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ABSTRACT. The main aim of this monograph is to survey some
recent results obtained by the author related to reverses of the
Schwarz, triangle and Bessel inequalities. Some Griiss’ type in-
equalities for orthonormal families of vectors in real or complex
inner product spaces are presented as well. Generalizations of the
Boas-Bellman, Bombieri, Selberg, Heilbronn and Pecari¢ inequali-
ties for finite sequences of vectors that are not necessarily orthogo-
nal are also provided. Two extensions of the celebrated Ostrowski’s
inequalities for sequences or real numbers and the generalization
of Wagner’s inequality in inner product spaces are pointed out. Fi-
nally, some Griiss type inequalities for n-tuples of vectors in inner
product spaces and their natural applications for the approxima-
tion of the discrete Fourier and Mellin transforms are given as well.
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Preface

The theory of Hilbert spaces plays a central role in contemporary
mathematics with numerous applications for Linear Operators, Partial
Differential Equations, in Nonlinear Analysis, Approximation Theory,
Optimization Theory, Numerical Analysis, Probability Theory, Statis-
tics and other fields.

The Schwarz, triangle, Bessel, Gram and most recently, Griiss type
inequalities have been frequently used as powerful tools in obtaining
bounds or estimating the errors for various approximation formulae oc-
curring in the domains mentioned above. Therefore, any new advance-
ment related to these fundamental facts will have a flow of important
consequences in the mathematical fields where these inequalities have
been used before.

The main aim of this monograph is to survey some recent results
obtained by the author related to reverses of the Schwarz, triangle
and Bessel inequalities. Some Griiss type inequalities for orthonor-
mal families of vectors in real or complex inner product spaces are
presented as well. Generalizations of the Boas-Bellman, Bombieri, Sel-
berg, Heilbronn and Pecari¢ inequalities for finite sequences of vectors
that are not necessarily orthogonal are also provided. Two extensions
of the celebrated Ostrowski inequalities for sequences of real numbers
and the generalization of Wagner’s inequality in inner product spaces
are pointed out. Finally, some Griiss type inequalities for n-tuples of
vectors in inner product spaces and their natural applications for the
approximation of the discrete Fourier and Mellin transforms are given
as well.

The monograph may be used by researchers in different branches
of Mathematical and Functional Analysis where the theory of Hilbert
spaces is of relevance. Since it is self-contained and all the results are
completely proved, the work may be also used by graduate students
interested in Theory of Inequalities and its Applications.

The Author,

February, 2004.






Part 1

Reverse Inequalities






CHAPTER 1

Reverses for the Schwarz Inequality

1. Introduction

Let H be a linear space over the real or complex number field K.
The functional (-,-) : H x H — K is called an inner product on H if it
satisfies the conditions

(i) (z,z) > 0 for any x € H and (z,z) =0 iff z = 0;
(i) (ax + By, z) = a{z,z)+ [ (y, z) for any o, f € Kand z,y, 2z €
H;
(iii) (y,z) = (x,y) for any z,y € H.
A first fundamental consequence of the properties (i)-(iii) above, is
the Schwarz inequality:

(1.1) [, 9)” < {a,2) (y, ),

for any =,y € H. The equality holds in if and only if the vectors
x and y are linearly dependent, i.e., there exists a nonzero constant
a € K so that x = ay.

If we denote ||z|| ;== /(z, ),z € H, then one may state the follow-
ing properties

(n) ||z|| > 0 for any 2 € H and ||z|| = 0 iff x = 0;
(nn) ||az|| = |a|||z| for any a € K and = € H;
(nnn) ||z + y|| < ||z||+||y|| for any z,y € H (the triangle inequality);

i.e., |||l is a norm on H.

In this chapter we present some recent reverse inequalities for the
Schwarz and the triangle inequalities. More precisely, we point out
upper bounds for the nonnegative quantities

2 2 2
[l lyll = Kz, )5 =l lyll” = [z, v)]
and
[zl + [yl = [l= + vl

under various assumptions for the vectors z,y € H.

1



2 1. REVERSES FOR THE SCHWARZ INEQUALITY

If the vectors x,y € H are not orthogonal, i.e., (x,y) # 0, then
some upper bounds for the supra-unitary quantities

2 2
Nzl Iyl Nzl llyll
[z, )| [, )

are provided as well.

2. An Additive Reverse of the Schwarz Inequality

2.1. Introduction. Let @ = (ay,...,a,) and b = (by,...,b,) be
two positive n—tuples with

(2.1) 0<mi <a; <M <ooand 0 < my <b <M< oo

for each 7 € {1,...,n}, and some constants my, my, My, Ms.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequal-
ity for positive sequences of real numbers are well known:

(1) Polya-Szegi’s inequality [20]
Dokt O e L b2 / /
(ke arby)”
(2) Shisha-Mond’s inequality |2
1 172
Dokt Bk Dy Wb _ (M1>2 <m1) ’
n - n 2 = — “—\ a5 .
Zk:1 aiby Zk:l bk mao M,
(3) Ozeki’s inequality [19]
" 2
n
; a Z 62 (; akbk> S Z (MlMg — m1m2)2 .

(4) Diaz-Metcalf’s inequality [2]

ZbZ szz Zai < (% + %) Zakbk.

k=1

If w = (wy,...,w,) is a positive sequence, then the following
weighted inequalities also hold:

(1) Cassel’s inequality [23]. If the positive real sequences a =
(ay,...,a,) and b = (by,...,b,) satisfy the condition

(2.2) O<m§%§M<ooforeachk:€{1,...,n},
k
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then

(ke wia}) (Choy wild) _ (M +m)”
(> ket wrarby)” —  4mM

(2) Greub-Reinboldt’s inequality [12]. We have

- My My + mims)? [ w ’
(St (L) = Ui (S )
k=1 k=1 k=1

provided @ = (ai,...,a,) and b = (by,...,b,) satisfy the con-

dition )
(3) Generalised Diaz-Metcalf’s inequality [2], see also [17), p. 123].
If u,v €[0,1] and v < u, u+v =1 and holds, then one
has the inequality

3

n n n
u Z wibi + vMm Z wrai < (vm + uM) Z wWraby.
k=1 k=1 k=1

(4) Klamkin-McLenaghan’s inequality [15]. If a, b satisfy (2.2)),
then

n n n 2
=1 i=1 =1
i=1 i=1

For other recent results providing discrete reverse inequalities, see
the recent monograph online [5].

In this section, by following [3], we point out a new reverse of
Schwarz’s inequality in real or complex inner product spaces. Particular
cases for isotonic linear functionals, integrals and sequences are also
given.

2.2. An Additive Reverse Inequality. The following reverse of
Schwarz’s inequality in inner product spaces holds [3].

THEOREM 1. Let A,a € K (K=C,R) and x,y € H. If
(2.4) Re (Ay — xz,x — ay) > 0,
or, equivalently,

a+ A

(2.5) .

xr —

1
o < 31a-alll,
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holds, then one has the inequality
1
(2.6) OSHMHWW—K%MFSZ

The constant % 1S sharp in .

PROOF. The equivalence between (2.4) and (2.5) can be easily
proved, see for example [10].
Let us define

1= Re | (Al ~ (z.9)) (Te.] ~allyl”),

2 4
[A—=al™[lyl"-

and
L = [ly* Re (Ay — z, 2 — ay) .
Then
I = lylP Re [ATe,9) +@ (,9)] = Iz ) = ly]' Re (A7)
and

I, = lyl* Re [ Az 5] +a (z,5)] — lal* Ioll* ~ lly)' Re (4a)

which gives
2 112 2
L =1 = |z [[ylI” = [z, 9",
for any z,y € H and a, A € K. This is an interesting identity in itself

as well.
If (2.4) holds, then I, > 0 and thus

@7) 2l Il = e, ) < Re | (Allgll® = (2. )) ((.0 —allgll’) ]

Further, if we use the elementary inequality for u,v € K (K = C,R)

Re (uv) < }l]u+vl2,
then we have, for
wi=Alyl* = (z,y), vi=(z,y) —aly|”
that
28)  Re[(Alyl® — (r.0) (T o) —alol®)] < 514 o ol

Making use of the inequalities (2.7)) and ({2.8]), we deduce ([2.6)).
Now, assume that (2.6)) holds with a constant C' > 0, i.e.,

4
(2.9) l[* [ly1* = [z, 9)* < C1A = al* |lyl*,
where z,y, a, A satisfy (2.4)).
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Consider y € H, |ly|| =1, a # Aand m € H, |m| = 1 with m L y.

Define
_A+a +A—a
=— Y 5 m.

T .

Then
2

A—
e (y—m,y—l—m>:(),

2
and thus the condition (2.4)) is fulfilled. From ([2.9) we deduce

=]

2

2
(2.10) "A—zkay+A2—am —’<A;ay+A;am,y>
< C|A-al?,
and since
A+a A—a | A+al®> |A—al®
H p Yt :’ 2 ‘ 2
and
A+a A—a 2 A+al?
(St S| |5
then, by , we obtain
#SC’A—CLE,

which gives C' > i, and the theorem is completely proved. 1

2.3. Applications for Isotonic Linear Functionals. Let F' (T)
be an algebra of real functions defined on T and L a subclass of F (T)
satisfying the conditions:
(i) f,g € L implies f +g € L;
(ii) f € L, « € R implies af € L.
A functional A defined on L is an isotonic linear functional on L
provided that

(a) A(af+ Bg) =aA(f)+ BA(g) for all a, B € R and f, g € L;
(aa) f > g, thatis, f(t) > g (t) forallt € T, implies A (f) > A(g).
The functional A is normalised on L, provided that 1 € L, i.e.,
1(t) =1forall t € T, implies A (1) = 1.
Usual examples of isotonic linear functionals are integrals, sums,
ete.
Now, suppose that h € F(T), h > 0 is given and satisfies the
properties that fgh € L, fh € L, gh € L for all f,g € L. For a
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given isotonic linear functional A : L — R with A (h) > 0, define the
mapping (-,+) 4, : L x L — R by

(f, Q)A,h = Afijg}q:) :

This functional satisfies the following properties:

(8) (fs f)ap = 0forall f el

(ss) (af + By, k)A,h =a(f, k)A,h+ﬁ(ga k)AJZ for all f, g,k € L and
a, 3 € R;

(sss) (f, g)A,h = (g7f)A,h for all f,g € L.

The following reverse of Schwarz’s inequality for positive linear
functionals holds [3].

PROPOSITION 1. Let f,g,h € F (T) be such that fgh € L, f?h € L,
g*h € L. If m, M are real numbers such that

(2.11) mg < f< Mg onF(T),

then for any isotonic linear functional A : L — R, with A (h) > 0, we
have the inequality

(212) 0< A(hf?) A(hg®) — [A(hfo)]’ <

The constant % m s sharp.

Proor. We observe that
(Mg—f>f—m9),4,h =A[h (Mg — f)(f —mg)] = 0.
Applying Theorem (1| for (-, ), , we get

(M —m)* A2 (hg?) .

N

1
0<(f, f)A,h (gvg)A,h —(f, g)i&,h < 1 (M — m)2 (979),24,11?
which is clearly equivalent to (2.12)). n
The following corollary holds.

COROLLARY 1. Let f,g € F(T) such that fg, f*,g* € F(T). If
m, M are real numbers such that holds, then

(2.13) 0<A(f2)A(g®) — A% (fg) < i(M —m)* A% (¢%).
The constant i s sharp in .

REMARK 1. The condition may be replaced with the weaker
assumption

(Mg — f, f —mg) 4, = 0.
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2.4. Applications for Integrals. Let ({2, X, ) be a measure space
consisting of a set ), 3 a o—algebra of subsets of {2 and p a countably
additive and positive measure on 3 with values in RU {oo} .

Denote by L2 (Q,K) the Hilbert space of all K-valued functions f

defined on Q2 that are 2—p—integrable on Q, i.e., [, p () |f (s) *dp (s) <
00, where p: 2 — [0, 00) is a measurable function on .

The following proposition contains a reverse of the weighted Cauchy-
Bunyakovsky-Schwarz’s integral inequality [3].

PROPOSITION 2. Let A,a € K (K=C,R) and f,g € L2 (Q,K). If

211) [ Re[(ag(9)~ 1) (TG ~a3))] p(s)d(s) 20
or, equivalently,
_a+ A

NI

holds, then one has the inequality

OS/Q/)(SHJ‘(S)IQdu(S)/p(S) g ()" dpe (5)

Q

du (s) <

g(s)

1 2
<ol ([ re)lsoR )

Q

The constant i 1s best possible.

PRrOOF. Follows by Theorem (1japplied for the inner product (-, <), :
L2 (Q,K) x L2 (Q,K) — K,

oy i= [ 0(6) £ ()3T (o).

REMARK 2. A sufficient condition for to hold is
Re [(Ag (s) — f(9)) (W—E g(s))} >0, for p—ae sl

In the particular case p = 1, we have the following reverse of the
Cauchy-Bunyakovsky-Schwarz inequality.

COROLLARY 2. Let a, A€ K (K=C,R) and f,g € L* (Q,K). If
(2.15) / Re [(4g (s) 7 (s)) () ~a 7(s))] due(s) > 0,
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or, equivalently,
a+ A 2

1 2 2
L1 =520 du) < j1a=af [lg@Pdu),

holds, then one has the inequality

o< [P [ lao)F duts) -

<Lasap (/Q|g<s>|2du<s>)2.

The constant i 18 best possible

REMARK 3. If K =R, then a sufficient condition for either
or to hold s
ag(s) < £ (5) < Ag(s), for p—ae s€Q,
where, in this case, a, A € R with A > a > 0.

g(s)

2

/Q £ (5) 9 ) (s)

2.5. Applications for Sequences. For a given sequence (w;);cy
of nonnegative real numbers, consider the Hilbert space ¢2 (K), (K = C,R),

where
oo
Zwi 2zi|* < oo} :

2 (K) = {i = (7;);,ey CK

The following proposition that provides a reverse of the weighted
Cauchy-Bunyakovsky-Schwarz inequality for complex numbers holds.

PROPOSITION 3. Let a, A € K and X,y € 2 (K). If
(2.16) i w; Re [(Ay; — x;) (T; —a 5;)] > 0,
i=0
then one has the inequality
0< iwi EAk iwi lyi|” —
i=0 i=0

The constant % 1S sharp.

2

2
1 oo
§1|A—a|2 <§ wi|yi|2> .
i=0

(o)
E W;x;Y;
i=0

PRrOOF. Follows by Theorem [l|applied for the inner product (-, -)
0 (K) x £, (K) = K,

w

w *

[e.e]
(X, ¥)y = Y 0.
=0
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REMARK 4. A sufficient condition for ( to hold is
Re [(Ay; — x;) (T; — ag;)] > 0, for all i € N.

In the particular case w; = 1, ¢ € N, we have the following reverse
of the Cauchy-Bunyakovsky-Schwarz inequality.

COROLLARY 3. Leta,A € K (K=C,R) and X,y € (*(K). If

(2.17) Z Re [(Ay; — x;) (T; — ag;)] > 0,

then one has the mequalzty

00 2
0 < Z |x’b| Z |,%| - Zx’byz < i _ CL|2 (Z |yz|2> '
1=0

REMARK 5. If K =R, then a sufficient condition for either
or to hold s

ay; < x; < Ay; for each i € N,

with A > a > 0.

3. A Generalisation of the Cassels Inequality

3.1. Introduction. The following result was proved by J.W.S.
Cassels in 1951 (see Appendix 1 of [23]).

THEOREM 2. Leta = (ay,...,a,), b= (by,...,b,) be sequences of
positive real numbers and W = (wl, ..., Wy) a sequence of nonnegative
real numbers. Suppose that

(3.1) m = min L M = max il
i=tn | b; i=1n | b

Then one has the inequality
Dict w;a3 D it w;b; < (m + M)2
(Cr, wiab)® T AmM
The equality holds in when wy = ——, w, = HL Wy = -+ =

a1by’
wn,lzo,m:‘lﬁ—? and M :Z—:L.

(3.2)

If one assumes that 0 <a < a; < A<ooand 0 <b<bh; < B <
for each ¢ € {1,...,n}, then by (3.2) we may obtain Greub-Reinboldt’s
inequality [12]

Dy Wiag Y wib} < (ab + AB)2
(Cr wiab;)®  ~ 4abAB
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The following “unweighted” Cassels’ inequality also holds

S YL B (m ot MY
(Ciab)® T AmM T
provided @ and b satisfy (3.1). This inequality will produce the well

known Pdlya-Szego inequality |20, pp. 57, 213-114], [17, pp. 71-72,
253-255]:

S aiyr b2<(ab—|—AB)2

=1 """ =1 "1

(F ab)? — 4abAB

i=1 Qi

provided 0 < a < a; < A< ooand 0 < b < b < B < oo for each
ie{l,...,n}.

In [18], C.P. Niculescu proved, amongst others, the following gen-
eralisation of Cassels’ inequality:

THEOREM 3. Let E be a vector space endowed with a Hermitian
product (-,-). Then

Y) .2
2 w Q
YY) \/§+\/;

for every x,y € E and every w, Q) > 0 for which Re (x — wy, z — Q) <
0.

(33) Rel

(x,z

(

In this section, by following [4], we establish a generalisation of ((3.3])
for the complex numbers w and € for which Re (@€2) > 0. Applications
for isotonic linear functionals, integrals and sequences are also given.

3.2. An Inequality in Real or Complex Inner Product Spaces.
The following reverse of Schwarz’s inequality in inner product spaces

holds [4].

THEOREM 4. Let a,A € K (K=C,R) so that Re (@A) > 0. If
x,y € H are such that

(3.4) Re (Ay — xz,x — ay) > 0,
then one has the inequality
Re |A{z,y) + a(x,y)
1 ) ) 1 A
3.5) lzllllyll <5 - [ ; < - L’a‘l (2, )] -
2 aAVE 2 AN
[Re (@A)]? [Re (@A)]?

The constant % 1 sharp in both inequalities.
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Proor. We have, obviously, that
I :=Re(Ay — z,xz — ay)
= Re [Afz, g} +a(w,9)| — o)’ — [Re @A)y
and, thus, by , one has
oIl + [Re (@A)] - ly]|* < Re [ATz, 9} +a (2,9)] .

which gives

Re [A<£L‘, y) +a(z, y>]
[Re (@A)] '

(3.6) l2]1* + [Re (@A)]? |y])* <

N =
N

[Re (aA)]
On the other hand, by the elementary inequality

1
ap® + —q¢* > 2pq,
e
valid for p, ¢ > 0 and « > 0, we deduce

1 _qd
(3.7) 2l lyll € ———— llz|I* + [Re @A)]? [ly]*-
[Re (@A)]?
Utilizing (3.6)) and (3.7)) we deduce the first part of (3.5)).
The second part is obvious by the fact that for z € C, |Re (2)| < |z|.
Now, assume that the first inequality in (3.5)) holds with a constant

c >0, ie.,

Re [A(x, y) +ax, y>]
[Re (@A)]2

(3:8) [zl lyll < ¢

Y

where a, A, x and y satisfy (3.5)).
If we choose a = A =1, y = = # 0, then obviously (3.4) holds and

from (|3.8) we obtain
2 2
]| < 2¢ =]
giving ¢ > %

The theorem is completely proved. 1

The following corollary is a natural consequence of the above theo-
rem [4].

COROLLARY 4. Let m,M > 0. If z,y € H are such that
Re (My — z,x — my) > 0,



12 1. REVERSES FOR THE SCHWARZ INEQUALITY

then one has the inequality

1 M+m 1 M+m
3.9 < = Re (z,y) < = - ’ _
(3.9) | ly| < 5 i (z,y) 5 i [(z,y)]

The constant % 1s sharp in .
REMARK 6. The inequality 18 equivalent to Niculescu’s in-

equality .

The following corollary providing an additive reverse for the Schwarz
inequality is also obvious [4].

COROLLARY 5. With the assumptions of Corollary[]], we have
(3.10) 0 < |zl lyll = Kz, »)| < [lz[llyll — Re {z, )

(ar—ym)y (VAT v
N YD e(z,y) < Wy (2, 9)|
and
B1) < ol Il ~ 1) < el Bl — [Re (e )]
<) fRe oy < B

1 1
The constants 5 and 3 are sharp.

PRrROOF. If we subtract Re (x,y) > 0 from the first inequality in
(13.9), we get

el I - Re (2.9) < (5 + S ~ 1) Reeun)
- <\/M_ \/m>2 Re (x,y)
N

which proves the third inequality in (3.10|). The other ones are obvious.
Now, if we square the first inequality in (3.9) and then subtract
[Re (z, )], we get

2 2 2 (M + m)2 2
el Il — Re o) < | L1 [Re o, )
(M -m)? )
- 4mM [Re<$,y>] 9

which proves the third inequality in (3.11)). The other ones are obvi-
ous. I
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3.3. Applications for Isotonic Linear Functionals. The fol-
lowing proposition holds [4].

PROPOSITION 4. Let f,g,h € F (T) be such that fgh € L, f?h € L,
g*h € L. If m, M > 0 are such that

(3.12) mg < f< Mg onF(T),

then for any isotonic linear functional A : L — R with A(h) > 0, we
have the inequality

A(f?h) A(g?h) _ (M +m)’
(3.13) < —75 Gah) S

The constant % in is sharp.

ProoF. We observe that
(Mg —f.f—mg)ay, = Alh (Mg — f) (f —mg)] = 0.
Applying Corollary | for (-,-),, we get

| < (faf)A,h (gvg)A,h < (M~|—m)27
- (f’g)Aﬁ - 4dmM

which is clearly equivalent to (3.13). 1
The following additive versions of (3.13]) also hold [4].

COROLLARY 6. With the assumption in Proposition[], one has

0<[A(f?h) A (th)}% — A(hfg)

(-,
< Nei (hfg)

and
0<A (f2h) A (g2h) — A2 (fgh)

(M —m)*
< 4m—MA2 (fgh).

1 1
The constants 5 and 7 are sharp.

REMARK 7. The condition may be replaced with the weaker
assumption

(3.14) (Mg — f,f —mg),, > 0.
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REMARK 8. With the assumption or and if f,g €
F(T) with fg, f?,g*> € L, then one has the inequalities

L AUDA(P) _ (M +m)’

- A%2(fg) —  4AmM

0< [A(f2) A(g%)]" — A(fg)
(vat - )’
2vVmM

<

A(fg)

and
0<A(f)A(d°) — A% (fg) < %;Mm)Az (fg)-

3.4. Applications for Integrals. The following proposition con-
tains a reverse of the weighted Cauchy-Bunyakovsky-Schwarz integral
inequality.

PROPOSITION 5. Let A,a € K (K = C,R) with Re (@A) > 0 and
fge Ly (QK). If

315) [ Re[(g ()= 7 () (TG =73(9)] p(s) () 2 0

then one has the inequality

(3.16) [/QP(S)IJ”(S)\Qdu(S)/Qp(S) g ()" dpe (S)}

_ 1 pr(s) Re :Amg (s)+af(s) m} dy (s)
2 [Re (aA)]?

1 |Al+al e T (s

3 B INCCHCHCLIClE

The constant % 18 sharp in .

PRrROOF. Follows by Theorem [4|applied for the inner product (-, -)
[2(Q,K) x L2 (2,K) — K,

(f.g) = / p(3) £ (5) 7 () (s).

o

REMARK 9. A sufficient condition for to hold s
Re [(Ag (s) — f (s)) (f (s) —ag (s))} >0, forp-a.e. s€.
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In the particular case p = 1, we have the following result.

COROLLARY 7. Let a,A € K (K= C,R) with Re (@A) > 0 and
fr9€ L2 (QK). If

1) [ Re[(g () =7 () (TG a5 ) dulo) = 0
then one has the inequality

[ [ |9(8)I2du(8)r

JoRe [AF (s)g () +f ()9 (s)| dye (s)
[Re (@A)]
Al +al

[Re (@A)]* /Qf<s)9(8)du ()]

REMARK 10. IfK =R, then a sufficient condition for either
or to hold is

ag (s) < f(s) < Ag(s), for p-ae s€Q,

IN

N|=

AN
N = N

where, in this case, a, A € R with A > a > 0.

If a, A are real positive constants, then the following proposition
holds.

PROPOSITION 6. Let m, M > 0. If f,g € Lz (Q,K) such that

o [0 () = 1 6)) () =3 3)) ] () >

then one has the inequality

[/§2P(8)|f(3)|2dﬂ(s)/ﬂp(s) |g(5)|2dlu(3):|
I M+m
<3~

The proof follows by Corollary [4f applied for the inner product

oy i= [ () £ ()5l (o).

p(s)Re |f (5)g(s)] dpe(s)

The following additive versions also hold [4].
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COROLLARY 8. With the assumptions in Proposition[d, one has the
imequalities

0| [p@)1f P [ o) la ) du o)
- / p(s)Re [ ()9 ()] d (5

VAT - i)
! fm_éj | otome 736 duts

and

0< / o ()17 () dp (5) / 0 (5) 19 ()2 dpe (s)

~([ore s a0 du(S))2

< % (/Qms)Re F(5)56)] du<s>)2.

REMARK 11. If K =R, a sufficient condition for to hold is
mg(s) < f(s) < Mg(s), for p-a.e se,
where M > m > 0.

3.5. Applications for Sequences. For a given sequence (w;);y
of nonnegative real numbers, consider the Hilbert space /2 (K), (K = C,R),
where

2 (K) = {i = (2i),ey CK

oo
Zwi Exk <oo}.

1=0

The following proposition that provides a reverse of the weighted
Cauchy-Bunyakovsky-Schwarz inequality for complex numbers holds
[4].

PROPOSITION 7. Let a, A € K with Re (@A) > 0 and X,y € 2 (K).
If

(3.18) Z w; Re [(Ay; — x;) (T — agi)] > 0,
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then one has the inequality

- = : 1 OO . A_ . T,
(319) Z W; |IZ|2 Z w; |yz|2 <= Zz:O Wy Re [ xzyzl+ szyz]
i=0 =0 2 [Re (@A)]2

L s
2 [Re(@A)]? |15

IA

The constant % s sharp in .

PrOOF. Follows by Theorem {4 applied for the inner product (-, ), :
2 (K) x 2 (K) — K,

w

(X, ¥), = ZM%E
i=0

REMARK 12. A sufficient condition for to hold is
(3.20) Re[(Ay; — x;) (T; —ay;)] > 0 for all i € N.
In the particular case p = 1, we have the following result.

COROLLARY 9. Let a, A € K with Re (@A) > 0 and X,y € (*(K).
If

Z Re [(Ay; — #) (T7 — ami)] > 0,

then one has the inequality

[

2

[f: Dy w] < 1 Lo RelATy: + azi]
=0 i=0 2 [Re (aA)]?
1 |A >
§§. | |+|a|; Z%E
[Re (@A)]* |i=

REMARK 13. IfK = R, then a sufficient condition for either
or to hold s
ay; < x; < Ay; for each i€ {1,...,n},
where, in this case, a, A € R with A > a > 0.
For a = m, A = M, then the following proposition also holds.

PROPOSITION 8. Let m, M > 0. If X,y € (2 (K) such that

(3.21) Z w; Re [(My; — ;) (T; — my;)] > 0,
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then one has the inequality

Zwi\xi|22wi\yi|2 < 5
=0 =0

The proof follows by Corollary {4f applied for the inner product

o
= E WX, Yi-
=0

The following additive version also holds [4].

=0

mM

COROLLARY 10. With the assumptions in Proposition [§, one has
the inequalities

oo 0 2
2 2

Zwi |i Zwi |yl

i=0 i=0

VI — )
§< f%m_;\//[_) Z;wiRe(xiE)

— i w; Re (7;7;)
=0

and

o0 o0 oo 2
0< Zwi Exs Zwi ;| — [Z w; Re (%E)]
par — — 2
WM =m) 4m M [Z w; Re (23 ] :

REMARK 14. If K = R, a sufficient condition for to hold is
my; < x; < My; for each i €N,

where M > m > 0.

4. Quadratic Reverses of Schwarz’s Inequality

4.1. Two Better Reverse Inequalities. It has been proven in
[7], that

(4.1) 0 < flalf* = [z, e)” < 7|6 — of* — ’ T2 o)

Aklr—‘

provided, either
(4.2) Re (pe — x,x — pe) > 0,
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or, equivalently,

¢+906
2

1

holds, where e € H, |le|]| = 1. The constant § in (4.1) is best possible.
If we choose e = oo, ¢ = T'[lyl|, o =y [|yl| (y #0), I,y €K, then

by (4.2)) and (4.3) we have,

(4.4) Re Ty — z,x — yy) > 0,
or, equivalently,
'+~
4.5 - I —
(45) o= 3% < 5=l

implying the following reverse of Schwarz’s inequality:

(4.6) 0< IIxII2 lyl* = Kz, I’

’F+7 2

\F Pyl — lyll* = {2, y)

The constant § in (4.6) is sharp.
Note that, this inequality is an improvement of (2.6)), but it may

not be very convenient for applications.
In [1I0], it has also been proven that

1
47 o< 2P = [z e)f < - 16— ¢|* — Re (Pe — x,2 — pe)

provided either . or . holds true.
If we make the same choice for e, ® and ¢ as above, then we deduce
the inequality

(4.8) 0 < |lzlf* lyll® = [{z, )|
1
<IP- YW Ayll* = llyl*Re (Ty — 2,z — yy)

provided either (4.4)) or (4.5 holds true.
The constant ; is best possible in (4.8).

One may easily realise that the bounds provided by (4.6)) and (4.8))
cannot be compared in general, meaning that for different choices of
variables one may be better than the other.

2. A Reverse of Schwarz’s Inequality Under More Gen-
eral Assumptions. The following result holds [§].
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THEOREM 5. Let (H;(-,-)) be an inner product space over the real
or complex number field K (K=R, K=C) and x,a € H, r > 0 are
such that

r e B(a,r):={z€ H|||z—a|] <r}.
(i) If ||al| > 7, then we have the inequalities
(4.9) 0 < |lz[I* al® = [z, a)* < l|* lall* = [Re {z,a)]* < r* |l

The constant C =1 in front of r? is best possible in the sense
that it cannot be replaced by a smaller one.

(i) If ||a|| = r, then
(4.10) lz]* < 2Re (z,a) < 2|(z,q)|.

The constant 2 is best possible in both inequalities.
(iii) If ||a|| < r, then

411)  flz* <r* = lla]l* + 2Re(z,a) < 7% — |la* + 2[(z,a)]| .
Here the constant 2 is also best possible.

PROOF. Since z € B (a,r), then obviously ||z — al|* < 2, which is
equivalent to

(4.12) |z||” + ||a]|* — 7* < 2Re (z,a) .

i) If ||a]| > r, then we may divide (4.12) b all> =72 > 0
Yy Y

getting
2
/ 2R
(413) ||xH _|_ ”CLH2 _ TQ S € <x7 a> .
lafl* = Vlall® =2

Using the elementary inequality

1
ap+_q22\/p7 Oé>0, p7q207
(0%

we may state that

2
i
(4.14) 2ol < —HE Sl =2,

Making use of (4.13]) and (4.14)), we deduce
(4.15) ][ \/lla]l* = r? < Re (z,a),

which is an interesting inequality in itself as well.
Taking the square in (4.15)) and re-arranging the terms, we
deduce the third inequality in (4.9). The others are obvious.
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To prove the sharpness of the constant, assume, under the
hypothesis of the theorem, that, there exists a constant ¢ > 0
such that

(4.16) lz]1* flall* — [Re (2, a)]* < er® ||]*,

provided € B (a,r) and ||a|| > 7.
Let r = /e >0,e € (0,1), a,e € H with |[a| = le[| =1
and a 1 e. Put x = a + y/ge. Then obviously = € B (a,r),

lall > r and ||gf||2 = lal*+e ||€||22= L+e, Re(z,a) = [lal|* =1,
and thus |z||* ||la||* — [Re (z,a)]” = . Using (4.16), we may
write that
e<ce(l+¢), €>0
giving
(4.17) c+ce>1 forany e > 0.

Letting ¢ — 0+, we get from (4.17]) that ¢ > 1, and the sharp-
ness of the constant is proved.

(ii) The inequality (4.10)) is obvious by (4.12)) since ||a|| = r. The

best constant follows in a similar way to the above.
(iii) The inequality (4.11)) is obvious. The best constant may be
proved in a similar way to the above. We omit the details.

The following reverse of Schwarz’s inequality holds [8].

THEOREM 6. Let (H;(-,-)) be an inner product space over K and
x,y € H v, T' € K such that either

(4.18) Re(ly —z,2 —vy) > 0,
or, equivalently,
'+~ 1
(4.19) r———y|| < I =]yl
2 2
holds.

(i) If Re (I'y) > 0, then we have the inequalities

(4.20) ety < 3 - AL 2 o))
O Al

S Tl

The constant ;11 18 best possible in both inequalities.
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(ii) If Re (I'y) = 0, then
lz* < Re [(T+7) (z,9)] < [T+l )]
(iii) If Re (') < 0, then
|2l < = Re (T7) [lyll” + Re [(T +7) {2, )]
—Re (I7) lyll* + T+ [{z, )]

PROOF. The proof of the equivalence between the inequalities (4.18))
and (4.19) follows by the fact that in an inner product space

Re(Z —z,x—2) >0
for x, z, Z € H is equivalent with

A 1
-252] e

(see for example [9]).
Consider, for y # 0, a = 2Ly and r = I — 4| ||y|| . Then

T +4* — T —+)? _
la||* —r? = 1 lylI* = Re (T9) |ly]|*-

(i) If Re(I'y) > 0, then the hypothesis of (i) in Theorem [3| is
satisfied, and by the second inequality in (4.9) we have

2|F+’Y|

] lyll” - {Re[(F+7) (z.9)]}"

1
ZIT Y ) 1yl
from where we derive
D+ = T — 1 _ )
1 lz]* ly)|* < Z{Re (T +7) (z,9)]},

giving the first inequality in (4.20)).

The second inequality is obvious.
To prove the sharpness of the constant i, assume that the
first inequality in (4.20)) holds with a constant ¢ > 0, i.e.,

2 2 {Re [(F+7) (x,y>}}2
(1.21) S T

provided Re (I'y) > 0 and either (4.18) or (4.19) holds.
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Assume that I',y > 0, and let z = 7y. Then (4.18) holds
and by (4.21)) we deduce

T+ |yl
Iy

Pyl < e
giving
(4.22) Iy <c¢(l'+7)° forany T,y > 0.

Let ¢ € (0,1) and choose in (4.22), [ =1+¢,y=1—¢ >0 to
get 1 — % < 4c for any € € (0,1). Letting € — 0+, we deduce
c> }1, and the sharpness of the constant is proved.

(i) and (iii) are obvious and we omit the details.

REMARK 15. We observe that the second bound in for ||z |I” |Jy|I?
18 better than the second bound provided by .

The following corollary provides a reverse inequality for the additive
version of Schwarz’s inequality [8].

COROLLARY 11. With the assumptions of Theorem@ and if Re (I'y) >
0, then we have the inequality:

(4.23) 0 < [ll* lyll* = [z, m)I* <

The constant % 18 best possible in .
The proof is obvious from (4.20) on subtracting in both sides the

same quantity |(z,y)|”. The sharpness of the constant may be proven
in a similar manner to the one incorporated in the proof of (i), Theorem
[Bl We omit the details.

For other recent results in connection to Schwarz’s inequality, see
[1], [11] and [13].

4.3. Reverses of the Triangle Inequality. The following re-
verse of the triangle inequality holds [8].

PROPOSITION 9. Let (H; (-,-)) be an inner product space over the
real or complex number field K (K=R,C) and x,a € H, v > 0 are
such that

le —all <7 <laf|.
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Then we have the inequality

(4.24) 0 < [lz]| + llall = [l + all

< Vor. Re (z, a)

Vil = (ol =+ Jal)

PRrROOF. Using the inequality (4.15]), we may write that
lall Re (z,a)

)
Vllall® =72
which gives

(4.25) 0 < |lz[[fla]l = Re {z, a)

lall = y/llall® —r*
< Re (z,a)
\/llal® =2

r? Re (z, a)

i Vlal? =2 (maw 2y Hau) |

(lzll + llal)® = llz +al* = 2 (|lz[| |all - Re (z,a)),
then by (4.25]), we have

[ lall <

Since

2r2 Re (z, a)

il = (el =2 + )

Re (x,a)

Vi =2 (el =2 + )

giving the desired inequality (4.24)). n

The following proposition providing a simpler reverse for the trian-
gle inequality also holds [8].

Izl + llall < | llz + all* +

Y

< ||z +al +V2r-

PropoSITION 10. Let (H;(-,-)) be an inner product space over K
and x,y € H, M > m > 0 such that either

Re (My — z,x — my) >0,
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or, equivalently,
M —I— m

T = (M —m) [lyll,

o =3¢
holds. Then we have the mequalzty

M —/m
426) 0 el +lyll ~ e+ ol < YY" Re ey
PROOF. Choosing in , 4= M;rmy, =1 (M —m) ||ly|| we get

el 1yl VAT < 2

" Re (z,y)

giving

W—mf
2v'mM

Following the same argument as in the proof of Proposition [9] we de-
duce the desired inequality (4.26)). n

For some results related to triangle inequality in inner product
spaces, see [2], [14], [16] and [21].

