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Preface

The purpose of this book, that can be seen as a continuation of the
previous one entitled ” Advances on Inequalities of the Schwarz, Griiss
and Bessel Type in Inner Product Spaces” (Nova Science Publishers,
NY, 2005), is to give a comprehensive introduction to other classes of
inequalities in Inner Product Spaces that have important applications
in various topics of Contemporary Mathematics such as: Linear Oper-
ators Theory, Partial Differential Equations, Nonlinear Analysis, Ap-
proximation Theory, Optimization Theory, Numerical Analysis, Prob-
ability Theory, Statistics and other fields.

The monograph is intended for use by both researchers in various
fields of Mathematical Inequalities, domains which have grown expo-
nentially in the last decade, as well as by postgraduate students and
scientists applying inequalities in their specific areas.

The aim of Chapter [I]is to present some fundamental analytic prop-
erties concerning Hermitian forms defined on real or complex linear
spaces. The basic inequalities as well as various properties of superad-
ditivity and monotonicity for the diverse functionals that can be natu-
rally associated with the quantities involved in the Schwarz inequality
are given. Applications for orthonormal families, Gram determinants,
linear operators defined on Hilbert spaces and sequences of vectors are
also pointed out.

In Chapter [2 classical and recent refinements and reverse inequal-
ities for the Schwarz and the triangle inequalities are presented. Fur-
ther on, the inequalities obtained by Buzano, Richards, Precupanu
and Moore and their extensions and generalizations for orthonormal
families of vectors in both real and complex inner product spaces are
outlined. Recent results concerning the classical refinement of Schwarz
inequality due to Kurepa for the complexification of real inner product
spaces are also reviewed. Various applications for integral inequalities
including a version of Heisenberg inequality for vector valued functions
in Hilbert spaces are provided as well.

The aim of Chapter |3| is to survey various recent reverses for the
generalised triangle inequality in both its simple form, that are closely
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related to the Diaz-Metcalf results, or in the equivalent quadratic form
that maybe be of interest in the Geometry of Inner product Spaces.
Applications for vector valued integral inequalities and for complex
numbers are given as well.

Further on, in Chapter [4 some recent reverses of the continuous tri-
angle inequality for Bochner integrable functions with values in Hilbert
spaces and defined on a compact interval [a,b] C R are surveyed. Ap-
plications for Lebesgue integrable complex-valued functions that gen-
eralise and extend the classical result of Karamata are provided as well.

In Chapter [5| some reverses of the Cauchy-Buniakovsky-Schwarz
vector-valued integral inequalities under various assumptions of bound-
edness for the functions involved are given. Natural applications for the
Heisenberg inequality for vector-valued functions in Hilbert spaces are
also provided.

The last chapter, Chapter [0 is a potpourri of other inequalities
in inner product spaces. The aim of the first section is to point out
some upper bounds for the distance d (x, M) from a vector = to a finite
dimensional subspace M in terms of the linearly independent vectors
{z1,...,2,} that span M. As a by-product of this endeavour, some
refinements of the generalisations for Bessel’s inequality due to several
authors including: Boas, Bellman and Bombieri are obtained. Refine-
ments for the well known Hadamard’s inequality for Gram determi-
nants are also derived.

In the second and third sections of this last chapter, several reverses
for the Cauchy-Bunyakovsky-Schwarz (CBS) inequality for sequences
of vectors in Hilbert spaces are obtained. Applications for bounding
the distance to a finite-dimensional subspace and in reversing the gen-
eralised triangle inequality are also given.

For the sake of completeness, all the results presented are com-
pletely proved and the original references where they have been firstly
obtained are mentioned. The chapters are relatively independent and
can be read separately.

The Author,
March, 2005.



CHAPTER 1

Inequalities for Hermitian Forms

1.1. Introduction

Let K be the field of real or complex numbers, i.e., K = R or C and
X be a linear space over K.

DEFINITION 1. A functional (-,-) : X x X — K is said to be a
Hermatian form on X if

(H1) (ax 4+ by, z) =a(x,z) + b(y, 2) for a,b € K and z,y,z € X;
(H2) (2,4) = (4,7) for all 2,y € X,

The functional (-, -) is said to be positive semi-definite on a subspace
Y of X if

(H3) (y,y) > 0 for every y € Y,
and positive definite on Y if it is positive semi-definite on Y and
(H4) (y,y) =0,y € Y implies y = 0.

The functional (-, -) is said to be definite on Y provided that either
(+,) or — (-, -) is positive semi-definite on Y.

When a Hermitian functional (-, -) is positive-definite on the whole
space X, then, as usual, we will call it an inner product on X and will
denote it by (-, ).

The aim of this chapter is to present some fundamental analytic
properties concerning Hermitian forms defined on real or complex linear
spaces. The basic inequalities as well as various properties of superad-
ditivity and monotonicity for diverse functionals that can be naturally
associated with the quantities involved in the Schwarz inequality are
given. Applications for orthonormal families, Gram determinants, lin-
ear operators defined on Hilbert spaces and sequences of vectors are
also pointed out. The results are completely proved and the original
references where they have been firstly obtained are mentioned.

1



2 1. INEQUALITIES FOR HERMITIAN FORMS

1.2. Hermitian Forms, Fundamental Properties

1.2.1. Schwarz’s Inequality. We use the following notations re-
lated to a given Hermitian form (-,-) on X :

Xo :={z € X|(z,x) =0},
K :={x € X|(z,z) <0}
and, for a given z € X,
X® ={zrecX|(x,2) =0} and L(z):={azla € K}.
The following fundamental facts concerning Hermitian forms hold
[51:
THEOREM 1 (Kurepa, 1968). Let X and (-,-) be as above.
(1) Ife € X is such that (e, e) # 0, then we have the decomposition
(1.1) X =L(e) EBXQ
where @ denotes the direct sum of the linear subspaces X ©)
and L (e) ;
(2) If the functional (-,-) is positive semi-definite on X' for at
least one e € K, then (-,-) is positive semi-definite on XF) for
each [ € K;
(3) The functional (-,-) is positive semi-definite on X(©) with e €
K if and only if the inequality

(1.2) (z,y)]* > (z,2) (y,y)

holds for all x € K and all y € X;
(4) The functional (-,-) is semi-definite on X if and only if the
Schwarz’s inequality

(1.3) (@9 < (2,2) (y,9)

holds for all x,y € X;

(5) The case of equality holds in for z,y € X and in (1.9),
for x € K, y € X, respectively; if and only if there exists a
scalar a € K such that

y—az € X(()w) = XoN X,

Proor. We follow the argument in [5].
If (e,e) # 0, then the element
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has the property that (x,e) = 0, i.e., z € X(©). This proves that X is
a sum of the subspaces L (¢) and X®). The fact that the sum is direct
is obvious.

Suppose that (e,e) # 0 and that (-,-) is positive semi-definite on
X. Then for each y € X we have y = ae + z with a € K and z € X(©),
from where we get

(1.4) (e, )" = (e,€) (y,y) = — (e,€) (2,2) -
From (1.4) we get the inequality , with x = e, in the case that
(e,e) > 0 and in the case that (e, e) < 0. In addition to this, from
(1.4) we observe that the case of equality holds in ((1.2) or in if
and only if (z,2) =0, i.e., if and only if y — ae € Xée .

Conversely, if holds for all x,y € X, then (z,z) has the same
sign over the whole of X, i.e., (+,+) is semi-definite on X. In the same
manner, from , for y € X© we get (e,e)-(y,y) < 0, which implies
(y,y) >0, ie., (-,-) is positive semi-definite on X (©.

Now, suppose that (-, -) is positive semi-definite on X (©) for at least
one e € K. Let us prove that (-, -) is positive semi-definite on X /) for
each f € K.

For a given f € K, consider the vector

(e f)
ik

(1.5) e =e—

Now,

PN () _(676)(f7f)_‘(67f)|2
(6,6)—(6,6)— (f,f) )
and together with

(e, 9)]* = (e ¢) (yy) forany ye X
imply (€/,¢e") > 0.
There are two cases to be considered: (¢,¢’) > 0 and (¢/,¢’) = 0.
If (¢/,€') > 0, then for any x € X) the vector

(z,¢)

(¢, ¢)

(elaf):()

=z —ae with a=

satisfies the conditions
(2';e)=0 and (2',f)=0
which implies
e X9 and (z,2)=|a]’(€,€)+ («',2') > 0.

Therefore (-, -) is a positive semi-definite functional on X ),
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From the parallelogram identity:
(1.6) (z+yz+y+@—yz—y) =2[x2)+Ey], zyecX

we conclude that the set Xée) = Xy N X is a linear subspace of X.
Since

A7) @y =gla ety +@-pa-y), wyeX

in the case of real spaces, and

(1.8) (z,9) Zi[($+y,x+y)+(x—y,x—y)]

(4
+ -

4

in the case of complex spaces, hence (z,y) = 0 provided that = and y
belong to Xée).

If (¢/,€') =0, then (¢/,e) = (¢/,¢') = 0 and then we can conclude

that ¢’ € Xée). Also, since (€¢/,¢') = 0 implies (e, f) # 0, hence we have

(f, f)
(e, f)

f=ble—¢) with b=

Now write
X0 =X
where XJ(f) is any direct complement of Xée) in the space X If y # 0,
then y € X(f) implies (y,y) > 0. For such a vector y, the vector
p_ o (dy) y
(v, y)

is in X(© and therefore (y',y) > 0.
On the other hand

(v, y) = () =~

Hence y € Xf) implies that (¢/,y) =0, i.e.,

_ (e f)
<€7y) - (f;f) (fay)>

which together with y € X leads to (f,y) = 0. Thus y € Xf) implies
Y € X(f)

On the other hand z € Xée) and f = b(e—¢€) imply (f,x) =
—b (e, x) = 0 due to the fact that €,z € Xée).

Hence z € Xée) implies (z, f) =0, i.e., v € X,
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From X" C X0 and X!¥ € XU we get X© C XU, Since
e¢d X and X =Le)@PX e), we deduce X = X and then (+,°)
is positive semi-definite on X ).

The theorem is completely proved. &

In the case of complex linear spaces we may state the following
result as well [5]:

THEOREM 2 (Kurepa, 1968). Let X be a complez linear space and
(+,+) a hermitian functional on X.
(1) The functional (-,-) is semi-definite on X if and only if there
exists at least one vector e € X with (e, e) # 0 such that

(1.9) [Re (e,9))” < (e,e) (3.1)
for ally € X;
(2) There is no nonzero Hermitian functional (-,-) such that the
imequality
(1.10) [Re(e.y)]" = (e.e) (y.9) . (ee) #0,

holds for all y € X and for an e € X.

Proor. We follow the proof in [5].
Let o and 7 be real numbers and z € X a given vector. For
y:= (o +it) e+ x we get

(1.11) [Re (e,y)]” — (e.e) (y,y) =7 (e,e)’ — (6> e) (z,2).

If (+,-) is semi-definite on X, then 1)) implies (1
Conversely, if . holds for all Yy € X and for at least one e € X,

then (-,-) is semi-definite on X, But and - for 7 = 0 lead
to — (e, e) (z,z) < 0 from Wthh it follows that (e,e) and (x,z) are of
the same sign so that (-,-) is semi-definite on X.

Suppose that (-,:) # 0 and that holds. We can assume that
(e,e) < 0. Then implies that (-,-) is positive semi-definite on
X On the other hand, if 7 is such that

2 _(x,ac)
T > (e, e)’

then (1.11)) leads to [Re (e,y)]* < (e, e) (y,¥), contradicting (1.10).

Hence, if a Hermitian functional (-,-) is not semi-definite and if
—(e,€) # 0, then the function y — [Re(e,y)]” — (e,€) (y,y) takes
both positive and negative values.

The theorem is completely proved. &
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1.2.2. Schwarz’s Inequality for the Complexification of a
Real Space. Let X be a real linear space. The complezification X¢
of X is defined as a complex linear space X x X of all ordered pairs
{z,y} (z,y € X) endowed with the operations:

{r.y} +{z". v} ={z+ 2",y + '},
(0 + ZT) ’ {I’,y} = {O'ZE —TY,00 + Ty} )
where z,y,2',y' € X and 0,7 € R (see for instance [6]).

If z = {z,y}, then we can define the conjugate vector z of z by
z .= {x, —y} . Similarly, with the scalar case, we denote

Rez ={z,0} and Imz:={0,y}.

Formally, we can write 2 = z + iy = Rez+¢Imz and z = 2 — 1y =
Rez —i¢Imz.

Now, let (-,-) be a Hermitian functional on X. We may define on
the complexification X¢ of X, the complezification of (-, -), denoted by
(+,-)c and defined by:

(@ +iy, 2’ +iy)c == (z,2) + () +illy, 2) = (z,9)],
for x,y, 2",y € X.
The following result may be stated [5]:

THEOREM 3 (Kurepa, 1968). Let X, X¢, (-,-) and (-,-)¢ be as

above. An inequality of type and holds for the functional
(-,-)c in the space Xc if and only if the same type of inequality holds
for the functional (-,-) in the space X.

PRroOOF. We follow the proof in [5].

Firstly, observe that (-,-) is semi-definite if and only if (-,-)q is
semi-definite.

Now, suppose that e € X is such that

(e, 9)|* = (e,e) (y,y), (e,€) <O
for all y € X. Then for z,y € X we have
(e, +iy)e|* = [(e, 2)]” + [(e, )]
> (e,e) [(z,2) + (4, )]
= (e,e) (x + iy, x4+ iy)c .
Hence, if for the functional (-, ) on X an inequality of type holds,
then the same type of inequality holds in X¢ for the corresponding

functional (-, )¢ .
Conversely, suppose that e, f € X are such that
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holds for all z,y € X and that

(1.13) (e+ifietif)c=(e.e)+(f, f) <O
If e = af with a real number a, then ([1.13|) implies that (f, f) <0
and ((1.12) for y = 0 leads to

[(foa))* = (f. f) (z,2),

for all x € X. Hence, in this case, we have an inequality of type
for the functional (-,-) in X.

