊂ (0,∞) , in the above

inequalities, then a great number of interesting results for p−logarithmic,
logarithmic and identric means may be obtained. We leave this as an
exercise for the interested reader.

3.4. Applications for PDFs. Let X be a random variable with
the probability density function f : [a, b] ⊂ R → R+ and with cumula-
tive distribution function F (x) = Pr (X ≤ x) .

The following theorem holds [53].

Theorem 22. If f : [a, b] ⊂ R → R+ is monotonically increasing
on [a, b], then we have the inequality:

1

2

[
(b− x)2 f+ (x)− (x− a)2 f− (x)

]
(2.71)

≤ b− E (X)− (b− a)F (x)

≤ 1

2

[
(b− x)2 f− (b)− (x− a)2 f+ (a)

]
for any x ∈ (a, b) , where f− (α) means the left limit in α while f+ (α)
means the right limit in α.
The constant 1

2
is sharp in both inequalities.

The second inequality also holds for x = a of x = b.
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Proof. The proof follows by Theorem 19 and 20 applied to the
convex cdf function F (x) =

∫ x
a
f (t) dt, x ∈ [a, b] and taking into

account that ∫ b

a

F (x) dx = b− E (X) .

Finally, we state the following corollary for estimating the proba-
bility Pr

(
X ≤ a+b

2

)
[53].

Corollary 26. With the above assumptions, we have

b− E (X)− 1

8
(b− a)2 [f− (b)− f+ (a)](2.72)

≤ Pr

(
X ≤ a+ b

2

)
≤ b− E (X)− 1

8
(b− a)2

[
f+

(
a+ b

2

)
− f−

(
a+ b

2

)]
.

4. A New Ostrowski Type Inequality and Applications

4.1. Introduction. Let the functional S (f ; a, b) be defined by

(2.73) S (f ; a, b) = f (x)−M (f ; a, b) ,

where

(2.74) M (f ; a, b) =
1

b− a

∫ b

a

f (x) dx.

The functional S (f ; a, b) represents the deviation of f (x) from its in-
tegral mean over [a, b].

In 1938, A. Ostrowski proved the following integral inequality [112]
as mentioned earlier.

Theorem 23. Let f : [a, b] → R be continuous on [a, b] and differ-
entiable on (a, b) and assume |f ′ (x)| ≤ M for all x ∈ (a, b), then the
inequality

(2.75) |S (f ; a, b)| ≤

[(
b− a

2

)2

+

(
x− a+ b

2

)2
]

M

b− a

holds for all x ∈ [a, b]. The constant 1
4

is best possible.

In a series of papers, Dragomir and Wang [89] – [92] proved (2.75)
and other variants for f ′ ∈ Lp [a, b] for p ≥ 1, the Lebesgue norms mak-
ing use of a Peano kernel approach and Montgomery’s identity [110,
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p. 585]. Montgomery’s identity states that for absolutely continuous
mappings f : [a, b] → R

(2.76) f (x) =
1

b− a

∫ b

a

f (t) dt+
1

b− a

∫ b

a

p (x, t) f ′ (t) dt,

where the kernel p : [a, b]2 → R is given by

p (x, t) =

{
t− a, a ≤ t ≤ x ≤ b,

t− b, a ≤ x < t ≤ b.

If we assume that f ′ ∈ L∞ [a, b] and ‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| then

M in (2.75) may be replaced by ‖f ′‖∞.
Dragomir and Wang [89] – [92], utilising an integration by parts

argument, ostensibly Montgomery’s identity (2.76), obtained

(2.77) |S (f ; a, b)|

≤



[(
b−a
2

)2
+
(
x− a+b

2

)2] ‖f ′‖∞
b−a , f ′ ∈ L∞ [a, b] ;[

(x−a)q+1+(b−x)q+1

q+1

] 1
q ‖f ′‖p

b−a , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;[
b−a
2

+
∣∣x− a+b

2

∣∣] ‖f ′‖1
b−a ,

where f : [a, b] → R is absolutely continuous on [a, b] and the constants
1
4
, 1

(q+1)
1
q

and 1
2

are all sharp.

In this section we obtain bounds for the deviation of a function
from integral means that not necessarily cover the whole interval. The
Ostrowski type results are recaptured as special cases. Following an
identity obtained in Subsection 4.2 and the resulting bounds, perturbed
results arising from the Chebychev functional are investigated in Sub-
section 4.3. The final Subsection 4.4 applies the results to the cumula-
tive distribution function.

4.2. Results. We commence with the following identity which al-
though of interest in itself, will be used to obtain bounds [28].

Lemma 3. Let f : [a, b] → R be an absolutely continuous mapping.
Denote by P (x, ·) : [a, b] → R the kernel given by

(2.78) P (x, t) =


α

α+β

(
t−a
x−a

)
, t ∈ [a, x]

−β
α+β

(
b−t
b−x

)
, t ∈ (x, b]
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where α, β ∈ R are nonnegative and not both zero, then the identity

(2.79)

∫ b

a

P (x, t) f ′ (t) dt

= f (x)− 1

α+ β

[
α

x− a

∫ x

a

f (t) dt+
β

b− x

∫ b

x

f (t) dt

]
holds.

Proof. From (2.78), we have∫ b

a

P (x, t) f ′ (t) dt

=
α

α+ β

∫ x

a

(
t− a

x− a

)
f ′ (t) dt− β

α+ β

∫ b

x

(
b− t

b− x

)
f ′ (t) dt

=
α

α+ β

{(
t− a

x− a

)
f (t)

]x
t=a

− 1

x− a

∫ x

a

f (t) dt

}
− β

α+ β

{(
b− t

b− x

)
f (t)

]b
t=x

− 1

b− x

∫ b

x

f (t) dt

}
,

where the integration by parts formula has been utilised on the sepa-
rate intervals [a, x] and (x, b]. Simplification of the expressions readily
produces the identity as stated.

Theorem 24. ([28]) Let f : [a, b] → R be an absolutely continuous
mapping and define

(2.80) T (x;α, β) := f (x)− 1

α+ β
[αM (f ; a, x) + βM (f ;x, b)] ,

where M (f ; a, b) is the integral mean as defined by (2.74), then

(2.81) |T (x;α, β)|

≤



[α (x− a) + β (b− x)]
‖f ′‖∞
2(α+β)

, f ′ ∈ L∞ [a, b] ;

[αq (x− a) + βq (b− x)]
1
q

‖f ′‖p

(q+1)
1
q (α+β)

, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;[
1 + |α−β|

α+β

]
‖f ′‖1

2
,

where ‖h‖· are the usual Lebesgue norms for h ∈ L· [a, b].
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Proof. Taking the modulus of (2.79) we have, from (2.80) and
(2.74),

(2.82) |T (x;α, β)| =
∣∣∣∣∫ b

a

P (x, t) f ′ (t) dt

∣∣∣∣ ≤ ∫ b

a

|P (x, t)| |f ′ (t)| dt,

where we have used the well known properties of the integral and mod-
ulus.

Thus, for f ′ ∈ L∞ [a, b] from (2.82) we have,

|T (x;α, β)| ≤ ‖f ′‖∞
∫ b

a

|P (x, t)| dt

from which a simple calculation using (2.78) gives∫ b

a

|P (x, t)| dt =
α

α+ β

∫ x

a

t− a

x− a
dt+

β

α+ β

∫ b

x

b− t

b− x
dt

=

[
α

α+ β
(x− a) +

β

α+ β
(b− x)

] ∫ 1

0

udu

and hence the first inequality follows.
Further, using Hölder’s integral inequality, we have for f ′ ∈ Lp [a, b]

from (2.82)

|T (x;α, β)| ≤ ‖f ′‖p
(∫ b

a

|P (x, t)|q dt
) 1

q

,

where 1
p

+ 1
q

= 1 with p > 1. Now

(α+ β)

(∫ b

a

|P (x, t)|q dt
) 1

q

=

[
αq
∫ x

a

(
t− a

x− a

)q
dt+ βq

∫ b

x

(
b− t

b− x

)q
dt

] 1
q

= [αq (x− a) + βq (b− x)]
1
q

(∫ 1

0

uqdu

) 1
q

and so the second inequality is obtained.
Finally, for f ′ ∈ L1 [a, b] we have from (2.82) and using (2.78)

|T (x;α, β)| ≤ sup
t∈[a,b]

|P (x, t)| ‖f ′‖1 ,

where

(α+ β) sup
t∈[a,b]

|P (x, t)| = max {α, β} =
α+ β

2
+

∣∣∣∣α− β

2

∣∣∣∣
and so the proof is completed.
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Remark 26. It should be noted, that from (2.80) and (2.73),

(2.83) (α+ β) T (x;α, β) = αS (f ; a, x) + βS (f ;x, b)

and so from (2.77), using the triangle inequality,

(2.84) |(α+ β) T (x;α, β)|

≤



α
2

(x− a) ‖f ′‖∞,[a,x] +
β
2

(b− x) ‖f ′‖∞,[x,b] ,

α
(
x−a
q+1

) 1
q ‖f ′‖p,[a,x] + β

(
b−x
q+1

) 1
q ‖f ′‖p,[x,b] ,

α ‖f ′‖1,[a,x] + β ‖f ′‖1,[x,b] .

Further,

(2.85) |(α+ β) T (x;α, β)|

≤



[α (x− a) + β (b− x)]
‖f ′‖∞

2
, f ′ ∈ L∞ [a, b] ;[

α
(
x−a
q+1

) 1
q

+ β
(
b−x
q+1

) 1
q

]
‖f ′‖p , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

(α+ β) ‖f ′‖1 ,

where the expression (2.85) involving the ‖·‖p norm is coarser.

The results of (2.84), in which the norms are evaluated over the two
subintervals, although finer, do require more work.

Remark 27. It is possible to reduce the amount of work alluded to
in Remark 26 by observing that,

αM (f ; a, x) + βM (f ;x, b)

= αM (f ; a, x) +
β

b− x

[∫ b

a

f (u) du−
∫ x

a

f (u) du

]
=

[
α− β

(
x− a

b− x

)]
M (f ; a, x) + β

(
b− a

b− x

)
M (f ; a, b)

= [α+ β − βρ (x)]M (f ; a, x) + βρ (x)M (f ; a, b) ,

where

(2.86) ρ (x) =
b− a

b− x
.
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Thus, from (2.80), T (x;α, β) may be written in the following equivalent
form

(2.87) T (x;α, β)

= f (x)−
[(

1− β

α+ β
ρ (x)

)
M (f ; a, x) +

β

α+ β
ρ (x)M (f ; a, b)

]
so that for fixed [a, b], M (f ; a, b) is also fixed.

The following uniform bounds are valid [28].

Corollary 27. Let the conditions of Theorem 24 hold, then

(2.88)

∣∣∣∣f (x)− 1

2
[M (f ; a, x) +M (f ;x, b)]

∣∣∣∣

≤



(b−a)
4
‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;(

b−a
q+1

) 1
q · ‖f

′‖p

2
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
‖f ′‖1

2
.

Proof. The result is readily obtained by allowing β = α in (2.81)
so that the left hand side is T (x;α, α) from (2.80).

Corollary 28. ([28]) Let the conditions of Theorem 24 hold, then∣∣∣∣∣f
(
a+ b

2

)
− 2

(b− a) (α+ β)

[
α

∫ a+b
2

a

f (u) du+ β

∫ b

a+b
2

f (u) du

]∣∣∣∣∣

(2.89) ≤



(b−a)
4
‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

[αq + βq]
1
q

(
b−a

2(q+1)

) 1
q · ‖f

′‖p

α+β
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;[
1 + |α−β|

α+β

]
‖f ′‖1

2
.

Proof. Placing x = a+b
2

in (2.80) and (2.81) produces the results
as stated in (2.89).
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Corollary 29. ([28]) If (2.88) is evaluated at the midpoint then

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤



(b−a)
4
‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;(

b−a
q+1

) 1
q · ‖f

′‖p

2
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
‖f ′‖1

2
.

which is in agreement with (2.77) when x = a+b
2

. The above result could
also be obtained by taking α = β in (2.89) or equivalently α = β and
x = a+b

2
in (2.81).

4.3. Perturbed Results. Perturbed versions of the results of the
previous section may be obtained by using Grüss type results involving
the Chebychev functional

(2.90) T (f, g) = M (fg)−M (f) M (g)

with M (f) being the integral mean of f over [a, b].
For f, g : [a, b] → R and integrable on [a, b], as is their product,

then

(2.91)

|T (f, g)| ≤ T
1
2 (f, f) T

1
2 (g, g) , Dragomir [54]

for f, g ∈ L2 [a, b] ;

≤ Γ−γ
2
T

1
2 (f, f) , Matić et al. [108]

for γ ≤ g (t) ≤ Γ, t ∈ [a, b] ,

≤ (Γ−γ)(Φ−φ)
4

, Grüss (see [109, 295-310]),
φ ≤ f ≤ Φ, t ∈ [a, b] .

Dragomir [54] obtained numerous results when either f, g or both
are known, although the first inequality in (2.91) has a long history
(see for example [109, pp. 295-310]. The inequalities in (2.91), when
proceeding from top to bottom, are in order of decreasing coarseness.

The following theorem is valid [28].
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Theorem 25. Let f : [a, b] → R be an absolutely continuous map-
ping and α ≥ 0, β ≥ 0, α+ β 6= 0 then

(2.92)

∣∣T (x, α, β)− (x− γ) S
2

∣∣≤ (b− a)κ (x)
[

1
b−a ‖f

′‖2
2 − S2

] 1
2 ,

f ′ ∈ L2 [a, b] ;

≤ (b− a)κ (x) Γ−γ
2
,

if γ < f ′ (t) < Γ, t ∈ [a, b] ;

≤ (b− a) Γ−γ
4
,

where, T (x, α, β) is as given by (2.80) or equivalently (2.87),

γ =
αa+ βb

α+ β
, S =

f (b)− f (a)

b− a
,(2.93)

κ2 (x) =
1

3

[(
α

α+ β

)2

(x− a) +

(
β

α+ β

)2

(b− x)

]
(2.94)

−
(

x− γ

2 (b− a)

)2

.

Proof. Associating f (t) with P (x, t) and g (t) with f ′ (t), we ob-
tain, from (2.78) and (2.90),

T (P (x, ·) , f ′ (·)) = M (P (x, ·) , f ′ (·))−M (P (x, ·)) M (f ′ (·))

and so, on using identity (2.79),

(2.95) (b− a)T (P (x, ·) , f ′ (·)) = T (x, α, β)− (b− a) M (P (x, ·))S

where S is the secant slope of f over [a, b] as given in (2.93). Now,
from (2.79),

(b− a) M (P (x, ·)) =

∫ b

a

P (x, t) dt(2.96)

=
α

α+ β

∫ x

a

t− a

x− a
dt− β

α+ β

∫ b

x

b− t

b− x
dt

= (x− γ)

∫ 1

0

udu

and combining this with (2.94) gives the left hand side of (2.92).
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Now, for the bounds on (2.95) from (2.91) we have to determine

T
1
2 (P (x, ·) , P (x, ·)) and φ ≤ P (x, ·) ≤ Φ. First, we note that

0 ≤ T
1
2 (f ′ (·) , f ′ (·)) =

[
M
(
(f ′ (·))2

)
−M2 (f ′ (·))

] 1
2

(2.97)

=

 1

b− a

∫ b

a

[f ′ (t)]
2
dt−

(∫ b
a
f ′ (t) dt

b− a

)2
 1

2

=

[
1

b− a
‖f ′‖2

2 − S2

] 1
2

≤
(

Γ− γ

2

)
, where γ ≤ f ′ (t) ≤ Γ, t ∈ [a, b] .

Now from (2.78), the definition of P (x, t) , we have

(2.98) T (P (x, ·) , P (x, ·)) = M
(
P 2 (x, ·)

)
−M2 (P (x, ·))

where from (2.96),

M (P (x, ·)) =
x− γ

2 (b− a)
,

and

M
(
P 2 (x, ·)

)
=

(
α

α+ β

)2 ∫ x

a

(
t− a

x− a

)2

dt+

(
β

α+ β

)2 ∫ b

x

(
b− t

b− x

)2

dt

=

[(
α

α+ β

)2

(x− a) +

(
β

α+ β

)2

(b− x)

]∫ 1

0

u2du.

Thus, substituting the above results into (2.98) gives

(2.99) 0 ≤ κ (x) = T
1
2 (P (x, ·) , P (x, ·))

which is given explicitly by (2.94). Combining (2.95), (2.99) and (2.97)
give, from the first inequality in (2.91), the first inequality in (2.92).
Also, utilising the inequality in (2.97) produces the second result in
(2.92).

Further, it may be noticed from the definition of P (x, t) in (2.78)
that for α, β ≥ 0 and α and β not zero at the same time,

Φ = sup
t∈[a,b]

P (x, t) and φ = inf
t∈[a,b]

P (x, t) ,

giving Φ = α
α+β

and φ = −β
α+β

.
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Hence, from (2.95) and the last inequality in (2.91) we have the
final result in (2.92) and the theorem is now proved.

4.4. An Application to the Cumulative Distribution Func-
tion. Let X be a random variable taking values in the finite inter-
val [a, b] with cumulative distribution function F (x) = Pr (X ≤ x) =∫ x
a
f (u) du, where f is a probability density function. The following

theorem holds [28].

Theorem 26. Let X and F be as above, then

(2.100) |(α (b− x)− β (x− a))F (x)

− (x− a) [(α+ β) (b− x) f (x)− β]|

≤



(b− x) (x− a) [α (x− a) + β (b− x)] · ‖f
′‖∞
2

, f ′ ∈ L∞ [a, b] ;

(b− x) (x− a) [αq (x− a) + βq (b− x)]
1
q · ‖f ′‖p

(q+1)
1
q
,

f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

(b− x) (x− a) [α+ β + |α− β|] · ‖f
′‖1
2
, f ′ ∈ L1 [a, b] .

Proof. The proof follows in a straightforward manner from (2.81)
of Theorem 24.

Using (2.87) for T (x;α, β) and (2.88) we obtain, on using the fact

that
∫ b
a
f (u) du = 1,

(α+ β) (x− a) (b− x) T (x;α, β)

= (α+ β) (x− a) (b− x) f (x)

− [α (b− x)− β (x− a)]F (x)− β (x− a) .

Thus,

− (α+ β) (x− a) (b− x)

α (b− x)− β (x− a)
T (x;α, β)

= F (x)− (x− a)

[
(α+ β) (b− x) f (x)− β

α (b− x)− β (x− a)

]
and so taking the modulus and using (2.81) gives the stated result.
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Corollary 30. ([28]) Let X be a random variable , F (x) the as-
sociated cumulative distribution function and f (x) the associated prob-
ability density function. We have,

(2.101)

∣∣∣∣(a+ b

2
− x

)
F (x)− (x− a)

[
(b− x) f (x)− 1

2

]∣∣∣∣

≤



(b− x) (x− a) (b− a) · ‖f
′‖∞
2

, f ′ ∈ L∞ [a, b] ;

(b− x) (x− a) (b− a)
1
q · ‖f ′‖p

2(q+1)
1
q
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

(b− x) (x− a) · ‖f
′‖1
2
, f ′ ∈ L1 [a, b] .

Remark 28. The above results allow the approximation of F (x) in
terms of f (x). The approximation of R (x) = 1 − F (x) could also be
obtained by a simple substitution. R (x) is of importance in reliability
theory where f (x) is the PDF of failure.

Remark 29. We may take β = 0 in (2.80) and (2.81), whilst
assuming that α 6= 0, to give

(2.102) |F (x)− (x− a) f (x)|

≤


(x−a)2

2
‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

(x− a)1+ 1
q · ‖f ′‖p

(q+1)
1
q
, f ′ ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

(x− a) ‖f ′‖1 , f ′ ∈ L1 [a, b] .

which agrees with (2.77) for |S (f ; a, x)|.

Remark 30. The perturbed results of Section 4.3 could also be ap-
plied here, however, this will not be pursued further.

Remark 31. We may replace f by F (see [9] for related results) in
any of the equations (2.100) – (2.102) so that the bounds are in terms
of ‖f‖p, p ≥ 1.

5. Some Inequalities Arising from Montgomery’s Identity

5.1. Introduction. As mentioned earlier, the following identity,
attributed to Montgomery, is well known in the literature (see [110,
Chapter XVII, p. 565])

(2.103) f (x) = M (f ; a, b) + κ (x) ,
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where, as earlier,

(2.104) M (f ; a, b) =
1

b− a

∫ b

a

f (t) dt

is the integral mean,

(2.105) κ (x) =

∫ b

a

P (x, t) f ′ (t) dt,

and the Peano kernel P (x, t) is given by

(2.106) (b− a)P (x, t) :=

{
t− a, a ≤ t ≤ x,

t− b, x < t ≤ b.

Recently, Dragomir and Wang [92] utilized (2.103)-(2.106) to prove
Ostrowski’s inequality [96, p. 469]∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ M

b− a

[(
b− a

2

)2

+

(
x− a+ b

2

)2
]
,

where f : I ⊆ R → R is a differential mapping on I̊, the interior of
I, and |f ′ (x)| ≤ M for all x ∈ [a, b], a < b ∈̊I. Many Ostrowski type
results applied to numerical integration and probability have appeared
in the literature (see for example [18] – [86] and the references therein).

It is the intention of the current section to develop, through the
framework of Montgomery’s identity, a systematic study which pro-
duces some novel results and recaptures existing results as special cases.
Bounds are obtained in terms of the Lebesgue norms of the first deriv-
ative.

In Subsection 5.2, results are obtained for a generalised Chebychev
functional involving the integral mean of functions over different inter-
vals. In particular, bounds are obtained for the difference of means over
two different intervals, producing a generalisation of Mahajani type
inequalities. In Subsection 5.3, we study bounds involving moments
about any general parameter producing results for central moments
and for moments about the origin as special cases. Bounds for the ex-
pectation and the variance are investigated, in particular, recapturing
some earlier results and obtaining some previously unknown results.

5.2. Main Results and Some Ramifications. We start with
the following theorem [32].

Theorem 27. Let f : [a, b] → R be an absolutely continuous map-
ping as is u : [α, β] → R with [α, β] ⊆ [a, b]. The following inequalities
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hold,

(2.107)

∣∣∣∣∫ β

α

u (x) f (x) dx−M (f ; a, b)

∫ β

α

u (x) dx

∣∣∣∣

≤



‖f ′‖∞
2(b−a)

∫ β
α
|u (x)|

[
(x− a)2 + (b− x)2] dx, f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(q+1)
1
q (b−a)

∫ β
α
|u (x)|

[
(x− a)q+1 + (b− x)q+1] 1

q dx,

f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a

∫ β
α
|u (x)|

[
b−a
2

+
∣∣x− a+b

2

∣∣] dx, f ′ ∈ L1 [a, b] ,

Proof. Using identity (2.103), we obtain, for a ≤ α < β ≤ b,

(2.108)

∫ β

α

u (x) f (x) dx

= M (f ; a, b)

∫ β

α

u (x) dx+

∫ β

α

u (x)κ (x) dx,

and therefore

(2.109)

∣∣∣∣∫ β

α

u (x) f (x) dx−M (f ; a, b)

∫ β

α

u (x) dx

∣∣∣∣
=

∣∣∣∣∫ β

α

u (x)κ (x) dx

∣∣∣∣ .
Now,

(2.110)

∣∣∣∣∫ β

α

u (x)κ (x) dx

∣∣∣∣ ≤ ∫ β

α

|u (x)| |κ (x)| dx

and using the properties of modulus and Hölder’s integral inequality

|κ (x)| ≤



‖f ′‖∞
∫ b
a
|P (x, t)| dt, f ′ ∈ L∞ [a, b] ;

‖f ′‖p
(∫ b

a
|P (x, t)|q dt

) 1
q
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1 sup
t∈[a,b]

|P (x, t)| , f ′ ∈ L1 [a, b] ,
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and these reduce to,

(2.111) |κ (x)|

≤



‖f ′‖∞
2(b−a)

[
(x− a)2 + (b− x)2] , f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(q+1)
1
q (b−a)

[
(x− a)q+1 + (b− x)q+1] 1

q , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a max {x− a, b− x} , f ′ ∈ L1 [a, b] .

Substituting (2.111) into (2.110) and using identity (2.109) gives (2.107)
on noting that for X, Y ∈ R,

max {X, Y } =
X + Y

2
+

∣∣∣∣X − Y

2

∣∣∣∣ .
Hence, the theorem is proved.

Lemma 4. ([32]) Let f and u satisfy the conditions of Theorem 27,
then the following identity is valid,

(2.112)

∫ β

α

u (x) f (x) dx = A (α, β)

{
M (f ; a, b)

+

∫ α

a

(
t− a

b− a

)
f ′ (t) dt−

∫ b

β

(
b− t

b− a

)
f ′ (t) dt

}
+

1

b− a

∫ β

α

[(t− a)A (t, β)− (b− t)A (α, t)] f ′ (t) dt,

where A (α, β) =
∫ β
α
u (x) dx and M (f ; a, b) is defined in (2.104).

Proof. The proof is straight forward from identity (2.108) by an
interchange of the order of integration of∫ β

α

u (x)κ (x) dx,

where κ (x) is defined by (2.105).

(2.113)

∫ β

α

u (x)κ (x) dx

=

∫ β

α

u (x)

∫ x

a

(
t− a

b− a

)
f ′ (t) dtdx+

∫ β

α

u (x)

∫ b

x

(
t− b

b− a

)
f ′ (t) dtdx

= A (α, β)

∫ α

a

(
t− a

b− a

)
f ′ (t) dt+

∫ β

α

(
t− a

b− a

)
A (t, β) f ′ (t) dt
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+ A (α, β)

∫ b

β

(
t− b

b− a

)
f ′ (t) dt+

∫ β

α

(
t− b

b− a

)
A (α, t) f ′ (t) dt.

Substitution into (2.108) produces (2.112).

Theorem 28. ([32]) Let f : [a, b] → R be an absolutely continuous
mapping as is also u : [α, β] → R with [α, β] ⊆ [a, b]. The following
inequalities are then valid.

(2.114)

∣∣∣∣∫ β

α

u (x) f (x) dx−M (f ; a, b)A (α, β)

∣∣∣∣

≤



‖f ′‖∞
b−a

{
|A(α,β)|

2

[
(α− a)2 + (b− β)2]+

∫ β
α
|φ (t)| dt

}
,

f ′ ∈ L∞ [a, b] ;

‖f ′‖p

b−a ·
{
|A(α,β)|q
q+1

[
(α− a)q+1 + (b− β)q+1]

+
∫ β
α
|φ (t)|q dt

} 1
q

, f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a max

{
|A (α, β)|Θ, sup

t∈[α,β]

|φ (t)|

}
, f ′ ∈ L1 [a, b] ,

where

φ (t) = (t− a)A (t, β)− (b− t)A (α, t)(2.115)

=

∣∣∣∣ t− a b− t
A (α, t) A (t, β)

∣∣∣∣
and

(2.116) Θ =
b− a

2
− β − α

2
+

∣∣∣∣b+ a

2
− β + α

2

∣∣∣∣ .
Proof. From identity (2.112)

(2.117)

∫ β

α

u (x) f (x) dx−M (f ; a, b)A (α, β) = R,

where

(2.118) R = A (α, β)

{∫ α

a

(
t− a

b− a

)
f ′ (t) dt+

∫ b

β

(
t− b

b− a

)
f ′ (t) dt

}
+

1

b− a

∫ β

α

φ (t) f ′ (t) dt,

with φ (t) being as given by (2.115).
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Now, taking the modulus of (2.117) and using the triangle inequality
gives, from (2.118),

|R| ≤ |A (α, β)|

{
sup
t∈[a,α]

|f ′ (t)| · 1

b− a
· (α− a)2

2
(2.119)

+ sup
t∈[β,b]

|f ′ (t)| · 1

b− a
· (b− β)2

2

+ sup
t∈(α,β)

|f ′ (t)| 1

b− a

∫ β

α

φ (t) dt

}

≤ ‖f ′‖∞
b− a

{[
(α− a)2 + (b− β)2

2

]
+

∫ β

α

|φ (t)| dt

}
.

Substitution of (2.119) into (2.117) produces the first inequality in
(2.114).

Further, from (2.117), using Hölder’s integral inequality

|R| ≤
‖f ′‖p
b− a

{
|A (α, β)|q

[∫ α

a

(t− a)q dt

+

∫ b

β

(b− t)q dt

]
+

∫ β

α

|φ (t)|q dt
} 1

q

,

which, upon some simple calculations and substitution into (2.116),
gives the second inequality in (2.114).

For the last inequality, from (2.118)

|R| ≤ |A (α, β)|
b− a

[
(α− a)

∫ α

a

|f ′ (t)| dt+ (b− β)

∫ b

β

|f ′ (t)| dt
]

+
1

b− a
sup
t∈[α,β]

|φ (t)|
∫ β

α

|f ′ (t)| dt

≤ ‖f ′‖1

b− a
max

{
|A (α, β)|Θ, sup

t∈[α,β]

|φ (t)|

}
,

where Θ = max {α− a, b− β}.
On substitution of the last inequality into (2.117) and, using the

fact that max {X, Y } = X+Y
2

+
∣∣X−Y

2

∣∣, X,Y ∈ R, we obtain the final
inequality in (2.114).

Remark 32. The bound for the left hand side of (2.117) in terms of
R as given by (2.118) was used so that a comparison could be made with
the bounds obtained from Theorem 27. In Corollary 31, the first two
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terms in (2.118) disappear on using particular choices of the parame-
ters, and in Theorem 29, the terms constitute part of the expression to
be approximated.

The following corollary gives an estimate of the error for the differ-
ence between weighted and unweighted integral means.

Corollary 31. ([32]) Let f, u : [a, b] → R be absolutely continuous
mappings on [a, b]. Then

(2.120)

∣∣∣∣∣
∫ b
a
u (x) f (x) dx∫ b
a
u (x) dx

−
∫ b
a
f (x) dx

b− a

∣∣∣∣∣

≤



‖f ′‖∞
b−a

∫ b
a
|Φ (t)| dt, f ′ ∈ L∞ [a, b] ;

‖f ′‖p

b−a

[∫ b
a
|Φ (t)|q dt

] 1
q
, f ′ ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

‖f ′‖1
b−a sup

t∈[a,b]

|Φ (t)| , f ′ ∈ L1 [a, b] ,

where

(2.121) Φ (t) = (t− a)H (t, b)− (b− t)H (a, t)

with

(2.122) H (a, t) =

∫ t
a
u (x) dx∫ b

a
u (x) dx

and H (t, b) = 1−H (a, t) .

Proof. Setting α = a and β = b in Theorem 28 produces the
result (2.120) after some minor rearrangements.

Theorem 29. ([32]) Let f : [a, b] → R be an absolutely continuous
mapping as is u : [α, β] → R with [α, β] ⊆ [a, b], then the following
inequalities are valid.

|T | :=
∣∣∣∣∫ β

α

u (t) f (t) dt− A (α, β)(2.123)

× {[1− (λ1 + λ2)]M (f ;α, β) + λ1f (α) + λ2f (β)}
∣∣∣∣

≤



‖f ′‖∞
b−a

∫ β
α
|φ (t)| dt, f ′ ∈ L∞ [α, β] ;

‖f ′‖p

b−a

(∫ β
α
|φ (t)|q dt

) 1
q
, f ′ ∈ Lp [α, β] , p > 1,

1
p

+ 1
q

= 1;
‖f ′‖1
b−a sup

t∈[α,β]

|φ (t)| , f ′ ∈ L1 [α, β] ,
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where

(2.124) A (α, β) =

∫ β

α

u (t) dt, λ1 =
α− a

b− a
, λ2 =

b− β

b− a
,

and φ (t) is as defined by (2.115).

Proof. From identity (2.112), we have

(2.125)

∫ β

α

u (t) f (t) dt

− A (α, β)

{
M (f ; a, b) +

∫ α

a

(
t− a

b− a

)
f ′ (t) dt

−
∫ b

β

(
b− t

b− a

)
f ′ (t) dt

}
=

1

b− a

∫ β

α

φ (t) f ′ (t) dt,

where A (α, β) is as given by (2.124), M (f ; a, b) is as defined in (2.74)
and φ (t) is as given by (2.115).

Simple integration by parts gives∫ α

a

(
t− a

b− a

)
f ′ (t) dt =

(
α− a

b− a

)
f (α)− 1

b− a

∫ α

a

f (t) dt

and

−
∫ b

β

(
b− t

b− a

)
f ′ (t) dt =

(
b− β

b− a

)
f (β)− 1

b− a

∫ b

β

f (t) dt,

which, upon substitution into (2.125) produces the identity

(2.126)

∫ β

α

u (t) f (t) dt− A (α, β)

b− a

×
[∫ β

α

f (t) dt+ (α− a) f (α) + (b− β) f (β)

]
=

1

b− a

∫ β

α

φ (t) f ′ (t) dt.

Now, allowing λ1, λ2 to be as given in (2.124), then, from (2.126),

(2.127)

∫ β

α

u (t) f (t) dt− A (α, β)

{
[1− (λ1 + λ2)]

1

β − α

×
∫ β

α

f (t) dt+ λ1f (α) + λ2f (β)

}
=

1

b− a

∫ β

α

φ (t) f ′ (t) dt.
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Taking the modulus of (2.127) and using the results from the proof of
Theorem 28 involving the modulus and integral and, Hölder’s inequal-
ity, produces the results as stated in (2.123) involving the Lebesgue
norms, for f ′ ∈ Lp [α, β], p ≥ 1.

Remark 33. The left hand side of (2.123) may be written in the
form

(2.128) T = (β − α)T (u, f)

+ A (α, β) {λ1 [M (f ;α, β)− f (α)]

+λ2 [M (f ;α, β)− f (β)]} ,
where T (g, h) is the Chebychev functional (see for example [109]) given
by

(2.129) T (g, h) = M (gh)−M (g)M (h) ,

where M (·) is the mean over some interval. Hence, the bounds of The-
orem 29 may be viewed as bounds for a perturbed Chebychev functional.
If λ1 = λ2 = 0, then there is no perturbation.
If λ1 = λ2 = λ, say, then from (2.128)

(β − α)T (u, f) + 2λA (α, β)

[
M (f ;α, β)− f (α) + f (β)

2

]
,

where the perturbation to the Chebychev functional involves the differ-
ence between the mean and the trapezoidal approximation of a function
f (·).
If λ1 = λ2 = 1

2
, then, from the left hand side of (2.123), on division by

β−α we obtain the difference between the average of the product of two
functions and the average of one by the difference between the average
and the trapezoidal approximation of another. If λ1 = 0 (α = a) and
λ2 = b−x

b−a (β = x), then from (2.123)

(2.130)
T

β − α
= M (uf ; a, x)−

M (u; a, x)

[(
x− a

b− a

)
M (f ; a, x) +

(
b− x

b− a

)
f (x)

]
,

giving a convex combination between the mean of f (·) and evaluation
at only one end point.
In fact, from (2.123)

T
β − α

= M (uf ;α, β)−

M (u;α, β) {[1− (λ1 + λ2)]M (f ;α, β) + λ1f (α) + λ2f (β)} ,
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giving a comparison between the mean of a product of two functions
and the product of the mean of a function and a convex combination of
the mean and the end point function evaluations of the other function.

The following corollary gives bounds for the difference between the
mean of a function and the mean over a subinterval.

Corollary 32. ([32]) Let the conditions of Theorem 27 hold.
Then, for [α, β] ⊆ [a, b]

(2.131) |M (f ;α, β)−M (f ; a, b)|

≤



‖f ′‖∞
2(b−a)(β−α)

[M2 (α− a, β − a) +M2 (b− β, b− α)] ,

f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(q+1)
1
q (b−a)(β−α)

[Mq+1 (α− a, β − a) +Mq+1 (b− β, b− α)]
1
q ,

f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a ·

[
(b−a)(β−α)

2
+
∫ β−a+b

2

α−a+b
2

|u| du
]
, f ′ ∈ L1 [a, b] ,

where M (f ; ·, ·) is as defined by (2.74) and

(2.132) Mr (x1, x2) =

∫ x2

x1

urdu =
xr+1

2 − xr+1
1

r + 1
.

Proof. The proof follows from Theorem 27. Placing u ≡ 1 gives
the above results after some straight forward algebra and noting that
from (2.132)∫ β

α

[(x− a)r + (b− x)r] dx = Mr (α− a, β − a) +Mr (b− α, b− β) .

Corollary 33. ([32]) Let the conditions of Theorem 27 hold, then

(2.133)

∣∣∣∣∫ x

a

f (u) du−
(
x− a

b− a

)∫ b

a

f (u) du

∣∣∣∣

≤



‖f ′‖∞
6(b−a)

[
(x− a)3 + (b− a)3 − (b− x)3] , f ′ ∈ L∞ [a, b] ;

‖f ′‖p

[(q+2)(q+1)]
1
q (b−a)

[
(x− a)q+2 + (b− a)q+2 − (b− x)q+2] 1

q ,

f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a (x− a)

[
(b−a)(x−a)

2
+
∫ x−a+b

2

− b−a
2

|u| du
]
, f ′ ∈ L1 [a, b] .
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Proof. Taking u ≡ 1 in Theorem 27 and placing β = x and α = a
or taking β = x and α = a in Corollary 32 produces the results stated
after some simplification.

Mr (0, x− a) +Mr (b− x, b− a)

=
(x− a)r+1 + (b− a)r+1 − (b− x)r+1

r + 1

gives the results as stated in (2.133).

Remark 34. An upper bound may be obtained from Corollary 32
when x1 ≡ 0, i.e., if α = a and β = b. Taking x = a+b

2
on the right

hand side of Corollary 33 produces the result

∣∣∣∣∣
∫ a+b

2

a

f(u)du− 1

2

∫ b

a

f (u)du

∣∣∣∣∣≤


(b−a)2
6

‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

(b−a)
2
q

[(q+2)(q+1)]
1
q
‖f ′‖p , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

3
4

(
b−a
2

)2 ‖f ′‖1 , f ′ ∈ L1 [a, b] .

Furthermore, if f is a probability density function such that f : [a, b] →
R+ and

∫ b
a
f (t) dt = 1, then

∫ x
a
f (u) du = F (x), the cumulative density

function and so Corollary 33 may be viewed as a first order approxi-
mation for F .

Corollary 34. ([32]) Let the conditions of Theorem 28 hold, then
for [α, β] ⊂ [a, b], the following inequalities are valid.

(2.134) |M (f ;α, β)−M (f ; a, b)|

≤



‖f ′‖∞
2[b−a−(β−α)]

[
(α− a)2 + (b− β)2] , f ′ ∈ L∞ [a, b] ;

‖f ′‖p

b−a

[
(α−a)q+1+(b−β)q+1

(q+1)(1−ρ)

] 1
q
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a Θ, f ′ ∈ L1 [a, b] ,

where ρ = β−α
b−a and Θ = max {α− a, b− β} as given by (2.116).

Proof. Taking u ≡ 1 in Theorem 28 gives A (α, β) = β − α and
for k ≥ 1, ∫ β

α

|Φ (t)|k dt =

∫ β

α

|(t− a) (β − t)− (b− t) (t− α)|k dt(2.135)
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=

∫ β

α

|γt− c|k dt,

where

(2.136)

 γ = b− a− (β − a)
and

c = αb− aβ.

Thus, from (2.135),∫ β

α

|Φ (t)|k dt = γk
∫ c

γ

α

(
c

γ
− t

)k
dt+

∫ β

c
γ

(
t− c

γ

)k
dt

=
(c− αγ)k+1 + (βγ − c)k+1

(q + 1) γ
.

Substituting for γ and c from (2.136) gives∫ β

α

|Φ (t)|k dt =
(β − a)k+1

[b− a− (β − α)]

[
(α− a)k+1 + (b− β)k+1

k + 1

]
and thus, from (2.114), after a little algebra, we obtain the first two
inequalities for k = 1 and q respectively.

Now, for the third inequality, from (2.114) and (2.135),

sup
t∈[α,β]

|Φ (t)| = max {|γα− c| , |γβ − c|}

= (β − α) max {α− a, b− β} = (β − α) Θ,

where Θ is as given by (2.116) and hence the corollary is proved.

Corollary 35. ([32]) Let the conditions of Theorem 28 hold, then

(2.137)

∣∣∣∣∫ x

a

f (u) du−
(
x− a

b− a

)∫ b

a

f (u) du

∣∣∣∣

≤



‖f ′‖∞
(x−a)(b−x)

2
, f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(q+1)
1
q
· (x−a)(b−x)

(b−a)1−
1
q
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
(x−a)(b−x)

b−a , f ′ ∈ L1 [a, b] .

Proof. Take u ≡ 1 in Theorem 28 with β = x and α = a, or,
alternatively, and perhaps the easier route, take β = x and α = a in
Corollary 34. This produces the result (2.137) on multiplication by
x− a.
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Remark 35. The tightest bound from (2.137) is obtained by taking
x = a+b

2
to give

∣∣∣∣∣
∫ a+b

2

a

f (u) du− 1

2

∫ b

a

f (u) du

∣∣∣∣∣≤


(b−a)2
8

‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

(b−a)1+
1
q

4(q+1)
1
q
‖f ′‖p , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
b−a
4
‖f ′‖1 , f ′ ∈ L1 [a, b] .

It may be noticed that these bounds are sharper than those of Remark
34. As a matter of fact, it may be shown that the bounds given by
Corollary 35 are better than those of (2.137) except for the case f ′ ∈
L1 [a, b] for b− a < 4

3
.

Remark 36. If we allow
∫ b
a
f (u) du = 0, then Corollary 35 repro-

duces the results of a comprehensive article by Fink [96] dealing with
Ostrowski, Mahajani and Iyengar type inequalities. In fact, the first

inequality in (2.137) with
∫ b
a
f (u) du = 0 is superior to the Mahajani

inequality

(2.138)

∣∣∣∣∫ x

a

f (x) dx

∣∣∣∣ ≤ (b− a)2

8
‖f ′‖∞

except at x = a+b
2

.

It is important to note that the Mahajani inequality (2.138) and
the Mahajani type generalisations of Fink [96], which are recaptured

as a special case of (2.137)
(∫ b

a
f (u) du = 0

)
effectively involve obtain-

ing bounds on the area over a specific subinterval [a, x] of [a, b]. The
following corollary may be viewed as Mahajani type inequalities over
any subinterval.

Corollary 36. ([32]) Let f : [a, b] → R be an absolutely continu-

ous mapping with [α, β] ⊆ [a, b] and
∫ b
a
f (u) du = 0, then

(2.139)

∣∣∣∣∫ β

α

f (u) du

∣∣∣∣

≤



ρ
2[1−ρ]

[
(α− a)2 + (b− β)2] ‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

ρ
[

(α−a)q+1+(b−β)q+1

(q+1)(1−ρ)

] 1
q ‖f ′‖p , f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

ρ
[
b−a
2
− β−α

2
+
∣∣ b+a

2
− β+α

2

∣∣] ‖f ′‖1 , f
′ ∈ L1 [a, b] ,
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where ρ = β−α
b−a .

Proof. Corollary 34, putting
∫ b
a
f (u) du = 0 and multiplying both

sides by β − α, readily produces the result (2.139).

Remark 37. If M (f ; a, b) is taken to be zero in any of the ear-
lier results, then they may be looked upon as weighted Mahajani type
inequalities over arbitrary subintervals [α, β]. Further, the condition of∫ b
a
f (u) du = 0 may be done away with if we consider a function shifted

by its mean, that is, taking f (x) = g (x)− 1
b−a

∫ b
a
g (u) du.

The following theorem provides bounds in terms of Lebesgue norms
over a subinterval [32].

Theorem 30. Let f : [a, b] → R be an absolutely continuous map-
ping as is also u : [α, β] ⊆ [a, b], then

(2.140)

∣∣∣∣∫ β

α

u (x) f (x) dx−M (f ; a, b)

∫ β

α

u (x) dx

∣∣∣∣

≤



‖S (f)‖∞,s

∫ β
α
|u (x)| dx, f ∈ L∞ [α, β] ;

‖S (f)‖p,s
(∫ β

α
|u (x)|q dx

) 1
q
, f ∈ Lp [α, β] , p > 1,

1
p

+ 1
q

= 1;

‖S (f)‖1,s sup
x∈[α,β]

|u (x)| , f ∈ L1 [α, β] ,

where M (f ; a, b) is as given by (2.74),

(2.141) S (f (x)) = f (x)−M (f ; a, b)

and ‖·‖p,s, 1 ≤ p ≤ ∞ are the Lebesgue norms on the subinterval [α, β].

Proof. From (2.103) and (2.108) we obtain the identity

(2.142)

∫ β

α

u (x) f (x) dx−M (f ; a, b)

∫ β

α

u (x) dx

=

∫ β

α

u (x)S (f (x)) dx,

where S (f (·)) is a shift operator as defined by (2.141). From (2.142),
using the properties of modulus and integral together with Hölder’s
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integral inequality, gives

∣∣∣∣∫ β

α

u (x)S (f (x)) dx

∣∣∣∣

≤



‖S (f)‖∞,s

∫ β
α
|u (x)| dx, f ∈ L∞ [α, β] ;

‖S (f)‖p,s
(∫ β

α
|u (x)|q dx

) 1
q
, f ∈ Lp [α, β] ,

p > 1, 1
p

+ 1
q

= 1;

‖S (f)‖1,s sup
x∈[α,β]

|u (x)| , f ∈ L1 [α, β] .

That is, substitution into the right hand side of the modulus of (2.142)
gives (2.140) and the theorem is proved.

Remark 38. The equivalent of the shifted norms has appeared in
the work of Dragomir and McAndrew [83] in which they obtained bounds
for perturbed trapezoidal rules in terms of the norms of functions shifted
by their average i.e., the Lebesgue norms of (2.141).