4.4. Integral Inequalities. Denote by Li (©, K) the Hilbert space
of all real or complex valued functions defined on €2 and 2— p—integrable
on €, i.e.,

0 < [lz[[ lyll = Re(z,y) < Re (z,y) .

/Q p(3)|f ()2 dp (s) < 0.

It is obvious that the following inner product
= [ () £ ()3T (o).

1
generates the norm |, :== ([, p (s) s)[?du(s))? of L2 (Q,K), and
all the above results may be stated for mtegrals
It is important to observe that, if

Re [f(s)m} >0, for u—ae. s

then, obviously,

(427)  Re(f.g), = Re [ e ne <s>}
- / p(s)Re [ ()9 ()] diu () > 0.

The reverse is evidently not true in general.
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Moreover, if the space is real, i.e., K = R, then a sufficient condition

for (4.27) to hold is:
f(s)>0, g(s)>0, for u—ae. se

We now provide, by the use of certain results obtained above, some
integral inequalities that may be used in practical applications.

PROPOSITION 11. Let f,g € Lf) (Q,K) and r > 0 with the properties
that

(4.28) 1f(s)—g(s)| <r<lg(s)|, foru—a.e sl

Then we have the inequalities

(420) 0< / ()11 () dia (5) / 0 ()19 ()2 du (s)

< / ()11 () dia (5) / 0 ()19 (5) 2 du (s)

[ [oere (rea@)an]
<7 [ p© @ du(s).

The constant ¢ = 1 in front of r? is best possible.

The proof follows by Theorem [5| and we omit the details [8].

PROPOSITION 12. Let f,g € L2(Q,K) and v,I" € K such that
Re (I'y) > 0 and

Re|(Tg () = £ (5)) (T(5) =79 (5]) | 20, Jorp—ae. s
Then we have the inequalities
(4.30) / 0 (3)1f (5)]dp (5) / p(5)1g () dp (5)
[Re [T 4+7) for(9) f ()7 mdu(s)] }
Re (I19)
T + 4/ —
Ry | L) £ 05 dn ()

The constant i 18 best possible in both inequalities.

IN

2

IN
e N

The proof follows by Theorem [ and we omit the details.
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COROLLARY 12. With the assumptions of Proposition[14, we have
the inequality

(431) o< / ()11 () dia (5) / 0 (5) 19 ()2 du (s)

2
N el

<R | L) @5 ()

The constant i 18 best possible.

REMARK 16. If the space is real and we assume, for M > m > 0,
that
mg (s) < f(s) < Mg(s), foru—ae s,

then, by and , we deduce the inequalities
(4.32) /QP(S)Lf(SHZdM(S)/QP(S)M(SHQdu(S)

S aencners)
and
(433)  0< / o ()1 ()] ds (5) / 0 (5) [g ()] dp (s)

_ [/Q,o(s)f(s)g(s)du(s)}2

<1 Qf=my [/Qp<s>f<s>g<s>du<s>r.

The inequality is known in the literature as Cassel’s inequality.

5. More Reverses of Schwarz’s Inequality

5.1. General Results. The following result holds [6].

THEOREM 7. Let (H; (-,-)) be an inner product space over the real
or complex number field K, z,a € H and r > 0. If

(5.1) v € Ba,r)={z€H||z—al <r},
then we have the inequalities:
(5.2) 0 < [lz]| lall = [{z, a)| < [lz[||al]] — |Re (z, a)]

1
< [l flall = Re (2, a) < §r?
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The constant % 1s best possible in in the sense that it cannot be
replaced by a smaller constant.

PRrOOF. The condition is clearly equivalent to
(5.3) z))* + [la]l* < 2Re (z,a) + 2.
Using the elementary inequality

2|l lall < 2l* + Jall*,  a,z € H
and , we deduce
2||z| |lal| < 2Re(z,a) +r?,

giving the last inequality in ([5.2)). The other inequalities are obvious.
To prove the sharpness of the constant %, assume that

(5.4) 0 < [l llall = Re (z, a) < cr

for any x,a € H and r > 0 satisfying .

Assume that a,e € H, ||a|| = |le] =1and e L a. If r = /e, e >0
and if we define * = a+ +/ze, then ||z — a|| = /e = r showing that the
condition is fulfilled.

On the other hand,

lz|| |la]| — Re (z, a) \/Ha—ir\/_eH — Re(a+ Vee,a)

2 2 2
lall” +&llefl™ = llal

1+e—-1.
Utilising (5.4)), we conclude that
(5.5) V14e—1<ce forany e > 0.

Multiplying (5.5) by /14 ¢ + 1 > 0 and then dividing by € > 0, we
get

(5.6) (\/1+£+1>021 for any e > 0.

Letting ¢ — 0+ in {D we deduce ¢ > %, and the theorem is proved. &
The following result also holds [6].

THEOREM 8. Let (H;(-,-)) be an inner product space over K and
x,y € H, v, T € K (I' # —7) so that either

(5.7) Re(ly —z,2 —vy) >0,

or, equivalently,

(5.5 o= 55 < 510 =1,
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holds. Then we have the inequalities

59 0 < Il Iyl — . )]
< llel Il = |Re |5 )|

I'+7y
< Izl lly —Re{— a:,y}
]yl |F+7|< )

_1r-np

<3 e

The constant i in the last inequality is best possible.

PRrOOF. Consider for a,y # 0, a = FM

-y and r = 3 |T'—9|[ly|l.
Thus from (5.2), we get

'+~

0 <l |52 ol = |52 o
'+~ I'+7

< ol [ 1 - fre [F42 )
I+~ r+75

< fell| S5 2 1ol - e [ )]

1 2 2
< —. I _ .

Dividing by 2 5 [T 47| >0, we deduce the desired inequality (|5
To prove the sharpness of the constant =, assume that there exists
a ¢ > 0 such that:

f+’7 ‘F_’YF 2
5.10) |x|y|—Re{ %y}éc-————ﬂy7
( el = Re | T (b | < e T2 ol

provided either (5.7)) or (5.8]) holds.
Consider the real inner product space (R? (-,-)) with (X,y) =

T1Y1 + Tolo, X = (:z:l,x2) , y (y1,72) ER% Lety = (1,1) and ',y > 0
with I" > ~. Then, by ([5.10 , we deduce

I I —9)*
5.11 \/5 x4 x2 (x —1—.2: < 2c ( .
( ) 1 2 1 2 F—F’}/

If x; =T, o =7, then
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showing that the condition (j5.7)) is valid. Replacing x; and x5 in (5.11)),
we deduce

(5.12) V2/T2 442 — (D +7) < QCM.

'+~

If in (5.12) we choose I' =1 +¢, v =1—¢ with ¢ € (0,1), then we
have

4 2
W1te—2< 2c%,
giving
(5.13) V1+e2—1< 2

Finally, multiplying (5.13) with v/1 + €24 1 > 0 and thus dividing by
g2, we deduce

(5.14) 1< 2 (\/1 T2t 1) for any e € (0,1).

Letting e — 0+ in (5.14) we get ¢ > %, and the sharpness of the
constant is proved. g

5.2. Reverses of the Triangle Inequality. The following re-
verse of the triangle inequality in inner product spaces holds [6].

PROPOSITION 13. Let (H;(-,-)) be an inner product space over the
real or complex number field K, z,a € H and r > 0. If ||z —a|| < r,
then we have the inequality

(5.15) 0 <|lzl| + llall = [l + a| <
PROOF. Since
2 2
([[=]l + [lal)” = |z + al|” < 2(||z[ [|a]| — Re (z,a)),
then by Theorem [7] we deduce
(Nl + llal)? = lz + af* < r?,
from where we obtain
]| + llall < \/r? + [z + a)?

giving the desired result ((5.15)). B
We may state the following result [6].

<r+lle+al,

PROPOSITION 14. Let (H;(-,-)) be an inner product space over K
and x,y € H, M > m > 0 such that either

Re (My — x,x — my) >0,
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or, equivalently,

M+m 1
— M —
o 2 < G 00wl
holds. Then we have the inequality
V2 M-—m
5.16 0 < |zl + — ||lr + < — " — .
(5.16) <+l = e+ 9l < 5 =)
PROOF. By Theorem [§ for I' = M, v = m, we have the inequality
1 (M —m) m)
R -
el iyl = Re (z,9) < 5 - =y I
Then we may state that
(=l + llylD* = llz + ylI* = 2 (ll=] [yl = Re (z,3))
1 (M —m) m)’
<5 vl
2 M+m

from where we get

1 (M—m)2 2 2
el + lyll < \/ B 4 e

<l tyl+ ™ )
x - b)
N Y 2(M+m) Y

giving the desired inequality ((5.16)). B

5.3. Integral Inequalities. We provide now, by the use of certain
results obtained above, some integral inequalities that may be used in
practical applications.

PROPOSITION 15. Let f,g € LZ (Q,K) and r > 0 with the property
that

lf(s)—g(s)|<r for p—ae se
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Then we have the inequalities

(517 0< [ / p(5)1f ()1 dyu(s) / p(s)Ig <s>r2du<s>}é

S UQP(S) FOP ) [ o6)lo () @} %

| oRe |7 )36 duts

< | [ orane [polsor |
_ /Q p(s)Re [ (5)9(5)] diu (5)

< r.

N | —

The constant % 1s best possible in .

The proof follows by Theorem [7], and we omit the details.

PROPOSITION 16. Let f,g € L2 (2, K) and v,I" € K so that T’ #

—v, and

Re [(Fg(s)—f(s)) (W—ﬁm)} >0, for p—ae sl

Then we have the inequalities

(5.18) o< [ Lo@lr@ra [

[ 5)lo 9 <s>} ’
/Q p(5) £ (5) g (S)dp

(s)

< [/Qp<s>|f<s>|2du<s>
[ +7
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< [ L@ @R duts) [ ps)1o )P <s>}

I'+7
~Re {m 006063 )]

1 ]F 7]/
< . d
4 T +4 ) du(s).

The constant % 15 best possible.

REMARK 17. If the space is real and we assume, for M > m > 0,
that
(5.19) mg (s) < f(s) < Mg(s), for p—ae se,
then, by , we deduce the inequality:

0 < [ Lol P ants) [ oo de <s>}
/Q p(5) f (5) 9 (5)du (5)

< 1S [P auts)

The constant i 1s best possible.

1
2

The following reverse of the triangle inequality for integrals holds.

PROPOSITION 17. Assume that the functions f,g € L2 (Q,K) sat-
isfy (9.19 ' Then we have the inequality

o< ([o@1r@rane) ([ soberae)
- (/Qpcs)|f<s>+g<s>|2du<s>)é

< ?% (o0 |g<s>|2du<s>)%.

The proof follows by Proposition [T4]
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CHAPTER 2

Inequalities of the Griiss Type

1. Introduction

Over the last five years, the development of Griiss type inequalities
has experienced a surge, having been stimulated by their applications
in different branches of Applied Mathematics including: in perturbed
quadrature rules (see for example [5], [2]) and in the approximation of
integral transforms (see [18], [21]) and the references therein.

For two Lebesgue integrable functions f, g : [a,b] — R, consider the
Cebysev functional:

T(fq): /f dt——/f b dt - o) d.

In 1934, G. Griiss [20] showed that

1
1 (M —m) (N = n),

provided m, M, n, N are real numbers with the property

(1.1) T (f,9)| <

(1.2) —co<m< f<M<oo,
—oco<n<g<N<oo ae. on [a,b.

The quantity i is best possible in in the sense that it cannot
be replaced by a smaller one.

Another less well known inequality for T'(f, g) was derived in 1882
by Cebysev [4] under the assumption that f’, ¢’ exist and are continu-
ous in [a, b] and is given by

1 / /
(1.3) T (F 9l = 5 1 oo 19l (0= a)’,
where || f'|| == sup |f' (¢)].
te[ab}

The constant = 12 cannot be improved in the general case.

Cebysev’s inequality (1.3)) also holds if f, g : [a,b] — R are assumed
to be absolutely continuous and f', ¢’ € L. [a,b].

37
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In 1970, A.M. Ostrowski [23] proved, amongst others, the following
result that is in a sense a combination of the Cebysev and Griiss results

7 (f,9)l < g Sb—a) (M —m) ]

provided f is Lebesgue integrable on [a,b] and satisfying with
g : [a,b] — R being absolutely continuous and ¢’ € L« [a,b]. Here the
constant % is also sharp.

Finally, let us recall a result by Lupasg (see for example |24} p. 210)),
which states that:

T (.9 < 5 15 'l (b~ a),

provided f, g are absolutely continuous and f’, ¢’ € Ly [a,b]. The con-
stant 7% is the best possible here also.
For other Griiss type integral inequalities, see the books [22], [24],
and the papers [6] — [1I5] and [19], where further references are given.
In [1], P. Cerone has obtained the following identity that involves
a Stieltjes integral (Lemma 2.1, p. 3):

,b] — R, where [ is of bounded variation
b, then the T'(f,g) satisfies the identity,

b
Tl RACKACE

U(t) = (t—a)A(t,D) — (b—t) A(a,t),

LEMMA 1. Let f,g : [a
and g is continuous on |a,

(1.4) T(f.9) =

where

with .
Ale,d) = / g (x)dx.

Using this representation and the properties of Stieltjes integrals he
obtained the following result in bounding the functional 7 (-,-) (Theo-
rem 2.5, p. 4):

THEOREM 9. With the assumptions in Lemma[l], we have:

1T (f,9)
sup U (1)| Vo (f),

1 t€(a, b}
= (b— a)Q. L f | ()] dt, for L — Lipschitzian;
f U ()] df (t for f monotonic nondecreasing,

where \/Z (f) denotes the total variation of f on [a,b)].
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Now, if we use the function ¢ : (a,b) — R,

15 e(t)=D(gany =1 dDE_Jodr

then by ((1.4) we may obtain the identity:

1
(b—a)’

In [3] various upper bounds for |T'(f,g)| have been given, from
which we would like to mention only the following ones:

T(19)= o= [ - G- OF O,

THEOREM 10. Let f : [a,b] — R be a function of bounded varia-
tion and g : [a,b] — R an absolutely continuous function so that ¢ is
bounded on (a,b). Then one has the inequality:

b

T(f,9)] < ~llell \V (),

a

where ¢ 1S as given by and

[¢llo = sup |p (t)].
te(a,b)

The case of Lipschitzian functions f : [a,b] — R is embodied in the
following theorem [3].

THEOREM 11. Let f : [a,b] — R be an L— Lipschitzian function
on [a,b] and g : [a,b] — R an absolutely continuous function on |[a,b] .
Then

T (f,9)]
_a3 .
L2 ol if ©€ Loolabl;
< { LO-a)i [Blg+Lag+D]lel,, p>1,L+i=1
Zf (PELP[aab];
Llelly if ¢ € Lyla,b],

where ||-||,, are the usual Lebesgue p—norms on [a,b] and B (-, ") is Bu-
ler’s Beta function.

Finally, the following result containing Stieltjes integral holds [3]:
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THEOREM 12. Let f : [a,b] — R be a monotonic nondecreasing
function on [a,b]. If g is continuous, then one has the inequality:

T (f,9)]

(L)l df (¢

(bfa)g(fjub—t)(t_a o) (Breoran)
p>1,§+5—1,

e s [ (O] f, (t = a) (b— 1) df (1).
t€(a,b]

IA

\

In [16], the authors have considered the following functional

:/ f(x)du(x)—[u(b)—u(a)]-bia/ f(t)dt

provided that the involved integrals exist.
In the same paper, the following result in estimating the above
functional has been obtained.

THEOREM 13. Let f,u : [a,b] — R be such that u is Lipschitzian
on la,bl], i.e.,

ju(@) —u(y)| < Llz—yl foranyz,y € fa,b] (L>0)
and f is Riemann integrable on [a,b]. If m, M € R are such that
m < f(x) <M for any z,y € [a,],
then we have the inequality

ID(fu)] < 5L OT=m) (b - a).

The constant % 15 sharp in the sense that it cannot be replaced by a
smaller constant.

In [15], the following result complementing the above one was ob-
tained.

THEOREM 14. Let f,u : [a,b] — R be such that u : [a,b] — R
is of bounded variation in [a,b] and f : [a,b] — R is K— Lipschitzian
(K > 0). Then we have the inequality

D (fr)l < 5K (- a)\/ (0

The constant % 1 sharp in the above sense.
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The main aim of this chapter is to survey some recent inequali-
ties of the Griiss type holding in the general setting of inner product
spaces. Natural applications for Lebesgue integrals in measure spaces
are presented as well.

2. Griiss’ Inequality in Inner Product Spaces

2.1. Introduction. In [6], the author has proved the following
Griiss’ type inequality in real or complex inner product spaces.

THEOREM 15. Let (H,(-,-)) be an inner product space over K and

e € H,lle|| =1. If o,7v,®,T are real or complex numbers and x,y are
vectors in H such that the conditions
(2.1) Re (Pe —z,x — @e) > 0 and Re(l'e —y,y —ve) >0

hold, then we have the inequality

(2.2) [(z,y) — (2,€) <€,y>|§%|‘1>—90|'|F—7|-

The constant % 18 best possible in the sense that it cannot be replaced
by a smaller quantity.

Some particular cases of interest for integrable functions with real
or complex values and the corresponding discrete versions are listed
below.

COROLLARY 13. Let f,g : [a,b] = K(K =R, C) be Lebesgue inte-
grable and such that

Re[(@ - f (@) (F@) -2)] 20, Re[—g(@) (s)-7)] =0

for a.e. x € [a,b], where @,~v,®,T" are real or complex numbers and z
denotes the complex conjugate of z. Then we have the inequality

’bia/abf(m)mdx—ﬁ/abf(x)dx-bia/abg(x)dx

1
< 10—yl P =],

The constant % 18 best possible.
The discrete case is embodied in

COROLLARY 14. Let x,y €K" and p,~,®,I" are real or complex
numbers such that

Re[(® —2) (i —P)] 20, Re[(l'—w) @ —7)]=0
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foreach i € {1,...,n}. Then we have the inequality

n

1< 1< 1 1

- iYi — — it =) G| < 1@ —pl- I =7

n;xy n;x n;y 11— ¢l T =1
The constant i 18 best possible.

For other applications of Theorem [15] see the recent paper [17].

In the present section, by following [13], we show that the condition
(2.1) may be replaced by an equivalent but simpler assumption and a
new proof of Theorem [15]is produced. A refinement of the Griiss type
inequality , some companions and applications for integrals are
pointed out as well.

2.2. An Equivalent Assumption. The following lemma holds
[13].

LEMMA 2. Let a,x, A be vectors in the inner product space (H, (-, ))
over K (K =R,C) with a # A. Then

Re(A—z,x—a) >0
iof and only of

H a+ A
x_

1
2 <514l

PROOF. Define

a+ Al

2

1
I, :=Re(A—2z,7 —a), [23=Z\|A—GH2_H37

A simple calculation shows that

I = I, = Re[(z,a) 4+ (A, z)] — Re (A, a) — ||z
and thus, obviously, I; > 0 iff [, > 0 showing the required equiva-
lence. &

The following corollary is obvious

COROLLARY 15. Let x,e € H with |le|| = 1 and 0,A € K with
0 #A. Then

Re (Ae —z,z —de) >0
iff
S+ A
J— '6

Ty

1
< — —0|.
SN
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REMARK 18. If H = C, then
Re[(A—z)(z—a)] >0

if and only iof

X

a+ A 1
- <-|A-

where a,x,A € C. If H=R, and A > a then a < x < A if and only if
o =52 < 514 —al.
The following lemma is of interest [13].

LEMMA 3. Let z,e € H with |le|]| = 1. Then one has the following
representation

2 2 _ . _ 25
(23) ]2 = Iz, €)* = inf [} = Ael[* > 0.

PROOF. Observe, for any A € K, that
(@ = e,z — (z,¢)e) = ||z|* = [{w, e)]” = A[(e, 2) — (e, @) [|e]|”]
= [lz[|* = [z, e)]*.
Using Schwarz’s inequality, we have
(21l = 14z, &) "] = {x = A,z — (z,€) €)”
< lz = ell* flo — (e} ef|*
= [lz = Ael* [lz]I* = ¢z, )] ,
giving the bound
(2.4) ] = [z, e)* < flz = Ael|*,  AeK.
Taking the infimum in over A € K, we deduce
2]~ iz, )> < ing fla — Ael]*
Since, for Ay = (z,e), we get ||z — Xoe|® = ||z|* — |(z,e)|*, then the
representation (2.3 is proved. &

We are now able to provide a different proof for the Griiss type
inequality in inner product spaces (mentioned in the Introduction),
than the one from the paper [6].

THEOREM 16. Let (H,(-,-)) be an inner product space over K and
e€ H,lle|| =1. If ¢,v, P, are real or complex numbers and x,y are
vectors in H such that the conditions hold, or, equivalently, the
following assumptions

o+
- €

1 v+T
@5) o230 e <gle-el. o= 155

2

1
<l —
_2| ol

2
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are valid, then one has the inequality

1
The constant % 15 best possible.

PROOF. It can be easily shown (see for example the proof of The-
orem 1 from [6]) that

@7) |(.y) — (.0 (el < [l ~ 1] (ol — (. €))7

forany z,y € H and e € H, |le|| = 1. Using Lemma3|and the conditions
(2.5) we obviously have that

2 M3 - o+ 1
_ — _ < _rr=. < 2P —
[l = Kz, e)["]* = inf [lz = Ae|l < o = — GH <SP -l
and
2 217 _ . B <l _ T+ < 1.
g™ = Ky, e)l"]* = inf fly = Ae| < Hy e <50l

and by (22.7) the desired inequality (2.6] is obtained.
The fact that ; is the best possible constant, has been shown in [6]
and we omit the details. &

2.3. A Refinement of the Griiss Inequality. The following
result improving (2.1]) holds [13].

THEOREM 17. Let (H,(-,-)) be an inner product space over K and

ee H,lle|| =1. If o,v, P, are real or complex numbers and x,y are
vectors in H such that the conditions (2.1)), or, equivalently, (2.5)) hold,
then we have the inequality

(28)  [z,y) — (2, e) (e, y)|
< 110~ gl P =]
— [Re (Pe — z,x — gpe)]% Re (T'e —y,y — 'y@}]%
< (jlo-elir—n1).

The constant % 18 best possible.

PROOF. As in [6], we have

(29)  Ka,y) = (z,e) e, ) ” < [llz” = [z, )] [lyl® = Ky, e)I’] .
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(2.10) l2ll* = [z, e)|"
= Re [(@ — (z,e)) ((x,e> - @)} — Re (®Pe — z, 2 — pe)

and

(211)  yll* = [y, e)”

= Re [(F— (y,e)) <W—7>} —Re(T'e —z,2 — ve) .
Using the elementary inequality

4Re (ad) < la+b[*; a,beK (K=R,C),

we may state that

(2.12) Re[(@ — (z.)) () - 7)] < i@—gp\?
and
213)  Re[C— (o) (wa-7)] <5

Consequently, by (2.9) — (2.13) we may state that
(214) |<xvy> - <I,€> <€7y>’2

s[i@—¢F—Qmw%—xw—¢w

N

1
1 2 1\2
x |30 =9 = ([Re (Te —y.y —e)])
Finally, using the elementary inequality for positive real numbers

(m* =n?) (p° = ¢*) < (mp —ng)®,

we have
B P — o|* - ([Re (De — a,7 — 906”5)1

0= = (IR tre =y —et)’]

[SIE
=

< (il(b—gp‘-‘r—’}/‘ — [Re (®Pe — z, 2 — pe)|2 [Re (e — y,y — ve)]

2
).
giving the desired inequality .
The fact that % is the best constant can be proven in a similar
manner to the one in the Griiss inequality (see for instance [6])
and we omit the details. g
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2.4. Some Companion Inequalities. The following companion
of the Griiss inequality in inner product spaces holds [13].

THEOREM 18. Let (H,(-,-)) be an inner product space over K and
ec H /e =1. Ifv,T € K and z,y € H are such that

(2.15) Re<Fe—$;y,$;y—ve>ZO,

or, equivalently,

r 1
r+y 7+ e < 20—~y
2 2 2
then we have the inequality
1
(2.16) Re[(z,y) = (z.€) (e, y)] < 7 IT' = vl

The constant % 15 best possible in the sense that it cannot be replaced
by a smaller constant.

PRroOF. Start with the obvious inequality
1
(2.17) Re (z,u) < Z||z+u||2; z,u € H.

Since
<I,y> - <I,€> <€,y> = <‘T - <.T, 6> €Y — <y7 6> €> 3
then using we may write
(218) Re [<$7 y> - <£L’, 6) <67 y)] = Re [<LE - <LL’, 6> €Y — <y7 6> 6>]

Tr+y r+y 2
— ,€ )€
2 2

2

|7 +vy 2 Tty
= -0
If we apply Griiss’ inequality in inner product spaces for, say, a = b =
= we get
rT+y ? T+y S| 9
(2.19) ) —’< i ,e> §Z|F—'y] .

Making use of (2.18) and (2.19) we deduce (2.16)) .
The fact that ; is the best possible constant in (2.16]) follows by
the fact that if in 12.15} we choose x = y, then it becomes

Re (l'e — z,z — ve) > 0,




2. GRUSS’ INEQUALITY IN INNER PRODUCT SPACES 47

implying that 0 < [|z||* — [(z,e)|* < 1| —~|*, for which, by Griiss’
inequality in inner product spaces, we know that the constant }—1 is best
possible. §

The following corollary might be of interest if one wanted to eval-
uate the absolute value of

Re[(z,y) — (z,¢) (e, y)].

COROLLARY 16. Let (H,(-,-)) be an inner product space over K
ande € H,|le| =1. If v,' € K and z,y € H are such that

+ +
Re<Fe—x2y,x2y—”ye>ZO,

or, equivalently,

rxty y+T 1
_ cell< 2T =
holds, then we have the inequality
1
(2.20) [Re[(z,y) = {z,e) {e, )l < 7T = vl

If the inner product space H is real, then (for m, M € R, M > m)

+ +
<M6—x2y,x2y—me>20,

or, equivalently,

rxy m+M 1
_ cell < 2 (M =
2 ;¢ =g M=m),
implies
1

In both inequalities (2.20)) and (2.21)), the constant i 15 best possible.
Proor. We only remark that, if

T—Yy T—Y
— — >
Re<|e 7 5 7e> 0

holds, then by Theorem [18] we get

Re [ (z,y) + (z,¢) (e, y)] < 7 [T =",

showing that

(2.22) Re[(z,9) — (x,¢) {e,)] = —3 I~ 2"
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Making use of (2.16)) and ([2.22)) we deduce the desired result (2.20) . B

Finally, we may state and prove the following dual result as well
[13].

PROPOSITION 18. Let (H,(-,-)) be an inner product space over K
ande € H,|le|| =1. If o,® € K and x,y € H are such that

(2.23) Re (@ — (z,¢)) ({z, ) - 7)] <0,

then we have the inequalities

=

(2.24) |z — (x,e)e] < [R (x — Pe,x — pe)]

[Hw—@e!l + [l — pell]* .

IA

S 3

PROOF. We know that the following identity holds true (see (2.10]))
(2.25) [|z[* = [{z,¢)[’
= Re [(@ —(z,€)) ((a:,e> - E)} + Re (x — ®e, x — pe) .
Using the assumption (2.23)) and the fact that

lz]* = [z, e)* = ||z — (e} ell”,

by (2.25)) , we deduce the first inequality in ([2.24]) .
The second inequality in (2.24]) follows by the fact that for any

v,w € H one has

Re (w,0) < o ([[wl* +[Jv])

1
2
The proposition is thus proved.

2.5. Integral Inequalities. The following proposition holds [13].

PROPOSITION 19. If f,g,h € L*(Q,K) and ¢, ®,v,T € K, are
such that [, |h(s)|*du(s) =1 and

(2.26) / Re | (@h (s) — f () (T(5) =0 ()) | du(s) = 0,
| e [(0h(6) = 9 (9) (57 = 900) | du5) 2 0
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or, equivalently,

/.
y

hold, then we have the following refinement of the Griss integral in-
equality

D+

f(s)— Th (s)

[\o}
U
=
=
N——
[SIE
IA

1
P —
2| o,

9(s) ~ 5 h (s du(S)) <3Ir=l,

/Q £ (5) 7 (s) — / £ (5) R (3)ddp (s) / h(s) 9 (8)dp (3)

< 10— lr =l | [ Re[@h(5) ~ £ 6) (TG - 7)) (o)

[N

< [ e 0009 = 96 (5T = 7))
The constant i 1s best possible.

The proof follows by Theorem (17| on choosing H = L? (2, K) with
the inner product

f = f(s s)du (s) .
We omit the details.

REMARK 19. [t is obvious that a sufficient condition for (2.26) to
hold s

Re |(@h(s) = £ () (F(5) — R ()] 2 0.
and
Re |(Th () = () (9(5) = 7h (5)) | 2 0.

for p—a.e. s € Q, or, equivalently,

P = 25| < jlo - el and
() = 5 )| < 3T =,

for p—a.e. s € Q.

The following result may be stated as well [13].
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COROLLARY 17. If 2, Z,t,T € K, () < oo and f,g € L*(Q,K)

are such that:
Re (2~ f(s)) (F(5) %)
Re [(T=g(s) (9() )]

for a.e. s € Q, or, equivalently,

v

0,

v

0,

-7

t+7T 1
o) - 5| < 51—

1
<-|Z-

for a.e. s € Q, then we have the inequality

(2.27) ‘ /f

1z |T—t|—ﬁ [/R (2 - 1) (T = 2)] due(s)

XAR%HZ@@»Cﬁg—OLMQﬂa

Using Theorem |18 we may state the following result as well [13].

<

Ny

PROPOSITION 20. If f,g,h € L*(Q,K) and v,T € K are such that
[y 1h(8)[?du(s) =1 and

(M&‘Am{ﬁm@_ﬂﬁ%ﬂﬂ}

or, equivalently,

(220 ( /
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holds, then we have the inequality
I = /QRe [f (S)M] dp (s)
“re| [ FORGH) [ 167 )

1 2
< -I'—- .
< 7P =
If and hold with “ =+ 7 instead of “+ 7, then
1 2
I < - |I'—~|".
1< 510+
REMARK 20. It is obvious that a sufficient condition for to
hold is
e [ - L0 5800]. [FOLI0 ]

for a.e. s €Q, or, equivalently,

yﬂ$;g@>_v;FM@M;;r—ﬂmwn,

for a.e. s €.
Finally, the following corollary holds.
COROLLARY 18. If Z,z € K, u(Q) < oo and f,g € L* (Q,K) are

such that
(Z_ f(s)+g(s)) <m+m _z>
2 2

for a.e. s €Q, or, equivalently,

(2.30) Re >0

)

(2.31) f<$);g(3)—zzz‘§%yz—z\,
for a.e. s € Q, then we have the inequality
1 N
Jim i [ Re[£ (5] dut)
1 1
e | [ 10 o [ i)
<1z -2
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If and hold with “+ 7 instead of “+ 7, then
1
|| §4—1|Z—Z|2-

REMARK 21. It is obvious that if one chooses the discrete mea-
sure above, then all the inequalities in this section may be written for
sequences of real or complex numbers. We omit the details.

3. Companions of Griiss’ Inequality

3.1. A General Result. The following Griiss type inequality in
inner product spaces holds [12].

THEOREM 19. Let x,y,e € H with |le|| = 1, and the scalars a, A,
b, B € K such that Re (@A) > 0 and Re (bB) > 0. If

Re(Ae —x,x —ae) >0 and Re(Be—y,y—be) >0
or, equivalently,

a+ A b+ B

T — (&

1
<—-|B—-b
| <3184,

1
§§|A—a] and Hy—

holds, then we have the inequality

31 [zy) = (2,e) (e y)| < iM(%A)M(b, B)|(z,e) (e, y)],
where M (-, -) is defined by

1
2

(IA] — lal)® + 4[| Aa| — Re (Aa)]

M{(a, 4) := Re (aA)

The constant % 18 best possible in the sense that it cannot be replaced
by a smaller constant.

PROOF. Start with the inequality
(32)  [zy) — (@) e, p)|” < (2] = [z, a)”) (Iyll* = [y, ) -

Now, assume that u,v € H, and ¢,C € K with Re(¢C) > 0 and
Re (Cv — u,u — cv) > 0. This last inequality is equivalent to

JulP + Re (cC) lolf* < Re [Cu,0) + ¢ u,v)]
Dividing this inequality by [Re (C’E)]% > 0, we deduce
Re [C’(u, v) + ¢ (u, v}}

1 2 _ 1 2
3.3) —— |lu||” + Re(cO))2 ||v]|” <
(3-3) e [ul” + [Re (C)]* o] T

N
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On the other hand, by the elementary inequality
2, 1,
ap” + —q* =2 2pq, >0, p,qg=0,
a
we deduce

1 |

(3.4) 2 [lull ol < ————— [[ull” + [Re (cC)]> |[o]|".
[Re (¢C))?

Making use of (3.3]) and (3.4)) and the fact that for any z € C, Re (z) <

2|, we get

Re [C<u,v>+5<uav>} _ _ld+1c]

[ull o]l < ; < T |(u, v)].
2 [Re (eC)]? 2[Re (eC)]?
Consequently
(3.5) ull* olf* = [(u, 0)[*
U+ 100 T e
~ | 4[Re (cO)] 1] (w2}l
_ Ll = [CD* +4Cl ~ Re(@O)]
4 Re (¢C) ’
= M (e, 0) fu, )

Now, if we write for the choicesu =z, v =eandu =y, v=c
respectively and use , we deduce the desired result (3.1)). The
sharpness of the constant will be proved in the case where H is a real
inner product space. 1

The following corollary which provides a simpler Griiss type in-
equality for real constants (and in particular, for real inner product
spaces) holds [12].

COROLLARY 19. With the assumptions of Theorem[19 and if a,b,
A, B € R are such that A>a >0, B>b>0 and

A 1 B 1
(3.6) x—a+ el <=(A—a) and Hy—b+ el| < =(B-10)),
2 2 2
then we have the inequality
1 (A—a)(B-0)
3.7 ) - ; ) S - 3 ) .
B lrs) - e (o) € 1 A (e} )

The constant i 18 best possible.
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PRroOOF. To prove the sharpness of the constant }l assume that the
inequality (3.7) holds in real inner product spaces with z = y and for
a constant k > 0, i.e.,

(A—a)’
aA
provided that Hx — #GH < % (A —a), or, equivalently,

(Ae — z,x — ae) > 0.

(3:8) lz]l* = [z, e)* < k- (z,e)f  (A>a>0),

We choose H = R?, x = (x1,15) € R? e = <\%,%) Then we
have

2 2
2 2 (x1 + 22) (71 — x2)
z]]* = |(z, e)|" = o] + 23 — = ,

2 2
o (z1+29)
|<‘Ta 6>| - 2 )
and by (3.8) we get
(21 — x2)2 (A— a)2 (x1 + z)?
. Al LV S . .
(3.9) 2 - aA 2

Now, if we let x; = \%, Tg = \% (A > a>0), then obviously

2
A a
Ae —x,x —ae) = — x|z ——= ) =0,
< -2 () (=)
which shows that the condition (3.6) is fulfilled, and by (3.9) we get

2 2 2
(A—a) <k‘(A—a) (a+A)
4 - aA 4
for any A > a > 0. This implies
(3.10) (A4a)’k >aA

for any A > a > 0.
Finally, let a =1 —¢q, A=1+4+4¢, ¢ € (0,1). Then from (3.10) we
get 4k > 1 — ¢ for any ¢ € (0,1) which produces k > . i

REMARK 22. If (x,e),(y,e) are assumed not to be zero, then the
inequality 18 equivalent to

(z,y) 1
—=— -1 <-M(a,A)M (b, B),
ooy 1| SN @AMED)
while the inequality 1$ equivalent to
) .1 (A-a)(B-b
<£B, 6) <67 y> — 4 V abAB
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The constant i 1s best possible in both inequalities.
3.2. Some Related Results. The following result holds [12].

THEOREM 20. Let (H;(-,-)) be an inner product space over K. If
v, T €K, e,x,y € H with |le|| =1 and X € (0,1) are such that

(3.11) Re(Te— (Ax+(1—=XN)y), Az + (1 =N y) —~ve) >0,

or, equivalently,

T 1
Ao+ (1= 2y = T el < S =1,
then we have the inequality
(312)  Rel(z.y) — (5,6) {e9)] € = ———— 0=
. e |\, Yy xTr,e) e,y _16 )\(1_)\)

The constant % 15 the best possible constant in in the sense that
it cannot be replaced by a smaller one.

ProoOF. We know that for any z,u € H one has

1

Re (z,u) < - ||z +ull”.

< =
— 4
Then for any a,b € H and A € (0,1) one has

(3.13) Re (a, b) Xa+ (1 —\)b|>.