Suppose that e and g are linearly independent and by Y = L (e, f)
let us denote the subspace of X consisting of all linear combinations of
e and f. On Y we define a hermitian functional D by setting D (z,y) =
(x,y) for z,y € Y. Let D¢ be the complexification of D. Then (1.12))
implies:

(1.14)  |D¢ (e +if,x +iy)|?
> Dc(e+if,e+if)De(v+iy,x+1iy), zyeX

and implies
(1.15) D(e,e)+D(f,f) <O.
Further, consider in Y a base consisting of the two vectors {uy, us} on
which D is diagonal, i.e., D satisfies
D (z,y) = Miz1y1 + AaTaya,

where

T = XUy F TaUz, Y = Yius + Yala,
and

A =D (up,uq), Ae= D (ug,uz).

Since for the functional D we have the relations and , we
conclude that D is not a semi-definite functional on Y. Hence A;-\y < 0,
so we can take A\; < 0 and Ay > 0.

Set

X" = {a](z,e) = (z,f) =0, z € X}.
Obviously, (x,e) = (z, f) = 0 if and only if (z1u1) = (zoug) = 0.
Now, if y € X, then the vector

(1.16) N 7Y (y, us)

- U
(u17u1> ! (U2,U2) ?

belongs to X*. From this it follows that
X=L( fEPxt.
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Now, replacing in ((1.12) the vector x + iy with z € X, we get from

that
[(e;e) + (f, /)] (2, 2) <0,

which, together with (1.13)) leads to (z, z) > 0. Therefore the functional
(+,-) is positive semi-definite on X+,

Now, since any y € X is of the form ([1.16]), hence for y € X®1) we
get

2
[(yv UQ)}

Ay
which is a nonnegative number. Thus, (+,-) is positive semi-definite on
the space X ). Since (u;,u1) < 0 we have [(u1,9)]”> > (u1,u1) (y,%)

for any y € X and the theorem is completely proved.

(v, 9) = (z,2) +

1.3. Superadditivity and Monotonicity

1.3.1. The Convex Cone of Nonnegative Hermitian Forms.
Let X be a linear space over the real or complex number field K and
let us denote by H (X)) the class of all positive semi-definite Hermitian
forms on X, or, for simplicity, nonnegative forms on X, i.e., the map-
ping (+,-) : X x X — K belongs to H (X) if it satisfies the conditions

(i) (x,z) >0 for all z in X;
()(ozx—i—ﬁy, z)=a(r,2)+ 6 (y,z) forall z,y € X and o, f € K
(iii) (y,z) = (z,y) for all z,y € X.

If (-,-) € H(X), then the functional ||| = (., ~)% is a semi-norm on
X and the following equivalent versions of Schwarz’s inequality hold:

(1.17) lI* Iyl = [ 9" or el llyll = [(2.9)|

for any x,y € X.
Now, let us observe that H (X) is a convex cone in the linear space
of all mappings defined on X? with values in K, i.e.,
(€) (-,+)1, (- )y € H(X) implies that (-,-); + (-, )y € H(X);
(ee) a >0 and (+,-) € H (X) implies that a(+,-) € H (X).

We can introduce on H (X)) the following binary relation [1]:
(1.18) (-,:)y > (+,+); ifand onlyif |z[, > |z||; forall z € X.

We observe that the following properties hold:

(b) () > (), for all () € H(X);
(bb) ('7 ')3 = ('7 ')2 and ('7 ')2 > ('7 ')1 implies that ('7 ')3
(bbb) ('7 ')2 > ('v ')1 and (" ')1 > ('7 ')2 implies that (') ')2

v

o
S~—
=
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i.e., the binary relation defined by (1.18)) is an order relation on
H(X).

While (b) and (bb) are obvious from the definition, we should re-
mark, for (bbb), that if (-,-), > (-,-); and (-,-); > (-, )y, then obviously
|lz]|, = ||z||, for all z € X, which implies, by the following well known
identity:

(1.19)  (z,y),
1 ) ) .
=7 [l + ol = e = yliz +i (Il + iylly — llo = dy]l;)]
with z,y € X and k € {1, 2}, that (z,y), = (z,y), for all z,y € X.

1.3.2. The Superadditivity and Monotonicity of c—Mapping.
Let us consider the following mapping [1]:

o H(X)x X? =Ry, o (();2,9) = ] lyll = |(z,9)],
which is closely related to Schwarz’s inequality (1.17]).

The following simple properties of o are obvious:
(S) o (Oé ('7 ) y s y) = Qo ((7 ) ;xay) )
(ss) o (()sy.2) =0 (()2,9);
(sss) o ((+,+);z,y) > 0 (Schwarz’s inequality);
for any a >0, (-,-) € H(X) and z,y € X.
The following result concerning the functional properties of o as a

function depending on the nonnegative hermitian form (-,-) has been
obtained in [1]:

THEOREM 4 (Dragomir-Mond, 1994). The mapping o satisfies the
following statements:

(i) For every (-,-), € H(X) (i =1,2) one has the inequality
(1.20) o (()y + ()5 2,9)
0o (( )z y)+o(t)sey)  (20)

for all x,y € X, i.e., the mapping o (-;x,y) is superadditive

on H(X);
(ii) For every (-,-), € H(X) (i = 1,2) with (-,-), > (-,-), one has
(1.21) o(()gizy) 20 ((5)52y)  (20)
for all x,y € X, i.e., the mapping o (-;x,y) is nondecreasing
on H (X).

ProoFr. We follow the proof in [1].
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(i) By the Cauchy-Bunyakovsky-Schwarz inequality for real num-
bers , we have

(a2 +b2)% (02 +d2)% >ac+bd; a,b,c,d> 0.
Therefore,
9 ((7 '>1 + ('7 ')2 y L, y)
= (l=[IF + [1=015)* (w15 + 1915)> = 12, 9); + (2, ),
> Nzl Myl + ll=ll5 ylly = [(@,9)1] = [(2,9),]
=0 ((7 ')1 ;x,y) +o ((7 ')2 ;l'ay) )

forall (-,-), € H(X) (i =1,2) and z,y € X, and the statement
is proved.

(ii) Suppose that (-, <), > (-,-); and define (+,); ;== (-, ")y —(+,"); -
It is obvious that (-,-),, is a nonnegative hermitian form and
thus, by the above property one has,

o (- )y10,) 2 0 (2 )y + ()5 0)

>0 () imy) + 0 ((o)io)

from where we get:

o (2 )p5,9) = o () i2,y) 2 0 ()0 0,9) 20

and the proof of the theorem is completed.

REMARK 1. If we consider the related mapping [1]

or (()s2,y) = [lzll lyll — Re (2,y),
then we can show, as above, that o (+;z,y) is superadditive and non-

decreasing on H (X).
Moreover, if we introduce another mapping, namely, [1]

THX) X XP =Ry, 7(()smy) = (el + vl = e+ vl
which 1s connected with the triangle inequality
(1.22) e +yll < llzll + 1yl for any z,yeX
then we observe that
(1.23) T(()smy) =20 ((,) 52, 9)

for all (-,-) € H(X) and x,y € X, therefore o (-;x,y) is in its turn a
superadditive and nondecreasing functional on H (X).
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1.3.3. The Superadditivity and Monotonicity of ) —Mapping.
Now consider another mapping naturally associated to Schwarz’s in-
equality, namely [I]

0 H(X)x X2 =Ry, 6(()izy) = ll=l* ly]* = (=, ).
It is obvious that the following properties are valid:
(i) 0 ((,+);x,y) > 0 (Schwarz’s inequality);
(i) 0 ((,)2,9) =0 ()19, 2)
(iii) 6 (a (- )sz,y) = ()52, y)
for all z,y € X, a >0 and (-,-) € H (X).
The following theorem incorporates some further properties of this
functional []:

THEOREM 5 (Dragomir-Mond, 1994). With the above assumptions,
we have:

(i) If (-,), e H(X) (1 =1,2), then
(1.24) 5(( )y + (r)ai o) — 6 () 52,9) — 6 ()5 2, 9)

Lzl il T\ .
(d [ Il Nl D (20);
)

2)

, the mappmg 0 (+;x,y) is strong superadditive on H (X).
(i) ff( ) € H(X) (1=1,2), with (,+), = (), , then

(1.25) 0(Cso)gs2,y) =0 ((0)152,9)

ol bl T
de 2 : |
Z<'4(m@—ww320m@—wﬁfl> -

i.e., the mapping § (+;x,y) is strong nondecreasing on H (X).
PrOOF. (i) For all (,-), € H(X) (: =1,2) and x,y € X we have
(126)  5((+) + (5 )im)
= (lllz = l=[17) (lylls = I9ll) = 12, 9)s + (2, 9), "
> [l ll5 llyll; + =17 Iyl + N2l Iyl + )3 1917
— (|2, 9)a] + (=, ), )*
=0(()g52,9) +0((5)132,9)
+ 3 ylls + lll3 lyll} = 212, 9)y (2, 9),] -

By Schwarz’s inequality we have

(1.27) (@, 9)y (2, 9) | < My [yl izl Nyl
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therefore, by (1.26]) and ((1.27)), we can state that
O ()i +Co)giay) =0(C)32,y) =0 ((, )32, 9)
21112 20112
> 7 lyllz + 0z lylly = 2 2l vl =l [yl
2
= (lllly lylly =l lyll,)

and the inequality is proved.

(ii) Suppose that (-,-), > (-, ), and, as in Theorem define (-, ), =
(,-)o—(-,+); - Then (-,-),, is a nonnegative hermitian form and by (i)
we have ’

5 ((+)aaswy) =0 (1) 2.y)
5 (4 )ax+ C)swy) =0 (4 5e,)
(

2
=], [yl
- X, + [ det ! !
() y) ( [chllz,l 1Yll5,1
2
det[nxnl Iyl D ‘
”37H2,1 ||5UH2,1

1
Since [|z|,, = (1213 = [|z]I7) ® for = € X, hence the inequality (1.25) is
proved. 1

v

J

v

REMARK 2. If we consider the functional 8, ((-,-);z,y) == ||z||* |ly||*—

[Re (:U,y)]z, then we can state similar properties for it. We omit the
details.

1.3.4. Superadditivity and Monotonicity of J—Mapping.
Consider the functional 5 : H (X) x X? — R defined by [2]

(1.28) B(() i) = (eI Iyl = (. 9) )2

It is obvious that B ((-,-);x,y) = [0 ((+,-) ;x,y)]% and thus it is mono-
tonic nondecreasing on H (X ). Before we prove that 3 (-; z,y) is also
superadditive, which apparently does not follow from the properties of
0 pointed out in the subsection above, we need the following simple
lemma:

LEMMA 1. If (+,) is a nonnegative Hermitian form on X, x,y € X
and ||y|| # 0, then

2 2 2
(1.29) it o gt = L8 = (@)
| ek Pk |
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PROOF. Observe that
Iz — MylI* = [|=]|* = 2Re [A (2, )] + [AP* [ly]®
and, for ||y # 0,
2 2 2 2 2
" yll® = (@, )" + | llyll” — (2,9)|
lyl”

= [|z]* ~ 2Re |u(z

1

2 2
)] + el ol

Y
and since Re [A (z,y)] = Re [A(z,y)] = Re [/\(x,y)] , we deduce the
equality
2
= 1” llyll* = 1, 9)1” + [ llyll” — (2. y)

?

for any z,y € X with [|y|| # 0.
Taking the infimum over A € K in (1.30]), we deduce the desired

result ((1.29). 0

For the subclass JP (X), of all inner products defined on X, of
H (X) and y # 0, we may define

l2* lyl* — Iz, )"
’Y((,),ZE, ): 2
[yl
0((-);,y)
.
1yl
The following result may be stated (see also [2]):

THEOREM 6 (Dragomir-Mond, 1996). The functional v (-;z,y) is
superadditive and monotonic nondecreasing on JP (X) for any z,y €

X with y # 0.
Proor. Let (-,-);, (), € JP(X). Then
(1'31> 7(('7')1 + ("')2;w7y)
(17 + lll13) Cylly + llyls) =16 y), + (@, y), )

Y1l Nyl
. o 2 . 2
= /1\1€1Hf< [||x Ayll] + [z )\y||2} ,

and for the last equality we have used Lemma [T}
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Also,

2 2 2
_ el lylly = [z, y)il
_ 2
Iyl
= inf ||l — Ayl | =1,2.
mfflz —Ayll;,  i=1

(1.32) 7 (C0)is e y)

Utilising the infimum property that
. S .
inf (f (A) +9(A) = imf f(A) + inf g (A),

AeK

we can write that
_ _ > _ _
inf [|lz = Ayll} + [lv = Mll;] > inf o = My[; + inf o = Myl
which proves the superadditivity of v (;z,y) .

The monotonicity follows by the superadditivity property and the
theorem is completely proved. §

COROLLARY 1. If (-,-), € TP (X) with (-,-)y > (-,-); and x,y € X
are such that x,y # 0, then:

133) S )yimy) zmax{M W}a«-,-)l;x,y)

Iyl Nl
(=6(():m,y))
or equivalently, [2]
{nyuz —lyll? llzl3 = el?