5.3. Results Involving Moments. In this section we investigate
inequalities involving moments. Let

(2.143)

 mn (γ) =
∫ β
α

(x− γ)n f (x) dx
and

Mn (γ) =
∫ b
a

(x− γ)n f (x) dx

with [α, β] ⊆ [a, b].
That is, m represents moments about γ over the subinterval [α, β]

while M represents moments about γ over the interval [a, b]. It should
be noted that if γ = 0, then (2.143) produces the moments about
the origin, while taking γ = m1 (0) (or γ = M1 (0)) gives the central
moments.

The following theorem holds [32].

Theorem 31. Let f : [a, b] → R be an absolutely continuous map-
ping with γ ∈ R and [α, β] ⊆ [a, b], then

(2.144) |mn (γ)−M (f ; a, b)A (α, β; γ)|
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≤



‖f ′‖∞
2(b−a)Ψ1 (a, α, β, b; γ) , f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(q+1)
1
q (b−a)

Ψq (a, α, β, b; γ) , f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1

[
Θ(α,β;γ)

2
+ 1

b−a

∫ β−γ
α−γ |v|

n
∣∣v − (a+b

2
− γ
)∣∣ dv] ,
f ′ ∈ L1 [a, b] ,

where M (f ; a, b) is as defined by (2.74),

(2.145) (n+ 1)A (α, β; γ) = (β − γ)n+1 − (α− γ)n+1 ,

(2.146) Ψr (a, α, β, b; γ)

=

∫ β−γ

α−γ
|v|n

[
(v + γ − a)r+1 + (b− γ − v)r+1] 1

r dv

and

(2.147) (n+ 1) Θ (α, β; γ)

=


(n+ 1)A (α, β; γ) , γ ≤ α;

(β − γ)n+1 + (α− γ)n+1 , α < γ ≤ β;

(γ − α)n+1 − (γ − β)n+1 , γ > β.

Proof. Taking u (x) = (x− γ)n in (2.107) readily gives the left
hand side of (2.144) after some simple algebra. For 1 ≤ r < ∞ then
the substitution v = x− γ into∫ β

α

|x− γ|n
[
(x− a)r+1 + (b− x)r+1] 1

r dx

produces Ψr (a, α, β, b; γ) as given by (2.146).
The last inequality is obtained on noting that∫ β

α

|x− γ|n dx =

∫ β−γ

α−γ
|v|n dv

=


∫ β−γ
α−γ v

ndv, γ ≤ α;∫ γ−α
0

vndv +
∫ β−γ

0
vndv, α < γ ≤ β;∫ γ−α

γ−β v
ndv, γ > β,

which, on evaluation, produces Θ (α, β; γ) as given by (2.147).

Further,
∫ β
α
|x− γ|n

∣∣x− a+b
2

∣∣ dx produces the integral term in the
third inequality of (2.144) on making the substitution v = x− γ.
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Theorem 32. ([32]) Let f : [a, b] → R be an absolutely continuous
mapping γ ∈ R and [α, β] ⊆ [a, b], then

(2.148) |mn (γ)−M (f ; a, b)A (α, β; γ)|

≤



‖f ′‖∞
b−a

{ |A(α,β;γ)|
2

[
(α− a)2 + (b− β)2]

+χ1 (a, α, β, b; γ)
}
, f ′ ∈ L∞ [a, b] ;

‖f ′‖p

b−a

{ |A(α,β;γ)|q
q+1

[
(α− a)q+1 + (b− β)q+1]

+χq (a, α, β, b; γ)
} 1

q , f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1
b−a max

{
|A (α, β; γ)|Θ, sup

t∈[α,β]

|φ (t)|
}
, f ′ ∈ L1 [a, b] ,

where M (f ; a, b) is as given by (2.74), (n+ 1)A (α, β; γ) is as given
by (2.145)

(2.149) χr (a, α, β, b; γ)

=
1

(n+ 1)r

∫ β−γ

α−γ

∣∣∣∣ (b− a) vn+1 + v
[
(α− γ)n+1 − (β − γ)n+1]

+ (b− γ) (α− γ)n+1 − (γ − a) (β − γ)n+1

∣∣∣∣rdv
and

(2.150) (n+ 1) |φ (t)|

=

∣∣∣∣ (b− a) (t− γ)n+1 + (t− γ)
[
(α− γ)n+1 − (β − γ)n+1]

+ (b− γ) (α− γ)n+1 − (γ − a) (β − γ)n+1

∣∣∣∣.
Proof. Taking u (x) = (x− γ)n in (2.114) gives the left hand side

of (2.148).
From (2.115), with u (x) = (x− γ)n , we obtain

φ (t) = (t− a)A (t, β; γ)− (b− t)A (α, t; γ) ,

where A (α, β; γ) is as given by (2.145) and thus

(n+ 1) |φ (t)| =
∣∣(t− a)

[
(β − γ)n+1 − (t− γ)n+1]

− (b− t)
[
(t− γ)n+1 − (α− γ)n+1]∣∣
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and so

(2.151) (n+ 1) |φ (t)| =
∣∣(b− a) (t− γ)n+1

−
[
(t− a) (β − γ)n+1 + (b− t) (α− γ)n+1]∣∣ ,

which produces (2.150) on expressing it as a polynomial in terms of
t− γ.

Hence,∫ β

α

|φ (t)|r dt =
1

(n+ 1)r

∫ β

α

∣∣∣∣ (b− a) (t− γ)n+1

+ (t− γ)
[
(α− γ)n+1 − (β − γ)n+1]

+ (b− γ) (α− γ)n+1 − (γ − a) (β − γ)n+1

∣∣∣∣rdt,
which, on substitution of v = t− γ produces χr (a, α, β, b; γ) as defined
in (2.149).

The last inequality in (2.148) is obtained from the third inequality
in (2.114) and from (2.115) on taking u (x) = (x− γ)n.

Remark 39. The above two theorems provide quite general results,
producing bounds for the moments over a subinterval in terms of the
Lp [a, b] norms of the derivative of the function. Taking α = a and
β = b gives results involving Mn (γ) rather than mn (γ) as defined by
(2.143). As stated previously at the start of this section, taking γ = 0
and γ = m1 (0) (or M1 (0)) produces the moments about the origin
and the central moments respectively. Taking n = 0 reproduces the
corollaries of the previous section.

The following corollaries investigate in some detail a few speciali-
sations. We restrict the examples to taking α = a and β = b.

Corollary 37. Let f : [a, b] → R be absolutely continuous and
γ ∈ R, then

(2.152)

∣∣∣∣∣Mn (γ)−M (f ; a, b)
(b− γ)n+1 − (a− γ)n+1

n+ 1

∣∣∣∣∣

≤



‖f ′‖∞χ̃1(γ)

n+1
, f ′ ∈ L∞ [a, b] ;

‖f ′‖pχ̃
1
q
q (γ)

n+1
, f ′ ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

‖f ′‖1 sup
t∈[a,b]

|φ̃(t)|
n+1

, f ′ ∈ L1 [a, b] ,
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where

(2.153) φ̃ (t) = (t− γ)n+1

−
[(

t− a

b− a

)
(b− γ)n+1 +

(
b− t

b− a

)
(a− γ)n+1

]
and

(2.154) χ̃r (γ) =

∫ b

a

∣∣∣φ̃ (t)
∣∣∣r dt.

Proof. Taking α = a and β = b in Theorem 32, we obtain φ̃ (t) =
(n+1)φ(t)

b−a from (2.151) as given in (2.153) and χ̃r (γ) = (n+1)r

b−a χr (a, a, b, b; γ)
as shown by (2.154).

The results of Corollary 37 may be simplified if the nature of φ̃ (t)
as given by (2.153) is known. The following lemma examines the be-

haviour of φ̃ (t).

Lemma 5. ([32]) For φ̃ (t) given by (2.153) we have

(2.155) φ̃ (t)


< 0


n odd, any γ and t ∈ (a, b)

n even

{
γ < a, t ∈ (a, b)
a < γ < b, t ∈ [c, b)

> 0, n even

{
γ > b, t ∈ (a, b)
a < γ < b, t ∈ (a, c)

.

where φ̃ (c) = 0, a < c < b and

c


> γ, γ < a+b

2

= γ, γ = a+b
2

< γ, γ > a+b
2
.

Proof. From (2.153), φ̃ (a) = φ̃ (b) = 0.
Further,

(2.156) φ̃
′
(t) = (n+ 1) (t− γ)n − (b− γ)n+1 − (a− γ)n+1

b− a

and

(2.157) φ̃
′′
(t) = (n+ 1)n (t− γ)n−1 .

Thus, for n odd, φ̃
′′
(t) > 0, t ∈ [a, b] and so φ̃ (t) < 0 for t ∈ (a, b).

For n even, the behaviour depends also on γ and t. φ̃
′′
(t) > 0 for

any t ∈ [a, b] if γ < a and for t ∈ (c, b) if a < γ < b, where φ̃ (c) = 0.

Thus, φ̃ (t) < 0 over these regions.
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Now φ̃
′′
(t) < 0 for t − γ < 0 i.e., for t ∈ [a, b] if γ > b and for

t ∈ (a, c) if a < γ < b, where φ̃ (c) = 0. Hence φ̃ (t) > 0 for these
cases and the lemma is proved. It is straightforward to see that as
φ̃ (a) = φ̃ (b) = 0 and φ is concave, then c relative to γ is as stated in
the lemma.

Lemma 6. ([32]) For χ̃1 (t) as given by (2.154) and (2.153), we
have from

(2.158) χ̃1 (t)

=



B−A
2

[Bn+1 − An+1]− Bn+2−An+2

n+2
,

{
n odd and any γ
n even and γ < a

;

2Cn+2−Bn+2−An+2

n+2

+ 1
2(b−a)

{[
(b− a)2 − 2 (c− a)2]Bn+1

+
[
2 (b− c)2 − (b− a)2]}An+1, n even and a < γ < b;

Bn+2−An+2

n+2
− B−A

2
[Bn+1 − An+1] , n even and γ > b,

where

(2.159)


B = b− γ, A = a− γ, C = c− γ,

C1 =
∫ c
a
C (t) dt, C2 =

∫ b
c
C (t) dt,

with C (t) =
(
t−a
b−a

)
Bn+1 +

(
b−t
b−a

)
An+1

and φ̃ (c) = 0 with a < c < b.

Proof. From (2.153)

(2.160) φ̃ (t) = (t− γ)n+1 − C (t) ,

where C (t) is as given in (2.159).
Now, ∫ c

a

(t− γ)n+1 dt =
Cn+2 − An+2

n+ 2
,∫ b

c

(t− γ)n+1 dt =
Bn+2 − Cn+2

n+ 2

and so ∫ b

a

(t− γ)n+1 dt =
Bn+2 − An+2

n+ 2
.
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In addition,

C1 =

∫ c

a

C (t) dt

=
1

2 (b− a)

{
(c− a)2Bn+1 +

[
(b− a)2 − (b− c)2]An+1

}
,

C2 =

∫ b

γ

C (t) dt

=
1

2 (b− a)

{[
(b− a)2 − (c− a)2]Bn+1 + (b− c)2An+1

}
,

and

C1 + C2 =

∫ b

a

C (t) dt =
B − A

2

(
Bn+1 + An+1

)
.

Thus, using Lemma 5, (2.153), (2.154) and (2.160), we have the results
as stated in the lemma, after some algebraic manipulation.

Lemma 7. ([32]) For φ̃ (t) as defined by (2.153), then

(2.161) sup
t∈[a,b]

∣∣∣φ̃ (t)
∣∣∣=

C (t∗)− Bn+1−An+1

(n+1)(B−A)
, n odd, n even and γ<a;

Bn+1−An+1

(n+1)(B−A)
− C (t∗) n even and γ > b;

m1+m2

2
+
∣∣m1−m2

2

∣∣ n even and a < γ < b,

where (t∗ − γ)n = Bn+1−An+1

(n+1)(B−A)
, C (t) is as defined in (2.159), m1 =

φ̃ (t∗1), m2 = −φ̃ (t∗2) and t∗, t∗1, t
∗
2 are given by (2.162) and (2.163).

Proof. From Lemma 5, we know that φ̃ (a) = φ̃ (b) = 0 and so

the maximum occurs at t∗ where φ̃
′
(t∗) = 0, that is, from (2.156)

(2.162) (n+ 1) (t∗ − γ)n − Bn+1 − An+1

B − A
= 0.

For n even and a < γ < b, then there are two solutions to (2.162). Let
these be t∗1 and t∗2 with t∗1 < t∗2, i.e.

t∗1 = γ −
(

Bn+1 − An+1

(n+ 1) (B − A)

) 1
n

,(2.163)

t∗2 = γ +

(
Bn+1 − An+1

(n+ 1) (B − A)

) 1
n

.

Now, using the fact that

max {m1,m2} =
m1 +m2

2
+

∣∣∣∣m1 −m2

2

∣∣∣∣ ,
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the proof of the lemma is completed.

Corollary 38. ([32]) Let f : [a, b] → R+ be an absolutely contin-
uous PDF associated with a random variable X, then, the expectation
E [X] satisfies the inequalities

∣∣∣∣E (X)− a+ b

2

∣∣∣∣≤


(b−a)3
6

‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;(
b−a
2

)2+ 1
q

[∫ π
4

0
sec2(q+1) (θ) dθ

] 1
q ‖f ′‖p ,

f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

(b−a)2
8

‖f ′‖1 , f ′ ∈ L1 [a, b] .

Proof. Taking n = 1 in Corollary 37 and Using Lemmas 5 - 7,
gives the above results after some elementary algebra. In particular,

φ̃ (t) = t2 − (a+ b) t+ ab =

(
t− a+ b

2

)2

+

(
b− a

2

)2

.

and t∗, the one solution to φ̃
′
(t) = 0, is t∗ = a+b

2
.

Corollary 39. ([32]) Let f : [a, b] → R+ be an absolutely con-
tinuous PDF associated with a random variable X, then the variance,
σ2 (X) is such that

(2.164)
∣∣σ2 (X)− S

∣∣

≤



{
C4

2
− 1

b−a

[
(c− a)3B3 − (b− c)2A3

]
+ (B2 + A2)

(
b−a
2

)2 − (AB)2

2

}
‖f ′‖∞

3
, f ′ ∈ L∞ [a, b] ;[∫ b

a

∣∣∣φ̂ (t)
∣∣∣q dt] 1

q ‖f ′‖p

3
, f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

[m1 +m2 + |m2 −m1|] ‖f
′‖1
6
, f ′ ∈ L1 [a, b] ,

where

S =
B3 − A3

3 (b− a)
,
A = a− γ, B = b− γ, C = c− γ, γ = E [X] ,

c satisfies φ̂ (c) = 0, a < c < b,

with
and

m1 = φ̂
[
E [X]− S

1
2

]
, m2 = φ̂

[
E [X] + S

1
2

]
φ̂ (·) as given by (2.128).

(2.165)

a < γ = E (X) < b.
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Proof. Taking n = 2 in Corollary 37 gives, from (2.153),

(2.166) φ̂ (t) = (t− γ)3 +

(
b− t

b− a

)
(γ − a)3 −

(
t− a

b− a

)
(b− γ)3 ,

where a < γ = E (X) < b.
Now, from Lemmas 5 and 6 with n = 2 and a < γ < b gives

χ̃1 (t) =
2C4 −B4 − A4

4
(2.167)

+
1

2 (b− a)

{[
(b− a)2 − 2 (c− a)2]B3

+
[
2 (b− c)2 − (b− a)2]A3

}
=
C4

2
− 1

b− a

[
(c− a)2B3 − (b− c)2A3

]
+
B − A

2

[
B3 − A3

]
− B4 + A4

4
.

Now,

B − A

2

[
B3 − A3

]
− B4 + A4

4

=
1

4

{
2 (B − A)

(
B3 − A3

)
−
(
B4 + A4

)}
=

1

4

[
B4 + A4 − 2AB

(
B2 + A2

)]
=

1

4

[(
B2 + A2

)2 − 2 (AB)2 − 2AB
(
B2 + A2

)]
=

1

4

[(
B2 + A2

)
(B − A)2 − 2 (AB)2]

and so substitution into (2.167) gives the first inequality in (2.164) for
f ′ ∈ L∞ [a, b] on using (2.158) and the fact that B − A = b− a.

For f ′ ∈ Lp [a, b], the bound is not given explicitly but is as pre-

sented in (2.152) with φ̃ (t) replaced by φ̂ (t) from (2.166).
Now, for f ′ ∈ L1 [a, b], using Lemma 6 with n = 2 and in partic-

ular (2.161) and (2.163) gives the stated result. The corollary is now
completely established.



CHAPTER 3

Trapezoidal Type Results and Applications for
PDFs

1. The Perturbed Trapezoid Formula and Applications

1.1. Introduction. In [80], the authors have pointed out the fol-
lowing trapezoid inequality in terms of the p−norms of the second
derivative.

Theorem 33. Let f : [a, b] → R be a twice differentiable function
on (a, b). Then we have the estimate

(3.1)

∣∣∣∣∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)]

∣∣∣∣

≤



‖f ′′‖∞
12

(b− a)3 if f ′′ ∈ L∞ [a, b] ;

1
2
‖f ′′‖p [B (q + 1, q + 1)]

1
q (b− a)2+ 1

q ,

if f ′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f ′′‖1
8

(b− a)2 if f ′′ ∈ L1 [a, b] ;

and B is the Beta function.

Using Grüss’ integral inequality, the following perturbed trapezoid
inequality in terms of the upper and lower bounds of the second deriv-
ative, may be stated (see [80]):

Theorem 34. Let f : [a, b] → R be a twice differentiable function
on (a, b) and assume that

(3.2) γ := inf
x∈(a,b)

f ′′ (x) > −∞ and Γ := sup
x∈(a,b)

f ′′ (x) <∞,

then we have the estimation,

(3.3)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

32
(Γ− γ) (b− a)3 .

89
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In [35], by the use of a finer argument based on a pre-Grüss in-
equality, the authors have improved (3.3) as follows.

Theorem 35. If f is as in Theorem 34, then

(3.4)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

24
√

5
(b− a)3 (Γ− γ) ,

where γ and Γ are given in (3.2).

Remark 40. Atkinson [5] defines the quadrature rule

PT (f ; a, b) :=
b− a

2
[f (a) + f (b)]− (b− a)2

12
[f ′ (b)− f ′ (a)]

as a corrected trapezoidal rule and obtains it using an asymptotic error
estimate approach which does not provide an expression for the error
bound.

In this section we point out different bounds for the corrected trape-
zoidal rule. A natural application for the expectation of a random
variable is also given.

1.2. The Results. We have the following representation [17].

Lemma 8. Let f : [a, b] → R be a differentiable function so that f ′

is absolutely continuous on [a, b], then we have the representation:

(3.5)

∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

=
1

2

∫ b

a

(x− a) (b− x) {[f ′; a, b]− f ′′ (x)} dx,

where

[f ′; a, b] :=
f ′ (b)− f ′ (a)

b− a
is the divided difference.

Proof. By twice applying the integration by parts formula, we
have (see for example [5]) that

(3.6)

∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)]

= −1

2

∫ b

a

(x− a) (b− x) f ′′ (x) dx.
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On the other hand, by the simple identity:

(3.7)
1

b− a

∫ b

a

h (x) g (x) dx− 1

b− a

∫ b

a

h (x) dx · 1

b− a

∫ b

a

g (x) dx

=
1

b− a

∫ b

a

h (x)

[
g (x)− 1

b− a

∫ b

a

g (y) dy

]
dx,

we can write∫ b

a

(x− a) (b− x) f ′′ (x) dx

−
∫ b

a

(x− a) (b− x) dx · 1

b− a

∫ b

a

f ′′ (x) dx

=

∫ b

a

(x− a) (b− x) [f ′′ (x)− [f ′; a, b]] dx,

which is clearly equivalent to:

(3.8)

∫ b

a

(x− a) (b− x) f ′′ (x) dx =
(b− a)2

6
[f ′ (b)− f ′ (a)]

+

∫ b

a

(x− a) (b− x) [f ′′ (x)− [f ′; a, b]] dx.

Combining (3.6) with (3.8), we deduce (3.5).

Using the above representation, we can state the following result
on the error of the perturbed trapezoid formula [17]:

Theorem 36. With the assumptions of Lemma 8, we have

(3.9)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣

≤



(b−a)3
12

‖f ′′ − [f ′; a, b]‖∞ if f ′′ ∈ L∞ [a, b] ;

1
2
[B (q + 1, q + 1)]

1
q (b− a)2+ 1

q ‖f ′′ − [f ′; a, b]‖p ,
if f ′′ ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

1
8
(b− a)2 ‖f ′′ − [f ′; a, b]‖1 if f ′′ ∈ L1 [a, b] ,
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Proof. Using Lemma 8, we have

(3.10)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ 1

2

∫ b

a

(x− a) (b− x) |f ′′ (x)− [f ′; a, b]| dx =: M.

It is obvious that

M ≤ 1

2
‖f ′′ − [f ′; a, b]‖∞ ·

∫ b

a

(x− a) (b− x) dx

=
(b− a)3

12
‖f ′′ − [f ′; a, b]‖∞

and the first part of (3.9) is proved.
Using Hölder’s integral inequality, we have for p > 1, 1

p
+ 1

q
= 1,

that

(3.11) M ≤ 1

2

(∫ b

a

(x− a)q (b− x)q dx

) 1
q

×
(∫ b

a

|f ′′ (x)− [f ′; a, b]|p dx
) 1

p

.

Now, using the transformation x = (1− t) a+ tb, t ∈ [0, 1], we get

(x− a)q (b− x)q = (b− a)2q tq (1− t)q ,

dx = (b− a) dt

and thus∫ b

a

(x− a)q (b− x)q dx = (b− a)2q+1

∫ 1

0

tq (1− t)q dt

= (b− a)2q+1B (q + 1, q + 1) .

Using (3.11) we deduce the second part of (3.9).
Finally, as

M ≤ 1

2
sup
x∈[a,b]

{(x− a) (b− x)}
∫ b

a

|f ′′ (x)− [f ′; a, b]| dx

=
(b− a)2

8
‖f ′′ − [f ′; a, b]‖1

the theorem is completely proved.

The following corollary concerning the Euclidean norm is useful in
practice.
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Corollary 40. If f : [a, b] → R is such that f ′′ ∈ L2 [a, b], then
we have the inequality:

(3.12)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)3

2
√

30

[
1

b− a
‖f ′′‖2

2 − [f ′; a, b]
2

] 1
2

.

Proof. Choosing in (3.9) p = q = 2, we get

(3.13)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ 1

2
[B (3, 3)]

1
2 (b− a)2+ 1

2 ‖f ′′ − [f ′; a, b]‖2 .

However,

B (3, 3) =
1

30
,

and

‖f ′′ − [f ′; a, b]‖2

=

[∫ b

a

(f ′′ (x)− [f ′; a, b])
2
dx

] 1
2

=

[∫ b

a

(f ′′ (x))
2
dx− 2

∫ b

a

f ′′ (x) [f ′; a, b] dx+ (b− a) [f ′; a, b]
2

] 1
2

=
(
‖f ′′‖2

2 − 2 (b− a) [f ′; a, b]
2
+ (b− a) [f ′; a, b]

2
) 1

2

=
√
b− a

(
1

b− a
‖f ′′‖2

2 − [f ′; a, b]
2

) 1
2

,

then, by (3.13) we get (3.12).

Remark 41. (1) The Grüss integral inequality for a function
g : [a, b] → R with −∞ < m ≤ g (x) ≤ M < ∞ for almost
every x ∈ [a, b] states that (see for example [109, p. 296])

(3.14) 0 ≤ 1

b− a
‖g‖2

2 −
(

1

b− a

∫ b

a

g (x) dx

)2

≤ 1

4
(M −m)2 .
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Applying (3.14) for the mapping f ′′ under the assumption that
γ ≤ f ′′ (x) ≤ Γ for a.e. x ∈ [a, b], we deduce(

1

b− a
‖f ′′‖2

2 − [f ′; a, b]
2

) 1
2

≤ 1

2
(Γ− γ)

and then, by (3.12), we further deduce

(3.15)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)3

4
√

30
(Γ− γ) .

which is not as good as the result of (3.3).
(2) Chebychev’s inequality for a differentiable function g : [a, b] →

R, with g′ ∈ L∞ [a, b] states that (see [109, p. 297])

(3.16) 0 ≤ 1

b− a
‖g‖2

2 −
(

1

b− a

∫ b

a

g (x) dx

)2

≤ 1

12
(b− a)2 ‖g′‖2

∞ .

Applying (3.16) for the mapping f ′′ under the assumption that
f ′′′ ∈ L∞ [a, b], we deduce, by (3.12), that

(3.17)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)4 ‖f ′′′‖∞

12
√

10
.

(3) Lupaş’s inequality for a differentiable function f with f ′′′ ∈
L2 [a, b] states that (see [109, p. 301])

(3.18) 0 ≤ 1

b− a
‖g‖2

2 −
(

1

b− a

∫ b

a

g (x) dx

)2

≤ b− a

π2
‖g′‖2

2 .

Applying (3.18) for the mapping f ′′ under the assumption that
f ′′′ ∈ L2 [a, b], we deduce, by (3.12), that

(3.19)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)

7
2 ‖f ′′′‖2

2π
√

30
.

The following lemma of representation also holds [17].
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Lemma 9. Let f : [a, b] → R be a differentiable function such that
f ′ is absolutely continuous on [a, b]. We have the representation:

(3.20)

∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

=
1

2

∫ b

a

(
x− a+ b

2

)2

[f ′′ (x)− [f ′; a, b]] dx.

Proof. The identity (3.20) may be proven directly.
A simpler proof uses Lemma 8 as follows.
Since

(x− a) (b− x) =

(
a− b

2

)2

−
(
x− a+ b

2

)2

and

1

2

∫ b

a

(x− a) (b− x) {[f ′; a, b]− f ′′ (x)} dx

=
1

2

∫ b

a

[(
a− b

2

)2

−
(
x− a+ b

2

)2
]
{[f ′; a, b]− f ′′ (x)} dx

=
1

2

∫ b

a

(
a− b

2

)2

{[f ′; a, b]− f ′′ (x)} dx

− 1

2

∫ b

a

(
x− a+ b

2

)2

{[f ′; a, b]− f ′′ (x)} dx

=
1

2

∫ b

a

(
x− a+ b

2

)2

{f ′′ (x)− [f ′; a, b]} dx,

then by (3.5) we deduce (3.20).

The following result also holds [17].

Theorem 37. With the assumptions of Lemma 9, we have the in-
equality

(3.21)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣

≤



(b−a)3
24

‖f ′′ − [f ′; a, b]‖∞ if f ′′ ∈ L∞ [a, b] ;

(b−a)2+
1
q

8(2q+1)
1
q
‖f ′′ − [f ′; a, b]‖p , if f ′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)2

8
‖f ′′ − [f ′; a, b]‖1 .
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Proof. Using Lemma 9, we have:

(3.22)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ 1

2

∫ b

a

(
x− a+ b

2

)2

|f ′′ (x)− [f ′; a, b]| dx =: N.

It is obvious that

N ≤ 1

2
‖f ′′ − [f ′; a, b]‖∞ ·

∫ b

a

(
x− a+ b

2

)2

dx

=
(b− a)3

24
‖f ′′ − [f ′; a, b]‖∞ .

Using Hölder’s integral inequality, we have for p > 1, 1
p

+ 1
q

= 1, that

(3.23) N ≤ 1

2

(∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣2q dx
) 1

q

×
(∫ b

a

|f ′′ (x)− [f ′; a, b]|p dx
) 1

p

.

However, ∫ b

a

∣∣∣∣x− a+ b

2

∣∣∣∣2q dx = 2

∫ b

a+b
2

(
x− a+ b

2

)2q

dx

=
(b− a)2q+1

4q (2q + 1)

and then, by (3.23), we deduce the second part of (3.21).
Finally, as

sup
x∈[a,b]

∣∣∣∣x− a+ b

2

∣∣∣∣2 =
(b− a)2

4
,

then

N ≤ (b− a)2

8
‖f ′′ − [f ′; a, b]‖1 ,

proving the last part of (3.21).

Remark 42. It is obvious that the first inequality in (3.21) is better
than the similar one in (3.9), while the last ones are identical.

Remark 43. A computer simulation for the functions
1
2
[B (q + 1, q + 1)]

1
q and 1

8
· 1

(2q+1)
1
q

shows that the latter is smaller for
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any q > 1, but we do not have an analytic proof of this. We conjecture
that the second inequality in (3.11) is better than the second inequality
in (3.9) for every p > 1, 1

p
+ 1

q
= 1.

For p = q = 2, we get the following particular case for the Euclidean
norm [17]:

Corollary 41. If f : [a, b] → R is such that f ′′ ∈ L2 [a, b], then

(3.24)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)3

8
√

5

[
1

b− a
‖f ′′‖2

2 − [f ′; a, b]
2

] 1
2

.

Remark 44. We note that (3.24) is a better result than the corre-
sponding one in (3.12), and thus, we note the following better results
via Grüss type inequalities.

If f ′′ is such that γ ≤ f ′′ ≤ Γ for a.e. x ∈ [a, b], then by Grüss’
(3.14), we have

(3.25)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)3 (Γ− γ)

16
√

5
.

If f ′′′ ∈ L∞ [a, b], then by the Chebychev inequality (3.16), we have

(3.26)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)4 ‖f ′′′‖∞

16
√

15
.

Finally, if f ′′′ ∈ L2 [a, b], then by the Lupaş inequality (3.18), we have:

(3.27)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)3

12
[f ′; a, b]

∣∣∣∣∣
≤ (b− a)

7
2 ‖f ′′′‖2

8π
√

5
.
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1.3. Applications for Expectation. Let X be a random vari-
able having the PDF, f : [a, b] → R and the cumulative distribution
function F : [a, b] → [0, 1].

The following result holds [17].

Theorem 38. With the above assumptions and assuming, addi-
tionally, that the PDF is absolutely continuous on [a, b], then we have
the inequality:

(3.28)

∣∣∣∣∣E (X)− a+ b

2
− (b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



(b−a)3
24

‖f ′ − [f ; a, b]‖∞ if f ′ ∈ L∞ [a, b]

(b−a)2+
1
q

8(2q+1)
1
q
‖f ′ − [f ; a, b]‖p if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

(b−a)2
8

‖f ′ − [f ; a, b]‖1 .

Proof. Applying Theorem 37 for the CDF, F , we may write

(3.29)

∣∣∣∣∣
∫ b

a

F (t) dt− F (a) + F (b)

2
(b− a) +

(b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣
≤


(b−a)3

24
‖f ′ − [f ; a, b]‖∞

(b−a)2+
1
q

8(2q+1)
1
q
‖f ′ − [f ; a, b]‖p

(b−a)2
8

‖f ′ − [f ; a, b]‖1 .

However, F (a) = 0, F (b) = 1 and∫ b

a

F (t) dt = b− E (X) ,

and then, by (3.29) we deduce the desired inequality (3.28).

2. A Perturbed Inequality Using the Third Derivative

2.1. Introduction. In [80], by the use of Grüss’ integral inequal-
ity, the authors obtained the following perturbed trapezoid inequality.

Theorem 39. Let f : [a, b] → R be a twice differentiable function
on (a, b) and asume that

γ := inf
x∈(a,b)

f ′′ (x) > −∞ and Γ := sup
x∈(a,b)

f ′′ (x) <∞,
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then we have the inequality

(3.30)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ (b− a)3

12
(Γ− γ) .

Using a finer argument based on a pre-Grüss inequality, Cerone and
Dragomir [35, p. 121] improved the above result as follows.

Theorem 40. Let f have the properties of Theorem 39, then

(3.31)

∣∣∣∣∣
∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

24
√

5
(b− a)3 (Γ− γ) .

The main aim of the next section is to point out some bounds for
the left part of (3.31) in terms of the p−norms of f ′′′ assuming that the
function f is twice differentiable on (a, b) and that the second derivative
is absolutely continuous on (a, b).

A number of applications are also pointed out.

2.2. A Perturbed Trapezoid Formula. The following represen-
tation lemma holds [14].

Lemma 10. Let f : [a, b] → R be such that the second derivative is
absolutely continuous on [a, b], then we have the equality:

(3.32)

∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

=
1

4 (b− a)

∫ b

a

∫ b

a

(∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

)
(t− s) dtds.

Proof. Integrating by parts, we have

I :=

∫ b

a

∫ b

a

(∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

)
(t− s) dtds

=

∫ b

a

∫ b

a

[
f ′′ (t) + f ′′ (s)

2
(t− s)−

∫ t

s

f ′′ (u) du

]
(t− s) dtds

=

∫ b

a

∫ b

a

[
f ′′ (t) (t− s)2 + f ′′ (s) (t− s)2

2
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− (f ′ (t)− f ′ (s)) (t− s)

]
dtds

=
1

2

[∫ b

a

∫ b

a

f ′′ (t) (t− s)2 dtds+

∫ b

a

∫ b

a

f ′′ (s) (t− s)2 dtds

]
−
∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (t− s) dtds.

By symmetry,

J :=

∫ b

a

∫ b

a

f ′′ (t) (t− s)2 dtds =

∫ b

a

∫ b

a

f ′′ (s) (t− s)2 dtds,

and using Korkine’s identity or direct computation, we have

K :=

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (t− s) dtds

= 2

[
(b− a)

∫ b

a

f ′ (t) tdt−
∫ b

a

f ′ (t) dt ·
∫ b

a

tdt

]
.

Then, I = J −K.
Since

J =

∫ b

a

f ′′ (t)

(∫ b

a

(t− s)2 ds

)
dt

=
1

3

[∫ b

a

f ′′ (t) (b− t)3 dt+

∫ b

a

(t− a)3 f ′′ (t) dt

]
=

1

3

[
f ′ (t) (b− t)3

∣∣b
a
+ 3

∫ b

a

(b− t)2 f ′ (t) dt

+ f ′ (t) (t− a)3
∣∣b
a
− 3

∫ b

a

(t− a)2 f ′ (t) dt

]
=

1

3

[
− f ′ (a) (b− a)3

+ 3

[
f (t) (b− t)2

∣∣b
a
− 2

∫ b

a

(b− t) f (t) dt

]
+f ′ (b) (b− a)3 − 3

[
f (t) (t− a)2

∣∣b
a
− 2

∫ b

a

(t− a) f (t) dt

]]
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=
1

3

[
[f ′ (b)− f ′ (a)] (b− a)3

+ 3

[
−f (a) (b− a)2 + 2

∫ b

a

(b− t) f (t) dt

]
− 3

[
f (b) (b− a)2 − 2

∫ b

a

(t− a) f (t) dt

]]
=

1

3
[f ′ (b)− f ′ (a)] (b− a)3

−
[
f (a) + f (b)

2

]
(b− a)2 + 2 (b− a)

∫ b

a

f (t) dt

and

K = 2

[
(b− a)

[
f (t) t

∣∣∣∣b
a

−
∫ b

a

f (t) dt

]
− [f (b)− f (a)]

b2 − a2

2

]

= 2

[
(b− a)

[
f (b) b− f (a) a−

∫ b

a

f (t) dt

]
− (b− a) [f (b)− f (a)]

a+ b

2

]
= 2 (b− a)

[
f (b) b− f (a) a−

∫ b

a

f (t) dt

− f (b)
a+ b

2
+ f (a)

a+ b

2

]
= (b− a)2 [f (a) + f (b)]− 2 (b− a)

∫ b

a

f (t) dt,

then

I =
1

3
[f ′ (b)− f ′ (a)] (b− a)3

− 2 [f (a) + f (b)] (b− a)2 + 4 (b− a)

∫ b

a

f (t) dt.

Dividing by 4 (b− a) we deduce the desired equality (3.32).

The following perturbed version of the trapezoid inequality holds
[14].
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Theorem 41. Let f : [a, b] → R be such that the second derivative
is absolutely continuous on [a, b], then we have∣∣∣∣∣

∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣(3.33)

≤



1
16(b−a)

∫ b
a

∫ b
a
|t− s|3 ‖f ′′′‖[t,s],∞ dtds if f ′′′ ∈ L∞ [a, b] ;

1

8(q+1)
1
q (b−a)

∫ b
a

∫ b
a
|t− s|2+ 1

q ‖f ′′′‖[t,s],p dtds

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

1
8(b−a)

∫ b
a

∫ b
a

(t− s)2 ‖f ′′′‖[t,s],1 dtds

≤



(b−a)4
160

‖f ′′′‖[a,b],∞ if f ′′′ ∈ L∞ [a, b] ;

q2(b−a)3+
1
q

4(3q+1)(4q+1)(q+1)
1
q
‖f ′′′‖[a,b],p if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1.
(b−a)3

48
‖f ′′′‖[a,b],1 ,

Proof. Denote

R (f ; a, b)

:=
1

4 (b− a)

∫ b

a

∫ b

a

(∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

)
(t− s) dtds.

As∣∣∣∣∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

∣∣∣∣ ≤ ‖f ′′′‖[t,s],∞

∣∣∣∣∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣ du∣∣∣∣
=

(t− s)2

4
‖f ′′′‖[t,s],∞ ,

∣∣∣∣∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

∣∣∣∣
≤ ‖f ′′′‖[t,s],p

∣∣∣∣∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣q du∣∣∣∣ 1q
=
|t− s|1+ 1

q

2 (q + 1)
1
q

‖f ′′′‖[t,s],q , p > 1,
1

p
+

1

q
= 1
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and ∣∣∣∣∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

∣∣∣∣ ≤ sup
u∈[t,s]

(u∈[t,s])

∣∣∣∣u− t+ s

2

∣∣∣∣ ‖f ′′′‖[t,s],1

then we can state that

(3.34)

∣∣∣∣∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

∣∣∣∣

≤



(t−s)2
4

‖f ′′′‖[t,s],∞ if f ′′′ ∈ L∞ [a, b] ;

|t−s|1+
1
q

2(q+1)
1
q
‖f ′′′‖[t,s],q if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
|t−s|

2
‖f ′′′‖[t,s],1 .

Taking the modulus of R (f ; a, b) we get, by (3.34),

|R (f ; a, b)|

≤ 1

4 (b− a)

∫ b

a

∫ b

a

|t− s|
∣∣∣∣∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

∣∣∣∣ dtds

≤ 1

4 (b− a)



1
4

∫ b
a

∫ b
a
|t− s|3 ‖f ′′′‖[t,s],∞ dtds if f ′′′ ∈ L∞ [a, b] ;

1

2(q+1)
1
q

∫ b
a

∫ b
a
|t− s|2+ 1

q ‖f ′′′‖[t,s],p dtds

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;
1
2

∫ b
a

∫ b
a
|t− s|2 ‖f ′′′‖[t,s],1 dtds

which proves the first inequality in (3.33).
Now, consider the double integral

Im :=

∫ b

a

∫ b

a

|t− s|m dtds

=

∫ b

a

[∫ t

a

(t− s)m ds+

∫ b

t

(s− t)m ds

]
dt

=

∫ b

a

[
(t− a)m+1 + (b− t)m+1

m+ 1

]
dt =

2 (b− a)m+2

(m+ 1) (m+ 2)

for all m > 0.
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Using the above calculation for Im, we have:∫ b

a

∫ b

a

|t− s|3 ‖f ′′′‖[t,s],∞ dtds ≤ ‖f ′′′‖[a,b],∞

∫ b

a

∫ b

a

|t− s|3 dtds

=
(b− a)5

10
· ‖f ′′′‖[a,b],∞ ,

∫ b

a

∫ b

a

|t− s|2+ 1
q ‖f ′′′‖[t,s],p dtds ≤ ‖f ′′′‖[a,b],p

∫ b

a

∫ b

a

|t− s|2+
1
q dtds

=
2q2 (b− a)4+ 1

q

(3q + 1) (4q + 1)
· ‖f ′′′‖[a,b],p

and ∫ b

a

∫ b

a

(t− s)2 ‖f ′′′‖[t,s],1 dtds ≤ ‖f ′′′‖[a,b],1

∫ b

a

∫ b

a

(t− s)2 dtds

=
(b− a)4

6
· ‖f ′′′‖[a,b],1 ,

which give the last part of (3.33).

2.3. Applications for Expectation. Let X be a random vari-
able having the PDF, f : [a, b] → R and the cumulative distribution
function F : [a, b] → [0, 1].

Theorem 42. ([14]) With the above assumptions and, addition-
ally, that the PDF, f is differentiable on [a, b] and f ′ is absolutely
continuous, then

(3.35)

∣∣∣∣∣E (X)− a+ b

2
− (b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



(b−a)4
160

‖f ′′‖[a,b],∞ if f ′′ ∈ L∞ [a, b] ;

q2(b−a)3+
1
q

4(3q+1)(4q+1)(q+1)
1
q
‖f ′′‖[a,b],p if f ′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)3

48
‖f ′′‖[a,b],1 .
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Proof. Applying Theorem 41 for F , we may write that

(3.36)

∣∣∣∣∣
∫ b

a

F (t) dt− F (a) + F (b)

2
(b− a) +

(b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



(b−a)4
160

‖f ′′‖[a,b],∞ if f ′′ ∈ L∞ [a, b] ;

q2(b−a)3+
1
q

4(3q+1)(4q+1)(q+1)
1
q
‖f ′′‖[a,b],p if f ′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)3

48
‖f ′′‖[a,b],1 .

However, F (a) = 0, F (b) = 1 and∫ b

a

F (t) dt = b− E (X) ,

and then, by (3.36), we obtain the desired inequality (3.35).

3. Bounds in Terms of the Fourth Derivative

3.1. Introduction. Let f : [a, b] → R be a twice differentiable
function on (a, b) and assume that

γ := inf
x∈(a,b)

f ′′ (x) > −∞ and Γ := sup
x∈(a,b)

f ′′ (x) <∞.

Denote the ‘Corrected Trapezoid’ rule [5] by

(3.37) CT (f, a, b, f ′)

:=

∫ b

a

f (x) dx− b− a

2
[f (a) + f (b)] +

(b− a)2

12
[f ′ (b)− f ′ (a)] .

In [80], by the use of Grüss’ integral inequality, the authors have
proved

(3.38) |CT (f, a, b, f ′)| ≤ K (b− a)3 (Γ− γ)

with K = 1
12

.
Using a more careful analysis based on a pre-Grüss inequality,

Cerone and Dragomir [35, p. 121], have shown that (3.38) holds with
the better constant K = 1

24
√

5
.

A completely different upper bound for |CT (f, a, b, f ′)| has been
obtained by the present authors by assuming the existence of absolutely
continuous third derivatives [14],

(3.39) |CT (f, a, b, f ′)|
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≤



1
16(b−a)

∫ b
a

∫ b
a
|t− s|3 ‖f ′′′‖[t,s],∞ dtds if f ′′′ ∈ L∞ [a, b] ;

1

8(q+1)
1
q (b−a)

∫ b
a

∫ b
a
|t− s|2+ 1

q ‖f ′′′‖[t,s],p dtds

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

1
8(b−a)

∫ b
a

∫ b
a

(t− s)2 ‖f ′′′‖[t,s],1 dtds

≤



(b−a)4
160

‖f ′′′‖[a,b],∞ if f ′′′ ∈ L∞ [a, b] ;

q2(b−a)3+
1
q

4(3q+1)(4q+1)(q+1)
1
q
‖f ′′′‖[a,b],p

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

(b−a)3
48

‖f ′′′‖[a,b],1 .

In [15], the authors have established the following bounds in terms
of the fourth derivatives as well,

(3.40) |CT (f, a, b, f ′)|

≤



1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣2 ∥∥f (4)
∥∥
[ t+s

2
,u],∞ du

∣∣∣ |t− s| dtds
if f (4) ∈ L∞ [a, b] ;

1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣1+ 1
q
∥∥f (4)

∥∥
[ t+s

2
,u],p du

∣∣∣ |t− s| dtds
if f (4) ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣ ∥∥f (4)
∥∥
[ t+s

2
,u],1 du

∣∣∣ |t− s| dtds

≤



1
48(b−a)

∫ b
a

∫ b
a
|t− s|4

∥∥f (4)
∥∥

[t,s],∞ dtds if f (4) ∈ L∞ [a, b] ;

q

2
3+1

q (2q+1)(b−a)

∫ b
a

∫ b
a
|t− s|3+

1
q

∥∥f (4)
∥∥

[t,s],p
dtds

if f (4) ∈ Lp [a, b] , and p > 1, 1
p

+ 1
q

= 1;

1
16(b−a)

∫ b
a

∫ b
a
|t− s|3

∥∥f (4)
∥∥

[t,s],1
dtds

≤



‖f (4)‖
[a,b],∞

(b−a)5

720
if f (4) ∈ L∞ [a, b] ;

q3‖f (4)‖
[a,b],p

2
2+1

q (2q+1)(4q+1)(5q+1)
(b− a)4+ 1

q if f (4) ∈ Lp [a, b] , and

p > 1, 1
p

+ 1
q

= 1;

(b−a)4‖f (4)‖
[a,b],1

160
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The main aim of the next section is to point out some new and bet-
ter bounds for the functional CT (f, a, b, f ′) defined by (3.37) in terms
of the p−norms of f (4) assuming that the function f is three-times dif-
ferentiable on (a, b) and the third derivative is absolutely continuous
on (a, b).

Applications for estimating the expectation of a random variable
are also pointed out.

3.2. The Results. The following lemma of representation holds
[16].

Lemma 11. Let f : [a, b] → R be such that f (3) : [a, b] → R is
absolutely continuous on [a, b], then we have the equality:

(3.41) CT (f, a, b, f ′)

=
1

8 (b− a)

∫ b

a

∫ b

a

(∫ t

s

(u− s) (t− u) f (4) (u) du

)
(t− s) dtds

Proof. The following identity has been proven by Dragomir and
Mabizela in [82]

(3.42)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

=
1

2 (b− a)2

∫ b

a

∫ b

a

[f ′ (t)− f ′ (s)] (t− s) dsdt,

provided f : [a, b] → R is absolutely continuous on [a, b].
This identity can be easily verified by direct computation.
Indeed, we have, successively,∫ b

a

∫ b

a

[f ′ (x)− f ′ (y)] (x− y) dxdy

=

∫ b

a

∫ b

a

[xf ′ (x) + yf ′ (y)− xf ′ (y)− yf ′ (x)] dxdy

= 2

∫ b

a

∫ b

a

[xf ′ (x)− xf ′ (y)] dxdy

= 2

∫ b

a

∫ b

a

xf ′ (x) dxdy − 2

∫ b

a

∫ b

a

xf ′ (y) dxdy
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= 2

[
bf (b)− af (a)− (b− a)

∫ b

a

f (x) dx

]
−
(
b2 − a2

)
[f (b)− f (a)]

= (b− a)2 [f (a) + f (b)]− 2 (b− a)

∫ b

a

f (x) dx.