1
< -
TAN(1 =)
Since
<$,y> - <I7€> <67y> = <JZ - <J},6> €Yy — <y76> 6) (as ||6|| = 1)7
using , we have

(3.14)  Re[(z,y) — (z,€) (e, y)]
= Re[(z —(z,e) e,y — (y,€) €)]
1

< mnw— (w.e)e) + (L=X) (y — (y.e) )’
- —4)\(11— y A+ (1= Ay = Az + (L= V) y,e)el.

Since, for m,e € H with ||e]| = 1, one has the equality

2 2 2
lm = (m, e} e]|” = [|m[|” = [{m, e)]",
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then, by (3.14]), we deduce the inequality

(3.15)  Re[(z,y) — (z,€) (e, )]

1 2 2
< — |IA 1—A — (A 1—A .
< = (e + (=0l = [+ (1= )]
Now, if we apply Griiss’ inequality
1
0 < JlalP ~ I{a, ) < T =,

provided
Re(l'e —a,a — ~ve) > 0,
for a = A\x + (1 — \) y, we have

1
(316) e (=)l — [+ (1= Xy, < 710
Utilising (3.15) and (3.16) we deduce the desired inequality (3.12)).
3.12)

To prove the sharpness of the constant i6, assume that (| holds
with a constant C' > 0, provided that (3.11)) is valid, i.e.,

(3.17) Re[(z,y) — (z,¢) (e,y)] < C- 1N

1
A(1=N)
If in (3.17) we choose x = y, given that (3.11)) holds with x = y and
A€ (0,1), then
1

(3.18) lall” =z o) < O 37—y

’F_FYF?

provided
Re (I'e — z,2 — ve) > 0.
Since we know, in Griiss’ inequality, that the constant }L is best possible,
then by (3.18)), one has
1 C

D
1S3 =N for A€ (0,1),

giving, for A = %, c> %.
The theorem is completely proved. 1

The following corollary is a natural consequence of the above result
[12].

COROLLARY 20. Assume that ~v,I',e,x,y and X are as in Theorem
2. If
Re(le—(Az£(1=Ny). Az £ (1= A)y) —ve) >0,
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or, equivalently,

r 1
P e
then we have the inequality
1 1 2
1 — < — ——'—9]".
319)  [Rel(ry) — (z.0) (el < 15 oy I

The constant 1—16 15 best possible in .
PRrOOF. Using Theorem 20| for (—y) instead of y, we have that
Re(Te — (Az = (1= A)y), (Az — (1 = A)y) —ve) 20,
which implies that

1 1

Re [_ <Iay> + <I7€> <€,y>] S DY

T =~P
6 aa—n "

giving
320)  Rellay) = (@e) o)) =~ =y T

Consequently, by (3.12) and (3.20) we deduce the desired inequality
(3-19). m

REMARK 23. If M, m € R with M > m and, for A € (0,1),

(3.21) ‘)\x+(1—>\)y—M+m s%(M—m),
then 1 1
(x,y) — (x,e) {e,y) < E'm(M_mf'

If holds with “+” instead of “+”, then
1 1 ,
- <— — (M- :

REMARK 24. If A = % n m), then we obtain the result from
[13], i.e.,

Re<[’e—x+y x+y—76>20,

2 7 2

or, equivalently,

:c+y_’y+l“€
2 2

1
<l -
H_Q\ v,
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implies
(3.22) Re [(z,y) — (z,e) (e,y)] <

The constant i 15 best possible in .

For A = %, Corollary and Remark will produce the corre-
sponding results obtained in [13]. We omit the details.

T — .

|

3.3. Integral Inequalities. The following proposition holds [12].

PROPOSITION 21. If f . g,h € L?*(,K) and ¢,®,~,T € K, are
such that Re (9@) > 0,Re (I'7) > 0, [, |h (s $)du(s) =1 and

323) [ Re[@h)— 1) (FE) =0 0))] dus) = 0.
[ e [0h () =9 (57 7GT) ] (9 =

or, equivalently,

y
y

then we have the following Griss type integral inequality

| £©56nt) - [ 767G

M (p,®) M (v,T)

¢+@h

ICEE

()] du(s)] < gl®—l.

[N}
~
D=
IA

9(s) — 5l (s) W@O <3 Ir=l,

(3.24)

AJQ%Q);:IO@|—|¢D«E3£§§|—fm<¢¢n]

The constant i 18 best possible.

The proof follows by Theorem 20| on choosing H = L? (2, K) with

the inner product
)= [ £ 5 s).

We omit the details.
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REMARK 25. [t is obvious that a sufficient condition for (3.23) to
hold s

Re |(@h(s) = £ (5)) (F(5) —7h(9))] > 0.
and

Re |(Th(s) ~ 9 (s)) (9(s) = 7h ()] = 0.
for p—a.e. s € Q, or, equivalently,

f(s) - 228

)| < gle -l )

and

() - 5 o) < 4T =l o,

for p—a.e. s € Q.

The following result may be stated as well.

COROLLARY 21. If 2, Z,t,T € K, () < oo and f,g € L*(Q,K)
are such that:

Re|(Z—f() (F&) -2)| =0,
Re (7= g(s) (9(5) )] > 0.

for a.e. s € Q, or, equivalently,

24+ Z 1
— < Zlz—
t+7T 1
< m—t
g(s) 2 —2’ ‘?

for a.e. s € Q), then we have the inequality

(3.25) \ﬁ |RCree

1 1 )
_m/ﬂf(s)du(s)-mfﬂg(s)dﬂ(3>

1 1 1 —=
gZM(z,Z)M(t,T)‘m/gf(s)d#(s)‘m/ﬂg(s)d#(s)

REMARK 26. The case of real functions incorporates the following
interesting inequality

1(Q) fo [ (s)g(s)du(s) _1‘ 1 (Z=2)(T -1
Jo f (s)dp(s) [, 9 (s)dp(s) ~ 4 NEvii
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provided p (§2) < oo,
2<f(s)<Z, t<g(s)<T

for u—a.e. s € Q, where z,t, Z,'T" are real numbers and the integrals at
the denominator are not zero. Here the constant i 15 best possible in
the sense mentioned above.

Using Theorem [20| we may state the following result as well [12].

PROPOSITION 22. If f,g,h € L?(Q,K) and v,T € K are such that
Jo b (s (s)*du(s) =1 and

(3.26) /Q{Re [Ch(s) = (Af(s) + (1= X)g(s))]

x NFGT+ (1= N g () = 7R (3)] } du(s) = 0,

or, equivalently,

(3.27)

(£

then we have the inequality

[::/QRe [f(s)m] du (s)

ulfros

T — .

v+ T

M)+ (1 =A)g(s)— Th(s)

T —~,

o
.
—
V>
N—
N———
N |—
l\'.)l —

1
< - .-
—16,u py

The constant 1—16 15 best possible.

If and hold with “+ 7 instead of “+ 7 (see Corollary
@), then

1 1
< — —
=15 xa =

REMARK 27. It is obvious that a sufficient condition for (| to
hold is

Re{ [Th(s) = (\f (s) + (1= A) g (s))]
< AT+ (1= N g () = 7R (s)] } =0

T =%
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for a.e. s € Q, or, equivalently,

A ()4 (L= g () = LE0n(s)] < 5T =l I s)],

for a.e. s €.

Finally, the following corollary holds.

COROLLARY 22. If Z,z € K, u(Q) < o0 and f,g € L* (Q,K) are
such that

(328) Re[(Z—(\f(s)+(1=X)g(s))
(TG + - 056 -7)] 20

for a.e. s € Q, or, equivalently

Z 1
32 [ +a-Ng6 -5 <51z,
for a.e. s € Q, then we have the inequality
1 -
J::—/Refsgs du (s
@ | Re[F (69T du(s)
1 1 —
— Re /fsd s~—/ s)d 51
- [Owe o [T
1 1 )
< .= |z
=% xa—n ¢
If (3.28) and (3.29) hold with “ =+ 7 instead of “+ 7, then
1 1

<z
1= 15 /\(1—/\)| d

REMARK 28. It is obvious that if one chooses the discrete mea-
sure above, then all the inequalities in this section may be written for
sequences of real or complex numbers. We omit the details.

4. Other Griiss Type Inequalities
4.1. General Results. We may state the following result [10].

THEOREM 21. Let (H;(-,-)) be an inner product space over the real
or complex number field K and x,y,e € H with |e|| = 1. Ifry,r € (0,1)
and
[z —ell <, ly—el <72

then we have the inequality

(4.1) [(z,y) — (z,€) (e, y)| < rara ]| [ly]] -
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The inequality is sharp in the sense that the constant ¢ = 1 in
front of r1ry cannot be replaced by a smaller quantity.

PROOF. Start with the inequality
(4.2)  [z,y) = (z,e) (e m)l” < (I2l” = [z )l*) (Ilyl* = [y e)) -
Using Theorem 5| for a = e, we may state that
2 2 2 2 2 2
43) 2l = Kee) <rill=ll”, Nl = Ky, e)” <3 llyll”
Utilizing (4.2)) and (4.3)), we deduce
2 211,112
(z,y) = {z,e) e, )" < rirz =" Iyl

which is clearly equivalent to the desired inequality (4.1)).
The sharpness of the constant follows by the fact that for x = v,

r1 =1y =1, we get from (4.1)) that
2 2 2
(4.4) lz|” = [z, e)]" < r* |l
provided |le|| = 1 and ||z —e|| < r < 1. The inequality (4.4) is sharp,
as shown in Theorem [f], and the proof is completed. §

Another companion of the Griiss inequality may be stated as well
[10].

THEOREM 22. Let (H;{-,-)) be an inner product space over K and
z,y,e € H with |le]| = 1. Suppose also that a,A,b, B € K such that
Re (Aa), Re (Bb) > 0. If either

Re (Ae —z,2 —ae) > 0, Re(Be—y,y—be) >0,
or, equivalently,
a+ A b+ B
2

T — € €

1
S_|‘B_b|7
2

1
<Z|A- -

holds, then we have the inequality

1 |A—a||B -}
4.5 z,y) — (x,e) (e, < -
(45)  l(z,y) —{z,e) {e.y)] < § \/Re(Aa)Re(Bl_))

[{z, ) (e, y)]

The constant i 1s best possible.
Proor. We know, that
(4.6) (@, y) = (z,e) fem” < (11 = 1. e) ) (lyll” = (g, e)) -
If we use Corollary [I1], then we may state that
1 |A—af

(4.7) ol = 1o, & < 3 frs gy 0P
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and

(4.8) lyll* = Ky, e)l” <

Utilizing (4.6)) — (4.8)), we deduce
o_ 1 |A=a|*|B—b"
|<$, y> <.T, €> <€7 y>| — ]_6 Re (AE) Re (BE)

which is clearly equivalent to the desired inequality (4.5)).
The sharpness of the constant follows from Corollary [11], and we
omit the details. &

REMARK 29. With the assumptions of Theorem[24 and if (x,€), (y, e) #
0 (that is actually the interesting case), then one has the inequality

@w) |1 _lA-allB-b
{we)(e) 174 /Re(Aa) Re (BD)

B
" Re (BD)

[y, e

-1

[(z, ) (e, )"

The constant % 15 best possible.
We may state the following result [9].

THEOREM 23. Let (H; (-,-)) be an inner product space over the real
or complex number field K and z,y,e € H with |e|| = 1. If ri,rg > 0
and

lz —ell <r, lly —ell <

then we have the inequalities

(4.9) [z, y) = (z,e) (e, y)| < %nm/H:cH + 1z, )l - VIlyll + [y )l
< rirg x|yl -

The constant % 15 best possible in the sense that it cannot be replaced
by a smaller constant.

PRroOOF. Start with the inequality
(4.10) [z, 9) = (@ e) (e, ” < (lll” = [{z, )°) (Iyll” = Ky, e)l) -
Using Theorem [7] for a = e, we have
(4.11) 0 < Jlz]* = |z, e)f*
= (lzll = [z, e)]) ([l + (2, e)])

_1
< 571 (el + Kz, e)l) < vt el
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and, in a similar way

(4.12) 0< Iyl ~ w3
1
< 573 Iyl + 1{g: e)) < 2 llyll -
Utilising (4.10)) — (4.12]), we may state that

(4.13) [(z,y) — (2. e) {e,p)]” < }lr?rg (Nl + Iz, e)]) (lyll + Ky, el)

< rirs [l iyl

giving the desired inequality (4.9)).

To prove the sharpness of the constant %, let us assume that x =y

in (4.9), to get
1
(4.14) ]|* = [{z, e)* < 571 (lzll + [z, e))

provided ||z —e| < ry. If & # 0, then dividing (4.14) with [|z| +
|(z,e)| > 0 we get

1
(4.15) ol — |, )] < 512
provided ||z —e|| < 7, |le]] = 1. However, (4.15) is in fact (5.2 for

a = e, for which we have shown that % is the best possible constant. §
The following result also holds [9].
THEOREM 24. With the assumptions of Theorem we have the
inequality

(416) 1(a,1) — (.0) (0] < ray/ 2ot + 10y o3 5 L,

PRrROOF. Note that, from Theorem [§, we have

1
(4.17) Izl lall < [¢z, @) + 57,

provided ||z — a|| < 7.
Taking the square of (4.17) and re-arranging the terms, we obtain:

1
0 < JalP Jal? = . ) < 1% (52 + ovall).

provided ||z — al| < 7.
Using the assumption of the theorem, we then have

1
118) o< ol - o) <02 (4 Goiell).
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and

1
419 o<l - ol <73 (3 + Ll

Utilising (4.10]), (4.18) and (4.19), we deduce the desired inequality
4.16)). 1

The following result may be stated as well [9].

THEOREM 25. Let (H;(-,-)) be an inner product space over K and
x,y,e € H with |le|| = 1. Suppose also that a, A,b, B € K such that
A # —a, B # —b. If either

Re(Ae —x,2 —ae) >0, Re(Be—y,y—be) >0,
or, equivalently,

a+ A
2

holds, then we have the inequality
(420) \(x,y) - <£E,€> (e,y)|

b+ B

1
x — e e §§|B—b|,

1
< Z|A- -

1 |A—a|[B—1

< - x|+ [z, e)| - VYl + [{y, e
iy Tl VI T
1 A— B—b

<1 A=l H«mmm«

2 /|A+a||B+b

The constant i 18 best possible in )
PROOF. From Theorem [§, we may state that

(4.21) 0 < [lz]* —[{z,e)|”

= ([lzll = ¢z, e)]) (=]l + [z, e)])

1 |A—af

< Z.

< T (el + el
and

1 |B—b

4.22 < |lyl* - P .
(4.22) 0= lyl™ =Wy, e < 3~ Tr Ul + Ky, ed)
Making use of (4.10) and (4.21)), (4.22)), we deduce the first inequality
in (1:20).

The best constant follows by the use of Theorem |8 and we omit
the details. 1

Finally, we may state the following theorem as well [9].
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THEOREM 26. With the assumptions of Theorem we have the
inequality

(423) |<£L‘,y> - <I’, 6) <67y>|

_1 A-al|B-b [1 |[A-df
2 [A+a[[B+b]\8 [A+d|

+ [(z, €)]

SR Ll T
8 1Bty Wl

PROOF. Using Theorem [§, we may state that

This inequality implies that

A—af* 1 |A—al'
|[A+al 16 |A+al*’

1
l2ll” < [z, e)l* + 5 (. €)]

giving
1 ‘A _ @|2 1 |A — Cl’2
424) 0< |2|® - < 3
(4.24) 0< |z K%@|_2|A+Mbmﬁﬂ+8\A+ﬂ
Similarly, we have
B —b| 1 |B—bf

1
(4.25) 0§HMF—K%@F§§-

\B+mb@””+§ﬂ3+m

By making use of (4.10) and (4.24]), (4.25)), we deduce the desired
inequality (4.23)).

4.2. Integral Inequalities. The following Griiss type integral in-
equality for real or complex-valued functions also holds [10].

PROPOSITION 23. Let f, g, h € L2 (Q,K) with [, p(s) |h (s)|* dp (s) =
1 and a, A,b, B € K such that Re (Aa), Re (BB) > 0 and

Re [(4h (s) = £ () (F(5) ~ah (s) ) |

Re [(BA(s) = g (s)) (9 () = Bh (s

v

0,

0,

~—

N——

I
AV
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for p—a.e. s € Q. Then we have the inequalities

/Q p(s) £ ()9 (3)dpe ()

—/Qp(S)f(s)

1
< Z.
!

>

(S)dp (3) / p () 1 (5) 9 (5)dy (3)
|A —al|B—b|

\/Re (4a) Re (BD)

/Q 0 (3) 1 () (8)dp (5) / p ()1 () 9 (9)du (s)]

The constant % 18 best possible.

The proof follows by Theorem [22]
By making use of Theorem [25] we may also state:

PROPOSITION 24. Let f,g,h € L/Q) (Q,K) be such that

Lo m@rans -1
Suppose also that a, A,b, B € K with A # —a, B # —b and
Re|(Ah(s) = f (s)) (F(s) —an(s))| = o,
Re|(Bh(s) ~ g() (9() PR (5))| = 0,

for p—a.e. s € Q. Then we have the inequality

/Q p(s) £ ()9 (3)dpe ()

X

~ [ 26 F TG ) [ o)1) TTn ()
1 A—a|B—b
4 A+ d B+

% \/(/QP(S)|f(8)\2d,ub($))é N

<

/Q 0 (5) f () (3)edp (s)

. \/(/Qp@ Ig(S)IQdu(S)>é+

The constant i 18 best possible.

/Q p ()9 (5) R (E)dp (s)|.
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CHAPTER 3

Reverses of Bessel’s Inequality

1. Introduction

Let (H,(-,-)) be an inner product space over K (K =R,C) and
{€i},c; a finite or infinite family of orthonormal vectors in H, i.e.,

0 ifi#y
<€i7€j>: ) Z,]E[
1 ifi=y
It is well known that, the following inequality due to Bessel, holds
Z |<I, €i>|2 < ||ZE||2 )
iel

for any x € H, where the meaning of the sum is:

Z [(z, ;)| := sup {Z [(x,e;)|*, F is a finite part of I} :
FCI

iel ieF
If (H,(-,-)) is an infinite dimensional Hilbert space and {e;},.y an
orthonormal family in H, then we also have

o0
> e < Jlz?
=0

for any z € H. Here the meaning of the series is the usual one.

In this chapter we establish reverses of the Bessel inequality and
some Griiss type inequalities for orthonormal families, namely, upper
bounds for the expressions

lzl* = We,el®, e~ <Z ‘<$76i>‘2> , reX

el el

and

<ZE, y> - Z <ZE, 6i> <€i7y>
iel

under various assumptions for the vectors z,y and the orthonormal

family {e;}

Y x?yEH’

i€l
71
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2. Reverses of Bessel’s Inequality

2.1. Introduction. In [3], the author has proved the following
Griiss type inequality in real or complex inner product spaces.

THEOREM 27. Let (H,(-,-)) be an inner product space over K and
e€ H, |le|| =1. If ¢,P,~,T" are real or complex numbers and x,y are
vectors in H such that the conditions

(2.1) Re (Pe —z,2 — ¢e) >0 and Re(l'e —y,y —ve) >0
hold, then we have the inequality

(2.2 7.} — (2.} {e.9)| < 3 12— 0l [T 1.

The constant % 15 best possible in the sense that it cannot be replaced
by a smaller constant.

In [8], the following refinement of (2.2)) has been pointed out.
THEOREM 28. Let H, K and e be as in Theorem[27 If o, ®,~v, T,y
satisfy or, equivalently,

o- 222 < Sl [u-

v+ T
e
2

2

(&

1
< I —
_2| v,

then

(2.3) [{z,y) = (z, ) (e;9)] < i@ — ¢l [l =]
— [Re(Pe — z,2 — ¢e>]% [Re (I'e —y,y — 76)]% .

In [12], N. Ujevi¢ has generalised Theorem |27 for the case of real
inner product spaces as follows.

THEOREM 29. Let (H,(-,-)) be an inner product space over the
real number field R, and {ei}ie{l 77777 ny O orthornormal family in H. If

iV, Pi Ty € R, i € {1,...,n} satisfy the condition

<i@iei—x,x—i¢iei> >0, <iFiei—y,y—i7iei> >0,
i=1 i=1 i=1 i=1

then one has the inequality:

n

(e.) = 3 (@01} {eny)

=1

(2.4)
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The constant % 1s best possible in the sense that it cannot be replaced
by a smaller constant.

We note that the key point in his proof is the following identity:

n

Z ((z,ei) — &) (Bi — (2, €:))
— <a: — Z D;€is Z Die; — x>
= ||9§'||2 - Z <[L’, 6i>27

i=1
holding for x € H, ¢,,®; € R, i € {1,...,n} and {ei}ie{l,...,n} an
orthornormal family of vectors in the real inner product space H.

In this section, by following [2], we point out a reverse of Bessel’s
inequality in both real and complex inner product spaces. This result
will then be employed to provide a refinement of the Griiss type in-
equality for real or complex inner products. Related results as
well as integral inequalities for general measure spaces are also given.

2.2. A General Result. The following lemma holds [2].

LEMMA 4. Let {e;},.; be a family of orthornormal vectors in H,
F a finite part of I and ¢;,®; (i € F), real or complex numbers. The
following statements are equivalent for x € H :

(i) Re <Zzqu) € — L, T — ZiEF ¢i6i> >0,
() [lo = Ser 252 < 4 (S - o)

1€F
PROOF. It is easy to see that for y,a, A € H, the following are
equivalent (see [8, Lemma 1])

(b) Re (A —y,y —a) >0 and
(bb) [y — 42| < 5 |A—all.
Now, for a = ), ¢, A=, .p Piei, we have

2\ 3
|A—al = ‘ Y o@i—d)el = [ 1D (®—d)e
ieF el
(e wuem) (Sw-ar)
iEF iEF

giving, for y = z, the desired equivalence. g
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The following reverse of Bessel’s inequality holds [2].

THEOREM 30. Let {e;},.;, F, ¢;,®;, 1 € F and x € H such that
either (i) or (ii) of Lemmalj| holds. Then we have the inequality:

(25)  0< el =) e

ieF
< iz |b; — ¢i|2 — Re <Z de; — 1,0 — Z¢i€i>
ieF ieF ieF
< Yo
ieF

The constant i 15 best in both inequalities.

PROOF. Define

I = ZRe [ (x,e;)) <<[L‘, e;) —E)}

i€H

and

(o _x,x_meiﬂ |

icH icH
Observe that

ZRe[ xel}—i-ZRe

1€eH i€H
_ZRe [®:;] — Z|(:p,ei>|2
ieH i€H
and
L=Re | ®ilw,e) + Y & (we) = al* =D @4, (@,6;-)]
ieH i€H i€H jeH
—ZRe[ xel] ZRe (x,e;) —||x||2—ZRe[<I>

i€H 1€H 1€H

Consequently, subtracting I from I, we deduce the following equality
that is interesting in its turn

26) ol = I(.e)P —ZRe[ (@, e:)) (<x,ei>—$i)]
<Z@iei—x,x—z¢iei>] .

i€H i€H
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Using the following elementary inequality for complex numbers
1
Re [aﬂ < Z|a+b\2, a,b ek,

for the choices a = ®; — (z,¢;), b= (x,¢e;) — @,

(2

@) YRe[@ — (re)) (Toed —6)] < ;19— ol

i€H i€H

(1 € F), we deduce

Making use of ([2.6)), (2.7) and the assumption (i), we deduce ({2.5)).

The sharpness of the constant }l was proved for a single element e,
lle]l = 1 in [3], or for the real case in [12].

We can give here a simple proof as follows.

Assume that there is a ¢ > 0 such that

(28)  0<lz* =) [a e
icF
<X <RS- o).
icF icF icF
provided ¢;, ®;, x and F satisfy (i) or (ii).
We choose F' = {1}, e; = ey = (\%,\%) € R z = (r1,79) €
R? & =®=m >0, ¢, =¢=—m, H=NR? to get from (2.8 that

(Il =+ .T2)2
2

<4cm2—(ﬁ—x><x —|—ﬁ>
< Vol 't A
(F5) (= 35)
——=-= To+— |,
N ANRVO)
(2.10) 0 < (me —x,x + me)
G ) () )
If we choose 1 = 7%, #3 = — 7%, then 1} is fulfilled and by 1}

we get m? < 4dem?, giving ¢ > 1. 1

(2.9) 0<azi+a;—

provided

2.3. A Refinement of the Griiss Inequality for Orthonor-
mal Families. The following result holds [2].
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THEOREM 31. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I and ¢;, ®;, v, € K, i € F and x,y € H. If
either

Re<2®iei—x,x—z¢el> >0

i€EF i€F
<ZF e =Y,y — 27161> >0
1€F el

or, equivalently,

S
|
1hg
&
+
<
IA

m
&S]
(_\
g
=l
N——
I

s+, 1 2 :
_ . < — P— .
Yy E 5 Ci _2<’§ ¥ %I) :
i€l i€l

hold, then we have the inequalities

(y) =D (@) (einy)

i€l

i(zkp ¢|)é~<2n#>

i€EF i€EF

Re <Z Die; —x,w— Y ¢iei>]

el el

Re <Z Lie; —y,y — Z%@i>] 2

el ieF

4(Se-or) (o)

The constant i 18 best possible.

(2.11)

[N

S
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PROOF. Using Schwarz’s inequality in the inner product space (H, (-, -))
one has

2

(2.12) <x — Z (x,e;) e,y — Z (y, e;) ei>
< x—Z(az,eZ}ei y—Z(y,ei>ei

and since a simple calculation shows that

<$ - Z (z,ei) ey — Z (y, €:) €i> = (z,y) — Z (z,e:) (ei,y)

ek i€F ek
and
2
2 2
=Y (we)el =z’ = [z,
ieF icF
for any x,y € H, then by (2.12)) and by the reverse of Bessel’s inequality
in Theorem [30] we have

2

@13) |9 — 3 (e i)
< <||5L’||2 - Z (z, 6i>|2> <|Iy|l2 - Z |(y7€i>|2>
< [i ; |D; — gbf — Re <; bie; — w0 — ;gbiei>]
X [1 Z IT; —7:|* — Re <Z Lie; —y,y — Z%@z’>]

=

; (Z\@ - @\2) - (Z\n W)é

<
icF i€F
1
2
— |Re <Z e, —x,x — Z ¢iei>]
icF icF

1

Re<ZFiei _y,y_z%ei>r

1eF i€EF

X
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where, for the last inequality, we have made use of the inequality

(m? —n?) (p* = ¢*) < (mp —ng)*,

holding for any m,n,p,q > 0.

Taking the square root in and observing that the quantity
in the last square bracket is nonnegative (see for example ([2.5))), we
deduce the desired result (2.11)).

The best constant has been proved in [3] for one element and we
omit the details. B

2.4. Some Companion Inequalities. The following companion
of the Griiss inequality also holds [2].

THEOREM 32. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I and ¢;,®; € K, i € F' and x,y € H such that

icF i€EF

or, equivalently,

T +y D, + ¢,
2 -2 2

.ei

i€F 1EF

< % <Z|®i_¢i|2>27

holds, then we have the inequality

(x,y) - Z <x7€i> <eiay>] S }LZ ‘(I)Z - ¢z‘2

el i€EF

(2.15) Re

The constant % 15 best possible.

PRrROOF. Start with the well known inequality
1 2
(2.16) Re (z,u) < ZHz—i—uH . zu€ H.

Since

(z,y) — Z (z,e:) {ei, y) = <I - Z (z,e:) e,y — Z (y, i) €i> ;

i€EF i€ 1€F
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for any z,y € H, then, by (2.16)), we get

(2.17) Re | (z,y) —Z@,ei) (ei,?J)]
= Re <x—Z(x,ei) ei,y—Z@, ei>ei>]
Si m—Z(w,eQei—i-y—Z(y,ei)ei

2

r+y r+y
5 Z<T,€i> €

icF
Tty .
2 b2

T+y

2
K +vy H Z
2 i€
If we apply the reverse of Bessel’s inequality in Theorem for =7,
we may state that
-y [
. 2 b 2
i€EF

Now, by making use of (2.17) and (2.18)), we deduce (2.15).

The fact that 1 is the best constant in @p follows by the fact that
if in (2.14) we choose = = y, then it becomes (1) of Lemma , implying
, for which, we have shown that %1 was the best constant. &

2

r+y 2

2

2.18) <l (Zr@i —@12)2.

el

The following corollary may be of interest if we wish to evaluate
the absolute value of

Re

()~ Y (@,e0) <ei,y>] .

i€F
COROLLARY 23. With the assumptions of Theorem[33 and if

Re<2®iei—x:§y,x:§y —Z¢iei> >0,

i€F el

or, equivalently,

N

el <

Tty D, + ¢,
2 -2 2

N | —

i€EF
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holds, then we have the inequality

(z,y) — Z (z,€) (ei,y)]

el

(2.19) Re

1
SZZ’(I%’_¢@”2'

el

ProoOF. We only remark that, if

Re<z®i€i_$;y7$;y_z¢iei> >0

i€F i€F
holds, then by Theorem |32 for (—y) instead of y, we have

~ (o) + Y (o) <e¢,y>] < 31e- o,

el 1€l

Re

showing that

(2.20) Re

(.5 = 3 (@) <ei,y>] > 1S 1e -

i€F i€EF

Making use of (2.15) and (2.20), we deduce the desired inequality
@.19). n

REMARK 30. If H is a real inner product space and m;, M; € R
with the property that

<ZMiei_x:2|:y’x:2l:y _Zmi6i> >0,

1€EF ieF

or, equivalently,

N[

x:l:y_ZMi—l—mi

<
2 2 -

DO | —

.e’L

(z o, —m»?) ,

i€l i€EF

then we have the Griss type inequality

() = 3 (e fen)| < 3 30 (M —mi)?.

i€EF i€EF

2.5. Integral Inequalities. Let (£2, X, 1) be a measure space con-
sisting of a set €2, ¥ a o—algebra of parts and p a countably additive
and positive measure on ¥ with values in R U {oo}. Let p > 0 be a
p—measurable function on 2. Denote by Lf) (2, K) the Hilbert space of
all real or complex valued functions defined on €2 and 2 — p—integrable
on 2, i.e.,

/ﬂ p ()£ (3)]2 dpa (5) < oo,
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Consider the family {f;},.; of functions in LZ (Q, K) with the prop-
erties that

/Q p(5) ()5 () du(s) = 6. ijel,

where 6;; is 0 if ¢ # j and d;; = 1 if i = 5. {fi},., is an orthornormal
family in L2 (2, K).
The following proposition holds [2].

PROPOSITION 25. Let {fi},.; be an orthornormal family of func-
tions in Li (LK), F a finite subset of I, ¢, ®; € K (i € F) and
feL2(Q,K), such that either

(Z ®ifi(s) = f (3)>

el

(2.21) /Qp(s) Re

or, equivalently,

/Qms) IO - mayyE

; 2
el
Then we have the inequality

1
dp (s) < ZZ@Z —¢i|2-

ieF

2

222) 0= [ p@F e =3 | [ 10 @ F ()
< T IBi— o

—/QP(S)Re (Zq)ifi (3)_f(3)>

3 (7<5>_zw<s>)] au (s)

icF
1 2
< ZZ@"_(M -

i€l
The constant i 15 best possible in both inequalities.

The proof follows by Theorem applied for the Hilbert space
L2 (Q,K) and the orthornormal family {f;},.; .

The following Griiss type inequality also holds [2].
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PROPOSITION 26. Let {f;},.; and F be as in Proposition . If

¢, 4,7, T € K (i € F) and f,g € L2 (2, K) so that either

(Z D.f; (5) —f<s>> (7 (

| oone
/Q/J(S)Re

or, equivalently,

e
/QP(S)

hold, then we have the inequalities

ieF

2

i€l

2

i€l

(2.23)

/Q 0 () £ (5) g () du (s)

- [r@ @R |

: ;
i—¢¢|2> (Z|Fi_%|2>
i€F i€F

JUo-3

X /Qp(s)Re (Zrlfl (5)_9(5)> (§<5)_Z’Y_iﬁ(
Sio-or) (Sir-a)

INA
o |
]
=)

(Z ®;ifi(s) = f(s)

|
{o\
e)
—~
®
S~—
=
)

<

| =

el 1EF

The constant i 18 the best possible.

(Z Lifi(s)—g (s)) (?(

)=S0 Bl

g(s) = ST g )

Fls)=> oil

1€l

9= 3 A7) | a0
)= ﬁ(s)) dpu () > 0,
VICES S St
du(s) < 7 3 I0 =l

p () i (5) g )dp (5

(8)> ] dp (8)]
S)) ] dp (8)]

The proof follows by Theorem |31] and we omit the details.

REMARK 31. Similar results may be stated if we apply the other
inequalities obtained above. We omit the details.
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In the case of real spaces, the following corollaries provide much
simpler sufficient conditions for the reverse of Bessel’s inequality ([2.22)
or for the Griiss type inequality (2.23)) to hold.

COROLLARY 24. Let {fi},.; be an orthornormal family of functions
in the real Hilbert space L% (Q), F a finite part of I, M;,m; € R (i € F)
and f € L2 (Q) such that

Zmifi (s) < f(s) < ZMifi (s) for p—ae se

i€l iEF

Then we have the inequalities
BN NICISCIICES S {AP(S)f(S)ﬁ(S)W(S)F

i€EF
1
< - Z (M; — mi)2

4 4 =
- / o (s) (Z Mfi(s) — f <s>> (f (5)= S, <s>) dpi (s)
< EZ(MZ‘—W@')?-

The constant i 18 best possible.

COROLLARY 25. Let {fi},o; and F be as in COT’Oll(LTy. If M;, m;,
Nij,n; €R (i € F) and f,g € L?(Q) are such that

D mafi(s) < f(s) <D Mifi(s)
i€F icF
and
Znifi (s) <g(s) < ZNifi (), for p—ae s
i€F i€l

then we have the inequalities

/Q p () £ (5)g (5) dpu ()

- [0 56 FEdns) [ 56190 fi () du (o)

el
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<Z (Mz - mi)2> (Z (Ni - nz>2>

/ (Z Mifi (s )) <f ()= mif; (3)) dyu (s)]

<

1 =

el

<\ [ ots (ZNfz >) <g<s>—znifi<s>) dM(S)]

(S n-my)
iCF
3. Another Reverse for Bessel’

[NIE

<

I,

s Inequality
3.1. A General Result. The following lemma holds [6].

LEMMA 5. Let {e;},.; be a family of orthornormal vectors in H, F
a finite part of I, \;, e K, 1 € F, r >0 and x € H. If

r — Z)\zel

1€EF

then we have the inequality

(3.1) 0< 2l = [z e <r® = A — (z,e)]

ieF i€F

PRrooOF. Consider

2
Xr — Z/\lez

- <x_ S N,z — ZAjej>

icF el jJEF
= ||z||? —Z)\ T, e;) ZA T, e +ZZ)\>\_ (es, ;)
1eF 1€EF

1€F jeF

= [zl = Nlw ey = > Nwe) + > A

1EF i€l ieF
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and

L= > i = (@ edl’ = > (= {me)) (% = (o, e

el el

= [N+ e = X ) = Al )]
icF

= Z |)\z‘|2 + Z |<$»€i>|2 - Z)‘_i<xvei> - Z)‘i<x76i>'
i€ i€EF 1€EF 1€EF

If we subtract I from I; we deduce the following identity that is inter-
esting in its own right

:c—Z)\iez Z|>\ xez\ —H:cH —Z:|:1:'ez ,

i€EF i€EF i€F

from which we easily deduce (3.1)). n

The following reverse of Bessel’s inequality holds [6].

THEOREM 33. Let {e;},.; be a family of orthornormal vectors in
H, I a finite part of I, ¢;, ®;, © € I real or complex numbers. For
x € H, if either

(i) Re <Zz‘eF die; —x, 0 — ZieF ¢i€i> > 0;

()

or, equivalently,

.. 4+ ®;
(i) |7 = Lier 24

<3 (Cier 1@ = 0l)

holds, then the following reverse of Bessel’s inequality

(3.2) 0 < [llf* =D Kz, el

el
SIBLETIEDY
cF el
1
;IZ

eFr

€;

¢; + i ’
Ty el

15 valid.
The constant %1 18 best possible in both inequalities.

¢z+<1’

Proor. If we apply Lemma |5/ for \; = and

1
1 2
=3 (Z - W) ,
el

we deduce the first inequality in (3.2)).
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Let us prove that } is best possible in the second inequality in (3.2).
Assume that there is a ¢ > 0 such that

(3:3) 0< flafl* =Y [z, )]

icF

<cZ|CI> —¢| —Z St %

- <:L‘, €i>
el el 2

provided that ¢;, ®;,x and F satisfy (i) and (ii).
We choose F' = {1}, e; = e = <L i) € R? z = (x1,22) € R,

2

)

V2’ V2
b, =d=m>0, ¢, =¢=—m, H=TR?to get from (3.3) that
2
(3.4) ng%—i—xg—@
< dem? — @1 F )
= 2 Y
provided

(3.5)  0<{(me—uz,x+me)

m m m m
() ) () )
From (3.4) we get
(3.6) 22 + 22 < dem?
provided holds.
If we choose 1 = %, Ty = —%, then is fulfilled and by

we get m? < 4cm?, giving ¢ > i. 1

REMARK 32. If FF = {1}, e =1, |le|| =1 and for ¢,® € K and
x € H one has either

Re (Pe — x,x — ¢e) > 0,

or, equivalently,

d 1
Hx—¢+ ell < =P — 4|,
2
then
0 < [lz)* = Kz, e)|?
1 y |0+ @ S| )
< 2P — — | — = < Z|P — .