2 2
lyly el

> max

}M(n%sx,y)-
The following strong superadditivity property of ¢ (+;x,y) that is
different from the one in Subsection holds [2]:

COROLLARY 2 (Dragomir-Mond, 1996). If (-,-), € JP(X) and
x,y € X with x,y # 0, then

(1.35) 0 ((5)y + (5 )g52y) =0 (Co)52,9) =0 ((5 )y 57, y)

> max{(%)%(ml o+ (MY 5 (s

(”“'2)25((-,.)1;@@/) + (Hx”l)za((-,»g;x,y)} (>0).

zlly ]l
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Proor. Utilising the identities (1.31)) and (1.32) and taking into
account that 7 (-;z,y) is superadditive, we can state that

(1.36) 0 ((s0)y +()g52,y)

Iyl + s
> 25 () s y) +
[k

=0((,)32,y) +6((40)y52,9)
n (||y||2) 5 (), 2,y) + (||y||1> §(( )y, y)

Iyl lyll

and a similar inequality with x instead of . These show that the desired
inequality ((1.35]) holds true. §

REMARK 3. Obviously, all the inequalities above remain true if
(,+);, @ = 1,2 are nonnegative Hermitian forms for which we have
[l]l; 5 [lyll; # 0.

Finally, we may state and prove the superadditivity result for the
mapping [ (see [2]):

THEOREM 7 (Dragomir-Mond, 1996). The mapping (5 defined by
is superadditive on H (X).

Proor. Without loss of generality, if (-,-), € H(X) and z,y € X,
we may assume, for instance, that ||y||, # 0, i =1, 2.
If so, then

(B 50,0+ (5 s

> 2[6(( )y 52,90 (C, )y 2,97,
and by making use of ([1.36) we get:

50+ (i) 2 {5l o+ (Gl

which is exactly the superadditivity property for 3. n

2 2
Ylly + 11y
lylly + | ||25((,

2 ,')2;I,y)
[yl

[ NI

1.4. Applications for General Inner Product Spaces

1.4.1. Inequalities for Orthonormal Families. Let (H;(:,-))
be an inner product space over the real or complex number field K. The
family of vectors I/ := {e;},.; ({ is a finite or infinite) is an orthonormal
family of vectors if (e;,e;) = &;; for 4,5 € I, where §;; is Kronecker’s
delta.
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The following inequality is well known in the literature as Bessel’s
inequality:
(1.37) > el < |z
ek
for any I a finite part of I and x a vector in H.
If by F (I) we denote the family of all finite parts of I (including

the empty set @), then for any F' € F (I)\ {@} the functional (-, ),
H x H — K given by

(1.38) (@,9)p =Y (x,) (€3, 9)
ieF
is a Hermitian form on H.
It is obvious that if Fy, Fy, € F(I)\ {9} and Fy N F, = &, then

(" ‘)FlUFQ = ('7 .)Fl + ('7 ‘)FQ :
We can define the functional o : F (I) x H*> — R, by
(1.39) o (Fya,y) = [zl plylle = 12, 9) gl

where

el = (z\m ) = [(@a)plf, wed.

i€EF

The following proposition may be stated (see also [2]):

PROPOSITION 1 (Dragomir-Mond, 1995). The mapping o satisfies
the following

(l) _[fFl,FQ € f([)\{@} with FlﬂFg = @, then
o (FLUFy,y) > o (Fy2,y) +o (Fy 2, y) (>0)

for any x,y € H, i.e., the mapping o (-;x,y) is an index set
superadditive mapping on F (I);
(ll) ]f@ 7£ F1 Q FQ, Fl,FQ € F(]), then

o (Fyx,y) > o (Fi;z,y) (>0),

i.e., the mapping o (+;z,y) is an index set monotonic mapping

on F(I).

The proof is obvious by Theorem [] and we omit the details.
We can also define the mapping o, (:;+,+) : F(I) x H* — R, by

Or (Fa Z, y) = ||x||F ||y||F —Re (ZE, y)F )
which also has the properties (i) and (ii) of Proposition [1]
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Since, by Bessel’s inequality the hermitian form (-,-), < (-, -) in the
sense of definition ([1.18)) then by Theorem {4/ we may state the following
refinements of Schwarz’s inequality [1]:

PROPOSITION 2 (Dragomir-Mond, 1994). For any F' € F (I)\ {0},
we have the inequalities

(1.40) [l {lyll = ¢z, )|

2<Z|<x,ei>l2) (ZK?J,@)IQ) -

i€F 1€F

Z (z,e:) (ei,y)

i€EF

and

(141) [l lyll = ¢z, )l
> (\ICEH2 - Z |<x,ei>|2) (HyH2 - Z |<y,ez->|2>

(w.y) =D (w,e) {ewy)

i€EF

and the corresponding versions on replacing || by Re (+) , where x,y are
vectors in H.

REMARK 4. Note that the inequality and its version for Re (+)
has been established for the first time and utilising a different argument
by Dragomir and Sdndor in 1994 (see [3, Theorem 5 and Remark 2]).

If we now define the mapping ¢ : F (I) x H*> — R, by
0 (Fsz,y) =l Iyl — |2, 9)
and making use of Theorem [5| we may state the following result [2].

PROPOSITION 3 (Dragomir-Mond, 1995). The mapping 6 satisfies
the following properties:

() If Fy, Fy € F(I)\{@} with F, N Fy = @, then

2
leley vl

i.e., the mapping & (+;z,y) is strong superadditive as an index
set mapping;
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(ll) ]f@ 7é F1 g FQ, Fl,FQ € .,/t([), then

(1.43) 6 (Fos2,y) — 0 (Frsz,y)

2
[z [yl
> | det bl R (=0),
( [ (lg, = I2)? (lyllE, = lylE)?

i.e., the mapping 6 (+;x,y) is strong nondecreasing as an index
set mapping.

On applying the same general result in Theorem , (ii) for the
hermitian functionals (-,-), (F € F(I)\{@}) and (-, -) for which, by
Bessel’s inequality we know that (-,-), < (-,-), we may state the fol-
lowing result as well, which provides refinements for the Schwarz in-
equality.

PROPOSITION 4 (Dragomir-Mond, 1994). For any F € F (I)\ {2},
we have the inequalities:

(L.44)  Jll* 1yl — [z, )

> ; (@, e)]” ; [y en)]” — ; (z,€i) (€i,) 2 (>0)
and
(1.45) Nl* [lyll” = (2, 9) [
> (HJEH2 - ; \(w,€i>\2> (Hy|l2 - ; \(%&)!2)
— [z, y) - ; (x, i) (ei, y) 2 (>0),

for any x,y € H.

On utilising Corollary [2 we may state the following different super-
additivity property for the mapping ¢ (+; z,y) .
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PROPOSITION 5. If Fy, Fy € F (I)\{@} with F, N Fy, = @, then

2 2
1Yl g, 1yl s,

(I 5+ (||x||Fl)25(F2;x,y)} =0)

(1P 1]l 5,
for any z,y € H\ {0} .

Further, for y ¢ M=+ where M = Sp{e;},.; is the linear space
spanned by E = {e;},., , we can also consider the functional v : F (1) x
H? — R, defined by

G (Frayy) = XE0) e ol 1 v)el
175 lylle
where x € H and F' # @.
Utilising Theorem [0, we may state the following result concerning

the properties of the functional 7 (-; z,y) with = and y as above.

PROPOSITION 6. For any x € H and y € H\M*, the functional
v (s, y) is superadditive and monotonic nondecreasing as an index set
mapping on F (I).

Since (-,-) > (-,-)p for any F' € F (I), on making use of Corollary

[1, we may state the following refinement of Schwarz’s inequality:

PROPOSITION 7. Letz € H andy € H\Mj, where My := Sp{e;}
and F € F(I)\ {2} is given. Then

lyll” [Edl
(147)  Nl* lyll® = [z y) | = maX{ :
Yier (el Yier e’

2

icl

Sl e Y el -

el el

Z <£L‘, ei) <ei> y)

el

> S e P e -

el el

2

Z <£L‘, ei) <ei7 y)

i€F
which is a refinement of in the case that y € H\Mj.
Finally, consider the functional 3 : F (I) x H?> — R, given by

B(F;,y) = 6 (Fzp)F = (22 Iyl — ) p2)F
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Utilising Theorem [7] we may state the following:

PROPOSITION 8. The functional (3 (-;z,y) is superadditive as an
index set mapping on F (I) for each z,y € H.

As a dual approach, one may also consider the following form
(v )ep t H x H — R given by:

(148) (‘T’y)C,F = (a:,y) - (xvy)F = <x,y> - Z <~Ta ei> <ei>y> .

icF

By Bessel’s inequality, we observe that (-, ). is a nonnegative her-
mitian form and, obviously

('7 ')I + ('7 ')C,F = <'7 > :

Utilising the superadditivity properties from Section [1.3] one may state
the following refinement of the Schwarz inequality:

(1.49) [l lyll = I(z, )]

> (ZK%GDFZK%@O\Q) — D (e (eay)

+ <Hfi€!l2 - ; <96,€i>2)é (Hy!|2 - ; <y,ei>2>é
— |{z,y) — ; (T, e) (ey)|  (20),
(1.50) Jl[* yll* — [z, )
> ; |<fcaei>\2; [y, el — ; (z,e:) (€, ) 2
+ (||fv||2 - ; |<9376z->|2> (I|y|l2 - ; |<y76i>|2)
- (&, 9) —ZEZF@,GD (i, ) 2 (> 0)
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and

(1:51)  (ll=* llyll* = [z, »)[")

> Z|<$’el>|22|<ya ei>’2 -

[SIE

2

N

Z (z,e:) (ei,y)

i€F i€F ieF |
o | (1t = i) (i - S
i€F ieF
27 2
o (:L’,y)—Z(x,e) <eiuy> (Z O>7
icF

for any z,y € H and F' € F (I)\{2}.

1.4.2. Inequalities for Gram Determinants. Let {z1,...,z,}

be vectors in the inner product space (H, (-, -)) over the real or complex
number field K. Consider the gram matriz associated to the above
vectors:

(1, 21) (T1,20) - (@1, 20)
G, an) = | @2 o (e )
(Tn, 1) (Tp,ma) -+ (Tp,Tp)

The determinant
[ (z1,...,2,) :=det G (z1,...,2,)

is called the Gram determinant associated to the system {zy,...,z,}.
If {z1,...,2,} does not contain the null vector 0, then [4]

(1.52) 0<T (21, 2n) < flaal* faal® - [l

The equality holds on the left (respectively right) side of if
and only if {zq,...,x,} is linearly dependent (respectively orthogo-
nal). The first inequality in is known in the literature as Gram’s
inequality while the second one is known as Hadamard’s inequality.

The following result obtained in [3] may be regarded as a refinement
of Gram’s inequality:

THEOREM 8 (Dragomir-Sandor, 1994). Let {xy,...,x,} be a system
of nonzero vectors in H. Then for any x,y € H one has:

(1.53)  T(z,x1,...,2,) T (y,21,...,2,) > T (21,...,2,) (x,y)|2,
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where T (z1,...,z,) (x,y) is defined by:

F(xl,...,xn) ($7y)

(r,y) (2, 21) (@, )
= det (xl,y>

(T, y)

Proor. We follow the proof from [3].
Let us consider the mapping p: H x H — K given by

p(x,y) =T (x1,...,2,) (z,y).

Utilising the properties of determinants, we notice that

p(z,y) =0 (x,zq1,...,2,) >0,
p@+y,2) =T (1,...,2) (x +y,2)
=T (xy,...,2n) (2, 2) + T (21,...,2,) (y, 2)
Zp(xaz)er(y, z),
plox,y) = ap(z,y),
(y,2) =p(z,y),

for any z,y,z € H and a € K, showing that p(-,-) is a nonnegative
hermitian from on X. Writing Schwarz’s inequality for p (-, -) we deduce

the desired result ((1.53)). n
In a similar manner, if we define ¢ : H x H — K by
q(w,y) = (z.y) [ [ llz:” = p (z,9)
i=1

= (x,y) H H$ZH2 —TI (mlﬂ s 7xn) (x,y),

then, using Hadamard’s inequality, we conclude that ¢ (-,-) is also a
nonnegative hermitian form. Therefore, by Schwarz’s inequality ap-
plied for ¢ (-, -), we can state the following result as well [3]:
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THEOREM 9 (Dragomir-Sandor, 1994). With the assumptions of
Theorem [§, we have:

(1.54) [HZBII2 [T lzll® =Tz, ,xn)]
=1
X [||y|\2 [Tl =T (g, w)]
=1

> |(z,y) H lzll* = T (21, ) (2, )

2

)

for each x,y € H.

Observing that, for a given set of nonzero vectors {z1,...,x,},

p(zy)+q(x,y) = (z,y HIISBZII
for any x,y € H, then, on making use of the superadditivity proper-

ties of the various functionals defined in Section we can state the
following refinements of the Schwarz inequality in inner product spaces:

(1.55)  {llz[Hlyll = [{z, »)] H (e

N|=

|
=
&

8

&
0
S

> (x, 21, ... x0) T (y, 21,0, 2]

= .

2 2
+ [z l® [T llall® = T (2, )

N[

2 2
< yll* T llall® =T (g, 1, an)
i i=1

- <"L‘7y> H HJZZH2 -I (5(31, tee 7xn) (Ivy)

(1.56)  [ll=]I* llyl* — Iz, )| HH%II

F(:c,xl,...,xn)F(y,:cl,...,xn)— T (z1,...,2z0) (2, )]

n
lzl* [T lall® = T (2,21, ... ,:L’n)]
i=1
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2 2
X [H?JH HH%H _P(yuxlw-wxn)]
i=1

{z,9) H lzll* = T (21, 2) (2, y)

2

(=0),

and

(57) [l lyll - ¢z, v))2 H [k

NI

> [F(a:,xl,...,xn)F(y,ajl,...,xn)— T (z1,...,2,) (a:,y)ﬂ

2 2
+{ ll* T T —F(I,xl,-.-,xn)]
i=1

X [”?JH2 H il = T (y, 21, - .- ,iﬂn)]
=1

2

N

(=0).