Dividing both sides by 2 (b− a)2 yields the required result.
Also, using the integration by parts formula twice, we obtain the

identity

(3.43)
1

2

∫ b

a

(x− a) (b− x) g′′ (x) dx

=
g (a) + g (b)

2
(b− a)−

∫ b

a

g (x) dx.

We have, by (3.43), that

f ′ (t)− f ′ (s) =

∫ t

s

f ′′ (u) du

=
f ′′ (t) + f ′′ (s)

2
(t− s)− 1

2

∫ t

s

(u− s) (t− u) f (4) (u) du

and then, by (3.42)

f (a) + f (b)

2
(b− a)−

∫ b

a

f (x) dx(3.44)

=
1

2 (b− a)

∫ b

a

∫ b

a

[
f ′′ (t) + f ′′ (s)

2
(t− s)

− 1

2

∫ t

s

(u− s) (t− u) f (4) (u) du

]
(t− s) dsdt

=
1

2 (b− a)

∫ b

a

∫ b

a

[
f ′′ (t) + f ′′ (s)

2
(t− s)2

]
dsdt

− 1

4 (b− a)

×
∫ b

a

∫ b

a

(∫ t

s

(u− s) (t− u) f (4) (u) du

)
(t− s) dsdt

= I − J,

where

I :=
1

2 (b− a)

∫ b

a

∫ b

a

[
f ′′ (t) + f ′′ (s)

2
(t− s)2

]
dsdt
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and

J := − 1

4 (b− a)

∫ b

a

∫ b

a

(∫ t

s

(u− s) (t− u) f (4) (u) du

)
(t− s) dsdt.

Taking into account the symmetry of the integrand, we have

I :=
1

2 (b− a)

∫ b

a

∫ b

a

[
f ′′ (t) (t− s)2] dsdt

=
1

2 (b− a)

∫ b

a

f ′′ (t)

(∫ b

a

(t− s)2 ds

)
dt

=
1

2 (b− a)

∫ b

a

f ′′ (t)

[
(b− t)3 + (t− a)3

3

]
dt

=
1

2 (b− a)

f ′ (t) (b− t)3 + (t− a)3

3

∣∣∣∣∣
b

a

−
∫ b

a

f ′ (t)
[
(t− a)2 − (b− t)2] dt]

=
1

2 (b− a)

{
(b− a)3

3
[f ′ (b)− f ′ (a)]

− f (t)
[
(t− a)2 − (b− t)2] ∣∣∣∣b

a

−
∫ b

a

f (t) [2 (t− a)− 2 (t− b)] dt

}
=

1

2 (b− a)

{
(b− a)3

3
[f ′ (b)− f ′ (a)]

−
[
f (b) (b− a)2 + f (a) (b− a)2 + 2 (b− a)

∫ b

a

f (t) dt

]}
=

(b− a)2

6
[f ′ (b)− f ′ (a)]− f (a) + f (b)

2
(b− a) +

∫ b

a

f (t) dt.

If we insert I in (3.44), we deduce:

f (a) + f (b)

2
(b− a)−

∫ b

a

f (x) dx

=
(b− a)2

6
[f ′ (b)− f ′ (a)]− f (a) + f (b)

2
(b− a) +

∫ b

a

f (t) dt− J,

which is equivalent to (3.41).
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The following inequality holds [16].

Theorem 43. Let f : [a, b] → R be such that the third derivative is
absolutely continuous on [a, b], then

(3.45) |CT (f, a, b, f ′)|

≤



1
48(b−a)

∫ b
a

∫ b
a

(t− s)4
∥∥f (4)

∥∥
[t,s],∞ dtds if f (4) ∈ L∞ [a, b] ;

[B(q+1,q+1)]
1
q

8(b−a)

∫ b
a

∫ b
a
|t− s|3+

1
q

∥∥f (4)
∥∥

[t,s],p
dtds

if f (4) ∈ Lp [a, b] , and p > 1, 1
p

+ 1
q

= 1;

1
32(b−a)

∫ b
a

∫ b
a
|t− s|3

∥∥f (4)
∥∥

[t,s],1
dtds

≤



(b−a)5
720

∥∥f (4)
∥∥

[a,b],∞ if f (4) ∈ L∞ [a, b] ;

q2(b−a)4+
1
q [B(q+1,q+1)]

1
q

4(4q+1)(5q+1)

∥∥f (4)
∥∥

[a,b],p
if f (4) ∈ Lp [a, b] , and

p > 1, 1
p

+ 1
q

= 1;
(b−a)4

320

∥∥f (4)
∥∥

[a,b],1
.

Proof. Define

U (t, s) :=

∫ t

s

(u− s) (t− u) f (4) (u) du,

then

|U (t, s)| ≤
∣∣∣∣∫ t

s

|(u− s) (t− u)|
∣∣f (4) (u)

∣∣ du∣∣∣∣(3.46)

≤



|t−s|3
6

∥∥f (4)
∥∥

[t,s],∞ if f (4) ∈ L∞ [a, b] ;

|t− s|2+ 1
q [B (q + 1, q + 1)]

1
q

∥∥f (4)
∥∥

[t,s],p

if f (4) ∈ Lp [a, b] , and p > 1, 1
p

+ 1
q

= 1;

(t−s)2
4

∥∥f (4)
∥∥

[t,s],1
.

Using (3.41), we have

(3.47)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

8 (b− a)

∫ b

a

∫ b

a

|U (t, s)| |t− s| dtds.
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Now combining (3.46) with (3.47), we deduce the first inequality in
(3.45).

Also, for a general r > 0, we have∫ b

a

∫ b

a

|t− s|r dtds =

∫ b

a

(∫ t

a

(t− s)r ds+

∫ b

t

(s− t)r ds

)
dt

=
2 (b− a)r+2

(r + 1) (r + 2)
.

Applying this equality, we may state:∫ b

a

∫ b

a

(t− s)4
∥∥f (4)

∥∥
[t,s],∞ dtds ≤

∥∥f (4)
∥∥

[a,b],∞

∫ b

a

∫ b

a

(t− s)4 dsdt

=
(b− a)6

15

∥∥f (4)
∥∥

[a,b],∞ ,

∫ b

a

∫ b

a

|t− s|3+ 1
q

∥∥f (4)
∥∥

[t,s],p
dtds ≤

∥∥f (4)
∥∥

[a,b],p

∫ b

a

∫ b

a

|t− s|3+ 1
q dtds

=
2q2 (b− a)5+ 1

q

(4q + 1) (5q + 1)

∥∥f (4)
∥∥

[a,b],p

and∫ b

a

∫ b

a

|t− s|3
∥∥f (4)

∥∥
[t,s],1

dtds ≤
∥∥f (4)

∥∥
[a,b],1

∫ b

a

∫ b

a

|t− s|3 dtds

=
(b− a)5

10

∥∥f (4)
∥∥

[a,b],1
,

and then the last part of (3.45) is obtained.

Remark 45. We observe that inequality (3.40) provides for the
error estimate of the corrected trapezoidal formula, the bounds

B1 :=



1
720

(b− a)5
∥∥f (4)

∥∥
[a,b],∞ if f (4) ∈ L∞ [a, b] ;

q3(b−a)4+
1
q

2
2+1

q (2q+1)(4q+1)(5q+1)

∥∥f (4)
∥∥

[a,b],p
if f (4) ∈ Lp [a, b] , and

p > 1, 1
p

+ 1
q

= 1;
1

160
(b− a)4

∥∥f (4)
∥∥

[a,b],1
,
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while Theorem 43 provides the bounds

B2 :=



1
720

(b− a)5
∥∥f (4)

∥∥
[a,b],∞ if f (4) ∈ L∞ [a, b] ;

q2[B(q+1,q+1)]
1
q

4(4q+1)(5q+1)
(b− a)4+ 1

q

∥∥f (4)
∥∥

[a,b],p
if f (4) ∈ Lp [a, b] , and

p > 1, 1
p

+ 1
q

= 1;
1

320
(b− a)4

∥∥f (4)
∥∥

[a,b],1
.

Comparing the first lines in B1 and B2 we see that they are equal,
while comparing the last lines, we observe that the bound predicted by
Theorem 43 is better.

If we define the following functions:

f (q) :=
q3

22+ 1
q (2q + 1) (4q + 1) (5q + 1)

,

g (q) :=
q2 [B (q + 1, q + 1)]

1
q

4 (4q + 1) (5q + 1)
,

then

h (q) =
g (q)

f (q)
= [B (q + 1, q + 1)]

1
q 2

1
q

(
2 +

1

q

)
, q > 1.

The graph of h (q) , q ∈ (1,∞) produced using Maple 6 shows that for
all q > 1 we have h (q) < 1, suggesting that the bound B2 of the new
theorem is better than B1 for q ∈ (1,∞) . At this stage we do not have
any analytic proof of this fact.

For p = q = 2, we obtain the following bounds in terms of the
Euclidean norm:

B1 =

√
2

495
(b− a)

9
2

∥∥f (4)
∥∥

[a,b],2

≈ 0.002851237020 (b− a)
9
2

∥∥f (4)
∥∥

[a,b],2
,

B2 =

√
30

2970
(b− a)

9
2

∥∥f (4)
∥∥

[a,b],2

≈ 0.001844183695 (b− a)
9
2

∥∥f (4)
∥∥

[a,b],2
,

which shows that the bound B2 is around 1.546 times better than B1.

3.3. Applications for Expectation. Let X be a random vari-
able having the PDF, f : [a, b] → R and the cumulative distribution
function F : [a, b] → [0, 1].

We may state the following result [16].
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Theorem 44. With the above assumptions and with the PDF, f
being twice differentiable on [a, b] and with f ′′ absolutely continuous on
[a, b], then

(3.48)

∣∣∣∣∣E (X)− a+ b

2
− (b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



(b−a)5
720

‖f ′′′‖[a,b],∞ if f ′′′ ∈ L∞ [a, b] ;

q2[B(q+1,q+1)]
1
q (b−a)4+

1
q

4(4q+1)(5q+1)
‖f ′′′‖[a,b],p if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)4

320
‖f ′′′‖[a,b],1 .

Proof. Applying Theorem 43 for F , we may write:

(3.49)

∣∣∣∣∣
∫ b

a

F (t) dt− F (a) + F (b)

2
(b− a) +

(b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



‖f ′′′‖[a,b],∞·(b−a)
5

720
if f ′′′ ∈ L∞ [a, b] ;

q2[B(q+1,q+1)]
1
q ‖f ′′′‖[a,b],p

4(4q+1)(5q+1)
(b− a)4+ 1

q if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)4‖f ′′′‖[a,b],1

320
.

However, F (a) = 0, F (b) = 1 and

∫ b

a

F (t) dt = b− E (X) ,

and then by (3.49), we obtain (3.48).

4. More Bounds in Terms of the Fourth Derivative

4.1. Introduction. In [14], the authors pointed out the following
estimate of the error in the perturbed trapezoid formula.
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Theorem 45. Let f : [a, b] → R be such that the second derivative
is absolutely continuous on [a, b], then we have:∣∣∣∣∣

∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣(3.50)

≤



1
16(b−a)

∫ b
a

∫ b
a
|t− s|3 ‖f ′′′‖[t,s],∞ dtds if f ′′′ ∈ L∞ [a, b] ;

1

8(q+1)
1
q (b−a)

∫ b
a

∫ b
a
|t− s|2+ 1

q ‖f ′′′‖[t,s],p dtds

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

1
8(b−a)

∫ b
a

∫ b
a

(t− s)2 ‖f ′′′‖[t,s],1 dtds

≤



(b−a)4
160

‖f ′′′‖[a,b],∞ if f ′′′ ∈ L∞ [a, b] ;

q2(b−a)3+
1
q

4(3q+1)(4q+1)(q+1)
1
q
‖f ′′′‖[a,b],p

if f ′′′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

(b−a)3
48

‖f ′′′‖[a,b],1 .

The main aim of this section is to point out some bounds for the
left part of (3.50) in terms of the p−norms of f (4) assuming that the
function f is three-times differentiable on (a, b) and the third derivative
is absolutely continuous on (a, b).

Applications for estimating the expectation of a random variable
are also pointed out.

4.2. The Results. The following representation lemma holds [15].

Lemma 12. Let f : [a, b] → R be such that the second derivative is
absolutely continuous on [a, b], then we have the equality:

(3.51)

∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

=
1

4 (b− a)

∫ b

a

∫ b

a

K (t, s) (t− s) dtds,

where K : [a, b]2 → R, and

K (t, s) =

∫ t

s

(
u− t+ s

2

)(
f ′′′ (u)− f ′′′

(
t+ s

2

))
du.
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Proof. We have:∫ b

a

∫ b

a

K (t, s) (t− s) dtds

=

∫ b

a

∫ b

a

(∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

)
(t− s) dtds =: I

as ∫ t

s

(
u− t+ s

2

)
f ′′′
(
t+ s

2

)
du = 0.

Integrating by parts, we have

I =

∫ b

a

∫ b

a

(∫ t

s

(
u− t+ s

2

)
f ′′′ (u) du

)
(t− s) dtds

=

∫ b

a

∫ b

a

[
f ′′ (t) + f ′′ (s)

2
(t− s)−

∫ t

s

f ′′ (u) du

]
(t− s) dtds

=

∫ b

a

∫ b

a

[
f ′′ (t) (t− s)2 + f ′′ (s) (t− s)2

2

− (f ′ (t)− f ′ (s)) (t− s)

]
dtds

=
1

2

[∫ b

a

∫ b

a

f ′′ (t) (t− s)2 dtds+

∫ b

a

∫ b

a

f ′′ (s) (t− s)2 dtds

]
−
∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (t− s) dtds.

By symmetry, we have

J :=

∫ b

a

∫ b

a

f ′′ (t) (t− s)2 dtds =

∫ b

a

∫ b

a

f ′′ (s) (t− s)2 dtds,

and using Korkine’s identity or direct computation, we have

K :=

∫ b

a

∫ b

a

(f ′ (t)− f ′ (s)) (t− s) dtds

= 2

[
(b− a)

∫ b

a

f ′ (t) tdt−
∫ b

a

f ′ (t) dt ·
∫ b

a

tdt

]
.
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I = J −K, since

J =

∫ b

a

f ′′ (t)

(∫ b

a

(t− s)2 ds

)
dt

=
1

3

[∫ b

a

f ′′ (t) (b− t)3 dt+

∫ b

a

(t− a)3 f ′′ (t) dt

]
=

1

3

[
f ′ (t) (b− t)3

∣∣b
a
+ 3

∫ b

a

(b− t)2 f ′ (t) dt

+ f ′ (t) (t− a)3
∣∣b
a
− 3

∫ b

a

(t− a)2 f ′ (t) dt

]
=

1

3

[
−f ′ (a) (b− a)3 + 3

[
f (t) (b− t)2

∣∣b
a
− 2

∫ b

a

(b− t) f (t) dt

]
+f ′ (b) (b− a)3 − 3

[
f (t) (t− a)2

∣∣b
a
− 2

∫ b

a

(t− a) f (t) dt

]]
=

1

3

[
[f ′ (b)− f ′ (a)] (b− a)3

+ 3

[
−f (a) (b− a)2 + 2

∫ b

a

(b− t) f (t) dt

]
− 3

[
f (b) (b− a)2 − 2

∫ b

a

(t− a) f (t) dt

]]
=

1

3
[f ′ (b)− f ′ (a)] (b− a)3

−
[
f (a) + f (b)

2

]
(b− a)2 + 2 (b− a)

∫ b

a

f (t) dt

and

K = 2

[
(b− a)

[
f (t) t

∣∣∣∣b
a

−
∫ b

a

f (t) dt

]
− [f (b)− f (a)]

b2 − a2

2

]

= 2

[
(b− a)

[
f (b) b− f (a) a−

∫ b

a

f (t) dt

]
− (b− a) [f (b)− f (a)]

a+ b

2

]
= (b− a)2 [f (a) + f (b)]− 2 (b− a)

∫ b

a

f (t) dt.
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Consequently,

I =
1

3
[f ′ (b)− f ′ (a)] (b− a)3

− 2 [f (a) + f (b)] (b− a)2 + 4 (b− a)

∫ b

a

f (t) dt.

Dividing by 4 (b− a) we deduce the desired equality (3.51).

The following result can be stated [15]:

Theorem 46. Let f : [a, b] → R be such that the third derivative is
monotonically increasing (decreasing) on [a, b] , then:

(3.52)

∫ b

a

f (t) dt ≥ (≤)
f (a) + f (b)

2
(b− a)

− (b− a)2

12
[f ′ (b)− f ′ (a)] .

Proof. Since f ′′′ is increasing (decreasing) on [a, b], then

(3.53)

(
u− t+ s

2

)(
f ′′′ (u)− f ′′′

(
t+ s

2

))
≥ (≤) 0

for all u, t, s ∈ [a, b].
Now, using (3.53), we may state that

K (t, s) (t− s)

= (t− s)

∫ t

s

(
u− t+ s

2

)(
f ′′′ (u)− f ′′′

(
t+ s

2

))
du ≥ (≤) 0

and using the representation (3.51) we deduce the desired inequality
(3.52).

If we assume Hölder continuity for the third derivative, we may
state the following result as well [15].

Theorem 47. Assume that f : [a, b] → R is such that

(3.54) |f ′′′ (t)− f ′′′ (s)| ≤ H |t− s|r for all t, s ∈ [a, b] ,

where H > 0 and r ∈ (0, 1] are given, then we have the inequality

(3.55)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ H (b− a)r+4

2r+2 (r + 2) (r + 4) (r + 5)
.
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Proof. Using the representation (3.52) we have∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

4 (b− a)

∫ b

a

∫ b

a

∣∣∣∣∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣
×
∣∣∣∣f ′′′ (u)− f ′′′

(
t+ s

2

)∣∣∣∣ du∣∣∣∣ |t− s| dsdt

≤ H

4 (b− a)

∫ b

a

∫ b

a

∣∣∣∣∣
∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣r+1

du

∣∣∣∣∣ |t− s| dsdt

=
H

4 (b− a)

∫ b

a

∫ b

a

|t− s|r+2

2r+1 (r + 2)
|t− s| dsdt

=
H

4 (b− a)

∫ b

a

∫ b

a

|t− s|r+3

2r+1 (r + 2)
dsdt =: B.

Now, consider the double integral∫ b

a

∫ b

a

|t− s|m dtds =

∫ b

a

[∫ t

a

(t− s)m ds+

∫ b

t

(s− t)m ds

]
dt

=

∫ b

a

[
(t− a)m+1 + (b− t)m+1

m+ 1

]
dt

=
2 (b− a)m+2

(m+ 1) (m+ 2)
.

Using this, we have∫ b

a

∫ b

a

|t− s|r+3 dsdt =
2 (b− a)r+5

(r + 4) (r + 5)

and then

B =
H

4 (b− a) 2r+1 (r + 2)
· 2 (b− a)r+5

(r + 4) (r + 5)
=

H (b− a)r+4

2r+2 (r + 2) (r + 4) (r + 5)
,

proving the desired inequality.
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Corollary 42. If f : [a, b] → R is such that f ′′′ is Lipschitzian
with the constant L > 0, then

(3.56)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ L (b− a)5

720
.

Now, if we assume absolute continuity for the third derivative, we
may point out the following estimate for the remainder in terms of the
fourth derivative [15].

Theorem 48. Assume that f : [a, b] → R is such that the third
derivative f ′′′ is absolutely continuous on [a, b], then

(3.57)

∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣

≤



1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣2 ∥∥f (4)
∥∥
[ t+s

2
,u],∞ du

∣∣∣ |t− s| dtds
if f (4) ∈ L∞ [a, b] ;

1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣1+ 1
q
∥∥f (4)

∥∥
[ t+s

2
,u],p du

∣∣∣ |t− s| dtds

if f (4) ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

1
4(b−a)

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣ ∥∥f (4)
∥∥
[ t+s

2
,u],1 du

∣∣∣ |t− s| dtds

≤



1
48(b−a)

∫ b
a

∫ b
a
|t− s|4

∥∥f (4)
∥∥

[t,s],∞ dtds if f (4) ∈ L∞ [a, b] ;

q

2
3+1

q (2q+1)(b−a)

∫ b
a

∫ b
a
|t− s|3+

1
q

∥∥f (4)
∥∥

[t,s],p
dtds

if f (4) ∈ Lp [a, b] , and p > 1, 1
p

+ 1
q

= 1;
1

16(b−a)

∫ b
a

∫ b
a
|t− s|3

∥∥f (4)
∥∥

[t,s],1
dtds

≤



‖f (4)‖
[a,b],∞

(b−a)5

720
if f (4) ∈ L∞ [a, b] ;

q3‖f (4)‖
[a,b],p

2
2+1

q (2q+1)(4q+1)(5q+1)
(b− a)4+ 1

q

if f (4) ∈ Lp [a, b] , and p > 1, 1
p

+ 1
q

= 1;

(b−a)4‖f (4)‖
[a,b],1

160
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Proof. Using the representation (3.51), we have∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)

2
(b− a) +

(b− a)2

12
[f ′ (b)− f ′ (a)]

∣∣∣∣∣
≤ 1

4 (b− a)

∫ b

a

∫ b

a

∣∣∣∣∣
∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣
∣∣∣∣∣
∫ u

t+s
2

f (4) (τ) dτ

∣∣∣∣∣ du
∣∣∣∣∣ |t− s| dtds

=: C.

However, ∣∣∣∣∣
∫ u

t+s
2

f (4) (τ) dτ

∣∣∣∣∣ ≤
∣∣∣∣u− t+ s

2

∣∣∣∣ ∥∥f (4)
∥∥
[ t+s

2
,u],∞ ,

∣∣∣∣∣
∫ u

t+s
2

f (4) (τ) dτ

∣∣∣∣∣ ≤
∣∣∣∣u− t+ s

2

∣∣∣∣ 1q ∥∥f (4)
∥∥
[ t+s

2
,u],p

and ∣∣∣∣∣
∫ u

t+s
2

f (4) (τ) dτ

∣∣∣∣∣ ≤ ∥∥f (4)
∥∥
[ t+s

2
,u],1

and thus, we may state that

C ≤ 1

4 (b− a)

×



∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣2 ∥∥f (4)
∥∥
[ t+s

2
,u],∞ du

∣∣∣ |t− s| dtds;

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣1+ 1
q
∥∥f (4)

∥∥
[ t+s

2
,u],p du

∣∣∣ |t− s| dtds;

∫ b
a

∫ b
a

∣∣∣∫ ts ∣∣u− t+s
2

∣∣ ∥∥f (4)
∥∥
[ t+s

2
,u],1 du

∣∣∣ |t− s| dtds,

proving the first inequality in (3.57).
Now, observe that∣∣∣∣∣

∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣2 ∥∥f (4)
∥∥
[ t+s

2
,u],∞ du

∣∣∣∣∣
≤
∥∥f (4)

∥∥
[t,s],∞

∣∣∣∣∣
∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣2 du
∣∣∣∣∣

=
∥∥f (4)

∥∥
[t,s],∞

|t− s|3

12
,
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∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣1+ 1
q ∥∥f (4)

∥∥
[ t+s

2
,u],p du

∣∣∣∣∣
≤
∥∥f (4)

∥∥
[t,s],p

∣∣∣∣∣
∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣1+ 1
q

du

∣∣∣∣∣
=
∥∥f (4)

∥∥
[t,s],p

|t− s|2+ 1
q

21+ 1
q

(
2 + 1

q

)
=
∥∥f (4)

∥∥
[t,s],p

q |t− s|2+ 1
q

21+ 1
q (2q + 1)

and ∣∣∣∣∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣ ∥∥f (4)
∥∥
[ t+s

2
,u],1 du

∣∣∣∣
≤
∥∥f (4)

∥∥
[t,s],1

∣∣∣∣∫ t

s

∣∣∣∣u− t+ s

2

∣∣∣∣ du∣∣∣∣
=
∥∥f (4)

∥∥
[t,s],1

|t− s|2

4

and the second part of (3.57) is proved.
For the last part, we observe that∫ b

a

∫ b

a

|t− s|4
∥∥f (4)

∥∥
[t,s],∞ dtds

≤
∥∥f (4)

∥∥
[a,b],∞

∫ b

a

∫ b

a

(t− s)4 dtds

=
∥∥f (4)

∥∥
[a,b],∞ ·

(b− a)6

15
,

∫ b

a

∫ b

a

|t− s|3+
1
q

∥∥f (4)
∥∥

[t,s],p
dtds

≤
∥∥f (4)

∥∥
[a,b],p

∫ b

a

∫ b

a

|t− s|3+ 1
q dtds

=
2q2 (b− a)5+ 1

q

(4q + 1) (5q + 1)

∥∥f (4)
∥∥

[a,b],p
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and ∫ b

a

∫ b

a

|t− s|3
∥∥f (4)

∥∥
[t,s],1

dtds

≤
∥∥f (4)

∥∥
[a,b],1

∫ b

a

∫ b

a

|t− s|3 dtds

=
∥∥f (4)

∥∥
[a,b],1

(b− a)5

10
.

The proof is completed.

4.3. Applications for Expectation. Let X be a random vari-
able having the PDF, f : [a, b] → R and the cumulative distribution
function F : [a, b] → [0, 1].

We may state the following result [15].

Theorem 49. With the above assumptions and of the PDF, f is
twice differentiable on [a, b] and f ′′ is absolutely continuous on [a, b],
then

(3.58)

∣∣∣∣∣E (X)− a+ b

2
− (b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



(b−a)5
720

‖f ′′′‖[a,b],∞ if f ′′′ ∈ L∞ [a, b] ;

q3(b−a)4+
1
q

2
2+1

q (2q+1)(4q+1)(5q+1)
1
q
‖f ′′′‖[a,b],p if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)4

160
‖f ′′′‖[a,b],1 .

Proof. Applying Theorem 48 for F , we may write:

(3.59)

∣∣∣∣∣
∫ b

a

F (t) dt− F (a) + F (b)

2
(b− a) +

(b− a)2

12
[f (b)− f (a)]

∣∣∣∣∣

≤



‖f ′′′‖[a,b],∞·(b−a)
5

720
if f ′′′ ∈ L∞ [a, b] ;

q3‖f ′′′‖[a,b],p

2
2+1

q (2q+1)(4q+1)(5q+1)
1
q

(b− a)4+ 1
q if f ′′′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)4‖f ′′′‖[a,b],1

160
.

However, F (a) = 0, F (b) = 1 and
∫ b
a
F (t) dt = b− E (X) , and so by

(3.59), we obtain (3.58).
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5. A Trapezoid Inequality for Convex Functions

5.1. Introduction. The following integral inequality for the gen-
eralised trapezoid formula was obtained in [36] (see also [35, p. 68]):

Theorem 50. Let f : [a, b] → R be a function of bounded variation.
We have the inequality

(3.60)

∣∣∣∣∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣
≤
[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f) ,

holding for all x ∈ [a, b] , where
∨b
a (f) denotes the total variation of f

on the interval [a, b].
The constant 1

2
is the best possible.

This result may be improved if one assumes the monotonicity of f
as follows (see [35, p. 76])

Theorem 51. Let f : [a, b] → R be a monotonic nondecreasing
function on [a, b], then we have the inequality:∣∣∣∣∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣(3.61)

≤ (b− x) f (b)− (x− a) f (a) +

∫ b

a

sgn (x− t) f (t) dt

≤ (x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]

≤
[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] [f (b)− f (a)]

for all x ∈ [a, b].
The above inequalities are sharp.

If the mapping is Lipschitzian, then the following result holds as
well [62] (see also [35, p. 82]).

Theorem 52. Let f : [a, b] → R be an L−Lipschitzian function on
[a, b] , i.e.., f satisfies the condition:

(L) |f (s)− f (t)| ≤ L |s− t| for any s, t ∈ [a, b] (L > 0 is given),
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then we have the inequality:

(3.62)

∣∣∣∣∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣
≤

[
1

4
(b− a)2 +

(
x− a+ b

2

)2
]
L

for any x ∈ [a, b].
The constant 1

4
is best in (3.62).

If we assume absolute continuity for the function f , then the fol-
lowing estimates in terms of the Lebesgue norms of the derivative f ′

hold [35, p. 93].

Theorem 53. Let f : [a, b] → R be an absolutely continuous func-
tion on [a, b], then for any x ∈ [a, b], we have

(3.63)

∣∣∣∣∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣

≤



[
1
4
(b− a)2 +

(
x− a+b

2

)2] ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(q+1)
1
q

[
(x− a)q+1 + (b− x)q+1] 1

q ‖f ′‖p if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;[
1
2
(b− a) +

∣∣x− a+b
2

∣∣] ‖f ′‖1 ,

The next section points out some similar results for convex func-
tions. Applications for probability density functions are also consid-
ered.

5.2. The Results. The following theorem providing a lower bound
for the difference

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

holds [49].

Theorem 54. Let f : [a, b] → R be a convex function on [a, b] ,
then for any x ∈ (a, b) we have the inequality

(3.64)
1

2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
≤ (x− a) f (a) + (b− x) f (b)−

∫ b

a

f (t) dt.

The constant 1
2

in the left hand side of (3.64) is sharp.
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The proof follows along similar lines to that of Theorem 19.

Proof. It is easy to see that for any locally absolutely continuous
function f : (a, b) → R, we have the identity

(3.65) (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt =

∫ b

a

(t− x) f ′ (t) dt

for any x ∈ (a, b) , where f ′ is the derivative of f which exists a.e. on
[a, b] .

Since f is convex, then it is locally Lipschitzian and thus (3.65)
holds. Moreover, for any x ∈ (a, b) , we have the inequalities:

(3.66) f ′ (t) ≤ f ′− (x) for a.e. t ∈ [a, x]

and

(3.67) f ′ (t) ≥ f ′+ (x) for a.e. t ∈ [x, b] .

If we multiply (3.66) by x − t ≥ 0, t ∈ [a, x] and integrate over [a, x],
we get

(3.68)

∫ x

a

(x− t) f ′ (t) dt ≤ 1

2
(x− a)2 f ′− (x)

and if we multiply (3.67) by t − x ≥ 0, t ∈ [x, b] and integrate over
[x, b] , we also have

(3.69)

∫ b

x

(t− x) f ′ (t) dt ≥ 1

2
(b− x)2 f ′+ (x) .

Finally, if we subtract (3.68) from (3.69) and use the representation
(3.65), we deduce the desired inequality (3.64).

Now, assume that (3.64) holds with a constant C > 0 instead of 1
2
,

i.e.,

(3.70) C
[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
≤ (x− a) f (a) + (b− x) f (b)−

∫ b

a

f (t) dt.

Consider the convex function f0 (t) := k
∣∣t− a+b

2

∣∣ , k > 0, t ∈ [a, b] ,
then

f ′0+

(
a+ b

2

)
= k, f ′0−

(
a+ b

2

)
= −k,

f0 (a) =
k (b− a)

2
= f0 (b) ,

∫ b

a

f0 (t) dt =
1

4
k (b− a)2 .
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If in (3.70) we choose f0 as above and x = a+b
2
, then we get

C

[
1

4
(b− a)2 k +

1

4
(b− a)2 k

]
≤ 1

4
k (b− a)2 ,

giving C ≤ 1
2
, and the sharpness of the constant is proved.

Now, recall that the following inequality holds, which is well known
in the literature as the Hermite-Hadamard inequality for convex func-
tions,

(H-H) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2
.

The following corollary gives a sharp lower bound for the difference

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt.

Corollary 43. ([49]) Let f : [a, b] → R be a convex function on
[a, b], then

0 ≤ 1

8

[
f ′+

(
a+ b

2

)
− f ′−

(
a+ b

2

)]
(b− a)(3.71)

≤ f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt.

The constant 1
8

is sharp.

The proof is obvious by the above theorem. The sharpness of the
constant is obtained for f0 (t) = k

∣∣t− a+b
2

∣∣ , t ∈ [a, b] , k > 0.
When x is a point of differentiability, we may state the following

corollary as well [49].

Corollary 44. Let f be as in Theorem 54. If x ∈ (a, b) is a point
of differentiability for f, then

(3.72) (b− a)

(
a+ b

2
− x

)
f ′ (x)

≤ (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt.

Remark 46. If f : I ⊆ R → R is convex on I and if we choose
x ∈̊I (̊I is the interior of I), b = x + h

2
, a = x − h

2
, h > 0 is such that

a, b ∈ I, then from (3.64) we may write

(3.73) 0 ≤ 1

8
h2
[
f ′+ (x)− f ′− (x)

]
≤ f (a) + f (b)

2
· h−

∫ x+h
2

x−h
2

f (t) dt
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and the constant 1
8

is sharp in (3.73).

The following result providing an upper bound for the difference

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

also holds [49].

Theorem 55. Let f : [a, b] → R be a convex function on [a, b],
then for any x ∈ [a, b] , we have the inequality:

(3.74) (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

≤ 1

2

[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

The constant 1
2

is sharp.

Proof. If either f ′+ (a) = −∞ or f ′− (b) = +∞, then the inequality
(3.74) evidently holds true.

Assume that f ′+ (a) and f ′− (b) are finite.
Since f is convex on [a, b] , we have

(3.75) f ′ (t) ≥ f ′+ (a) for a.e. t ∈ [a, x]

and

(3.76) f ′ (t) ≤ f ′− (b) for a.e. t ∈ [x, b] .

If we multiply (3.75) by (x− t) ≥ 0, t ∈ [a, x] and integrate over [a, x] ,
then we deduce

(3.77)

∫ x

a

(x− t) f ′ (t) dt ≥ 1

2
(x− a)2 f ′+ (a)

and if we multiply (3.76) by t − x ≥ 0, t ∈ [x, b] and integrate over
[x, b] , then we also have

(3.78)

∫ b

x

(t− x) f ′ (t) dt ≤ 1

2
(b− x)2 f ′− (b) .

Finally, if we subtract (3.77) from (3.78) and use the representation
(3.65), we deduce the desired inequality (3.74).

Now, assume that (3.74) holds with a constant D > 0 instead of 1
2
,

i.e.,

(3.79) (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

≤ D
[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.
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If we consider the convex function f0 : [a, b] → R, f0 (t) = k
∣∣t− a+b

2

∣∣ ,
then we have f ′− (b) = k, f ′+ (a) = −k and by (3.79) we deduce, for

x = a+b
2
, that

1

4
k (b− a)2 ≤ D

[
1

4
k (b− a)2 +

1

4
k (b− a)2

]
giving D ≥ 1

2
, and the sharpness of the constant is proved.

The following corollary related to the Hermite-Hadamard inequality
is interesting as well [49].

Corollary 45. Let f : [a, b] → R be convex on [a, b], then

0 ≤ f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt(3.80)

≤ 1

8

[
f ′− (b)− f ′+ (a)

]
(b− a)

and the constant 1
8

is sharp.

Remark 47. Denote B := f ′− (b) , A := f ′+ (a) and assume that
B 6= A, i.e., f is not constant on (a, b), then

(b− x)2B − (x− a)2A

= (B − A)

[
x−

(
bB − aA

B − A

)]2

− AB

B − A
(b− a)2

and by (3.74) we get

(3.81) (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

≤ (B − A)

[
x−

(
bB − aA

B − A

)]2

− AB

(B − A)2 (b− a)2

for any x ∈ [a, b] .
If A ≥ 0, then x0 = bB−aA

B−A ∈ [a, b], and by (3.81) for x = bB−aA
B−A we get

(3.82) 0 ≤ 1

2
· AB

B − A
(b− a) ≤ Bf (a)− Af (b)

B − A
− 1

b− a

∫ b

a

f (t) dt

which is of intrinsic interest itself.
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5.3. Applications for PDFs. Let X be a random variable with
probability density function f : [a, b] ⊂ R →[0,∞) and with cumulative
distribution function F (x) = Pr (X ≤ x) .

The following theorem holds [49].

Theorem 56. If f : [a, b] ⊂ R → R+ is monotonically increasing
on [a, b], then we have the inequality:

1

2

[
(b− x)2 f+ (x)− (x− a)2 f− (x)

]
+ x(3.83)

≤ E (X)

≤ 1

2

[
(b− x)2 f+ (b)− (x− a)2 f− (a)

]
+ x

for any x ∈ (a, b) , where f± (α) represent respectively the right and left
limits of f in α.
The constant 1

2
is sharp in both inequalities.

The second inequality also holds for x = a or x = b.

Proof. Follows by Theorem 54 and 55 applied for the convex cdf
function F (x) =

∫ x
a
f (t) dt, x ∈ [a, b] and taking into account that∫ b

a
F (x) dx = b− E (X) .

Finally, we may state the following corollary in estimating the ex-
pectation of X [49].

Corollary 46. With the above assumptions, we have

1

8

[
f+

(
a+ b

2

)
− f−

(
a+ b

2

)]
(b− a)2 +

a+ b

2
(3.84)

≤ E (X)

≤ 1

8
[f+ (b)− f− (a)] (b− a)2 +

a+ b

2
.

6. Generalizations of the Weighted Trapezoidal Inequality

6.1. Introduction. The classical trapezoid inequality states that
if f ′′ exists and is bounded on (a, b), then

(3.85)

∣∣∣∣∫ b

a

f(x)dx− b− a

2
[f(a) + f(b)]

∣∣∣∣ ≤ (b− a)3

12
‖f ′′‖∞ .

Cerone-Dragomir-Pearce [36] proved the following trapezoid type
inequality:
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Theorem 57. Let f : [a, b] → R be a mapping of bounded variation,
then

(3.86)

∣∣∣∣∫ b

a

f(t)dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣
≤
[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f) ,

for all x ∈ [a, b] . The constant 1
2

is the best possible.

In this section, by following [119], we establish weighted generaliza-
tions of Theorem 57, and give several applications for r−moments, the
expectation of a continuous random variable and for the Beta mapping.

6.2. Some Integral Inequalities. We may state the following
result [119].

Theorem 58. Let g : [a, b] → R be non-negative and continuous
and let h : [a, b] → R be differentiable such that h′ (t) = g (t) on [a, b] .
Suppose f is defined as in Theorem 57, then

(3.87)

∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] b∨
a

(f) ,

for all x ∈ [h(a), h(b)] . The constant 1
2

is the best possible.

Proof. Let x ∈ [h(a), h(b)]. Using integration by parts, we have
the following identity∫ b

a

(x− h(t)) df (t)(3.88)

= (x− h(t)) f (t)
∣∣b
a
+

∫ b

a

f(t)g (t) dt

=

∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)] .

It is well known [4, p.159] that if µ, ν : [a, b] → R are such that µ
is continuous on [a, b] and ν is of bounded variation on [a, b], then∫ b
a
µ (t) dν (t) exists and [4, p.177]

(3.89)

∣∣∣∣∫ b

a

µ (t) dν (t)

∣∣∣∣ ≤ sup
x∈[a,b]

|µ (t)|
b∨
a

(ν) .



6. GENERALIZATIONS OF THE WEIGHTED TRAPEZOIDAL INEQUALITY131

Now, using identity (3.88) and inequality (3.89), we have

(3.90)

∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
≤ sup

t∈[a,b]

|x− h(t)|
b∨
a

(f) .

Since x− h(t) is decreasing on [a, b], h(a) ≤ x ≤ h(b) and h′ (t) = g (t)
on [a, b] , we have

sup
t∈[a,b]

|x− h(t)| = max {x− h(a), h(b)− x}(3.91)

=
h(b)− h(a)

2
+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣
=

1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣ .
Thus, by (3.90) and (3.91), we obtain (3.87).

Let

g (t) ≡ 1, t ∈ [a, b] ,

h (t) = t, t ∈ [a, b] ,

f (t) =

 0 as t = a
1 as t ∈ (a, b)
0 as t = b,

and x = a+b
2

, then we can see that the constant 1
2

is the best possible.
This completes the proof.

Remark 48. (1) If we choose g (t) ≡ 1, h (t) = t on [a, b], then the
inequality (3.87) reduces to (3.86).

(2) If we choose x = h(a)+h(b)
2

, then we get

(3.92)

∣∣∣∣∫ b

a

f(t)g (t) dt− f (a) + f (b)

2

∫ b

a

g (t) dt

∣∣∣∣
≤ 1

2

∫ b

a

g (t) dt ·
b∨
a

(f) ,

which is the ”weighted trapezoid” inequality.

Under the conditions of Theorem 58, we have the following corol-
laries.
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Corollary 47. Let f ∈ C(1) [a, b], then we have the inequality

(3.93)

∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] ‖f ′‖1 ,

for all x ∈ [h(a), h(b)] .

Corollary 48. Let f : [a, b] → R be a Lipschitzian mapping with
the constant L > 0, then we have the inequality

(3.94)

∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] (b− a)L,

for all x ∈ [h(a), h(b)] .

Corollary 49. Let f : [a, b] → R be a monotonic mapping, then
we have the inequality

(3.95)

∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · |f (b)− f (a)| ,

for all x ∈ [h(a), h(b)] .

Remark 49. The following inequality is well-known in the literature
as the Fejér inequality (see for example [94]):

f

(
a+ b

2

)∫ b

a

g (t) dt ≤
∫ b

a

f(t)g (t) dt(3.96)

≤ f (a) + f (b)

2

∫ b

a

g (t) dt,

where f : [a, b] → R is convex and g : [a, b] → R is non-negative
integrable and symmetric to a+b

2
. Using the above results and (3.92),

we obtain the following error bound of the second inequality in (3.96),

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.97)

≤ 1

2

∫ b

a

g (t) dt ·
b∨
a

(f) ,
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provided that f is of bounded variation on [a, b].

Remark 50. If f is convex and Lipschitzian with the constant L

on [a, b], g is defined as in Remark 49 and x = h(a)+h(b)
2

, then we get
from (3.94) and (3.96),

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.98)

≤ (b− a)L

2

∫ b

a

g (t) dt.

Remark 51. If f is convex and monotonic on [a, b], g is defined as

in Remark 49 and x = h(a)+h(b)
2

, then we get, from (3.95) and (3.96),

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.99)

≤ |f (b)− f (a)|
2

∫ b

a

g (t) dt.

Remark 52. If f is continuous, differentiable and convex on [a, b]

and f ′ ∈ L1 (a, b) , g is defined as in Remark 49 and x = h(a)+h(b)
2

, then
we get, from (3.93) and (3.96),

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.100)

≤ ‖f ′‖1

2

∫ b

a

g (t) dt.

6.3. Some Inequalities for Random Variables. Throughout
this section, let 0 < a < b , r ∈ R , and let X be a continuous
random variable having the continuous probability density function
g : [a, b] → R and the r−moment

Er (X) :=

∫ b

a

trg (t) dt,

which is assumed to be finite. The following result holds [119].

Theorem 59. The inequality

(3.101)

∣∣∣∣Er (X)− ar + br

2

∣∣∣∣ ≤ 1

2
|br − ar| ,

holds.
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Proof. If we put f (t) = tr , h (t) =
∫ t
a
g (x) dx (t ∈ [a, b]) and

x = h(a)+h(b)
2

in Corollary 49, we obtain the inequality

(3.102)

∣∣∣∣∫ b

a

f(t)g (t) dt− f (a) + f (b)

2

∫ b

a

g (t) dt

∣∣∣∣
≤ 1

2

∫ b

a

g (t) dt · |f (b)− f (a)| .

Since ∫ b

a

f(t)g (t) dt = Er (X) ,

∫ b

a

g (t) dt = 1,

f (a) + f (b)

2
=
ar + br

2
, and |f (b)− f (a)| = |br − ar| ,

(3.101) follows from (3.102), immediately. This completes the proof.

If we choose r = 1 in Theorem 59, then we have the following
familiar inequality

(3.103)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ b− a

2
.

Theorem 60. ([119]) Let p, q ≥ 1, then the inequality

(3.104)

∣∣∣∣∣∣β (p, q)− 1

2np

n−1∑
i=0


[
1−

(
i

n

) 1
p

]q−1

+

[
1−

(
i+ 1

n

) 1
p

]q−1

∣∣∣∣∣∣ ≤ 1

2np
,

holds for any positive integer n.

Proof. Let p, q ≥ 1. If we put a = 0, b = 1, f(t) = (1− t)q−1,
g(t) = tp−1 and h (t) = tp

p
(t ∈ [0, 1]) in Corollary 49, we obtain the

inequality (3.104). This completes the proof.

7. More Generalizations for Monotone Mappings

7.1. Introduction. The trapezoid inequality, states that if f ′′ ex-
ists and is bounded on (a, b), then

(3.105)

∣∣∣∣∫ b

a

f(x)dx− b− a

2
[f(a) + f(b)]

∣∣∣∣ ≤ (b− a)3

12
‖f ′′‖∞ .

Cerone and Dragomir [35] proved the following trapezoid type in-
equality:
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Theorem A. Let f : [a, b] → R be a monotonic non-decreasing map-
ping, then ∣∣∣∣∫ b

a

f(t)dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣(3.106)

≤ (b− x) f (b)− (x− a) f (a) +

∫ b

a

sgn (x− t) f (t) dt

≤ (x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]

≤
[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] [f (b)− f (a)] ,

for all x ∈ [a, b]. The above inequalities are sharp.
In the next section, by following [120], we establish weighted gener-

alizations of Theorem A, and give several applications for r−moments
and the expectation of a continuous random variable , the Beta map-
ping and the Gamma mapping.

7.2. Some Integral Inequalities. The following result holds [120].

Theorem 61. Let g : [a, b] → R be non-negative and continuous
with g (t) > 0 on (a, b) and let h : [a, b] → R be differentiable such that
h′ (t) = g (t) on [a, b] .