The constant i 18 best possible in both inequalities.
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REMARK 33. It is important to compare the bounds provided by
Theorem [30 and Theorem [33.
For this purpose, consider

1

Bl (x,e, ¢7 q)) : 4

(@ — ¢)* — (Pe — x,2 — de)
and

Botveo) =Lt (250 )

where H is a real inner product, e € H, |le|| =1, z € H, ¢, P € R with
<(I)€—ZL‘,,I‘—§Z56> > 07

or, equivalently,

H o+ @
xr — e

2
If we choose ¢ = —1, ® =1, then we have
Bi(z,e) =1—(e—wx+e) =1~ ([e]” = [l=[|*) = ],
By (z,€) =1— (x,€),
provided ||z| < 1.
Consider H = R?, (X,y) = x1y1 + Zay2, X = (21, 22) ,y = (41,%2) €

R? and e = <§, ‘/7§> . Then ||e]| =1 and we must compare

1
< —|D— 9.
<5 le—d

B, (x) = o} + 3
with )
BQ (X) =1- —(xl —21'2) >

provided z3 + x3 < 1.

If we choose xg = (1,0), then ||xo|| =1 and B; (x¢) = 1, By (Xo) =
% showing that By > Bs. If we choose xog = (—%,% , then By (Xgp) = %,
By (x00) = 1, showing that By < Bs.

We may state the following proposition.

PROPOSITION 27. Let {e;},., be a family of orthornormal vectors
in H, F' a finite part of I, ¢,, ®; e K (i € F'). If x € H either satisfies
(i), or, equivalently, (ii) of Theorem[33, then the upper bounds

By (z,e,¢,®, F) := iz]@i—¢i]2—Re<Z¢)iei—x,x—z¢iei>,

S el el

¢ +P; ?

5~ (x,e;)

9

By (z,e,¢,®, F) := %Z@z — ¢ _Z

iEF i€
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for the Bessel’s difference B (z,e, F) := ||z||* =%, z, ), cannot
i€EF

be compared in general.

3.2. A Refinement of the Griiss Inequality for Orthonor-

mal Families. The following result holds [6].

THEOREM 34. Let {e;},.;

Re <Z be; —x,x — Zgbiei> >0,
i€F

el

Re <ZFZGZ —Y,y—- Z’yzel> 2 07
ieF

i€l

or, equivalently,

. 2
iEF
i+
y- Z 5 i
i€

IA
DO |

hold, then we have the inequalities

3.7 0<

el

(wy) =D {w e (e y)

DN | —

el

<} (Siw-ar) (T
i€EF i€l
ST P e

i€l

NI

<

N

The constant i 18 best possible.

[

Z i — ’Yz’|2

el

! (Z B, —
ieF
(Z T — %'|2

)

)
)

N|=

1
2

1
2
s+,

be a family of orthornormal vectors in
H, F a finite part of I, ¢, ®;, v;,,1s € K, i € F and x,y € H. If either

Y

9

2

)5
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PROOF. Using Schwarz’s inequality in the inner product space (H, (-, -))
one has

2

(3.8) ‘<93 - Z (z, i) ey — Z (y,e:) €i>

el el

T — Z (x,e;) e

i€l

2 2

< y_z<yaei>ei

i€l

and since a simple calculation shows that
<.T - Z <I, ei) €Y — Z <y7 €i> ei> = <$,y> - Z <LE, ei) <ei> y>
icF ieF icF

and

= [lzl* =) [z, e’

el

T — Z(x,@-}ei

i€l

for any x,y € H, then by (3.8]) and by the reverse of Bessel’s inequality
in Theorem [33] we have

2

(39) <$, y> - Z <$, €i> <€i7 y>

i€l

< (IICEH2 - Z [z, ei>\2> <||y||2 - Z \<y7ei>|2>

< EZVE—%F—Z
L+,

i€EF i€EF
2

X EZ\H—%!Q—Z

el i€l

D; + ¢,
2

— (x, ;)

- <y7 ei>

=K. 2]

Using Aczél’s inequality for real numbers, i.e., we recall that

(3.10) <a2 -y af) <b2 -3 b?) < (ab - aibi> 2 :

i€EF i€EF 1€
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provided that a,b,a;,b; > 0, ¢« € F, we may state that

(311) K < E(Z@i—m?) -(Zm—w?)

i€EF i€F

NG

Q; + ¢,
_2;_7T__<

Using (3.9) and (3.11)) we conclude that

2

$76i>

(312) |{z.y) = 3 (@) {esy)

el

< |3 (Z@i - @2)% - (Zm —W)é

ieF

D; + ¢, I+,

9 - <$7ei> 9 - <y7 6¢> ] :

Taking the square root in and taking into account that the quan-
tity in the last square bracket is nonnegative (this follows by and
by the Cauchy-Bunyakovsky-Schwarz inequality), we deduce the sec-
ond inequality in (3.7)).

The fact that i is the best possible constant follows by Theorem
and we omit the details. 1

The following corollary may be stated [6].
COROLLARY 26. Lete € H, |le|| =1, ¢,P,7, ' € K and z,y € H

are such that either
Re (Pe —x,x — ¢e) >0 and Re(l'e —y,y —ve) >0,
or, equivalently,

¢+ P v+T 1
T — ell <=
2 2
hold. Then we have the following refinement of Griss’ inequality
0 < [(z,y) — (z,¢) (e, 9)]
o+ ¢ it

1
§1|¢—¢||F—7|—‘T—<Ive>‘ 5 <y76>'

€ |F_7|7

1
<D —
_2| |, 'y

1
< 31— 6lI0 =1/,
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The constant i 1s best possible in both inequalities.

3.3. Some Companion Inequalities. The following companion
of the Griiss inequality also holds [6].

THEOREM 35. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I and ¢,,®; €K, i € F, z,y € H and X € (0,1),
such that either

(3.13) <Z<I>ez Az +(1=N)y),

ieF
Ax+ (1 — A Z¢€z>_

ieF

or, equivalently,

Qi+ ¢
2

Y

l\DI»—l

)\x+(1—)\)y—z

i€l

\/
N

g

el

holds. Then we have the inequality

3.19) Re <x,y>—z<x,ez~> <ei7y>]
<1 Z@
_}M(ll—A Z‘q)i;@_WHl_A)y’e")
< 1 RSP

ZEF

The constant % 15 the best possible constant in in the sense that
it cannot be replaced by a smaller constant.

Proor. We know that for any z,u € H, one has
1
Re (z,u) < 1 |2 4 ul®.
Then for any a,b € H and A\ € (0,1) one has

(3.15) Re (a,b) < Xa+ (1 —\)b|°.

1
= IN(1-N)



92 3. REVERSES OF BESSEL’S INEQUALITY

Since

(z,y) — Z (z,e:) {es, y) = <$ - Z (z,e:) e,y — Z (y, i) €i> ;

S el S

for any z,y € H, then, by (3.15), we get

(3.16) Re

(z,y) — Z (z,€:) <€i,y>]

<x — Z (x,e;) e,y — Z (y, e;) ei>]

el i€EF

= Re

2

icF i€l
1 2
R 1— _§ 1— N e
1
=—-7|A (I—=2A - (A (1= i .
w0l = TG y,e>|]

If we apply the reverse of Bessel’s inequality in Theorem [33| for Az +
(1 — X\)y, we may state that

(317) Az + (1 =Nyl =D Az + (1= Ny, e’

eF
1 D, + ¢, 2
SzZ@i—%F—Z 5 — Az + (1 =Ny e)
ieF ieF
1
< 1 Z |D; — ¢ 2
ieF

Now, by making use of (3.16)) and (3.17]), we deduce (3.14]).

The fact that - is the best possible constant in (3.14) follows by the
fact that, if in (3.13]) we choose = = y, then it becomes (i) of Theorem
, implying for A = % , for which, we have shown that % was the
best constant. §

REMARK 34. In practical applications we may use only the inequal-
ity between the first and the last terms in .
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REMARK 35. If in Theorem we choose A\ = %, then we get

Re <$7y> - Z <[E, €i> <ei7y>
ieF

1 2 ®’L+¢ I—i-y 2
<31 -l - -
S 72 1% =9 Z 2 < 2 e>

i€F 1EF

1 2
< =N |0, — o,
_4 ‘ (A (bl‘ )

i€EF

provided

or, equivalently,

=

r+y D, + ¢,
;T T2y

<3(5-or)

COROLLARY 27. With the assumptions of Theorem 39 and if

<Z<I>el Az £ (1=Ny), \x=+(1 Z¢el>>0

1€EF ieF

el

or, equivalently,

Az + ( Z

er

?

l\DI»—

v
o=

g

i€F

then we have the inequality

(3.18) |Re

(w.y) =Y (we) {eny)

el
1 - . : dJ
The constant 15 1s best possible in .

REMARK 36. If H is a real inner product space and m;, M; € R
with the property

<2Miei—()\xi(1—)\) y), Az =+ ( Zm,ez> >

el el

<i6 Z|CI>

zeF
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or, equivalently,

1
2

< % [Z (M, — mi)2] )

icF

M. ,
Axi(l—A)y—Z%ei

el

then we have the Griiss type inequality

1 1 2

el

(2,y) = D (w,e:) (e y)

el

3.4. Integral Inequalities. The following proposition holds [6].

PROPOSITION 28. Let {fi},c; be an orthornormal family of func-
tions in L2 (Q,K), F a finite subset of I, ¢;,®; € K (i € F) and
feL2(Q,K), so that either

/Q p(s) Re (Z Duf; (5) —f(s)) (? (5)-S & T <s>>] dpi(s) > 0

iEF i€l
or, equivalently,

JNCIICE S

i€l
Then we have the inequality

2

(319) 0< / p () 1f () duls) = 3

i€l

|D; — ¢,

The constant i 15 best possible in both inequalities.

The proof follows by Theorem applied for the Hilbert space
L2 (Q,K) and the orthornormal family {f;},.; .

The following Griiss type inequality also holds [6].
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PROPOSITION 29. Let {f;},.; and F be as in Proposition |2§ . If
¢, 4,7, T € K (i € F) and f,g € L2 (2, K) so that either

Lot <Z<1>fz )(ﬂs)—ZM(s)) dp(s) > 0,

icF icF -
/ <Z szz > (g Z Yi fz ) du (S) > O,
el icF |

or, equivalently,

INCICE e du<s>s§Zr¢>i—W,
[ oo -2 520 du) < 73N -

hold, then we have the inequalities

/p(s)f( )9 (5)du (5)

_z/ () [ () £ (93T (5

(g )(2)

—Z w—/gp(s)f(s)ﬁ(s)du(s)
X i+,

= [ @8 T (s

1 1
1 2 2
<7 (Z‘(I)i_¢i‘2> (ZID—%F) :
1€EF 1€F

The constant % 15 the best possible.
The proof follows by Theorem |34] and we omit the details.

(3.20)

N

REMARK 37. Similar results may be stated if one applies the in-
equalities in the above subsections. We omit the details.

In the case of real spaces, the following corollaries provide much
simpler sufficient conditions for the reverse of Bessel’s inequality (3.19)
or for the Griiss type inequality (3.20)) to hold.
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COROLLARY 28. Let {fi};o; be an orthornormal family of functions
in the real Hilbert space Li (Q), F a finite part of I, M;,m; € R (i € F)
and f € L2 (Q) so that

ZmzfZ f(s) SZszz(S) for w—a.e sefd

i€EF ieF

Then we have the inequalities

OS/QP(S)fQ(S)dM(S)—;{/QP(S)JC(S)fz‘(S)dM(S)r

SINUELIES {Mi;mi—/QP(S)f(S)fi(S)du(S)r

i€l
< (M; —my)*
12!

..J>

A
| —

The constant i 15 best possible.

COROLLARY 29. Let {fi},.; and F be as in Corollary. If M;, m;,
Ni,n; € R (i € F) and f,g € L7 () are such that

Zmifi (5) < f(s) < ZMifi (s)

i€F i€F
and

an‘fi (s)<g(s) < ZNifi (s) for p—ae s€Q,

i€l iEF

hold, then we have the inequalities

[ o016 a6 duts
- [ o056 £ ) [ 561905 fi(s)due (o)
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< i (Z (M; — mi>2> (Z (Ni — ”z)2>

i€F el

oy @_/Qp@)f(s)ﬁ(s)du@)

el

x Ni*”i—[lp<s>g<s>fi<s>du<s>

2
(Z (M; — mi>2> (Z (N; — n¢)2>

I
[SIES

<

S,

el

4. More Reverses of Bessel’s Inequality
4.1. A General Result. The following reverse of Bessel’s inequal-
ity holds [9].

THEOREM 36. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I, and ¢;,®; (i € F'), real or complex numbers

such that ¥, Re (®;¢;) > 0. If & € H is such that either
(i) Re <Zz’eF e — T, T — ZieF ¢zel> 2 O;
or, equivalently, 1
(i) H zeF¢+<I> < 5 (Xicr 125 — 4 )E'
holds, then one has the mequality

4.1 , €i)
(1.1) | < ZZEFR ey ZF:'

15 best possible in the sense that it cannot be replaced

The constant %
by a smaller constant.

PROOF. Observe that

Re<Z<I>el x x—z¢el>

iEF ieF

—ZRe iz, e;) xez] ||93||—ZRe D;0;)

el

giving, from (i), that
(42) ol + Y Re (0:) < 3 Re[@fz e+ (1)

el iEF
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On the other hand, by the elementary inequality
2 1
ap”+—q 22pq, a>0,pq=20;

we deduce

(4.3) 2] <

1
> 0 and using , we obtain

(z,e) + ¢, (x, ei>]

[ZieF Re ( Zgbl)]
which is also an interesting inequality in itself.

Using the Cauchy-Bunyakovsky-Schwarz inequality for real num-
bers, we get

(4.5) ZRe[ (2, e) E(%ez‘)}

[ZZEF e( $)
Dividing by [ZzeF Re( )]

1 ZzGF Re
(44) ol < 5

g; ) + &; (x,e;)
< Z(\@AH@D\(%%H
S[Z(\@HIW ] [Z!xez ] :

Making use of (4.4]) and (4.5)), we deduce the desired result (4.1)).
To prove the sharpness of the constant i, let us assume that 1}
holds with a constant ¢ > 0, i.e.,

Sicr (1] + |o4))”
46 2 < . ek ) 2 )
(4.6) Jz]]” < e > Re (0.0 EEF!

provided z, ¢;, ®;,i € F satisfies (i).
Choose F' = {1}, e; =¢, |le|]| =1, ¢, = m, &; = M with m, M > 0,

then, by (4.6]), we get
2
< MAm)

(4.7) lz]* <
provided
(4.8) Re (Me — z,x —me) > 0.

[z, &)
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If x = me, then obviously (4.8)) holds, and by (4.7) we get
Y 2
(M +m) m2
m

m2§c

giving mM < ¢ (M +m)* for m, M > 0. Now, if in this inequality we
choose m=1—¢, M =1+¢ (¢ €(0,1)), then we get 1 —&* < 4c for
e € (0,1), from where we deduce ¢ > 1. 1

REMARK 38. By the use of , the second inequality in and

the Holder inequality, we may state the following reverses of Bessel’s
inequality as well:

el < 5 e
[>ier Re (®i6;)]°
(o {10+ |60} 3 [l

el

A S 0eiver] (Sieer)
forp>1, 4+ =1;

D=
Q=

max;ep [(z,e:)] D [| D] + o] -

L ek

The following corollary holds [9].

COROLLARY 30. With the assumption of Theorem[30 and if either
(i) or (ii) holds, then

1
(49)  0<|lalP =D [ e < M (2,0, F) ) [(w e,
i€l iEF
where
M (@05 | D 102~ 16 + 4[|23] ~Re(®5)]}]"

ZieF Re (q%al)
The constant i 1s best possible.
PROOF. The inequality (4.9)) follows by (4.1) on subtracting the

same quantity » .. [(z, e;)|> from both sides.

To prove the sharpness of the constant i, assume that 1} holds
with ¢ > 0, i.e.,

(4.10) 0< 2l =Y [w.e)|” < cM? (R,9,F) Y |(z,e:)]*

1€F i€EF
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provided the condition (i) holds.
Choose FF = {1}, e1 =e¢, |le]| =1, ¢, = ¢, P; = &, ¢,P > 0 in

to get
(® —¢)°

(4.11) 0 <[] = [z, e)|* < ¢ P [z, )],
provided
(4.12) (Pe —z,x — pe) >0
If H=R?* o= (11,22) € R? e = (7 \lf) then we have
+x)" 1
Jol? = o, ) =+ ad - EE2E L e,
o)t = Lt za)
’ 2
and by (4.11)) we get
(21 — 902)2 (- ¢)2 (z1 + $2)2
4.1 < . .
(4.13) 2 =T 50 2
Now, if we let x; = \%, = % (¢, ® > 0) then obviously

2 /@ 4
Pe —x,x — ¢e) = — — r,—— | =0,
e =00 =3 (5 0) (= 5)

which shows that (4.12)) is fulfilled, and thus by (4.13])) we obtain

(©—¢)° _ (2-0)° (2+¢)
4~ b 4

for any ® > ¢ > 0. This implies
(4.14) (D4 ¢)* > pd

for any & > ¢ > 0.
Finally, let p =1 —¢, ® =1+¢, ¢ € (0,1). Then from (4.14)) we
get 4c > 1 — &2 for any ¢ € (0, 1) which produces ¢ > %1. 1

REMARK 39. If {e;},; is an orthornormal family in the real inner
product space (H;{(-,-)) and M;;m; € R, i € F' (F is a finite part of I)
and x € H are such that M;,m; > 0 for i € F with ZZ.GF Mym; > 0

and
<Z Me; —x,x — Zmiei> >0,

i€EF i€EF
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then we have the inequality

0< ol = S (et < - e ML S

- Mym;
icF ZleF v ieF

The constant i 15 best possible.

The following reverse of the Schwarz’s inequality in inner product
spaces holds.

COROLLARY 31. Let z,y € H and 6,A € K (K= C,R) with the
property that Re (Aé) > 0. If either

Re (Ay — z,x — dy) > 0,
or, equivalently,

_i+a

holds, then we have the inequalities

Re [Am + 6 (z,y)
| A
|,

1
< A -
N

(4.15) ] lyll <

=51

1Al
VA

<

)

N~ N~
<

(416) 0 <[zl [yl = [{z, )|

(VBT - V) '+ 2 (VBT - R (a9))

<5 (w9
<! — i,
(@17 It Iot* < - SEL R L
and
R I e e
L (1Al+1)° +4(]Ad] - Re(Ad) /o
=7 Re (A9) o)l

The constants % and 21; are best possible.

PROOF. The inequality (4.15]) follows from (4.4) on choosing F' =
{h,eo=e=gh @1 =0 =Alyll, ¢ =¢ =76yl (y#0). The
inequality (4.16]) is equivalent with (4.15)). The inequality (4.17]) follows
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from (4.1) for F = {1} and the same choices as above. Finally, (4.18))

is obviously equivalent with (4.17)). u

4.2. Some Griiss Type Inequalities for Orthonormal Fam-

ilies. The following result holds [9].

THEOREM 37. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I, ¢;,P;, v;,1s € K, i € F and x,y € H. If either

Re <Z die; —x, 0 — Z 0€i

ieF i€EF

Re <Z Lie; —y,y — Z Vi€i

1€l <

or, equivalently,

hold, then we have the inequality

(4.19) 0<

where M (®, ¢, F) is defined in Corollary[30
The constant }1 15 best possible.

x_z‘bi;@ei S%(Z@i_
ieF ieF
ieF i€F

>207
)=0

@F)
- %”2)

[NIES

1
2

)

Y

S, en)f?

el
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PROOF. By the reverse of Bessel’s inequality in Corollary 30, we
have
2

(4.20) |{z.y) =D {z.e) (e y)

i€l

< <||:v||2—Z|<x, ei>|2> <||y||2—2|<y,ei>|2>
< 0 (®,6.5) Y |ir, Ly F) Y (e

el i€F

Taking the square root in (4.20)), we deduce (4.19)).
The fact that i is the best possible constant follows by Corollary
and we omit the details.

The following corollary for real inner product spaces holds [9].

COROLLARY 32. Let {e;},.; be a family of orthornormal vectors in
H, F a finite part of I, M;, m;, N;,n; > 0, i € F and xz,y € H such
that Y .cp Mym; >0, >, p Nyn; > 0 and

<Z Me; —x,x — Zmiei> >0, <Z Nie; —y,y — Zni6i> > 0.

1€l 1€EF i€EF i€EF

Then we have the inequality

2
0 S (x,y) - Z <$7€i> <ya ei>
i€F
< 1. Dier (M; — mi)2 D ier (Ni — ”z)2 >ier (2, €i>|2 > ier (Y €i>|2
16 Dier Mimi D, Nimy .

The constant 1—16 15 best possible.

In the case where the family {e;},., reduces to a single vector, we
may deduce from Theorem [37] the following particular case.

COROLLARY 33. Lete € H, |le|| =1, ¢,®,7,T € K with Re (9¢),
Re (I'y) > 0 and z,y € H such that either

Re (®e —z,x — pe) >0, Re(l'e —y,y —~ve) >0,
or, equivalently,

_0*® <
2

1 1
<P — <ZIr—
2\ 9|, 6_2| 7

2

ot
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hold, then

OSKﬂw—%%@@wﬂS%MVE@NNRWK%@@WW

where

(9] = [6])* + 4 [|6®| — Re (@5)]]5

M(®,0) = [ Re (97)

The constant i 18 best possible.

REMARK 40. If H is real, e € H, |le|]| = 1 and a,b, A, B € R are
such that A >a >0, B>b>0 and

x—a+Ae S%(A—a), H b;Be _%(B—b),
then
420 ) = o) e < 3 S (o) e

The constant i 1s best possible.

If (x,e), (y,e) # 0, then the following equivalent form of
also holds

(z.3) 1‘<1<A—a><B—b>
ey |4 JabAB

4.3. Some Companion Inequalities. The following companion
of the Griiss inequality also holds [9].

THEOREM 38. Let {el}lel be a family of orthornormal vectors in
H, F a finite part of I, ¢,,®; € K, (i € F), x,y € H and X € (0,1),
such that either
(4.22)

<§:®q A+ 1 =Ny) dz+(1—=N)y §:¢a>_ ,

iEF ieF

or, equivalently,

)\x+(1—)\)y—2® ;L¢

el

g%(Z@ ¢|> ,

el
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holds. Then we have the inequality
(4.23) Re |(z,y) = > (x,e) (es,y)
1€EF

< 1—16-ﬁZM%@,M)ZKAw(l—A)y,em?.

i€EF 1€EF

The constant % 15 the best possible constant in in the sense that
it cannot be replaced by a smaller constant.

ProoOF. Using the known inequality
1
Re (z,u) < 2 |z + ul?

we may state that for any a,b € H and A\ € (0,1)

(4.24) Re (a,b) < m Xa+ (1—X\)b|>.
Since
(z,y) — Z (z,ei) (e, y) = <$ - Z (T,€:) €,y — Z (y, e:) 6i> )

for any z,y € H, then, by (4.24), we get

(4.25) Re <$,y>—ieZF<fL',€i> (ei,y>]
— Re <x—;(x,e»ei,y—;@,eimﬂ
gm A(m—é(x,e,}ei)
+(1=2) (y—%?(y,e»ei) 2
:m )\x+(1—)\)y—;<>\x+(1—)\)y,ei)ei 2
- i Hm<1—A>yu2—i€ZF\<m+<1—A>y,ei>r2]-
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If we apply the reverse of Bessel’s inequality from Corollary for
Az + (1 — \)y, we may state that

(4.26) [z + (L =Nyl =D [+ (1= A y.e)’

icF

M (®,0,F)> [z + (1= Ny,

el

Now, by making use of (4.25)) and (4.26]), we deduce (4.23)).

The fact that == is the best possible constant in llows by the
fact that if in (4.22)) we choose x = y, then it becomes (i) of Theorem
36| implying for A = % the inequality (4.9)), for which, we have shown
that }1 is the best constant.

<

|

REMARK 41. If in Theorem we choose A\ = %, then we get

<x+y >
, €4
2

i€l 1€EF

2
Re

Y

<$’y> - Z <JI,61-> <6i7y>] S EMQ (i)ud)? F) Z

el

provided

or, equivalently,

r+y D, + ¢,
;T T2y

< % <Z|®i_¢i|2>2'

el

S
4.4. Integral Inequalities. The following proposition holds [9].

PROPOSITION 30. Let {fi},.; be an orthornormal family of func-
tions in LIQJ (Q,K), F a finite subset of I, ¢,,®; € K (i € F) such that
> ier Re (2i9;) > 0 and f € L2(Q,K), so that either

/Qp(8> Re <Z ®ifi(s) = f (8)) (7(8) > % E(S))] dp (s) = 0,

ek icF
or, equivalently,

IO - maiyyE

du(s) < 3 D 10— 6,

i€F
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Then we have the inequality

([rorerae) <5 = - T

max {|i] + 3]} )
ief

[Z(!qm . '@'*’T (z

i€r i€l

(

/ () £ ()T ()

/ () (T (s)da ()

for p>1,

max

x| [ ()1 ()T (5)du (5)| 3 10+ o).
\ Q 1€EF
In particular, we have

(4.27) / o ()11 () dp (5)

1 > ier (19 + |6:1)” Z
4 YiepRe (®igy) i€F
The constant i 18 best possible.

The proof is obvious by Theorem [36] and Remark [38] We omit the

details.
The following proposition also holds.

2
<

/Q 0 () £ () T (5) dpu ()

ProprosiTION 31. Assume that f;, f,¢,,®; and F satisfy the as-
sumptions of Proposition [30. Then we have the following reverse of
Bessel’s inequality:

2

428) 02 [ p@) P duts) =X | [ 065 6Tl
<P @0 Y| [0 16 Faut)]

where, as above,

(4.29) M (®, ¢, F)
5 {(1] - 6))" + 4 [lo] - Re (03)]}]
Re(@i@)
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The constant i 1s the best possible.
The following Griiss type inequality also holds.

PROPOSITION 32. Let {f;},.; and F be as in Proposition . If
¢, 5,7, T € K (i € F) and f,g € L2 (Q,K) such that either

/QP(3> Re (Z ®fi(s) - f(S)) (7(8) > & E(S)) dp(s) = 0,

| one (ani <s>—g<s>> (a@)—Z% ﬁ@)) du(s) 2 0,

or, equivalently,

/Q/J(S)

2
F6) = PO )] dus) < 13010 - 6
i€l

el

2

9(5) = ST (o) dp(s) < § DD IR -l

i€F i€F

hold, then we have the inequality

(4.30)

/Q p(s) £ ()9 (5)d (s)

- [r@ 1Tt [ o) £ 7

1€l

[\
N

1

X
VR
i
S

<

—~

V)

S~—

=

—

V)

N—

Na)

—

[VA)

N—

Y

=

—

V)

SN—

(3]
\_/
N =

where M (®, ¢, F) is as defined in ({{-29).

The constant }1 is the best possible.

The proof follows by Theorem |37] and we omit the details.

In the case of real spaces, the following corollaries provide much
simpler sufficient conditions for the reverse of Bessel’s inequality
or for the Griiss type inequality to hold.

COROLLARY 34. Let {f;},c; be an orthornormal family of func-
tions in the real Hilbert space L?, (Q), F a finite part of I, M;;m; >0
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(i € F), with Y ;.o Mim; >0 and f € L2(Q) so that
Zmifi(s) < f(s) < ZMifi (s) for w—ae sl
i€F el
Then we have the inequality

BN NICISCIACES S {[lp<s>f<s>fi<s>du<s>]2

el

<L ZZWM‘ ni”) > [ [re 1656 du<s>]2.

The constant % 15 best possible.

COROLLARY 35. Let {f;},c; and F be as above. If M;,m;, Ni,n; >
0 (i € F) with Y ,cp Mimy, Y J,cp Nini > 0 and f,g € L2 (Q) such that

Zmifi (5) < f(s) < Zszz (s)
and

Znifi (s) <g(s) < ZNifi (s) for p—ae seQ,

ieF i€l

then we have the inequality

p(S)f( ) g (s)dp(s)
—Z/ )dﬁt()/gms)g@)fms)du(s)

i€F

1 <z (M, — m,) )é (z (N, ni>2>5
4 ZzeF M;m; ZieF Nin;

[ £5) (o) <>)QZ(/Qms)g(s)fi(s)du(s))T.

el

[

5. General Reverses of Bessel’s Inequality

5.1. Some Reverses of Bessel’s Inequality. Let (H;(:,-)) be
a real or complex infinite dimensional Hilbert space and (e;);cy an
orthornormal family in H, i.e., we recall that (e;,e;) = 01if 7,5 € N,
i # 7 and ||| =1 for i € N.
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It is well known that, if # € H, then the sum 3. [(z,e;)|” is
convergent and the following inequality, called Bessel’s inequality

[e.9]

(5.1) Z (2, en)]* < Jlz]”,

holds.

If 2(K) = {a=(a;);cx C K|, |as|* < 00}, where K = C or
K = R, 1s the Hilbert space of all complex or real sequences that
are 2—summable and X = (\;),oy € 2 (K), then the sum > 2, Ae; is

1
convergent in H and if y := Y7 Nie; € H, then [jy[| = (372, ’)\i‘z) 2
We may state the following result [7].

THEOREM 39. Let (H; (-,-)) be an infinite dimensional Hilbert space
over the real or complex number field K, (e;),cy an orthornormal family
in H, A= (N),ey € 2 (K) and r > 0 with the property that

Z |/\z|2 > 7”2.
i=1
If x € H is such that

<r,

oo
Tr — Z )\Z-ei
i=1
then we have the inequality

2 < (221 Re[)\_i<x,ei>])

5.2 T
5:2) a1 Z?M,E_ﬂ
2
o R i)
Ez 1|/\| —T2
< Zz 1‘>" ZZ’ z, el
Zz 1‘)\’ -r
and

(5:3) 0 < flal|* - Z (2, &)

oo

< e
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PROOF. Applying the third inequality in (4.9) for a = Y2, Nie; €

H, we have

(5.4) z]* > Nes| - Re<x,zm>] < r?|z|?
=1 1=1

and since

o 2 o0

Z)\iei :Z|/\i|27

=1 i—1

Re <$, i )\iei> = f:Re [N (z,e)]
=1 i—1

then, by ([5.4)), we deduce

o0 o0 2
o2 - R<D>] < e,
=1 i=1

giving the first inequality in .

The second inequality is obvious by the modulus property.

The last inequality follows by the Cauchy-Bunyakovsky-Schwarz
inequality

oo 2 o o
Y Nlwen| <D I [wen
=1 =1 =1

The inequality (5.3) follows by the last inequality in (5.2]) on subtract-
ing from both sides the quantity 3.7 [(z,e;)|* < co. 1

The following result provides a generalization for the reverse of
Bessel’s inequality obtained in [9].

THEOREM 40. Let (H;(-,-)) and (e;),cy be as in Theorem . Sup-
pose that T' = ('), € € (K), v = (Wi)ien € 2 (K) are sequences of
real or complex numbers such that

> Re(I'7y;) > 0.
i=1

(f; T — %Iz)

If x € H is such that either

(5.5) "x - i Mei

N

<

N | —

a 2
=1
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or, equivalently,

(5.6) Re <§: Lie; —x, 0 — i%ei> >0
i=1 i=1

holds, then we have the inequalities

1 (Zz_ Re [(T; +7;) (x,ei)})Q

6.7 Jolf < 3=
< 1 ‘Zz 1 ( +’71) <xv€i>|2
—4 Zz 1Re( i%’)
1 Zz 1 |F +’Yz
SZ'leRe L) Z|

The constant i 18 best possible in all inequalities in .
We also have the inequalities:

> T —
(5.8)  0<|z|? —Z\xel L 2l Z]:Uel

Z_l Z R‘e 177,
Here the constant i s also best possible.

PROOF. Since T, v € 2 (K), then also 3 (' + ) € * (K), showing
that the series

>

i=1

L +; ?
2

u and ZRe i)

e}
2
i=1

are convergent. Also, the series

i": Ie;, f:'yiei and i %Fiez
i=1 i=1 i=1

are convergent in the Hilbert space H.
Now, we observe that the inequalities (5.7) and (| follow from

Theoremaon Choosing i = 7’+F ;i€ Nandr = (Zl T =4l )2
The fact that 1 is the best constant in both ) and (| . follows
from Theorem [f] and Corollary [11], and we omit the detalls ]

For some recent results related to the Bessel inequality, see [1], [4],
[10], and [11].
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5.2. Some Griiss Type Inequalities for Orthonormal Fami-
lies. The following result related to the Griiss inequality in inner prod-
uct spaces holds [7].

THEOREM 41. Let (H; (-,-)) be an infinite dimensional Hilbert space
over the real or compler number field K, and (e;),cy an orthornormal
family in H. Assume that X = (N),cy, B = (1);ey € 2 (K) and
ry, o > 0 with the properties that

o0 (e.9]
Z|/\i|2 > 17, Z|Mi|2 > 13,
i=1 i=1

If x,y € H are such that

<r, < ry,

0
Tr — E )\iei
i=1

Yy — Zﬂiez‘
i=1

then we have the inequalities

(wy) =D {ae) (eny)

=1

rire

<
o [e'e) 2 [e'e) 2
VEZ NP = S, Il — 73
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X Z|<xaez>‘2z‘<yvel>|2

rurs o]l [l
J— 2 .
¢zz LA = il

PROOF. Applying Schwarz’s inequality for the vectors

$—§:<x,ei) €, Yy — i (y,€i) e,
i=1 =1
we have
- 2
(5.10) < Z T, i) €,y — Z (y, i) z>
i=1 N )
< x—Z(x,ei>ei
i=1
Since
<x— N (x,e;) e,y — iy,ez i>_ f:
i=1 i=1 i=1
and

2 o0
2 2
= [lzl* =) e el
i=1

[es)
E [E@z €;
=1

then by (5.3]) applied for x and y, and from ([5.10)), we deduce the first

part of (5.9).
The second part follows by Bessel’s inequality.

The following Griiss type inequality may be stated as well.

THEOREM 42. Let (H; (-,-)) be an infinite dimensional Hilbert space
and (€;),en an orthornormal family in H. Suppose that (I';),y 5 (7:)
(01 ien» (Pi)ieny € P (K) are sequences of real and complex numbers

such that

Z Re (T'77;) Z Re (®:¢;)

U Z (y, ) e
=1

2

1€N
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If x,y € H are such that either
=T+ 1 [ 2
- — ¢ 5 Li—= ;
— P; + ¢, = 2
- el < Q; — o, ;
e ity

or, equivalently,

RG<ZF6Z $$—Z%€z>2
Re <Z Pie; —y,y — Z¢i€i> >0
i=1 i=1

holds, then we have the inequality

@)= () (o)

=

IA

[NIES

N | —

=

S (ERIn -l 2-1LE o)
1 (371 Re (T977))% (3272, Re (@i5))

(e ) ) (e 4

L0 N =) (58, 19— 6)°
<1 s ) (i _)1 ol .
[Zi:l Re (T z%)] ? [Z ., Re (
The constant % is best possible in the first mequalzty.

ProOF. Follows by (5.8) and (5.10). The best constant follows
from Theorem 22 and we omit the details. i

I\J\»—‘
N

D=

5.3. Other Reverses of Bessel’s Inequality. We may state the
following result [5].

THEOREM 43. Let (H; (-,-)) be an infinite dimensional Hilbert space
over the real or complex number field K, (e;),cy an orthornormal family

i Hy A= (N);ey € P (K), X#£0 and r > 0. If x € H is such that

00
r — E )\iei
=1
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then we have the inequality

2

> 1 T
(5.11) 0<|z| — < y<m,ei>\2> e —
Z 2 (2= NP

The constant % 18 best possible in m) i the sense that it cannot be
replaced by a smaller constant.

2

PROOF. Let a:=3 .2, \ie; € H. Then by Theorem (7, we have

i )\iei io: 5\1 <.§L’, €i>
=1 =1

1
€ S _T27
Iz :

giving

1
o0 2 1
12 NP < =2
(5.12) [Eal (1§1| | ) S5t

since
1
o o0 2
el = pVE
iCi|| = | z| .
i=1 i=1

Using the Cauchy-Bunyakovsky-Schwarz inequality, we may state that

(Ene) (Eear)

=1

)

i 5\1 <l‘, €i>
=1

(5.13)

i 5\1 <l’, 6i>
i=1

and thus, by (5.12)) and (5.13)), we may state that
o0 3 ) o0 3/ oo 3
() < (o) (Seer)
i=1 i=1 i=1

from where we get the desired inequality in ([5.11])).
The best constant, follows by Theorem m on choosing (¢;),cny = {€}
with |le|| = 1 and we omit the details. B

REMARK 42. Under the assumptions of Theorem [{3, and if we
1
multiply by ||z + (302, |(x,ei)|2)2 > 0, then we deduce, from (5.11]),
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that

(5.14) 0 < [llf* =D [z, el
i=1

1 (el + (Sl eal))
’ (S )
2 la]

(25, M)

where, for the last inequality, we have used Bessel’s inequality

<

IN

Y

1

00 2
(zux,ew) el eem
=1

The following result also holds [5].