{z,y) H Izl = T (21, ., 20) (2, y)

1.4.3. Inequalities for Linear Operators. Let A: H — H be
a linear bounded operator and

[A[}:= sup {[|Az], [|=[] < 1}

its norm.
If we consider the hermitian forms (-,-),, (-,-); : H — H defined
by
(@,9), = (Az, Ay) . (2,9), = [Al* (2 y)
then obviously (-, ), > (-, -), in the sense of definition and utilis-
ing the monotonicity properties of the functional considered in Section
[1.3] we may state the following inequalities:

(1:58) 1A [zl iyl — [z, o)1) = | Az| | Ayll - [{Az, Ay)] (= 0),

(1:59) AN [l lyll* = [z, 9) 7]
> || Az|® | Ayl* - [(Az, Ay)|* (= 0)
for any x,y € H, and the corresponding versions on replacing || by
Re(-).
The results (1.58)) and ([1.59) have been obtained by Dragomir and
Mond in [I].
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On using Corollary [I, we may deduce the following inequality as
well:

(1.60) JLAI [l l” lyll” = 1z, )]
l=I® lyll®

> max § g, o o [[[Az|* Ayl - [(Az, Ay)[F] (2 0)
{IIASUH2 HAyHQ}
for any xz,y € H with Ax, Ay # 0; which improves (1.59)) for x,y
specified before.
Similarly, if B : H — H is a linear operator satisfying the condition

(1.61) |Bx|| > m|jz| forany =z € H,

where m > 0 is given, then the hermitian forms [z,y|, := (Bz, By),
[z,y], :== m*(x,y), have the property that [,-], > [-,],. Therefore,
from the monotonicity results established in Section [1.3, we can state
that

(1.62) || Bzl [|Byll — [(Bx, By)| = m* [[|«] ly]| = [{x,)[]  (=0),

(1.63) | Bz||* || By||* — [(Bz, By)*
>m* [z lyl® = e, 9)"] (> 0)

for any x,y € H, and the corresponding results on replacing |-| by
Re(-).
The same Corollary [T, would give the inequality

(1.64) 1Bl | Byl - [{Bz, By)P
Bz || Byl
zwmax{” 1”1 ”}[I\x\l2lly|\2—!<x,y>l2}

2 2
l=1* Nyl

for x,y # 0, which is an improvement of .

We recall that a linear self-adjoint operator P : H — H is nonneg-
ative if (Px,x) > 0 for any € H. P is called positive if (Px,x) = 0
and positive definite with the constant v > 0 if (Px,z) > ~|z|” for
any r € H.

If A/B: H — H are two linear self-adjoint operators such that
A > B (this means that A — B is nonnegative), then the corresponding
hermitian forms (z,y), := (Az,y) and (z,y)y := (Bz,y) satisfies the
property that (-,-), > (-,") 5.

If by P (H) we denote the cone of all linear self-adjoint and non-
negative operators defined in the Hilbert space H, then, on utilising
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the results of Section we may state that the functionals oy, d¢, 3 :
P(H) x H* — [0, 00] given by

00 (Pa,y) = (Az,z)? (Py, ) — |(Pz,y)|,
8o (Py2,y) == (Px,z) (Py,y) — [(Pz,y)|,

By (P2, y) = (P, ) (Py,y) — (P, )7,

are superadditive and monotonic decreasing on P (H), i.e.,

Yo (P +Qix,y) > (Pix,y) + 70 (Qiz,y)  (>0)
for any P,Q € P (H) and x,y € H, and

Yo (Piz,y) 270 (Qiz,y)  (20)
for any P,Q with P > @ > 0 and z,y € H, where v € {0,4,3}.

The superadditivity and monotonicity properties of oy and §y have
been noted by Dragomir and Mond in [I].

If w € P(H) is such that I > U > 0, where [ is the identity
operator, then on using the superadditivity property of the functionals
09,00 and 3, one may state the following refinements for the Schwarz
inequality:

[NIE
[NIES

(1.65) [l [ly[l = [z, y)| = (Uz, x)
+{(I-U)x,z)

(Uy,y)> — |(Uz,y)|
(I -U)yy)? = (I -U)a,y)|  (>0),

[NIES

(1.66) Nl* llyll® — [z 9)* = (U, 2) Uy, y) — [(Uz,y)|"
(I =)z, 2) (I =V)y,y) = (I =U)a,p)* (20),

and
W67 (Il Iyl = 1@ 9)P)? > (U, 2) Uy, ) — Uz, 5)[?)

(=) a) (L= U)oy — (T = D)z y))? (2 0)
for any x,y € H.

Note that is a better result than (|1.66)).

Finally, if we assume that D € P (H) with D > ~I, where v >
0, i.e., D is positive definite on H, then we may state the following
inequalities

(1.68) (Dzx,x)

NI

NI
NI

(Dy,y)? = Dz, )| = v llz|[ vl = [z, 9)] (= 0),

(1.69) (D, ) (Dy,y) — |{Dz,y)[*
> lel* ol = 1z )] (= 0),
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for any x,y € H and

(1.70) (D, z)(Dy,y) — (Dz,y)|"

D D
Z,ymax{< x,;ﬁ,( y,gﬁ
||| Il

for any xz,y € H\ {0}.

The results and have been obtained by Dragomir and
Mond in [I].

Note that (L.70)) is a better result than (L.69).

The above results (1.65)) — (1.70]) also hold for Re () instead of |-|.

} [l Iyl* = 1z, ) *] (= 0)

1.5. Applications for Sequences of Vectors

1.5.1. The Case of Mapping o. Let P;(N) be the family of
finite parts of the natural number set N, S, (R) the cone of nonnegative
real sequences and for a given inner product space (H;(-,-)) over the
real or complex number field K, S (H) the linear space of all sequences
of vectors from H, i.e.,

S(H) = {x|x = (z;)
Consider (-, -)

en» Ti € H, i €N},
S (H) x S(H) — R defined by

(Xa}’>p,1 = Zpi (i, yi) -

1€l

p.I

We may define the mapping o by

(1.711) o(p,I,x,y):= (ZPZ H%H2zpz Hyz”2> -

i€l i€l

NI

Zpi (i, i)

el

Y

where p € §4 (R), I € Py (N) and x,y € S(H).

We observe that, for a I € Py (N)\ {@}, the functional (-,-) ; >
(*s*)qr» Provided p > q > 0.

Using Theorem {4 we may state the following result.

PRrROPOSITION 9. Let I € Pr(N)\{@}, x,y € S(H). Then the
functional o (-, 1,x,y) is superadditive and monotonic nondecreasing
on Sy (R).

If1,J € Py (N)\{@}, with I N J = @, for a given p € S; (R), we
observe that
(172) <'7 '>p7[UJ = <'7 '>p,I + <'7 .>p,J :

Taking into account this property and on making use of Theorem []
we may state the following result.
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PROPOSITION 10. Let p € S¢ (R) and x,y € S(H).
(i) For any I,J € Py (N)\{@}, with INJ = &, we have

(1.73)  o(p,IUJx,y) >0 (p,I,x,y)+0(p,J,x,y) (>0),

i.e., o (p,+,X,y) is superadditive as an index set mapping on

Pr (N).
(i) Ifg#JCI,1,J €Ps(N), then

(1.74) o(p,1,x,y) >0(p,J,x,y) (=0),

i.e., o (p,-,X,y) is monotonic nondecreasing as an index set
mapping on Sy (R).

It is well known that the following Cauchy-Bunyakovsky-Schwarz
(CBS) type inequality for sequences of vectors in an inner product
space holds true:

(1.75) Yovillall® Y pilll® =

el i€l

2

sz‘ (i, i)

i€l

for I € Pr(N)\ {2}, peS;(R)and x,y € S(H).

If p;, > 0 for all ¢ € I, then equality holds in (|1.75) if and only if
there exists a scalar A € K such that x; = A\y;, © € I.

Utilising the above results for the functional o, we may state the
following inequalities related to the (CBS)-inequality (1.75)).

(1) Let a; € R, x;,y; € H, i € {1,...,n}. Then one has the

inequality:
1

n n
2 2
(L76) Y laall® > llwall* —
i=1 i=1 i
n n
= (Z|!fvi!|281n2aizuyz-n?sin?ai) IS G, sin? a
=1 i=1 i=1
1
n n 3
+ (ZH%HQCOSQ %‘Z llyi||? cos? ozz-)
i=1 i=1

n

Z <$i, yi> cos® o

i=1

[NIE

n

> 0.




1.5. APPLICATIONS FOR SEQUENCES OF VECTORS 29

(2) Denote S, (1) :== {pe Sy (R)|p; <1lforallie{l,...,n}}.
Then for all z;,y; € H,i € {1,...,n}, we have the bound:
Z (i, 9i)

(1.77) (ZH%H ZH%II) 2
_— (Zpl i sznyzu)

n

PESK(

(3) Let p; > 0, z;,y; € H, i € {1,...,n}. Then we have the
inequality:

(1.78) (sz e szllyzH )

j <13z‘, Z/z'>

1
n n 2
> (ZP% [k ZP% Hy2kH2> - Yor,)
k=1 k=1
n n %
+ (Zp%l 22— || Zp%fl ||y2k1|!2>
k=1 k=1
- Zka—l (Tok—1, Yor—1) (>0).
k=1

(4) We have the bound:

i <$i, yi)

(1.79) [szlmﬂ sz IIyzH]

= sup sz‘sz szylH bi <xl7yl> > 0.
it ([Sre ] [
(5) The sequence S,, given by
1
n n 2
= (sz ||95z||2 Zpi ||Z/z||2> - (i, i)
i=1 i=1

is nondecreasing, i.e.,

(1.80) Spe1 > Sy, k>2
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and we have the bound
(181) 8,2 mac { (ol + py s 2)F (ol + 5 )
— |pi (i, y) + pj (25,950 } >0,
forn>2and x;,y; € Hyi € {1,...,n}.
REMARK 5. The results in this subsection have been obtained by

Dragomir and Mond in [1] for the particular case of scalar sequences
X andy.

1.5.2. The Case of Mapping J. Under the assumptions of the
above subsection, we can define the following functional

5 p7I X y sz ’sz sz |yz|| - sz xz;yz

el i€l i€l

where p € S; (R), I € P (N)\ {0} and x,y € S(H).
Utilising Theorem [5 we may state the following results.

)

PROPOSITION 11. We have

(i) For any p,q € Sy (R), I € Py (N)\ {2} andx,y € S(H) we
have

(182) 5(p+q7[7X7Y) _5<p7[7X7Y)_5(q717X7Y)

: :
2 2
(zmmu ) (zpiuyz-n )
> | det = i€l > 0.

2 2
(z @ ] ) (z @ )
€1 €1

(i) If p > q > 0, then

(183) 6(p7[>X7Y)_5(q>[>Xay)

1 1 2
(zpi Hxiwf) (zp@- uy@-H?)
2 det il 1 iel ) Z 0
2 2
(z (v — a) Hxiwf) (2 i — ) ||yz-||2)
el el

PROPOSITION 12. We have
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(i) ForanyI,J € Py (N), withINnJ =@ andp € S; (R), x,y €
S (H), we have

(1.84) 6(p,IUJ,x,y)—0(p,I,x,y)—0d(p,J,x,y)

1 1 2
2 2
(zpz- ||o:z-||2) (zpi ||yz»r|2>
det i€l i el i Z 0
2
(zpi ||xi||2) (zpz- ||yz-||2)
1€J e€J
(i) Ife#JCI, 1#J 1,JePs(N), then we have
(185) 5(p,I7X,Y) - 6(p7 J7X7Y)
2 % 2 % i
(z;pi il ) (zp Il )
Z det 1€ [AS] ; 2 0

>
( 2 pi HxiH2> ( 2 pi Hyi\lz)
ieI\J i€I\J

The following particular instances that provide refinements for the
(CBS)-inequality may be stated as well:

2

(1.86) > llall* Y lwll® ~

el el

Z (i, i)

icl
2
> Z || ]| sin? v; Z ;|| sin® a; — Z (3,9 sin® oy
iel il iel
+ Z ] cos? av; Z llyil|* cos? v
iel iel
2
- Z (i, yi) cos”
il

N|=

1 2
2
(z;ux@-rr?sin%i) (zuyiu?smm)
> | det e

el
(z e cos? a,.) (z i cos? ai)
el el

where z;,v;, € H, a; e R, i € I and I € Py (N)\{@}.

SIS
VI

>0,
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Suppose that p; > 0, x;,y; € H,i € {1,...,2n}. Then

2

2n 2n 2n
2 2
(L87) D pillaall® Y- i llyal® = Y i i i)
i=1 i=1 i=1
> szk 22| ZP% lyokl® —
k=1 k=1

n n
+ ZP%A HiUQklez ZPQkfl Hy%qHQ
k=1 k=1

2

2

ZP% (2K, Yor)
k=1

szk—l (Tok-1, Yo2k-1)

k=1

1 1
n 2 n 2
(Erutealt)’ (Eruloal?)
Z det k=1 ) k=1 i
n 2 n 2
(Z P2k—1 ||5€2k—1||2> (Z D2k—1 ||y2k—1||2>

k=1 k=1

> 0.

REMARK 6. The above results - have been obtained

for the case where x and y are real or complex numbers by Dragomir
and Mond [1].

Further, if we use Corollaries [2] and [I}, then we can state the follow-
ing propositions as well.