(a) Suppose f : [a, b] → R is a monotonic non-decreasing mapping,
then∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣(3.107)

≤ (h(b)− x) f (b)− (x− h(a)) f (a)

+

∫ b

a

sgn
(
h−1(x)− t

)
f (t) g (t) dt

≤ (x− h(a)) ·
[
f
(
h−1(x)

)
− f (a)

]
+ (h(b)− x) ·

[
f (b)− f

(
h−1(x)

)]
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · [f (b)− f (a)]

for all x ∈ [h(a), h(b)] .
(b) Suppose f : [a, b] → R is a monotonic non-increasing mapping,

then∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣(3.108)
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≤ (x− h(a)) f (a)− (h(b)− x) f (b)

+

∫ b

a

sgn
(
t− h−1(x)

)
f (t) g (t) dt

≤ (x− h(a)) ·
[
f (a)− f

(
h−1(x)

)]
+ (h(b)− x) ·

[
f
(
h−1(x)

)
− f (b)

]
≤
[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · [f (a)− f (b)]

for all x ∈ [h(a), h(b)] .

The above inequalities are sharp.

Proof. (1)
(a) Let x ∈ [h(a), h(b)]. Using integration by parts, we have the

following identity∫ b

a

(x− h(t)) df (t)(3.109)

= (x− h(t)) f (t)

∣∣∣∣b
a

+

∫ b

a

f(t)g (t) dt

=

∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)] .

It is well known [4, p. 813] that if µ, ν : [a, b] → R are such that
µ is continuous on [a, b] and ν is monotonic non-decreasing on
[a, b], then

(3.110)

∣∣∣∣∫ b

a

µ (t) dν (t)

∣∣∣∣ ≤ ∫ b

a

|µ (t)| dν (t) .

Now, using identity (3.109) and inequality (3.110), we have∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣(3.111)

≤
∫ b

a

|x− h(t)| df (t)

=

∫ h−1(x)

a

(x− h(t)) df (t) +

∫ b

h−1(x)

(h(t)− x) df (t)
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= (x− h(t)) f (t)

∣∣∣∣h−1(x)

a

+

∫ h−1(x)

a

f (t) g (t) dt

+ (h(t)− x)

∣∣∣∣b
h−1(x)

−
∫ b

h−1(x)

f (t) g (t) dt

= (h(b)− x) f (b)− (x− h(a)) f (a)

+

∫ b

a

sgn
(
h−1(x)− t

)
f (t) g (t) dt

and the first inequalities in (3.107) are proved.
As f is monotonic non-decreasing on [a, b] , we obtain∫ h−1(x)

a

f (t) g (t) dt ≤ f
(
h−1 (x)

) ∫ h−1(x)

a

g (t) dt

= (x− h(a)) f
(
h−1 (x)

)
and∫ b

h−1(x)

f (t) g (t) dt ≥ f
(
h−1 (x)

) ∫ b

h−1(x)

g (t) dt

= (h(b)− x) f
(
h−1 (x)

)
,

then∫ b

a

sgn
(
h−1(x)− t

)
f (t) g (t) dt

≤ (x− h(a)) f
(
h−1 (x)

)
+ (x− h(b)) f

(
h−1 (x)

)
.

Therefore,

(h(b)− x) f (b)− (x− h(a)) f (a)(3.112)

+

∫ b

a

sgn
(
h−1(x)− t

)
f (t) g (t) dt

≤ (h(b)− x) f (b)− (x− h(a)) f (a)

+ (x− h(a)) f
(
h−1 (x)

)
+ (x− h(b)) f

(
h−1 (x)

)
= (x− h(a)) ·

[
f
(
h−1(x)

)
− f (a)

]
+ (h(b)− x) ·

[
f (b)− f

(
h−1(x)

)]
which proves that the second inequality in (3.107).

As f is monotonic non-decreasing on [a, b] , we have

f (a) ≤ f
(
h−1(x)

)
≤ f (b)
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and

(x− h(a)) ·
[
f
(
h−1(x)

)
− f (a)

]
(3.113)

+ (h(b)− x) ·
[
f (b)− f

(
h−1(x)

)]
≤ max{x− h(a), h(b)− x}

×
[
f
(
h−1(x)

)
− f (a) + f (b)− f

(
h−1(x)

)]
=

[
h(b)− h(a)

2
+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · [f (b)− f (a)]

=

[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · [f (b)− f (a)] .

Thus, by (3.111), (3.112) and (3.113), we obtain (3.107).
Let

g (t) ≡ 1, t ∈ [a, b]

h (t) = t, t ∈ [a, b]

f(t) =

{
0, t ∈ [a, b)
1, t = b

and x = a+b
2

, then∣∣∣∣∫ b

a

f(t)g (t) dt− [(x− h(a)) f (a) + (h(b)− x) f (b)]

∣∣∣∣
= (h(b)− x) f (b)− (x− h(a)) f (a)

+

∫ b

a

sgn
(
h−1(x)− t

)
f (t) g (t) dt

= (x− h(a)) ·
[
f
(
h−1(x)

)
− f (a)

]
+ (h(b)− x) ·

[
f (b)− f

(
h−1(x)

)]
=

[
1

2

∫ b

a

g (t) dt+

∣∣∣∣x− h(a) + h(b)

2

∣∣∣∣] · [f (b)− f (a)]

=
b− a

2

which proves that the inequalities (3.107) are sharp.
(b) If f is replaced by −f in (a), then (3.108) is obtained from

(3.107).
This completes the proof.

Remark 53. If we choose g (t) ≡ 1, h (t) = t on [a, b], then the
inequalities (3.107) reduce to (3.106).
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Corollary 50. ([120]) If we choose x = h(a)+h(b)
2

, then we get∣∣∣∣∫ b

a

f(t)g (t) dt− f (a) + f (b)

2

∫ b

a

g (t) dt

∣∣∣∣(3.114)

≤ 1

2

∫ b

a

g (t) dt · [f (b)− f (a)]

+

∫ b

a

sgn

(
h−1

(
h(a) + h(b)

2

)
− t

)
f (t) g (t) dt

≤ 1

2

∫ b

a

g (t) dt · [f (b)− f (a)]

where f and g are defined as in (a) of Theorem 61, and∣∣∣∣∫ b

a

f(t)g (t) dt− f (a) + f (b)

2

∫ b

a

g (t) dt

∣∣∣∣(3.115)

≤ 1

2

∫ b

a

g (t) dt · [f (a)− f (b)]

+

∫ b

a

sgn

(
t− h−1

(
h(a) + h(b)

2

))
f (t) g (t) dt

≤ 1

2

∫ b

a

g (t) dt · [f (a)− f (b)]

where f and g are defined as in (b) of Theorem 61.

The inequalities (3.114) and (3.115) are the “weighted trapezoid”
inequalities.

Note that the trapezoid inequality (3.114) and (3.115) are, in a
sense, the best possible inequalities we can obtain from (3.107) and
(3.108). Moreover, the constant 1

2
is the best possible for both inequal-

ities in (3.114) and (3.115), respectively.

Remark 54. The following inequality is well-known in the literature
as the Fejér inequality (see for example [94]):

f

(
a+ b

2

)∫ b

a

g (t) dt ≤
∫ b

a

f(t)g (t) dt(3.116)

≤ f (a) + f (b)

2

∫ b

a

g (t) dt,

where f : [a, b] → R is convex and g : [a, b] → R is positive integrable
and symmetric with respect to a+b

2
.
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Using the above results and (3.114) – (3.115), we obtain the follow-
ing error bound of the second inequality in (3.116):

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.117)

≤ 1

2

∫ b

a

g (t) dt · [f (b)− f (a)]

+

∫ b

a

sgn

(
h−1(

h(a) + h(b)

2
)− t

)
f (t) g (t) dt

≤ 1

2

∫ b

a

g (t) dt · [f (b)− f (a)]

provided that f is monotonic non-decreasing on [a, b].

0 ≤ f (a) + f (b)

2

∫ b

a

g (t) dt−
∫ b

a

f(t)g (t) dt(3.118)

≤ 1

2

∫ b

a

g (t) dt · [f (a)− f (b)]

+

∫ b

a

sgn

(
t− h−1(

h(a) + h(b)

2
)

)
f (t) g (t) dt

≤ 1

2

∫ b

a

g (t) dt · [f (a)− f (b)]

provided that f is monotonic non-increasing on [a, b].

7.3. Some Inequalities for Random Variables. Throughout
this section, let 0 < a < b , r ∈ R, and let X be a continuous random
variable having the continuous probability density mapping g : [a, b] →
R with g (t) > 0 on (a, b) , h : [a, b] → R with h′ (t) = g (t) for t ∈ (a, b)
and the r−moment

Er (X) :=

∫ b

a

trg (t) dt,

which is assumed to be finite [120].

Theorem 62. The inequalities∣∣∣∣Er (X)− ar + br

2

∣∣∣∣(3.119)

≤ 1

2
(br − ar) +

∫ b

a

sgn

(
h−1

(
1

2

)
− t

)
trg (t) dt

≤ 1

2
(br − ar) as r ≥ 0
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and ∣∣∣∣Er (X)− ar + br

2

∣∣∣∣(3.120)

≤ 1

2
(ar − br) +

∫ b

a

sgn

(
t− h−1

(
1

2

))
trg (t) dt

≤ 1

2
(ar − br) as r < 0,

hold.

Proof. If we put f (t) = tr (t ∈ [a, b]) , h (t) =
∫ t
a
g (x) dx (t ∈ [a, b])

and x = h(a)+h(b)
2

= 1
2

in Corollary 50, then we obtain (3.119) and
(3.120). This completes the proof.

The following corollary which is a special case of Theorem 62.

Corollary 51. The inequalities∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ b− a

2
+

∫ b

a

sgn

(
h−1

(
1

2

)
− t

)
tg (t) dt(3.121)

≤ b− a

2

hold.

The following inequality, which is an application of Theorem 61 for
the Beta mapping, holds:

Theorem 63. Let p, q > 0, then we have the inequality

|β (p+ 1, q + 1)− x|(3.122)

≤ x+

∫ b

a

sgn
[
t− ((p+ 1) x)

1
p+1

]
tp (1− t)q dt

≤ x+

(
1

p+ 1
− 2x

)[
1− ((p+ 1) x)

1
p+1

]q
≤ 1

2 (p+ 1)
+

∣∣∣∣x− 1

2(p+ 1)

∣∣∣∣
for all x ∈

[
0, 1

p+1

]
.

Proof. If we put a = 0, b = 1, f(t) = (1− t)q, g(t) = tp and

h (t) = tp+1

p+1
(t ∈ [0, 1]) in Theorem 61, we obtain the inequality (3.122)

for all x ∈
[
0, 1

p+1

]
. This completes the proof.
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The following remark, which is an application of Theorem 63 for
the Gamma mapping, applies:

Remark 55. Taking into account that β (p+ 1, q + 1) = Γ(p+1)Γ(q+1)
Γ(p+q+2)

,

the inequality (3.122) is equivalent to∣∣∣∣Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)
− x

∣∣∣∣
≤ x+

∫ b

a

sgn
[
t− ((p+ 1) x)

1
p+1

]
tp (1− t)q dt

≤ x+

(
1

p+ 1
− 2x

)[
1− ((p+ 1) x)

1
p+1

]q
≤ 1

2 (p+ 1)
+

∣∣∣∣x− 1

2(p+ 1)

∣∣∣∣
i.e.,

|(p+ 1)Γ(p+ 1)Γ(q + 1)− x(p+ 1)Γ(p+ q + 2)|

≤
[
x+

∫ b

a

sgn
[
t− ((p+ 1) x)

1
p+1

]
tp (1− t)q dt

]
(p+ 1)Γ(p+ q + 2)

≤
[
x+

(
1

p+ 1
− 2x

)[
1− ((p+ 1) x)

1
p+1

]q]
(p+ 1)Γ(p+ q + 2)

≤
[
1

2
+

∣∣∣∣x(p+ 1)− 1

2

∣∣∣∣] · Γ(p+ q + 2)

and as (p+ 1)Γ(p+ 1) = Γ(p+ 2), we get

|Γ(p+ 2)Γ(q + 1)− x(p+ 1)Γ(p+ q + 2)|(3.123)

≤
[
x+

∫ b

a

sgn
[
t− ((p+ 1) x)

1
p+1

]
tp (1− t)q dt

]
× (p+ 1)Γ(p+ q + 2)

≤
[
x+

(
1

p+ 1
− 2x

)[
1− ((p+ 1) x)

1
p+1

]q]
× (p+ 1)Γ(p+ q + 2)

≤
[
1

2
+

∣∣∣∣x(p+ 1)− 1

2

∣∣∣∣] · Γ(p+ q + 2).



CHAPTER 4

Inequalities for CDFs Via Grüss Type Results

1. Random Variables whose PDFs are Bounded

1.1. Introduction. In papers [107, 108], Matić, Pečarić and Ujević
proved the following inequality, which has been called the pre-Grüss in-
equality in [34]

(4.1)

∣∣∣∣ 1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (t) dt

)2
] 1

2

,

provided that γ ≤ f (t) ≤ φ a.e. on [a, b] and the integrals exist and
are finite.

In [108], the authors used (4.1) to obtain some bounds for the
remainder in certain Taylor like formulae whilst in [34], the authors
applied (4.1) to estimation of the remainder in three point quadrature
formulae.

Basically, (4.1) is a pre-Grüss inequality since, if we assume that
α ≤ g (t) ≤ β a.e. in [a, b] , then, (see for example [67])

(4.2)
1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (t) dt

)2

≤ 1

4
(β − α)2 ,

which, together with (4.1), gives the original Grüss inequality,

(4.3)

∣∣∣∣ 1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt

∣∣∣∣
≤ 1

4
(φ− γ) (β − α) .

In [108], Matić, Pečarić and Ujević observed that if a factor is
known, for example g (t) , t ∈ [a, b] , then instead of using (4.3) in
estimating the difference

1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt,

143
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it is better to use (4.1) [107].
In this section, by adopting this same approach, we obtain some in-

equalities for the expectation E (X) and cumulative distribution func-
tion F (·) of a random variable having the probability distribution func-
tion f : [a, b] → R. It is assumed that we know the lower and the upper
bound for f, i.e., the real numbers γ, φ such that 0 ≤ γ ≤ f (t) ≤ φ ≤ 1
a.e. t on [a, b] . Some related results are also established.

1.2. Some Inequalities for Expectation and Dispersion. We
start with the following result for expectation [20].

Theorem 64. Let X be a random variable having the probability
density function f : [a, b] → R. Assume that there exist constants γ, φ
such that 0 ≤ γ ≤ f (t) ≤ φ ≤ 1 a.e. t on [a, b] , then,

(4.4)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ 1

4
√

3
(φ− γ) (b− a)2 .

Proof. If we put g (t) = t in (4.1), we obtain

(4.5)

∣∣∣∣ 1

b− a

∫ b

a

tf (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

tdt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

t2dt−
(

1

b− a

∫ b

a

tdt

)2
] 1

2

and as ∫ b

a

tf (t) dt = E (X) ,∫ b

a

f (t) dt = 1,
1

b− a

∫ b

a

tdt =
a+ b

2

and

1

b− a

∫ b

a

t2dt−
(

1

b− a

∫ b

a

tdt

)2

=
(b− a)2

12
,

then by (4.5) we deduce (4.4).

To point out a result for the p−moments of the random variable
X, p ∈ R\ {−1, 0}, we need the following p−Logarithmic mean,

Mp (a, b) :=

[
bp+1 − ap+1

(p+ 1) (b− a)

] 1
p

,

where 0 < a < b.
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Theorem 65. ([20]) Let X and f be as in Theorem 64 and Ep (X)
be the p-moment of X, i.e.,

Ep (X) :=

∫ b

a

tpf (t) dt,

which is assumed to be finite, then:

(4.6)
∣∣Ep (X)−Mp

p (a, b)
∣∣ ≤ 1

2
(φ− γ)

[
M2p

2p (a, b)−M2p
p (a, b)

] 1
2 .

The proof is obvious by (4.1) in which we choose g (t) = tp, p ∈
R\ {−1, 0} .

If we consider the Logarithmic mean

M−1 (a, b) := L (a, b) =
b− a

ln b− ln a
, 0 < a < b

and define the (−1)−moment of the random variable X by

E−1 (X) :=

∫ b

a

f (t)

t
dt,

then we can also state the following theorem [20].

Theorem 66. Let X and f be as in Theorem 64, then:

(4.7)
∣∣E−1 (X)−M−1

−1 (a, b)
∣∣ ≤ 1

2
(φ− γ)

[
M−2

−2 (a, b)−M−2
−1 (a, b)

] 1
2 ,

provided the (−1)−moment of X is finite.

The proof is obvious by (4.1) and so we omit the details.
The following theorem also holds [20].

Theorem 67. Let X and f be as above. If

σµ (X) :=

[∫ b

a

(t− µ)2 f (t) dt

] 1
2

, µ ∈ [a, b] ,

then we have the inequality,∣∣∣∣∣σ2
µ (X)−

(
µ− a+ b

2

)2

− (b− a)2

12

∣∣∣∣∣(4.8)

≤ 1

2
(φ− γ) (b− a)2

[
1

3

(
µ− a+ b

2

)2

+
1

180
(b− a)2

] 1
2

≤ 1

3
√

5
(φ− γ) (b− a)3 .
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Proof. If we put g (t) = (t− µ)2 in (4.1) we get

(4.9)

∣∣∣∣ 1

b− a

∫ b

a

f (t) (t− µ)2 dt

− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

(t− µ)2 dt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

(t− µ)4 dt−
(

1

b− a

∫ b

a

(t− µ)2 dt

)2
] 1

2

,

and as ∫ b

a

f (t) dt = 1,

1

b− a

∫ b

a

(t− µ)2 dt =
(b− µ)3 + (µ− a)3

3 (b− a)

=
(b− µ)2 − (b− µ) (µ− a) + (µ− a)2

3

=

(
µ− a+ b

2

)2

+
(b− a)2

12
,

1

b− a

∫ b

a

(t− µ)4 dt−
(

1

b− a

∫ b

a

(t− µ)2 dt

)2

=
1

45

[
4
[
(b− µ)2 − (µ− a)2]2

+ 2 (b− µ)2 (µ− a)2 + (µ− a) (b− µ)
[
(b− µ)2 + (µ− a)2]]

:= A.

(after considerable algebraic manipulation). However,

(b− µ)2 − (µ− a)2 = (b− a) (b+ a− 2µ)

= 2 (b− a)

(
b+ a

2
− µ

)
,

(b− µ) (µ− a) =
1

4
(b− a)2 −

(
µ− a+ b

2

)2

,

(b− µ)2 + (µ− a)2 =
1

2
(b− a)2 + 2

(
µ− a+ b

2

)2

,
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giving,

A =
(b− a)2

45

[
15

(
µ− a+ b

2

)2

+
1

4
(b− a)2

]

= (b− a)2

[
1

3

(
µ− a+ b

2

)2

+
1

180
(b− a)2

]
.

Using the inequality (4.9), we deduce the desired inequality (4.8).

The best inequality we can obtain from (4.8) is that for which µ =
a+b
2

and, therefore, we can state the following corollary (see also [20]).

Corollary 52. With the above assumptions and denoting σ0 (X) :=
σ a+b

2
(X), we have the inequality:

(4.10)

∣∣∣∣∣σ2
0 (X)− (b− a)2

12

∣∣∣∣∣ ≤ 1

12
√

5
(φ− γ) (b− a)3 .

The following theorem also holds [20].

Theorem 68. Let X and f be as above. If

(4.11) Aµ (X) :=

∫ b

a

|t− µ| f (t) dt, µ ∈ [a, b] ,

then we have the inequality

(4.12)

∣∣∣∣∣Aµ (X)− 1

b− a

[
(b− a)2

4
+

(
µ− a+ b

2

)2
]∣∣∣∣∣

≤ 1

2
(φ− γ) (b− a)

[
(b− a)2

48

+

(
µ− a+b

2

b− a

)2 [
1

2
(b− a)2 +

(
µ− a+ b

2

)2
] 1

2

.

for all µ ∈ [a, b] .
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Proof. If we put g (t) = |t− µ| in (4.1), we have

(4.13)

∣∣∣∣ 1

b− a

∫ b

a

|t− µ| f (t) dt

− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

|t− µ| dt
∣∣∣∣

≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

|t− µ|2 dt−
(

1

b− a

∫ b

a

|t− µ| dt
)2
] 1

2

and as
∫ b
a
f (t) dt = 1,

1

b− a

∫ b

a

|t− µ| dt =
1

b− a

[∫ µ

a

(µ− t) dt+

∫ b

µ

(t− µ) dt

]
=

1

b− a

[
(b− µ)2 + (µ− a)2

2

]

=
1

b− a

[
(b− a)2

4
+

(
µ− a+ b

2

)2
]
,

1

b− a

∫ b

a

(t− µ)2 dt =
(b− µ)3 + (µ− a)3

3 (b− a)

=
(b− a)2

12
+

(
µ− a+ b

2

)2

,

1

b− a

∫ b

a

(t− µ)2 dt−
(

1

b− a

∫ b

a

|t− µ| dt
)2

=
(b− a)2

12
+

(
µ− a+ b

2

)2

−

[
(b− a)

4
+

1

b− a

(
µ− a+ b

2

)2
]2

=
(b− a)2

48
+

1

2

(
µ− a+ b

2

)2

− 1

(b− a)2

(
µ− a+ b

2

)4

=
(b− a)2

48
+

(
µ− a+b

2

b− a

)2 [
1

2
(b− a)2 −

(
µ− a+ b

2

)2
]
.

Finally, using (4.13) we deduce the desired inequality.
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Corollary 53. ([20]) The best inequality we can get from (4.12)
is for µ = µ0 := a+b

2
, giving:

(4.14)

∣∣∣∣Aµ0
(X)− b− a

4

∣∣∣∣ ≤ 1

8
√

3
(φ− γ) (b− a)2 ,

where Aµ0
(X) is as defined in (4.11).

Proof. Consider the mapping

g (µ) :=
(b− a)2

48
+

1

2

(
µ− a+ b

2

)2

− 1

(b− a)2

(
µ− a+ b

2

)4

.

We have

dg (µ)

dµ
=

(
µ− a+ b

2

)
− 4

(b− a)2

(
µ− a+ b

2

)3

=

(
µ− a+ b

2

)[
1− 4

(b− a)2

(
µ− a+ b

2

)2
]
.

Note that dg(µ)
dµ

= 0 if µ = a or µ = a+b
2

or µ = b and as

dg (µ)

dµ
< 0 for µ ∈

(
a,
a+ b

2

)
and

dg (µ)

dµ
> 0 for µ ∈

(
a+ b

2
, µ

)
,

we deduce that µ = a+b
2

is the point realizing the global minimum on

(a, b) and as g (µ0) = (b−a)2
48

, the inequality (4.14) is indeed the best
inequality we can get from (4.12).

Another inequality that can be useful for obtaining different in-
equalities for dispersion is the following weighted Grüss type result
(see for example [50]).

Lemma 13. Let g, p : [a, b] → R be measurable functions such that

α ≤ g ≤ β a.e., p ≥ 0 a.e. on [a, b] and
∫ b
a
p (x) dx > 0.

Then

(4.15) 0 ≤
∫ b
a
p (x) g2 (x) dx∫ b
a
p (x) dx

−

(∫ b
a
p (x) g (x) dx∫ b
a
p (x) dx

)2

≤ 1

4
(β − α)2 ,

provided that all the integrals in (4.15) exist and are finite.

Using the above lemma we prove the following result for dispersion
[20].
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Theorem 69. Let X be a random variable whose probability density
function f is defined on the finite interval [a, b] and σ (X) <∞. Then
we have the inequality

(4.16) 0 ≤ σ2
µ (X)− (E (X)− µ)2 ≤ 1

4
(b− a)2

for all µ ∈ [a, b] , or, equivalently,

(4.17) 0 ≤ σ (X) ≤ 1

2
(b− a) .

Proof. Choose in (4.15), g (x) = x − µ, p (x) = f (x) , then,

obviously, supx∈[a,b] g (x) = b−µ, infx∈[a,b] g (x) = a−µ,
∫ b
a
f (x) dx = 1,

and by (4.15),

0 ≤
∫ b

a

(x− µ)2 f (x) dx−
(∫ b

a

(x− µ) f (x) dx

)2

≤ 1

4
(b− a)2

and the inequality (4.16) is proved.

The following inequality connecting σµ (X) and Aµ (X) also holds
(see also [20]).

Theorem 70. Let X be as in Theorem 69 and assume that σµ (X),
Aµ (X) <∞ for all µ ∈ [a, b] . We have the inequality,

(4.18) 0 ≤ σ2
µ (X)− A2

µ (X) ≤ 1

2

∣∣∣∣µ− a+ b

2

∣∣∣∣
for all µ ∈ [a, b] with Aµ(X) given in (4.11).

Proof. Choose in Lemma 13, p (x) = f (x) , g (x) = |x− µ| , µ ∈
[a, b], then

β = sup
x∈[a,b]

g (x) = max {µ− a, b− µ} =
b− a+ |µ− a− b+ µ|

2
,

α = inf
x∈[a,b]

g (x) = min {µ− a, b− µ} =
b− a− |µ− a− b+ µ|

2
,

which gives us

β − α = 2

∣∣∣∣µ− a+ b

2

∣∣∣∣ .
Applying (4.15), we deduce (4.18).
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1.3. Some Inequalities for CDFs. The following theorem con-
tains an inequality which connects the expectation E (X) , the cumu-
lative distribution function F (X) :=

∫ x
a
f (t) dt and the bounds γ and

φ of the probability density function f : [a, b] → R (see also [20]).

Theorem 71. Let X, f, E (X) , F (·) and γ, φ be as above, then:

(4.19)

∣∣∣∣E (X) + (b− a)F (x)− x− b− a

2

∣∣∣∣ ≤ 1

4
√

3
(φ− γ) (b− a)2 ,

for all x ∈ [a, b] .

Proof. The following identity was established by Barnett and
Dragomir in [9]

(b− a)F (x) + E (X)− b =

∫ b

a

p (x, t) dF (t)(4.20)

=

∫ b

a

p (x, t) f (t) dt,

where

p (x, t) :=

 t− a if a ≤ t ≤ x ≤ b

t− b if a ≤ x < t ≤ b
.

Applying the inequality (4.1) for g (t) = p (x, t) , we get

(4.21)

∣∣∣∣ 1

b− a

∫ b

a

p (x, t) f (t) dt

− 1

b− a

∫ b

a

p (x, t) dt · 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

p2 (x, t) dt−
(

1

b− a

∫ b

a

p (x, t) dt

)2
] 1

2

.

Observe that

1

b− a

∫ b

a

p (x, t) dt = x− a+ b

2
,∫ b

a

f (t) dt = 1,
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and

D :=
1

b− a

∫ b

a

p2 (x, t) dt−
(

1

b− a

∫ b

a

p (x, t) dt

)2

=
1

b− a

[
(b− x)3 + (x− a)3

3

]
−
(
x− a+ b

2

)2

=
(b− x)2 − (b− x) (x− a) + (x− a)2

3
−
(
x− a+ b

2

)2

.

As a simple calculation shows that

(b− x)2 − (b− x) (x− a) + (x− a)2

= 3

(
x− a+ b

2

)2

+
1

4
(b− a)2 ,

we get,

D =
1

12
(b− a)2 .

Using (4.21), we deduce (4.19).

Remark 56. If in (4.19) we choose either x = a or x = b, we get∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ 1

4
√

3
(φ− γ) (b− a)2 ,

which is the inequality (4.4).

Remark 57. If in (4.19) we choose x = a+b
2

, then we get the in-
equality

(4.22)

∣∣∣∣E (X) + (b− a) Pr

(
X ≤ a+ b

2

)
− b

∣∣∣∣
≤ 1

4
√

3
(φ− γ) (b− a)2 .

The following theorem also holds (see also [20]).

Theorem 72. Let X, f, γ, φ and F (·) be as above, then we have:∣∣∣∣E (X) +
b− a

2
F (x)− b+ x

2

∣∣∣∣(4.23)

≤ 1

2
√

3
(φ− γ)

[
1

4
(b− a)2 +

(
x− a+ b

2

)2
]

≤ 1

4
√

3
(φ− γ) (b− a)2 ,
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for all x ∈ [a, b].

Proof. We use the identity (4.20).
Applying the pre-Grüss inequality (4.1), we get, for x ∈ [a, b] ,∣∣∣∣ 1

x− a

∫ x

a

(t− a) f (t) dt(4.24)

− 1

x− a

∫ x

a

(t− a) dt · 1

x− a

∫ x

a

f (t) dt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

x− a

∫ x

a

(t− a)2 dt

−
[

1

x− a

∫ x

a

(t− a) dt

]2
] 1

2

=
1

4
√

3
(φ− γ) (x− a)

and, similarly,

(4.25)

∣∣∣∣ 1

b− x

∫ b

x

(t− b) f (t) dt

− 1

b− x

∫ b

x

(t− b) dt · 1

b− x

∫ b

x

f (t) dt

∣∣∣∣
≤ 1

4
√

3
(φ− γ) (b− x) , x ∈ (a, b) .

From (4.24) and (4.25) we can write

(4.26)

∣∣∣∣∫ x

a

(t− a) f (t) dt− x− a

2
F (x)

∣∣∣∣ ≤ 1

4
√

3
(φ− γ) (x− a)2

and

(4.27)

∣∣∣∣∫ b

x

(t− b) f (t) dt+
b− x

2
(1− F (x))

∣∣∣∣
≤ 1

4
√

3
(φ− γ) (b− x)2 ,

for all x ∈ [a, b].
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Summing (4.26) and (4.27) and using the triangle inequality, we
deduce that∣∣∣∣∫ x

a

(t− a) f (t) dt+

∫ b

x

(t− b) f (t) dt− b− a

2
F (x) +

b− x

2

∣∣∣∣(4.28)

≤ 1

4
√

3
(φ− γ)

[
(x− a)2 + (b− x)2]

=
1

2
√

3
(φ− γ)

[
1

4
(b− a)2 +

(
x− a+ b

2

)2
]
.

Evaluation at x = a or b produces the final inequality in (4.23).

Remark 58. If we choose in (4.23), either x = a or x = b, we get
the inequality

(4.29)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ 1

4
√

3
(φ− γ) (b− a)2

and thus recapture (4.4).

Remark 59. If we choose in (4.23), x = a+b
2
, then we get

(4.30)

∣∣∣∣E (X) +

(
b− a

2

)
Pr

(
X ≤ a+ b

2

)
− a+ 3b

4

∣∣∣∣
≤ 1

8
√

3
(φ− γ) (b− a)2 ,

which is the best inequality of this type that can be obtained.

2. The Case of Absolutely Continuous PDFs

2.1. Introduction. In [108], Matić, Pečarić and Ujević proved
the following refinement of Čebyšev’s inequality which we call the “pre-
Čebyšev” inequality

(4.31)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx

− 1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

g (x) dx

∣∣∣∣
≤ 1

2
√

3
(b− a) ‖f ′‖∞

×

[
1

b− a

∫ b

a

g2 (x) dx−
(

1

b− a

∫ b

a

g (x) dx

)2
] 1

2

,
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provided that f is absolutely continuous on [a, b] and all the integrals
in (4.31) exist and are finite.

Matić, Pečarić and Ujević observed that: if a factor is known, say
g (t) , t ∈ [a, b], then instead of using Čebyšev’s inequality to estimate
the difference

1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt,

it is better to use (4.31). They demonstrated this by improving some
results of the second author in [108] related to Taylor’s formula with
integral remainder.

Using the same approach here, we obtain some inequalities for the
expectation, E (X), and cumulative distribution function F (x) of a
random variable having the probability density function f : [a, b] → R
which is assumed to be absolutely continuous and whose derivative
f ′ ∈ L∞ [a, b].

2.2. Some Inequalities. We start with the following result for
expectation [21].

Theorem 73. Let X be a random variable having the probability
density function f : [a, b] → R. Assume that f is absolutely continuous
on [a, b] and f ′ ∈ L∞ [a, b] , then,

(4.32)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ 1

12
(b− a)2 ‖f ′‖∞ .

Proof. If we put g (t) = t in (4.31),

(4.33)

∣∣∣∣ 1

b− a

∫ b

a

tf (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

tdt

∣∣∣∣
≤ 1

2
√

3
(b− a) ‖f ′‖∞

[
1

b− a

∫ b

a

t2dt−
(

1

b− a

∫ b

a

tdt

)2
] 1

2

.

However,

1

b− a

∫ b

a

t2dt−
(

1

b− a

∫ b

a

tdt

)2

=
(b− a)2

12

and so (4.32) is true.

Remark 60. We could obtain the same inequality by applying Čebyšev’s
inequality. Note, however, that for further results, the pre-Čebyšev in-
equality provides better estimates than would be obtained using the clas-
sical result.
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Theorem 74. ([21]) Let X and f be as above. If

σµ (X) :=

[∫ b

a

(t− µ)2 f (t) dt

] 1
2

, µ ∈ [a, b] ,

then, ∣∣∣∣∣σ2
µ (X)−

(
µ− a+ b

2

)2

− 1

12
(b− a)2

∣∣∣∣∣(4.34)

≤ 1

2
√

3
(b− a)2

[
1

3

(
µ− a+ b

2

)2

+
1

180
(b− a)2

]
‖f ′‖∞

≤ 1

3
√

15
(b− a)3 ‖f ′‖∞ ,

for all µ ∈ [a, b].

Proof. If g (t) = (t− µ)2 in (4.31), then,

(4.35)

∣∣∣∣ 1

b− a

∫ b

a

(t− µ)2 f (t) dt

− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

(t− µ)2 dt

∣∣∣∣
≤ 1

2
√

3
‖f ′‖∞

[
1

b− a

∫ b

a

(t− µ)4 dt−
(

1

b− a

∫ b

a

(t− µ)2 dt

)2
] 1

2

.

However,

1

b− a

∫ b

a

(t− µ)2 dt =

(
µ− a+ b

2

)2

+
1

12
(b− a)2

and

1

b− a

∫ b

a

(t− µ)4 dt−
(

1

b− a

∫ b

a

(t− µ)2 dt

)2

=
1

5
· (b− µ)5 + (µ− a)5

b− a
−

[
(b− µ)3 + (µ− a)3

3 (b− a)

]2

=
1

45

[
4
[
(b− µ)2 − (µ− a)2]2 + 2 (b− µ)2 (µ− a)2

+ (µ− a) (b− µ)
[
(b− µ)2 + (µ− a)2]]

:= A,
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which simplifies further to give:

A =
(b− a)2

45

[
15

(
µ− a+ b

2

)2

+
1

4
(b− a)2

]

= (b− a)2

[
1

3

(
µ− a+ b

2

)2

+
1

180
(b− a)2

]
.

Using (4.35), we deduce the desired inequality (4.34).

The best inequality we can obtain from (4.34) is that for which
µ = a+b

2
, giving the following corollary (see also [21]).

Corollary 54. With the above assumptions and denoting σ0 (X) :=
σ a+b

2
(X),

(4.36)

∣∣∣∣∣σ2
0 (X)− (b− a)2

12

∣∣∣∣∣ ≤ 1

12
√

15
(b− a)3 ‖f ′‖∞ .

The following theorem provides an inequality that connects the ex-
pectation E (X) and the cumulative distribution function F (x) :=∫ x
a
f (t) dt of a random variable X having the PDF f : [a, b] → R

(see also [21]).

Theorem 75. Let X be a random variable whose PDF, f : [a, b] →
R is absolutely continuous on [a, b] and f ′ ∈ L∞ [a, b], then,

(4.37)

∣∣∣∣E (X) + (b− a)F (x)− x− b− a

2

∣∣∣∣ ≤ 1

12
(b− a)3 ‖f ′‖∞

for all x ∈ [a, b].

Proof. We use the following equality established by Barnett and
Dragomir in [9]

(b− a)F (x) + E (X)− b =

∫ b

a

p (x, t) dF (t)(4.38)

=

∫ b

a

p (x, t) f (t) dt,

where

p (x, t) :=

 t− a if a ≤ t ≤ x ≤ b

t− b if a ≤ x < t ≤ b
.
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Now, if we apply the inequality (4.31) for g (t) = p (x, t), we obtain

(4.39)

∣∣∣∣ 1

b− a

∫ b

a

p (x, t) f (t) dt

− 1

b− a

∫ b

a

p (x, t) dt · 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ 1

2
√

3
(b− a) ‖f ′‖∞

×

[
1

b− a

∫ b

a

p2 (x, t) dt−
(

1

b− a

∫ b

a

p (x, t) dt

)2
] 1

2

.

Observe that

1

b− a

∫ b

a

p (x, t) dt = x− a+ b

2
,

and

D :=
1

b− a

∫ b

a

p2 (x, t) dt−
(

1

b− a

∫ b

a

p (x, t) dt

)2

=
1

b− a

[
(b− x)3 + (x− a)3

3

]
−
(
x− a+ b

2

)2

=
1

12
(b− a)2 .

Using (4.39), we deduce (4.37).

Remark 61. If in (4.37) either x = a or x = b,∣∣∣∣E (X)− a+ b

2

∣∣∣∣ ≤ 1

12
(b− a)3 ‖f ′‖∞ ,

which is inequality (4.32).

Remark 62. If in (4.37) x = a+b
2

, then

(4.40)

∣∣∣∣E (X) + (b− a) Pr

(
X ≤ a+ b

2

)
− b

∣∣∣∣ ≤ 1

12
(b− a)3 ‖f ′‖∞ .
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Theorem 76. ([21]) Let X, F and f be as above, then,∣∣∣∣E (X) +
b− a

2
F (x)− x+ b

2

∣∣∣∣(4.41)

≤ 1

4
(b− a) ‖f ′‖∞

[(
x− a+ b

2

)2

+
1

12
(b− a)2

]
≤ 1

12
(b− a)3 ‖f ′‖∞

for all x ∈ [a, b].

Proof. Using the same identity of Barnett and Dragomir [9] as
in Theorem 75 and applying the pre-Čebyšev inequality (4.31), for
x ∈ [a, b] we get:∣∣∣∣ 1

x− a

∫ x

a

(t− a) f (t) dt(4.42)

− 1

x− a

∫ x

a

(t− a) dt · 1

x− a

∫ x

a

f (t) dt

∣∣∣∣
≤ 1

2
√

3
(x− a) ‖f ′‖∞

×

[
1

x− a

∫ x

a

(t− a)2 dt−
(

1

x− a

∫ x

a

(t− a) dt

)2
] 1

2

=
1

12
(x− a)2 ‖f ′‖∞

and, similarly,

(4.43)

∣∣∣∣ 1

b− x

∫ b

x

(t− b) f (t) dt

− 1

b− x

∫ b

x

(t− b) dt · 1

b− x

∫ b

x

f (t) dt

∣∣∣∣
≤ 1

12
(b− x)2 ‖f ′‖∞ ,

for all x ∈ [a, b).
From (4.42) and (4.43) we can write

(4.44)

∣∣∣∣∫ x

a

(t− a) f (t) dt− x− a

2
F (x)

∣∣∣∣ ≤ 1

12
(x− a)3 ‖f ′‖∞
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and

(4.45)

∣∣∣∣∫ b

x

(t− b) f (t) dt+
b− x

2
(1− F (x))

∣∣∣∣ ≤ 1

12
(b− x)3 ‖f ′‖∞ ,

for all x ∈ [a, b].
Summing (4.44) and (4.45) and using the triangle inequality, we

deduce∣∣∣∣∫ x

a

(t− a) f (t) dt+

∫ b

x

(t− b) f (t) dt− b− a

2
F (x) +

b− x

2

∣∣∣∣
≤ 1

12
‖f ′‖∞

[
(x− a)3 + (b− x)3]

=
1

12
(b− a) ‖f ′‖∞

[
3

(
x− a+ b

2

)2

+
1

4
(b− a)2

]

=
1

4
(b− a) ‖f ′‖∞

[(
x− a+ b

2

)2

+
1

12
(b− a)2

]
.

Using the identity (4.38), the desired result (4.41) is obtained.

Remark 63. If in (4.41) either x = a or x = b, the inequality
(4.32) is recaptured.

Remark 64. If in (4.41), x = a+b
2

, then the best inequality of this
type that can be obtained is:∣∣∣∣E (X) +

b− a

2
Pr

(
X ≤ a+ b

2

)
− a+ 3b

4

∣∣∣∣ ≤ 1

48
(b− a)3 ‖f ′‖∞ .

3. Some Elementary Inequalities

3.1. Introduction. Let X be a continuous random variable hav-
ing the probability density function f defined on a finite interval [a, b].

Using some tools from the theory of inequalities, namely Hölder’s
inequality, pre-Grüss inequality, pre-Čebyšev inequality, Taylor’s for-
mula with integral remainder, we point out some elementary inequali-
ties linking the expectation and variance.

3.2. The Results. The following inequalities for the dispersion
σ (X) hold [18].

Theorem 77. Let X be a continuous random variable defined on
[a, b] having PDF, f , then:

(i) we have the inequality

(4.46) 0 ≤ σ (X) ≤ [b− E (X)]
1
2 [E (X)− a]

1
2 ≤ 1

2
(b− a)
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and

0 ≤ [b− E (X)] [E (X)− a]− σ2 (X)(4.47)

≤


(b− a)3

6
‖f‖∞

[B (q + 1, q + 1)]
1
q (b− a)2+ 1

q ‖f‖p
if f ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1

where B (·, ·) is Euler’s Beta function.
(ii) If m ≤ f ≤M a.e. on [a, b], then

(4.48)
m (b− a)3

6
≤ [b− E (X)] [E (X)− a]− σ2 (X) ≤ M (b− a)3

6

and

(4.49)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣
≤
√

5 (b− a)3 (M −m)

60
.

Proof. Note that:∫ b

a

(b− t) (t− a) f (t) dt(4.50)

=

∫ b

a

[(b− E (X)) + (E (X)− t)]

× [(E (X)− a) + (t− E (X))] f (t) dt

= (b− E (X)) (E (X)− a)

∫ b

a

f (t) dt

+ (E (X)− a)

∫ b

a

(E (X)− t) f (t) dt

+ (b− E (X))

∫ b

a

(t− E (X)) f (t) dt

−
∫ b

a

(t− E (X))2 f (t) dt

= [b− E (X)] [E (X)− a]− σ2 (X)

since ∫ b

a

f (t) dt = 1 and

∫ b

a

(t− E (X)) f (t) dt = 0.
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(i) Using the fact that∫ b

a

(t− a) (b− t) f (t) dt ≥ 0,

it follows that

σ2 (X) ≤ [b− E (X)] [E (X)− a]

and so the first inequality in (4.46) is established.
The second inequality in (4.46) follows from the elementary

result that

αβ ≤ 1

4
(α+ β)2 , α, β ∈ R

where α = b− E (X) , β = E (X)− a.
The first inequality in (4.47) follows, since∫ b

a

(t− a) (b− t) f (t) dt ≤ ‖f‖∞
∫ b

a

(t− a) (b− t) dt

=
(b− a)3

6
‖f‖∞ .

The second inequality is obvious by Hölder’s integral inequal-
ity,∫ b

a

(t− a) (b− t) f (t) dt

≤
(∫ b

a

fp (t) dt

) 1
p
(∫ b

a

(t− a)q (b− t)q dt

) 1
q

= ‖f‖p (b− a)2+ 1
q [B (q + 1, q + 1)]

1
q .

(ii) The inequality (4.48) is obvious, taking into account that if
m ≤ f ≤M a.e. on [a, b] , then

m (t− a) (b− t) ≤ (t− a) (b− t) f (t) ≤M (t− a) (b− t)

a.e. on [a, b], and by integrating over [a, b].
To prove (4.49), we use the following “pre-Grüss” inequality
established in [108]

(4.51)

∣∣∣∣ 1

b− a

∫ b

a

h (t) g (t) dt− 1

b− a

∫ b

a

h (t) dt · 1

b− a

∫ b

a

g (t) dt

∣∣∣∣
≤ 1

2
(φ− γ)

[
1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (t) dt

)2
] 1

2

,
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provided that the mappings h, g : [a, b] → R are measurable,
all the integrals involved in (4.51) exist and are finite and
γ ≤ h ≤ φ a.e. on [a, b].
Choose in (4.51), h (t) = f (t) and g (t) = (t− a) (b− t), which
then gives

(4.52)

∣∣∣∣ 1

b− a

∫ b

a

(t− a) (b− t) f (t) dt

− 1

b− a

∫ b

a

(t− a) (b− t) dt · 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ 1

2
(M −m)

[
1

b− a

∫ b

a

(t− a)2 (b− t)2 dt

−
(

1

b− a

∫ b

a

(t− a) (b− t) dt

)2
] 1

2

.

However,∫ b

a

(t− a) (b− t) dt =
(b− a)3

6
,

∫ b

a

f (t) dt = 1,∫ b

a

(t− a)2 (b− t)2 dt = (b− a)5

∫ 1

0

t2 (1− t)2 dt =
(b− a)5

30

and

1

b− a

∫ b

a

(t− a)2 (b− t)2 dt−
(

1

b− a

∫ b

a

(t− a) (b− t) dt

)2

=
(b− a)4

180
.

Consequently, by (4.52), we deduce that∣∣∣∣∣
∫ b

a

(t− a) (b− t) f (t) dt− (b− a)2

6

∣∣∣∣∣
≤ 1

2
(b− a) (M −m)

[
(b− a)4

180

] 1
2

=
(b− a)3 (M −m)

12
√

5
.

Using (4.50), we deduce (4.49).
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With additional information about the derivative of f , we can state
the following result which complements (4.49) (see also [18]).

Theorem 78. Assume that the PDF of X is absolutely continuous
on [a, b].

(i) If f ′ ∈ L∞ [a, b], then we have:

(4.53)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣
≤
√

30

720
‖f ′‖∞ (b− a)3 .

(ii) If f ′ ∈ L2 [a, b], then we have:

(4.54)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣
≤
√

5

60π
‖f ′‖2 (b− a)3 .

Proof.