THEOREM 44. Assume that (H;(-,-)) and (e;);cy are as in Theorem

43 IfT = Ti)iens ¥ = (iien € P (K), withT # —~, and z € H
with the property that, either

1

T+ 1 [« 2\’

—> el <o L=yl
D SR B

or, equivalently,

Re <i e, —x,x— i’yiei> >0,
i=1 i=1

holds, then we have the inequality

1
2

- 1 3 =yl
(615 0< ] - <Z|<x,ei>\2> <1 eem Lm0l
i=1 (Zi:l |Fi+7i| )

The constant % 1s best possible in the sense that it cannot be replaced
by a smaller constant.

PROOF. Since T, v € ¢*(K), then we have that 1 (T' + ) € 2 (K),
showing that the series

[N

o) 2

2

=1

I+, ?

2

Ly —

2

Y

=1

are convergent. In addition, the series > .o Tye;, > oo) v,e; and

Pyl @ei are also convergent in the Hilbert space H.
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Now, we observe that the inequality (5.15]) follows from Theorem

1
on choosing \; = %, ieNandr=1 (372, |1 — %-|2)2 :

The fact that } is the best possible constant in (5.15)) follows from
Theorem |8, and we omit the details. 1

REMARK 43. With the assumptions of Theorem [{4, we have

(5.16) 0 < [llf* =) [z, el
i=1

1

?i F,L o i2 [e'e] 2
e P (Z (o ez->|2>
(Zi:l |Pi + %’| ) i=1

Zi’il |Fi - %’|2
(2 I +,%)®

5.4. More Griiss Type Inequalities for Orthonormal Fam-
ilies. The following result holds [5].

—_

W

—_

<

]

N |

THEOREM 45. Let (H; (-, -)) be an infinite dimensional Hilbert space
over the real or complex number field K and (e;),. an orthornormal

Jamily in H. If X = (X)), B = (13);en € C(K), A, p#0, 71,79 >0
and x,y € H are such that

00
Tr — E )\iei
i=1

then we have the inequality

S 1, S T2,

Yy — Z i€
i=1

N
N

[l + (=32, 1 e ] [l + (524 Ky ea?)
(Zjil P‘i|2>% (Zfil ’:Ui|2)%
lell* iyl |
(Zfil ‘)‘iﬁ)l (Zjil |M¢’2)Z

PRrOOF. It follows by (j5.14) applied for = and y. We omit the de-
tails.

]

< rirg

Finally we may state the following theorem [5].
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THEOREM 46. Assume that (H;(-,-)) and (e;),cy are as in Theorem

. IfT =Ty, T =

(Fi)i€N7 ¢ = (¢i)ieN7 P =

(i) € €7 (K),

with T' # —~, ® # —¢, and x,y € H are such that, either

o

x_z¥.ei

i=1
Y- Z <I>r21‘¢, e,
i=1

or, equivalently,

1

1 [ee] 2
<3 (Sr-ar)
=1
1
<3 Xle-or
—2 — 1 9

Re <i Iie;—x,x— i’yie@-> >0,
i=1 i=1

Re <§: Qie; —y,y — f: ¢i6i> >0,
i=1 i=1

holds, then we have the inequality

(@9) =D (e (o)
< }l : (Z |D; — ¢Z|2> (Z Ty — 7i|2)
X [”x” + (Z?; (2, €i>!2)%r [”?JH + (Zil |(y,ei)|2)%] 5
(S5, 18+ 0) (S T+ )
< % . (Zi:l |D; — ;] ) (Zi:l T — il )1 ”xH% HZ/H% .

(Zf; |; + ¢1|2)% (Zfil T + 7i|2) !

The proof follow by (5.16)) applied for  and y. We omit the details.
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Part 2

Other Inequalities in Inner
Product Spaces






CHAPTER 4

Generalisations of Bessel’s Inequality

1. Boas-Bellman Type Inequalities

1.1. Introduction. Let (H;(-,-)) be an inner product space over
the real or complex number field K. If (e;), .., are orthonormal vectors
in the inner product space H, i.e., (e;,e;) = &;; for all 4,5 € {1,...,n},
where 9;; is the Kronecker delta, then we have the following inequal-
ity that is well known in the literature as Bessel’s inequality (see for
example [1T], p. 391]):

> (@, e))* < ||z)|* for any x € H.
=1

For other results related to Bessel’s inequality, see [8]-[9]and Chap-
ter XV in the book [11].

In 1941, R.P. Boas [2] and in 1944, independently, R. Bellman [1]
proved the following generalisation of Bessel’s inequality (see also [11],
p. 392]).

THEOREM 47. If x, 41, ..., Yy, are vectors in an inner product space
(H;(,-)), then the following inequality:

1
n 2
2 2 2 2
1) Sl < el | o +< > \<yz,yj>r) ,

1<i#j<n

holds.

A recent generalisation of the Boas-Bellman result was given in
Mitrinovié-Pecari¢-Fink [11] p. 392] where they proved the following:

THEOREM 48. Ifz,y1,...,yn are as in Theorem[{] and cy,. .., ¢, €
K, then one has the inequality:

n 2

E C; (xm%)
i—1
3
2 2 2 2
< ||z E |ci fg?g;”%” +< E |(?Jiayj)|>
i—1 ==

1<i#j<n

(1.2)

125
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They also noted that if in 1’ one chooses ¢; = (z,y;), then this
inequality becomes (|1.1]

For other results related to the Boas-Bellman inequality, see [7].
In this section, by following [5], we point out some new results that

may be related to both the Mitrinovi¢-Pecari¢-Fink and Boas-Bellman
inequalities.

1.2. Preliminary Results. We start with the following lemma
which is also interesting in itself [5].

LEMMA 6. Let z1,...,2, € H and aq,
the inequality:

n
g 7%}
i=1

..,an, € K. Then one has
2

(1.3)

n
2 2
mase o 3

1 1
& 20\ * [ & 28\ "
> el R EA ,  where a>1,
= i=1

" 2
Z |sz‘|
\ =1

IA

1,1 _ .
> + 5= 1;
max ||zz||27
1<i<n

1%?#8;?;n{|04i%|} >

1<i#j<n

. (Z o) - (& @)] <§<>5)
(é \%!)z > \aiﬁ]

(i, ;)15

\

1,17 4.
where v > 1, ;—i-g—l,

(dmax (2, 2)]
PRrROOF. We observe that

n 2 n n
(14) ZOZiZZ' = <Z O!Z'Zi,ZOéij>
i=1 i=1 j=1
= Z Z e (Zi’ Zj) =

i=1 j=1

> (2, 7)

i=1 j=1

n n
<D0 lal [ (=i, 7))

i=1 j=1
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n
2 2
=Z|ai\ 2" + Z |ail |a] (i, 25)] -
=1

1<i#j<n

Using Holder’s inequality, we may write that

(1.5) Y laf*[|=]?
=1

2
=

2
max ||

1<i<n -

n
1=

IA

1 1

(il |ozz-|2a> ) (il ||ZZ||2ﬂ) ’ , where a>1,1+ % =1;
i= =

- 2 2

K 2l maxc fl2]

By Holder’s inequality for double sums we also have

(1.6) Y lallagl (i %)l

1<i#j<n

\ax oo 19;@ [(z6:25)1 5

1 1
~ 5
4
< > Iai|”|aj|”) ( > I(zi,zj)l) 7
1<iZj<n 1<iZj<n

<
where v > 1, %—l—%:l;
\ 19’;&2]'91 il |ay| | nax (215 25)] 5
( .
g, ol 32 Voo )l

- 1,17 4.
where v > 1, ;"{'5_17

(L) = Stk | 1wz

\ L
Utilising (1.5) and (1.6) in (1.4)), we may deduce the desired result
(1.3).
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REMARK 44. Inequality contains in fact 9 different inequali-
ties which may be obtained by combining the first 3 ones with the last
3 ones.

A particular case that may be related to the Boas-Bellman result
is embodied in the following inequality [5].

COROLLARY 36. With the assumptions in Lemma[t, we have

(1.7)

n
<D laif
i=1

=
o=

max [|2;]” +

()" - S o ( )3 |<zl-,zj>ﬁ>

2
1<i<n > i el 1<iFj<n
1
2
< Z|Oéz max ||ZZ|| + ( Z |(Zi7Zj)|2>
1<i#j<n

The first inequality follows by taking the third branch in the first
curly bracket with the second branch in the second curly bracket for
v=0=2.

The second inequality in ([1.7)) follows by the fact that

(zw) Skl <3t
=1 =1 =1

Applying the following Cauchy-Bunyakovsky-Schwarz type inequality

n 2 n
(ZGZ) SnZaf, a; € Ry, 1< <n,

i=1 i=1

we may write that

(1.8) <Z|ai|”> Z|azzvé ZIO@I27 (n>1)

and

(1.9) (Zm) ZV% (n—1) Zmz (n>1).
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Also, it is obvious that:

<
(1.10) | max {|asey} < max [

Consequently, we may state the following coarser upper bounds for
Tz ? that may be useful in applications [5].
=1

COROLLARY 37. With the assumptions in Lemma [0, we have the
imequalities:

(1.11)

)
max Jof* 3 [z

1<i<n =

IN

1 1
n o n B
<Z1 ]a¢|2a> (231 HZ@'HQB) . where aa>1,1 =+ ﬁ =1;

n

2| a;|? max ||Zz||

4

max |04z| Z (23, 25);

> (ziz))

1<iF#j<n
where v>1, +4+1=1;

+
£)
|
=
2=
<
M=
2
T
)
N——
|
7N
=

n
1 12 A
DS e (%)

The proof is obvious by Lemma |§| in applying the inequalities (|1.8])

- (@)

REMARK 45. The following inequalities which are incorporated in
1.11) are of special interest:

(1.12) 2

n
2
<1r£a<x || [2\@” + Y =)l
1=

1<i#j<n
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Z@izi S(Z!Oﬁ\%) (ZHZiHQq)
+<n—1>%< 3 |<zz-,zj>|q> ,

1<ij<n

(1.13)

Q=

wherep>1,%+%:1; and

n
g (8 7%71
i=1

n
2 2
< 2l [ e+ = 1) e ()
=

1<i#j<n

(1.14)

1.3. Mitrinovié¢-Pecari¢-Fink Type Inequalities. We are now

able to present the following result obtained in [5], which complements
the inequality (|1.2)) due to Mitrinovié, Pecari¢ and Fink [11, p. 392].

THEOREM 49. Let x,y1,...,yn be vectors of an inner product space
(H;(-,)) andcy,...,c, € K(K=C,R). Then one has the inequalities:

n 2
Z G (37, yl)
=1

2 2
( max e > i il

2 i 3
< ol x4 (S feP) ™ (S0 Iwll) " where o> 1,

i + % =1;
n 2 2
| 2in lail” max flal”
( 1517?]?;” {leicsl} 219;&]‘9 |(yir i) 5
) 1
n n 2 2l
(S el = (S le™)
1.15 2 x 5)?
(L15) -+l ) X (Zlgi;ﬁjgn (i, y5)| ) ,
where vy > 1, %%—%:1;
n 2 n 2
| [ el = S fel?] | max ()]
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PROOF. We note that

ZCi (z,y:1) = (szc_zyz> -
i=1 i=1

Using Schwarz’s inequality in inner product spaces, we have:

Zci (@, 9:)| < z|? Zc_u%
i=1 i=1
Now using Lemma |§| with o, = ¢, 2z = y; (i =1,...,n), we deduce

the desired inequality (1.15]). u

The following particular inequalities that may be obtained by the
Corollaries [36{ and |37 and Remark 45 hold [5].

COROLLARY 38. With the assumptions in Theorem[49, one has the
inequalities:

n 2

Zci (z,9:)

=1

(1.16)

;

1
n 2 2 2\ 2
S bl { e i+ (Srcsea 00 )}

1<i<n

2 n 2
max Jeil” {00 Il + Crcipyen |09}

1<i<n

1

Ul (S ) { (2 )
+ (n— 1)% <Zl§i;ﬁj§n |(yi,yj)’q>q} ;

1,1 _ 1.
where p>1,5+a_1,

n 2 2
S el o o+ 0= 1) o s}

1<i<n j<n

\

REMARK 46. Note that the first inequality in 15 the result ob-
tained by Mitrinovié-Pecarié-Fink in [11]. The other 3 provide similar
bounds in terms of the p—norms of the vector (|cl|2 ey ]cn|2) :

1.4. Boas-Bellman Type Inequalities. If one chooses ¢; = (z,y;)
(i =1,...,n) in (L.15), then it is possible to obtain 9 different inequal-
ities between the Fourier coefficients (x,y;) and the norms and inner
products of the vectors y; (i = 1,...,n). We restrict ourselves only to
those inequalities that may be obtained from (|1.16]).
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As Mitrinovi¢, Pecari¢ and Fink noted in [11L p. 392|, the first
inequality in - 1.16]) for the above selection of ¢; will produce the Boas-
Bellman inequality .

From the second inequality in - for ¢; = (x,y;) we get

(Zl(w7yi)l2> < l|f? max |(z, 4| {ZH%H + ) I(yi,yj)l}'

1<i#j<n

Taking the square root in this inequality we obtain:

(1.17) Z| (x,y:)]
3
< ll=ll max |(z, i) {ZH%H + ) |(yi,yj)|} :

1<i#£j<n

for any x, 1, ..., y, vectors in the inner product space (H; (-,-)) .
If we assume that (e;),.,.,, is an orthonormal family in H, then by
(1.17) we have

n
S lw,el* < Vel max (el w € H,
pay 1<i<n

From the third inequality in 1) for ¢; = (x,y;) we deduce

(Z '<I’%‘>|2> < [l=IF (Z |(x,yi>|2”) p

1 1
q q
2 1
X (ZHyzH q) + n—1>p< > \(yz»qu) :
1<i#j<n

forp>1,%—|—é:1.
Taking the square root in this inequality we get

1

(1.18) ZI z,y)|* < ||z <Z| , i 2”)
X (leyill2q>q+(n—1);< > I(yi,yj)|q>q :

1<i#j<n

foranyx7y17"')yn€H7p>]-;%“’_%:1.
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The above inequality (1.18]) becomes, for an orthornormal family

(ei)lgign )

1

n ) n 2p
3 (@ e)? < ni (Z |<xaei>lzp) . wed
=1 =1

Finally, the choice ¢; = (x,y;) (i =1,...,n) will produce in the last

inequality in ((1.16])
n 2
2
()
i=1

2 2 2
< el 3 1, o) {m sl + (n = 1) ma |<yi,yj>\}
=1 -

1<i£j<n

giving the following Boas-Bellman type inequality

2 2 2
(1.19) E’_ll(ﬁc,yz)\ < ] {pjg@H%H +(n—1) max \(yzayg)!},

1<i#j<n

for any z,y1,...,y, € H.
It is obvious that ([1.19)) will give for orthonormal families the well
known Bessel inequality.

REMARK 47. In order the compare the Boas-Bellman result with
our result , it 1s enough to compare the quantities

1
Ar:( > I(yi,yj)l2>
1<ij<n
and

Bi=(n—1) max |(y,y;)]-

Consider the inner product space H = R with (x,y) = zy, and choose
n=3,y1=a>0,y=0>0,y3=c>0. Then

A=+2 (a®V? + b + *a®)? B = 2max (ab, ac, be) .
Denote ab = p, bc = q, ca = r. Then
A:\/§(p2+q2—l-r2)§, B = 2max (p,q,r).

Firstly, if we assume that p = ¢ = r, then A = \/6p, B = 2p which
shows that A > B.

Now choose r =1 and p,q = % Then A = /3 and B = 2 showing
that B > A.



134 4. GENERALISATIONS OF BESSEL’S INEQUALITY

Consequently, in general, the Boas-Bellman inequality and our in-
equality cannot be compared.

2. Bombieri Type Inequalities

2.1. Introduction. In 1971, E. Bombieri [3] (see also [11] p. 394])
gave the following generalisation of Bessel’s inequality.

THEOREM 50. Ifz,y1,...,y, are vectors in the inner product space
(H;(-,+)), then the following inequality:

2. Il < o ma {D(yi,yj)r},

holds.

It is obvious that if (y;),.,., are orthonormal, then from one
can deduce Bessel’s inequality.

Another generalisation of Bessel’s inequality was obtained by A.
Selberg (see for example [11], p. 394]):

THEOREM 51. Let x,yy, ..., y, be vectors in H withy; #0 (i =1,...

Then one has the mequality:

(2.2) Z Z sl e,

1w i)

In this case, also, if (y;),<,,, are orthonormal, then from one
may deduce Bessel’s inequality.

Another type of inequality related to Bessel’s result, was discovered
in 1958 by H. Heilbronn [10] (see also [11l p. 395]).

THEOREM 52. With the assumptions in Theorem[50, one has

(2.3) Z| (@, y:)| < [l]] (Z | (Wi, y5) > :

J=1

If in (2.3) one chooses y; = ¢; (i =1,...,n), where (&;),;, are

orthonormal vectors in H, then

> l(z.e)| < vnz|, forany z€ H.
=1

In 1992, J.E. Pecari¢ [12] (see also [11], p. 394]) proved the following
general inequality in inner product spaces.
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THEOREM 53. Let x,y1,...,y, € H and ¢y, ...,c, € K. Then
2 n n
2 2
< el fes (Zuyz-,ym)
i=1 j=1
2 2
< ] leci! g%{zl\(yi,yj)!}-
1= Jj=

He showed that the Bombieri inequality (2.1} . ) may be obtained from

. for the choice ¢; = (x,y;) (using the second inequality), the Sel-
berg inequality (2.2 - ) may be obtained from the first part of (2.4 for
the choice

(2:4) (7, i)

(x>yz) .
Ci = <n 1, ZG{l,,n},
> i |(is y5)]

while the Heilbronn inequality (2.3) may be obtained from the first
part of (2.4) if one chooses ¢; = (x’yf i, for any 7 € {1,...,n}.

|(z,y:)
For other results connected with the above ones, see [7] and [§].

2.2. Some Norm Inequalities. We start with the following lemma
which is also interesting in itself [6].

LEMMA 7. Let z1,...,2, € H and aq,...,a, € K. Then one has
the inequality:

2

A
<4q B,
C

where
(

e lonl” 32 102021

e il (8 "”'TY (Z <E |<zz,zj>l>s>s,

n
mas o] 3 o] ma (z |<zi,zj>|) ;

\
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( 1 a\ g
n P n n
(Z \Oék|p> max o] | 30| 20 [(2i,2)] :
k=1 Isizn i=1 \ j=1
+

p>1,

-
1=

==
i
5
/\
/\
<
1=
=
&
b2\2
-
\_/
Q|

(£ 1) ol

k=1

and

( n n
S Jou| max o] 3 [max mm@ ;
k=1

1<i<n i—1

e (2|a|’"><

\ (é '“’f')Q max | (2, 2)|.

1<5<

bl
1=
—
0F
5
:
K
R
S~—
~=

PrRooOF. We observe that

2 n n
= E a2, E O 25
= E E CYlOé] ZZ, Z]

=1 j=1

<ZZ|%||%|| Ziy Zj |_Z|al <Z|a7|| %> %) )

=1 j=1

=M.

n
E 07%7]
i=1

E E ;0 (2, 25)

=1 j=1
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Using Holder’s inequality, we may write that

max Jax] 3 [(z1. )]

1<k<n =1
> a

n n P p n ' N
>l (i, 2)] < (;Iakl) (Zrmzm) ,
- p>1, o+ =1

Z | max [(z;, )|
\ k=1 1<y<

for any 7 € {1,...,n}, giving

i ol 35l 35 1(202)] =t My
M < (Z laklp) > fol (Z I(Ziazj)|q> = M,
= k=1 i=1 j=1
p>1, % + % =1;
D o] 20 Jau| max |(zi, 2;)| =2 Moo
\ k=1 i=1 lsj=
By Holder’s inequality we also have:
(
max oy Jle(zz,zm
1 s\ *
(e (Eter) (z (z |<zi,zj>|) ) ,
Soladl { DMzl ) < 4 \F AT
i=1 j=1 7‘>1,;—|—%:1;
2 || max (;I(zz,%)l) ;

and thus
(

s lonl® 32 1)1

1 S\ s
max |a a;|" 24, Zj ;
) I (Sar) <z<zr< m))

n
max || Z || max (ZZI(%%)I) ;

IN
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and the first 3 inequalities in (2.5]) are obtained.
By Holder’s inequality we also have:

3=
@/\
1%
B}
~
-
i
<
-
=
&
~—
+ "
al

M, < (zn]akv?) x

k=1

and the next 3 inequalities in (22.5)) are proved.
Finally, by the same Holder inequality we may state that:

n
o] 32 (s e 21 )
= =1

1<j<n

3
IA
3
o
=
X
@/\
M
B
BE
N———
3|
R
1M
SO
INE
N
o
bl\z
~__
N——

and the last 3 inequalities in (2.5]) are proved. B

If we would like to have some bounds for |37, a;z||” in terms of
Yo |ozz~|2 , then the following corollaries may be used.

COROLLARY 39. Let zy,...,2, and aq,...,a, be as in Lemma |7
If1<p<2 1<t<2 then one has the inequality

g =

(2.6)

2 N N n n n
<Y g 3 (z r<zi,zj>|q) |
k=1 i=1 \j=1

n
E 07%%)
i=1

1,1 1 1,1_
wherez—)—i-a—l,tjtu—l.
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PRrOOF. Observe, by the monotonicity of power means, we may

write that
N 1 n 2\ 2
(Zk1|01k|p)1’ < (M) s 1<p<2,
n n
n N n 2 %
(Zk:l || >t < (214:1’0%‘ > C1<t<2,
n n

from where we get

" % 1 1 n %
(Zlakv) (zwau?) ,
k=1 k=1
1 1

Using the fifth inequality in (2.5)), we then deduce (2.6)). 1

(\
ngh
T
=
N—

-
IA
3\
!
o
-
B
=
N——
|

REMARK 48. An interesting particular case is the one for p = q =
t=u=2, giving

n
E ;25
i=1

COROLLARY 40. With the assumptions of Lemma[7 and if 1 < p <
2, then

< ol (Z |(z2-,zj)|2> :

i,j=1

q

2 | n n
<n2 ) lowf” pax (Z!(zz-,zmq) ,
k=1 - j=1

(2.7)

n
E (0754}
i=1

1,1 _
where;—i—a—l.

PROOF. Since
i % 1 1 " %
(w) (zwau?) |
k=1 k=1

n n %
1
E lag| < n2 (E |Oék|2) ;
k=1 k=1

then by the sixth inequality in (2.5) we deduce (2.7)). n

and

In a similar fashion, one may prove the following two corollaries.
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COROLLARY 41. With the assumptions of Lemma[7 and if 1 < m <
2, then

n 2
E 7 %%}
i=1

where %%—%: 1.

n n ! %
1 2
<03 o (Z [ [, ) ,
k=1 =1

COROLLARY 42. With the assumptions of Lemma[7, we have:

n 2
E ;2
i=1

The following lemma may be of interest as well [6].

1<i,5<n

n
<ny o max [(z, )|
k=1

LEMMA 8. With the assumptions of Lemmal[7, one has the inequal-
ities

(2.8)

IN

(S o) (S e 2)))

p>1,

| 125 Joal* 3275 10, 25)]

PROOF. As in Lemma [7, we know that

< ZZ ‘041‘ |Oé]| ‘ szzj)‘

=1 j=1

i %4

Using the simple observation that (see also [11], p. 394])

1 o
|()éz||01]| < (|al| —|—|OZ]| ) Zv] S {17'--7n}7

we have
2D laallagl 1z 2)l < 5 Y (Jof* + lag ) (21, 29)]
i=1 j=1 6j=1
1
o DT U T

4,7=1 i,j=1
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n
= Z \0%|2 (21, 2)]

ij=1

which proves the first inequality in (2.8]).
The second part follows by Holder’s inequality and we omit the
details. 1

REMARK 49. The first part in (@ 15 the inequality obtained by
Pecaric¢ in [12].

2.3. Pecari¢ Type Inequalities. We are now able to present the
following result obtainend in [6], which complements the inequality
(2.4) due to J.E. Pecari¢ [12] (see also [11], p. 394]).

THEOREM 54. Let x, v, ...,y be vectors of an inner product space
(H;(-,")) and c1, ... ,c, € K. Then one has the inequalities:

D
(w,y)| < el x QB
F

( maxycpen [enl” Yo7y (0 05)] 5

1 n
b ] maxice lad (T el | S0 (S5 1w ?

r>1 ——1—

m\»—t

s 7

| maxisken o] 20 e maxi<icn <Z;~L:1 |(yi,yj)!> ;

1 n n
(i )7 maxicicn leil (00 (S5 o)

p>1,

Sy

po | (Sl () S5 (S o) |

1, 1 _ . 1,1~ 1.
p>1 t+i=1t>1 141

1
1 n n q
(Sl S e masscien { (S 100)0")
1
q

p>1,
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and

4

Sslal e el T | ma 0]
>

1
[

F = 22:1 |ck| (Z?:l |CZ|m)% (Zzn 1 {max |(ywy]>|} ) )

1<5<

m>1, #—l—%:l;

(Zk lerl)” max [(ys, )] -

1<j<n

Proor. We note that
n n
i=1 i=1
Using Schwarz’s inequality in inner product spaces, we have

n

> i)

i=1

Finally, using Lemma [7|with o; = ¢, 2z, = y; (1 = 1,...,n), we deduce
the desired inequality (2.9). We omit the details. 1

< lzl* || Y @i

The following corollaries may be useful if one needs bounds in terms
of >, |Ci|2 :

COROLLARY 43. With the assumptions in Theorem [54 and if 1 <
p<2 1<t<2, ]%—l— % =1, %+ % =1, then one has the inequality:

n 2

Z & (JI, y1>

=1

(2.10)

Qg
e [=

1,1 n n
< a7y el (Z vis )" ) :

i=1 i=1

and, in particular, forp=q=1t=u = 2,

2 n n %
2 2 2
<l S (z ) ) |
=1

1,j=1

n

Zci (. i)

i=1

The proof is similar to the one in Corollary [39



2. BOMBIERI TYPE INEQUALITIES 143

COROLLARY 44. With the assumptions in Theorem [54 and if 1 <
p < 2, then

S

(x,yz)

2 1 n n
2 = 2
< Nalnr 3 Jexl® mmax [Zuyi,qu] ,
k=1 - Lj=1

1,1 _
wherez—)+5—1.

The proof is similar to the one in Corollary [40}
The following two inequalities also hold.

COROLLARY 45. With the above assumptions for x,y;,c; and if 1 <
m < 2, then

2 n n ! [
2 1 2
< el n® 3 e (Z Lfga<><|(yz,yg)|}> ,
k=1 =1

n

ZCi (x, vi)

i=1

(2.11)

where %—i—%: 1.

COROLLARY 46. With the above assumptions for x,vy;, c;, one has

n

Zci (xayz

=1

(2.12) < lz|® nZ|Ck| max |(y9)]

Using Lemma [§, we may state the following result as well.

REMARK 50. With the assumptions of Theorem one has the
imequalities:

n 2
Z Ci (.T, yz)
=1

n n
2 2
< llel* Y leil” Y 1y w3)]
i=1 j=1

(

n 2 n
S lal max |2 |<yi,y]~>|} ;

1<i<n

n 2 % n L

< ||xH2 X (Zi=1 cil p) (Zi:l ( ymyg ) )q
a L2
q

7

k 1121;92;;L|cz\ sz:1 (v y5)] 5

that provide some alternatives to Pecarié¢’s result .

2.4. Inequalities of Bombieri Type. In this section we point
out some inequalities of Bombieri type that may be obtained from

(2.9) on choosing ¢; = (z,3:) (i=1,...,n).



144 4. GENERALISATIONS OF BESSEL’S INEQUALITY

If the above choice was made in the first inequality in (2.9)), then
one can obtain:

(Zl(rcayi)l2> < || max |(z, i) Z (i, 95)]
i=1

3,j=1

giving, by taking the square root,

1
(2.13) Z\xyl §H$|’1I£1?X x,Y;) (Z]yl,y]) , r € H.

t,j=1

If the same choice for ¢; is made in the second inequality in (2.9)), then
one can get

n 2 n %
2 2 r
<§—1 |(, 4] ) < =)l max |(z, :)l (._ |(, 3:)] )

()]

1

214) 37 Il < loll max |G, ) (Z |<:c,y,~>|r) T

=1
om L
n n 2s
» [z (z r<yi,yj>|) ] |
i=1 \j=1
Where%+§:1,s>1.

The other inequalities in (2.9) will produce the following results,
respectively

0 =

implying

2

215) 3 I@w0)f* < llal e (e, )| (Z |<w,yi>\)

Jon (o)
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1

> |<m,yz->v°> p

n

(216) 3 Iyl < el max |, o)

i=1

(NI

x Z(D@i,y»w)q ,

N|=

1,1 1.
Wherep>1,§—|—a—17

=1

(2.17) Z\ ) < |l (Z|(m,yi)\p> p (Z!(x,yz-)lt>

Wherep>1,%+%:1,t>1,%_1_%:1;

i=1
1
n 2q
TR
X max (2\(yz,yg)l> :
J:

1,1 _ 1.
Wherep>1,5—|—a—1,

N

(2.19) Z|(w,yi)l2 < [|| [ZK%%)I] max |(z, ;)| 2

1<i<n
i=1

. (Z L |<yz,yj>|D ;

N

(2.20) Z ()|

< || liux,m ] [ s () |H

i=1
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Wherem>1,%+%:1;and

1<5<n

n n 1
(2.21) Dyl < el Y [, ya)| max |y, )12
i=1 =1

If in the above inequalities we assume that (y;);<;c,, = (€i)1<;<p, -
where (e;),<;<, are orthonormal vectors in the inner product space

(H,(-,-)), then from ([2.13) — (2.2I)) we may deduce the following in-
equalities similar in a sense to Bessel’s inequality:

n
Dl en)* < Vil max {|(z, )]}
i=1 si=n

n ) 57
>l < s {0} (3 o)
1=

where 7 > 1, 1 + 2 = 1;

s

>l < llall max { Il } (Z |<x,ez»>|> ,
-l e) < vl max {1(x.e)* | (Zux,ei)\p) B

where p > 1;

1 1
n 2p n 2t
> ot < (3P ) (et )
i=1 ‘

where p > 1, ¢t > 1, 1—1——:1

>l e)l” < al (Z |<m,ei>|p>
>l e)l” < Vel (Z (z,c:)

= \/
NI
=
S5
Ié\;<
—
—
ﬁ
2D
-
SIS
H,_/

n m

1 - 11
>l e)l < nola] [;'(x’e")'m] come bl

i=1
n n
2
Dol e)l” <zl Y Iz, e
i=1 i=1
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Corollaries [43] — [46] will produce the following results which do not
contain the Fourier coefficients in the right side of the inequality.
Indeed, if one chooses ¢; = (x,y;) in (2.10), then

(Zux,w) < Jlel*nt 1S ) Z(Zuyz«,w)

i=1 \j=1

Qe
g |=

giving the following Bombieri type inequality:

S el < nb | 30 (zuyi,w) |
i=1 i=1 \j=1
1

Where1<p§2,1<t§2,§+%:1, s+ =
If in this inequality we consider p = q =t

1
n n 2
2 2 2
> )P < [l (Zl(yi,ym) :
=1 i,7=1

For a different proof of this result see also [8].
In a similar way, if ¢; = (z,y;) in (2.11)), then

1

n n I\ 7
2 1 2

> 10l < (Z | \(yz-,ym]) ,

i=1

Qe
g [=

1.
=u = 2, then

where m > 1, %—F%:l.
Finally, if ¢; = (z,y;) (i =1,...,n), is taken in |} then

2 2
> @) < nlel® max |(yiy)l-
i=1

<i,j<

REMARK 51. Let us compare Bombieri’s result

2 2
02 3w < el g {3 |
i= j=

with our result

(2.23) Z (2, 9)* < | {Z I(yi,yj)IQ}

ij=1

=

Denote

M, = 112?22{2 |(3/i,yj)|}
sisn | 4
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and

N

My = [Z (s 951

ij=1

If we choose the inner product space H =R, (x,y) := xy andn = 2,
then for y; = a, yos = b, a,b > 0, we have

M; = max {a® + ab,ab+ b’} = (a + b) max (a,b),
My = (a* + a2b? + a2 + 0")? = a® + 12,

Assume that a > b. Then M, = a® + ab > a® + b*> = M,, showing
that, in this case, the bound provided by 18 better than the bound
provided by . If (yi)lgign are orthonormal vectors, then My =1,

My = \/n, showing that in this case the Bombieri inequality (which
becomes Bessel’s inequality) provides a better bound than .

3. Pecari¢ Type Inequalities

3.1. Introduction. In 1992, J.E. Pecari¢ [12] proved the following
inequality for vectors in complex inner product spaces (H; (-, -)).

THEOREM b55. Suppose that x,yy, . ..,y, are vectorsin H andcq, ..., c,
are complex numbers. Then the following inequalities

n 2 n n
(3.1) Y ocilwy)| < lal*Ylel’ (Z |(yz,yj)|>
i=1 i=1 j=1
2 2
< ] z;lci\ max (2|<y¢,yj)!>,
1= 1=
hold.

He also showed that for ¢; = (z,;), i € {1,...,n}, one gets

(Z|<x,yi>|2> <ol 3 I P (Z |<yz-,yj>|)
< el D1 ) pmax (ZK%,%)I) ,

which improves Bombieri’s result [3] (see also [11l p. 394])

(32 >l wl” < flal” max (Z |<yz~,yj>r> .
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Note that (3.2)) is in its turn a natural generalisation of Bessel’s in-
equality

(3.3) Yol e < lzl*, =€ H,
i=1

which holds for the orthornormal vectors (e;),...,, -

In this section, by following [4], we point out other related results to
Pecari¢’s inequality than the ones stated in the previous sections.
Some results of Bombieri type are also mentioned.

3.2. Some Norm Inequalities. We start with the following lemma
that is interesting in its own right [4].

LEMMA 9. Let z1,...,2, € H and oy, ...,a, € K. Then one has
the inequalities:

(3.4) Z%‘Zi < <Z|ai]” (ZK%%‘H))p
. (Zw (Zuzi?zj)\))q
A
<4q B,
C
where

2
(max ol * 3275 (20,21

masx o] (T3 Jeal™)>% (20, 1G240 2)1)
X (2?1 (Z}; |(Zz‘72j)|>5) K ;

. 1 1 _ 1.
Zf’}/>1, ;—Fg—l,

3=

1

1
max o (S0 Jaal) 7 (750, 121, 2)1)”

1<i<n
1

X max (Z?:l |(Zi,2’j)\>E ;

\ 1<i<n
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1
max [og| (327 |ai ™)

1<i<n
x (0o I 20))

Q=

(S (Sl )

1 1
(O iz el ™) (o e ™) e

B = < n n B # n n
(2 (S Go ) ) (2 (S5 1Giz))
if a > 1, é—k%:l and v > 1, %Y+
1
(S sl (S0 o) mase (S50 G221 )
(S (Sleeml) ) a1 b
and

(

1
max o] (S0 eul)? mase (S0, [(229)] )

1<i<n 1<i<n

Ci= 4 (S0 o) (S o) e (S0 1))

(7 loal”)? (i Jeal )7 max (27 120, 24)1)

\

1,1 _
wherep>1,]—o+a—1.

Proor. We observe that

n 2 n n
E ;25 = E a2, E aj;z;
i=1 =1 j=1
n n
=D > ad(z,5) =

i=1 j=1

<3 ol lag (20, 29)] = M.

i=1 j=1

(3.5)

SN w2, )

i=1 j=1

(S (Sleal) )7 e e -
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If one uses the Holder inequality for double sums, i.e., we recall it

1
n n n q
.q-b.. .AP N
g My aiibi; < g M E ml]bij ,
ij=1

t,j=1 i,5=1
where mij,aij,bij >0, % + % =1,p>1; then

(3.6) M< <Z |(2i, 25) |a2|p) <Z| Zi, 2j) |O‘Z|q>

i,7=1
1
q

- (Z al (Z <>>)<Z al (Z \<zi,zj>r)> |

and the first inequality in (3.4]) is proved.
Observe that

n n
S lap (z uz@-,zm)
i=1 j=1
[ max [oul” 37 (225

Jax |
(S (Tl

(2izt las™)
ifa>1, s+5=1

3=

=

B

Q=
P Ne—
~~

IN

S feaf” mase (7 1G4, 20)1)

\ 1<i<n

<z:; o |” (i (%%)))é

Jj=1

’ 1
max o] (37,2 10 29)1)

1<i<n

2 |ai|ap)0%p (Z?‘l <Z?:1 |(zi, Zj)|)ﬁ)ﬂp

ifa>1 L4+1=1

giving

IN

| (S leal) pmax (07 12 )
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Similarly, we have

1

)

/ 1
max o] (37,2, 1(z1,27)1)°

1<i<n

el (5 (S e0)')

1fv>1 —|—%:

IN

Using (3.5) and (3.7)) — (3.8), we deduce the 9 inequalities in the second
part of (3.4). n

If we choose p = ¢ = 2, then the following result holds [4].