PROPOSITION 13. We have

(i) Foranyp,qe S; (R), I e Pr(N)\ {2} andx,y € S(H)\ {0}

we have

(188) 5(p+q7[7X7Y) —5(p,I,X,Y) _5(q717X7Y)
2 2

> max Zie[pi || Zie[ qi ||74]|

= 2 2
Zie[ qi ||| Zie[pi (EA

2 2
Sierpiluilf Seralul’s o roolso
e il ey il

d(a,I,x,y) + d(p,1,x,y),

6(q7 ’[7 X7 y) +
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(i) fp>q>0and I € Pr(N)\ {2}, x,y € S(H)\ {0}, then:
(1.89) 6(p,I,x,y)—0(q,l,x,y)

>nmx{2mﬂm—%ﬂmw Sier (s — ai) il

2 ) 2
> icr Pillill > icr Pilluill
PROPOSITION 14. We have

(i) ForanyI,J € Py (N)\{@}, withINnJ =@ andp € S (R), x,y €
S (H)\ {0}, we have

(190) (5(p,[UJ,X,y)—5(p,],x,y)—(5(p,J,x,y)

}5(p,l,x,y)20-

2 2
s St el s Sl
> es Pl > icr Di |zl
2 2
Sanlol’ s oy Semll oV
> s i llysll > icr Pillyill

(i) [f@#J CI,1+J,1.0€P;(N)\{} andp € S, (R)\ {0},
x,y € S(H)\ {0}, then
(191) 5(p,[,X,y) - 5(p7 ‘]aX7Y)
{ZkeI\ka il > ker s o lull®
> max 7 3
Zie[pi szH Zie[pi H%H

REMARK 7. The results in Proposition have been obtained by
Dragomir and Mond in [2] for the case of scalar sequences x andy.

1.5.3. The Case of Mapping (. With the assumptions in the
first subsections, we can define the following functional

B(p 1, x,y) =6 (p,I,x,y)]?

= 1> pillwl®>pillwall* -

i€l el

where p € S; (R), I € Py (N)\ {0} and x,y € S(H).

Utilising Theorem [7], we can state the following results:

}5(p,J,X,Y)20.

1
2|2

sz' (i, i)

el

PROPOSITION 15. We have
(i) The functional (-, I,x,y) is superadditive on Sy (R) for any
I e Pr(N)\ {2} and x,y € S(H).
(ii) The functional (B (p,-,X,y) is superadditive as an index set
mapping on Py (N) and x,y € S (H).
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As simple consequences of the above proposition, we may state the
following refinements of the (CBS)-inequality.

(a) f x,y € S(H) and o; € R, i € [ with [ € Py (N)\ {@}, then

1
2\ 2

(1.92) D laall® D llwl® = D (o)

iel iel iel
1
2\ 2
> )l sin® o > [yl *sin® o — | Y (i, i) sin® o
il iel iel
1
2\ 2
+ Z ]| cos® v Z il cos® a; — Z (i, y;) cos® a; >0
el i€l i€l
(b) f x;,y; € H,pi >0,7€{1,...,2n}, then
2n 2n 2n 2 %
(1.93) Zpi H%HZZEHZJZHQ - Zpi (@i, Y1)
i=1 i=1 i=1
1
n n n 2 2
> szk [k Zp% lyol|* — ZP% (2K, Yor)
k=1 k=1 k=1
n n
+ (Zpgk—1 [ Zp%—l 21|
k=1 k=1
1
n 2\ 2
- Zp2k—1 (Tok-1, Yor—1) (=0).
k=1

REMARK 8. Part (i) of Proposition 15 and the inequality
have been obtained by Dragomir and Mond in [2] for the case of scalar
sequences x and'y.
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CHAPTER 2

Schwarz Related Inequalities

2.1. Introduction

Let H be a linear space over the real or complex number field K.
The functional (-,-) : H x H — K is called an inner product on H if it
satisfies the conditions

(i) (z,z) >0 for any x € H and (z,z) =0 iff z = 0;
(i) (ax + By, z) = a{x,z)+ 5y, z) for any o, f € Kand z,y,z €
H;
(iii) (y,z) = (x,y) for any z,y € H.
A first fundamental consequence of the properties (i)-(iii) above, is
the Schwarz inequality:

(2.1) (& ) < (2. 2) (v, )

for any z,y € H. The equality holds in if and only if the vectors
x and y are linearly dependent, i.e., there exists a nonzero constant
a € K so that z = ay.

If we denote ||z|| := /(z, ),z € H, then one may state the follow-
ing properties

(n) ||z|| > 0 for any z € H and ||z|| =0 iff x = 0;
(nn) ||ax| = |af||z|| for any o € K and = € H;
(nnn) ||z +y| < ||z||+]y| for any x,y € H (the triangle inequality);

i.e., |||l is a norm on H.

In this chapter we present some classical and recent refinements and
reverse inequalities for the Schwarz and the triangle inequalities. More
precisely, we point out upper bounds or positive lower bounds for the
nonnegative quantities

2 2 2
[l lyll = [z, 9|5 =7 yll™ = [z, v)]
and
2]l + llyll = |z + y]|

under various assumptions for the vectors z,y € H.

37
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If the vectors x,y € H are not orthogonal, i.e., (x,y) # 0, then
some upper and lower bounds for the supra-unitary quantities

2 2
Nzl Iyl [zl |yl
()" [z, )

under appropriate restrictions for the vectors x and y are provided as
well.

The inequalities obtained by Buzano, Richards, Precupanu and
Moore and their extensions and generalizations for orthonormal fami-
lies of vectors in both real and complex inner product spaces are pre-
sented. Recent results concerning the classical refinement of Schwarz
inequality due to Kurepa for the complexification of real inner product
spaces are also reviewed. Various applications for integral inequalities
including a version of Heisenberg inequality for vector valued functions
in Hilbert spaces are provided as well.

2.2. Inequalities Related to Schwarz’s One

2.2.1. Some Refinements. The following result holds [15 The-
orem 1] (see also [18] Theorem 2]).

THEOREM 10 (Dragomir, 1985). Let (H,(-,-)) be a real or complex
inner product space. Then

(22) (Il Iyl = 1)) (lwll® 11207 = Ky, 2)1%)

2
> |(a,2) llyll* = (2. 9) (v, 2)]
for any x,y,z € H.
Proor. We follow the proof in [15].
Let us consider the mapping
py:HXH_)K7 py(x,z):(x,z> ||y||2_<xay> (y,2>

for each y € H\ {0} .
It is easy to see that p, (-,-) is a nonnegative Hermitian form and
then on writing Schwarz’s inequality

‘py (m,z)\2§py(x,:v)py (Z’Z)a r,z€ H
we obtain the desired inequality (2.2)). n

REMARK 9. From it follows that [15l, Corollary 1] (see also
[18, Corollary 2.1])

23) (lz+ 22 yl® - [z + 2.9 ) 2

< (Il Il = ) ) + (Wl 121E — 1. 2))

N
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for every x,y,z € H.
Putting z = Ay in , we get:
(2.4) 0 < fle +Xyl* [lyll* = [z + Ay, )|
212 2
< =l [yl = Kz, v)]
and, in particular,
201 112 2 2 112 2
25) 0<|fla Lyl lyll" = Kz £y, m)I” < [zl [lyll” — [(z, )]
for every x,y € H.

Both inequalities (2.4]) and (2.5)) have been obtained in [15].
We note here that the inequality (2.4]) is in fact equivalent to the
following statement

(2:6)  sup [l + 2yl [yl = e+ Ay, )] = Nl Iyl — [z, )|

for each x,y € H.
The following corollary may be stated [15l, Corollary 2] (see also
[18, Corollary 2.2]):

COROLLARY 3 (Dragomir, 1985). For any x,y,z € H\ {0} we have
the inequality

(z,y) {y, 2) (z,y) (y, 2) (z,2)
gl iyl =] [ |y 1 1121
PrRoOF. By the modulus properties we obviously have
2 2
(2, 2) lyll” = (2. 9) (. 2)] = (I, )yl = Kz )] 1y, 2]
Therefore, by ([2.2) we may state that

201 112 2 201112 2
(Nl ll™ = K, 17) (™ 12l = [y 2)I7)
20 114 2 2 2
> (2, 2) "yl = 2z, v) (y, 2) (2ol lyll™ + [z, )] [y, 2)]7
which, upon elementary calculation, is equivalent to (2.7)). n

2 2 2

{z,2)

(27) B

REMARK 10. If we utilise the elementary inequality a® + b* + ¢* >
3abc when a,b,c > 0, then one can state the following inequality

2 2 <Z, ZL’>

Iz[F ]

2

(z,y) (y,2) (z,x) (z,y) (y,2)
@8 3 PeE | S Tl ol T Tl e

for any x,y,z € H\{0}. Therefore, the inequality may be re-
garded as a reverse inequality of

The following refinement of the Schwarz inequality holds [15 The-
orem 2] (see also [18], Corollary 1.1]):
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THEOREM 11 (Dragomir, 1985). For any x,y € H and e € H with
lle|| = 1, the following refinement of the Schwarz inequality holds:

(2.9)  zlHlyll = [{z, ) = (z,e) {e;y)| + [z, €) (e, )| = [{z, )]

Proor. We follow the proof in [15].
Applying the inequality (2.2)), we can state that

(210)  (lll® = [, e) ") (Iyll* = Ky, e)F) = [z, y) = (w.e) (e 9)]"
Utilising the elementary inequality for real numbers
(2.11) (m? —n?) (p* — ¢*) < (mp —nq)*,

we can easily see that

(212) (el llyll = ¢z, e) {e.y)])”
> (lll* = Kz, &) ) (Iyll* = [{y. e)I*)
for any z,y,e € H with |le|| = 1.
Since, by Schwarz’s inequality
(2.13) [zl lyll = (2, e) {e, v)]
hence, by (2.10) and (2.12]) we deduce the first part of (2.10)).
The second part of (2.10]) is obvious. 1

COROLLARY 4 (Dragomir, 1985). If z,y,e € H are such that ||e]| =
1 and x L y, then

(2.14) ) lyll = 2 ¢z, e) e, ) -

REMARK 11. Assume that A: H — H is a bounded linear operator
on H. For z,e € H with ||z|| = |le|| = 1, we have by that

(2.15) [[Ayll = |(z, Ay) — (2, e) {e, Ay)| + [(z, €) (e, Ay)| = [ (=, Ay)]

for anyy € H.
Taking the supremum over x € H, ||z|| = 1 in and noting
that ||Ay|| = sup |[{x, Ay)|, we deduce the representation

fl=f|=1

(2.16)  [[Ayll = sup {|(z, Ay) — (z,€) (e, Ay)| + [(z, ) (e, Ay)[}

flzfl=1

for any y € H. Finally, on taking the supremum over y € H, |ly|]| =1
m we get

lyll=1,]l=[|=1

forany e € H, |le|| = 1, a representation that has been obtained in [15],
Eq. 9].
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REMARK 12. Let (H; (-,-)) be a Hilbert space. Then for any contin-
uous linear functional f: H — K, f # 0, there exists, by the Riesz rep-
resentation theorem a unique vector e € H\ {0} such that f (z) = (z,e)
forw e H and || f]| = |l

If E is a nonzero linear subspace of H and if we denote by E*+ its
orthogonal complement, i.e., we recall that E+ = {y € Hly L z} then

for any x € E and y € E*, by we may state that

ol 2 2| (755 ().

ging, for x,y # 0, that

(2.18) LA = 2z ) (y,e)| = 21 ()] 1f ()]

foranyx € E andy € E+.
If by || f|| z we denote the norm of the functional f restricted to E,

i.e., || fll g = subrep joy %, then, on taking the supremum over x € E
and y € B+ in we deduce

(2.19) A= 20l 1l e

for any E a nonzero linear subspace of the Hilbert space H and a given
functional f € H*\ {0}.

We note that the inequality has been obtained in [15, Eq.
10).

2.2.2. A Conditional Inequality. The following result provid-
ing a lower bound for the norm product under suitable conditions holds
[19] (see also [18], Theorem 1]):

THEOREM 12 (Dragomir-Séndor, 1986). Let x,y,a,b € H, where
(H; (-,-)) is an inner product space, be such that

(2.20) ||aH2 < 2Re(z,a) and HyH2 < 2Re(y,b)
holds true. Then
(2.21) |lz]l [lyll > (2Re (z,a) — [lal|*)* (2Re (y,b) — ||b]*)*

+ |<$,y> - <va> - <a'7y> + <a’7b>| .

PRrooOF. We follow the proof in [19].
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Observe that
(2.22) [(z,y) — (z,b) = (a,y) + {a,b)]
= |(z —a,y = )"
< [lz = al* [ly - b]*
= [llzI* = (2Re (z,a) — lal*)] [Ilyll* = (2Re (y,0) — [1b]|*)] -
Applying the elementary inequality we have

(2.23) {||x||2 —~ [(2 Re (z,a) — Hal\Z)é]Q}
< {Hy\f ~|(2Rey.b) - |\b\|2)%]2}

< [lell il — (2Re (2.a) — [lal)* (2Re (y.5) — [1)*]

Since

0< (2Re(z,a) — [la*)* < ||| and

1

0 < (2Re (y,0) = [IblI*)* < llyll

hence
]l lyll = (2Re (z, a) — all*)* (2Re (y,0) — [1B]*)*

and by (2.22)) and (2.23)) we deduce the desired result (2.21)). B

REMARK 13. As pointed out in [19], if we consider a = (x,e€) e,
b= (y,e)e with e € H, |le|| =1, then the condition is obviously
satisfied and the inequality becomes

(2.24) Izl lyll = |(z, e) (e, )] + [{z, ) — (x,€) e, )|
(= [{z,9)]),

which is the refinement of the Schwarz inequality incorporated in .

For vectors located in a closed ball centered at 0 and of radius v/2,
one can state the following corollary as well [18], Corollary 1.2].

COROLLARY 5. Let z,y € H such that |||, ||ly|| < V2. Then

(225) |zl lwl > 1w )2 2~ 2l%)* (2~ Ilolf*)®
+ )| 1= llall® = gl + [, )]

Proor. Follows by Theorem on choosing a = (z,y)y, b =
(y,z) x. We omit the details. §
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2.2.3. A Refinement for Orthonormal Families. The follow-
ing result provides a generalisation for a refinement of the Schwarz
inequality incorporated in (2.9 [15, Theorem 3] (see also [8, Theorem)]
or [18, Theorem 3]):

THEOREM 13 (Dragomir, 1985). Let (H;(-,-)) be an inner product
space over the real or complex number field K and {e;},.,; an orthonor-
mal family in I. For any F' a nonempty finite part of I we have the
following refinement of Schwarz’s inequality:

(2.26) =l lyll = <w7y>—z<x,ei> (€:,y) +Z|<x,6i> (e, y)]
> <$7y>—z<%€i> (ei, y)| + 2@760 (i, y)
> [{z,y)],

where x,y € H.