(i) Use is made of the “pre-Čebyšev” inequality proved in [108]
and given in (4.31). Now, if we choose h (t) = f (t), g (t) =
(t− a) (b− t) in (4.31), we get∣∣∣∣∣

∫ b

a

(t− a) (b− t) f (t) dt− (b− a)2

6

∣∣∣∣∣
≤ ‖h′‖∞ (b− a)

2
√

3
· (b− a)2

12
√

5

=
(b− a)3 ‖h′‖∞

24
√

30
.

Using (4.50), we deduce (4.53).
(ii) For the second part of the theorem, we use the following “pre-

Lupaş” inequality as stated in [108]

(4.55)

∣∣∣∣ 1

b− a

∫ b

a

h (t) g (t) dt− 1

b− a

∫ b

a

h (t) dt · 1

b− a

∫ b

a

g (t) dt

∣∣∣∣
≤ b− a

π
‖h′‖2

[
1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (t) dt

)2
] 1

2

,
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provided that g, h are as above and h′ ∈ L2 [a, b].
Now if we choose in (4.55) h (t) = f (t), g (t) = (t− a) (b− t),
we obtain the desired inequality (4.54). The details are omit-
ted.

Theorem 79. ([18]) Let X be a random variable and f : [a, b] → R
its PDF. If f is such that f (n) (n ≥ 0) is absolutely continuous on [a, b],
then we have the inequality

(4.56)

∣∣∣∣ [E (X)− a] [b− E (X)]

− σ2 (X)−
n∑
k=0

(k + 1) (b− a)k+3 f (k) (a)

(k + 3)!

∣∣∣∣∣

≤



‖f (n+1)‖∞
(n+1)!(n+3)(n+4)

(b− a)n+4 if f (n+1) ∈ L∞ [a, b]

‖f (n+1)‖
p
(b−a)n+3+1

q

n!(nq+1)
1
q (n+2+ 1

q )(n+3+ 1
q )

if f (n+1) ∈ Lp [a, b] , p > 1

‖f (n+1)‖
1
(b−a)n+3

n!(n+2)(n+3)
if f (n+1) ∈ L1 [a, b] .

Proof. The following Taylor’s formula with integral remainder is
well known in the literature (see for example [4]):

(4.57) f (t) =
n∑
k=0

(t− a)k

k!
f (k) (a) +

1

n!

∫ t

a

(t− s)n f (n+1) (s) ds

for all t ∈ [a, b].
Since

(4.58) [E (X)− a] [b− E (X)]− σ2 (X) =

∫ b

a

(t− a) (b− t) f (t) dt,

we have:

[E (X)− a] [b− E (X)]− σ2 (X)(4.59)

=

∫ b

a

(t− a) (b− t)

[
n∑
k=0

(t− a)k

k!
f (k) (a)

+
1

n!

∫ t

a

(t− s)n f (n+1) (s) ds

]
dt
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=
n∑
k=0

f (k) (a)

k!

∫ b

a

(t− a)k+1 (b− t) dt

+
1

n!

∫ b

a

[
(t− a) (b− t)

∫ t

a

(t− s)n f (n+1) (s) ds

]
dt.

Using the transformation, t = (1− u) a+ ub, we have∫ b

a

(t− a)k+1 (b− t) dt = (b− a)k+3

∫ 1

0

uk+1 (1− u) du

=
1

(k + 2) (k + 3)

and by (4.59), we deduce that∣∣∣∣∣[E (X)− a] [b− E (X)]− σ2 (X)−
n∑
k=0

(k + 1) (b− a)k+3 f (k) (a)

(k + 3)!

∣∣∣∣∣
≤ 1

n!

∫ b

a

(t− a) (b− t)

∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds

∣∣∣∣ dt =: M (a, b) .

However, for all t ∈ [a, b] we have∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds

∣∣∣∣ ≤ ∫ t

a

|t− s|n
∣∣f (n+1) (s)

∣∣ ds
≤ sup

s∈[a,b]

∣∣f (n+1) (s)
∣∣ ∫ t

a

(t− s)n ds

≤
∥∥f (n+1)

∥∥
∞

(t− a)n+1

n+ 1
.

By Hölder’s integral inequality we have,∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds

∣∣∣∣
≤
(∫ t

a

∣∣f (n+1) (s)
∣∣p ds) 1

p
(∫ t

a

(t− s)nq ds

) 1
q

≤
∥∥f (n+1)

∥∥
p

[
(t− a)nq+1

nq + 1

] 1
q

,
1

p
+

1

q
= 1, p > 1

for all t ∈ [a, b].
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Finally, we observe that∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds

∣∣∣∣ ≤ ∫ t

a

(t− s)n
∣∣f (n+1) (s)

∣∣ ds
≤ (t− a)n

∫ t

a

∣∣f (n+1) (s)
∣∣ ds

≤ (t− a)n
∥∥f (n+1)

∥∥
1

for all t ∈ [a, b].
Consequently,

M (a, b) ≤ 1

n!



‖f (n+1)‖∞
n+1

∫ b
a

(t− a)n+2 (b− t) dt

‖f (n+1)‖
p

(nq+1)
1
q

∫ b
a

(t− a)n+1+ 1
q (b− t) dt∥∥f (n+1)

∥∥
1

∫ b
a

(t− a)n+1 (b− t) dt

=



‖f (n+1)‖∞
n+1

(b− a)n+4 ∫ 1

0
un+2 (1− u) du

‖f (n+1)‖
p

(nq+1)
1
q

(b− a)n+3+ 1
q
∫ 1

0
un+1+ 1

q (1− u) du∥∥f (n+1)
∥∥

1
(b− a)n+3 ∫ 1

0
un+1 (1− u) du

and as ∫ 1

0

un+2 (1− u) du =
1

(n+ 3) (n+ 4)
,∫ 1

0

un+1+ 1
q (1− u) du =

1(
n+ 2 + 1

q

)(
n+ 3 + 1

q

)
and ∫ 1

0

un+1 (1− u) du =
1

(n+ 2) (n+ 3)
,

the inequality (4.56) is proved.

Remark 65. A similar result can be obtained if use is made of a
Taylor expansion around the point b.

4. On an Identity for the Čebyšev Functional

4.1. Introduction. For two measurable functions f, g : [a, b] →
R, recall the Čebyšev functional,

(4.60) T (f, g) := M (fg)−M (f)M (g) ,
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where the integral mean is given by

(4.61) M (f) =
1

b− a

∫ b

a

f (x) dx.

The integrals in (4.60) are assumed to exist.
Further, the weighted Čebyšev functional is defined by

(4.62) T (f, g; p) := M (f, g; p)−M (f ; p) M (g; p) ,

where the weighted integral mean is given by

(4.63) M (f ; p) =

∫ b
a
p (x) f (x) dx∫ b
a
p (x) dx

.

We note that,
T (f, g; 1) ≡ T (f, g)

and
M (f ; 1) ≡M (f) .

Here we obtain bounds on the functionals (4.60) and (4.62) in terms
of one of the functions, say f , being of bounded variation, Lipschitzian
or monotonic nondecreasing.

This is accomplished by developing identities involving a Riemann-
Stieltjes integral. The main results are obtained in Section 4.2, while
in Section 4.3 bounds for moments about a general point γ are ob-
tained for functions of bounded variation, Lipschitzian and monotonic.
Cerone and Dragomir [32] obtained bounds in terms of the ‖f ′‖p, p ≥ 1
where it necessitated the differentiability of the function f . There is
no need for such assumptions in the work covered by the current de-
velopment. A further application is given in Section 4.4 in which the
moment generating function is approximated.

4.2. An Identity for the Čebyšev Functional. It is worthwhile
noting that a number of identities relating to the Čebyšev functional
already exist. The reader is referred to [109] Chapters IX and X.
Korkine’s identity is well known, see [109, p. 296] and is given by

(4.64) T (f, g) =
1

2 (b− a)2

∫ b

a

∫ b

a

(f (x)− f (y)) (g (x)− g (y)) dxdy.

It is identity (4.64) that is often used to prove an inequality of Grüss
for functions bounded above and below, [109].

The Grüss inequality is given by

(4.65) |T (f, g)| ≤ 1

4

(
Φf − φf

) (
Φg − φg

)
where φf ≤ f (x) ≤ Φf for x ∈ [a, b].
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If we let S (f) be an operator defined by

(4.66) S (f) (x) := f (x)−M (f) ,

which shifts a function by its integral mean, then the following identity
holds. Namely,

(4.67) T (f, g) = T (S (f) , g) = T (f, S (g)) = T (S (f) , S (g)) ,

and so

(4.68) T (f, g) = M (S (f) g) = M (fS (g)) = M (S (f)S (g))

since M (S (f)) = M (S (g)) = 0.
For the last term in (4.67) or (4.68) only one of the functions needs

to be shifted by its integral mean. If the other is shifted by any other
quantity, the identities still hold. A weighted version of (4.68) related
to T (f, g) = M ((f (x)− κ)S (g)) for κ arbitrary was given by Sonin
[118] (see [109, p. 246]).

The interested reader is also referred to Dragomir [67] and Fink
[95] for extensive treatments of the Grüss and related inequalities.

The following lemma presents an identity for the Čebyšev functional
that involves a Riemann-Stieltjes integral which was first introduced by
Cerone in [29].

Lemma 14. Let f, g : [a, b] → R, where f is of bounded variation
and g is continuous on [a, b], then

(4.69) T (f, g) =
1

(b− a)2

∫ b

a

ψ (t) df (t) ,

where

(4.70) ψ (t) = (t− a)A (t, b)− (b− t)A (a, t)

with

(4.71) A (a, b) =

∫ b

a

g (x) dx.

Proof. From (4.69) integrating the Riemann-Stieltjes integral by
parts produces

1

(b− a)2

∫ b

a

ψ (t) df (t)

=
1

(b− a)2

{
ψ (t) f (t)

]b
a

−
∫ b

a

f (t) dψ (t)

}

=
1

(b− a)2

{
ψ (b) f (b)− ψ (a) f (a)−

∫ b

a

f (t)ψ′ (t) dt

}
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since ψ (t) is differentiable. Thus, from (4.70), ψ (a) = ψ (b) = 0 and
so

1

(b− a)2

∫ b

a

ψ (t) df (t) =
1

(b− a)2

∫ b

a

[(b− a) g (t)− A (a, b)] f (t) dt

=
1

b− a

∫ b

a

[g (t)−M (g)] f (t) dt

= M (fS (g))

from which the result (4.69) is obtained on noting identity (4.68).

The following well known lemmas will prove useful and are stated
here for lucidity.

Lemma 15. Let g, v : [a, b] → R be such that g is continuous and
v is of bounded variation on [a, b], then the Riemann-Stieltjes integral∫ b
a
g (t) dv (t) exists and is such that

(4.72)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) .

Lemma 16. Let g, v : [a, b] → R be such that g is Riemann-
integrable on [a, b] and v is L−Lipschitzian on [a, b], then

(4.73)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|g (t)| dt

with v L−Lipschitzian if it satisfies

|v (x)− v (y)| ≤ L |x− y|

for all x, y ∈ [a, b].

Lemma 17. Let g, v : [a, b] → R be such that g is continuous on
[a, b] and v is monotonic nondecreasing on [a, b], then

(4.74)

∣∣∣∣∫ b

a

g (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|g (t)| dv (t) .

It should be noted that if v is nonincreasing then −v is nondecreas-
ing.
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Theorem 80. Let f, g : [a, b] → R, where f is of bounded variation
and g is continuous on [a, b], then

(4.75) (b− a)2 |T (f, g)|

≤


sup
t∈[a,b]

|ψ (t)|
b∨
a

(f) ,

L
∫ b
a
|ψ (t)| dt, for f L− Lipschitzian,∫ b

a
|ψ (t)| df (t) , for f monotonic nondecreasing.

Proof. Follows directly from Lemmas 14 – 17, that is, from the
identity (4.69) and (4.72) – (4.74).

The following lemma gives an identity for the weighted Chebychev
functional that involves a Riemann-Stieltjes integral [29].

Lemma 18. Let f, g, p : [a, b] → R, where f is of bounded variation

and g, p are continuous on [a, b]. Further, let P (b) =
∫ b
a
p (x) dx > 0,

then

(4.76) T (f, g; p) =
1

P 2 (b)

∫ b

a

Ψ (t) df (t) ,

where T (f, g; p) is as given in (4.62),

(4.77) Ψ (t) = P (t) Ḡ (t)− P̄ (t)G (t)

with

(4.78)

 P (t) =
∫ t
a
p (x) dx, P̄ (t) = P (b)− P (t)

and

G (t) =
∫ t
a
p (x) g (x) dx, Ḡ (t) = G (b)−G (t) .

Proof. The proof follows closely that of Lemma 14.
We first note that Ψ (t) may be represented in terms of only P (·)

and G (·), namely,

(4.79) Ψ (t) = P (t)G (b)− P (b)G (t) .
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It may further be noticed that Ψ (a) = Ψ (b) = 0. Thus, integrating
from (4.76) and using either (4.77) or (4.79) gives

1

P 2 (b)

∫ b

a

Ψ (t) df (t)

=
−1

P 2 (b)

∫ b

a

f (t) dΨ (t)

=
1

P 2 (b)

∫ b

a

[P (b)G′ (t)− P ′ (t)G (b)] f (t) dt

=
1

P (b)

∫ b

a

[
p (t) g (t)− G (b)

P (b)
p (t)

]
f (t) dt

=
1

P (b)

∫ b

a

p (t) g (t) f (t) dt− G (b)

P (b)
· 1

P (b)

∫ b

a

p (t) f (t) dt

= M (f, g; p)−M (g; p) M (f ; p) = T (f, g; p) ,

where we have used the fact that G(b)
P (b)

= M (g; p) .

Theorem 81. ([29]). Let the conditions of Lemma 18 on f , g and
p continue to hold, then

(4.80) P 2 (b) |T (f, g; p)|

≤


sup
t∈[a,b]

|Ψ (t)|
b∨
a

(f) ,

L
∫ b
a
|Ψ (t)| dt, for f L− Lipschitzian,∫ b

a
|Ψ (t)| df (t) , for f monotonic nondecreasing.

where T (f, g; p) is as given by (4.62) and Ψ (t) = P (t)G (b)−P (b)G (t),

with P (t) =
∫ t
a
p (x) dx, G (t) =

∫ t
a
p (x) g (x) dx.

Proof. The proof uses Lemmas 14 – 17 and follows closely that of
Theorem 80.

Remark 66. If we take p (x) ≡ 1 in the above results involving the
weighted Chebychev functional, then the results obtained earlier for the
unweighted Chebychev functional are recaptured.

Grüss type inequalities obtained from bounds on the Chebychev
functional have been applied in a variety of areas including obtaining
perturbed rules in numerical integration, see for example [34]. In the
following section the above work is applied to the approximation of
moments. For other related results see also [18] and [33].
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Remark 67. If f is differentiable then the identity (4.69) becomes

(4.81) T (f, g) =
1

(b− a)2

∫ b

a

ψ (t) f ′ (t) dt

and so

(b− a)2 |T (f, g)| ≤


‖ψ‖1 ‖f ′‖∞ , f ′ ∈ L∞ [a, b] ;

‖ψ‖q ‖f ′‖p , f ′ ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖ψ‖∞ ‖f ′‖1 , f
′ ∈ L1 [a, b] ;

where the Lebesgue norms ‖·‖ are defined in the usual way.

The identity for the weighted integral means (4.76) and the corre-
sponding bounds (4.80) will not be examined further here [29].

Theorem 82. Let g : [a, b] → R be absolutely continuous on [a, b]
then for

(4.82) D (g; a, t, b) := M (g; t, b)−M (g; a, t) ,

(4.83) |D (g; a, t, b)|

≤



(
b−a
2

)
‖g′‖∞ , g′ ∈ L∞ [a, b] ;[

(t−a)q+(b−t)q

q+1

] 1
q ‖g′‖p , g′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖g′‖1 , g′ ∈ L1 [a, b] ;∨b
a (g) , g of bounded variation;(
b−a
2

)
L, g is L− Lipschitzian.

Proof. Let the kernel r (t, u) be defined by

(4.84) r (t, u) :=


u− a

t− a
, u ∈ [a, t] ,

b− u

b− t
, u ∈ (t, b]

then a straight forward integration by parts argument of the Riemann-
Stieltjes integral over each of the intervals [a, t] and (t, b] gives the
identity

(4.85)

∫ b

a

r (t, u) dg (u) = D (g; a, t, b) .
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Now for g absolutely continuous then

(4.86) D (g; a, t, b) =

∫ b

a

r (t, u) g′ (u) du

and so

|D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|r (t, u)|
∫ b

a

|g′ (u)| du, for g′ ∈ L1 [a, b] ,

where from (4.84)

(4.87) ess sup
u∈[a,b]

|r (t, u)| = 1

and so the third inequality in (4.83) results. Further, using the Hölder
inequality gives

|D (g; a, t, b)| ≤
(∫ b

a

|r (t, u)|q du
) 1

q
(∫ b

a

|g′ (t)|p dt
) 1

p

(4.88)

for p > 1,
1

p
+

1

q
= 1,

where explicitly from (4.84)(∫ b

a

|r (t, u)|q du
) 1

q

(4.89)

=

[∫ t

a

(
u− a

t− a

)q
du+

∫ b

t

(
b− u

b− t

)q
du

] 1
q

= [(t− a)q + (b− t)q]
1
q

(∫ 1

0

uqdu

) 1
q

=

[
(t− a)q + (b− t)q

q + 1

] 1
q

.

Also,

(4.90) |D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|g′ (u)|
∫ b

a

|r (t, u)| du,

and so from (4.89) with q = 1 we get the first inequality in (4.83).
Now, for g (u) of bounded variation on [a, b] then from Lemma 15,

equation (4.72) and identity (4.85) we have

|D (g; a, t, b)| ≤ ess sup
u∈[a,b]

|r (t, u)|
b∨
a

(g)
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producing the fourth inequality in (4.83) on using (4.87). From (4.73)
and (4.85) we have, by associating g with v and r (t, ·) with g (·),

|D (g; a, t, b)| ≤ L

∫ b

a

|r (t, u)| du

and so this, from (4.89) with q = 1, gives the final inequality in (4.83).

Remark 68. The results of Theorem 82 may be used to obtain
bounds on ψ (t) since from (4.70) and (4.82)

ψ (t) = (t− a) (b− t)D (g; a, t, b) .

Hence, upper bounds on the Čebyšev functional may be obtained from
(4.75) and (4.81) for general functions g. The following two sections
investigate the exact evaluation (4.75) for specific functions of g (·).

4.3. Results Involving Moments. In this section bounds on nth

moments about a point γ are investigated. Define for n a nonnegative
integer,

(4.91) Mn (γ) :=

∫ b

a

(x− γ)n h (x) dx, γ ∈ R.

If γ = 0 then Mn (0) are the moments about the origin and γ = M1 (0)
are the central moments. Further, the expectation of a continuous
random variable can be written as E (X) = M1 (0). Also, the variance
of the random variable X, σ2 (X) = M2 (M1 (0)) .

The following corollary is valid [29].

Corollary 55. Let f : [a, b] → R be integrable on [a, b], then

(4.92)

∣∣∣∣Mn (γ)− Bn+1 − An+1

n+ 1
M (f)

∣∣∣∣

≤



sup
t∈[a,b]

|φ (t)| · 1
n+1

b∨
a

(f) , for f of bounded variation on [a, b] ,

L

n+ 1

∫ b
a
|φ (t)| dt, for f L− Lipschitzian,

1

n+ 1

∫ b
a
|φ (t)| df (t) , for f monotonic nondecreasing.

where Mn (γ) is as given by (4.91), M (f) is the integral mean of f as
defined in (4.61),

B = b− γ, A = a− γ
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and

(4.93) φ (t) = (t− γ)n −
[(

t− a

b− a

)
(b− γ)n+1

+

(
b− t

b− a

)
(a− γ)n+1

]
.

Proof. From (4.75) taking g (t) = (t− γ)n and using (4.60) and
(4.61) gives

(b− a) |T (f, (t− γ)n)| =
∣∣∣∣Mn (γ)− Bn+1 − An+1

n+ 1
M (f)

∣∣∣∣ .
The right hand side is obtained on noting that for g (t) = (t− γ)n,

φ (t) = −ψ(t)
b−a .

Remark 69. It should be noted here that Cerone and Dragomir
[32] obtained bounds on the left hand expression for f ′ ∈ Lp [a, b], p ≥
1. They obtained the following Lemmas which are useful in procuring
expressions for the bounds in (4.92) in more explicit form [29].

Lemma 19. Let φ (t) be as defined by (4.93), then

(4.94) φ (t)


< 0


n odd, any γ and t ∈ (a, b)

n even

{
γ < a, t ∈ (a, b)
a < γ < b, t ∈ [c, b)

> 0, n even

{
γ > b, t ∈ (a, b)
a < γ < b, t ∈ (a, c)

where φ (c) = 0, a < c < b and

c


> γ, γ < a+b

2

= γ, γ = a+b
2

< γ, γ > a+b
2
.
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Lemma 20. ([29]). For φ (t) as given by (4.93) then

(4.95)

∫ b

a

|φ (t)| dt

=



B−A
2

[Bn+1 − An+1]− Bn+2−An+2

n+2
,

{
n odd and any γ
n even and γ < a

;

2Cn+2−Bn+2−An+2

n+2
+ 1

2(b−a)

{[
(b− a)2 − 2 (c− a)2]Bn+1

+
[
2 (b− c)2 − (b− a)2]}An+1, n even and a < γ < b;

Bn+2−An+2

n+2
− B−A

2
[Bn+1 − An+1] , n even and γ > b,

where

(4.96)


B = b− γ, A = a− γ, C = c− γ,

C1 =
∫ c
a
C (t) dt, C2 =

∫ b
c
C (t) dt,

with C (t) =
(
t−a
b−a

)
Bn+1 +

(
b−t
b−a

)
An+1

and φ (c) = 0 with a < c < b.

Lemma 21. ([29]). For φ (t) as defined by (4.93), then

(4.97) sup
t∈[a,b]

∣∣∣φ̃ (t)
∣∣∣

=


C (t∗)− Bn+1−An+1

(n+1)(B−A)
, n odd, n even and γ < a;

Bn+1−An+1

(n+1)(B−A)
− C (t∗) n even and γ > b;

m1+m2

2
+
∣∣m1−m2

2

∣∣ n even and a < γ < b,

where

(4.98) (t∗ − γ)n =
Bn+1 − An+1

(n+ 1) (B − A)
,

C (t) is as defined in (4.96), m1 = φ̃ (t∗1), m2 = −φ̃ (t∗2) and t∗, t∗1, t
∗
2

satisfy (4.98) with t∗1 < t∗2.

The following lemma is required to determine the bound in (4.92)
when f is monotonic nondecreasing (Cerone and Dragomir [32] ob-
tained bounds assuming that f was differentiable).
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Lemma 22. The following result holds for φ (t) as defined by (4.93),

(4.99)
1

n+ 1

∫ b

a

|φ (t)| df

=


χn (a, b) , n odd or n even and γ < a,

−χn (a, b) , n even and γ > b,

χn (c, b)− χn (a, c) , n even and a < γ < b

and for f : [a, b] → R, monotonic nondecreasing,

(4.100)
1

n+ 1

∫ b

a

|φ (t)| df

≤



B(Bn−1)−A(An−1)
n+1

f (b) , n odd or n even
and γ < a;

A(An−1)−B(Bn−1)
n+1

f (b) , n even and γ > b;[
Bn+1 − Cn+1 − (Bn−An)

b−a (b− c)
]
f(b)
n+1

n even and

+
[

(Bn−An)
b−a (c− a)− (Cn+1 − An+1)

]
f(a)
n+1

, a < γ < b,

where

χn (a, b) =

∫ b

a

[
(t− γ)n − (Bn − An)

(n+ 1) (b− a)

]
f (t) dt,(4.101)

A = a− γ, B = b− γ, C = c− γ.

Proof. Let α, β ∈ [a, b] and

χn (α, β) =
1

n+ 1

∫ β

α

|φ (t)| df

=
φ (α) f (α)− φ (β) f (β)

n+ 1

−
∫ β

α

[
(t− γ)n − (Bn − An)

(n+ 1) (b− a)

]
f (t) dt

and χn (a, b) be as given by (4.101) since φ (a) = φ (b) = 0.
Further, using the results of Lemma 19 as represented in (4.94),

and, the fact that

1

n+ 1

∫ β

α

|φ (t)| df =

{
χ (α, β) , φ (t) < 0, t ∈ [α, β]

−χ (α, β) , φ (t) > 0, t ∈ [α, β]

gives the results as stated.
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We now use the fact that f is monotonic nondecreasing so that from
(4.101)

χn (a, b) ≤ f (b)

∫ b

a

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt.

Further,

χn (c, b) ≤ f (b)

∫ b

c

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt

= f (b)

[
Bn+1 − Cn+1

n+ 1
− (Bn − An) (b− c)

(n+ 1) (b− a)

]
and

χn (a, c) ≥ f (a)

∫ c

a

[
(t− γ)n − Bn − An

(n+ 1) (b− a)

]
dt

=

[
Cn+1 − An+1

n+ 1
− (Bn − An) (c− a)

(n+ 1) (b− a)

]
f (a)

so the proof of the lemma is complete.

The following corollary gives bounds for the expectation [29].

Corollary 56. Let f : [a, b] → R+ be a probability density func-
tion associated with a random variable X, then the expectation E (X)
satisfies the inequalities

(4.102)

∣∣∣∣E (X)− a+ b

2

∣∣∣∣
≤


(b−a)3

6

b∨
a

(f) , f of bounded variation,(
b−a
2

)2 · L
2
, f L− Lipschitzian,

b−a
2

[a+ b− 1] f (b) , f monotonic nondecreasing.

Proof. Taking n = 1 in Corollary 55 and using Lemmas 19 – 22
gives the results after some straightforward algebra. In particular,

φ (t) = t2 − (a+ b) t+ ab =

(
t− a+ b

2

)2

+

(
b− a

2

)2

and t∗ the one solution of φ′ (t) = 0 is t∗ = a+b
2

.

The following corollary gives bounds for the variance.
We shall assume that a < γ = E [X] < b.
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Corollary 57. ([29]). Let f : [a, b] → R+ be the PDF associated
with a random variable X. The variance σ2 (X) is such that

(4.103)
∣∣σ2 (X)− S

∣∣

≤



[m1 +m2 + |m2 −m1|]
∨b

a(f)

6
, f of bounded variation,{

C2

4
− 1

b−a

[
(c− a)3B3 − (b− c)2A3

]
+ (B2 + A2)

(
b−a
2

)2 − (AB)2

2

}
· L

3
, f is L− Lipschitzian,

[B3 − C3 − (a+ b) (b− c)] f(b)
3

+ [(a+ b) (c− a)− (C3 − A3)] f(a)
3
, f monotonic nondecreasing.

where

S =
(b− E (X))3 + (E (X)− a)3

3 (b− a)
,

m1 = φ
(
E (X)− S

1
2

)
, m2 = φ

(
E (X) + S

1
2

)
,

φ (t) = (t− γ)3 +

(
b− t

b− a

)
(γ − a)3 −

(
t− a

b− a

)
(b− γ)3 ,

A = a− γ, B = b− γ, C = c− γ, φ (c) = 0, a < c < b

and γ = E (X).

Proof. Taking n = 2 in Corollary 55 gives, from (4.93),

φ (t) = (t− γ)3 +

(
b− t

b− a

)
A3 −

(
t− a

b− a

)
B3

where a < γ = E (X) < b.
From Lemma 21 and the third inequality in (4.97) with n = 2 we

have,

t∗1 = E [X]− S
1
2 , t∗2 = E [X] + S

1
2 ,

and hence the first inequality is shown from the first inequality of (4.92).
Now, if f is Lipschitzian, then from the second inequality of (4.92)

with n = 2 and a < γ = E (X) < b, the second identity in (4.95)
produces the reported result given in (4.103) after some simplification.

The last inequality is obtained from (4.100) of Lemma 22 with n = 2
and hence the corollary is proved.
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4.4. Approximations for the Moment Generating Func-
tion. Let X be a random variable on [a, b] with probability density
function h (x) then the moment generating function MX (p) is given by

(4.104) MX (p) = E
[
epX
]

=

∫ b

a

epxh (x) dx.

The following lemma will prove useful in the proof of the subsequent
corollary, as it examines the behaviour of the function θ (t)

(4.105) (b− a) θ (t) = tAp (a, b)− [aAp (t, b) + bAp (a, t)] ,

where

(4.106) Ap (a, b) =
ebp − eap

p
.

Lemma 23. ([29]). Let θ (t) be as defined by (4.105) and (4.106)
then for any a, b ∈ R, θ (t) has the following characteristics:

(i) θ (a) = θ (b) = 0,
(ii) θ (t) is convex for p < 0 and concave for p > 0,

(iii) there is one turning point at t∗ = 1
p
ln
(
Ap(a,b)

b−a

)
and a ≤ t∗ ≤ b.

Proof. The result (i) is trivial from (4.105) using standard prop-
erties of the definite integral to give θ (a) = θ (b) = 0.

Now,

(4.107) θ′ (t) =
Ap (a, b)

b− a
− ept, θ′′ (t) = −pept

giving θ′′ (t) > 0 for p < 0 and θ′′ (t) < 0 for p > 0 and (ii) holds.
Further, from (4.107), θ′ (t∗) = 0 where

t∗ =
1

p
ln

(
Ap (a, b)

b− a

)
.

To show that a ≤ t∗ ≤ b it suffices to show that

θ′ (a) θ′ (b) < 0

since the exponential is continuous. Here θ′ (a) is the right derivative
at a and θ′ (b) is the left derivative at b.

Now,

θ′ (a) θ′ (b) =

(
Ap (a, b)

b− a
− eap

)(
Ap (a, b)

b− a
− ebp

)
but

Ap (a, b)

b− a
=

1

b− a

∫ b

a

eptdt,
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the integral mean over [a, b] so that θ′ (a) > 0, and θ′ (b) < 0 for p > 0
and θ′ (a) < 0 and θ′ (b) > 0 for p < 0, giving t∗ ∈ [a, b] where θ (t∗) = 0.

Thus the lemma is now completely proved.

Corollary 58. ([29]). Let f : [a, b] → R be of bounded variation
on [a, b] then

(4.108)

∣∣∣∣∫ b

a

eptf (t) dt− Ap (a, b)M (f)

∣∣∣∣
≤



(
m (ln (m)− 1) +

beap − aebp

b− a

) ∨b
a(f)

|p| ,

(b− a)m
[(

b−a
2

)
p− 1

]
L
|p| for f L− Lipschitzian on [a, b] ,

p
|p| (b− a)m [f (b)− f (a)] , f monotonic nondecreasing,

where

(4.109) m =
Ap (a, b)

b− a
=
ebp − eap

p (b− a)
.

Proof. From (4.75) taking g (t) = ept and using (4.60) and (4.61)
gives

(b− a)
∣∣T (f, ept)∣∣(4.110)

=

∣∣∣∣∫ b

a

eptf (t) dt− Ap (a, b)M (f)

∣∣∣∣

≤


sup
t∈[a,b]

|θ (t)|
∨b
a (f) , for f of bounded variation on [a, b] ,

L
∫ b
a
|θ (t)| dt, for f L− Lipschitzian on [a, b] ,∫ b

a
|θ (t)| df (t) , f monotonic nondecreasing on [a, b] ,

where the bounds are obtained from (4.75) on noting that for g (t) =

ept, θ (t) = ψ(t)
b−a is as given by (4.105) – (4.106).

The properties of θ (t) , expounded in Lemma 23, aid in obtaining
explicit bounds from (4.110).
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First, from (4.105), (4.106) and (4.109)

sup
t∈[a,b]

|θ (t)| = |θ (t∗)|

=

∣∣∣∣t∗m−
[
a
Ap (t∗, b)

b− a
+ b

Ap (a, t∗)

b− a

]∣∣∣∣
=

∣∣∣∣mp ln (m)− a

p

(
ebp −m

b− a

)
− b

p

(
m− eap

b− a

)∣∣∣∣
=

∣∣∣∣mp (ln (m)− 1) +
beap − aebp

p (b− a)

∣∣∣∣ .
In the above we have used the fact that m ≥ 0 and that pt∗ = ln (m).
Using (from Lemma 23) the result that θ (t) is positive or negative for
t ∈ [a, b] depending on whether p > 0 or p < 0 respectively, the first
inequality in (4.108) results.

For the second inequality, we have, from (4.105), (4.106) and Lemma
23, ∫ b

a

|θ (t)| dt =
1

|p|

∫ b

a

[
pmt−

a
(
ebp − etp

)
+ b (etp − eap)

b− a

]
dt

=
1

|p|

[
pm

(
b2 − a2

2

)
−
(
aebp − beap

)
−
∫ b

a

eptdt

]
=

1

|p|

[
pm

(
b2 − a2

2

)
−
(
aebp − beap

)
− (b− a)m

]
=

1

|p|

[
(b− a)m

(
a+ b

2
p− 1

)
−
(
aebp − beap

)]
=

1

|p|

[
ebp − eap

p

(
a+ b

2
p− 1

)
−
(
aebp − beap

)]
=

1

|p|
(
ebp − eap

)(b− a

2
− 1

p

)
.

Using (4.109) gives the second result in (4.108).

For the final inequality in (4.108) we need to determine
∫ b
a
|θ (t)| df (t)

for f monotonic nondecreasing. Now, from (4.105) and (4.106)∫ b

a

|θ (t)| df (t) =

∫ b

a

[
mt− beap − aebp

p (b− a)
− ept

p

]
df (t)

=
1

|p|

∫ b

a

[
pmt+

beap − aebp

b− a
− ept

]
df (t) ,

where we have used the fact that sgn (θ (t)) = sgn (p).
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Integration by parts of the Riemann-Stieltjes integral gives∫ b

a

|θ (t)| df (t)(4.111)

=
1

|p|

{(
pmt+

beap − aebp

b− a
− ept

)
f (t)

]b
a

− p

∫ b

a

[
m− ept

]
f (t) dt

}
=

p

|p|

∫ b

a

(
ept −m

)
f (t) dt.

Now,∫ b

a

etpf (t) dt ≤ f (b)

∫ b

a

etpdt =
ebp − eap

p
f (b) = (b− a)mf (b)

and

−m
∫ b

a

f (t) dt ≤ −m (b− a) f (a)

so that combining with (4.111) gives the inequalities for f monotonic
nondecreasing.

Remark 70. If f is a probability density function thenM (f) = 1
b−a

and f is non-negative.



CHAPTER 5

Elementary Inequalities for the Variance

1. Elementary Inequalities

1.1. Introduction. In [18], the authors point out a number of
inequalities for the expectation, E (X) and the variance, σ2 (X) from
which we cite only the following:

(5.1) 0 ≤ σ2 (X) ≤ [b− E (X)] [E (X)− a] ≤ 1

4
(b− a)2 ;

0 ≤ [b− E (X)] [E (X)− a]− σ2 (X) ,(5.2)

≤



(b− a)3

6
‖f‖∞ ,

[B (q + 1, q + 1)]
1
q (b− a)2+ 1

q ‖f‖p ,

provided f ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

where B (·, ·) is Euler’s Beta function.
Moreover, if m ≤ f ≤M a.e. on [a, b], then

(5.3)
m (b− a)3

6
≤ [b− E (X)] [E (X)− a]− σ2 (X) ≤ M (b− a)3

6
,

and

(5.4)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)3

6

∣∣∣∣∣
≤
√

5 (b− a)3 (M −m)

60
.

In this section, following [6], we point out some additional elementary
results.

1.2. The Results. The following lemma holds [6].

185
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Lemma 24. Let X be a continuous random variable having the cu-
mulative distribution function F : [a, b] → [0, 1], then,

(5.5) σ2 (X) = (b− E (X)) (E (X)− a)

+
1

b− a

∫ b

a

∫ b

a

(t− τ) (F (τ)− F (t)) dτdt.

Proof. Using integration by parts, we have

σ2 (X) =

∫ b

a

(t− E (X))2 dF (t)(5.6)

= (t− E (X))2 F (t)

∣∣∣∣b
a

− 2

∫ b

a

(t− E (X))F (t) dt

= (b− E (X))2 − 2

∫ b

a

(t− E (X))F (t) dt.

Further, using Korkine’s identity [105]

1

b− a

∫ b

a

h (t) g (t) dt =
1

b− a

∫ b

a

h (t) dt · 1

b− a

∫ b

a

g (t) dt

+
1

2 (b− a)2

∫ b

a

∫ b

a

(h (t)− h (τ)) (g (t)− g (τ)) dτdt,

we have

(5.7)

∫ b

a

(t− E (X))F (t) dt

=
1

b− a

∫ b

a

(t− E (X)) dt

∫ b

a

F (t) dt

+
1

2 (b− a)

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dτdt.

Since, ∫ b

a

(t− E (X)) dt =
(b− E (X))2 − (E (X)− a)2

2

= (b− a)

(
b+ a

2
− E (X)

)
,

and ∫ b

a

F (t) dt = b− E (X) ,
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then, by (5.6) and (5.7),

σ2 (X) = (b− E (X))2 − 2

[
b+ a− 2E (X)

2
· (b− E (X))

+
1

2 (b− a)

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dτdt

]
= (b− E (X))2 − (b+ a− 2E (X)) (b− E (X))

− 1

b− a

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dτdt

= (b− E (X)) (E (X)− a)

− 1

b− a

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dτdt,

and the lemma is proved.

Remark 71. Since the mapping F is monotonic nondecreasing on
[a, b], then

(5.8) (t− τ) (F (τ)− F (t)) ≤ 0 for all t, τ ∈ [a, b] ;

which implies that

(5.9) σ2 (X) ≤ [b− E (X)] [E (X)− a] ,

an inequality that was proved in [18] and [7] using two different meth-
ods.

The inequality (5.9) can be improved as follows [6].

Theorem 83. With the assumptions in Lemma 24,

(5.10) (b− E (X)) (E (X)− a)− σ2 (X)

≥ 2

∣∣∣∣∫ b

a

|t|F (t) dt− 1

b− a
(b− E (X))

∫ b

a

|t| dt
∣∣∣∣ ≥ 0.

Proof. In [66], Dragomir proved the following refinement of Čebyšev’s
inequality

(5.11) T (h, g) ≥ max {|T (h, |g|)| , |T (|h| , g)| , |T (|h| , |g|)|} ≥ 0,

provided (h, g) are synchronous on [a, b], so that

(h (t)− h (τ)) (g (t)− g (τ)) ≥ 0 for all t, τ ∈ [a, b]

and

T (h, g) :=
1

b− a

∫ b

a

h (t) g (t) dt− 1

b− a

∫ b

a

h (t) dt · 1

b− a

∫ b

a

g (t) dt.
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If we define h (t) = t, t ∈ [a, b], then from (5.5)

T (h, F ) =
1

b− a

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dτdt

=
1

b− a

[
(b− E (X)) (E (X)− a)− σ2 (X)

]
.

Now, from (5.11),

T (|h| , F ) =
1

b− a

∫ b

a

∫ b

a

|t|F (t) dt− 1

(b− a)2

∫ b

a

|t| dt
∫ b

a

F (t) dt,

T (h, |F |) = T (h, F ) ,

T (|h| , |F |) = T (|h| , F ) .

Using the result (5.11), we get (5.10).

Remark 72. If a ≤ b ≤ 0 or 0 ≤ a ≤ b, then the first inequality in
(5.10) becomes an identity and is of no special interest.
If a < 0 < b, however, then,∫ b

a

|t|F (t) dt = −
∫ 0

a

tF (t) dt+

∫ b

0

tF (t) dt;

1

b− a

∫ b

a

|t| dt =
1

b− a

[
−
∫ 0

a

tdt+

∫ b

0

tdt

]
=

1

b− a

[
a2 + b2

2

]
,

and by (5.10), we get

(5.12) (b− E (X)) (E (X)− a)− σ2 (X)

≥ 2

∣∣∣∣∫ b

0

tF (t) dt−
∫ 0

a

tF (t) dt− a2 + b2

2 (b− a)
(b− E (X))

∣∣∣∣ ≥ 0.

Assume that f , f : [a, b] → (0,∞) is the PDF of X, then the
following theorem holds [6].

Theorem 84. With the assumptions in Lemma 24,

(5.13) (b− E (X)) (E (X)− a)− σ2 (X)

≤



(b−a)3
6

‖f‖∞ if f ∈ L∞ [a, b] ;

2q2(b−a)2+
1
q

(2q+1)(3q+1)
‖f‖p if f ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
(b−a)2

3
;

where ‖·‖p (p ≥ 1) are the usual Lebesgue norms.
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Proof. Using (5.5), we may state that

0 ≤ (b− E (X)) (E (X)− a)− σ2 (X)(5.14)

=
1

b− a

∫ b

a

∫ b

a

(t− τ)

(∫ t

τ

f (u) du

)
dtdτ .

By the modulus property, we have

0 ≤ (b− E (X)) (E (X)− a)− σ2 (X)(5.15)

=
1

b− a

∣∣∣∣∫ b

a

∫ b

a

(t− τ)

(∫ t

τ

f (u) du

)
dtdτ

∣∣∣∣
≤ 1

b− a

∫ b

a

∫ b

a

|t− τ |
∣∣∣∣∫ t

τ

f (u) du

∣∣∣∣ dtdτ
=: M.

If f ∈ L∞ [a, b], then we can write,∣∣∣∣∫ t

τ

f (u) du

∣∣∣∣ ≤ |t− τ | ‖f‖∞ ,

for all t, τ ∈ [a, b], and so

M ≤ 1

b− a

∫ b

a

∫ b

a

|t− τ | |t− τ | ‖f‖∞ dtdτ

=
‖f‖∞
b− a

∫ b

a

∫ b

a

(t− τ)2 dtdτ

=
‖f‖∞ (b− a)3

6
.

For the second part, we apply Hölder’s integral inequality to write:∣∣∣∣∫ t

τ

f (u) du

∣∣∣∣ ≤ ∣∣∣∣∫ t

τ

du

∣∣∣∣ 1q ∣∣∣∣∫ t

τ

fp (u) du

∣∣∣∣ 1p
≤ |t− τ |

1
q

(∫ b

a

fp (u) du

) 1
p

= |t− τ |
1
q ‖f‖p ,

where p > 1, 1
p

+ 1
q

= 1.
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In addition,

M ≤ 1

b− a

∫ b

a

∫ b

a

|t− τ | |t− τ |
1
q ‖f‖p dtdτ

=
‖f‖p
b− a

∫ b

a

[∫ t

a

(t− τ)1+ 1
q dτ +

∫ b

t

(τ − t)1+ 1
q dτ

]
dt

=
‖f‖p
b− a

∫ b

a

(t− a)2+ 1
q + (b− t)2+ 1

q(
2 + 1

q

)
 dt

=
2 ‖f‖p (b− a)2+ 1

q(
2 + 1

q

)(
3 + 1

q

) ,
and the second inequality in (5.13) is proved.

Finally,

M ≤ 1

b− a

∫ b

a

∫ b

a

|t− τ |
(∫ b

a

f (u) du

)
dtdτ

=
1

b− a

∫ b

a

[
(t− a)2 + (b− t)2

2

]
dt

=
1

2 (b− a)

[
(b− a)3

3
+

(b− a)3

3

]

=
(b− a)2

3
,

and the theorem is completely proved.

Using the Cauchy-Buniakowski-Schwartz inequality, we have the
following inequality [6].

Theorem 85. If X and F are as in Lemma 24, then,

0 ≤ (b− E (X)) (E (X)− a)− σ2 (X)(5.16)

≤ (b− a)2

√
3

[
(b− a) ‖F‖2

2 − (b− E (X))2] 1
2

≤ (b− a)3

2
√

3
.
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Proof. Using the Cauchy-Buniakowski-Schwartz integral inequal-
ity for double integrals, we have

(5.17)

∣∣∣∣∫ b

a

∫ b

a

(t− τ) (F (τ)− F (t)) dtdτ

∣∣∣∣
≤
(∫ b

a

∫ b

a

(t− τ)2 dtdτ

) 1
2
(∫ b

a

∫ b

a

(F (t)− F (τ))2 dtdτ

) 1
2

.

However, ∫ b

a

∫ b

a

(t− τ)2 dtdτ =
(b− a)4

6
,∫ b

a

∫ b

a

(F (τ)− F (t))2 dtdτ

= 2

[
(b− a)

∫ b

a

F 2 (t) dt−
(∫ b

a

F (t) dt

)2
]

= 2
[
(b− a) ‖F‖2

2 − (b− E (X))2] ,
and, by (5.17),∣∣∣∣∫ b

a

∫ b

a

(t− τ) (F (τ)− F (t)) dτdt

∣∣∣∣
≤ (b− a)2

√
3

[
(b− a) ‖F‖2

2 − (b− E (X))2] 1
2 ,

and the first inequality in (5.16) is proved.
To prove the last part of (5.16), we use the following Grüss type

inequality:

(5.18)
1

b− a

∫ b

a

g2 (t) dt−
(

1

b− a

∫ b

a

g (t) dt

)2

≤ 1

4
(φ− γ)2 ,

provided that g ∈ L2 (a, b) and γ ≤ g (t) ≤ φ a.e. for t ∈ (a, b).
From (5.18),

(b− a)

∫ b

a

F 2 (t) dt−
(∫ b

a

F (t) dt

)2

≤ 1

4
(b− a)2 ,

since
sup
t∈[a,b]

F (t) = 1 and inf
t∈[a,b]

F (t) = 0.

If it is assumed that the mapping f is convex on [a, b], then the
following result can be obtained as well [6].
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Theorem 86. Assume that the PDF, f : [a, b] → (0,∞) is convex,
then, we have the inequality

1

b− a

∫ b

a

∫ b

a

(t− τ)2 f

(
t+ τ

2

)
dτdt(5.19)

≤ [b− E (X)] [E (X)− a]− σ2 (X)

≤ (b− a)2

3
+ σ2 (X)− (b− E (X)) (E (X)− a) .