COROLLARY 47. If z1,...,2, € H and ay,...,a, € K, then one
has
2 n n
(3.9) < el (Z |<zi,zj>|)
i=1 j=1
D
<! E,
F
where

(

max foal” 75 (26 29)]

max Ja| (S0 Jail™) 7 (S50 (2o 2)])
(T (Smee))

ify>1, s +5=1

max o] (30, o) ? (ZZ‘J 11, Zj)l)

1<i<n
1

x max (S 1z 5)l)

\ 1<i<n

NI

SIS
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4 1 L
2 —_ 2
sl (2 o) (57,1655

X(Z;(Zldmﬂmy35, ifa>1, 141
(Z?:l |@i|2a)i (Z?:l |Oéi\2~/)% (Z?:l (Z?:l (=, zj)|>ﬁ

i=1
if a > 1, §+[—13:1 and v > 1, %—l—%
(S l?)E (S o) mae (S0 (610 5))
i=1 1% i=1 1% 28X\ Zaj=1 1500 %
B

< (2 (TG0 ) fa>1 2+}

and
[ max o] (2 o)
1<i<n' ' i=1 1"
1 1
n 2 2
< s (Sl 5)1) " (a1 2)1)
n 2 % n 27y %
Fo— (X ) (2 el )™
= . )
n 2 n n
X 1I£l;a<>; <Zj:1 (2, Z])|> (Zzl (Zj:1 (2, z])|> )
ify>1, 2

2
| S ol mmax (357 1))

1<i<n

N————

+%:1;

3.3. Some Pecari¢ Type Inequalities. We are now able to point
out the following result obtained in [4], which complements and gen-

eralises the inequality (3.1)) due to J. Pecari¢.

THEOREM 56. Let x,y1,...,Y, be vectors of an inner product space

(H;(-,-)) and c1,...,¢, € K. Then one has the inequalities:

n 2

ZCi (x, vi)

=1

<ttt (it (3 )) (St (S 1) )

(3.10)
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G
<llzl*x{ H
I

where

( 1IE?L<X |cl| Z” R DIE

n 1
mav Jei| (S, e ™) (3200 ) )
if

Gi={  x (zz;l (- Ky“%),)@)*,
max |¢;| (D1, |Ci|q)% (Z?F |(yz>%)|>

1<i<n !
1
q

x max (20 1o w)l)

1<i<n

RS

1
n apy = n a
Imax leil Oy el ™)=r <Zi,j=1 | (Y yj)|> !
n n g piﬂ ; 1 1
% Zi:l (Zj:l |(y“yj)|> , ZfOé > 1, P + 5= 1;
1
N

(S leal™) o (0 el ) (2111 (5 ) )

if o > 1, é+%:1and7>1, %—i—%:l;

.

N—
Q|

Q=

(s el (i lel™) % max (5 191,

1

(S (S )] ) a1 iiion

\

and
(

1
e (S Jed”)? pmax (5 (0o))”
1

< (X0 s w)l)
=4 (S lal)r (S el ™) max (S0 150w

«(zm (T \(yl-,ym)‘s) Ty teio
(i ey (20 el max (325, 1w ) ) :

L 1<i<n

B =

D=
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forp>1, %—l—%:l.

PROOF. We note that

1=1 =1

Using Schwarz’s inequality in inner product spaces, we have

2 2

n n

> ocilzy)| <lel® | v
i=1 i=1
Finally, using Lemma |§] with a; =6, z;=y; (1 =1,...,n), we deduce

the desired inequality (3.10)). u

REMARK 52. If in we choose p = q = 2, we obtain amongst
others, the result (3.1) due to J. Pecaric.

3.4. More Results of Bombieri Type. The following results of
Bombieri type hold [4].

THEOREM 57. Let x,y1,...,y, € H. Then one has the inequality:

(3.11) Z|(x,yi)\2§ [eal [Z z, i) (Z‘ Y i) >] ”
X [Z|($,yi)|q (ZI(%@/J‘N)] q

J
<l > K,
L

where
¢

[V

s ()| (S0 1))

1<i<n
1

1 n L =

max (2, y:) 2 Qo [(z,w:)| ™)™ < iie1 (Ui Yj |> ’
1
354

] = x(z;n(zj l)') " i1 b=
max |(z, yo)|* (S0, |(2, i) |%)%

1<i<n
1

(S 1)) ™ s (S0 o))

1<i<n
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;

\
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[N

max (2, 9s)]
1

X (T ) ™) ™ (e 101,
x (ZZ& (27 |<yi,yj>|)ﬂ) Tifa>1 Lei=1
(Sl (£ Il

2vq
1

(2 (S )"

< (Zm (S )
if e > 1, i—i—%:land v > 1,
n L n apy 57—
(S0 ) 193 (0 |, ) |7) o0
n 2p
x max (320 (i)l
ﬁ

B
<(Z () )™ as L es—

Qi @y ) (O | :E,yi)|7q)ﬁ
X Inax (Z}Ll (i)

1<i<n o
(S (Smtmn) )™ w1 =
(S0 () P2 (0, |2, i)|) 2

1
2

X max <Z;‘L:1 |(yu?/g)|> )

1<i<n

1,1
forp>1,§—|—a—1.

PRrOOF. The proof follows by Theorem |56/ on choosing ¢; = (x, ;),
i € {1,...,n} and taking the square root in both sides of the inequal-
ities involved. We omit the details. §
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REMARK 53. We observe, by the last inequality in (3.11)), that

(L me)g
(= |<x,yi>|”)’l’ (Eltwr)

where p > 1,%+%:1.
If in this inequality we choose p = q = 2, then we recapture Bombieri’s

result ((3.2]) .

Q=

2
<1< =
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CHAPTER 5

Some Griiss’ Type Inequalities for n-Tuples of
Vectors

1. Introduction

We start by recalling some of the most important Griiss type dis-

crete inequalities for real numbers that are available in the literature.
1. (1950) Biernacki, Pidek, Ryll-Nardzewski [2].

Ifa = (ay,...,a,) and b = (by,...,b,) are n-tuples of

real numbers such that there exists the real numbers a, A, b, B

with
(1.1) a<a; <A b<b;<B, ie{l,....,n},
then
C, (a,b)] s%[g} <1—%[g]) (A—a) (B —b)
-5 a-as-y
gi(A—a)(B—b).

2. (1988) Andrica-Badea_[1].
Let a, b satisfy (1.1)) and p = (py, . .., pn) be an n—tuple of
nonnegative numbers with P,, > 0. If S'is a subset of {1,...,n}

that minimises the expression

Y

€S
then
C, (p.a,b) < % <1 — %) (A—a)(B—0)
< U-a)B-b).
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where Qg := >, ¢ Q.
3. (2000) Dragomir-Booth [13].
If a, b are real n—tuples and p is nonnegative with P, > 0,

then
|C,, (P&, b)| <  Jnax \Aa]] nax \Ab | C,, (P €,€),
where € = (1,2,...,n) and Aaj ‘= aj41 — a; is the forward

difference, j = 1,...,n — 1. Note that

n 2
C 1_3 e, é P2 Z 2pz (%;sz>

In particular, we have

c, (5,5)|gl(n2_1) mas |Aay| max [Ab].

1<j<n—1 1<j<n—

The constant 15 is best possible.

4. (2002) Dragomir [8]
With the assumptions in 3, the following inequality holds

B 1 % n—1 %
‘On (1_)7 a, b) } < ﬁ Z Z - j <Z |Aak|p> (Z |Abk|q> )
n k=1

1<j<i<n

where p > 1, %—i—%zl.
In particular, we have

1 77,2 1 n—1 % n—1 %
6 . n Z|A6Lk|p ZlAqu
k=1 k=1

The constant % is best possible.

[Cn (3,B)]

IN

5. (2002) Dragomir [6]. ~
The following inequality holds, where p, a, b and P, are as
in assumption 3,
-1 n—1

_ 1 1 & n
n =1 k=1 k=1

In particular, we have

|, (a,b)| < = (1 - —) Z\AakyZ\Abk

The constant % is sharp.
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6. (2002) Cerone-Dragomir [3].
If a, b are real n—tuples and p is a positive n—tuple and
there exists m, M € R such that

mgaiSMa

then one has the inequality
- 1 1 <

The constant % is best possible.
In particular, we have

1

[Cn (@D)] < 5 (M —m) Z

The constant % is best possible.

1 n
bi — i ;pjbj

b——Zb

[\]

The main aim of this chapter is to present some extensions of the
above results holding in the general setting of n-tuples of vectors in an
inner product space.

2. The Version for Norms

2.1. Preliminary Results. The following lemma is of interest in
itself [5].

LEMMA 10. Let (H;(-,-)) be an inner product space over the real
or complex number field K, x; € H andp; >0 (i =1,...,n) such that
Ywpi=1(Mn>2). Ifv,X € H are such that

(2.1) Re (X —zj,z; —x) >0 forallie{1,...,n},
or, equivalently,

z+ X
2

then we have the inequality

1
< ||X —2x| forallie{1,...,n},

T; —

2
X —z||”.

MH

i L

(2:2) 0< ) willaill® -
1=1

The constant i s sharp.

PROOF. Define

I = <X — zn:pixi,zn:]?ﬂi - $>
=1 i—1
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and
[2 = Zpl <X — T, Tj — CC) .
i=1
Then
n n 2 n
I = sz‘ (X, 2;) — (X, 2) — Zpil'i + sz‘ (i, @
i=1 i=1 i=1
and
I, = sz‘ (X, 2i) — (X, 2) — Zpi lza* + sz‘ (25, 2)
i=1 i=1 i=1
Consequently,
n n 2
i=1 i=1

Taking the real value in (2.3)) , we can state that
2

Zpi [

i=1 =

= Re <X—Zpiafi,2pzxz > szRe — T, T — T),

which is also an identity of interest in itself.
Using the assumption (2.1, we can conclude, by (2.4) , that

(2.5) Zpi l]|* — Zplxz < Re< szxi, Zpixi — 1:> :
i=1 —

It is known that if y,z € H, then

(2.6) 4Re(z,y) < ||z +yl*,

i

with equality iff z = y.
Now, by ([2.6)) we can state that

Using (2.5 , we obtain (2.2)) .
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To prove the sharpness of the constant i, let us assume that the
inequality (2.2]) holds with a constant ¢ > 0, i.e.,

n 2
E Dil;
i=1

for all p;, x; and n as in the hypothesis of Lemma [10]
Assumethatn =2, p1 =ps =5, 11y =rxand zo = X withz, X € H
and x # X. Then, obviously,

(X —x,21 —2) = (X — 29,29 — ) =0,
which shows that the condition ([2.1]) holds.
2.7

<cllX —

(2.7) 0< > pillall* ~
i=1

If we replace n, p1, p2, 1, 22 in (2.7]) , we obtain
1 2 x|
sz ‘sz - szmz =9 ‘xH + |1 Xl )_ 9
1 2
=—|lz—X
RS
<cllz— X7,

from where we deduce that ¢ > —, which proves the sharpness of the
constant }1. |

REMARK 54. The assumption (2.1) can be replaced by the more
general condition

(2.8) Zpi Re(X —x;,z; —x) > 0,

and the conclusion (2.2)) will still remain valid.
The following corollary is natural.

COROLLARY 48. Let a; € K, p; > 0, (i=1,...,n) (n>2) with
Yorpi=1. Ifa, A €K are such that

(2.9) Re [(A — a;) (@ —a)] > 0 for alli € {1,...,n},

then we have the inequality

1
(2.10) 0<Zpl|al| - 51 A —al.

i g

The constant 1 s sharp.

The proof follows by the above lemma by choosing H = K, (z,y) :=
xy, r; = a;, * = a and X = A. We omit the details.
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REMARK 55. The condition (2.9) can be replaced by the more gen-
eral assumption

ZPzRe A—a) (@ —a) > 0.

2.2. A Discrete Inequality of Griiss’ Type. The following
Griiss type inequality holds [5].

THEOREM 58. Let (H; (-,-)) be an inner product space over K, K =
R,C, ;€ H, a; €K, p; >0 (i=1,...,n) (n>2) with ) p; = 1.
Ifa,A € K and x, X € H are such that

foralli € {1,...,n}; then we have the inequality

n n n
E pia;x; — E pia; - E Di%;
i=1 i=1 i=1

The constant i s sharp.

(212) 0< <

1
< lA—alfx —a].

PROOF. A simple computation shows that

(2.13) Zpla,arz szaz szxz = Z pipj (@i — aj) (z; — ;).

1,7=1

Taking the norm in both parts of (2.13) and using the generalized
triangle inequality, we obtain

(2.14) H szazwz szazszxl

<3 LS o — a1

By the Cauchy-Bunyakovsky-Schwarz discrete inequality for double
sums, we obtain

2
1 n
(2.15) (5 Z pipj |ai — a;l ||z — xj||>

3,j=1

1< 2\ (1 & 5
< (5 > pipjlai — ajf ) (5 > pipj i — )

i,j=1 ,j=1
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As a simple calculation reveals that

% Z pipj la; — aj|2 = Zpi \%”2 - Zpiai
i=1 i=1

ij=1

2

and
2

Y

1 - 2 - 2
5 2 b i = x* =D pillail)* —
=1

1,j=1

then, by (2.14]) and (2.15)) , we conclude that
(2.16) ‘ Zpiaz‘xi - Zpiai Zpﬂiz‘ ‘
i=1 i=1 i=1

1
2\ 2

n
E Di%;
=1

1
2\ 2

n n n n
< sz‘ Ja;|* — Zpiai Zpi lo)1* — Zpﬂ?i
i=1 i=1 i=1 i=1

However, from Lemma [10] and Corollary (48], we know that

1
2\ 2

n n 1
2
(2.17) > pillzill® = | pia < S IX =4
i=1 i=1
and
n n 2 % 1
(2.18) sz‘|ai|2_ Zpiai < §|A—a|.
i=1 i=1

Consequently, by using (2.16]) — (2.18)) , we deduce the desired estimate
(2.12)) .

To prove the sharpness of the constant }l, assume that (2.12)) holds
with a constant ¢ > 0, i.e.,

n n n
E pia;x; — E pia; E Dixs
i=1 =1 =1

for all p;, a;, x;,a, A, x, X and n as in the hypothesis of Theorem [58|
If we choosen=2,a1 =a,a0=A, 21 =2, 29 =X (a # A,z # X)
and p; = po = %, then

2 9 ) )
;piail'i - ;piai ;pzxz = % Z pip; (a; — a;) (x; — x;)

l’j:1
:Z(a—A)(x—X).

(2.19) <cl|lA—a|||X -z
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Consequently, from ([2.19)) , we deduce
1
7 la—AllX =zl < c]A —al | X — 2],
which implies that ¢ > }l, and the theorem is completely proved. §

REMARK 56. The condition (2.11)) can be replaced by the more gen-
eral assumption

ZpiRe[( —a;)(a; —a)] >0, Zlee —zix;—x) >0

and the conclusion (2.12)) will still be valid.
The following corollary for real or complex numbers holds.

COROLLARY 49. Let a;,b; € K (K=C,R), p; >0 (i=1,...,n)
with Y~ pi=1. If a,A,b, B € K are such that

(2.20) Re[(A—a;)(a;—a)] >0, Re[(B—1b)(b;—b)] >0,

then we have the inequality

Zpla’l 7 szazzpz )

where the constant i 1 s sharp.

(221)  0< A—a||B-1|,

»-bl'—‘

REMARK 57. If we assume that a;,b;,a, A, b, B are real numbers,
then (2.20)) is equivalent to
a<a; <Ab<b <Bforalie{l,...,n},

and becomes
0< Zpiaibi — Zpia'i sz‘bz‘ <
i=1 i=1 i=1

which s the classical Griiss inequality for sequences of real numbers.

1
J(A—a)(B-0),

2.3. Applications for Discrete Fourier Transforms. Let
(H;(-,-)) be an inner product space over K and X = (z1,...,z,) be a
sequence of vectors in H.

For a given w € R, define the discrete Fourier transform as

(2.22) Fu (X) (m) 1= exp Qwimk) x z, m=1,...,n
k=1

The following approximation result for the Fourier transform (2.22)
holds [5].
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THEOREM 59. Let (H;(-,-)) and X € H" be as above. If there exists
the vectors x, X € H such that

(2.23) Re (X —ap,xp —x) >0 forallk € {1,...,n},

then we have the inequality

(2.24) ‘ Fo () (m) — w—w”;g)exp w (n+ 1) im] x %Zwk
1. il 12— sin? (wmn) 3
= 2 X | [ sin? (wm) }

forallme{l,....n} andw e R, w# Lr, 1 €Z

PROOF. From the inequality (2.16]) in Theorem we can state
that

225 H Zakxk——z:ak Zxk

2

1
1 n 2\ 2
n

k=1

%
1 — )
—E |lze” —
n
k=1

forall ap € K, a2y € H (k=1,...,n).
However, the x; (k=1,...,n) satisfy (2.23)), and therefore, by
Lemma [I0] we have

2
1 & S|
2.26 0< = —|=
226) 0Tl an

Consequently, by (2.25) and ([2.26]) , we conclude that

n
E akxk_g ag - —E Tk
k=1

1
< Z||X—$||2-

(2.27)

N[

n 2

>

k=1

1 - )
§§HX—’£H nZIak\ -

k=1

forallay e K (k=1,...,n).
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We now choose in (2.27)) , ar, = exp (2wimk) to obtain

(2.28) ‘

Fu (X) (m) — Z exp (2wimk) x % Z Ty
k=1 k=1

[NIES

2

Z exp (2wimk)

k=1

IX — 2| | 7Y lexp (2wimk)[* —
k=1

<

1
2

forall me {1,...,n}.
As a simple calculation reveals that

(]

Z exp (2wimk) = exp (2wim) x
k=1

— exp (2wim) x {cos (2wmn) + isin (2wmn) — 11

cos (2wm) + isin (2wm) — 1

_4m@mmxﬁﬂwmﬁwwmm+mmwwﬂ

| sin (wm) | cos(wm) 4+ isin (wm)
_ smwmn) (wmn) X exp (2wim) [

i o exp (iwmn)}

exp (iwm)
sin (wmn)

:erxp[w(n+1)im]7

Z lexp (2wimk)|> = n
k=1

and

2
_gggm@JMw%_mlez
m

Z exp (2wimk)

k=1

thus, from (2.28)) , we deduce the desired inequality (2.24]) . n

sin? (wm)

REMARK 58. The assumption (2.23)) can be replaced by the more
general condition

ZRe(X —x;,x; —x) >0,
i=1

and the conclusion (2.24)) will still remain valid.
The following corollary is an obvious consequence of ([2.24]) .
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COROLLARY 50. Let a; € K (i =1,...,n). Ifa,A € K are such
that

(2.29) Re[(A—a;)(a; —a)] >0 forallie{l,...,n},

then we have an approximation of the Fourier transform for the vector
a= (al,...,an) e K":

n

1
exp [w(n+1)im] x — E ag
n
k=1

sin (wmn)

(2.30) ‘ Fu (@) (m) —

sin (wm)
< 1 ‘A — CL| n2 - Si?l(“’mn) ’ )
2 sin® (wm)
forallme{l,....,n} and w € R so thatw;«é%ﬂ, leZ.

REMARK 59. If we assume that K = R, then (2.29)) is equivalent to

(2.31) a<a; <A foraliec{l,...,n}.

Consequently, with the assumption (2.31)), we obtain the following ap-
proximation of the Fourier transform

||fw @) ()~ S s+ 1) ] x -5
k=1
L4~ gy [ 50 mm)
: 2 (4-a) [ sin? (wm) ]

forallme{1,... ,n} andw;&%w, leZ.

2.4. Applications for the Discrete Mellin Transform. Let
(H; (-,-)) be an inner product over R and X = (zy,...,x,) be a sequence
of vectors in H.

Define the Mellin transform:

M (X) (m) = ka_lxk, m=1,...,n;
k=1
of the sequence X € H".

The following approximation result holds [5].

THEOREM 60. Let H and X be as above. If there exist the vectors
x, X € H such that

(2.32) Re(X —ap,xp—x) >0 forallk=1,...,n;
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then we have the inequality

(2.33) HM (X) (m) — Sy (n) - % >

=

1
< 5 | X — x| [nSQm_Q (n) — S2_, (n)] ,me{l,....,n},

where S, (n), p € R, n € N is the p—powered sum of the first n natural
numbers, i.e.,

Sp(n) := Z kP .
k=1

PRrROOF. We apply the inequality (2.27)) to obtain

n n

ka—lxk . ka—l . %zn:xk
k=1

k=1 k=1

27 3
1 n n
< 5 ||X . {EH nZkQ(m—l) o (Z km—l)
k=1

k=1

= X — ][22 () — S5y ()]

and the inequality (2.33) is proved. &

Consider the following particular values of Mellin Transform

py (X) = Z kg
k=1

and

The following corollary holds.

COROLLARY 5H1. Let H and X be as in Theorem[6d. Then we have
the inequalities:

_ n+1 —
(2.34) p (%) = — ;xk

Mr

1
<5 X —zln
2 2
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and
235) |y () - DT 5h g,
k=1
gE%me—wn¢m—1ﬂn+m@n+n@n+n.

REMARK 60. If we assume that p = (p1,...,Pn) 1S a probability
distribution, i.e., pr >0 (k=1,...,n) and Y ,_ py =1 andp < p; <
P (k=1,...,n), then by (2.34)) and (2.35]), we get the inequalities

s%(P—p)n{wr

1
<
125

2.5. Applications for Polynomials. Let (H;(:,-)) be an inner
product space over K and € = (co, ..., ¢,) be a sequence of vectors in
H.

Define the polynomial P : C — H with the coefficients € = (¢, .. ., ¢y)
by

(P=p)nv/(n—1)(n+1)2n+1)(8n +1).

P(Z):CQ+201+"'+chna Z€C7 C'ﬂ#o

The following approximation result for the polynomial P holds [5].

THEOREM 61. Let H,C and P be as above. If there exist the vectors
¢,C € H such that

(2.36) Re (C' — ¢, ¢, —¢) >0 for all k € {0,...,n},

then we have the inequality

1 gttty
2.37 P —
(2:37) H () -—— nt 1
1
1 |27 —1 2" —2Re (2" 4+ 1| °
S_HC_CH (n+1) 2 - 2
2 1z]" —1 |z]” —2Re(z) +1

forall z € C, |z| # 1.
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PROOF. Using the inequality (2.27)) , we can state that

n

ZZ%—Z " HHZ ‘

k=0

(2.38)

1
1 | |2n+2 1 Zn+1 1 212
=_|C- 1 —
She =l |+ E =t - |5
1 12" =1 |2 —2Re (2") + 1
=5 IC =cll|(n+1) == - g
2 |2]” —1 2| —2Re(2) +1

and the inequality (2.37) is proved.

The following result for the complex roots of the unity also holds
[5].

THEOREM 62. Let z, := cos ( +1) + zsm( =), k€ {0,...,n} be
the complex (n 4 1) —roots of the unity. Then we have the mequality

1
(2.39) | P (zx)]] gi(n%—l) IC—¢|, ke{l,...,n};
where the coefficients © = (cy,...,c,) € H"™ satisfy the assumption
[2.36) .

PROOF. From the inequality (2.38)), we can state that

Zn+1_1 1
P (o) = ——7 > o

n+1—

1
1 o Zn+1_12 2
<o n+12|z|

forall z € C, z # 1.
Putting z = 2, k € {1,...,n} and taking into account that z;
1, |zx| = 1, we get the desired result (2.39) . n

n+1

The following corollary is a natural consequence of Theorem [62]

COROLLARY 52. Let P (z) := Y _,axz" be a polynomial with real
coefficients and zj the (n+ 1)-roots of the unity as defined above. If
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a<ap, <A, k=0,...,n, then we have the inequality:
1
[P ()l = 5 (n+1) (A ~a).

2.6. Applications for Lipschitzian Mappings. Let (H; (-, "))
be as above and F': H — B a mapping defined on the inner product
space H with values in the normed linear space B which satisfy the
Lipschitzian condition:

(2.40) |F () — F(y)| < L|lx—vyl, forall z,y € H,
where |-| denotes the norm on B and || - is the Euclidean norm on
H

The following theorem holds [5].

THEOREM 63. Let ' : H — B be as above and x; € H, p; >
0 (=1,...,n) with P, :== Y " p; > 0. If there exists two vectors
x, X € H such that
(2.41) Re (X —zj,x; —x) >0 forallie{1,...,n},

then we have the inequality

Pin ZPiF (z5) = F (%n szxz>
i=1 i=1

PROOF. As F' is Lipschitzian, we have (2.40) for all z,y € H.

Choose x = PL"Z?:lpixi andy=uz; (j=1,...,n), to get

1 & 1 &
F (F ZP#&) - F (%) F Zpill?i —Zj
" i=1 " =1

forall j € {1,...,n}.
If we multiply (2.43) by p; > 0 and sum over j from 1 to n, we
obtain

(2.42) <. LIIX — 2.

1
-2

(2.43) <L

Y

1 n
< LZP;‘
j=1

(2.44) ij

1 n
o sz% —Zj
P i=1
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Using the generalized triangle inequality, we have

n 1 n
(2.45) ij F (F me) — F ()
j=1 " oi=1
1 n n

By the Cauchy-Bunyakovsky-Schwarz inequality, we also have

j=1 =1

N|=

%

< ij
j=1

1 n
P, ; Diti — T

Il
ggh—t

>_P;
j=1
1 & 5

2
1 n
o ;px

1 n
7 Yone

[N

I
8

P,

1
1 — & - 2|
—2Re <F > pis, ijxj> +> pjllzl ]
" o=1 j=1 j=1

1
2] 2

I
v

o Yol = |5 Yo
=1 =1

Combining the above inequalities ([2.44]) — (2.46|) we deduce, by dividing
with P, > 0, that

1 — ] —

(2.47)

Jun

212

Pin Zzlpzxz

1 < 2
<L- FZPiHIz’H -
=1
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Finally, using Lemma [10], we obtain the desired result. &
REMARK 61. The condition (2.41)) can be substituted by the more
general condition

> piRe(X =z, 2 —x) > 0,
i=1

and the conclusion (2.42)) will still remain valid.

The following corollary is a natural consequence of the above find-
ings.

COROLLARY 53. Letz; € H (i=1,...,n) and x, X € H be such
that the condition (2.41)) holds. Then we have the inequality

0< %sz ||| — %sz%
" oi=1 " oi=1

The proof follows by Theorem [63| by choosing F': H — R, F'(x) =
||z|| which is Lipschitzian with the constant L = 1, as

[F () = F (y)| = [ll=ll = Nylll < {l= =yl

for all z,y € H.

1
§§||X—$||-

3. The Version for Inner-Products

3.1. A Discrete Inequality of Griiss Type. The following Griiss
type inequality holds [7].

THEOREM 64. Let (H;(-,-)) be an inner product space over K;
K=C,R, z;,y, € H,p; >0 (1=0,...,n) (n>2) withy ;. p; =1.
If x, X,y,Y € H are such that
(3.1) Re(X —xj,z; —2) >0 and Re(Y —y;,y; —y) >0

foralli e {1,...,n}, then we have the inequality

>t <zpzxz,zp,yz>

The constant i s sharp.

1
(3.2) < 7 IX =2y =yl
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PROOF. A simple calculation shows that

(3'3) Zpl L3, yz <sz$u szyz>

=3 szpj —T5,Y — yj>'

1,j=1

Taking the modulus in both parts of (3.3) and using the generalized
triangle inequality, we obtain

(@i, yi) <me, szyz>|

szp] — T, Y — y]>‘

,j=1

By Schwarz’s inequality in inner product spaces we have

(i — 25,0 — yi)| <l — 25 1y — wsl
for all 4,5 € {1,...,n}, and therefore

(i, i) <szx“2pzyl>|

< LS il =l s — -
ij=1

Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums,
we can state that

1 n
B Z pip; 1z =l {1y — ys

ij=1
1 1
1 n ) 2 1 n ) 2
< |5 2wl — 5 2 pivs llvi =y
ij=1 ij=1
and, as a simple calculation shows that,

1 - 2 - 2
5 2 Py Nl =l = D i fli]* -
i=1

1,j=1
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and

iYi

)

1 n ) n )
5 2 oy v = il =D i lwill® —
i,j=1 i=1
we obtain

> <zpzx2,zp,yl>

2

N|=

n n 2
Zpi ||yz||2 - Zpiyi
i=1 i=1

n n 2
2
S pillzdl® = > pix
=1 =1

Using Lemma [10], we know that

2\ 2
n n 1
2
Zpi " — Zpil'z' <3 X — ||
i=1 i=1
and
1
n n 2\ 2 1
ZPiHyiH2— Zpiyi < §HY—Z/H,
i=1 i=1

and then, by (3.4]), we deduce the desired inequality (3.3]).
To prove the sharpness of the constant i, let us assume that 1}
holds with a constant ¢ > 0, i.e.,

>t <zpzx,,zpzyz>

under the above assumptions for p;, z;, v;, ¥, X, y, Y and n > 2.
Ifwechoosen =2, 21 =z, o =X, y1 =9y, 1o =Y (£ X, y#Y)
and p; = pg = %, then

2 2 2
> pilziy) - <pr2py> = szpg )
=1 i=1 =1

3,j=1

= Z pipj \T < —T5,Y; — yj>

1<i<j<2

(3.5) <X ==Y =yl

and then

2 2 2
sz’ (s, yi) — <Zpixiazpiyi>‘ = i (=X, y=Y)I.
i=1 i=1 i=1
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Choose X —x =2, Y —y =2z, 2 # 0. Then using (3.5, we derive
L2 2
Il < cllzl?, 240
which implies that ¢ > %, and the theorem is proved. §
REMARK 62. The condition can be replaced by the more gen-

eral assumption

=1

_ i=1
and the conclusion still remains valid.

The following corollary for real or complex numbers holds.

COROLLARY 54. Let a;, b e K (K=C,R), p;, >0 (i=1,...,n)
with Y7 pi=1. If a, A,b, B € K are such that

then we have the inequality

(3'7) szaz i szaz sz i

and the constant 1 18 sharp.

A—al|B -1

FMH

The proof is obvious by Theorem [64] applied for the inner product
space (C, (-,-)), where (z,y) = - y. We omit the details.

REMARK 63. The condition (@ can be replaced by the more gen-
eral condition

D> _piRel(A—a;) (@ —a)] >0, Zp,Re (B—b) (b —5)] >0

=1

and the conclusion of the above corollary will still remain valid.

REMARK 64. If we assume that a;, b;, a, b, A, B are real numbers,
then @ 18 equivalent to

a<a; <A b<b;<B foralie{l,...,n}

and (3.7) becomes
szaz ) sza'zzpz 4 __ _a) (B_b)a

which 1s the classzcal Gruss mequalzty for sequences of real numbers.
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3.2. Applications for Convex Functions. Let (H;(-,-)) be a
real inner product space and F' : H — R a Fréchet differentiable convex
mapping on H. Then we have the “gradient inequality”

(3.8) F(z)—F(y) > (VF (y),z —y)

forall z,y € H, where VF : H — H is the gradient operator associated
to the differentiable convex function F'.
The following theorem holds [7].

THEOREM 65. Let F': H — R be as above andx; € H (i =1,...,n).
Suppose that there exists the vectors v, X € H such that (x; — x, X — x;) >
0 forallie{l,...,m} and y,Y € H such that

(VF(x;) —y, Y = VF (2;)) >0

foralli e {1,...,m}. Then for allp; >0 (i=1,...,m) with B, :=
Yo pi > 0, we have the inequality

] — 1
(39) 0< =) piff (w:) - ( Zmz) LI =2l Y =l
moi=1

ProoF. Choose in 1’ xr = % Yo, pix; and y = x; to obtain

(3.10) F (Pim épm) — F(x;) > <VF ;) , Zplxz - >

forall j € {1,...,n}.
If we multiply (3.10) by p; > 0 and sum over j from 1 to m, we
have

o z) S

<i (z;) Zplxl> évF ;)

Dividing by P,, > 0, we obtain the inequality
1 < 1 <
(3.11) 0< B ;PiF(%) - F (P_m ZX;%&)

1 m
< B Zpi (VE (i), i)
™ i=1

- <Pim ;PNF (i) , P_lm ;pz$z> )
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which is a generalisation for inner product spaces of the result by
Dragomir-Goh established in 1996 for the case of differentiable map-
pings defined on R™ [14].

Applying Theorem[64]for real inner product spaces, and y; = VF (z;),
we easily deduce

1 & ] — 1 —
<IUx =2y —y]
- -
<7 Yy

and then, by (3.11)) and (3.12) we can conclude that the desired in-
equality (3.9) holds. &

3.3. Applications for Some Discrete Transforms. Let (H; (-, "))
be an inner product space over K, K=C, R and X = (z1,...,z,) be
a sequence of vectors in H.

For a given m € K, define the discrete Fourier Transform

n

Fu (X) (m) = Zexp (Qwimk) X xx, m=1,...,n
k=1

The complex number Y 7, exp (2wimk) (xy, yx) is actually the usual
Fourier transform of the vector ((z1,41),...,{ZTn,¥s)) € K" and will
be denoted by

Fu(X-y)(m) = Zexp (2wimk) (xg,yx), m=1,...,n.
k=1

The following result holds [7].

THEOREM 66. Let X, ¥y € H"™ be sequences of vectors such that
there exists the vectors ¢, C,y,Y € H with the properties

Re (C — exp (2wimk) xy, exp (2wimk) x, —c) >0, kkm=1,...,n
and

Then we have the inequality

fw(i'}_’)(m)—< Zyk>

for allm e {1,...,n}.

C =Y =yl

n
4
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The proof follows by Theorem applied for p, = % and for the
sequences xy — ¢ = exp (2wimk) zy and yx (k=1,...,n). We omit
the details.

We can also consider the Mellin transform

M (X) (m) := ka’lxk, m=1,...,n,
k=1

of the sequence X = (x1,...,x,) € H".
We remark that the complex number > 7' k™! (zy, yy) is actually
the Mellin transform of the vector ({(z1,y1), ..., (Zn,yn)) € K" and will

be denoted by
M(x-y)(m) = Z K™ (g -
k=1

The following theorem holds [7].

THEOREM 67. Let X, ¥ € H" be sequences of vectors such that
there exist the vectors d,D,y,Y € H with the properties

Re <D — kg KMy, — d> >0
forall k,m e {1,...,n}, and is fulfilled.

Then we have the inequality

‘M(x-y) (m) - <M<x> <m>,%zyk> < 2D —d| Y -yl

forallme{1,... ,n}.

The proof follows by Theorem applied for p, = % and for the
sequences x — dy = kxy, and yi (k=1,...,n). We omit the details.

Another result which connects the Fourier transforms for different
parameters w also holds [7].

THEOREM 68. Let X, ¥y € H" and w,z € K. If there exist the
vectors e, K, f, F' € H such that

Re (E — exp (2wimk) xy, exp (2wimk) x;, —e) >0, k,m=1,...,n
and

Re (F — exp (2zimk) yy, exp (2zimk) y, — f) >0, k,m=1,....n
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then we have the inequality:

1E —ell lF = £l
forallme{1,... ,n}.

The proof follows by Theorem [64] for the sequences exp (2wimk) xy,
exp (2zimk) y, (k=1,...,n). We omit the details.

4. More Griiss’ Type Inequalities

4.1. Introduction. In the recent paper [11], the author has ob-
tained the following Griiss type inequality for forward difference.

THEOREM 69. Let X = (z1,...,2,), ¥ = (Y1,---,Yn) € H" and
P € R} be a probability sequence. Then one has the inequalities

(i, yi) <szxz, szyz>
[zz;n pi— (Sl ipi)?]

X max | Azl pnax | Ayl ;

Zl§j<i§npipj (i —J) (22;1 | A" ); (ZZ; HA?/qu)E

. 1 1 _ 1.
’pr>1, 54‘6—1,

1 n n—1 n—1
[ 9 Do i (1= )] Doy 1Azl 2252y ([ Ayl -
The constants 1, 1 and % i the right hand side of the inequality

are best in the sense that they cannot be replaced by smaller constants.

If one chooses p; = + (i=1,...,n) in (41, then the following
unweighted inequalities hold:

(4.2) ‘%Z Tiy Yi) < sz, Zyl>

o2
nlzlk:{??}( ||A$k|| max ||Ayk||)

=L (S A ?) (zH ||Ayk||q>5

. 1 1 _ 1.
1fp:> L ; +-a—— L
L %t o 1Azl 320y Ayl

(

IN

IN
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Here, the constants =

1
127 6
sense.
The following reverse of the Cauchy-Bunyakovsky-Schwarz inequal-
ity for sequences of vectors in inner product spaces holds.

and % are also best possible in the above

COROLLARY 55. With the assumptions in Theorem[69 for X and P
one has the inequalities

(43)  0<> pillw)® -
1=1

n n 2
[Z i2p; — (Zm) ] kmﬁixllmk!\zs
=1

=1 =L,n—=

1<j<i<n
. 1 1 .
pr > 17 P + q = 17

IA

L[] (Sian)

The constants 1, 1 and % are best possible in the above sense.