Proor. We follow the proof in [15].
We apply the Schwarz inequality to obtain

2

(2.27) <m — Z (x ey e, y— Z (y, €i) ei>
< $_Z<$,€i>€i y—z<y,€i>€i

Since a simple calculation with orthonormal vectors shows that

2
2 2
=Y (zeel =’ =D [z e,
i€F el
2
2 2
y—Z(y,eDei = |lyl —ZK%&N ;
i€l i€EF

and

<I =Y (mede, y— (y.e) €i> = (z,y) =Y (v.e) (eiy),

ieF el el



44 2. SCHWARZ RELATED INEQUALITIES

hence (2.27) is equivalent to

2

(228) |{e.) = 3 (e (esy)
< (HxH? -3 \<x,ei>|2) (HyH? -3 |<y,e@->12)

for any x,y € H.
Further, we need the following Aczél type inequality

(2.29) <a2 - Za?> (52 - Zﬁ?) < (aﬁ - Zaiﬁi)Q,

icF i€l i€l

provided that o > 3", . a? and 3° > 3", 37, where o, 3, a;, 3; € R,
1€ F.

For an Aczél inequality that holds under slightly weaker conditions
and a different proof based on polynomials, see [26], p. 57].

For the sake of completeness, we give here a direct proof of ([2.29).

Utilising the elementary inequality (2.11]), we can write

19 2

(230) | a®— (Za3>2 3 - <Zﬁ?>

icF icF

D=

D=
N

i€l

< |las| - <Z a?)

(%)

N

Since |a| > (Y, a?)? and [B] > (X ,cp 57)

g > (Z a?> (Zﬁ?) .
el el

, then
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Therefore, by the Cauchy-Bunyakovsky-Schwarz inequality, we have
that

o) — (Z a?) (Z 6?) = |ap| - (Z a?) (Zﬁ?)
i€EF i€EF i€EF i€F

< lap| - Zazﬂi
i€F
= ||aB] - Zazﬂi
iEF
S Olﬁ— Zalﬁz ;
el

showing that

(231)  |laf] - (Z Oz?)% (ZB?)é 2 < (aﬁ - Z%ﬂi)z

i€l 1eF i€l

and then, by (2.30) and (2.31) we deduce the desired result (2.29)).

By Bessel’s inequality we obviously have that
2 2 2 2
2] =) 1, e)] and  ly|* = > [{y.enl,
i€F i€F

therefore, on applying the inequality (2.29)) we deduce that

(2.32) (HxHQ - N, 60!2) (HyH2 >l ei>l2>

iEF iEF
2
< <I|w|| lyll =D I, es) <ei,y>|> :
iEF

Since [l lyll — Sier 1 (2, ) (es, )| = 0, hence by (B28) and (23 we
deduce the first part of (2.26)).

The second and third parts are obvious. 1

When the vectors are orthogonal, the following result may be stated
[8] (see also [18], Corollary 3.1]).
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COROLLARY 6. If {e;},.; is an orthonormal family in (H,(-,-)) and
x,y € H with x 1y, then we have the inequality:

@33) el = |3 e (o) |+ D leen) ein)
> 2|3 (e feun)|.

for any nonempty finite part of I.

2.3. Kurepa Type Refinements for the Schwarz Inequality

2.3.1. Kurepa’s Inequality. In 1960, N.G. de Bruijn proved the
following refinement of the celebrated Cauchy-Bunyakovsky-Schwarz
(CBS) inequality for a sequence of real numbers and the second of
complex numbers, see [2] or [9] p. 48]:

THEOREM 14 (de Bruijn, 1960). Let (ay,...,a,) be an n—tuple of

real numbers and (z1, ..., z,) an n—tuple of complex numbers. Then
2
n 1 n n n
k=1 k=1 k=1 k=1
(<3 300r).
k=1 k=1

Equality holds in if and only if, for k € {1,...,n}, ar =
Re (\z;), where X is a complex number such that \*>"\_, 22 is a non-
negative real number.

In 1966, in an effort to extend this result to inner products, Kurepa
[25] obtained the following refinement for the complexification of a real
inner product space (H;(-,)) :

THEOREM 15 (Kurepa, 1966). Let (H; (-,-)) be a real inner product
space and (Hg, (-, -)¢) its complexification. For any a € H and z € Hc
we have the inequality:

(2.35) (2, a)el” < % lall* [lI=lle + 1z 2)cl]

211112
(< lall*ll=lg) -
To be comprehensive, we define in the following the concept of
complexification for a real inner product space.
Let H be a real inner product space with the scalar product (-, -)
and the norm ||-|| . The complezification Hc of H is defined as a complex



2.3. KUREPA TYPE REFINEMENTS FOR THE SCHWARZ INEQUALITY 47

linear space H x H of all ordered pairs (z,y) (z,y € H) endowed with
the operations

(@) + (@) = (@+2"y+y), =2yy €H;

(c+ir) - (x,y) := (ox — Ty, T + OY), r,y € H and o,7 € R.
On Hc one can canonically consider the scalar product (-,-). defined
by:

(2,2)¢ o= (@, 2") + (y.¢) + i [{y,2) — (2,9)]
where z = (z,y), 2/ = (2/,y') € Hc. Obviously,
2 2 2
12llc = [l ™+ vl

where z = (z,v) .

The conjugate of a vector z = (z,y) € Hc is defined by z :=
(Q?, _y) :

It is easy to see that the elements of H¢ under defined operations
behave as formal “complex” combinations x+iy with x,y € H. Because
of this, we may write z = z+iy instead of z = (z,y) . Thus, z = z —iy.

2.3.2. A Generalisation of Kurepa’s Inequality. The follow-
ing lemma is of interest [6].

LEMMA 2. Let f:[0,2n] — R given by

(2.36) f (o) = Asin? a + 23 sin a cos a + a cos?® a,
where \, B,y € R. Then
1 1 1
(2.37) sup f (o) == (A+7)+5 [(v =N +45°]".
a€0,27] 2 2

PROOF. Since

o 1 — cos2a 9 1+ cos 2« ) )
sin Q:T, cos a:T, 2sin o cos a = sin 2a,
hence f may be written as
1 1
(2.38) fla)= 5 A+7v) + 5 (7 — A) cos 2a + (Fsin 2av.

If 8 =0, then (2.38)) becomes
1

f(a):%()\+’y)+§(7—)\)0082a.

Obviously, in this case

sup f () =

1 1
5()\—1—7)—1—5]7—)\] = max {7, \}.
a€0,27]
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If 8 # 0, then (2.38)) becomes

1 - A
f(la)= 5()\—1—7)—1—5 sin 2av + (Wﬁ )(308205 :
Let ¢ € (—g, g) for which tan ¢ = % Then f can be written as
F(0) =5 (47) + 2 sin 20+ ¢)
a) == sin (2« .
2 7 COos ¢ 7
For this function, obviously
(2.39) sup f(«a) = 1 (A+7)+ 5] .
a€0,27] 2 ’COS 90‘
Since
sin o (=N
cos2o 47 7
hence,
1 [(r =N 44577
|cos | 218 ’

and from (2.39)) we deduce the desired result (2.37)). 1
The following result holds [6].

THEOREM 16 (Dragomir, 2004). Let (H;(-,-)) be a complex inner
product space. If x,y, 2z € H are such that

(2.40) Im (z,z) =Im (y, z) =0,
then we have the inequality:
(2.41) Re*(z,2) + Re? (y, 2)

= |{ + iy, 2)[’

1 2 3
< {||a:||2 + Iyl + (2] = llgl)* — 4Re? <x,y>}2} B

< (llel® + l*) N1=11%
PROOF. Obviously, by ([2.40), we have
(x +1iy,z) = Re(z,z) +iRe (y, 2)

and the first part of (2.41]) holds true.
Now, let ¢ € [0,27] be such that (z +iy,z) = ¥ |(x + 1y, 2)]|.
Then

[z +iy, 2)| = e ¥ (x +iy,z) = (e ¥ (x+iy), 2).
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Utilising the above identity, we can write:

(z +iy, 2)| = Re (e (v +1iy), z)
= Re ((cosp —isinp) (x +1iy), 2)
=Re(cosp-r+sing-y—ising-x+icosp-y,z)
=Re(cosp-x+sinp-y,z) +Im(sinp- -z —cosyp-y,z)
= Re(
{

= Re(cosp-x+sinp-y,z2),

cos - x +sing -y, z) +sinplm (x, z) — cosplIm (y, 2)

and for the last equality we have used the assumption ([2.40)).
Taking the square and using the Schwarz inequality for the inner
product (-, ), we have

(2.42) [z + 1y, 2)|” = [Re (cos @ - & +sing - y, 2)]°
< |lcos @ - @ +sin - y[|* || 2]
On making use of Lemma [2| we have

sup |[cos - +sin g - y|?
a€0,27]

= sup [Hx!|20082<p+2Re(x,y)sing0cosg0+HyHZSiHZQO]
a€l0,2n]

-2 {||a:||2 I+ el = lylP)° + 4Re? (2. 5}

and the first inequality in (2.41]) is proved.
Observe that

(lzl* = lyll*)” + 4 Re® {z, )
= (lel® + Iyl?)" = 4 [llzl* Iy ]1* — Re? 2, )]
< (el + flyl?)®

and the last part of is proved. §

REMARK 14. Observe that if (H, (-,-)) is a real inner product space,
then for any x,y,z € H one has:

(2.43) (, 2)2 + (y, z>2

1

& Ll 1+ [(l® = Wl + 4 ]} el
(el + 1) 11212

IN

IN
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REMARK 15. If H is a real space, (-,-) the real inner product, Hc
its complexification and (-,-)c the corresponding complezification for
(), then for z,y € H and w := x + iy € Hc and for e € H we have

Im (z,e) =Im (y,e) =0,
2 2 2 _ 2 2\ 2 2
Jwlle = [l=l” + [yl [(w, @)¢| = (1=l = lylI")” + 4 (z,y)°,
where w = x — iy € Hc.

Applying Theorem[14] for the complex space Hc and complex inner
product (-, ), we deduce

2 1 2 2 — 2 2
(2.44) [(w, e)el” < 5 llell” [lwlic + 1w, @)cl] < llel* el

which s Kurepa’s inequality .

COROLLARY 7. Let x,y,z be as in Theorem [16. In addition, if
Re (z,y) = 0, then

(2.45) [Re? (z, 2) + Re? (3, 2)] * < ||| - maxc {2l ly]}

REMARK 16. If H is a real space and (-,-) a real inner product on
H, then for any x,y,z € H with {x,y) = 0 we have

(2.46) (2, 2)% + (9. 2)%]* < [l2]l - max {Jl2] . ]}

2.3.3. A Related Result. Utilising Lemma [2, we may state and
prove the following result as well.

THEOREM 17 (Dragomir, 2004). Let (H,(-,-)) be a real or complex
inner product space. Then we have the inequalities:

@41 3 1o O + w0 + [(0. 0 = w.0)’

+ 4 (Re (v, t) Re (w, t) + Im (v, t) Im (w, t>)2} %}

N|=

VAN

5 P {||v||2 + ol + [ (lol* = flw]*)* + 4Re? (v, w)| }

(ol + flwl®) 111
for all v,w,t € H.

IA

PRrOOF. Observe that, by Schwarz’s inequality
(2.48) [(cosp - v +sing - w, 2)|> < |[cos @ - v +sin ¢ - w||* || z]|?
for any ¢ € [0,27].
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Since
I (@) :=||cosp-v+singp - wl|?
= cos? @ ||v]|* + 2Re (v, w) sin @ cos ¢ + ||w]|* sin? ¢,

hence, as in Theorem (16}

=

sup 1) = {W + ol + [ (ol* = flw]*)* + 4Re? (v, w)|

©€[0,27]

Also, denoting
J () :=|cos ¢ (v, z) + sin g (w, 2)|

= cos? ¢ (v, 2)|* + 2sin pcos p Re [(v, z) W] +sin?  [(w, 2)|?,
then, on applying Lemma 2, we deduce that

sup J(so>=1{|<v,t>|2+|<w,t>|2

p€0,27] 2

+ (10 0F = lw,0F) + 4Re? [(v, 2) Tw, 2|

D=

|

and, since

Re [(v, z) (w, z)} = Re (v,t) Re (w,t) + Im (v, t) Im (w, t) ,
hence, on taking the supremum in the inequality ([2.48]), we deduce the
desired inequality (2.47)). B

REMARK 17. In the real case, provides the same inequality
we obtained in .

In the complex case, if we assume that v,w,t € H are such that
Re (v,t) Re (w,t) = —Im (v, t) Im (w, t)
then becomes:
(2.49) max {|{o, )7, [{w, B}

1 2 3
< 5 I { Bl + P + [Q1e? = ol®)* + 4R (0] .

2.4. Refinements of Buzano’s and Kurepa’s Inequalities

2.4.1. Introduction. In [3], M.L. Buzano obtained the following
extension of the celebrated Schwarz’s inequality in a real or complex
inner product space (H;(-,-)) :

)
(2.50) [{a,x) (@, ) < 2 [lall - 1Bl + [{a, )]} ]I,

DN | —
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for any a,b,x € H.
It is clear that for a = b, the above inequality becomes the standard
Schwarz inequality

2 2 2
(2.51) [{a, )" < llal"[l«]", @,z € H;

with equality if and only if there exists a scalar A € K (K=R or C)
such that x = \a.