Proof. Using the Hermite-Hadamard inequality,

(5.20) f

(
t+ τ

2

)
≤
∫ τ
t
f (u) du

τ − t
≤ f (t) + f (τ)

2
,

for all t, τ ∈ [a, b], t 6= τ , we have

(t− τ)2 f

(
t+ τ

2

)
≤ (t− τ) (F (t)− F (τ))(5.21)

≤ f (t) + f (τ)

2
(t− τ)2 ,

for all t, τ ∈ [a, b].
Integrating (5.21) on [a, b]2 and using the representation (5.5), gives

1

b− a

∫ b

a

∫ b

a

(t− τ)2 f

(
t+ τ

2

)
dtdτ(5.22)

≤ 1

b− a

∫ b

a

∫ b

a

(t− τ) (F (t)− F (τ)) dtdτ

= [b− E (X)] [E (X)− a]− σ2 (X)

≤ 1

b− a

∫ b

a

∫ b

a

f (t) + f (τ)

2
(t− τ)2 dtdτ .

Now, ∫ b

a

∫ b

a

(t− τ)2

[
f (t) + f (τ)

2

]
dtdτ(5.23)

=

∫ b

a

∫ b

a

(t− τ)2 f (t) dτdt =

∫ b

a

[∫ b

a

(t− τ)2 dτ

]
f (t) dt

=

∫ b

a

[
(b− t)3 + (t− a)3

3

]
f (t) dt
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=
(b− a)

3

∫ b

a

[
(b− t)2 − (b− t) (t− a) + (t− a)2] f (t) dt

=
b− a

3

∫ b

a

[
(b− a)2 − 3 (b− t) (t− a)

]
f (t) dt

=
(b− a)3

3
− (b− a)

∫ b

a

(b− t) (t− a) f (t) dt

=
(b− a)3

3
+ (b− a)

[
σ2 (X)− (b− E (X)) (E (X)− a)

]
,

using an identity (see [18]).
Hence,

1

b− a

∫ b

a

∫ b

a

(t− τ)2

[
f (t) + f (τ)

2

]
dtdτ

=
(b− a)2

3
+
[
σ2 (X)− (b− E (X)) (E (X)− a)

]
,

and the second part of (5.19) is proved.

Remark 73. The second inequality in (5.19) is equivalent to:

(5.24) [b− E (X)] [E (X)− a] ≤ σ2 (X) +
1

6
(b− a)2 .

Remark 74. For b − a < 1√
3
, the result of Theorem 87 is better

than that of Theorem 86. For b − a > 1√
3
, the opposite applies. It

must be remembered that Theorem 86 relies on f being convex whereas
Theorem 85 does not.

The following representation for the absolutely continuous PDF,
f : [a, b] → R holds [6].

Lemma 25. Let X be a random variable having the PDF, f :
[a, b] → R absolutely continuous on [a, b], then, we have

(5.25) σ2 (X) = (b− E (X)) (E (X)− a)− (b− a)2

6

+
1

2 (b− a)

∫ b

a

∫ b

a

(t− τ)

(∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

)
dtdτ .

Proof. We use the following identity which holds for the abso-
lutely continuous mapping g : [a, b] → R

(5.26)

∫ b

a

g (u) du =
g (a) + g (b)

2
(b− a)−

∫ b

a

(
u− a+ b

2

)
g′ (u) du,
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and can be easily proven by using the integration by parts formula.
We know that

(E (X)− a) (b− E (X))− σ2 (X)(5.27)

=
1

b− a

∫ b

a

∫ b

a

(t− τ)

∫ t

τ

f (u) du dtdτ

=
1

b− a

∫ b

a

∫ b

a

(t− τ)

[
f (t) + f (τ)

2
(t− τ)

−
∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

]
dtdτ

=
1

b− a

∫ b

a

∫ b

a

(t− τ)2

(
f (t) + f (τ)

2

)
dtdτ

− 1

b− a

∫ b

a

∫ b

a

(t− τ)

(∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

)
dtdτ .

However, observe that (see the proof of Theorem 86)

L :=
1

b− a

∫ b

a

∫ b

a

(t− τ)2

(
f (t) + f (τ)

2

)
dtdτ

= σ2 (X) +
1

3

[
(E (X)− b)2 − (E (X)− a)

× (b− E (X)) + (E (X)− a)2] .
Using (5.27), we have

(E (X)− a) (b− E (X))− σ2 (X) = σ2 (X) +
1

3

[
(E (X)− b)2

− (E (X)− a) (b− E (X)) + (E (X)− a)2]
− 1

b− a

∫ b

a

∫ b

a

(t− τ)

(∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

)
dtdτ ,

which is clearly equivalent to (5.25).

Using Lemma 25, we are able to obtain the following bounds [6].

Theorem 87. Assume that f is as in Lemma 25, then, we have
the inequality

(5.28)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣
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≤



‖f ′‖∞
80

(b− a)4 if f ′ ∈ L∞ [a, b] ;

q2‖f ′‖p

2(3q+1)(4q+1)(q+1)
1
q

(b− a)3+ 1
q if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1,
‖f ′‖1

24
(b− a)3 .

Proof. Using the equality (5.25), we may write

(5.29)

∣∣∣∣∣σ2 (X)− (b− E (X)) (E (X)− a) +
(b− a)2

6

∣∣∣∣∣
≤ 1

2 (b− a)

∫ b

a

∫ b

a

|t− τ |
∣∣∣∣∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

∣∣∣∣ dtdτ := N.

Now, it may be easily shown that,∣∣∣∣∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

∣∣∣∣ ≤ ‖f ′‖∞

∣∣∣∣∫ t

τ

∣∣∣∣u− t+ τ

2

∣∣∣∣ du∣∣∣∣
= ‖f ′‖∞

(t− τ)2

4
,

for all t, τ ∈ [a, b].
Also, by Hölder’s integral inequality, we may write∣∣∣∣∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

∣∣∣∣
≤
∣∣∣∣∫ t

τ

|f ′ (u)|p du
∣∣∣∣ 1p ∣∣∣∣∫ t

τ

∣∣∣∣u− t+ τ

2

∣∣∣∣q du∣∣∣∣ 1q
≤ ‖f ′‖p

[
|t− τ |q+1

2q (q + 1)

] 1
q

= ‖f ′‖p
|t− τ |1+ 1

q

2 (q + 1)
1
q

for all t, τ ∈ [a, b], and further,∣∣∣∣∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

∣∣∣∣ ≤ sup

∣∣∣∣u− t+ τ

2

∣∣∣∣ ∫ t

τ

|f ′ (u)| du

≤ |t− τ |
2

‖f ′‖1 .



196 5. ELEMENTARY INEQUALITIES FOR THE VARIANCE

Consequently,

(5.30)

∣∣∣∣∫ t

τ

(
u− t+ τ

2

)
f ′ (u) du

∣∣∣∣

≤



‖f ′‖∞
(t−τ)2

4
if f ′ ∈ L∞ [a, b] ;

‖f ′‖p
|t−τ |1+

1
q

2(q+1)
1
q

if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1,

‖f ′‖1
|t−τ |

2
. if f ′ ∈ L1 [a, b] .

Using (5.30), we may write, for f ′ belonging to the obvious Lebesgue
space Lp [a, b], p ≥ 1,

(5.31) N ≤



‖f ′‖∞
8(b−a)

∫ b

a

∫ b

a

|t− τ |3 dtdτ ,

‖f ′‖p

4(q+1)
1
q (b−a)

∫ b

a

∫ b

a

|t− τ |2+ 1
q dtdτ ,

‖f ′‖1
4(b−a)

∫ b

a

∫ b

a

(t− τ)2 dtdτ .

Now, since some straight forward algebra shows that∫ b

a

∫ b

a

|t− τ |3 dtdτ =

∫ b

a

[∫ t

a

(t− τ)3 dτ +

∫ b

t

(τ − t)3 dτ

]
dt

=

∫ b

a

[
(t− a)4 + (b− t)4

4

]
dt =

(b− a)5

10
,

∫ b

a

∫ b

a

|t− τ |2+ 1
q dtdτ

=

∫ b

a

[∫ t

a

(t− τ)2+ 1
q dτ +

∫ b

t

(τ − t)2+ 1
q dτ

]
dt

=

∫ b

a

[
(t− a)3+ 1

q + (b− t)3+ 1
q

3 + 1
q

]
dt =

2q2 (b− a)4+ 1
q

(3q + 1) (4q + 1)
,

and ∫ b

a

∫ b

a

(t− τ)2 dtdτ =

∫ b

a

[∫ t

a

(t− τ)2 dτ +

∫ b

t

(τ − t)2 dτ

]
dt

=

∫ b

a

[
(t− a)3 + (b− t)3

3

]
dt =

(b− a)4

6
,
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we obtain the desired inequality (5.28) from using (5.31) and (5.29).

The following representation for the mappings whose derivatives are
absolutely continuous on [a, b] also holds [6].

Lemma 26. Let X be a random variable having the PDF f : [a, b] →
R and with the property that f ′ : [a, b] → R is absolutely continuous on
[a, b], then, we have

(5.32) σ2 (X) = (b− E (X)) (E (X)− a)− (b− a)2

6

+
1

4 (b− a)

∫ b

a

∫ b

a

(t− τ)

×
∫ t

τ

(t− u) (u− τ) f ′′ (u) du dt dτ .

Proof. We use the following identity which holds for the mappings
g whose derivatives are absolutely continuous:

(5.33)

∫ b

a

g (u) du =
g (a) + g (b)

2
(b− a)

− 1

2

∫ b

a

(b− u) (u− a) g′′ (u) du,

(proved by using the integration by parts formula twice).
We know that,

(b− E (X)) (E (X)− a)− σ2 (X)

=
1

b− a

∫ b

a

∫ b

a

(t− τ)

∫ τ

t

f (u) du dt dτ ,

and then, using the representation (5.33) written for f instead of g, and
proceeding as in the proof of Lemma 25, we end up with the identity
(5.32).

Using the representation of Lemma 26, we are able to obtain the
following bounds [6].

Theorem 88. Assume that f is as in Lemma 26, then, we have
the inequality

(5.34)

∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣
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≤



‖f ′′‖∞
360

(b− a)5 if f ′′ ∈ L∞ [a, b]

‖f ′′‖q

2(4p+1)(5p+1)
[B (p+ 1, p+ 1)]

1
p (b− a)4+ 1

p

if f ′′ ∈ Lq [a, b] , 1
p

+ 1
q

= 1, p > 1;

‖f ′′‖1
160

(b− a)4 ,

where the p−norms are taken on the interval [a, b].

Proof. Using the equality (5.32), we may write∣∣∣∣∣σ2 (X)− [b− E (X)] [E (X)− a]− (b− a)2

6

∣∣∣∣∣
≤ 1

4 (b− a)

∫ b

a

∫ b

a

|t− τ |
∣∣∣∣∫ t

τ

(t− u) (u− τ) f ′′ (u) du

∣∣∣∣ dt dτ
:= K.

First of all, let us observe that∣∣∣∣∫ t

τ

(t− u) (u− τ) f ′′ (u) du

∣∣∣∣ ≤ ‖f ′′‖∞

∣∣∣∣∫ t

τ

(t− u) (u− τ) du

∣∣∣∣
≤ ‖f ′′‖∞

6
|t− τ |3 ,

for all t, τ ∈ [a, b].
Further, by Hölder’s integral inequality, we obtain∣∣∣∣∫ t

τ

(t− u) (u− τ) f ′′ (u) du

∣∣∣∣ ≤ ‖f ′′‖q

∣∣∣∣∫ t

τ

|t− u|p |u− τ |p du
∣∣∣∣ 1p

= ‖f ′′‖q |t− τ |2+ 1
p [B (p+ 1, p+ 1)]

1
p ,

for all t, τ ∈ [a, b], where B is the Beta function of Euler and 1
p
+ 1

q
= 1;

p > 1.
Also, we have∣∣∣∣∫ t

τ

(t− u) (u− τ) f ′′ (u) du

∣∣∣∣ ≤ ‖f ′′‖1 max
u∈[τ,t]

|(t− u) (u− τ)|

=
|t− τ |2

4
‖f ′′‖1 ,

for all t, τ ∈ [a, b].
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Consequently, we may state the inequality

(5.35)

∣∣∣∣∫ t

τ

(t− u) (u− τ) f ′′ (u) du

∣∣∣∣
≤



‖f ′′‖∞
6

|t− τ |3 if f ′′ ∈ L∞ [a, b] ;

‖f ′′‖q [B (p+ 1, p+ 1)]
1
p |t− τ |2+

1
p if f ′′ ∈ Lq [a, b] ,

1
p

+ 1
q

= 1, p > 1;
|t−τ |2

4
‖f ′′‖1 ,

for all t, τ ∈ [a, b].
Using (5.35) and the definition of K above, we may write

(5.36) K ≤



‖f ′′‖∞
24(b−a)

∫ b
a

∫ b
a

(t− τ)4 dt dτ if f ′′ ∈ L∞ [a, b] ;

‖f ′′‖q

4(b−a) [B (p+ 1, p+ 1)]
1
p
∫ b
a

∫ b
a
|t− τ |3+ 1

p dt dτ

if f ′′ ∈ Lq [a, b] , 1
p

+ 1
q

= 1, p > 1;

‖f ′′‖1
16(b−a)

∫ b
a

∫ b
a
|t− τ |3 dt dτ .

Now, since some straightforward algebra shows that∫ b

a

∫ b

a

(t− τ)4 dt dτ =
(b− a)6

15
,

∫ b

a

∫ b

a

|t− τ |3+ 1
p dt dτ

=

∫ b

a

[∫ t

a

(t− τ)3+ 1
p dτ +

∫ b

t

(τ − t)3+ 1
p dτ

]
dt

=

∫ b

a

[
(t− a)4+ 1

p + (b− t)4+ 1
p

4 + 1
p

]
dt

= 2
(b− a)5+ 1

p(
4 + 1

p

)(
5 + 1

p

) =
2p2 (b− a)5+ 1

p

(4p+ 1) (5p+ 1)
,

and∫ b

a

∫ b

a

|t− τ |3 dt dτ =

∫ b

a

[∫ t

a

(t− τ)3 dτ +

∫ b

t

(τ − t)3 dτ

]
dt

=

∫ b

a

[
(t− a)4 + (b− t)4

4

]
dt =

(b− a)5

10
,

then by (5.36), we deduce the desired inequality (5.34).
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2. Perturbed Inequalities

2.1. Introduction. In this section, we obtain some inequalities
for the dispersion of a continuous random variable X having the PDF
f defined on a finite interval [a, b].

Tools used include: Korkine’s identity, which plays a central role
in the proof of Čebyšev’s integral inequality for synchronous mappings
[109], Hölder’s weighted inequality for double integrals and an integral
identity connecting the variance σ2 (X) and the expectation E (X).
Perturbed results are also obtained by using Grüss, Čebyšev and Lupaş
inequalities. In the last part of this section, results from an identity
involving a double integral are obtained for a variety of norms.

2.2. Some Inequalities for Dispersion. The following theorem
holds [7].

Theorem 89. With the above assumptions, we have

(5.37) σ (X) ≤



√
3(b−a)2

6
‖f‖∞ provided f ∈ L∞ [a, b] ;

√
2(b−a)1+

1
q

2[(q+1)(2q+1)]
2
q
‖f‖p provided f ∈ Lp [a, b]

and p > 1, 1
p

+ 1
q

= 1;
√

2(b−a)
2

.

Proof. Korkine’s identity [105], is

(5.38)

∫ b

a

p (t) dt

∫ b

a

p (t) g (t)h (t) dt

−
∫ b

a

p (t) g (t) dt ·
∫ b

a

p (t)h (t) dt

=
1

2

∫ b

a

∫ b

a

p (t) p (s) (g (t)− g (s)) (h (t)− h (s)) dtds ,

which holds for the measurable mappings p, g, h : [a, b] → R for which
the integrals involved in (5.38) exist and are finite. Choose in (5.38)
p (t) = f (t), g (t) = h (t) = t− E (X), t ∈ [a, b] to get

(5.39) σ2 (X) =
1

2

∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds .
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It is obvious that∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds(5.40)

≤ sup
(t,s)∈[a,b]2

|f (t) f (s)|
∫ b

a

∫ b

a

(t− s)2 dtds

=
(b− a)4

6
‖f‖2

∞ ,

and then, by (5.39), we obtain the first part of (5.37).
For the second part, we apply Hölder’s integral inequality for double

integrals to obtain∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds

≤
(∫ b

a

∫ b

a

fp (t) fp (s) dtds

) 1
p
(∫ b

a

∫ b

a

(t− s)2q dtds

) 1
q

= ‖f‖2
p

[
(b− a)2q+2

(q + 1) (2q + 1)

] 1
q

,

where p > 1 and 1
p

+ 1
q

= 1, and the second inequality in (5.37) is

proved.
For the last part, observe that∫ b

a

∫ b

a

f (t) f (s) (t− s)2 dtds ≤ sup
(t,s)∈[a,b]2

|(t− s)|2
∫ b

a

∫ b

a

f (t) f (s) dtds

= (b− a)2 ,

as ∫ b

a

∫ b

a

f (t) f (s) dtds =

∫ b

a

f (t) dt

∫ b

a

f (s) ds = 1.

Using a finer argument, the last inequality in (5.37) can be improved
as follows [7].

Theorem 90. Under the above assumptions, we have

(5.41) 0 ≤ σ (X) ≤ 1

2
(b− a) .

Proof. We use the following Grüss type inequality:

(5.42) 0 ≤
∫ b
a
p (t) g2 (t) dt∫ b
a
p (t) dt

−

(∫ b
a
p (t) g (t) dt∫ b
a
p (t) dt

)2

≤ 1

4
(M −m)2 ,
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provided that p and g are measurable on [a, b] and that all the integrals

in (5.42) exist and are finite,
∫ b
a
p (t) dt > 0 and m ≤ g ≤ M, a.e., on

[a, b].
Choose in (5.42), p (t) = f (t), g (t) = t−E (X), t ∈ [a, b]. Observe

that in this case m = a − E (X), M = b − E (X) and then, by (5.42)
we deduce (5.41).

Remark 75. The same conclusion can be obtained for the choice
p (t) = f (t) and g (t) = t, t ∈ [a, b].

The following result holds [7].

Theorem 91. Let X be a random variable having the PDF given
by f : [a, b] ⊂ R → R+, then, for any x ∈ [a, b] we have the inequality:

(5.43) σ2 (X) + (x− E (X))2

≤



(b− a)
[

(b−a)2
12

+
(
x− a+b

2

)2] ‖f‖∞ , provided f ∈ L∞ [a, b] ;[
(b−x)2q+1+(x−a)2q+1

2q+1

] 1
q ‖f‖p provided f ∈ Lp [a, b] , p > 1,

and 1
p

+ 1
q

= 1;(
b−a
2

+
∣∣x− a+b

2

∣∣)2 .
Proof. We observe that∫ b

a

(x− t)2 f (t) dt =

∫ b

a

(
x2 − 2xt+ t2

)
f (t) dt(5.44)

= x2 − 2xE (X) +

∫ b

a

t2f (t) dt,

and as

(5.45) σ2 (X) =

∫ b

a

t2f (t) dt− [E (X)]2 ,

we get, by (5.44) and (5.45), that

(5.46) [x− E (X)]2 + σ2 (X) =

∫ b

a

(x− t)2 f (t) dt,

which is of intrinsic interest itself.
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We observe that∫ b

a

(x− t)2 f (t) dt ≤ ess sup
t∈[a,b]

|f (t)|
∫ b

a

(x− t)2 dt

= ‖f‖∞
(b− x)3 + (x− a)3

3

= (b− a) ‖f‖∞

[
(b− a)2

12
+

(
x− a+ b

2

)2
]
,

and the first inequality in (5.43) is proved.
For the second inequality, observe that by Hölder’s integral inequal-

ity, ∫ b

a

(x− t)2 f (t) dt ≤
(∫ b

a

fp (t) dt

) 1
p
(∫ b

a

(x− t)2q dt

) 1
q

= ‖f‖p

[
(b− x)2q+1 + (x− a)2q+1

2q + 1

] 1
q

,

and the second inequality in (5.43) is established.
Finally, observe that,∫ b

a

(x− t)2 f (t) dt ≤ sup
t∈[a,b]

(x− t)2

∫ b

a

f (t) dt

= max
{
(x− a)2 , (b− x)2}

= (max {x− a, b− x})2

=

(
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣)2

,

and the theorem is proved.

The following corollaries are easily deduced [7].

Corollary 59. With the above assumptions, we have

(5.47) σ (X) ≤



(b− a)
1
2

[
(b−a)2

12
+
(
E (X)− a+b

2

)2] 1
2 ‖f‖

1
2
∞

provided f ∈ L∞ [a, b] ;[
(b−E(X))2q+1+(E(X)−a)2q+1

2q+1

] 1
2q ‖f‖

1
2
p

if f ∈ Lp [a, b] , p > 1 and 1
p

+ 1
q

= 1;

b−a
2

+
∣∣E (X)− a+b

2

∣∣ .
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Remark 76. The last inequality in (5.47) is worse than the in-
equality (5.41), obtained by a technique based on Grüss’ inequality.

The best inequality we can get from (5.43) is the one for which
x = a+b

2
, and this applies for all the bounds since

min
x∈[a,b]

[
(b− a)2

12
+

(
x− a+ b

2

)2
]

=
(b− a)2

12
,

min
x∈[a,b]

(b− x)2q+1 + (x− a)2q+1

2q + 1
=

(b− a)2q+1

22q (2q + 1)
,

and

min
x∈[a,b]

[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] =
b− a

2
.

Consequently, we can state the following corollary as well [7].

Corollary 60. With the above assumptions, we have the inequal-
ity:

(5.48) σ2 (X) +

[
E (X)− a+ b

2

]2

≤



(b−a)3
12

‖f‖∞ provided f ∈ L∞ [a, b] ;

(b−a)2q+1

4(2q+1)
1
q
‖f‖p if f ∈ Lp [a, b] , p > 1,

and 1
p

+ 1
q

= 1;
(b−a)2

4
.

Remark 77. From the last inequality in (5.48), we obtain

(5.49) σ2 (X) ≤ (b− E (X)) (E (X)− a) ≤ 1

4
(b− a)2 ,

which is an improvement on (5.41).

2.3. Perturbed Results Using Grüss Type inequalities. Grüss
(see [98] or for example [114]) proved the following integral inequality
which gives an approximation for the integral of a product in terms of
the product of the integrals.

Theorem 92. Let h, g : [a, b] → R be two integrable mappings such
that φ ≤ h (x) ≤ Φ and γ ≤ g (x) ≤ Γ for all x ∈ [a, b], where φ,Φ, γ,Γ
are real numbers, then,

(5.50) |T (h, g)| ≤ 1

4
(Φ− φ) (Γ− γ) ,
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where

(5.51) T (h, g) =
1

b− a

∫ b

a

h (x) g (x) dx

− 1

b− a

∫ b

a

h (x) dx · 1

b− a

∫ b

a

g (x) dx

and the inequality is sharp.

For a simple proof of this as well as for extensions, generalizations,
discrete variants and other associated material, see [114], and [48],
[85] where further references are given.

A ‘pre-Grüss’ inequality is embodied in the following theorem which
was proved in [108]. It provides a sharper bound than the above Grüss
inequality.

Theorem 93. Let h, g be integrable functions defined on [a, b] and
let d ≤ g (t) ≤ D. Then,

(5.52) |T (h, g)| ≤ D − d

2
[T (h, h)]

1
2 ,

where T (h, g) is as defined in (5.51).

Theorem 93 will now be used to provide a perturbed rule involving
the variance and mean of a PDF (see [7]).

Theorem 94. Let X be a random variable having the PDF given
by f : [a, b] ⊂ R → R+, then for any x ∈ [a, b] and m ≤ f (x) ≤ M we
have the inequality

|PV (x)|(5.53)

:=

∣∣∣∣∣σ2 (X) + (x− E (X))2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ M −m

2
· (b− a)2

√
45

[(
b− a

2

)2

+ 15

(
x− a+ b

2

)] 1
2

≤ (M −m)
(b− a)3

√
45

.
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Proof. Applying the ‘pre-Grüss’ result (5.52) by associating g (t)
with f (t) and h (t) = (x− t)2 , gives, from (5.50)-(5.52)

(5.54)

∣∣∣∣∫ b

a

(x− t)2 f (t) dt− 1

b− a

∫ b

a

(x− t)2 dt ·
∫ b

a

f (t) dt

∣∣∣∣
≤ (b− a)

M −m

2
[T (h, h)]

1
2 ,

where from (5.51)

(5.55) T (h, h) =
1

b− a

∫ b

a

(x− t)4 dt−
[

1

b− a

∫ b

a

(x− t)2 dt

]2

.

Now,

1

b− a

∫ b

a

(x− t)2 dt =
(x− a)3 + (b− x)3

3 (b− a)
(5.56)

=
1

3

(
b− a

2

)2

+

(
x− a+ b

2

)2

,

and

1

b− a

∫ b

a

(x− t)4 dt =
(x− a)5 + (b− x)5

5 (b− a)
,

giving, from (5.55),

(5.57) 45T (h, h) = 9

[
(x− a)5 + (b− x)5

b− a

]

− 5

[
(x− a)3 + (b− x)3

b− a

]2

.

Let A = x− a and B = b− x in (5.57) to give

45T (h, h) = 9

(
A5 +B5

A+B

)
− 5

(
A3 +B3

A+B

)2

= 9
[
A4 − A3B + A2B2 − AB3 +B4

]
− 5

[
A2 − AB +B2

]2
=
(
4A2 − 7AB + 4B2

)
(A+B)2

=

[(
A+B

2

)2

+ 15

(
A−B

2

)2
]

(A+B)2 .
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Using the facts that A+B = b− a and A−B = 2x− (a+ b) gives

(5.58) T (h, h) =
(b− a)2

45

[(
b− a

2

)2

+ 15

(
x− a+ b

2

)2
]
,

and from (5.56)

1

b− a

∫ b

a

(x− t)2 dt =
A3 +B3

3 (A+B)
=

1

3

[
A2 − AB +B2

]
=

1

3

[(
A+B

2

)2

+ 3

(
A−B

2

)2
]
,

giving

(5.59)
1

b− a

∫ b

a

(x− t)2 dt =
(b− a)

12

2

+

(
x− a+ b

2

)2

.

Hence, from (5.54), (5.58) (5.59) and (5.46), the first inequality in
(5.53) results. The coarsest uniform bound is obtained by taking x at
either end point. Thus, the theorem is completely proved.

Remark 78. The best inequality obtainable from (5.53) is at x =
a+b
2

giving

(5.60)

∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ M −m

12

(b− a)3

√
5

.

The result (5.60) is a tighter bound than that obtained in the first
inequality of (5.48) since 0 < M −m < 2 ‖f‖∞.

For a symmetric PDF E (X) = a+b
2

and so the above results would
give bounds on the variance.

The following results hold if the PDF f (x) is absolutely continuous
[7].

Theorem 95. Let the conditions on Theorem 92 be satisfied. Fur-
ther, suppose that f is differentiable and is such that

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| <∞,

then,

(5.61) |PV (x)| ≤ b− a√
12

‖f ′‖∞ · I (x) ,

where PV (x) is given by the left hand side of (5.53) and,

(5.62) I (x) =
(b− a)2

√
45

[(
b− a

2

)2

+ 15

(
x− a+ b

2

)2
] 1

2

.
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Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be
bounded, then, Čebyšev’s inequality holds (see [108])

T (h, g) ≤ (b− a)2

√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .

Matić, (et al.) [108] proved that

(5.63) T (h, g) ≤ (b− a)√
12

sup
t∈[a,b]

|g′ (t)|
√
T (h, h).

Associating f (·) with g (·) and (x− ·)2 with h (·) in (5.62) gives, from

(5.54) and (5.58), I (x) = (b− a) [T (h, h)]
1
2 , which simplifies to (5.62)

and the theorem is proved.

Theorem 96. Let the conditions of Theorem 94 be satisfied. Fur-
ther, suppose that f is locally absolutely continuous on (a, b) and let
f ′ ∈ L2 (a, b), then

(5.64) |PV (x)| ≤ b− a

π
‖f ′‖2 · I (x) ,

where PV (x) is the left hand side of (5.53) and I (x) is as given in
(5.62).

Proof. The following result was obtained by Lupaş (see [108]).
For h, g : (a, b) → R locally absolutely continuous on (a, b) and h′, g′ ∈
L2 (a, b) , then

|T (h, g)| ≤ (b− a)2

π2
‖h′‖2 ‖g

′‖2 ,

where

‖k‖2 :=

(
1

b− a

∫ b

a

|k (t)|2 dt
) 1

2

for k ∈ L2 (a, b) .

[108] further shows that

(5.65) |T (h, g)| ≤ b− a

π
‖g′‖2

√
T (h, h).

Associating f (·) with g (·) and (x− ·)2 with h in (5.65) gives (5.64),
where I (x) is as found in (5.62), since from (5.54) and (5.58), I (x) =

(b− a) [T (h, h)]
1
2 .

Let

(5.66) S (h (x)) = h (x)−M (h) ,
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where

(5.67) M (h) =
1

b− a

∫ b

a

h (u) du,

then, from (5.51),

(5.68) T (h, g) = M (hg)−M (h)M (g) .

Dragomir and Mc Andrew [83] have shown, that

(5.69) T (h, g) = T (S (h) , S (g))

and have proceeded to obtain bounds for a trapezoidal rule. Identity
(5.69) is now applied to obtain bounds for the variance [7].

Theorem 97. Let X be a random variable having the PDF f :
[a, b] ⊂ R → R+, then, for any x ∈ [a, b] the following inequality holds,
namely,

(5.70) |PV (x)| ≤ 8

3
ν3 (x)

∥∥∥∥f (·)− 1

b− a

∥∥∥∥
∞
, if f ∈ L∞ [a, b] ,

where PV (x) is as defined by the left hand side of (5.53), and

ν (x) = 1
3

(
b−a
2

)2
+
(
x− a+b

2

)2
.

Proof. Using identity (5.69), associated with h (·), (x− ·)2 and
f (·) with g (·), then,

(5.71)

∫ b

a

(x− t)2 f (t) dt−M
(
(x− ·)2)

=

∫ b

a

[
(x− t)2 −M

(
(x− ·)2)] [f (t)− 1

b− a

]
dt,

where, from (5.67),

M
(
(x− ·)2) =

1

b− a

∫ b

a

(x− t)2 dt

=
1

3 (b− a)

[
(x− a)3 + (b− x)3] ,

and so

(5.72) 3M
(
(x− ·)2) =

(
b− a

2

)2

+ 3

(
x− a+ b

2

)2

.

Further, from (5.66),

S
(
(x− ·)2) = (x− t)2 −M

(
(x− ·)2) ,
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and so, using (5.72)

(5.73) S
(
(x− ·)2) = (x− t)2 − 1

3

(
b− a

2

)2

−
(
x− a+ b

2

)2

.

Now, from (5.71) and using (5.46), (5.72) and (5.73), the following
identity is obtained

(5.74) σ2 (X) + [x− E (X)]2 − 1

3

[(
b− a

2

)2

+ 3

(
x− a+ b

2

)2
]

=

∫ b

a

S
(
(x− t)2)(f (t)− 1

b− a

)
dt,

where S (·) is as given by (5.73). Taking the modulus of (5.74) gives

(5.75) |PV (x)| =
∣∣∣∣∫ b

a

S
(
(x− t)2)(f (t)− 1

b− a

)
dt

∣∣∣∣ .
Observe that, under different assumptions with regard to the norms of
the PDF f (x) , we may obtain a variety of bounds.

For f ∈ L∞ [a, b] then,

(5.76) |PV (x)| ≤
∥∥∥∥f (·)− 1

b− a

∥∥∥∥
∞

∫ b

a

∣∣S ((x− t)2)∣∣ dt.
Now, let

(5.77) S
(
(x− t)2) = (t− x)2 − ν2 = (t−X−) (t−X+) ,

where

ν2 = M
(
(x− ·)2) =

(x− a)3 + (b− x)3

3 (b− a)
(5.78)

=
1

3

(
b− a

2

)2

+

(
x− a+ b

2

)2

,

and

(5.79) X− = x− ν, X+ = x+ ν,

then,

H (t) =

∫
S
(
(x− t)2) dt =

∫ [
(t− x)2 − ν2

]
dt(5.80)

=
(t− x)3

3
− ν2t+ k,
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and so from (5.80) and using (5.77) - (5.78) gives,∫ b

a

∣∣S ((x− t)2)∣∣ dt(5.81)

= H (X−)−H (a)− [H (X+)−H (X−)] + [H (b)−H (X+)]

= 2 [H (X−)−H (X+)] +H (b)−H (a)

= 2

{
−ν

3

3
− ν2X− −

ν3

3
+ ν2X+

}
+

(b− x)3

3
− ν2b+

(x− a)3

3
+ ν2a

= 2

[
2ν3 − 2

3
ν3

]
+

(b− x)3 + (x− a)3

3
− ν2 (b− a) =

8

3
ν3.

Thus, substituting into (5.76), (5.75) and using (5.78) readily produces
the result (5.70) and the theorem is proved.

Remark 79. Other bounds may be obtained for f ∈ Lp [a, b], p ≥ 1,
however, obtaining explicit expressions for these bounds is somewhat
intricate and will not be considered further here. They involve the cal-
culation of

sup
t∈[a,b]

∣∣(t− x)2 − ν2
∣∣ = max

{∣∣(x− a)2 − ν2
∣∣ , ν2,

∣∣(b− x)2 − ν2
∣∣} ,

for f ∈ L1 [a, b] and (∫ b

a

∣∣(t− x)2 − ν2
∣∣q dt) 1

q

,

for f ∈ Lq [a, b], 1
p

+ 1
q

= 1, p > 1, where ν2 is given by (5.78).

2.4. Some Inequalities for Absolutely Continuous PDFs.

Lemma 27. Let X be a random variable whose probability density
function f : [a, b] → R+ is absolutely continuous on [a, b], then, we
have the identity

(5.82) σ2 (X) + [E (X)− x]2

=
(b− a)2

12
+

(
x− a+ b

2

)2

+
1

b− a

∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt,
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where the kernel p : [a, b]2 → R is given by

p (t, s) :=

 s− a if a ≤ s ≤ t ≤ b,

s− b if a ≤ t < s ≤ b,

for all x ∈ [a, b].

Proof. We use the identity (see (5.46))

(5.83) σ2 (X) + [E (X)− x]2 =

∫ b

a

(x− t)2 f (t) dt,

for all x ∈ [a, b].
On the other hand, we know that (see for example [88] for a simple

proof using integration by parts)

(5.84) f (t) =
1

b− a

∫ b

a

f (s) ds+
1

b− a

∫ b

a

p (t, s) f ′ (s) ds,

for all t ∈ [a, b].
Substituting (5.84) in (5.83) we obtain

σ2 (X) + [E (X)− x]2(5.85)

=

∫ b

a

(t− x)2

[
1

b− a

∫ b

a

f (s) ds

+
1

b− a

∫ b

a

p (t, s) f ′ (s) ds

]
dt

=
1

b− a
· 1

3

[
(x− a)3 + (b− x)3]

+
1

b− a

∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt.

Taking into account the fact that

1

3

[
(x− a)3 + (b− x)3] =

(b− a)2

12
+

(
x− a+ b

2

)2

, x ∈ [a, b] ,

then, by (5.85) we deduce the desired result (5.82).

The following inequality for PDFs which are absolutely continuous
and have the derivatives essentially bounded holds [7].

Theorem 98. If f : [a, b] → R+ is absolutely continuous on [a, b]
and f ′ ∈ L∞ [a, b], i.e., ‖f ′‖∞ := ess sup

t∈[a,b]

|f ′ (t)| < ∞, then we have



2. PERTURBED INEQUALITIES 213

the inequality:

(5.86)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ (b− a)2

3

[
(b− a)2

10
+

(
x− a+ b

2

)2
]
‖f ′‖∞

for all x ∈ [a, b].

Proof. Using Lemma 27, we have∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

=
1

b− a

∣∣∣∣∫ b

a

∫ b

a

(t− x)2 p (t, s) f ′ (s) dsdt

∣∣∣∣
≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤ ‖f ′‖∞
b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt.

We have

I :=

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt

=

∫ b

a

(t− x)2

[∫ t

a

(s− a) ds+

∫ b

t

(b− s) ds

]
dt

=

∫ b

a

(t− x)2

[
(t− a)2 + (b− t)2

2

]
dt

=
1

2

[∫ b

a

(t− x)2 (t− a)2 dt+

∫ b

a

(t− x)2 (b− t)2 dt

]
=

(Ia + Ib)

2
.

Let A = x− a, B = b− x then

Ia =

∫ b

a

(t− x)2 (t− a)2 dt

=

∫ b−a

0

(
u2 − 2Au+ A2

)
u2du
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=
(b− a)3

3

[
A2 − 3

2
A (b− a) +

3

5
(b− a)2

]
,

and

Ib =

∫ b

a

(t− x)2 (b− t)2 dt

=

∫ b−a

0

(
u2 − 2Bu+B2

)
u2du

=
(b− a)3

3

[
B2 − 3

2
B (b− a) +

3

5
(b− a)2

]
.

Now,

Ia + Ib
2

=
(b− a)3

3

[
A2 +B2

2
− 3

4
(A+B) (b− a) +

3

5
(b− a)2

]
=

(b− a)3

3

[(
b− a

2

)2

+

(
x− a+ b

2

)2

− 3
(b− a)2

20

]

=
(b− a)3

3

[
(b− a)2

10
+

(
x− a+ b

2

)2
]
,

and the theorem is proved.

The best inequality we can get from (5.86) is embodied in the fol-
lowing corollary [7].

Corollary 61. If f is as in Theorem 98, then we have

(5.87)

∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)4

30
‖f ′‖∞ .

We now analyze the case where f ′ is a Lebesgue p−integrable map-
ping with p ∈ (1,∞).

Remark 80. The results of Theorem 98 may be compared with those
of Theorem 95. It may be shown that both bounds are convex and
symmetric about x = a+b

2
. Further, the bound given by the ‘pre-Čebyšev’

approach, namely from (5.61)-(5.62) is tighter than that obtained by the
current approach (5.86) which may be shown from the following. Let
these bounds be described by Bp and Bc so that, neglecting the common
terms

Bp =
b− a

2
√

15

[(
b− a

2

)2

+ 15Y

] 1
2

,
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and

Bc =
(b− a)2

100
+ Y,

where

Y =

(
x− a+ b

2

)2

.

It may be shown through some straightforward algebra that B2
c−B2

p > 0
for all x ∈ [a, b] , so that Bc > Bp.
The current development does, however, have the advantage that the
identity (5.82) is satisfied, thus allowing bounds for Lp [a, b], p ≥ 1
rather than the infinity norm.

The following result also holds [7].

Theorem 99. If f : [a, b] → R+ is absolutely continuous on [a, b]
and f ′ ∈ Lp, i.e.,

‖f ′‖p :=

(∫ b

a

|f ′ (t)|p dt
) 1

p

<∞, p ∈ (1,∞) ,

then we have the inequality

(5.88)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤
‖f ′‖p

(b− a)
1
p (q + 1)

1
q

[
(x− a)3q+2 B̃

(
b− a

x− a
, 2q + 1, q + 2

)
+ (b− x)3q+2 B̃

(
b− a

b− x
, 2q + 1, q + 2

)]
,

for all x ∈ [a, b], when 1
p

+ 1
q

= 1 and B̃ (·, ·, ·) is the quasi incomplete

Euler’s Beta mapping:

B̃ (z;α, β) :=

∫ z

0

(u− 1)α−1 uβ−1du, α, β > 0, z ≥ 1.

Proof. Using Lemma 27, we have, as in Theorem 98, that

(5.89)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt.
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Using Hölder’s integral inequality for double integrals, we have∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt(5.90)

≤
(∫ b

a

∫ b

a

|f ′ (s)|p dsdt
) 1

p
(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt
) 1

q

= (b− a)
1
p ‖f ′‖p

(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt
) 1

q

,

where p > 1, 1
p

+ 1
q

= 1.

We have to compute the integral

D :=

∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt(5.91)

=

∫ b

a

(t− x)2q

[∫ t

a

(s− a)q ds+

∫ b

t

(b− s)q ds

]
dt

=

∫ b

a

(t− x)2q

[
(t− a)q+1 + (b− t)q+1

q + 1

]
dt

=
1

q + 1

[∫ b

a

(t− x)2q (t− a)q+1 dt

+

∫ b

a

(t− x)2q (b− t)q+1 dt

]
.

Define

(5.92) E :=

∫ b

a

(t− x)2q (t− a)q+1 dt.

If we consider the change of variable t = (1− u) a+ ux, we have t = a
implies u = 0 and t = b implies u = b−a

x−a , dt = (x− a) du, and then

E =

∫ b−a
x−a

0

[(1− u) a+ ux− x]2q(5.93)

× [(1− u) a+ ux− a] (x− a) du

= (x− a)3q+2

∫ b−a
x−a

0

(u− 1)2q uq+1du

= (x− a)3q+2 B̃

(
b− a

x− a
, 2q + 1, q + 2

)
.
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Define

(5.94) F :=

∫ b

a

(t− x)2q (b− t)q+1 dt.

If we consider the change of variable t = (1− v) b+ vx, we have t = b
implies v = 0, and t = a implies v = b−a

b−x , dt = (x− b) dv, and then

F =

∫ 0

b−a
b−x

[(1− v) b+ vx− x]2q(5.95)

× [b− (1− v) b− vx]q+1 (x− b) dv

= (b− x)3q+2

∫ b−a
b−x

0

(v − 1)2q vq+1dv

= (b− x)3q+2 B̃

(
b− a

b− x
, 2q + 1, q + 2

)
.

Now, using the inequalities (5.89)-(5.90) and the relations (5.91)-(5.95),
since D = 1

q+1
(E + F ) , we deduce the desired estimate (5.88).

It is natural to consider the following corollary [7].

Corollary 62. Let f be as in Theorem 99, then, we have the
inequality:

(5.96)

∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣
≤
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 1) + Ψ (2q + 1, q + 2)]
1
q ,

where 1
p

+ 1
q

= 1, p > 1 and B (·, ·) is Euler’s Beta mapping and

Ψ (α, β) :=
∫ 1

0
uα−1 (u+ 1)β−1 du, α, β > 0.

Proof. In (5.88) put x = a+b
2

and the right hand side is,

B̃ (2, 2q + 1, q + 2) =

∫ 2

0

(u− 1)2q uq+1du

=

∫ 1

0

(u− 1)2q uq+1du+

∫ 2

1

(u− 1)2q uq+1du

= B (2q + 1, q + 2) + Ψ (2q + 1, q + 2) .
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The right hand side of (5.88) is thus

‖f ′‖p
(
b−a
2

) 3q+2
q

(b− a)
1
p (q + 1)

1
q

[2B (2q + 1, q + 2) + 2Ψ (2q + 1, q + 2)]
1
q

=
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 2) + Ψ (2q + 1, q + 2)]
1
q ,

and the corollary is proved.

Finally, as f is absolutely continuous, f ′ ∈ L1 [a, b] and ‖f ′‖1 =∫ b
a
|f ′ (t)| dt, and we can state the following theorem [7].

Theorem 100. If the PDF, f : [a, b] → R+ is absolutely continuous
on [a, b], then

(5.97)

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ ‖f ′‖1 (b− a)

[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣]2

,

for all x ∈ [a, b].

Proof. As above, we can state that∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤ sup
(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

] 1

b− a

∫ b

a

∫ b

a

|f ′ (s)| dsdt

= ‖f ′‖1G,

where

G := sup
(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

]
≤ (b− a) sup

t∈[a,b]

(t− x)2

= (b− a) [max (x− a, b− x)]2

= (b− a)

[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣]2

,

and the theorem is proved.
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It is clear that the best inequality we can get from (5.97) is the one
when x = a+b

2
, giving the following corollary [7].

Corollary 63. With the assumptions of Theorem 100, we have:

(5.98)

∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)3

4
‖f ′‖1 .

3. Further Inequalities for Univariate Moments

3.1. Introduction. The aim of this section is to provide some
additional inequalities on expectation utilising a generalisation of

(5.99) E(X) = b−
∫ b

a

F (x)dx

to higher moments, as well as providing some specific results for the
extreme order statistics.

In addition, some results are obtained involving the covariance of
two random variables using a bivariate generalisation of (5.99) and
generalisations of the inequalities of Grüss and Ostrowski.

3.2. Univariate Results. Denote byMn the nth moment
∫ b
a
xnf (x) dx

which, using integration by parts, can be expressed as

(5.100) bn − n

∫ b

a

xn−1F (x) dx.

Consider now∣∣∣∣ 1

b− a

∫ b

a

xn−1F (x) dx− 1

(b− a)2

∫ b

a

xn−1dx

∫ b

a

F (x) dx

∣∣∣∣
for which various inequalities can be found. Before exploiting some of
these, we express the difference in terms of the distributional moments.

1

(b− a)2

∫ b

a

xn−1dx

∫ b

a

F (x) dx =
(bn − an)

n (b− a)2 {b− E (X)} .

We therefore have:∣∣∣∣ 1

b− a

∫ b

a

xn−1F (x) dx− (bn − an)

n (b− a)2 (b− E (X))

∣∣∣∣(5.101)

=

∣∣∣∣ bn
n (b− a)

− Mn

n (b− a)
− b (bn − an)

n (b− a)2 +
M1 (bn − an)

n (b− a)2

∣∣∣∣
=

∣∣∣∣ab (an−1 − bn−1)

n (b− a)2 − Mn

n (b− a)
+
M1 (bn − an)

n (b− a)2

∣∣∣∣
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=
1

n (b− a)2 |a
n (b−M1)− bn (a−M1)−Mn (b− a)| .

Now utilising various inequalities, we can obtain a number of results.