The following particular inequalities that may be deduced from
(4.3) on choosing the equal weights p; = X, i = 1,...,n are also of
interest

2
4.4 0<— I i
M C e P
(2 -1

max ||Ax.|?:
12 ka ol

(s ||Aa:k||f’) (£ ||Axk||q)é

< =
ifp>1, %—i—ézl;
n—1 /=1 2
5 lan)
\ 2n <k1
Here the constants =, = and = are also best possible.

506
The main aim of this sectlon is to present, by following [10], a

different class of Griiss type inequalities for sequences of vectors in inner
product spaces and to apply them for obtaining a reverse of Jensen’s
inequality for convex functions defined on such spaces.
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4.2. More Griiss Type Inequalities. The following lemma holds
(see also [12]).

LEMMA 11. Let a,x, A be vectors in the inner product space (H; (-, ))
over the real or complex number field K (K =R, C) with a # A. The
following statements are equivalent:

(i) Re(A —z,x —a) > 0;
(ii) [Jz — 2| <5 1A—all.

The following inequality of Griiss type for sequences of vectors in
inner product spaces holds [10].

THEOREM 70. Let (H; (-, -)) be an inner product over K (K = C,R),
andX = (x1,...,%,), ¥ = (Y1,...,yn) € H", P € R} with )" p; = 1.
If x, X € H are such that

(4.5) Re (X —zj,x; —x) >0 for each i€ {1,...,n},
or, equivalently,

x+X

(4.6)

Xy —

H —|IX —z|| foreach i€ {l,...,n},

then one has the inequality

ml?:yl <Zp2xl7zplyl>
%nx —all Y = S
i=1 Jj=1

(4.7)

IN

IN

2
1 n ) n
51X =zl > il =)D pivs
=1 =1

The constant % 1s best possible in the first and second inequality in the
sense that it cannot be replaced by a smaller constant.

PRrROOF. It is easy to see that the following identity holds true

) Sl <zpzxz,zpzyz>
:sz’ <CUZ $+X ijyg>
=1
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Taking the modulus in (4.8) and using the Schwarz inequality in the
inner product space (H;(-,-)), we have

sz i, i) <szxz,2pzyl>‘

Sim <x HX Zpgyg>‘

Zp;yy

yi—ijyj
p=

Xi —

1 n
<SIX =2l >m
i=1

and the first inequality in (4.7)) is proved.
Using the Cauchy-Bunyakovsky-Schwarz inequality for positive se-
quences and the calculation rules in inner product spaces, we have

ol

n 2
vi— YDy
j=1

Z Di
i=1

vi— Y Py
j=1

< Zpi
i—1

and

n 2 n
> pi = pillyl® - Ui
i=1 =1

Yi — ijyj
j=1

giving the second part of .

To prove the sharpness of the constant % in the first inequality in
, let us assume that, under the assumptions of the theorem, the
inequality holds with a constant C' > 0, i.e.,

. <zpzxz,zplyl>

<COIX —2|) m
i=1

Yi — ijyj
j=1
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Consider n = 2 and observe that

sz iy i) <sz:v“ szyz> = pop1 (T2 — 1,92 — 1),

=1 =1

2
Zpi Yi — ijyj
i=1

j=1
and then, by (4.9)), we deduce

(4.10) popr {2 — w1, 92 — y1)| < 2C | X — x| pap1 [lye — 0| -
If we choose p1,p2 > 0, ¥y = 2, y1 = 1 and 29 = X, 1 = x with
z # X, then (4.6) holds and from (4.10) we deduce C' > 1

The fact that % is best possible in the second inequality may be
proven in a similar manner and we omit the details. g

= 2pap1 H?J2 - ylH

REMARK 65. If X and y satisfy the assumptions of Theorem
or, equivalently,
r+X

2

foreachi € {1,...,n}, then by Theorem we may state the following
sequence of inequalities improving the Griss inequality

(4.11) ||z — y— T2

1
EEEEr

(4.12) sz iy Yi) <szxu2pzyz>
1
< B [ X — = Zpi Yi — ijyj
i=1 j=1
1
1 " i
< §||X—9C|| Zpi i ll* — iYi
i=1
1
< 71X =2l Y =yl
In particular, for x; =y; (i=1,...,n), one has
(4.13) 0<> pillal® - T
i=1

1 n
< IX -2l >m
=1

and the constant % 15 best possible.

n
T; — E pj'rj
Jj=1
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The following result also holds [10].

THEOREM 71. Let (H; (-,-)) and K be as above andX = (z1,...,2,) €
H" &= (aq,...,a,) € K" and D a probability vector. If x, X € H are
such that or, equivalently, (@ holds, then we have the inequality

(4.14) 0<

n n n ‘

IA

1 n
SIX =21 > n
=1

n
oy — E ijéj
Jj=1

1
21 2

1 - )
§§||X—x|| Zpi|ai| -
i=1

n
E biy;
=1

The constant % in the first and second inequalities is best possible in
the sense that it cannot be replaced by a smaller constant.

PrOOF. We start with the following equality that may be easily
verified by direct calculation

(4.15) Zpi@ﬂi - sz’ai ' Zpixz'
i=1 i=1 i=1
i=1 j=1

If we take the norm in (4.15)), we deduce

Zplalx’i - szaz szxz
=1 =1 =1
< zn:pz‘ Q; — zn:pjaj T — a:—;XH
i=1 Jj=1

1 n
<5 IX =2 ps
=1

n
a; — E ij[j
=1

N[

IN

2
1 n n
2 [ X — || Zpi (041' - Z%’%‘)
i=1 Jj=1
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1
2

=5 HX — ] sz ’al

proving the inequality (4.14]).

The fact that the constant % is sharp may be proven in a similar
manner to the one embodied in the proof of Theorem [7T0] We omit the
details. 1

zpza,

REMARK 66. IfX and o satisfy the assumption

Q; —

a—i—AH 1
= Xy —

< -|A-

m—l—X
H Lix —a,

foreachi € {1,...,n}, then by Theorem we may state the following
sequence of inequalities improving the Griss inequality

n n n ‘

IN

1 n
SIX =2l Y
i=1

n
a; — E ijéj
j=1

NI

| /\

5 HX — ] sz ’az

< 7lA—al)x —a].

zml

REMARK 67. If in we choose x; = o; € C and assume that
‘ai — %| < $|A—a|, where a, A € C, then we get the following
interesting inequality for complex numbers

AN
DO | =
FS
B
|'M
S

n
E
s
ingh
S
?
N
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4.3. Applications for Convex Functions. Let (H;(-,-)) be a
real inner product space and F' : H — R a Fréchet differentiable convex
functionon H. If VF' : H — H denotes the gradient operator associated
to F, then we have the inequality

(4.16) F(z)—F(y) >(VF (y),z—y)

for each x,y € H.
The following result holds [10].

THEOREM 72. Let ' : H — R be as above and z; € H, i €
{1,...,n}. Suppose that there exist the vectors m, M € H such that
either

(VF (z;) —m,M —VF(z)) >0 foreach i€ {l,...,n};
or, equivalently,

m+M

HVF (z:) — H —||M —m]|| foreach i€ {1,...,n},

holds.

Ifg; >0 (ie{l,...,n}) with@, = ., ¢ >0, then we have the
following reverse of Jensen’s inequality

1
(417) Q_ qu ’ (Qn ;%2&)
a3

IA
N —
E
i

Zi — Q Z qj2j

1
21 2

>

i=1

S—IIM m|| 0. Zqz Btk —'

=1

PROOF. We know, see for example [7, Eq. (4.4)], that the following
reverse of Jensen’s inequality for Fréchet differentiable convex functions

(4.18) 0 < é Zti (z;) — (Qn Z%%)

=1

<Q_Z% (VF (z),2) < quvF Zi ,é;%‘zi>

holds.



192 5. SOME GRUSS’ TYPE INEQUALITIES FOR n-TUPLES OF VECTORS

Now, if we use Theorem [70| for the choices z; = VF (2;), y; = 2
and p; = iqi, i€ {l,...,n}, we can state the inequality

(4.19) Qn;qz (VF (2),2) < ZqNF % ,&;q,zz>
<5l - m||—2qz R
i= @n j=1

VAN
DN | —

2
1 n

| M —m] i ||z - qiZ;
’an F-la. 2

i=1
Utilizing (4.18) and (4.19)), we deduce the desired result (4.17)). u

If more information is available about the vector sequence z =
(21,...,2,) € H™, then we may state the following corollary.

COROLLARY 56. With the assumptions in Theorem[74 and if there
exist the vectors z, Z € H such that either

(4.20) (zi —2,Z — z;) >0 foreach 1 €{l,...,n};

or, equivalently,

1
(4.21) < —||1Z—=z| foreach i€ {l,...,n},

Zi —

2+ Z
2

holds, then we have the inequality

1 n
_“M mH ZQZ Zi Q Zqﬂ]

| /\

S—IIM m|| 0. Z%szll ‘

i=1

Gi%i
Y

—_

7 IM =m|[|[Z = =[]

W

REMARK 68. Note that the inequality between the first term and the
last term in was first proved in [T, Theorem 4.1]. Consequently,
the above corollary provides an improvement of the reverse of Jensen’s
inequality established in [7].
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5. Some Inequalities for Forward Difference

5.1. Introduction. In [4], we have proved the following generali-
sation of the Griiss inequality.

THEOREM 73. Let (H, (-,-)) be an inner product space over K, K =
C,Randec H, |le|]| =1. If ¢, ®,v, T € K and x,y € H are such that

Re (Pe —z,x — ¢e) >0 and Re{Te—y,y—7e) >0
hold, then we have the inequality

2,9} — €} (e, )] < 71 — 6|7 —].

The constant % 15 the best possible.

A Griiss type inequality for sequences of vectors in inner product
spaces was pointed out in [5].

THEOREM 74. Let H and K be as in Theorem and x; € H,
ai € K,pp >0 (i=1,....,n) (n>2) with >, p; =1. Ifa,Ae K
and x, X € H are such that:

Re[(A—a;)(@;—a)] >0, Re(X —zjz;,—z)>0
for any i € {1,...,n}, then we have the inequality

n n
jAiTi — E bia; - E pixi
i=1 i=1

1
< lA-al|X —a].

The constant i 18 best possible.

A complementary result for two sequences of vectors in inner prod-
uct spaces is the following result that has been obtained in [7].

THEOREM 75. Let H and K be as above, x;,y; € H, p; > 0
(i=1,....,n) (n>2) with Y ;. p; = 1. Ifz,X,y,Y € H are such
that:

Re(X —zj,z;,—2) >0 and Re(Y —yi,y; —y) >0
forall i€ {1,...,n}, then we have the inequality

> o) <zp2xz,zpzyz>

The constant + 7 s best possible.

1
0< < 7 X =2l Iy =yl
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In the general case of normed linear spaces, the following Griiss
type inequality in terms of the forward difference is known, see [13].

THEOREM 76. Let (E,||-||) be a normed linear space over K = C, R,
r, €E, 0, € Kandp, >0 (i=1,...,n) such that ., p; =1. Then
we have the inequality

n n n
(51)0 S szalxi _szal szxz
i=1 i=1 i=1
n n 2
< A A 20 im.
= 1gdnn [Aay 1<jen1 A1 z;l b (Z; sz) ’
1= 1=
where Aa; = aji1 —aj and Az, = x4 —x;(j=1,...,n—1) are

the forward differences of the vectors having the components «; and
zj(j=1,...,n—1), respectively.

The inequality 15 sharp in the sense that the multiplicative
constant C' = 1 in the right hand side cannot be replaced by a smaller
one.

An important particular case is the one where all the weights are
equal, giving the following corollary [13].

COROLLARY 57. Under the above assumptions for o, x; (i =1,...,n)
we have the inequality

n n n

1 1 1

—E Oéixi__g 061"—2 Ly
=1 =1 =1

n? —

(5.2) 0<

< max |Aa;| max ||Axz;].
12 1<i<n-1 1<j<n—1

The constant 1—12 15 best possible.
Another result of this type was proved in [6].
THEOREM 77. With the assumptions of Theorem one has the

imequality

(5.3) 0<

n n n
Zpiaixi - ZPz‘Oéi : sz‘ﬂ%
i=1 i=1 i=1

1 n—1 n—1 n
<3 S 1A > A S pi(1—pi).
j=1 j=1 i=1

The constant % 15 best possible.
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As a useful particular case, we have the following corollary [6].

COROLLARY 58. If ay,x; (i =1,...,n) are as in Theorem[76, then

1l & l & 1 &
1 1 n—1 n—1
<3 (1-2) Ziaal Xl
=1 =1

The constant % 18 the best possible.

Finally, the following result is also known [8].

THEOREM 78. With the assumptions in Theorem we have the
mequality:

(54) 0<

Zpi()éill?i - ZPiOéi : Zpﬂi

i=1 i=1 i=1
n—1 % n—1 %

<(Siaar) (S1aer) ¥ 0-omm
j=1 j=1

1<i<j<n

where p > 1, %—I—%:l.
The constant ¢ = 1 in the right hand side of 15 sharp.

The case of equal weights is embodied in the following corollary [8].

COROLLARY 59. With the above assumptions for a;,z; (i =1,...,n)
one has

1 < 1 < 1 <
1 n—1 n—1 %
(Z |Aaj|p> (Z IIij||q> :
j=1 j=1

where p > 1, ]%4—5:1.
The constant % is the best possible.

D =

The main aim of this section is to establish some similar bounds for
the absolute value of the difference

>t <zp1xz,zpzyz>

provided that xz;, y; (z =1,...,n) are vectors in an inner product space
H,andp; >0 (i=1,...,n) with Y, p; = 1.
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5.2. The Main Results. We assume that (H, (-,-)) is an inner
product space over K, K = C or K = R. The following discrete in-
equality of Griiss’ type holds.

THEOREM 79. Ifx;,y; € Hyp; >0 (i=1,...,n) with > . pi =1,
then one has the inequalities:

[t <zm,zpzyz>
( n -2 n .
S = (L )| max [Awe]) | max Ay

[21§j<i§npz‘pj (i — j)] (ZZ:1 | Az [|” )p (Zkzl ||Ayk||q)%

ifp>1, J+1=1
n—1 n—1
(5 Do ps (1= pa)l 200y 1Al 2520 1Al

All the inequalities in are sharp.

(5.5)

IN

The following particular case for equal vectors holds.

COROLLARY 60. With the assumptions of Theorem[79, one has the
imequalities

n
0< Y pillwl® -
=1
(
i = (S ip)?] | max | Aa;

21§j<i§npipj (i —4) (Zk;1 ||Axk||p>; (Z:j HAxk”q)g

ifp>1, 1 4+1=1;

>p g

IN

n n— 2
[ 3 2m pi (L= p0) (0 Aa]))™

The following particular case for equal weights may be useful in
practice.

COROLLARY 61. If x;,y; € H (i=1,...,n), then one has the in-
equalities:

%zil xl)yl < le7 Zyl>‘
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2

( ”121k max ||Amk|| max ||Ayk||;

T (Zkzl | Ay |7)? (Zkzl 1Ay]l)

. 1 1 __ 1.
ifp>1, I_J+5 =1;
L5 00 Al 00T 1Ayl

1 .
The constants —5 12, Land L 5 are best possible.

IA

In particular, the following corollary holds.

COROLLARY 62. Ifx; € H (i=1,...,n), then one has the inequal-
ity
n 2
1
SO
n <
=1

1 — )
0<— Y flaill® -
=1

( n2-—1
12

max || Az
k=1

. 5 ge :
SR Aw]) 7 (02 || A1)
ifp>1, ;+.=1

n— n— 2

L (T Aa)

The constants 1—12, % and % are best possible.

IN

5.3. Proof of the Main Result. It is well known that, the fol-
lowing identity holds in inner product spaces:

(5.6) sz i, Yi) <ZP¢$¢7 Zpiyi>

n

1
25 DiPj <$'_xjayi_yj>
,j=1
Z plpj —T5,Yi — y]>
1<5<i<n

We observe, for ¢ > j, we can write that

i1
(5.7) T — T = ZA:@, Y — Y = ZAyk.
k=j

Taking the modulus in (5.6 and by the use of (5.7) and Schwarz’s in-

equality in inner product spaces, i.e., we recall that [z, u)| < [|z]| ||u],
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z,u € H, we have:

(o) <zm,zpzyz>‘
< Z Pibj |(i — x5, vi — ;)|

1<j<i<n

< 3 il -l v — il
1<j<i<n
Z biDj ZAxk
< > piij\\Axk\!ZI\Ayzll
k=j l=j

1<j<i<n
1<j<i<n
=M.

It is obvious that

ZHAZEkH < (i—j), max Azl < (@ —7) max [|Az

777777777

and

ZuAka < (i-j) max | |Ayl < (=) max 1Ayl

giving that

M < Z DiD; (i—j)Q-kmaX HA:L‘;CH max |1 Ayl

..........

1<j<i<n
and since
n n 2
> pipi(i—j) = szpj (i—5)* =Y pi®— (Zw) :
1<j<i<n 7,] 1 i=1 i=1

the first inequality in (5.5]) is proved.
Using Holder’s discrete inequality, we can state that

1
i1 »
(E HAfﬂkH"> () (E HA%H”)
k=j

Q=

1—1
D 1Az < (i - )
k=j
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and

i—1 i—1 i n—1 3
D A < (i —5)r (ZIIAkaq> <(@@—=j)» (ZHAkaq) ,
k=j k=j k=1

for p > 1, % + % = 1, giving that:

% n—1 %
VESD ST ) (Z!\Axk\\p) (anAkaq)
=1

1<j<itn

and the second inequality in ([5.5)) is proved.
Also, observe that

i—1 n—1 i—1 n—1
oAz <>l Aw] and YAyl <> Ay
k=3 k=1 k=3 k=1

and thus
M< S pplic ||Axk||2||Ayk||

Since

the last part of (5.5]) is also proved.
Now, assume that the first inequality in (5.5)) holds with a constant
c>0,ie.,

>t <zpzxz,zpzyz>
<c Zi2p1—<2ipi> , max HAmkH _max HAka
i=1 i=1

..........

and choose n = 2 to get

(5.8) pip2 [(x2 — 21,92 — y1)| < epip2 |22 — 21| |y — 1|
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for any py,p2 > 0 and xq, x2,y1,y2 € H.
If in (5.8) we choose yo = x9, y1 = x1 and xy # x1, then we deduce
¢ > 1, which proves the sharpness of the constant in the first inequality

n .

In a similar way one may show that the other two inequalities are
sharp, and the theorem is completely proved.

5.4. A Reverse for Jensen’s Inequality. Let (H; (-, -)) be areal
inner product space and F' : H — R a Fréchet differentiable convex
function on H. If VF' : H — H denotes the gradient operator associated
to F, then we have the inequality

F(z)—F(y) > (VF(y),z —y)

for each x,y € H.
The following result holds.

THEOREM 80. Let FF : H — R be as above and z;, € H, i €
{L,...,n}. If ¢, >0 (ie{l,...,n}) with >, ¢; = 1, then we have
the following reverse of Jensen’s inequality

(5.9) 0< zn:qF (z) - F (i qm)

(20 e - (e’
x max [JA(VE ()| max  [|Az];
[Zl§j<z’§n 0:q; (i — J)]
< (5 IA(VE pll") (75 A=)
fp>1, L+1=1;

(5 [0 @ (1= @) 05 A (VF ()20 1Az

PROOF. We know, see for example [7, Eq. (4.4)], that the following
reverse of Jensen’s inequality for Fréchet differentiable convex functions

(5-10) 0< Z ¢ (Z’L> - F (Z qm)
<Zqz (VF (2),2) <ZqNF 2i) Zq,zz>

IA

Q=

holds.
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Now, if we apply Theorem (79| for the choices z; = VF (z),y; = 2
and p; = ¢ (z =1,...,n), then we may state

(VF (2),2) <ZQNF 2i) ZQZ21>‘

[z;;lz' @ — (i ia)’]
x max [A(VF(a))] _max [Az;

=1,..., =1,...,

[Zl§j<i§n qiq; (i _j)]
X (SR IA(TE (z)IP) 7 (2r 1Az
if p>1, %—i—%:l;
30 a6 (1= p)] 22 A (VF () 3202y 1Az

Finally, on making use of the inequalities - ) and ( - we deduce
the desired result (5.9). n

(5.11)

(

IN

Q=

The unweighted case may useful in application and is incorporated
in the following corollary.

COROLLARY 63. Let F : H — R be as above and z; € H, 1 €
{1,...,n}. Then we have the inequalities

OS%iF(zﬂ—F(%Zﬂ:ZJ

i=1

( n’-1 .
S max [A(VE ()] max [[Az];

=1,...,m =1,...,

=

=2 (S 1aer ) (S laa])?

. 1 1 _ 1.
pr>1, E—Fa—l,
n— n—1 n—1
(S 2k A (VE () 2002y Az

IN

6. Bounds for a Pair of n-Tuples of Vectors

6.1. Introduction. Let (H;(-,-)) be an inner product over the
real or complex number field K. For p = (p1,...,p,) € R" and x =
(X1, s xn), Yy = (Y1, .., yn) € H", define the Cebysev functional

(6.1) T, (p;X,§) = Py sz iy Yi) <szxz,Zp/yz>7
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where P, :=>""  p;.
The following Griiss type inequality has been obtained in [7].

THEOREM 81. Let H, x,y be as above and p; >0 (i € {1,...,n})
with Y77 p; = 1, i.e., p is a probability sequence. If x,X,y,Y € H
are such that

(6.2) Re (X —zj,z;—2) >0, Re(Y —yi,y; —y) >0

for each i € {1,...,n}, or, equivalently, (see [10])

x4+ X _y+Y

(6.3) . - 25

r; —

1
<lix—a, \y

1
| <50r -l
for each i € {1,...,n}, then we have the inequality
o 1
(6.4) T (B:%3)] < 7 X =2l IY =yl

The constant i 18 best possible in the sense that it cannot be replaced
by a smaller constant.

In [11], the following Griiss type inequality for the forward differ-
ence of vectors was established.

THEOREM 82. Let x = (v1,...,2,), Y = (Y1,.--,Yn) € H" and
p € RY be a probability sequence. Then one has the inequality:

65  [T([E%9)
([ i = (i ipe)?| | max Az

1<k<n—1

x dnax | Ayl;

Zl§j<i§n pip; (i — J) ) 1
X (Shst Azel”) (3hsy 1Awl )

11
if p>1, st

(5 [ pi (1= )] X0y 1Al 220200 [ Awll

The constants 1,1 and % in the right hand side of inequality are
best in the sense that they cannot be replaced by smaller constants.

IA

Another result is incorporated in the following theorem (see [10]).

THEOREM 83. Let x,y and p be as in Theorem [83. If there exist
x, X € H such that

(6.6) Re(X —xj, 2, —x) >0 foreach i€{1,... ,n},

or, equivalently,
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r+ X
2
then one has the inequality

1
(6.7) < —||X —z| foreach i€ {l,...,n},

€T; —

(6.8) [T (Bi%, )| < 5 [1IX — 2] > _p
=1

vi— Y Pivi
j=1

IN

iYi

1 - )
S 12X =l |3 pilll” —
=1

The constant % is best possible in the first and second inequalities in
the sense that it cannot be replaced by a smaller constant.

REMARK 69. If x and y satisfy the assumptions of Theorem
then we have the following sequence of inequalities improving the Griiss

inequality :

o 1 -
(6.9) T (P;X,¥)| < 5 X =z > pi
=1

vi— Y _Diys
j=1

iYi

1
< S IX ] Zp@uy@u -

< JIX =zl 1Y~y

Now, if we consider the Cebysev functional for the uniform proba-
bility distribution v = (,...,1),

n’ 'n

Tn(iay)::%Z xzayz < qu Zyz>>
i=1

then, with the assumptions of Theorem [8 ., we have

o 1
(6.10) T (%,3)] < 21X —2l[[Y =yl
Theorem [82| will provide the following inequalities
(5 (n* —1) max. HAka max HAka

1<k<n 1<k<n

6.11) [T, (&) <48 (=) (Zisi 1A ¥ (St [ Au)®

= . 1 1 .
if p>1, 54‘5‘1‘1,

(1= 2) S0z A S0 1Ayl
a.

nd % are best possible in the above sense.

1
\ 2
1
6

Here the constants 12
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Finally, from (6.9)), we have

_ 1 =
(6.12) T, (X, 5)| %HX—xIIZ
=1

IA

1 n
Yi— Zyj
j=1

1
2\ 2

1 1 & 9
< —||X — — A|1° =
<5 IX -~z n; Al

1 n
E;yi

< S IX =2 1Y =yl

N

It is the main aim of this section to point out other bounds for the
Cebysev functionals T, (p,x,y) and T, (X,y) .

6.2. Identities for Inner Products. For p = (p1,...,p,) € R”
and a = (ay,...,a,) € H" we define

P=Y"p, P=P-P ie{l...n-1}
k=1
and the vectors

Ai(p) =) mar,  Ai(p) = Au(p) — A (p)

k=1

forie{1,...,n—1}.
The following result holds [9].

THEOREM 84. Let (H; (-,-)) be an inner product space over K, p =
(p1,.-.,pn) € R" and a = (ay,...,a,),b = (b1,...,b,) € H". Then
we have the identities

n—1

(6.13) T, (p;a,b) = » (PA, (p) — P.Ai (p), Ab;)

1
:PHZH<EAn<p>—§Ai<p>,Abi>
(f P40, ie{l,.. .n})
A 1
= ;RPZ' <EA1 (p) - FiAi (p) 7Abi>

(if B, P #0, i€ {l,....n—1}),

where Ax; = x40 —x; (1 € {1,...,n — 1}) is the forward difference.
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ProoOF. We use the following summation by parts formula for vec-
tors in inner product spaces

q—1 q—1
(614) Z <dl, Avl> = <dl, ’Ul> ’Z — Z <Ul+1, Adl> s
l=p l=p
where d;, v, are vectors in H, | = p,...,q (¢ > p; p,q are natural

numbers).

If we choose in (6.14)), p =1, ¢ = n, d; = P;A,, (p) — P,A; (p) and
v;="0; (ie{l,...,n—1}), then we get

n—1

Z (PiAL (p) — PuAi (p), Abi)

=1

= (P (B) — P (9)) [} — S {A (P (B) — Po (B) i)
= (PA, (P) — PuAn (P),bn) — (P1A, (P) — PuAi (P) , b)
- Z <Pi+1An (P) — P A (P) — P A, (P) + P, A; (P) >bi+1>

= Pup1 (a1, z1) — p1 (An (P) , 01) — <An (p), Zpi+1bi+1>

n—1
+ P, Zpi—i-l (@it1,biv1)
i=1
=P, sz' <<lz', bi) - <sz‘ai; sz'bz'>
i=1 i=1 i=1
= Tn (pa a, b) )

proving the first identity in (6.13]).
The second and third identities are obvious and we omit the de-
tails. 1

The following lemma is of interest in itself [9].

LEMMA 12. Let p = (p1,...,pn) € R" and a = (ay,...,a,) € H.
Then we have the equality

n—1

(6.15) PA, (p) — P.Ai (p) = Z Pmin{i,j}pmax{i,j}Aaj

j=1
foreach i€ {1,...,n—1}.
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PROOF. Define, for i € {1,...,n — 1}, the vector

n—1
K (i) =Y Puinfij) Paaxigy - Aa;.
j=1
We have

(616) K (Z) = Z Pmin{i,j}Pmax{i,j} : Aaj
j=1
n—1
+ Z Pmin{i,j}Pmax{i,j} : Aaj

j=i+1

% n—1
:ZPJRACL]+ Z RPJAGJ

j=1 j=it+1

A n—1
=PB) Pi-Aa;+P ) P-Aag;
Jj=1 J=i+1
Using the summation by parts formula, we have
' i+1 :
(6.17) > P Aagj = Piayl]" =Y (P — P aja
j=1

j=1

7
= 15410541 — P1a1 — E Pj+1G541
Jj=1
i+l
= it1Qiv1 — g bja;
7j=1

and

n—1
(6.18) Y Pj-Ag;
j=i+1
— n_l — —
= P’ = > (P — Py ajn
Jj=i+1

n—1

= Pya, — P10 — E (Pn_PjH _Pn+13j)aj+1
j=it1
n—1
= —Pai+ E Djt1j41-
j=it1
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Using (6.17) and (6.18)), we have
i+1
K <Z> =P (P72+1az'+1 - Z%‘%‘) + B ( Z Pj+1aj41 — 'L+1az+1>

j=1 j=i+1
i+1 n—1
= PP — PiPiaig — B ijaj + B Z Dj+1Gj+1
j=1 j=i+1
=[(P.— P) Piy1 — P (P — Piy1)] aina
i+1
+ B Z pir1aj+1 — P, Zp]aj
Jj=1+1
n—1 i+1
= Pypiv1aiy + B Z Di+10j+1 — b ijaj
j=i+1 j=1
n—1 i+1
= (P + B) pir1aina + P Z pj+1a;+1 — b ijaj
j=i+1 j=1
=P, Z pia; — P Zpaaa

:PiAi( )_Pz‘Az’( )
= P A, (p) — P.A; (p),

and the identity is proved.

_ We are able now to state and prove the second identity for the
Cebysev functional [9].

THEOREM 85. With the assumptions of Theorem we have the
identity

n—1 n—1

(6.19) (A b) = Y Puinfigy Puaxtigy - (Aa, Ab) .

=1 j5=1
PrOOF. Follows by Theorem [84] and Lemma [12] and we omit the
details. &

6.3. New Inequalities. The following result holds [9].

THEOREM 86. Let (H;(-,-)) be an inner product space over the
real or compler number field K; p = (p1,...,pn) € R" and a =
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(a1,...,a,),b=(by,...,b,) € H". Then we have the inequalities
(6.20) [T, (p;a,b)

max ||PiA, (p) — Pads (p)| 2272 1140

1<i<n—1

1 1
(S 1PA (9) = Pai ()]17) 7 (251 18041
for p>1, %—i—%zl;

IN

S IR AL (p) — PaAi (p)

= I
All the inequalities in are sharp in the sense that the constants
1 cannot be replaced by smaller constants.

PROOF. Using the first identity in (6.13)) and Schwarz’s inequality
in H, ie., |[(u,v)| < |lu| [|v], u,v € H, we have successively:

Jnax A

n—1

T, (p;a,b)| <Y " [(PA, (p) — PuAi (p), Aby)|

=1

n—1
< 1PAL (p) — Padi ()] [|Ab]]
i=1

Using Holder’s inequality, we deduce the desired result .

Let us prove, for instance, that the constant 1 in the second in-
equality is best possible.

Assume, for ¢ > 0, we have that

(6.21)  |T, (p;a,b)

< (Z 1P 4w (p) = PA <p>||q) (Z HAijp)

forp>1,%—|—%:1,n22.
If we choose n = 2, then we get

T, (p;a,b) = pips (azs — a1,b2 — by) .
Also, for n = 2,

1
q

n—1
(Z [PiAn (P) — PaAi (p)Hq) = |p1p2| [laz — ai|]
i=1

and

n—1 %
(Z I\Abj|!p> — |l — by,
j=1
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and then, from (6.21]), for n = 2, we deduce
(6.22) [pip2| [(az — a1, by — b1)| < c[pipa| [|as — ax| [[b2 — ba ] -

If in (6.22]) we choose ay = bs, as = by and by # by, p1, p2 # 0, we deduce
¢ > 1, proving that 1 is the best possible constant in that inequality. i

The following corollary for the uniform distribution of the proba-
bility p holds.

COROLLARY 64. With the assumptions of Theorem[8( for a and b,
we have the inequalities

(6.23) 0< T, (a,b)|

(
max

) " i n—1
L DI DB a’“” > 1B
n—1 || . n i q %
(Zizl ‘Z Zk:l ag — nzkzl ag )
1
n—1
X (Z]’:1 HAijp>p for p>1, ]%4_ % —1;

-1
2=

1
<=
n2

i = n i |- max Ay
The following result may be stated as well [9].

THEOREM 87. With the assumptions of Theorem [86 and if P; # 0
(1=1,...,n), then we have the inequalities

(6.24) |T, (p;a,b)|

max

n—1
1<i<n—1 Z; |Pz‘ ”Asz )

n=1p|l L RPN O
<ipix ] (EE PRI w - @)
X (i | Bl Abi|[P)7 - for p>1,

S p

7 An (P) — 5 Ai (p)

1 1 _ 1.
lyloy

A4, (p) = A4 () - max fAn].

L 1<i<n—1

All the inequalities in are sharp in the sense that the constant 1
cannot be replaced by a smaller constant.



210 5. SOME GRUSS’ TYPE INEQUALITIES FOR n-TUPLES OF VECTORS

PROOF. Using the second equality in (6.13]) and Schwarz’s inequal-
ity, we have

T (p;a,b)| < <P%A” (p) — %Ai (p)7Abi>‘
) - 354 (0) a0

Using Holder’s weighted inequality, we deduce ((6.24)).

The sharpness of the constant may be proven in a similar manner
to the one in Theorem [86l We omit the details. §

The following corollary containing the unweighted inequalities holds.

COROLLARY 65. With the above assumptions for a and b, one has

(6.25) |T, (a,b)|

max
1<i<n—1

S A

1
‘I)q

n .
%Zak—%ZZ:ﬂlk

< l (Zz 1 v Z Qr — 22:1 ag
o v 1,1
x (i 1ZHAbH )P ofor p>1, o4+ =1;
i S

The inequalities are sharp in the sense mentioned above.

Another type of inequality may be stated if ones used the third
identity in (6.13) and Hélder’s weighted inequality with the weights:

THEOREM 88. With the assumptions in Theorem and if P;, P; #
0,7€{l,...,n— 1}, then we have the inequalities
(6.26) |7, (p;a, b))

.

(max || 24 () = 4 (p)| S5 12 |B] A
(2?:3 1P| 24 @) - 24 m))
< [Pl X _ . n 1
X (i[RI B Ab]P)" for p>1, 41 =1,
LA _ 1 4. .
| S5 IPIP] |4 () — 44 (p)| - max (126,
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In particular, if p; = %, ie{l,...,n}, then we have
(6.27) [T, (a,b)]|

max

. -
 Jhax ﬁ ZZZM ag — %22:1 ak Z? L (n— ) ||Ab|;
1
1. ; 7\ ¢
(Z? L =) |15 D @k — 2 G )q

1
x (3o i(n—1) |Ab|[P)? for p>1, %—l— % =1;

. ,

i (=) || i o — 3 iy ad| - max 4B

1<i<n—1
The inequalities in (6.26]) and (6.27) are sharp in the above mentioned
sense.

1
<
.

\

A different approach may be considered if one uses the representa-
tion in terms of double sums for the Cebysev functional provided by

Theorem [85]
The following result holds [9].

THEOREM 89. With the above assumptions of Theorem|[86, we have
the inequalities

(6.28) |T,, (p;a,b)]
(1, {Pontsn | Pt}
< 3 1Al S5 1Ab ;

(S S5t [P | \Pmax{i,j}\Q) ‘
X (15 1Aai]”) (55 1A61)

1
p
for p>1, 5—1—— 1;

St 200y | Pringig | | Puaxtigy]

X max ||Aal|| Inax ||Ab |-
0 1<i<

< |Pa] % 4

The inequalities are sharp in the sense mentioned above.

The proof follows by the identity (6.19)) on using Holder’s inequality
for double sums and we omit the details.
Now, define

koo = max {min{i’j} (1—max{i’j}>}, n>2.

1<4,j<n—1 n n
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Using the elementary inequality
abSi(a—l—b)Q, a,b € R;
we deduce
min {7, 7} (n — max {i, j}) < i (n—1i—j|)?

for 1 <i,j < n — 2. Consequently, we deduce

1 ) . 1
koo < — max {(TL—|Z—]|)2}:Z

T 4n?a<ij<n-
We may now state the following corollary of Theorem |89 [9]

COROLLARY 66. With the assumptions of Theorem|[86 for a and b,
we have the inequality

n—1 n—1
(6.29) T, (a,b)] < koo > [[Aa] D 1AL
i=1 i=1

n—1 n—1
1
<2120l Y an]
=1 =1
The constant i cannot be replaced in general by a smaller constant.

REMARK 70. The inequality 18 better than the third inequality
in .

Consider now, for ¢ > 1, the number

k, ::% (ZZ [min {i, j} (n — max {4, j})]* >q.