As noted by M. Fujii and F. Kubo in [21], where they provided
a simple proof of by utilising orthogonal projection arguments,

the case of equality holds in (2.50)) if
{ab) b
<||a|| T Tan W) , when (a,b) #0
<||a|| +6- %) when (a,b) =0,
where «a, § € K.

It might be useful to observe that, out of (2.50), one may get the
following discrete inequality:

Zplalxlzplxl 7
(sz’az sz\b\ )

where p; > 0, a;,x;,b; € C,i € {1,...,n}.
If one takes in (2.52) b; =@; for i € {1,...,n}, then one obtains

(2.53)
[sz |a1| + sz ] sz |:E, )

(2.52)

szaz % sz ’xz )

[\Dlr—\

n n
E piail'_ig Pia;x;| <
i=1 i=1

for any p; > 0, a;,x;,b0; € C,i € {1,...,n}.

Note that, if z;, i € {1,...,n} are real numbers, then out of ,
we may deduce the de Bruijn refinement of the celebrated Cauchy-
Bunyakovsky-Schwarz inequality [2]

> piriz| < sz [ZMM + Zp@
i=1

where z; € C, i € {1,... ,n}. In this way, Buzano s result may be
regarded as a generalisation of de Bruijn’s inequality.

Similar comments obviously apply for integrals, but, for the sake of
brevity we do not mention them here.

(2.54)
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The aim of the present section is to establish some related results
as well as a refinement of Buzano’s inequality for real or complex inner
product spaces. An improvement of Kurepa’s inequality for the com-
plexification of a real inner product and the corresponding applications
for discrete and integral inequalities are also provided.

2.4.2. Some Buzano Type Inequalities. The following result
may be stated [16].

THEOREM 18 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K. For all o € K\ {0} and
x,a,b € H, a # 0, one has the inequality

oo [eskiet e
< el

— laf ]

The case of equality holds in if and only if there exists a scalar
A € K so that

[loe = 11" [{a, 2)” + lllf” all* — [{a, 2)I]

(2.56) Q- {a, $>x =a+ A\b.

ProoFr. We follow the proof in [16].
Using Schwarz’s inequality, we have that

2 2
(2.57) ‘<a- <Ha’i2>:c—a,b> < H&- <Ha"$2>x—a 1]
x x
and since
2 2 2
Ha . <a,a:2>$ —a _ ’04’2 |<a,xZ| o 2|<CL, IZ| Rea + HaH2
] ] ]
_ o= 1 [{a, ) + |2 [lal* — [{a, 2)]"
(el
and
b b
<aKm@$_aﬁ>:a[me§>_Km>’
] ] «

hence by ([2.55) we deduce the desired inequality ([2.55)).

The case of equality is obvious from the above considerations related
to the Schwarz’s inequality (2.51)). B
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REMARK 18. Using the continuity property of the modulus, 1i.e.,
2] = |ul| < |z —ul, z,u € K, we have:

(2.58) [{a,z) (@,b)|  |{a, D)

(&l | el a
Therefore, by and , one may deduce the following double
mequality:

1
(2.59) m {|(a, b)

(a,2) (x,0)  (a,b) ‘ |

_ bl
o]
< [(la = 1 oo+ ol ~ . 2) )1
o) (2.0

2
]

HbH}
_ b iihals
<1 101+ g
x (o= 1P {2, ) + 2l lal* = |{z, ) ?] .
for each a € K\ {0}, a,b,z € H and x # 0.

It is obvious that, out of (2.55)), we can obtain various particular
inequalities. We mention in the following a class of these which is
related to Buzano’s result (2.50) [16].

COROLLARY 8 (Dragomir, 2004). Let a,b,x € H, x # 0 and n € K
with |n| = 1, Ren # —1. Then we have the inequality:

(2.60) (a,z) (x,b)  (a,b) [all [0l
|| 1+n|~ V2T +Rey’
and, in particular, for n =1, the inequality:
261 (0.0 (r.8) _ {0} _ Jall ]
]l 2 2

Proor. It follows by Theorem [1§| on choosing o = 1 4+ 1 and we
omit the details. 1

REMARK 19. Using the continuity property of modulus, we get from
that:

[{a, ) (=, 0)| _ [{a,0)] + [la| [|5]

lz|> = V2yT+Ren

which provides, as the best possible inequality, the above result due to

Buzano :

|T]| = 17 Re77 7A _17
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REMARK 20. If the space is real, then the inequality 15 0bui-
ously equivalent to:

{a,b) _ ol

262) T — o [0 = 12 (0,0 + ol ol ~ {a.2)%)*

(0 = 1) (a,2)” + |]* la> = (@, )]

for any o € R\ {0} and a,b,x € H, x # 0.
If in we take o = 2, then we get

(2.63) %[(a, b) — llall loll] llz]I* < (a, ) (z,b)

[{a,0) + llall Iy l] llIl”,

which apparently, as mentioned by T. Precupanu in [29], has been ob-
tained independently of Buzano, by U. Richard in [30].

In [28], Pecarié¢ gave a simple direct proof of @ without men-
tioning the work of either Buzano or Richard, but tracked down the
result, in a particular form, to an earlier paper due to C. Blatter [1].

Obviously, the following refinement of Buzano’s result may be stated
[16].

COROLLARY 9 (Dragomir, 2004). Let (H;(-,-)) be a real or complex
inner product space and a,b,x € H. Then

(2.64)  [(a, ) (z,0)] < |(a,z) (z,]) —%<a, b) [l +%I<a7b>| (el

< 5 Ul 180+ I, )] el

PROOF. The first inequality in (2.64]) follows by the triangle in-
equality for the modulus |-|. The second inequality is merely (2.61)) in
which we added the same quantity to both sides. 1

REMARK 21. For a = 1, we deduce from the following

inequality:

{a,2) (x,b) Il

— —{a,b)| < Izl [l flal® = K, z)[]

N

(2.65) 2]

for any a,b,x € H with x # 0.
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If the space is real, then 15 equivalent to

(2.66) (a.h) - ﬁ [l flal — (e, 2) ]
oo
< % (el ol = la, )] + (.8,

which is similar to Richard’s inequality (2.63).

2.4.3. Applications to Kurepa’s Inequality. In 1960, N.G. de
Bruijn [2] obtained the following refinement of the Cauchy-Bunyakovsky-
Schwarz inequality:

n n
i=1 =1

provided that a; are real numbers while z; are complex for each i €

{1,..,n}.
In [25], S. Kurepa proved the following generalisation of the de
Bruijn result:

2
(2.67) < 5;% [Zl\zi! +

i=

THEOREM 19 (Kurepa, 1966). Let (H;(-,-)) be a real inner product
space and (Hg, (-,-)¢) its complezification. Then for any a € H and
z € He, one has the following refinement of Schwarz’s inequality

1 _
(2.68) (@ 2)cl” < 5 llall* [ll2lle + (2, 2)cl] < llall* 2112

where zZ denotes the conjugate of z € Hc.

As consequences of this general result, Kurepa noted the following
integral, respectively, discrete inequality:

COROLLARY 10 (Kurepa, 1966). Let (S, %, ) be a positive measure
space and a,z € Lo (S,%, ), the Hilbert space of complez-valued 2 —
p—integrable functions defined on S. If a is a real function and z is a
complex function, then

2

(2.69)

[e®=0du)
<5 [e@a ]| [1=0Pan +

/522 () dy (z)H |
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COROLLARY 11 (Kurepa, 1966). If ai,...,a, are real numbers,
21, ..., 2y are complex numbers and (A;;) is a positive definite real ma-
triz of dimension n X n, then

2
n 1 n
Z Aijaizj S 5 Z Aijaiaj
The following refinement of Kurepa’s result may be stated [16].

n
E Aij ZZ'Z_]‘

ij=1

ij=1

(2.70)

ij=1 ij=1

THEOREM 20 (Dragomir, 2004). Let (H;(-,-)) be a real inner prod-
uct space and (Hc, (-,-)¢) its complexification. Then for any e € H
and w € Hc, one has the inequality:

Q7)) o)l < \<w,e>§é L @) el

1
: + 5 W @)l el

1 _
< 5 lell [oll?. + ¢, @]

Proor. We follow the proof in [16].
If we apply Corollaryfor (He,(-,-)c)andz =e € H, a = w and
b = w, then we have

(2.72) [(w, e)¢ (e, W)

_ 1 _ 1 _
< [, e) (e, whe — 5 (w, e flell*| + 5 [(w, el [le]

[\)

A

1 _ i}
< 5 llel* llwlle 1ol + |{w, @)l

Now, if we assume that w = (z,y) € Hg, then, by the definition of
(-,")c» we have

<w7 e)(C = <(‘Ta y) ) (67 O)>(C
= <.I‘, 6> + <y70> +1 [<ya 6> - <:L‘,O>]
= (e,x) +ile,y),

and
2 2 2 2
o]l = llzlI” + [lyll” = [Jwlle -

Therefore, by (2.72]), we deduce the desired result (2.71]). §



58 2. SCHWARZ RELATED INEQUALITIES

Denote by éi (C) the Hilbert space of all complex sequences z =
(2i);en With the property that for p; > 0 with Y 7°, p; = 1 we have
o pi |zi]” < oo. If a = (ai);en 1s a sequence of real numbers such
that a € £2 (C), then for any z € > (C) we have the inequality:

iﬂiaizi
i=1
oo 2 oo [e.e] oo
< (Z Pi%’%) - %Zpiag ZPZZZQ + % Zpia?
i=1 i=1 i=1 i=1
< %Zpiag [ZPZ ‘Zi|2+ szzf] :
i=1 i=1 i=1

Similarly, if by LZ (S, %, ) we understand the Hilbert space of all
complex-valued functions f : § — C with the property that for the
p—measurable function p > 0 with [ p (t) du (t) = 1 we have

/gp“) £ du(t) < oo,

then for a real function a € L?) (S,%, ) and any f € Li (5,2, 1), we
have the inequalities

(2.73)

o0

2
E Pizi
i=1

(2.74) 2

/S p(t)a(t) £ () dpe (t)

([r0aw s <t>)2

—%/Sp(t)f2 (Tt)du(t)/sp(t)@2 (t)dﬂ(t)‘

<

t5| [ rOamo| [podoano
<5 [oe O

. Usp<t>|f<t>|2du<t>+

Lo r @],

2.5. Inequalities for Orthornormal Families

2.5.1. Introduction. In [3], M.L. Buzano obtained the following
extension of the celebrated Schwarz’s inequality in a real or complex
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inner product space (H; (-, -)) :

(2.75) [(a, @) (2, b)] < 5 [llall 11B]] + [{a, b)[] 1[I,

N[ —

for any a,b,x € H.
It is clear that the above inequality becomes, for a = b, the Schwarz’s
inequality

(2.76) [(a, )" < llal* [|l2]I*,  a,x € H;

in which the equality holds if and only if there exists a scalar A € K
(R, C) so that x = Aa.

As noted by T. Precupanu in [29], independently of Buzano, U.
Richard [30] obtained the following similar inequality holding in real
inner product spaces:

(2.77) % lz1* [{a, 0) — llall lo]] < (a, ) {z,b)

Lo
< 5 llzl” [{a, b) + [lall []bll]

The main aim of the present section is to obtain similar results for
families of orthonormal vectors in (H;(:,-)), real or complex space,
that are naturally connected with the celebrated Bessel inequality and
improve the results of Busano, Richard and Kurepa.

2.5.2. A Generalisation for Orthonormal Families. We say
that the finite family {e;},.; (I is finite) of vectors is orthonormal if
(€i,e;) = 01if 4,5 € I with ¢ # j and ||e;|| = 1 for each i € I. The
following result may be stated [11]:

THEOREM 21 (Dragomir, 2004). Let (H;(-,-)) be an inner prod-
uct space over the real or complex number field K and {e;},.; a finite
orthonormal family in H. Then for any a,b € H, one has the inequality:

(2.78) <

S (e e ) — 5 (@ b)] < 3 lal o]

i€l

The case of equality holds in if and only if

1 1 b
(279) ) (a,e) e = o+ <Z {a, e3) (en,b) — 5 (a,b}) g

el i€l

ProoFr. We follow the proof in [11].
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It is well known that, for e #£ 0 and f € H, the following identity
holds:

2
LI llell” = 1¢f, ) )e
lel|”
Therefore, in Schwarz’s inequality
(2.81) (e < IFIPNlel®,  fre € H;
the case of equality, for e # 0, holds if and only if
fie)e
p=ta

]l
Let f:=2).;(a,e;)e; —a and e := b. Then, by Schwarz’s inequality
(2.81), we may state that

<2 Z (a,e;)e; — a, b>

with equality, for b # 0, if and only if

(2.83) 22(@, e) e —a= <2Z<a, e;) ei—a,b> #

(2.80)

-l

2

(2.82) [l

22 (a,e;) e; —

el

iel iel
Since
<22 (a,e;) e; — a, b> = ZZ (a,e;) (e;,b) — (a,b)
iel iel
and

2

iel
2
=4 Z (a,e;)ei|| —4Re <Z (a,e;) e, a> + Jla))?
iel iel
2 2 2
=4y [a,e) =4 [(a,e) + lal]
i€l icl
el

hence by (2.82)) we deduce the desired inequality (2.78)).
Finally, as (2.79) is equivalent to

a 1 b
a,e;) € — = = a,e;) (e, b) — - (a,b 27
> laei)ei— 5 <Z< ) {eanb) =5 >> T

i€l el
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hence the equality holds in (2.78)) if and only if (2.79)) is valid. &

The following result is well known in the literature as Bessel’s
inequality
(2.84) S edl? < e, weH,
el
where, as above, {e;},.; is a finite orthonormal family in the inner
product space (H;(-,-)).
If one chooses a = b = x in ([2.78]), then one gets the inequality

1
2 2
> Iz e)* = 5 llz]

il

1
< 5 ll=ll”,

which is obviously equivalent to Bessel’s inequality . Therefore,
the inequality may be regarded as a generalisation of Bessel’s
inequality as well.