Pre-Grüss.
Using an inequality of [108] applied to (5.101), we have

1

n (b− a)2 |a
n (b−M1)− bn (a−M1)−Mn (b− a)|(5.102)

≤ 1

2

[
1

(b− a)

∫ b

a

x2(n−1)dx−
(

1

(b− a)

∫ b

a

xn−1dx

)2
] 1

2

=
1

2

[
b2n−1 − a2n−1

(b− a) (2n− 1)
−
(
bn − an

n (b− a)

)2
] 1

2

.

The special case when n = 2 gives:∣∣a2 (b− E (X))− b2 (a− E (X))− (b− a)
(
σ2 + (E (X))2)∣∣

≤ (b− a)2

[
b3 − a3

3 (b− a)
−
(
b2 − a2

2 (b− a)

)2
] 1

2

,

that is [19], ∣∣(b− E (X)) (E (X)− a)− σ2
∣∣

≤ (b− a)2

[
b2 + ab+ a2

3
− (b2 + 2ab+ a2)

4

] 1
2

=
(b− a)3

2
√

3
,

which is Theorem 3 of [6].

Pre-Chebychev.
Using a further result of [108] and (5.101) we can obtain

1

n (b− a)2 |a
n (b−M1)− bn (a−M1)−Mn (b− a)|

≤ (b− a)

2
√

3
‖f‖∞

[
1

(b− a)

∫ b

a

x2(n−1)dx−
(

1

(b− a)

∫ b

a

xn−1dx

)2
] 1

2

,
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giving

(5.103) |an (b−M1)− bn (a−M1)−Mn (b− a)|

≤ n (b− a)3

2
√

3
‖f‖∞

[
b2n−1 − a2n−1

(b− a) (2n− 1)
−
(
bn − an

n (b− a)

)2
] 1

2

.

The special case where n = 2 gives [19]:∣∣(b− E (X)) (E (X)− a)− σ2
∣∣ ≤ (b− a)3

6
‖f‖∞

which was obtained by Barnett and Dragomir in [18].

3.3. Lipschitzian Mappings. If xn−1F (x) is of the Lipschitzian
type, then ∣∣xn−1F (x)− yn−1F (y)

∣∣ ≤ L |x− y| ,
where L ≥ 0 in which case∣∣∣∣xn−1F (x)− 1

b− a

∫ b

a

xn−1F (x) dx

∣∣∣∣
≤ L

2

[(
x− a

b− a

)2

+

(
b− x

b− a

)2
]

(b− a) .

(Ostrowski’s inequality, [75].)
Now,∣∣∣∣xn−1F (x)− 1

b− a

∫ b

a

xn−1F (x) dx

∣∣∣∣ =

∣∣∣∣xn−1F (x)−
{
bn −Mn

n (b− a)

}∣∣∣∣
and thus we have:∣∣∣∣xn−1F (x)−

{
bn −Mn

n (b− a)

}∣∣∣∣ ≤ L

2

[(
x− a

b− a

)2

+

(
b− x

b− a

)2
]

(b− a) .

If n = 2, then∣∣∣∣xF (x)−
{
b2 −M2

2 (b− a)

}∣∣∣∣ ≤ L

2

[(
x− a

b− a

)2

+

(
b− x

b− a

)2
]

(b− a) .

Consider now the mapping F (x), x ∈ [a, b], then the mapping is
Lipschitzian if there exists L > 0 such that

|F (x)− F (y)| ≤ L |x− y| .
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Now, if F (·) is a cumulative distribution function, it is monotonic
increasing between 0 and 1 over [a, b]. It is apparent that there exists
z ∈ [x, y] such that

F (x)− F (y)

x− y
≤
[
dF (x)

dx

]
x=z

.

Thus, if we choose L = max
[
dF (x)
dx

]
x=z

for z ∈ [a, b], then this implies

that F (x) is Lipschitzian, since

|F (x)− F (y)| ≤ ‖f‖∞ |x− y| .

Consider similarly the mapping xF (x), it is also monotonic increas-
ing and by the same token, there exists z ∈ [x, y] such that∣∣∣∣xF (x)− yF (y)

x− y

∣∣∣∣ ≤ ∣∣∣∣[d (xF (x))

dx

]
x=z

∣∣∣∣ .
In addition, we have that∣∣∣∣[d (xF (x))

dx

]
x=z

∣∣∣∣ =

∣∣∣∣[F (x) + x
dF (x)

dx

]
x=z

∣∣∣∣
and hence∣∣∣∣F (z) + z

[
dF (x)

dx

]
x=z

∣∣∣∣ ≤ |F (z)|+
∣∣∣∣z [dF (x)

dx

]
x=z

∣∣∣∣
≤ 1 + ‖f‖∞ max {|a| , |b|} .

Thus, L can be taken to be

1 + ‖f‖∞ max {|a| , |b|}

and then

|xF (x)− yF (y)| < [1 + ‖f‖∞ max {|a| , |b|}] |x− y| ,

and so xF (x) is Lipschitzian.
Similarly it can be shown that xn−1F (x) is Lipschitzian for n =

3, 4, . . .
Thus [19],∣∣∣∣xF (x)−

{
b2 −M2

2 (b− a)

}∣∣∣∣
≤ 1

2
[1 + ‖f‖∞ max {|a| , |b|}]

[(
x− a

b− a

)2

+

(
b− x

b− a

)2
]

(b− a) .
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For x = a we get [19]∣∣M2 − b2
∣∣ =

∣∣σ2 +
(
(E (X))2)− b2

∣∣
≤ (b− a)2 [1 + ‖f‖∞ max {|a| , |b|}]

and for x = b we have [19]∣∣2b (b− a)− b2 +M2

∣∣ =
∣∣b2 − 2ab+M2

∣∣
=
∣∣b (b− 2a) + σ2 +

(
(E (X))2)∣∣

≤ (b− a)2 [1 + ‖f‖∞ max {|a| , |b|}] .

3.4. Distributions of the Maximum, Minimum and Range
of a Sample. Consider a continuous random variable X with a non-
zero probability density function over a finite interval [a, b] and let X1,
X2,. . . , Xn be a random sample . We investigate the distribution func-
tion of the maximum, minimum and the range of the random sample.

Maximum
Let the cumulative distribution function of the maximum be G (x),

the probability density function be g (x), and the corresponding func-
tions for X be F (x) and f (x). Then

G (x) = Pr [max ≤ x] = Pr [all X1, . . . , Xn ≤ x] .

Therefore G (x) = [F (x)]n and g (x) = n [F (x)]n−1 f (x).

Minimum
Let the cumulative distribution function of the minimum and the

probability density function be H (x) and h (x) respectively. Therefore

H (x) = Pr [min ≤ x] = 1− Pr [min ≥ x]

= 1− Pr [all X1, . . . , Xn ≥ x] = 1− [1− F (x)]n

and
h (x) = n [1− F (x)]n−1 f (x) .

Range
Let the distribution function of the range be R (x) and the proba-

bility density function be r (x).
Now, consider

K (s, t) = Pr [max ≤ s,min ≤ t]

= Pr [max ≤ s]− Pr [max ≤ s,min ≥ t]

= [F (s)]n − Pr {t ≤ all X1, . . . , Xn ≤ s}
= [F (s)]n − [F (s)− F (t)]n .
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Therefore, the joint probability density function of the extreme order
statistics can be found by differentiating this with respect to s and t,
giving

k (s, t) = n (n− 1) f (s) f (t) [F (s)− F (t)]n−2 , s > t

which for a random variable defined on [a, b] gives

r (x) = n (n− 1)

∫ b−x

s=a

f (s+ x) f (s) [F (s+ x)− F (s)]n−2 ds,

where 0 < x < b− a.

3.5. Application of the Grüss Inequality to Positive Inte-
ger Powers of a Function. As a preliminary to the proof of Grüss’
inequality we can establish the identity:

(5.104)
1

b− a

∫ b

a

g (x) f (x) dx

= p+

(
1

b− a

)2 ∫ b

a

f (x) dx ·
∫ b

a

g (x) dx,

where it can be subsequently shown that

|p| ≤ 1

4
[Γ− γ] [Φ− φ] ,

and γ,Γ, φ,Φ are respectively lower and upper bounds of f (x) and
g (x).

Applying this same identity to the square of a function, we have

(5.105)
1

b− a

∫ b

a

f 2 (x) dx = p1 +

(
1

b− a

)2(∫ b

a

f (x) dx

)2

Similarly,

1

b− a

∫ b

a

f 3 (x) dx = p2 +
1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

f 2 (x) dx

and using (5.104), we have

(5.106)
1

b− a

∫ b

a

f 3 (x) dx

= p2 +
p1

b− a

∫ b

a

f (x) dx+

(
1

b− a

)3(∫ b

a

f (x) dx

)3

.
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Continuing, we can show that for positive integers n, n ≥ 2

(5.107)
1

b− a

∫ b

a

fn (x) dx−
(

1

b− a

)n(∫ b

a

f (x) dx

)n
= pn−1 + pn−2

(
1

b− a

∫ b

a

f (x) dx

)
+ pn−3

(
1

b− a

∫ b

a

f (x) dx

)2

+ · · ·+ p1

(
1

b− a

∫ b

a

f (x) dx

)n−2

,

giving:∣∣∣∣∣ 1

b− a

∫ b

a

fn (x) dx−
(

1

b− a

)n(∫ b

a

f (x) dx

)n∣∣∣∣∣
≤ |pn−1|+ |pn−2|

∣∣∣∣ 1

b− a

∫ b

a

f (x) dx

∣∣∣∣+ . . .

+ |p1|

∣∣∣∣∣
(

1

b− a

∫ b

a

f (x) dx

)n−2
∣∣∣∣∣ ,

where

|p1| ≤
1

4
(Γ− γ)2 , γ < f (x) < Γ,

|p2| ≤
1

4
(Γ− γ) (Φ1 − φ1) , φ1 < f 2 (x) < Φ1,

|p3| ≤
1

4
(Γ− γ) (Φ2 − φ2) , φ2 < f 3 (x) < Φ2,

and so on.

Assuming that f (x) ≥ 0 and denoting
(

1
b−a

∫ b
a
f (x) dx

)n
by λn, we

have ∣∣∣∣∣ 1

b− a

∫ b

a

fn (x) dx−
(

1

b− a

)n(∫ b

a

f (x) dx

)n∣∣∣∣∣(5.108)

≤ 1

4
(Γ− γ)

[
Γn−1 − γn−1

]
+

1

4
(Γ− γ)

[
Γn−2 − γn−2

]
λ

+
1

4
(Γ− γ)

[
Γn−3 − γn−3

]
λ2 + . . .

+
1

4
(Γ− γ) (Γ− γ)λn−2
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≤ 1

4
(Γ− γ)

n−1∑
i=1

(
Γn−i − γn−i

)
λi−1.

Now, if f is a PDF, the right hand side reduces to

1

4
Γ
n−1∑
i=1

Γn−i
(

1

b− a

)i−1

=
1

4
Γn

n−1∑
i=1

(
1

Γ (b− a)

)i−1

=
1

4
Γn

1−
(

1
Γ(b−a)

)n−1

1− 1
Γ(b−a)


=

Γn

4Γn−2 (b− a)n−2

(
Γn−1 (b− a)n−1 − 1

Γ (b− a)− 1

)

=
Γ2

4 (b− a)n−2

(
Γn−1 (b− a)n−1 − 1

Γ (b− a)− 1

)
.

If we now consider this inequality for an associated cumulative distri-
bution function F (·), we have that

λ =
b− E (X)

b− a

and the right hand side of (5.108) becomes

1

4

n−1∑
i=1

(
b− E (X)

b− a

)i−1

=

[
(b− a)n−1 − (b− E (X))n−1]

4 (E (X)− a) (b− a)n−2 .

Thus, we have the two inequalities [19]:

(5.109)

∣∣∣∣ 1

b− a

∫ b

a

fn (x) dx−
(

1

b− a

)n∣∣∣∣
≤ Γ2

4 (b− a)n−2

(
Γn−1 (b− a)n−1 − 1

Γ (b− a)− 1

)
and

(5.110)

∣∣∣∣ 1

b− a

∫ b

a

F n (x) dx−
(
b− E (X)

b− a

)n∣∣∣∣
≤
[
(b− a)n−1 − (b− E (X))n−1]

4 (E (X)− a) (b− a)n−2 .
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Similarly, we can develop an inequality for 1 − F (x) by suitable sub-
stitution in (5.108), that is,

λ =
E (X)− a

b− a

which gives [19]∣∣∣∣∣ 1

b− a

∫ b

a

(1− F (x))n dx−
(

1

b− a

∫ b

a

(1− F (x)) dx

)n∣∣∣∣∣(5.111)

=

∣∣∣∣ 1

b− a

∫ b

a

(1− F (x))n dx−
(
E (X)− a

b− a

)n∣∣∣∣
≤
[
(b− a)n−1 − (E (X)− a)n−1]

4 (b− a)n−2 (b− E (X))
.

3.6. Inequalities for the Expectation of the Extreme Order
Statistics. As the PDF of the maximum is

g (x) = n [F (x)]n−1 f (x) ,

then

E [Xmax] = n

∫ b

a

x [F (x)]n−1 f (x) dx.

Integrating by parts gives

E [Xmax] = n

[[x
n

[F (x)]n
]b
a
− 1

n

∫ b

a

(F (x))n dx

]
= b−

∫ b

a

F n (x) dx

giving, from (5.110)

(5.112)

∣∣∣∣b− E [Xmax]

b− a
−
(
b− E (X)

b− a

)n∣∣∣∣
≤
[
(b− a)n−1 − (b− E (X))n−1]

4 (E (X)− a) (b− a)n−2

and when E (X) = a+b
2

, we have [19]

(5.113)

∣∣∣∣b− E [Xmax]

b− a
− 1

2n

∣∣∣∣ ≤ (2n−1 − 1

2n

)
.
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Consider now E (Xmin) = n
∫ b
x=a

xf (x) [1− F (x)]n−1 dx. Integration
by parts gives

E [Xmin] = n

[[
−x
n

[1− F (x)]n
]b
a
+

1

n

∫ b

a

(1− F (x))n dx

]
and so

E (Xmin) = a+

∫ b

a

(1− F (x))n dx.

Utilising (5.111) we have [19]

(5.114)

∣∣∣∣E (Xmin)− a

b− a
−
(
E (X)− a

b− a

)n∣∣∣∣
≤
[
(b− a)n−1 − (E (X)− a)n−1]

4 (b− a)n−2 (b− E (X))

and when E (X) = a+b
2

, we have, [19]

(5.115)

∣∣∣∣E (Xmin)− a

b− a
− 1

2n

∣∣∣∣ ≤ (2n−1 − 1

2n

)
.

3.7. Applications to the Beta Distribution. The Beta prob-
ability density function is given by

1

B (α, β)
xα−1 (1− x)β−1 , 0 < x < 1, α, β > 0,

then clearly,

E (X) =
1

B (α, β)

∫ 1

0

xα+1−1 (1− x)β−1 dx

=
1

B (α, β)
B (α+ 1, β)

=
Γ (α+ 1) Γ (α+ β)

Γ (α+ β + 1) Γ (α)

=
αΓ (α) Γ (α+ β)

(α+ β) Γ (α+ β) Γ (α)
=

α

(α+ β)
.

Substituting a = 0, b = 1 and letting ‘Γ’≡ m, from (5.109) we obtain∣∣∣∣∫ 1

0

fn (x) dx− 1

∣∣∣∣ ≤ m2 (1−mn−1)

4 (1−m)
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and further,∣∣∣∣ 1

Bn (α, β)

∫ 1

0

xn(α−1) (1− x)n(β−1) dx− 1

∣∣∣∣
=

∣∣∣∣B (n (α− 1) + 1, n (β − 1) + 1)

Bn (α, β)
− 1

∣∣∣∣ ≤ m2 (1−mn−1)

4 (1−m)

and m is the value of x for which f ′ (x) = 0, that is

(1− x)β−1 (α− 1)xα−2 + xα−1 (β − 1) (1− x)β−2 (−1) = 0.

xα−2 (1− x)β−2 {(α− 1) (1− x)− x (β − 1)} ,

i.e. m =
α− 1

α+ β − 2
, α, β > 1.

We then have the inequality [19]:∣∣∣∣B (n (α− 1) + 1, n (β − 1) + 1)

Bn (α, β)
− 1

∣∣∣∣
≤ (α− 1)2

4 (α+ β − 2) (β − 1)

{
1−

(
α− 1

α+ β − 2

)n−1
}
.

When α = β, the right hand side becomes 1
8

(
1− 1

2n−1

)
.

Consider now (5.112) when f (x) is the PDF of a Beta distribution.
This gives:∣∣∣∣1− E (Xmax)−

(
1− α

α+ β

)n∣∣∣∣ =

∣∣∣∣1− ( β

α+ β

)n
− E (Xmax)

∣∣∣∣
≤

[
1−

(
1− α

α+β

)n−1
]

4
(

α
α+β

)
=

(α+ β)n−1 − βn−1

4α (α+ β)n−2

and when α = β, this becomes:∣∣∣∣1− (1

2

)n
− E (Xmax)

∣∣∣∣ ≤ 1−
(

1
2

)n−1

2

and from (5.114)

∣∣∣∣E (Xmin)−
(

α

α+ β

)n∣∣∣∣ ≤
[
1−

(
α

α+β

)n−1
]

4
(
1− α

α+β

) =
(α+ β)n−1 − αn−1

4β (α+ β)n−2
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and when α = β ∣∣∣∣E (Xmin)−
1

2n

∣∣∣∣ ≤ 1−
(

1
2

)n−1

2
.

From these we can obtain further E (Xmin) ≤ 1
2

and 1
2
≤ E (Xmax) ≤

3
2
−
(

1
2

)n−1
.

3.8. Some Bounds for Joint Moments and Probabilities
Using Ostrowski Type Inequalities for Double Integrals. The
following result holds [19].

Theorem 101. Let X, Y be two continuous random variables x ∈
[a, b], y ∈ [c, d] with probability density function s f1 (·) and f2 (·) re-
spectively and with joint probability density function f (·, ·) with asso-
ciated cumulative distribution functions F1 (·) , F2 (·) and F (·, ·). It
follows that

(5.116) E (XY ) = bE (Y ) + dE (X)− bd+

∫ b

s=a

∫ d

t=c

F (s, t) dsdt.

This is a generalisation of the result

E (X) = b−
∫ b

a

F (s) ds

and is equivalent to:

(5.117) E (XY ) = bd− d

∫ b

a

F1 (s) ds

− b

∫ d

c

F2 (t) dt+

∫ b

s=a

∫ d

t=c

F (s, t) dsdt.

Proof. We have

E (XY ) =

∫ d

t=c

t

{∫ b

a

sf (s, t) ds

}
dt

and∫ b

a

sf (s, t) ds =

[
s

∫ s

u=a

f (u, t) du

]b
s=a

−
∫ b

s=a

(∫ s

u=a

f (u, t) du

)
ds

= bf2 (t)−
∫ b

s=a

(∫ s

u=a

f (u, t) du

)
ds,
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so

E (XY ) = b

∫ d

c

tf2 (t) dt−
∫ d

t=c

t

[∫ b

s=a

(∫ s

u=a

f (u, t) du

)
ds

]
dt

= bE (Y )−
∫ b

s=a

(∫ s

u=a

(∫ d

t=c

tf (u, t) dt

)
du

)
ds

Now∫ d

t=c

tf (u, t) dt =

[
t

∫ t

v=c

f (u, v) dv

]d
t=c

−
∫ d

t=c

(∫ t

v=c

f (u, v) dv

)
dt

= df1 (u)−
∫ d

t=c

(∫ t

v=c

f (u, v) dv

)
dt,

E (XY )

= bE (Y )−
∫ b

s=a

(∫ s

u=a

{
df1 (u)−

∫ d

t=c

(∫ t

v=c

f (u, v) dv

)
dt

}
du

)
ds,

= bE (Y )− d

∫ b

s=a

F1 (s) ds

+

∫ d

t=c

(∫ b

s=a

(∫ t

v=c

(∫ s

u=a

f (u, v) du

)
dv

)
ds

)
dt

= bE (Y ) + dE (X)− bd+

∫ b

s=a

∫ d

t=c

F (s, t) dsdt

and, equivalently,

E (XY ) = bd− d

∫ b

a

F1 (s) ds− b

∫ d

c

F2 (t) dt+

∫ b

a

∫ d

c

F (s, t) dsdt.

In [11] Barnett and Dragomir proved the following theorem.

Theorem 102. Let f : [a, b]× [c, d] → R be continuous on [a, b]×
[c, d], f ′′x,y = ∂2f

∂x∂y
exists on (a, b)× (c, d) and is bounded, i.e.,

∥∥f ′′s,t∥∥∞ := sup
(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f (x, y)

∂x∂y

∣∣∣∣ <∞
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then we have the inequality:

(5.118)

∣∣∣∣∫ b

a

∫ d

c

f (s, t) dsdt −
[
(b− a)

∫ d

c

f (x, t) dt

+ (d− c)

∫ b

a

f (s, y) ds− (d− c) (b− a) f (x, y)

]∣∣∣∣
≤

[
1

4
(b− a)2 +

(
x− a+ b

2

)2
]

×

[
1

4
(d− c)2 +

(
y − c+ d

2

)2
]∥∥f ′′s,t∥∥∞

for all (x, y) ∈ [a, b]× [c, d].

If we apply this taking f (·, ·) to be a joint cumulative distribution
function F (·, ·) with x = b, y = d we obtain∣∣∣∣∫ b

a

∫ d

c

F (s, t) dsdt− (b− a)

∫ d

c

F (b, t) dt

− (d− c)

∫ b

a

F (s, d) ds+ (d− c) (b− a)

∣∣∣∣
≤ 1

4
(b− a)2 (d− c)2

∥∥F ′′
s,t

∥∥
∞ ,

that is∣∣∣∣∫ b

a

∫ d

c

F (s, t) dsdt− (b− a)

∫ d

c

F2 (t) dt

− (d− c)

∫ b

a

F1 (s) ds+ (d− c) (b− a)

∣∣∣∣
≤ 1

4
(b− a)2 (d− c)2

∥∥F ′′
s,t

∥∥
∞ .

Using (5.117), this gives∣∣∣∣E (XY ) + a

∫ d

c

F2 (t) dt+ c

∫ b

a

F1 (s) ds− ad− bc+ ac

∣∣∣∣
= |E (XY ) + aE (Y )− cE (X) + ac|

≤ 1

4
(b− a)2 (d− c)2

∥∥F ′′
s,t

∥∥
∞

=
1

4
(b− a)2 (d− c)2 ‖f‖∞ ,

providing bounds for E (XY ) in terms of E (X) and E (Y ).
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Since Cov (X, Y ) = E (XY )−E (X) ·E (Y ) , we can write the left
hand side alternatively as:

Cov (X, Y ) + [c− E (Y )] [a− E (X)] .

We can similarly extract other bounds from (5.118) in the situations
where

(i) x = b, y = c,
(ii) x = a, y = d, and
(iii) x = a, y = c

giving respectively

|E (XY )− dE (X)− aE (Y ) + ad| ≤ 1

4
(b− a)2 (d− c)2 ‖f‖∞ ,

|E (XY )− cE (X)− bE (Y ) + bc| ≤ 1

4
(b− a)2 (d− c)2 ‖f‖∞

and

|E (XY )− dE (X)− bE (Y ) + bd| ≤ 1

4
(b− a)2 (d− c)2 ‖f‖∞ .

We can use the results of [77] by Dragomir, Cerone, Barnett and
Roumeliotis to obtain further inequalities relating the first single and
joint moments as well as some involving joint probabilities.

In [77], bounds were obtained for:∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (s, t) dsdt− f (x, y)

∣∣∣∣
namely M1 (x) +M2 (y) +M3 (x, y) where these are as defined in [77].
For one particular case we have

M1 (x) =

[
1
2
(b− a) +

∣∣x− a+b
2

∣∣]
(b− a) (d− c)

∥∥∥∥∂f (s, t)

∂t

∥∥∥∥
1

,

M2 (y) =

[
1
2
(d− c) +

∣∣y − c+d
2

∣∣]
(b− a) (d− c)

∥∥∥∥∂f (s, t)

∂s

∥∥∥∥
1

and

M3 (x, y) =

[
1
2
(b− a) +

∣∣x− a+b
2

∣∣] [1
2
(d− c) +

∣∣y − c+d
2

∣∣]
(b− a) (d− c)

×
∥∥∥∥∂2f (s, t)

∂s∂t

∥∥∥∥
1

.
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It follows then that if we choose f to be the joint cumulative dis-
tribution function, F (x, y), we can generate the following inequalities∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

F (s, t) dsdt

∣∣∣∣ ≤M1 (a) +M2 (c) +M3 (a, c) ,

and∣∣∣∣∫ b

a

∫ d

c

F (s, t) dsdt− Pr {X ≤ x, Y ≤ y}
∣∣∣∣

≤M1 (x) +M2 (y) +M3 (x, y) .

The first of these simplifies to give [19]:

|E (XY )− bE (Y )− dE (X) + bd|
≤ (b− a) + (d− c) + (d− c) (b− a) .

3.9. Further Inequalities for the Covariance Using the Grüss
Inequality. Consider functions f1 (·), f2 (·) and f (·, ·) where f1 is in-
tegrable over [a, b], f2 is integrable over [c, d] and f (x, y) is integrable
for x ∈ [a, b] and y ∈ [c, d]. Consider the integral∫ b

a

∫ d

c

f1 (s) f2 (t) f (s, t) dsdt =

∫ b

s=a

f1 (s)

(∫ d

t=c

f2 (t) f (s, t) dt

)
ds.

We have:

1

d− c

∫ d

c

f2 (t) f (s, t) dt−
(

1

d− c

)2 ∫ d

c

f2 (t) dt

∫ d

t=c

f (s, t) dt

= p1 (s) (say).

Hence,∫ b

a

∫ d

c

f1 (s) f2 (t) f (s, t) dsdt

=

∫ b

a

f1 (s)

{
p1 (s) (d− c) +

1

d− c

∫ d

c

f2 (t) dt

∫ d

c

f (s, t) dt

}
ds

= (d− c)

∫ b

a

p1 (s) f1 (s) ds

+
1

d− c

∫ d

c

f2 (t) dt

∫ d

c

(∫ b

a

f1 (s) f (s, t) ds

)
dt

and where

1

b− a

∫ b

a

f1 (s) · f (s, t) ds− 1

(b− a)2

∫ b

a

f1 (s) ds

∫ b

a

f (s, t) ds = p2 (t) .
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Therefore∫ b

a

∫ d

c

f1 (s) f2 (t) f (s, t) dsdt

= (d− c)

∫ b

a

p1 (s) f1 (s) ds+
1

(d− c)

∫ d

c

f2 (t) dt

×
∫ d

c

[
(b− a) p2 (t) +

1

b− a

∫ b

a

f1 (s) ds

∫ b

a

f (s, t) ds

]
dt

= (d− c)

∫ b

a

p1 (s) f1 (s) ds+
b− a

(d− c)

∫ d

c

f2 (t) dt

∫ d

c

p2 (t) dt

+
1

(b− a) (d− c)

∫ d

c

f2 (t) dt

∫ b

a

f1 (s) ds

∫ b

a

∫ d

c

f (s, t) dsdt

and thus

(5.119)

∣∣∣∣∫ b

a

∫ d

c

f1 (s) f2 (t) f (s, t) dsdt

− 1

(b− a) (d− c)

∫ d

c

f2 (t) dt

∫ b

a

f1 (s) ds

∫ b

a

∫ d

c

f (s, t) dsdt

∣∣∣∣
≤ (d− c) ‖p1‖∞

∫ b

a

|f1 (s)| ds+ (b− a) ‖p2‖∞
∫ d

c

|f2 (t)| dt.

Case 1. Now, if f1 (s) = s and f2 (t) = t, and f (·, ·) is a joint
probability density function, the left hand side becomes∣∣∣∣E (XY )− 1

4 (d− c) (b− a)

(
d2 − c2

) (
b2 − a2

)∣∣∣∣
=

∣∣∣∣E (XY )− 1

4
(b+ a) (d+ c)

∣∣∣∣ .
|p1 (s)| ≤ 1

2
‖f‖∞

[
(d3 − c3)

3 (d− c)
−
(

1

d− c

∫ d

c

tdt

)2
] 1

2

(see [108])

=
1

2
‖f‖∞

[
(d− c) (d2 + dc+ c2)

3 (d− c)
−
(

(d2 − c2)

2 (d− c)

)2
] 1

2

=
1

2
‖f‖∞

[
d2 + dc+ c2

3
− (d+ c)2

4

] 1
2

=
1

2
‖f‖∞ ×

1

2
√

3

[
d2 − 2dc+ c2

] 1
2 =

1

4
√

3
‖f‖∞ (d− c) .
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Similarly,

p2 ≤
a2 − b2

2
, a < 0, b < 0.

Now ∫ b

a

|f1 (s)| ds =
a2 + b2

2
, a < 0, b > 0

and similarly, ∫ d

c

|f2 (t)| dt ≤ b2 − a2

2
, a > 0, b > 0.

Thus, we then have for a < 0, b > 0, c < 0, d > 0:∣∣∣∣E (XY )− 1

4
(b+ a) (d+ c)

∣∣∣∣
≤ 1

4
√

3
‖f‖∞

(d− c)2 (a2 + b2)

2
+

1

4
√

3
‖f‖∞

(b− a)2 (c2 + d2)

2

=
1

8
√

3

[
(d− c)2 (a2 + b2

)
+ (b− a)2 (c2 + d2

)]
‖f‖∞

=
1

4
√

3

[(
a2 + b2

) (
c2 + d2

)
+ (ac+ db) (ad+ bc)

]
‖f‖∞ .

Case 2. If f1 (s) = s and f2 (t) = 1, and f (·, ·) = tφ (s, t) where
φ (·, ·) is a joint probability density function, then the left hand side is:∣∣∣∣∫ b

a

∫ d

c

stφ (s, t) dsdt− (d− c) (b2 − a2)

2 (d− c) (b− a)
E (Y )

∣∣∣∣
=

∣∣∣∣E (XY )− 1

2
(a+ b)E (Y )

∣∣∣∣ .
p2 is as above and

p1 ≤
1

2
‖f‖∞

[
1

d− c

∫ d

c

dt−
(

1

d− c

∫ d

c

dt

)2
] 1

2

= 0

and hence [19]∣∣∣∣E (XY )− 1

2
(a+ b)E (Y )

∣∣∣∣ ≤ (b− a)2 (c2 + d2)

8
√

3
‖f‖∞

when a < 0, b > 0, c < 0, d > 0.



CHAPTER 6

Inequalities for n-Time Differentiable PDFs

1. Random Variable whose PDF is n-Times Differentiable

1.1. Introduction. In [7], using the identity

(6.1) [x− E (X)]2 + σ2 (X) =

∫ b

a

(x− t)2 f (t) dt

and applying a variety of inequalities such as: Hölder’s inequality, pre-
Grüss, pre-Čebyšev, pre-Lupaş, or Ostrowski type inequalities, a num-
ber of results concerning the expectation and variance of the random
variable X have been obtained.

For example,

(6.2) σ2 (X) + [x− E (X)]2

≤



(b− a)
[

(b−a)2
12

+
(
x− a+b

2

)2] ‖f‖∞ , if f ∈ L∞ [a, b] ;[
(b−x)2q+1+(x−a)2q+1

2q+1

] 1
q ‖f‖p , if f ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;(
b−a
2

+
∣∣x− a+b

2

∣∣)2 ,
for all x ∈ [a, b], which imply, amongst other things, that

(6.3) σ (X) ≤



(b− a)
1
2

[
(b−a)2

12
+
[
E (X)− a+b

2

]2] 1
2 ‖f‖

1
2
∞ ,

if f ∈ L∞ [a, b] ;{
[b−E(X)]2q+1+[E(X)−a]2q+1

2q+1

} 1
2q ‖f‖

1
2
p ,

if f ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

b−a
2

+
∣∣E (X)− a+b

2

∣∣ ,
and

(6.4) σ2 (X) ≤ [b− E (X)] [E (X)− a] ≤ 1

4
(b− a)2 .

237
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In this section more accurate inequalities are obtained by assuming
that the PDF of X is n-time differentiable and that f (n) is absolutely
continuous on [a, b].

1.2. Some Preliminary Integral Identities. The following lemma,
which is interesting in itself, holds [8].

Lemma 28. Let X be a random variable whose PDF f : [a, b] → R+

is n-time differentiable and f (n) is absolutely continuous on [a, b], then,

(6.5) σ2 (X) + [E (X)− x]2

=
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

(k + 3) k!
f (k) (x)

+
1

n!

∫ b

a

(t− x)2

(∫ t

x

(t− s)n f (n+1) (s) ds

)
dt

for all x ∈ [a, b].

Proof. By Taylor’s formula with integral remainder, we recall
that,

(6.6) f (t) =
n∑
k=0

(t− x)k

k!
f (k) (x) +

1

n!

∫ t

x

(t− s)n f (n+1) (s) ds,

for all t, x ∈ [a, b].
Together with (6.1), we obtain

σ2 (X) + [E (X)− x]2(6.7)

=

∫ b

a

(t− x)2

[
n∑
k=0

(t− x)k

k!
f (k) (x)

+
1

n!

∫ t

x

(t− s)n f (n+1) (s) ds

]
dt

=
n∑
k=0

f (k) (x)

∫ b

a

(t− x)k+2

k!
dt

+
1

n!

∫ b

a

(t− x)2

(∫ t

x

(t− s)n f (n+1) (s) ds

)
dt,

and since

(6.8)

∫ b

a

(t− x)k+2

k!
dt =

(b− x)k+3 + (−1)k (x− a)k+3

(k + 3) k!
,

the identity (6.7) readily produces (6.5)
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We may state the following corollary as well [8].

Corollary 64. Under the above assumptions, we have

(6.9) σ2 (X) +

[
E (X)− a+ b

2

]2

=
n∑
k=0

[
1 + (−1)k

]
(b− a)k+3

2k+3 (k + 3) k!
f (k)

(
a+ b

2

)

+
1

n!

∫ b

a

(
t− a+ b

2

)2
(∫ t

a+b
2

(t− s)n f (n+1) (s) ds

)
dt.

The proof follows by using (6.7) with x = a+b
2

.
Another result is embodied in the following (see [8]).

Corollary 65. Under the above assumptions,

(6.10) σ2 (X) +
1

2

[
(E (X)− a)2 + (E (X)− b)2]

=
n∑
k=0

(b− a)k+3

(k + 3) k!

[
f (k) (a) + (−1)k f (k) (b)

2

]

+
1

n!

∫ b

a

∫ b

a

K (t, s) (t− s)n f (n+1) (s) dsdt,

where

K (t, s) :=


(t−a)2

2
if a ≤ s ≤ t ≤ b,

− (t−b)2
2

if a ≤ t < s ≤ b.

Proof. In (6.5), choose x = a and x = b, giving

(6.11) σ2 (X) + [E (X)− a]2

=
n∑
k=0

(b− a)k+3

(k + 3) k!
f (k) (a)

+
1

n!

∫ b

a

(t− a)2

(∫ t

a

(t− s)n f (n+1) (s) ds

)
dt,
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and

(6.12) σ2 (X) + [E (X)− b]2

=
n∑
k=0

(−1)k (b− a)k+3

(k + 3) k!
f (k) (b)

+
1

n!

∫ b

a

(t− b)2

(∫ t

b

(t− s)n f (n+1) (s) ds

)
dt.

Adding these and dividing by 2 gives (6.10).

Taking into account that µ = E (X) ∈ [a, b], then we also obtain
the following [8].

Corollary 66. With the above assumptions,

(6.13) σ2 (X) =
n∑
k=0

(b− µ)k+3 + (−1)k (µ− a)k+3

(k + 3) k!
f (k) (µ)

+
1

n!

∫ b

a

(t− µ)2

(∫ t

µ

(t− s)n f (n+1) (s) ds

)
dt.

Proof. The proof follows from (6.5) with x = µ ∈ [a, b].

We state the following lemma which is interesting in itself as well
[8].

Lemma 29. Let the conditions of Lemma 28 relating to f hold,
then, the following identity is valid

(6.14) σ2 (X) + [E (X)− x]2

=
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

k + 3
· f

(k) (x)

k!

+
1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds,

where

(6.15) K (x, s) =

 (−1)n+1 ψn (s− a, x− s) , a ≤ s ≤ x,

ψn (b− s, s− x) , x < s ≤ b,

with

(6.16) ψn (u, v) =
un+1

(n+ 3) (n+ 2) (n+ 1)
·
[
(n+ 2) (n+ 1)u2

+2 (n+ 3) (n+ 1)uv + (n+ 3) (n+ 2) v2
]
.
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Proof. From (6.5), an interchange of the order of integration gives

1

n!

∫ b

a

(t− x)2 dt

∫ t

x

(t− s)n f (n+1) (s) ds

=
1

n!

{
−
∫ x

a

∫ s

a

(t− x)2 (t− s)n f (n+1) (s) dtds

+

∫ b

x

∫ b

s

(t− x)2 (t− s)n f (n+1) (s) dtds

}
=

1

n!

∫ b

a

K̃n (x, s) f (n+1) (s) ds,

where

K̃n (x, s) =


pn (x, s) = −

∫ s

a

(t− x)2 (t− s)n dt, a ≤ s ≤ x,

qn (x, s) =

∫ b

s

(t− x)2 (t− s)n dt, x < s < b.

To prove the lemma it is sufficient to show that K ≡ K̃.
Now,

p̃n (x, s) = −
∫ s

a

(t− x)2 (t− s)n dt

= (−1)n+1

∫ s−a

0

(u+ x− s)2 undu

= (−1)n+1

∫ s−a

0

[
u2 + 2 (x− s)u+ (x− s)2]undu

= (−1)n+1 ψn (s− a, x− s) ,

where ψ (·, ·) is as given by (6.16).
Further,

q̃n (x, s) =

∫ b

s

(t− x)2 (t− s)n dt

=

∫ b−s

0

[u+ (s− x)]2 undu

= ψn (b− s, s− x) ,

where, again, ψ (·, ·) is as given by (6.16). Hence, K ≡ K̃ and the
lemma is proved.
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1.3. Some Estimates. We are now able to obtain the following
inequalities [8].

Theorem 103. Let X be a random variable whose probability den-
sity function f : [a, b] → R+ is n-time differentiable and f (n) is abso-
lutely continuous on [a, b], then

(6.17)

∣∣∣∣σ2 (X) + [E (X)− x]2

−
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

(k + 3) k!
f (k) (x)

∣∣∣∣∣

≤



‖f (n+1)‖∞
(n+1)!(n+4)

[
(x− a)n+4 + (b− x)n+4] , if f (n+1) ∈ L∞ [a, b] ;

‖f (n+1)‖
p

n!(n+3+ 1
q )

[
(x−a)n+3+1

q +(b−x)n+3+1
q

]
(nq+1)

1
q

, if f (n+1) ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
‖f (n+1)‖

1

n!(n+3)

[
(x− a)n+3 + (b− x)n+3] , if f (n+1) ∈ L1 [a, b] ,

for all x ∈ [a, b], where ‖·‖p (1 ≤ p ≤ ∞) are the usual Lebesgue norms

on [a, b].

Proof. By Lemma 28,

σ2 (X) + [E (X)− x]2(6.18)

−
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

k! (k + 3)
f (k) (x)

=
1

n!

∫ b

a

(t− x)2

(∫ t

x

(t− s)n f (n+1) (s) ds

)
dt

:= M (a, b;x) .

Clearly,

|M (a, b;x)|

≤ 1

n!

∫ b

a

(t− x)2

∣∣∣∣∫ t

x

(t− s)n f (n+1) (s) ds

∣∣∣∣ dt
≤ 1

n!

∫ b

a

(t− x)2

[
sup
s∈[x,t]

∣∣f (n+1) (s)
∣∣ ∣∣∣∣∫ t

x

|t− s|n ds
∣∣∣∣
]
dt
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≤
∥∥f (n+1)

∥∥
∞

n!

∫ b

a

(t− x)2 |t− x|n+1

n+ 1
dt

=

∥∥f (n+1)
∥∥
∞

(n+ 1)!

∫ b

a

|t− x|n+3 dt

=

∥∥f (n+1)
∥∥
∞

(n+ 1)!

[∫ x

a

(x− t)n+3 dt+

∫ b

x

(t− x)n+3 dt

]
=

∥∥f (n+1)
∥∥
∞

[
(x− a)n+4 + (b− x)n+4]

(n+ 1)! (n+ 4)
,

and the first inequality in (6.17) is obtained.
For the second, we use Hölder’s integral inequality to obtain

|M (a, b;x)|

≤ 1

n!

∫ b

a

(t− x)2

∣∣∣∣∫ t

x

|t− s|nq ds
∣∣∣∣ 1q ∣∣∣∣∫ t

x

∣∣f (n+1) (s)
∣∣p ds∣∣∣∣ 1p dt

≤ 1

n!

(∫ b

a

∣∣f (n+1) (s)
∣∣p ds) 1

p
∫ b

a

(t− x)2 |t− x|
nq+1

q dt

=
1

n!

∥∥f (n+1)
∥∥
p

(nq + 1)
1
q

∫ b

a

|t− x|n+2+ 1
q dt

=
1

n!

∥∥f (n+1)
∥∥
p

(nq + 1)
1
q

[
(b− x)n+3+ 1

q + (x− a)n+3+ 1
q

n+ 3 + 1
q

]
.

Finally, note that

|M (a, b;x)| ≤ 1

n!

∫ b

a

(t− x)2 |t− x|n
∣∣∣∣∫ t

x

∣∣f (n+1) (s)
∣∣ ds∣∣∣∣ dt

≤
∥∥f (n+1)

∥∥
1

n!

∫ b

a

|t− x|n+2 dt

=

∥∥f (n+1)
∥∥

1

n!

[
(x− a)n+3 + (b− x)n+3

n+ 3

]
,

and the third part of (6.17) is obtained.

It is obvious, that the best inequality in (6.17) is when x = a+b
2

,
giving Corollary 67 (see also [8]).
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Corollary 67. With the above assumptions on X and f ,

(6.19)

∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

−
n∑
k=0

[
1 + (−1)k

]
(b− a)k+3

2k+3 (k + 3) k!
f (k)

(
a+ b

2

)∣∣∣∣∣∣

≤



‖f (n+1)‖∞
2n+3(n+1)!(n+4)

(b− a)n+4 , if f (n+1) ∈ L∞ [a, b] ;

‖f (n+1)‖
p

2
n+2+1

q n!(n+3+ 1
q )
· (b−a)n+3+1

q

(nq+1)
1
q
, if f (n+1) ∈ Lp [a, b] ,

1
p

+ 1
q

= 1, p > 1;
‖f (n+1)‖

1

2n+2n!(n+3)
(b− a)n+3 , if f (n+1) ∈ L1 [a, b] .

The following corollary is interesting as it provides the opportunity
to approximate the variance when the values of f (k) (µ) are known,
k = 0, ..., n (cf. [8]).

Corollary 68. With the above assumptions and µ = a+b
2

, we have

(6.20)

∣∣∣∣∣σ2 (X)−
n∑
k=0

(b− µ)k+3 + (−1)k (µ− a)k+3

(k + 3) k!
f (k) (µ)

∣∣∣∣∣

≤



‖f (n+1)‖∞
(n+1)!(n+4)

[
(µ− a)n+4 + (b− µ)n+4] , if f (n+1) ∈ L∞ [a, b] ;

‖f (n+1)‖
p

n!(n+3+ 1
q )
·

[
(µ−a)n+3+1

q +(b−µ)
n+3+1

q

]
(nq+1)

1
q

,

if f (n+1) ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

‖f (n+1)‖
1

n!(n+3)

[
(µ− a)n+3 + (b− µ)n+3] , if f (n+1) ∈ L1 [a, b] .

The following result also holds [8].

Theorem 104. Let X be a random variable whose probability den-
sity function f : [a, b] → R+ is n-time differentiable and f (n) is abso-
lutely continuous on [a, b], then

(6.21)

∣∣∣∣σ2 (X) +
1

2

[
(E (X)− a)2 + (E (X)− b)2]

−
n∑
k=0

(b− a)k+3

(k + 3) k!

[
f (k) (a) + (−1)k f (k) (b)

2

]∣∣∣∣∣



1. RANDOM VARIABLE WHOSE PDF IS n-TIMES DIFFERENTIABLE 245

≤



1
(n+4)(n+1)!

∥∥f (n+1)
∥∥
∞ (b− a)n+4 ,

if f (n+1) ∈ L∞ [a, b] ;

1

n!(qn+1)
1
q [(n+2)q+2]

1
q

∥∥f (n+1)
∥∥
p

(b−a)n+3+1
q

(nq+1)
1
q
,

if f (n+1) ∈ Lp [a, b] , where p > 1, 1
p

+ 1
q

= 1;

1
2n!

∥∥f (n+1)
∥∥

1
(b− a)n+3 .

Proof. Using Corollary 65,

∣∣∣∣σ2 (X) +
1

2

[
(E (X)− a)2 + (E (X)− b)2]

−
n∑
k=0

(b− a)k+3

(k + 3) k!

[
f (k) (a) + (−1)k f (k) (b)

2

]∣∣∣∣∣
≤ 1

n!

∫ b

a

∫ b

a

|K (t, s)| |t− s|n
∣∣f (n+1) (s)

∣∣ dsdt =: N (a, b) .

It is obvious that,

N (a, b)

≤
∥∥f (n+1)

∥∥
∞

1

n!

∫ b

a

∫ b

a

|K (t, s)| |t− s|n dsdt

=
∥∥f (n+1)

∥∥
∞

1

n!

∫ b

a

(∫ t

a

|K (t, s)| |t− s|n ds+

∫ b

t

|K (t, s)| |t− s|n ds
)
dt

=
1

n!

∥∥f (n+1)
∥∥
∞

∫ b

a

[
(t− a)2

2
· (t− a)n+1

n+ 1
+

(t− b)2

2
· (b− t)n+1

n+ 1

]
dt

=
1

2 (n+ 1)!