=1 j=1

We observe, by symmetry of the terms under the summation symbol,
that we have

b= (2 > z’q<n—j>Q+iz’q<n—i>Q>

1<i<j<n—1

Note that the quantity k, may be computed exactly if ¢ = 2 or another
natural number.
Since, as above,

[min {i, 5} (n — max {i, j})]? < % (n—Ji—j)*
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we deduce

I/\

(nzlni (n— i = j|)? )é

i=1 j=1

\Hs

<— [(n — 1)2 anF

| =

(

Qo

=1 n—1)a.

Consequently, we may state the following corollary as well [9].

COROLLARY 67. With the assumptions of Theorem[8¢ for a and b,
we have the inequalities

n—1 % n—1 %
(6.30) | (a,b)[ < k& (ZIIAain) (ZHAZ%HP>
=1 =1
1 ) % n—1 %
< -1 <Z||Aaz||p> (Z IIAbin) 7
=1

provided p > 1, %—1—5 = 1. The constant ;11 cannot be replaced in general
by a smaller constant.

Finally, if we denote

n—1 n—1
1
— min {7, j} (n — max {7, j})]
=1 j5=1
then we observe, for u = (%, - %) ,e=(1,2,...,n), that

2
1 e 1
: EZZ> 12("_1)
=1 1

and by Theorem [89, we deduce the inequality

1
k=T, (u;e,e)| _5212_ (

1
T, (a,b)| < D (n® = 1) max ||Aa]|] nax HAb |-

1<j<n—

Note that, the above inequality has been dlscovered using a different
method in [I0]. The constant 55 is best possible.
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CHAPTER 6

Other Inequalities in Inner Product Spaces

1. The Ostrowski Inequality

1.1. Introduction. In 1951, A.M. Ostrowski [16}, p. 289] proved
the following result (see also [15) p. 92]):

THEOREM 90. Suppose that a,b and x are real n-tuples such that
a#0 and

iaixi =0 and ibixi =1.
i=1 i=1

Then

zn: 2> Z?:l azz
i = 2
i—1 Z:’L:l a? ?:1 bg - (Z?:l a;b;)

with equality of and only if
b 3 iy 0F — ar iy aibi
D@ > b — (32 aibi)w

T —

forke{l,...,n}.

An integral version of this inequality was obtained by Pearce, Pecari¢
and Varosanec in 1998, [17].

H. Siki¢ and T. Siki¢ in 2001, [I8], by the use of an argument based
on orthogonal projections in inner product spaces have observed that
Ostrowski’s inequality may be naturally stated in an abstract setting
as follows:

THEOREM 91. Let (H;(-,-)) be a real or complex inner product
space and a,b € H two linearly independent vectors. If x € H is such
that

(x,a) =0 and (x,b) =1,
then one has the inequality
o]
lall* [[o1* = 1{a, b)|*
217

(1.1) lz* >




218 6. OTHER INEQUALITIES IN INNER PRODUCT SPACES
with equality if and only if

_ _lal’b—{a,0) -a
lal® lo]I* — {a, )"

In the present section, by the use of elementary arguments and
Schwarz’s inequality in inner product spaces, we show that Ostrowski’s
inequality holds true for a larger class of elements x € H. The
case of equality is analyzed. Applications for complex sequences and
integrals are also provided.

1.2. The General Inequality. The following theorem holds [6].

THEOREM 92. Let (H;(-,-)) be a real or complex inner product
space and a,b € H two linearly independent vectors. If x € H is such
that

(1.2) (z,a) =0, and [(z,b)| = 1;
then one has the inequality

la]”

lall* 161" = (@, 0)[*
The equality holds in (1.3) if and only if

{a,b)
T = b— -a
”( lal? )

where p € K(K = R,C) is such that

(1.3) |z)® >

2
el

lall* 161 — [{a, b)*

(1.4) =

Proor. We use Schwarz’s inequality in the inner product space
(H; (), ie.,
(1.5) lull* [Jol* > [(w,0)[*;  w,veH

with equality iff there exists a scalar o € K such that v = aw.

If we apply ([1.5) for
(z.0) Y

5 - C v=d— 5 * G,
lel® el

U =z—
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where ¢ # 0 and ¢, d, z € H, then we have

(o)

T2
el

2 2

{d, c)

L
el

S T =)

with equality iff there is a scalar 3 € K such that

o) |-

2

d
o b~ Gl
c c
Since simple calculations show that
‘F_<%@_CZ_HﬁﬂMV—K%®F
2 - 2 ’
el el
‘P_(d@_CQZHMﬂMF—K¢@F
le]l” le]l”

and

< (GO <¢@.C>:<%dHMf—%%@(a®

- 7 60— 2 2 )
el ] el
then, by (/1.6]), we deduce

(1.8) [zl 1lel? = 1¢z, &) ] [l el = 1{d, )]
> [(z,d) [le]* = (z,¢) (e, )|,

with equality if and only if there is a # € K such that (1.7) holds.
If a,z,b satisfy (1.2]) then by (1.8) and ((1.7) for the choices z =

z,c = a and d = b we deduce the inequality ([1.3) with equality iff
there exists a u € K such that

T = —m%l
“(b ol )

and, by the second condition in (|1.2)),

u<b—@-a,b>‘:1.

Since ([1.9) is clearly equivalent to ([1.4]), the theorem is completely
proved. &

(1.9)
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1.3. Applications for Sequences and Integrals. The following
particular cases hold.

1. Ifa,b,x € 2 (K), where * (K) := {x = (2:);cn» 2o 2] < oo},
with a, b linearly independent and

o0 (o)
E z;a; = 0 and E z;b;
i=1 i=1

then one has the inequality

2
ile > 2o |ail

1 = — 2
i=1 221 |ai|2 Zf; |bi|2 - ‘Zf; az‘bi‘

with equality iff
b — Zk 1 by )
> he |ak|

and p € K with the property
[e'¢) 2
> it |ail
00 2 o'} 2 00 127
Doy lail” D2 o] — |Zi:1 aibi|
2. If f,g,h € L?(Q2,m), where € is a measurable space and

L2(Q,m) = {f: Q@ =K, fQ\f(x)Ide(ac) < oo}, with f,g
linearly independent and

Y

z’]7 1€N

| =

/Q (@) F@)dm (z) = 0, / b (x) g @dm ()| =1,
then one has the inequality
[ i@ am @
Q
lef CE ’2 dm( )
S @l ) s () o )= o £ (@) g @)m ()]

with equality iff
fQ x)dm ()

hl’ =V €T . €T

(z) [g() fQIf |dm() f()]

for m— a.e. x € ), and v € K with

fQ’f | dm( )
Jo I @) dm @) f, lg @) dm @) = | [, £ (2) g (2)dm (@)

v = 2"
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2. Another Ostrowski Type Inequality

2.1. Introduction. Another result due to Ostrowski which is far
less known than the one incorporated in Theorem [90] and obtained in
the same work [16], p. 130] (see also [15, p. 94]), is the following one.

THEOREM 93. Let a, b and x be n—tuples of real numbers with
a#0 and

n

Zaixi =0 and ixf =1.
i=1

=1

Then
n 2 n 2 n 7. 2 n 2
(2.1) Zi:l i 2 i—1 Sz (Zi:l a;b;) > (Z bﬂ%) ‘
i=1

> i 4
If a and b are not proportional, then the equality holds in iff
by, Z?:l a’zz — ay Z?:l a;b;
n 1 n n n 2
(> k=1 ai)? |:Zi:1 ai y iy 0F — (21, aibi) }
ke{l,...,n}, withqe {-1,1,}.

T = (- )

N

The case of equality which was neither mentioned in [16] nor in
[15] is considered in Remark [71]

In the present section, by the use of an elementary argument based
on Schwarz’s inequality, a natural generalisation in inner product spaces
of is given. The case of equality is analyzed. Applications for se-
quences and integrals are also provided.

2.2. The General Result. The following theorem holds [9].

THEOREM 94. Let (H, (-,-)) be a real or complex inner product space
and a,b € H two linearly independent vectors. If x € H is such that

(i) (z,a) =0 and |z]| =1,
then
lall” 6] — |{a, b)|”

2
lal]

The equality holds in iff

xzu(b—@-a),
[[all

(2.2) > |(x,b)[.
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where v € K (C,R) is such that

el

lal 16l - [{a. b)?]*

v| =
ProoOF. We use Schwarz’s inequality in the inner product space H,
i.e.,
(2.3) lull* [[o]* > [(u, 0)[*, w,0e€H

with equality iff there is a scalar a € K such that

u = au.
If we apply 1} foru =z — ‘fc“cg e, v=d— |<|‘i”02> - ¢, where ¢ # 0 and
¢,d,z € H, then we deduce the inequality

(24)  [ll=1 llell® = [z, "] [Nl lell* = [(d; )]
2
> |(z,d) |le|l* = (z,¢) (. d)|
with equality iff there is a # € K such that

_9 (a9

2= T
el e

If in (2.4)) we choose z = z, ¢ = a and d = b, where a and x statisfy (i),
then we deduce

el [lall® 61 = [4a, ] > [(z,b) lal*]’

which is clearly equivalent to ([2.2]).

The equality holds in ([2.2)) iff

xzu(b—@n),
ol

where v € K satisfies the condition

1

,_ (a0 H i [uaw 181 — lfa, b>|2] :

- 2’ 2
all all

1= |lz]| = |v]

)

and the theorem is thus proved. §
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2.3. Applications for Sequences and Integrals. The following
particular cases hold.

1. Ifa, b, x € /?(K), K = C,R, where

7 (K) := {x = (Zi)jen » Z 2] < oo}

i=1

with a, b linearly independent and

ina_i =0, Z |z * = 1,
i=1 i=1
then
221 |ai‘2 Zfil |bZ| ’Zz 1 @ib; ‘
Do |az|
The equality holds in iff

e
[b X% Lk=1 DK ] ie{1,2,...}
ooy lakl?

with v € K such that

(2.5)

[NIES

(3202 laxl®)
[Zk 1’ak| > e 1’bk }Zk 1akbk‘ ]

REMARK 71. The case of equality in s obviously a particular
case of the above. We omit the details.

vl =

2. If f,g,h € L? (2, m), where § is an m—measurable space and

12 (9,m) = {f -k [ If@f ) < oo},

with f, g being linearly independent and

| r@T@m@ =0, [ h@)dm (@) =1,

|l @P @) fols @F o) - |Jo £ G gy (2|
Jolf @F dm (2

>

2

/Q h (2) g @)dm (z)
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The equality holds in ([2.6)) iff

h(z)=v [g (x) — fs}g“ Trzx(f)f (x)] for a.e. z€Q

and v € K with
(Jo If (@) dim ()
{I‘Q |f(z | dm (z fQ g (z ‘ dm (z ‘fQ dm (z)

V| =

2} 2
3. The Wagner Inequality in Inner Product Spaces

3.1. Introduction. In 1965, S.S. Wagner [19] (see also [14] or [15],
p. 85]) pointed out the following generalisation of Cauchy-Bunyakovsky-
Schwarz’s inequality for real numbers.

THEOREM 95. Let a = (ay,...,a,) and b = (by,...,b,) be two n-
tuples of real numbers. Then for any x € [0,1], one has the inequality

n 2
(Z apby + x - Z aibj>

k=1 1<i#j<n
k=1 1<i<j<n k=1 1<i<j<n

For z = 0, we recapture the Cauchy-Bunyakovsky-Schwarz’s in-
equality, i.e., (see for example [15] p. 84])

(g akbk> < ;ak Zb

with equality if and only if there exists a real number r such that
ap = rby for each k € {1,...,n}.

In this section we extend the above result for sequences of vectors
in real or complex inner product spaces.

3.2. The Results. Let (H;(-,-)) be an inner product space over
K, where K = R or K = C. The following result holds [3].
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THEOREM 96. Let x = (x1,...,2,) and'y = (y1,-..,Yn) be two
n-tuples of vectors in H. Then for any o € [0, 1] one has the inequality

. 2
(3.1) ZRe (Th, y) + - Z Re <xz'7yj>]
k=1 1<i#j<n
< [Z lzel® +2a- )" Re <xi=“’j>]
k=1 1<i<y<n
X [Z lyel® +2a- > Re (yz-,yj>]-
k=1 I<i<j<n

ProoF. Following the proof by P. Flor [14], we may consider the
function f: R — R, given by

n 2

> (ke — i)

(32)  FW=0-a):Y o —ml*+a

k=1 k=1
Then

n n 2
(33) f(t)=|(1=a)- D> llwel* +a- | > || |

k=1

k=1

+2

(1 —oz)-zn:Re(xk,yk> +a-Re <zn:xk,§n:yk>] t

k=1 k=1

n 2

Zyk

+ (=) >l + o
k=1 k=1

Observe that

n 2 n

(3.4) Soapll =D llal*+2- D Re(w;ay)
k=1 k=1 1<i<j<n

and
n 2 n

(3.5) Doukl| =D Il +2- > Re(yy).
k=1 k=1 1<i<j<n

Also

(3.6) Re <Z mk,Zyk> = ZRe (Try yr) + Z Re (x;,y;) -

k=1 1<i#j<n
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Using (3.3) — (3.6]) , we deduce that
(3.7) f(t)= [Z lzkl® +20- > Re <x,-,xj>] 2
k=1

1<i<j<n

+2 ZRG<$k,yk>+@' Z Re<$z‘;yj>]t
k=1 1<i#j<n
S 3 Re<yz-,yj>].
k=1 1<i<y<n

Since, by (3.2), f (t) > 0 for any t € R, it follows that the discriminant
of the quadratic function given by ({3.7)) is negative, which is clearly
equivalent with the desired inequality (3.1]). n

One may obtain an interesting inequality if x and y are assumed
to incorporate orthogonal vectors.

COROLLARY 68. Assume that {z;}i—1.. ., are orthogonal, i.e., x; L
xj for anyi,j € {1,...,n}, i # j; and {y;}i=1,..n are also orthogonal
in the real inner product space (H;(-,-)). Then

n 2 n n

2 2

- [zm,yma- S <xi,yj>] <3 ol S ol
k=1 k=1

acl0.1] | 3 1<i#j<n

3.3. Applications.

1. If we assume that H = C, with the inner product (z,y) =
x - g, then by (3.1)) we may deduce the following Wagner type
inequality for complex numbers

n

Z Re (akl_)k) +a- Z Re (aigj)]

k=1 1<i£j<n

< [Z lar|” + 20 - Z Re (ai(_zj)]
k=1

1<i<j<n

" [i|bkl2+2a' > Re(bid)

k=1 1<i<j<n

b

where a € [0,1] and a = (ay,...,a,), b= (b1,...,b,) € C".
2. Consider the Hilbert space

Ly (9, p) = {f 0= [If @ ) < oo},
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where 2 is a p-measurable space and p : Q — [0,00] is a
positive measure on €. Then for H = Ly (€2, 1) and since the
inner product generating the norm is given by

(f. ) = / £ (2) () dp (),

we get the inequality

[Z /Q Re (fx (z) g (v)) dp (z)

tar S0 / Re (f; (2) g; (x)) dy <x>]

1<i#j<n

< LZ/QW (@) dp (z) + 20+ ) /QRe (fi (x)ﬁ-(:c))du(:c)]

x [Z L@l int+20- 3 [ Reta@a ) <x>],

where f;,9; € Ly (S, )i € {1,...,n} and o € [0, 1].

4. A Monotoniciy Property of Bessel’s Inequality

Let X be a linear space over the real or complex number field K.
A mapping (-,-) : X x X — K is said to be a positive hermitian form
if the following conditions are satisfied:
(i) (ax+ Py, 2) =a(x,2) + B (y,2) for all z,y,z € X and o, 3 €
K,
(i) (y,2) = (z,y) for all 2,y € X;
(iii) (z,z) >0 for all z € X.

If ||z|| = (:U,x)% denotes the semi-norm associated to this form
and (e;);c; is an orthonormal family of vectors in X, that is, (e;,e;) =
dij (i,5 € I), then one has [20]:

(4.1) z)* > Z ((z,e;)[> for all z € X,

il

which is well known in the literature as Bessel’s inequality.
The main aim of the section is to point out an improvement for this
result as follows [4].

THEOREM 97. Let X be a linear space and (-,-),,(-,-), two her-
mitian forms on X such that ||-||, is greater than or equal to ||-||,, that
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is, ||z]|y = ||z||, for all x € X. Assume that (e;),c; is an orthonormal
family in (X;(-,-),) and (fj)jej is an orthonormal family in (X; (-, -),)
such that for any i € I there exists a finite K C J such that

(4.2) e=Y aif;, ;€K (jEK),
jEK
then one has the inequality:
2
(4.3) llzll =Y (@ e)s* = 27 =D [, fi),|" =0, for allw € X.
iel jeJ
In order to prove this, we require the following lemma.

LEMMA 13. Let X be a linear space endowed with a positive her-
mitian form (-,-) and (gx), k € {1,...,n} be an orthonormal family in

n 2 n
r=3 Mgel| = P = S (g 2 0,
k=1 k=1

forall\y e K, ke {l...,n} and z € X.

The proof follows by mathematical induction.

PRrROOF OF THEOREM [97 Let H be a finite subset of I. Since |||,
is greater than ||-||;, we have:

Izl =D I e = |[z = > (w en)y e

icH icH 9

> x—Z(x,ei)Qei , veX.

i€H 1
Since, by (4.2), we may state that for any i € H there exists a finite

K C J with
€; = Z(eiafj)l fj7

jEK

we have, for all x € X

x — Z (x,€:)q €

i€H

=z =D (we)y > (e f5) f

1 ieH jeEK

1

= ||z — Z (Z (@, €:)y 6i7fj> fi

jeK \ieH

2

1
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Applying Lemma we can conclude that

=Y N

jEK

2
, r € X,

jEK

2
> Jlaly = Y [(2 i),
1

where
/\j = (Z ([E, ei)2 €, f]> - K, (j & K) .
i€H 1
Consequently, we have
2
lzll5 = Y 1, esl* = lllls = D [(2, £,
icH jeK
2
> |l = Y |, £,
jeJ
for all x € X and H a finite subset of I, from which (4.3)) results. B

COROLLARY 69. Let [|-||;, |||l : X — Ry be as above. Then for all
x,y € X, we have the inequality:

2 2 2 2 2 2
(4.4) 2 lly Nylly =[Gz w),™ = 2y lylly = 1, ), 7 = 0,

which is an improvement of the well known Cauchy-Schwarz inequality.
REMARK 72. For a different proof of {4.4), see also [10] or [11].

Now, we will give some natural applications of the above theorem.

(1) Let (X;(-,-)) be an inner product space and (e;),., an or-
thonormal family in X. Assume that A : X — X is a linear op-
erator such that ||Az| < ||z| for all z € X and (Ae;, Ae;) = d;;
for all ¢, 5 € I. Then one has the inequality

l2)* = I, e[ > [ Az|* = |(Az, Aey)[?
iel icl
>0, for all z € X.

(2) If A: X — X is such that ||Az| > ||z|| for all z € X, then,
with the previous assumptions, we also have

0 < flfl* = ) I,
i€l
< || Az - Z |(Az, Ae,)|?, for all z € X.

il
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(3) Suppose that A : X — X is a symmetric positive definite
operator with (Az,z) > ||z||* for all # € X. If (e;),.; is an
orthonormal family in X such that (Ae;, Ae;) = §;; for all
1,7 € I, then one has the inequality
0§||:E||2—Z|(x,e, (Az, x) Z| Az, e)|”,

i€l iel
for any x € X.

5. Other Bombieri Type Inequalities

5.1. Introduction. In 1971, E. Bombieri [I] gave the following
generalisation of Bessel’s inequality:

(5.1 Il < ol ma {D(%,ym},

where x, 4y, ..., y, are vectors in the inner product space (H; (-,-)).
It is obvious that if (y;),c,.,, = (€;),<.<, , Where (&;),.;., are or-
thornormal vectors in H, i.e., (e;,e;) = ;5 (i,j = 1,...,n), where §;;
is the Kronecker delta, then provides Bessel’s inequality
n

dolze)l’ <z, e H.
i=1

In this section we point out some Bombieri type inequalities that
complement the results obtained in Chapter [4]

5.2. The Results. The following lemma, which is of interest in
itself, holds [7].

LEMMA 14. Let z,...,z, € H and aq,...,a, € K. Then one has
the inequalities:

-~

Iax el 307 2y (260 2))1 5
1
) 1
L S (S )l
where p > 1, %+%:17
2
| (i lail)™ max [(zi, )]
2
(ma ol (S 1)
2 2
< (i lea”)» Q2 Nzl e
- where p>1,%+%:1;
n 2 2
| (i fedl)” max flif]”.
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PROOF. We observe that

n 2 n n n n

s = (z z) S i ()
i=1 i=1 j=1 i=1 j=1

n n

ZZaia—n(z@-,zj)r‘

i=1 j=1

<D0 laillagl |z, )| = M

i=1 j=1

Firstly, we have

M < max ol loyl} Y Iz 5)

i,j=1
= lrgza<>;|ozz pRERN]
ij—=1

Secondly, by the Holder inequality for double sums, we obtain

i 1
M < Z (Jeui |evs]) ] (Z (=i, 2) )
Li,j=1 =1
- Z|ai|p2|aj|”) (Zl(zz-,zmq)
i=1 j =1
1
() ()’
i=1 t,j=1

where p > 1, %—l—é:l.
Finally, we have

VS mas (G| D loul oyl = (Z |az) max |(z,5)

1,j=1

and the first part of the lemma is proved.
The second part is obvious on taking into account, by Schwarz’s
inequality in H, that we have

|Gz, 2)] < llzall 12511

for any i,j € {1,...,n}. We omit the details. 1
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COROLLARY 70. With the assumptions in Lemma[I4, one has

< ol (Z |<zi,zj>|2)

ij=1
n n

2 2

< il
i=1 i=1

The proof follows by Lemma [14] on choosing p = ¢ = 2.

Note also that provides a refinement of the well known Cauchy-
Bunyakovsky-Schwarz inequality for sequences of vectors in inner prod-
uct spaces, namely

(5.2)

n 2 n n
>zl < il 3l
i=1 i=1 i=1

The following lemma also holds [7].

LEmMmA 15. Let x,y1,...,yn € H and ¢y,...,c, € K. Then one
has the inequalities:

> cila, )
=1

(5.3)

2
52%};‘61‘ Zzg 1 ‘(yhy])’
1
n 2 q
i 3 (i) (0 e ) Q)
< || I
where p>1, = +,=
n 2 .
\ (2 i lail) 12,?§n|(y“yj)|’
n 2,
max el (i will)”
2 2
< ||x||2 (Zi:l ’Ci’p)p (Z’L 1 Hyl” )q
= where p > 1, ——i—E:l;
| (e

Proor. We have, by Schwarz’s inequality in the inner product

(H; ('7 )) 5 that
n 2 n 2 n 2
S (o) (z—y) < ol [ S
=1 =1 1=1
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Now, applying Lemma (14| for o; = ¢, z; = y; (i =1,...,n), the in-
equality ([5.3) is proved. &
COROLLARY 71. With the assumptions in Lemma[l5, one has

2 n n 2
2 2 2
<l S (z ) )
=1

n

Zci (z,9:)

i=1

(5.4)

i,j=1
n n
2 2 2
<D leal® > llwll
i=1 i=1

The proof follows by Lemma [15], on choosing p = ¢ = 2.
REMARK 73. The inequality was firstly obtained in [12], In-

equality (7)].
The following theorem incorporating three Bombieri type inequali-

ties holds [7].
THEOREM 98. Let x,yq, ...

> lGww)f

,Un € H. Then one has the inequalities:

( max |(z, ;)| <Z ij= 1’(y“yj)|) !

1<i<n
1
1 2q
<l x 4 Sl (S w)l?)
where p > 1, %—1—%:1;

=

2 i [ w)| max [(yi, y))|

1<i,5<

..,n) in we deduce

PRrROOF. Choosing ¢; = (z,y;) (i = 1,.

(Z |<x,yz~>r2)

[ max (2, y:)[” <ZZJ':1 |(yi’yj)|> !

1<i<n

(i ) (S w)l?)

< || %
where p > 1, l+l:1;

Q=

(i Iy max (v y)]s

=1 1<i,5<

which, by taking the square root, is clearly equivalent to (5.5)). &
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REMARK 74. If (yi)1<i<, = (€i)1<icy » where (€:),;c,, are orthornor-
mal vectors in H, then by we deduce

( Vn max |(z,e;)];

1<i<n
61 S l@e)f < flalf { "7 ina (@ e)l”)
=1

where p > 1,

[ i (el

Ifin (5.6 we take p = ¢ = 2, then we obtain the following inequality
which was formulated in [12] p. 81].

COROLLARY 72. With the assumptions in Theorem[98, we have:
1

53 > Iyl < (Z |<yi,yj>|2) .

REMARK 75. Observe, that by the monotonicity of power means,
we may write

(Sl (M) l<p<o,

n n

3

Taking the square in both sides, one has

(22;1 |<x,yz->\p)5 -2 @)l

n - n ’

quing

(5.9 (Z r<x,yz->rp>p <03 [ w)l”

Using and the second inequality in we may deduce the fol-

lowing result

610) Yl <0 al? (Z |<yz-,yj>|q) ;

ij=1
forl<p<2, %—F%:l.
Note that for p =2 (¢ = 2) we recapture (5.8).

REMARK 76. Let us compare Bombieri’s result

2 2
BI) D lwal < el? {Zluyi,ym}
1= 1=
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with our general result .
To do that, denote

M, = lrgsgi{ZJ Yis Uj) }
J

and

1
T ! 1 1
= 1<Z|(yuyj)lq> : 1<p§2,5+§=1.

ij=1
Consider the inner product space H = R, (z,y) = z-y, n = 2 and
y1=a >0,y =b>0. Then
M; = max {a® + ab,ab+ "} = (a + b) max {a, b},
2(p—1)
) 2(p-1)

My =2:"" (aq+bq)%: p 1<ap%1+bp%1) "o l<p<2

Assume that a = 1, b € [0,1], p € (1,2]. Utilizing Maple 6, one may
easily see by plotting the function

2(p—1)

Fb,p) =My — M, =27 (1+bp%1) [

that it has positive and negative values in the boz [0, 1] x [1,2], showing
that the inequalities and cannot be compared. This means
that one is not always better than the other.

6. Some Pre-Griiss Inequalities

6.1. Introduction. Let f, g be two functions defined and inte-
grable on [a,b]. Assume that

p<f(z)<® and y<g(z)<T

for each = € [a, b], where ¢, ®, 7, I are given real constants. Then we
have the following inequality which is well known in the literature as

the Griiss inequality ([15, pp. 296])
L@

‘ /f d:z:——/f dx

b—a
< =D - |I'=79].
_4| ol [I' =1

In this inequality, G. Griiss has proven that the constant ;11 is the best
possible in the sense that it cannot be replaced by a smaller one, and
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this is achieved when
f@ﬁzg@ﬁZ%m(x—&;b>-

Recently, S.S. Dragomir proved the following Griiss’ type inequality
in real or complex inner product spaces [2].

THEOREM 99. Let (H, (-, -)) be an inner product space over K (K = R, C)
and e € H, |e|]| =1. If ¢,7,®,T are real or complex numbers and x,y
are vectors in H such that the conditions

Re (Pe —z,x —pe) >0 and Re(l'e —xz,x —7e) >0
hold, then we have the inequality

61) e~ ) fen) < 12—l D7l

The constant % 1s best possible in sense that it cannot be replaced by a
smaller constant.

In [8], by using the following lemmas

LEMMA 16. Let z,e € H with |le]] =1 and 6, A € K with § # A.
Then

Re (Ae —z,z —de) >0
if and only iof
_0+A

X

1
< —|A =4].
e_2| J|

and

LEMMA 17. Let x,e € H with |e|]| = 1. Then one has the following
representation

0 < 2l = I{z, e)* = nf [l — N>

the author gave an alternative proof for (6.1]) and also obtained the
following refinement of it, namely

THEOREM 100. Let (H,({-,-)) be an inner product space over K
(K=R,C) and e € H,|le|]| = 1. If p,7,D,T" are real or complex num-
bers and x,y are vectors in H such that either the conditions

Re (®e — 2,2 — pe) > 0, Re(T'e —y,y —ve) >0,
or, equivalently,

‘ o+
xr — - e

1 v+T
e BT LRI TR

2

1
<l —
5 _2\ v,
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hold, then we have the inequality
[(z,y) — (z,€) (e, 9)|
< 11® gl T =] — [Re {@e — .7 — pe)]

1
<(=1®—¢| T —7]).
< (310l -11)

The constant i 1s best possible.

N
N

[Re(T'e —y,y — ve)]

Further, as a generalization for orthonormal families of vectors in
inner product spaces, S.S. Dragomir proved, in [5], the following reverse
of Bessel’s inequality:

THEOREM 101. Let {e;}, i € I be a family of orthonormal vectors
in H, F a finite part of I, ¢;, ®; € K, i € F and x a vector in H such
that either the condition

Re <Z e, —x, v — ngiei> >0,

i€l icF
or, equivalently,

el

1

< % <Z |©; — %“2> )

el

[

holds, then we have the following reverse of Bessel’s inequality

(6:2)  lal® =Y I, e

el

S NIETIEy

ieF i€l

2
0, + @
Ty e

The constant % 18 best possible.

The corresponding Griiss type inequality is embodied in the follow-
ing theorem:

THEOREM 102. Let {e;};.; be a family of orthornormal vectors in
H, F a finite part of I, ¢;,v;,®;, 1 € R (i € F), and z,y € H. If either

Re <i e, —x,x — i¢i€i> >0,
i=1

=1

Re <i Fiei —Yy—- i7262> 2 07
i=1 =1
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or, equivalently,

3 2] < (T

1€EF

1

Ti+7 1 2\’

?J—Z 5 € §<Z|Fz’—%|>;
i€l iEF

hold true, then

IA

IN

n

< [z,y) = D (w,e) (eany)

=1

) Br)

_Z<b+¢ ey [FE2

iEF

<i(Em-or) - (Somr)

The constant % 18 best possible in the sense that it cannot be replaced
by a smaller constant.

»&IH

<y> €i>

2

The main aim here is to provide some similar inequalities which,
giving refinements of the usual Griiss’ inequality, are known in the
literature as pre-Griiss type inequalities. Applications for Lebesgue
integrals in general measure spaces are also given.

6.2. Pre-Griiss Inequalities in Inner Product Spaces. We
start with the following result [13]:

THEOREM 103. Let (H,{-,-)) be an inner product space over K,
(K=R,C) and e € H, |le|]| = 1. If ¢, ® are real or complexr numbers
and x,y are vectors in H such that either the condition

Re (Pe — z, 2 — pe) >0,
or, equivalently,
o+ 1
— < —|P —

holds true, then we have the inequalities

64  low)— (@6 e n)l < 5 12— ol ol ~ iy, o)

(6.3)
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and

(65) |<I7y> - <$, €> <€7y>’
1 1
< 512 = ol llyll = (Re (Pe —z,2 — pe))* - [y, e)].
PROOF. It is obvious that:

<$,y> - <l’,€> <67y> = <I - <,I‘, €> €Y — <y7 €> €> :
Using Schwarz’s inequality in inner product spaces |(u, v)| < ||ul| - [|v]|
for the vectors x — (z,e) e and y — (y, e) e, we deduce:

(6.6) Iz, y) — (z.e) (e, m)* < (Il = ¢z, )*) - (Iyll” = [y, &)

Now, the inequality (6.4) is a simple consequence of (6.1]) for x =y, or
of Lemma |17] and (6.3]).

Since (see for instance [2]),

6.7)  l* = Kz, &)
= Re (¢ —(z, €)) - ((e, 1) — @)) — Re (Pe — 1z, x — pe),

then making use of the elementary inequality 4 Re (ab) < |a + b|* with
a,b € K (K=R,C), we can state that

68)  Re((®— (x,)- (e, 1)~ 7)) <
Using and ((6.8) we have
09) ol ~ 1o O < (510 = o1} = ((Re (e - o,2 - ge))

Taking into account the inequalities and , we get that

| — .

AN

N

)

|<$ - <$? €> €Y — <y> 6> 6>|2

1 2 1\2 2 2
<((5le=¢l) = (Re(@e =z, =) )-(Il - 1w )).
Finally, using the elementary inequality for positive real numbers:
(6.10) (m*—n?) - (p* — ¢*) < (mp —nq)*,

we have:

((% [ 90|)2 - ((Re (Pe -z, x — pe))

1
< (310l ol = (Re e — 2, o)

[NIES

)2) (ol = 1w, )

iy, e>|)2,

N[
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giving the desired inequality (6.5]). B

A similar version for Bessel’s inequality is incorporated in the fol-
lowing theorem [13]:

THEOREM 104. Let {e;},.;, be a family of orthonormal vectors in
H, F a finite part of I, p,;, ®; € K, i € F and x,y vectors in H such
that either the condition

Re <Z bie; —x, v — ngiei> >0,
ieF i€F
or, equivalently,

el

=

< % (Z |®; — soi|2>

el

holds. Then we have inequalities

610 |e) =3 o) feud
<3 (Z @ - m?)é \/Ily|!2 Xl i
and
612) (a5} = 3 o) () < - (2;@ —%2); |
- (Z; S e ) (;Ky, ei>|2)5.

PROOF. It is obvious (see for example [5]) that:
<l’, y> - Z <.T, €i> <ei7 y> - <[E - Z <.T7 €i> €i, Y — Z <y7 €i> ei> .
i€F i€l i€l
Using Schwarz’s inequality in inner product spaces, we have:

<I - Z (T, ei) e, y— Z (y, e:) ei>

i€EF i€F

2

(6.13)
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x—Z(x, €i) € x—Z(y, €i) €

i€EF i€F

: (w -3 lie, em?) - (w -3 I, ei>|2> .

In a similar manner to the one in the proof of Theorem we may
conclude that ([6.11]) holds true.

Now, using . ) and ( - we also have:
2
|<I - Z <Jf7 ei> €i, Y — Z <y, ei> €i>

el i€EF

2 2

<

0, + P

<
o 2

— (z, €;)

N| —

1
2)2

X <||y||2 - Z [y, 6i>|2) :

Finally, utilizing the elementary inequality (6.10), we have

619) (5 (Z@i—sof) (Z prd ez>)

ieF iEF

x (||y|\2—Z|<y, ez->|2) < %(Z@i—m?) Nyl
—(Z A ) Sl el |

; 2 ;
i€EF iEF

which gives the desired result (6.12). 1

6.3. Applications for Integrals. Let ({2, X, u) be a measure
space consisting of a set €2, > a o—algebra of parts and p a countably
additive and positive measure on 3 with values in R U {oo}. Denote
by L? (Q,K) the Hilbert space of all real or complex valued functions
f defined on €2 and 2-integrable on €2, i. e.

/Q\f(8)|2du(8) <0

The following proposition holds [13].
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PROPOSITION 33. If f,g,h € L? (Q,K) and p, ® € K are such that
[y I (8)[?dp(s) =1 and, either

(6.15) / Re (@4 (s) — £ (5)) (£ () =ph () du (s) = 0,
or, equivalently,

(I

holds, then we have the inequalities

<I>+<ph

f(s) = —5—h(s) du(5)> <SP -l

$)3(s) du (s /f Vo (s) dpe (s /()g()du(S)

1
S [l J(/g )P dp (s
and

|1 9= [ £ R duls) [ 16)a ) duls
%ICI’ ol - (/Ig ) dp (s )

_ (/Q Re ((®h (s) = f (5)) (h(s) f (s) = ¢h (s))) dpe (8>>
/Qh(s)g(s) du (s)] .

PROOF. The proof follows by Theorem[103|on choosing H = L? (), K)
with the inner product

<f,g>:/f<s>g< ) dpu (3)
Q

REMARK 77. We observe that a sufficient condition for to
hold 1is:

(6.16) Re (®h(s) — f(s)) (f (s) =@h(s)) >0,
for p—a.e. s €.

N}

NI

X
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If the functions are real-valued, then, for ® and ¢ real numbers, a
sufficient condition for to hold is

®h(s) = f(s) = ph(s)

for p—a.e. s € Q.
In this way we can see the close connection that exists between the
classical Griiss inequality and the results obtained above.

Now, consider the family {f;},.; of functions in L? (22, K) with the
properties that

/Q £ () T () dp(s) = b5, ijel

where 6,5 is 0 if ¢ # j and d;; = 1 if i = 5. {fi},., is an orthornormal
family in L? (Q,K).

The following proposition holds [13].

PROPOSITION 34. Let {f;},.; be an orthornormal family of func-
tions in L? (Q,K), F a finite subset of I, ¢;,®; € K (i € F) and
f e L*(Q,K), such that either

o [rf(Snac0-10) o g7 w0z

el
or, equivalently,

J

holds. Then we have the inequalities

)~ T ()

el

S%(;@z ¢z|2>2
x ( Lo dus) = 3| [ 907Gt )
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and
[ 56366 =% [ 1OT @ duts) [ £ 5
<! (Z 3 —W) ([loFine)’
- (Z 2 [T du )

/Q £ ()T () ds (5)

1
2) 2
i€F

The proof is obvious by Theorem [103] and we omit the details.

(s

REMARK 78. In the real case, we observe that a sufficient condition

for to hold is
Z@ifi () > f(s)> Z%‘fi (s)

i€l i€F
for p—a.e. s € Q.
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