∥∥f (n+1)
∥∥
∞

∫ b

a

[
(t− a)n+3 + (b− t)n+3] dt

=
1

2 (n+ 1)!

∥∥f (n+1)
∥∥
∞

[
(b− a)n+4

n+ 4
+

(b− a)n+4

n+ 4

]

=

∥∥f (n+1)
∥∥
∞

(n+ 4) (n+ 1)!
(b− a)n+4 ,

so the first part of (6.21) is proved.
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Using Hölder’s integral inequality for double integrals,

N (a, b)

≤ 1

n!

(∫ b

a

∫ b

a

∣∣f (n+1) (s)
∣∣p dsdt) 1

p

×
(∫ b

a

∫ b

a

|K (t, s)|q |t− s|qn dsdt
) 1

q

=
(b− a)

1
p

∥∥f (n+1)
∥∥
p

n!
·
[∫ b

a

(∫ t

a

|K (t, s)|q |t− s|qn ds

+

∫ b

t

|K (t, s)|q |t− s|qn ds
)
dt

] 1
q

=
(b− a)

1
p

∥∥f (n+1)
∥∥
p

n!
·

[∫ b

a

[
(t− a)2q

2q

∫ t

a

|t− s|qn ds

+
(t− b)2q

2q

∫ b

t

|t− s|qn ds

]
dt

] 1
q

=
(b− a)

1
p

∥∥f (n+1)
∥∥
p

n!
·

[∫ b

a

[
(t− a)2q (t− a)qn+1

2q (qn+ 1)

+
(t− b)2q (b− t)qn+1

2q (qn+ 1)

]
dt

] 1
q

=
(b− a)

1
p

∥∥f (n+1)
∥∥
p

n!
·
[

1

2q (qn+ 1)

] 1
q

×
[∫ b

a

(t− a)(n+2)q+1 dt+

∫ b

a

(b− t)(n+2)q+1 dt

] 1
q

=
(b− a)

1
p

∥∥f (n+1)
∥∥
p

n!
·
[

1

2q (qn+ 1)

] 1
q

×

[
(b− a)(n+2)q+2

(n+ 2) q + 2
+

(b− a)(n+2)q+2

(n+ 2) q + 2

] 1
q

=
2
∥∥f (n+1)

∥∥
p
(b− a)n+2+ 1

p
+ 2

q

n!2 (qn+ 1)
1
q ((n+ 2) q + 2)

1
q

=

∥∥f (n+1)
∥∥
p

[
(b− a)n+3+ 1

q

]
n! (qn+ 1)

1
q [(n+ 2) q + 2]

1
q

,
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and the second part of (6.21) is proved.
Finally, we observe that

N (a, b) ≤ 1

n!
sup

(t,s)∈[a,b]2
|K (t, s)| |t− s|n

∫ b

a

∫ b

a

∣∣f (n+1) (s)
∣∣ dsdt

=
1

n!

(b− a)2

2
· (b− a)n (b− a)

∫ b

a

∣∣f (n+1) (s)
∣∣ ds

=
1

2n!
(b− a)n+3

∥∥f (n+1)
∥∥

1
,

which is the final result of (6.21).

The following particular cases can be useful in practical applications
(see also [8]).

(1) For n = 0, (6.17) becomes

(6.22)

∣∣∣∣σ2 (X) + [E (X)− x]2

− (b− a)

[(
x− a+ b

2

)2

+
(b− a)2

12

]
f (x)

∣∣∣∣∣

≤



‖f ′‖∞
4

[
(x− a)4 + (b− x)4] , if f ′ ∈ L∞ [a, b] ;

q‖f ′‖p

3q+1

[
(x− a)3+ 1

q + (b− x)3+ 1
q

]
, if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖f ′‖1

[
(b−a)2

12
+
(
x− a+b

2

)2]
, if f ′ ∈ L1 [a, b] ,

for all x ∈ [a, b]. In particular, for x = a+b
2

,

(6.23)

∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)3

12
f

(
a+ b

2

)∣∣∣∣∣

≤



‖f ′‖∞
32

(b− a)4 , if f ′ ∈ L∞ [a, b] ;

q‖f ′‖p(b−a)3+
1
q

2
2+1

q (3q+1)
, if f ′ ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;
‖f ′‖1

12
(b− a)3 ,
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which is, in a sense, the best inequality that can be obtained
from (6.22). If in (6.22) x = µ = E (X), then,

(6.24)

∣∣∣∣∣σ2 (X)− (b− a)

[(
E (X)− a+ b

2

)2

+
(b− a)2

12

]
f (E (X))

∣∣∣∣∣

≤



‖f ′‖∞
4

[
(E (X)− a)4 + (b− E (X))4] , if f ′ ∈ L∞ [a, b] ;

‖f ′‖p

(3+ 1
q )

[
(E (X)− a)4 + (b− E (X))4] , if f ′ ∈ Lp [a, b] , p > 1,

‖f ′‖1

[
(b−a)2

12
+
(
E (X)− a+b

2

)2]
, if f ′ ∈ L1 [a, b] .

In addition, from (6.21),

(6.25)

∣∣∣∣σ2 (X) +
1

2

[
(E (X)− a)2 + (E (X)− b)2]
−(b− a)3

3

[
f (a) + f (b)

2

]∣∣∣∣∣
≤


1
4
‖f ′‖∞ (b− a)4 , if f ′ ∈ L∞ [a, b] ;

1

n!2
1
q (q+1)

1
q
‖f ′‖p (b− a)3+ 1

q , if f ′ ∈ Lp [a, b] , p > 1,

1
2
‖f ′‖1 (b− a)3 ,

which provides an approximation for the variance in terms of
the expectation and the values of f at the end points a and b.

We may now state and prove the following result as well (cf. [8]).

Theorem 105. Let X be a random variable whose PDF f : [a, b] →
R+ is n−time differentiable and f (n) is absolutely continuous on [a, b],
then,

(6.26)

∣∣∣∣σ2 (X) + (E (X)− x)2

−
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

k + 3
· f

(k) (x)

k!

∣∣∣∣∣
≤



[
(x− a)n+4 + (b− x)n+4] ‖f (n+1)‖∞

(n+1)!(n+4)
,

C
1
q

[
(x− a)(n+3)q+1 + (b− x)(n+3)q+1

] 1
q ‖f (n+1)‖

p

n!
,[

b−a
2

+
∣∣x− a+b

2

∣∣]n+3 · ‖
f (n+1)‖

1

n!(n+3)
,
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where

(6.27) C =

∫ 1

0

[
un+3

n+ 3
+ 2 (1− u)

un+2

n+ 2
+ (1− u)2 u

n+1

n+ 1

]q
du.

Proof. From (6.14),

(6.28)

∣∣∣∣σ2 (X) + (E (X)− x)2

−
n∑
k=0

(b− x)k+3 + (−1)k (x− a)k+3

k + 3
· f

(k) (x)

k!

∣∣∣∣∣
=

∣∣∣∣ 1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds

∣∣∣∣ .
Now, on using the fact that from (6.15), (6.16), ψn (u, v) ≥ 0 for u, v ≥
0,

(6.29)

∣∣∣∣ 1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds

∣∣∣∣
≤
∥∥f (n+1)

∥∥
∞

n!

{∫ x

a

ψn (s− a, x− s) ds

+

∫ b

x

ψn (b− s, s− x) ds

}
.

Further,

(6.30) ψn (u, v) =
un+3

n+ 3
+ 2v

un+2

n+ 2
+ v2 u

n+1

n+ 1
,

and so ∫ x

a

ψn (s− a, x− s) ds(6.31)

=

∫ x

a

[
(s− a)n+3

n+ 3
+ 2 (x− s)

(s− a)n+2

n+ 2

+ (x− s)2 (s− a)n+1

n+ 1

]
ds

= (x− a)n+4

∫ 1

0

[
λn+3

n+ 3
+ 2 (1− λ)

λn+2

n+ 2

+ (1− λ)2 λ
n+1

n+ 1

]
dλ,

where we have made the substitution λ = s−a
x−a .
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Collecting powers of λ gives

λn+3

[
1

n+ 3
− 2

n+ 2
+

1

n+ 1

]
− 2λn+2

(n+ 2) (n+ 1)
+
λn+1

n+ 1
,

and so, from (6.31),∫ x

a

ψn (s− a, x− s) ds(6.32)

= (x− a)n+4

{
1

n+ 4

[
1

n+ 3
− 2

n+ 2
+

1

n+ 1

]
− 2

(n+ 3) (n+ 2) (n+ 1)
+

1

(n+ 2) (n+ 1)

}
=

(x− a)n+4

(n+ 4) (n+ 1)
.

Similarly, on using (6.30),∫ b

x

ψn (b− s, s− x) ds

=

∫ b

x

[
(b− s)n+3

n+ 3
+ 2 (s− x)

(b− s)n+2

n+ 2

+ (s− x)2 (b− s)n+1

n+ 1

]
ds,

and making the substitution ν = b−s
b−x gives∫ b

x

ψn (b− s, s− x) ds(6.33)

= (b− x)n+4

∫ 1

0

[
νn+3

n+ 3
+ 2 (1− ν)

νn+2

n+ 2

+ (1− ν)2 ν
n+1

n+ 1

]
dν

=
(b− x)n+4

(n+ 4) (n+ 1)
,

where we have used (6.31) and (6.32). Combining (6.32) and (6.33)
gives the first inequality in (6.26).
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For the second inequality in (6.26), we use Hölder’s integral inequal-
ity to obtain

(6.34)

∣∣∣∣ 1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds

∣∣∣∣
≤

∥∥f (n+1) (s)
∥∥
p

n!

(∫ b

a

|Kn (x, s)|q ds
) 1

q

.

Now, from (6.15) and (6.30)∫ b

a

|Kn (x, s)|q ds =

∫ x

a

ψq (s− a, x− s) ds+

∫ b

x

ψq (b− s, s− x) ds

= C
[
(x− a)(n+3)q+1 + (b− x)(n+3)q+1

]
,

where C is as defined in (6.27) and we have used (6.31) and (6.32).
Substitution into (6.34) gives the second inequality in (6.26).

Finally, for the third inequality in (6.26), from (6.28),∣∣∣∣ 1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds

∣∣∣∣(6.35)

≤ 1

n!

{∫ x

a

ψn (s− a, x− s)
∣∣f (n+1) (s)

∣∣ ds
+

∫ b

x

ψn (b− s, s− x)
∣∣f (n+1) (s)

∣∣ ds}
≤ 1

n!

{
ψn (x− a, 0)

∫ x

a

∣∣f (n+1) (s)
∣∣ ds

+ ψn (b− x, 0)

∫ b

x

∣∣f (n+1) (s)
∣∣ ds} ,

where, from (6.30),

(6.36) ψn (u, 0) =
un+3

n+ 3
.

Hence, from (6.35) and (6.36)∣∣∣∣ 1

n!

∫ b

a

Kn (x, s) f (n+1) (s) ds

∣∣∣∣
≤ 1

n!
max

{
(x− a)n+3

n+ 3
,
(b− x)n+3

n+ 3

}∥∥f (n+1) (·)
∥∥

1

=
1

n! (n+ 3)
[max {x− a, b− x}]n+3

∥∥f (n+1) (·)
∥∥

1
,



252 6. INEQUALITIES FOR n-TIME DIFFERENTIABLE PDFS

which, on using the fact that for X, Y ∈ R

max {X, Y } =
X + Y

2
+

∣∣∣∣X − Y

2

∣∣∣∣
gives, from (6.28), the third inequality in (6.26). The theorem is now
completely proved.

Remark 81. The results of Theorem 105 may be compared with
those of Theorem 103. Theorem 105 is based on the single integral iden-
tity developed in Lemma 29, while Theorem 103 is based on the double
integral identity representation for the bound. It may be noticed from
(6.17) and (6.26) that the bounds are the same for f (n+1) ∈ L∞ [a, b],
that for f (n+1) ∈ L1 [a, b] the bound obtained in (6.17) is better and for
f (n+1) ∈ Lp [a, b], p > 1, the result is inconclusive.

2. Other Inequalities for the Expectation and Variance

2.1. Introduction. Based on the identity (see (5.46))

(6.37) σ2 (T ) + [x− E (T )]2 =

∫ b

a

(x− t)2 f (t) dt,

Barnett et al. [7] obtained a variety of bounds on the left hand side of
(6.37). Bounds involving higher order derivatives were obtained in [7],
by substituting a Taylor series expansion for f (t) in (6.37), in terms
of the Lp [a, b] norms of the resulting double integral.

Barnett and Dragomir [18] obtained further results for the variance
based on the identity

(6.38) σ2 (T ) + (E (T )− b) (E (T )− a) =

∫ b

a

(t− a) (t− b) f (t) dt.

The aim of the next section is to obtain a variety of bounds for
the variance from an identity which regains (6.37) and (6.38) as special
cases. Pre-Grüss, Čebyšev and Lupaş results are also obtained. Fur-
ther, substitution of a Taylor expansion with integral remainder allows
bounds to be obtained for the situation in which the PDF is n-time
differentiable. Taking a convex combination of expansions about two
separate points allows for further generalisations and a number of novel
results.

2.2. Integral Identities. The following lemma is interesting in
itself (see [33]).



2. OTHER INEQUALITIES FOR THE EXPECTATION AND VARIANCE 253

Lemma 30. Let f : [a, b] → R be a PDF of the random variable T ,
then, the following integral identity holds, involving the variance and
expectation

(6.39) σ2 (T ) + (E (T )− α) (E (T )− β) =

∫ b

a

(t− α) (t− β) f (t) dt,

where α, β ∈ [a, b] and α < β.

Proof. A simple expansion gives∫ b

a

(t− α) (t− β) f (t) dt =

∫ b

a

[
t2 − (α+ β) t+ αβ

]
f (t) dt,

which, upon using the definitions of the second and first moment to-
gether with the fact that f (·) is a PDF over [a, b] , gives∫ b

a

(t− α) (t− β) f (t) dt = σ2 (T ) +M2
1 − (α+ β)M1 + αβ(6.40)

= σ2 (T ) + (M1 − α) (M1 − β) ,

and hence (6.39) results on noting that M1 = E [T ] and M2 = σ2 (T )+
M2

1 .

Remark 82. If we take α = β = x, then identity (6.37) is recap-
tured from (6.39). If further, x = E (T ), then σ2 results. Taking α = a
and β = b in (6.39) gives the identity (6.38).

Another interesting identity follows (see [33]).

Lemma 31. Let T be a random variable whose PDF f : [a, b] → R
is n-time differentiable and f (n) is absolutely continuous on [a, b], then,
the following identity holds for z ∈ [a, b]

(6.41) σ2 (T ) + (E (T )− α) (E (T )− β)

=
n∑
k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!
+Rn+1 (z) ,

where

(6.42) Ur+1 (u) =
ur−1

r (r2 − 1)

{
r (r − 1)u2

+ 2
(
r2 − 1

) [
z − α+ β

2

]
u+ r (r + 1)αβ

}
,

and

(6.43) Rn+1 (z) =
1

n!

∫ b

a

(t− α) (t− β) ρn (t, z) dt,
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with

(6.44) ρn (t, z) =

∫ t

z

(t− s)n f (n+1) (s) ds.

Proof. Using Taylor’s formula with integral remainder and ex-
panding about t = z gives

(6.45) f (t) =
n∑
k=0

(t− z)k

k!
f (k) (z) +

1

n!
ρn (t, z) ,

for all t, z ∈ [a, b] with ρn (t, z) being given by (6.44).
Substitution of (6.45) into (6.39) gives

σ2 (T ) + (E (T )− α) (E (T )− β)(6.46)

=

∫ b

a

(t− α) (t− β)

{
n∑
k=0

(t− z)k

k!
f (k) (z) +

1

n!
ρn (t, z)

}
dt

=
n∑
k=0

[∫ b

a

(t− α) (t− β) (t− z)k dt

]
f (k) (z)

k!
+Rn+1 (z) ,

where Rn+1 (z) is as given by (6.43).
Now,∫ b

a

(t− α) (t− β) (t− z)k dt

=

∫ b−z

a−z
uk (u+ z − α) (u+ z − β) du

=

∫ b−z

a−z
uk
[
u2 − 2

[
z − α+ β

2

]
u+ αβ

]
du

=
uk+3

k + 3
− 2

[
z − α+ β

2

]
uk+2

k + 2
+ αβ

uk+1

k + 1

]b−z
a−z

,

and therefore

(6.47)

∫ b

a

(t− α) (t− β) (t− z)k dt = Uk+3 (u)

]b−z
a−z

,

where, after some simplification, Ur+1 (u) is as given in (6.42). Substi-
tution of (6.47) into (6.46) readily produces the result (6.41).

Remark 83. Taking α = β = z = x reproduces an identity obtained
by Barnett et al. [7]. Placing α = a and β = b with z = x gives
an n-time differentiable generalisation of identity (6.38) and is thus a
generalisation of the result of Barnett and Dragomir [18].
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We may also state the identity (see [33]) incorporated in the fol-
lowing.

Lemma 32. Let T be a random variable with PDF f : [a, b] → R
being n-time differentiable and f (n) absolutely continuous on [a, b], then,
the following identity holds

(6.48) σ2 (T ) + (E (T )− α) (E (T )− β)

=
n∑
k=0

{
λ [Vk+3 (b− α)− Vk+3 (a− α)] f (k) (α)

+ (1− λ) [Wk+3 (b− β)−Wk+3 (a− β)] f (k) (β)

}
+ λRn+1 (α) + (1− λ)Rn+1 (β) ,

where

(6.49)


Vk+3 (u) =

uk+2

(k + 3) (k + 2)
[(k + 2)u− (β − α) (k + 3)] ,

Wk+3 (u) =
uk+2

(k + 3) (k + 2)
[(k + 2)u+ (β − α) (k + 3)] ,

and Rn+1 (·) is as given by (6.43).

Proof. From (6.44), on letting z = α, we obtain

(6.50) f (t) =
n∑
k=0

(t− α)k

k!
f (k) (α) +

1

n!
ρn (t, α) ,

where ρn (t, ·) is as given in (6.44).
Additionally, taking z = β in (6.44) produces

(6.51) f (t) =
n∑
k=0

(t− β)k

k!
f (k) (β) +

1

n!
ρn (t, β) .

If we let λ ∈ [0, 1] and evaluate λ ·(6.50)+(1− λ) ·(6.51), we obtain

(6.52) f (t) =
n∑
k=0

[
λpk (t− α) f (k) (α) + (1− λ) pk (t− β) f (k) (β)

]
+
λ

n!
ρn (t, α) +

1− λ

n!
ρn (t, β) ,

where

(6.53) pk (u) =
uk

k!
,
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and ρn (t, ·) is as given by (6.44).
Substitution of (6.52) into (6.39) gives

σ2 (T ) + (E (T )− α) (E (T )− β)

=

∫ b

a

(t− α) (t− β)

{
n∑
k=0

[
λpk (t− α) f (k) (α)

+ (1− λ) pk (t− β) f (k) (β)
]
+
λ

n!
ρn (t, α) +

1− λ

n!
ρn (t, β)

}
=

n∑
k=0

(k + 1)

∫ b

a

[
λ (t− β) pk+1 (t− α) f (k) (α)

+ (1− λ) (t− α) pk+1 (t− β) f (k) (β)
]
dt

+ λRn+1 (α) + (1− λ)Rn+1 (β) ,

with Rn+1 (·) as given by (6.43).
Now, using (6.53)∫ b

a

(t− β) pk+1 (t− α) dt =
1

(k + 1)!

∫ b

a

(t− β) (t− α)k+1 dt

=
1

(k + 1)!

∫ b−α

a−α
uk+1 [u− (β − α)] du,

and so, ∫ b

a

(t− β) pk+1 (t− α) dt = Vk+3 (u)

]b−α
a−α

,

where Vk+3 (u) is as given by (6.49).
Similarly, interchanging α and β,∫ b

a

(t− α) pk+1 (t− β) dt =
1

(k + 1)!

∫ b−β

a−β
uk+1 [u+ (β − α)] du,

giving ∫ b

a

(t− α) pk+1 (t− β) dt = Wk+3 (u)

]b−β
a−β

,

where Wk+3 (u) is as given by (6.49).
The lemma is thus completely proved.

Remark 84. It may be noted that, identity (6.48) is a generaliza-
tion of (6.42) if α = β = z.
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2.3. Bounds Involving Lebesgue Norms of a Function . A
number of bounds can be derived using the identities developed in
Section 2.2 in terms of various norms. Here, ‖·‖p, 1 ≤ p ≤ ∞ are the

usual Lebesgue norms on [a, b] (see Theorem 84 and formula (5.49)).
The following result holds [33].

Theorem 106. Let f : [a, b] → R+ be the PDF of the random
variable T . Then,

(6.54)
∣∣σ2 (T ) + (E (T )− α) (E (T )− β)

∣∣

≤



{
1
3

[
(α− a)3 + (b− β)3]

+ β−α
6

[
3 (α− a)2 + (b− β)2]} ‖f‖∞ , for f ∈ L∞ [a, b] ;[

ψq (α− a) +Bq (β − α) + ψq (b− β)
] 1

q ‖f‖p ,
if f ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

θ (a, α, β, b) ‖f‖1 , f ∈ L1 [a, b] ,

where α, β ∈ [a, b] and α ≤ β,

ψq (X) =

∫ X

0

uq (u+ β − α)q du,(6.55)

Bq (X) =

∫ X

0

uq (β − α− u)q du,

and

(6.56) θ (a, α, β, b)

= max

{
(α− a) (β − a) ,

(
β − α

2

)2

, (b− α) (b− β)

}
.

Proof. From identity (6.39), let

(6.57) R0 (a, α, β, b) =

∫ b

a

(t− α) (t− β) f (t) dt,

and thus taking the modulus gives

(6.58) |R0 (a, α, β, b)| ≤ ‖f‖∞
∫ b

a

|(t− α) (t− β)| dt.
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Now, ∫ b

a

|(t− α) (t− β)| dt(6.59)

=

∫ α

a

(α− t) (β − t) dt+

∫ β

α

(t− α) (β − t) dt

+

∫ b

β

(t− α) (t− β) dt

=

∫ α−a

0

u (u+ β − α) du+

∫ β−α

0

u (β − α− u) du

+

∫ b−β

0

u (u+ β − α) du

=
1

3

[
(α− a)3 + (b− β)3]

+
β − α

2

[
(α− a)2 + (b− β)2]+

(β − α)3

6
.

A simple rearrangement of (6.59) and using (6.58) and (6.39) readily
produces the first inequality in (6.54).

From (6.55), by Hölder’s integral inequality, we obtain

|R0 (a, α, β, b)| ≤ ‖f‖p
(∫ b

a

|(t− α) (t− β)|q dt
) 1

q

(6.60)

:= ‖f‖pE
1
q
q (a, α, β, b) .

Then,

Eq (a, α, β, b) =

∫ α

a

(α− t)q (β − t)q dt+

∫ β

α

(t− α)q (β − t)q dt

+

∫ b

β

(t− α)q (t− β)q dt

=

∫ α−a

0

[u (u+ β − α)]q du+

∫ β−α

0

[u (β − α− u)]q du

+

∫ b−β

0

[u (u+ β − α)]q du.

Hence, from (6.60), the second inequality in (6.54) results, where ψq (·)
and Bq (·) are as defined in (6.55).
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For the last inequality in (6.54), observe from identity (6.39) and
the inequality

|R0 (a, α, β, b)| ≤ sup
t∈[a,b]

|(t− α) (t− β)| ‖f‖1 ,

that we have,

sup
t∈[a,b]

|(t− α) (t− β)|

= max

{
sup
t∈[a,α)

(α− t) (β − t) , sup
t∈(α,β)

(t− α) (β − t) ,

sup
t∈(β,b]

(t− α) (t− β)

}

= max

{
(α− a) (β − a) ,

(
β − α

2

)2

, (b− α) (b− β)

}
= θ (a, α, β, b) ,

as given by (6.57) and hence the theorem is completely proved.

Remark 85. If α = β = x is taken in (6.54), then the results
of Barnett et al. [7] based around the identity (6.37) are recaptured.
In addition, if x = E (T ), then the bounds are on the variance alone.
Taking α = a and β = b, the results of Barnett and Dragomir [18]
are obtained. Some simplifications occur that have not as yet been
developed, such as the result obtained from taking α = a and β = x.

Remark 86. The Euclidean norm is of special interest so that if
p = 2 and f ∈ L2 [a, b], then from (6.54),∣∣σ2 (T ) + (E (T )− α) (E (T )− β)

∣∣
≤ ‖f‖2 [ψ2 (α− a) +B2 (β − α) + ψ2 (b− β)]

1
2 ,

where, from (6.55),

ψ2 (X) =
X3

30

[
6X2 + 15 (β − α)X + 10 (β − α)2] ,

and

B2 (X) =
X3

30

[
6X2 − 15 (β − α)X + 10 (β − α)2] .

In addition, if we take α = β = x, we obtain∣∣σ2 (T ) + (E (T )− x)2
∣∣ ≤ 1√

5

[
(x− a)5 + (b− x)5] 1

2 ‖f‖2 ,
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and, for x = E (T ) ,

σ2 (T ) ≤ 1√
5

[
(E (T )− a)5 + (b− E (T ))5] 1

2 ‖f‖2 .

Taking α = a, β = b gives∣∣σ2 (T ) + (E (T )− a) (b− E (T ))
∣∣ ≤ (b− a)

5
2

√
30

‖f‖2 .

A pre-Grüss inequality is embodied in the following theorem. It
provides a sharper bound than the Grüss inequality (see [109] for a
statement of the Grüss inequality).

The following theorem was proven in [108] and is repeated here for
convenience.

Theorem 107. Let h, g be integrable functions defined on [a, b] and
let m ≤ g (t) ≤M . Then,

(6.61) |T (h, g)| ≤ M −m

2
[T (h, h)]

1
2 ,

where the Čebyšev functional,

(6.62) T (h, g) = M (hg)−M (h)M (g) ,

with

(6.63) M (f) =
1

b− a

∫ b

a

f (x) dx.

We may now state and prove the following result [33].

Theorem 108. Let f : [a, b] → R+ be a PDF of the random variable
T and such that, for m ≤ f ≤M , then

|Tp| :=
∣∣∣∣σ2 (T ) + (E (T )− α) (E (T )− β)(6.64)

−

[
(b− a)2

3
−
(
α+ β

2
− a

)
(b− a) + (α− a) (β − a)

]∣∣∣∣∣
≤ M −m

2
I (a, α, β, b) ,

where

(6.65) I (a, α, β, b)

=
(b− a)2

√
3

[
4

15
(b− a)2 −

(
α+ β

2
− a

)(
b− α+ β

2

)] 1
2

.



2. OTHER INEQUALITIES FOR THE EXPECTATION AND VARIANCE 261

Proof. Applying the pre-Grüss result (6.61) by associating f (t)
with g (t) and taking

(6.66) h (t) = (t− α) (t− β)

gives, on noting that M (f) = 1
b−a since f is a PDF,

(6.67)

∣∣∣∣∫ b

a

(t− α) (t− β) f (t) dt−M (h)

∣∣∣∣
≤ (b− a)

M −m

2
[T (h, h)]

1
2 ,

where, from (6.62),

(6.68) T (h, h) = M
(
h2
)
− [M (h)]2 .

Now, from (6.66) and (6.68)

M (h) =
1

b− a

∫ b

a

(t− α) (t− β) dt(6.69)

=
1

D

∫ D

0

(u− A) (u−B) du,

where

u = t− a, D = b− a, A = α− a, B = β − a,

giving,

(6.70) M (h) =
D2

3
− A+B

2
D + AB.

Further, following a similar argument to the above,

M
(
h2
)

=
1

D

∫ D

0

(u− A)2 (u−B)2 du(6.71)

=
1

D

∫ D

0

[
u2 − (A+B)u+ AB

]2
du

=
1

D

∫ D

0

{
u4 + (A+B)2 u2 + (AB)2

+ 2
[
ABu2 − AB (A+B)u− (A+B)u3

] }
du
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=
1

D

∫ D

0

{
u4 − 2 (A+B)u3 +

[
(A+B)2 + 2AB

]
u2

− AB (A+B)u+ (AB)2 }du
=
D4

5
− (A+B)

2
D3 +

[
(A+B)2 + 2AB

] D2

3

− AB
(A+B)

2
D + (AB)2 .

Thus, from (6.67), (6.69) and (6.70), we have, after some algebra

T (h, h) =
D2

3

[
4

15
D2 − A+B

2
D +

(
A+B

2

)2
]
.

Using the definitions (6.68), the inequality (6.66) and the identity
(6.39), gives the result (6.64) and, after some algebra, the theorem
is thus proved.

Remark 87. Taking α = a, β = b in (6.64)-(6.65) recaptures the
results obtained by Barnett and Dragomir [18] while allowing α = β =
x reproduces the results in Barnett et al. [7]. Note, from (6.65), that

I (a, α, β, b) ≤ 2(b−a)3

3
√

5
. In addition, note that if α+β

2
= a+b

2
in (6.65),

then

I (a, α, β, b) =
(b− a)3

6
√

3
,

which is 4 times better.

The following theorem holds [33].

Theorem 109. Let f : [a, b] → R and suppose that f (·) is differ-
entiable and is such that

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| <∞,

then,

(6.72) |Tp| ≤
b− a√

12
‖f ′‖∞ I (a, α, β, b) ,

where Tp is the perturbed result given by the left hand side of (6.64) and
I (a, α, β, b) is as given by (6.65).

Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be
bounded. Then, Čebyšev’s inequality holds (see [109])

|T (h, g)| ≤ (b− a)2

√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .
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Matić et al. [108], using a pre-Grüss type argument proved that

|T (h, g)| ≤ b− a√
12

sup
t∈[a,b]

|g′ (t)|
√
T (h, h).

Thus, associating f (·) with g (·) and h (·) with (6.66) produces (6.72)
where I (a, α, β, b) is as given by (6.65).

Another result is embodied in the following (see also [33]).

Theorem 110. Let f : [a, b] → R and suppose [α, β] ⊆ [a, b].
Further, suppose that f is locally absolutely continuous on (a, b) and
let f ′ ∈ L2 (a, b), then,

(6.73) |Tp| ≤
b− a

π
‖f ′‖2 I (a, α, β, b) ,

where Tp is the perturbed result given by the left hand side of (6.64) and
I (a, α, β, b) is as given by (6.65).

Proof. The following result was obtained by Lupaş (see [109]).
For h, g : (a, b) → R locally absolutely continuous on (a, b) and h′, g′ ∈
L2 (a, b), then,

|T (h, g)| ≤ (b− a)2

π2
‖h′‖2 ‖g

′‖2 ,

where

‖k‖2 :=

(
1

b− a

∫ b

a

|k (t)|2 dt
) 1

2

for k ∈ L2 (a, b) .

Moreover, Matić et al. [108] showed that

|T (h, g)| ≤ b− a

π
‖g′‖2

√
T (h, h).

Now, associating f (·) with g (·) and h (·) as given by (6.66) produces
(6.73) where I (a, α, β, b) is as found in (6.65).

2.4. Bounds Involving Lebesgue Norms of the n−th De-
rivative of a Function. In this section, bounds are obtained for
f (n) ∈ Lp [a, b], p ≥ 1 and n a non-negative integer.

The following result holds [33].

Theorem 111. Let T be a random variable whose PDF f : [a, b] →
R is n-time differentiable and f (n) is absolutely continuous on [a, b].
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The following inequalities hold for z ∈ [a, b],

Tn :=

∣∣∣∣σ2 (T ) + (E (T )− α) (E (T )− β)(6.74)

−
n∑
k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!

∣∣∣∣
≤ |Rn+1 (z)|

≤



[
φn+1 (a, α, z)− φn+1 (α, β, z) + φn+1 (β, b, z)

]
×‖

f (n+1)‖∞
(n+1)!

, f (n+1) ∈ L∞ [a, b] ;[
φn+ 1

q
(a, α, z)− φn+ 1

q
(α, β, z) + φn+ 1

q
(β, b, z)

]
×
‖f (n+1)‖

p

n!(nq+1)
1
q
, f (n+1) ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

[φn (a, α, z)− φn (α, β, z) + φn (β, b, z)]
‖f (n+1)‖

1

n!
,

f (n+1) ∈ L1 [a, b] ,

where Uk+3 (·) are as defined by (6.42),

(6.75) φn+γ (x1, x2, z)

=

∫ x2−z

x1−z
|u|n+γ (u+ z − α) (u+ z − β) du, x1 ≤ x2.

Proof. From identity (6.41), on taking the modulus, we have

(6.76) Tn = |Rn+1 (z)| ,

where Rn+1 (z) is as given by (6.43) and (6.44).
Now,

|Rn+1 (z)| ≤ 1

n!

∫ b

a

|(t− α) (t− β) ρn (t, z)| dt(6.77)

≤ 1

n!

{∫ α

a

(α− t) (β − t) |ρn (t, z)| dt

+

∫ β

α

(t− α) (β − t) |ρn (t, z)| dt

+

∫ b

β

(t− α) (t− β) |ρn (t, z)| dt
}
.
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Further, using properties relating to the modulus and integral, and
Hölder’s integral inequality, gives

|ρn (t, z)| ≤


sup
s∈[z,t]

∣∣f (n+1) (s)
∣∣ ∣∣∣∫ tz |t− s|n ds

∣∣∣ ,∣∣∣∫ tz ∣∣f (n+1) (s)
∣∣p ds∣∣∣ 1p ∣∣∣∫ tz |t− s|nq ds

∣∣∣ 1q ,
|t− z|n

∣∣∣∫ tz ∣∣f (n+1) (s)
∣∣ ds∣∣∣ ,

and hence

(6.78) |ρn (t, z)| ≤



sup
s∈[z,t]

∣∣f (n+1) (s)
∣∣ |t−z|n+1

n+1∣∣∣∫ tz ∣∣f (n+1) (s)
∣∣p ds∣∣∣ 1p ( |t−z|nq+1

nq+1

) 1
q
,∣∣∣∫ tz ∣∣f (n+1) (s)

∣∣ ds∣∣∣ |t− z|n .

For f (n+1) ∈ L∞ [a, b] using (6.78) and (6.77) gives

|Rn+1 (z)| ≤
∥∥f (n+1)

∥∥
∞

(n+ 1)!

[
φn+3 (a, α, z)− φn+3 (α, β, z) + φn+3 (β, b, z)

]
,

where

φn+1 (x1, x2, z) =

∫ x2

x1

(t− α) (t− β) |t− z|n+1 dt,

which, on substitution of u = t− z, produces (6.75) with γ = 1 and so
the first inequality in (6.74) is obtained.

For the second inequality in (6.74), substitution of the second in-
equality from (6.78) into (6.77) gives, after substitution of u = t− z,

|Rn+1 (z)| ≤

∥∥f (n+1)
∥∥
p

n! (nq + 1)
1
q

×
[
φn+ 1

q
(a, α, z)− φn+ 1

q
(α, β, z) + φn+ 1

q
(β, b, z)

]
,

where φ is as defined in (6.75).
Finally, the third inequality in (6.74) is obtained by placing the

third inequality in (6.78) into (6.77). In the above, we have used the
fact that the respective norm over any subinterval, as represented in
(6.78), is less than or equal to the equivalent norm over [a, b].

Remark 88. Result (6.74) is very general, containing three param-
eters α, β and z to be specified besides the degree of differentiability of
the PDF f .
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Perturbed results on Tn as defined by (6.74) will now be obtained
[33].

Theorem 112. Let f : [a, b] → R+, a PDF of the random variable
T , be such that dn+1 ≤ f (n+1) (t) ≤ Dn+1 for t ∈ [a, b], then,

(6.79)

∣∣∣∣σ2 (T ) + (E (T )− α) (E (T )− β)

−
n∑
k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!
+ (−1)nM (h)

×

[
1−

n∑
k=0

(b− z)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (z)

∣∣∣∣
≤ θn (z)

2
· I (a, α, β, b) ,

(6.80)

where

M (h) = (b−a)2
3

−
(
α+β

2
− a
)
(b− a) + (α− a) (β − a) ,

Uk+3 (·) are as defined in (6.42),

I (a, α, β, b) is as given by (6.65),
and

θn (z)

=


Dn+1

(n+1)!

[
(z − a)n+1 + (b− z)n+1] , n even,

1
(n+1)!

max
{
(z − a)n+1 dn+1, (b− z)n+1Dn+1

}
, n odd

.

Proof. Applying the pre-Grüss result (6.61) and associating 1
n!
ρn (t, z)

as given by (6.44) with g (t) and taking h (t) as defined in (6.66), gives

(6.81)

∣∣∣∣∫ b

a

(t− α) (t− β)
ρn (t, z)

n!
dt−M (h) · 1

n!
M (ρn (·, z))

∣∣∣∣
≤ Γ (z)− γ (z)

2
(b− a) [T (h, h)]

1
2 ,

where T (h, h) is as defined in (6.68) and

(6.82) γ (z) ≤ ρn (t, z)

n!
≤ Γ (z) , for t ∈ [a, b] .
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Further, M (h) is as given by (6.70) with A = α − a, B = β − a and
D = b− a.

Now,

(b− a)

n!
M (ρn (·, z))(6.83)

=
1

n!

∫ b

a

∫ t

z

(t− s)n f (n+1) (s) dsdt

=
1

n!

[∫ z

a

∫ t

z

(t− s)n f (n+1) (s) dsdt

+

∫ b

z

∫ t

z

(t− s)n f (n+1) (s) dsdt

]
=

1

n!

[
−
∫ z

a

∫ s

a

(t− s)n f (n+1) (s) dtds

+

∫ b

z

∫ b

s

(t− s)n f (n+1) (s) dtds

]
=

1

n!

[
(−1)n+1

∫ z

a

(s− a)n+1

n+ 1
f (n+1) (s) ds

+

∫ b

z

(b− s)n+1

n+ 1
f (n+1) (s) ds

]

= (−1)n+1

[∫ b

a

f (t) dt

−
n∑
k=0

(b− z)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (z) ,

where, to obtain the last result, we have used an identity obtained in
Cerone et al. [41] (Lemma 2.1, equation (2.1)) involving an Ostrowski
result for n-time differentiable functions.

We need to obtain the bounds on ρn (t, z) for all t ∈ [a, b]. We are
given that

(6.84) dn+1 ≤ f (n+1) (t) ≤ Dn+1.

For the case t ≥ z, from (6.84) we have

dn+1

∫ t

z

(t− s)n

n!
ds ≤ ρn (t, z)

n!
≤ Dn+1

∫ t

z

(t− s)n

n!
ds,
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that is,

(t− z)n+1

(n+ 1)!
dn+1 ≤

ρn (t, z)

n!
≤ Dn+1

(t− z)n+1

(n+ 1)!
, t ∈ [z, b]

and so for t ≥ z,

(6.85) 0 ≤ ρn (t, z)

n!
≤ Dn+1

(b− z)n+1

(n+ 1)!
.

For the situation t < z, two separate cases need to be considered,
namely, whether n is even or odd.

From (6.84) we have

(6.86) dn+1

∫ z

t

(t− s)n

n!
ds ≤ −ρn (t, z)

n!
≤ Dn+1

∫ z

t

(t− s)n

n!
ds,

and so, for n even

(z − t)n+1

(n+ 1)!
dn+1 ≤ −ρn (t, z)

n!
≤ (z − t)n+1

(n+ 1)!
Dn+1,

−(z − t)n+1

(n+ 1)!
Dn+1 ≤

ρn (t, z)

n!
≤ −(z − t)n+1

(n+ 1)!
dn+1, t ∈ [a, z] ,

giving for any t ≤ z and n even

(6.87) −(z − a)n+1

(n+ 1)!
Dn+1 ≤

ρn (t, z)

n!
≤ 0.

If n is odd, then from (6.86)

−(z − t)n+1

(n+ 1)!
dn+1 ≤ −ρn (t, z)

n!
≤ −(z − t)n+1

(n+ 1)!
Dn+1,

giving

(z − t)n+1

(n+ 1)!
Dn+1 ≤

ρn (t, z)

n!
≤ (z − t)n+1

(n+ 1)!
dn+1, t ∈ [a, z] ,

and so for t < z and n odd

(6.88) 0 ≤ ρn (t, z)

n!
≤ (z − a)n+1

(n+ 1)!
dn+1.

Thus, for n even, from (6.85) and (6.87), for all t ∈ [a, b]

(6.89) −(z − a)n+1

(n+ 1)!
Dn+1 ≤

ρn (t, z)

n!
≤ (b− z)n+1

(n+ 1)!
Dn+1.
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For n odd, from (6.85) and (6.88), for all t ∈ [a, b]

0 ≤ ρn (t, z)

n!
(6.90)

≤ 1

(n+ 1)!
max

{
(z − a)n+1 dn+1, (b− z)n+1Dn+1

}
.

Using (6.89) and (6.90) gives, from (6.81) and (6.82), θn (z) = Γ (z)−
γ (z) as defined in (6.80). Substitution of identity (6.41) into (6.81)

and using the fact that I (a, α, β, b) = (b− a) [T (h, h)]
1
2 , where h is as

defined by (6.68), produces (6.79). We have further, in (6.83), used the
fact that f is a PDF.

Remark 89. Čebyšev and Lupaş of Theorems 108 and 109 could
be obtained here in a straightforward fashion for the expressions on
the left of (6.79). The bound would be different and involve behaviour
of f (n+2) (·) instead of f (n+1) (·). This, however, will not be pursued
further.

Finally, we have (see also [33])

Theorem 113. Let T be a random variable with PDF f : [a, b] → R
being n−time differentiable and f (n) is absolutely continuous on [a, b].
The following inequality holds

κn :=

∣∣∣∣σ2 (T ) + (E (T )− α) (E (T )− β)(6.91)

−
n∑
k=0

{
λ [Vk+3 (b− α)− Vk+3 (a− α)] f (k) (α)

+ (1− λ) [Wk+3 (b− β)−Wk+3 (a− β)] f (k) (β)

}∣∣∣∣
≤ λ |Rn+1 (α)|+ (1− λ) |Rn+1 (β)|
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(6.92) ≤



[
λYn+1 (α) + (1− λ)Yn+1 (β) + ζn+1 (β − α)

]
×‖

f (n+1)‖∞
(n+1)!

, f (n+1) ∈ L∞ [a, b] ;[
λYn+ 1

q
(α) + (1− λ)Yn+ 1

q
(β) + ζn+ 1

q
(β − α)

]
×
‖f (n+1)‖

p

n!(nq+1)
1
q
, f (n+1) ∈ Lp [a, b] , p > 1, 1

p
+ 1

q
= 1;

[λYn (α) + (1− λ)Yn (β) + ζn (β − α)]
‖f (n+1)‖

1

n!
,

f (n+1) ∈ L1 [a, b] ;

where Vk+3 (·), Wk+3 (·) are as defined in (6.49) and

(6.93) Yn+γ (·) = A (· − a) +B (b− ·)
with

(6.94)



A (u)

= un+γ+2

(n+γ+3)(n+γ+2)
[(n+ γ + 2)u+ (β − α) (n+ γ + 3)] ,

B (u)

= un+γ+2

(n+γ+3)(n+γ+2)
[(n+ γ + 2)u− (β − α) (n+ γ + 3)] ,

and

ζn+γ (β − α) = −2B (β − α) = −2(β−α)n+γ+2

(n+γ+3)(n+γ+2)
.

Proof. Rearranging identity (6.48) and using the triangle inequal-
ity produces inequality (6.91).

Now, from the right hand side of (6.74), let

Xn+γ (α) = χn+γ (a, α, β, b, α)(6.95)

= φn+γ (a, α, α)− φn+γ (α, β, α) + φn+γ (β, b, α) .

From (6.75),

φn+γ (a, α, α) =

∫ 0

a−α
|u|n+γ u (u− (β − α)) du

=

∫ a−α

0

un+γ+1 (u+ β − α) du = A (α− a) ,

φn+γ (α, β, α) =

∫ β−α

0

un+γ+1 (u− (β − α)) du = B (β − α) ,
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and

φn+γ (β, b, α) =

∫ b−α

β−α
un+γ+1 (u− (β − α)) du

= B (b− α)−B (β − α) .

Hence, substitution into (6.95) gives

Xn+γ (α) = A (α− a)− 2B (β − α) +B (b− α)

and so

(6.96) Xn+γ (α) = Yn+γ (α) + ζn+γ (β − α) ,

as defined in (6.93) and (6.94).
Again, from the right hand side of (6.74) and (6.93), let

Xn+γ (β) = χn+γ (a, α, β, b, β)(6.97)

= φn+γ (a, α, β)− φn+γ (α, β, β) + φn+γ (β, b, β) .

From (6.75)

φn+γ (a, α, β) =

∫ α−β

a−β

∣∣un+γ
∣∣u (u+ β − α) du

=

∫ β−α

β−a
un+γ+1 (β − α− u) du

=

∫ β−a

β−α
un+γ+1 (u− (β − α)) du

= B (β − a)−B (β − α) ,

φn+γ (α, β, β) =

∫ 0

α−β

∣∣un+γ
∣∣u (u+ β − α) du

=

∫ β−α

0

un+γ+1 (u− (β − α)) du = B (β − α) ,

and

φn+γ (β, b, β) =

∫ b−β

0

|u|n+γ+1 (u+ β − α) du = A (b− β) .

Hence, substitution into (6.97) gives

Xn+γ (β) = B (β − a)− 2B (β − α) + A (b− β) ,

and so,

(6.98) Xn+γ (β) = Yn+γ (β) + ζn+γ (β − α) .
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On using (6.74) and (6.91), we have, from (6.96) and (6.98),

λXn+γ (α) + (1− λ)Xn+γ (β)

= λYn+γ (α) + (1− λ)Yn+γ (β) + ζn+γ (β − α) ,

and so (6.92) is obtained for γ = 1, 1
q

and 0 respectively.

Remark 90. Perturbed results on κn as defined in (6.92) may be
obtained here in a similar fashion to those of Theorem 112. This,
however, will not be pursued further.
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