Utilising the Bessel and Cauchy-Bunyakovsky-Schwarz inequalities,
one may state that

N|=

(2.85) | (a,e:) (e, b)

il

< [ZKG, el Y 10, €i>|2] < [lafl{lo]

iel iel
A different refinement of the inequality between the first and the
last term in ([2.85)) is incorporated in the following [11]:

COROLLARY 12 (Dragomir, 2004). With the assumption of Theo-
rem [21], we have

Z (a,e;) (e;, b)

el

(2.56) < (aead fenb) = 5 e} + 5 1@,

el

IN

5 llall 18]+ 1{a. B
< Jall o]

REMARK 22. If the space (H;(-,-)) is real, then, obviously,
15 equivalent to:

1 1
(287) 5 ({a,b) = [lalllo]]) < D Aaces) (e b) < 5 Ualll1oll + (a, b))
iel
REMARK 23. It is obvious that if the family comprises of only a
single element e = ﬁ, x € H, v # 0, then from we recapture
the refinement of Buzano’s inequality incorporated in while from

we deduce Richard’s result from .
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The following corollary of Theorem [21|is of interest as well [11]:

COROLLARY 13 (Dragomir, 2004). Let {e;},.; be a finite orthonor-
mal family in (H; (-,-)). If x,y € H\ {0} are such that there exists the
constants m;,n;, M;, N; € R, i € I such that:

Re <l‘, €i> . Re <y7 ei)
| [yl

and

Im <$a ei> Im <y7 ei)

(Ed] [yl
then
(2900 23 (mi+ny) _M_lJrQZ (M; + N;) .
= [z Iyl =

Proor. We follow the proof in [11].
Using Theorem and the fact that for any complex number z,
|z| > |Re z|, we have

(2.91) ZRe (z,e;) (ei,y)] — %Re (x,y)
< [ e feny) = 5 (o)
<5 el

Since

Re [<$a €i> <ei7 y)] = Re <l’, ei) Re <y7 ei) + Im <$7 ei> Im <y7 6i> )
hence by (2.91)) we have:

1 1
292) = lall vl + 5 Re(zy)
< Z Re (z,e;) Re (y, &) + Z Im (z, e;) Im (y, ;)
i€l i€l

1 1
< 5 lzllliyll + 5 Rez, ) -

Utilising the assumptlens and -, we have

(2.93) Zmz_ZRe z,e;) Re (y, e;) ZM

p p ]l Iyl oy
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and

(2.94) an_zlm x,e;) Im (y, e;) ZN

= e [l ] p

Finally, on making use of (2.92) — (2.94), we deduce the desired result
2.90). 1

REMARK 24. By Schwarz’s inequality, is it obvious that, in general,

< Belmy)
]| |y
Consequently, the left inequality in is of interest when ) .., (m; +n;) >
0, while the right inequality in is of interest when )., (M; + N;) <
0.

2.5.3. Refinements of Kurepa’s Inequality. The following re-
sult holds [11].

THEOREM 22 (Dragomir, 2004). Let {e;}, ; be a finite orthonormal

family in the real inner product space (H;(-,-)). Then for any w €
Hg, where (Hc; (-, )¢) 1s the complexification of (H;(:,-)), one has the
following Bessel’s type inequality:

S twe| < |3t et = 5w w)e| + 5 1w, @)el

jel jeI

(2.95) <

1 2 — 2
<3 wlle + [w, @[] < flwlg.-

ProoFr. We follow the proof in [11].
Define f; € He, fj := (e;,0), j € I. For any k, j € I we have

{fir Fide = ((ex, 0), (€5, 0))c = (en, €5) = Oij
therefore {f;}, ; is an orthonormal family in (Hc; (-, ")¢) -
If we apply Theorem [21| for (Hc; (-, )¢), @ = w, b = w, we may
write:

_ 1 _ 1 -
296) |3 wey)e feseit)e — 5w ie| < 2wl e
jel
However, for w := (z,y) € Hc, we have w = (z, —y) and
<€j7w>(c = <(ej7 O) 5 ($, _y)>(c = <€j7$> —1 <€j7 _y> = <€j,l‘> +1 <€j7 y>

and

<w76j><c <($ y) (6],0)>C = <6j7x> —1 <6j7 _y> = <ZE, 6j> +1 <€j>y>



64 2. SCHWARZ RELATED INEQUALITIES

for any j € I. Thus (e;, w) = (w, e;) for each j € I and since

1
lwlle = ll@le = (l=1” + llyl*)*

we get from (2.96)) that

e

(2.97) S et = 5 fw,w)e| <

jel

=2

Now, observe that the first inequality in (2.95]) follows by the triangle
inequality, the second is an obvious consequence of (2.97)) and the last
one is derived from Schwarz’s result. g

REMARK 25. If the family {e;}.., contains only a single element
H_iH’ x € H, x # 0, then from 2.95) we deduce , which, in
its turn, provides a refinement of Kurepa’s inequality )

e =

2.5.4. An Application for L,[—m,7]. It is well known that in
the Hilbert space Lo [—m, 7| of all functions f : [—7, 7] — (C With the
property that f is Lebesgue measurable on [—m, 7] and [ ) dt <
00, the set of functions

1 1 1 }
cost, sint, . cosnt, —sinnt, . ..
{ V2 \/_ \/_ T VT
is orthonormal.
If by trigt, we denote either sint or cost, t € [—m, 7], then on using
the results from Sections [2.5.2] and [2.5.3] we may state the following
inequality:

(2.98)

Z t) trig (kt) dt - / Wmtrig(kt)dt

__/f

< i/| @fa [ lara,

where all trig (kt) is either sinkt or coskt, k € {1,...,n} and f €
Ly [—m, 7).
This follows by Theorem [21]
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If one uses Corollary [12] then one can state the following chain of
inequalities

—Tr

(2.99) %Z / ' f(t) trig (kt) dt - / FMtrig (kt) dt
< Z t) trig (kt) dt - /ﬂmwig (kt) dt
—% ﬂf(t)mdt‘+%‘/_wf(t)mdt‘

IN

: l(/:|f(t)l2dt/z |g<t>|2dt)% +] Wf(t)mdtu

VAN
7 N
P
3 El
=
=
o
Q.
~
P
3
Q.
~
N
|

where f € Ly [—m, 7).
Finally, by employing Theorem [22, we may state:

1 Z [/:Tf(t) trig (k) dtr
[/f ) trig (kt) d ]——/f £)dt| +
1[/ I |dt+\/ 7 1 dtH [ wwpa,

where f € Ly [—m, 7).

| [

2.6. Generalizations of Precupanu ’s Inequality

2.6.1. Introduction. In 1976, T. Precupanu [29] obtained the
following result related to the Schwarz inequality in a real inner product
space (H; (")) :
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THEOREM 23 (Precupanu , 1976). For any a € H, x,y € H\ {0},
we have the inequality:

AT LU R
cmaEh o , ma by
] Iyl BRI
_ llal 18l + {a,b)
- 2

In the right-hand side or in the left-hand side of we have equal-
ity if and only if there are A\, u € R such that

(2.101) /\% . <“y’|f> v =3 L a4 ub).

Note for instance that [29], if y L b, i.e., (y,b) = 0, then by ([2.100)
one may deduce:

A+ ) ey < o

for any a, b,z € H, an inequality that has been obtained previously by
U. Richard [30]. The case of equality in the right-hand side or in the
left-hand side of (2.102) holds if and only if there are A\, u € R with

(2.103) Nz, a) x = (Na+ pb) ||z]|*.
For a = b, we may obtain from (2.100)) the following inequality [29]

lall HbH + (a,b)

(2.102)

] 1yl H I || H

This inequality implies [29]:

lzl gl = 2 Llil lall  lylHlall] 2

In [27], M.H. Moore pointed out the following reverse of the Schwarz
inequality

(2.106) (w2 < llyllllzll, v,z € H,

where some information about a third vector z is known:

(2105) <J], y> > 1 <ZE, a> (y, CL> 2 3

THEOREM 24 (Moore, 1973). Let (H;(-,-)) be an inner product
space over the real field R and x,y,z € H such that:

(2.107) [z, = A =) llelllyll, [z, 2)[ = (1 =) [lz]l |=]],
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where € is a positive real number, reasonably small. Then
(2.108) [y, 2)] > max {1 e V26,1 de, o} lyll 121l -
Utilising Richard’s inequality (2.102)) written in the following equiv-
alent form:
(z,a) (z,b) (z,a) (z,b)
2 2
] ]l

for any a,b € H and a € H\ {0} , Precupanu has obtained the following
Moore’s type result:

(2.109) 2- — Jlall I1b]] < {a,b) <2- + [lall [lo]

THEOREM 25 (Precupanu , 1976). Let (H;(-,-)) be a real inner
product space. If a,b,x € H and 0 < €1 < 9 are such that:

(2.110) er |zl flall < (z,a) <exlz| llall,
ex [zl ol < Cx,b) < ex [l [b]],
then
(2.111) (27 = 1) lall o]l < {a,b) < (27 +1) [lal [12] -
Remark that the right inequality is always satisfied, since by Schwarz’s

inequality, we have (a,b) < ||a|| [|b||. The left inequality may be useful
when one assumes that e, € (0, 1]. In that case, from (2.111]), we obtain

(2.112) — llallIoll < (261 = 1) flall 1ol < (a, b)

provided g1 ||z|| ||a|| < (z,a) and & ||z|| ||b]| < (x,b), which is a refine-
ment of Schwarz’s inequality

= [lall 1ol < {a, ).

In the complex case, apparently independent of Richard, M.L. Buzano
obtained in [3] the following inequality

lall o]l + |{a, b)]
2

(2.113) |(z,a) (z,b)| < ),

provided z, a, b are vectors in the complex inner product space (H; (-, -)) .

In the same paper [29], Precupanu , without mentioning Buzano’s
name in relation to the inequality , observed that, on utilising
, one may obtain the following result of Moore type:

THEOREM 26 (Precupanu , 1976). Let (H; (-,-)) be a (real or) com-
plex inner product space. If x,a,b € H are such that

(2.114) [z, @) = (X =¢e)[lz| [lall,  [{z,0)[ = (L —¢e) [z [[o]l,
then
(2.115) [(a,b)| > (1 — 4e + 2¢7) [|a]| ||b]| -
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Note that the above theorem is useful when, for ¢ € (0,1}, the
quantity 1 — 4e +2¢%2 >0, ie., € € <0, 1-— ‘/75] .

REMARK 26. When the space is real, the inequality provides
a better lower bound for |{a,b)| than the second bound in Moore’s result
. Howewver, it is not known if the first bound in Temains
valid for the case of complex spaces. From Moore’s original proof, ap-
parently, the fact that the space (H; (-,-)) is real plays an essential role.

Before we point out some new results for orthonormal families of
vectors in real or complex inner product spaces, we state the following
result that complements the Moore type results outlined above for real
spaces [10]:

THEOREM 27 (Dragomir, 2004). Let (H;(-,-)) be a real inner prod-
uct space and a,b,x,y € H\ {0} .

(i) If there exist d1,02 € (0, 1] such that

(z,a) (y,a)
Z 1 - U2
|| f|al [yl llall

and 61 + 6o > 1, then

3

(2. y) (61 +8)% — ENEEIE

[yl
(i) If there exist pq (py) € R such that

(x,a) (z,b)

(el
and 1> py >0 (=1 < py, <0), then

{a,b)
el 1ol

The proof is obvious by the inequalities (2.105)) and (2.109). We

omit the details.

(2.116) >

1
-2

pa [lal[ ol < (< 2 [|all 110]])

(2.117) [—1<]2p - 1< (< 2p, +1[< 1)

2.6.2. Inequalities for Orthonormal Families. The following
result may be stated [10].

THEOREM 28 (Dragomir, 2004). Let {e;},.; and {f;},., be two
finite families of orthonormal vectors in (H;(-,-)). For any x,y €
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H\ {0} one has the inequality

2118) |3 (@) feny) + 3w fi) (Fr0)
1 1
~2 Y (e Uy e dy) = 5 o) < 5 el ol

The case of equality holds in if and only if there exists a A € K
such that

(2.119) x—AyzZ(erl Z—)\ny] >
i€l jeJ

Proor. We follow the proof in [10].
We know that, if u,v € H, v # 0, then

2 201112 2

(2120) ‘ U — <U’7 ,U> - — HUH ”UH 2‘(“71})’

o] o]
showing that, in Schwarz’s inequality
(2.121) [ 0)* <l (o],
the case of equality, for v # 0, holds if and only if
(2.122) - <“’”2> v,

]

i.e. there exists a A € R such that u = Av.
Now, let w:=2% ., (z,e;) ; —x and v := QZ]EJ (y, fiY fi — v
Observe that

2
ul® = 22 (x,e;)e;l| —4Re <Z (x,e;) ei,x> + ||z||?
icl icl
=4y e’ =4 e +[l=[* = ||«
i€l el

and, similarly
2 2
[oll” =yl
Also,

<uav> =4 Z <$7ei> <fj7y> <€ivfj> + (:zr,y)
—22@,61} (e:, 1) Z ) (fisy)

iel jed
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Therefore, by Schwarz’s inequality (2.121)) we deduce the desired in-

equality (2.118)). By (2.122)), the case of equality holds in (2.118)) if

and only if there exists a A € K such that
oS tnae o= (250 ).
icl jeJ
which is equivalent to (2.119)). 1

REMARK 27. If in we choose x = y, then we get the in-
equality:

(2123) D [z e+ e, £i)

i€l jeJ

~2 Y {med () fen f) — 5

i€l jeg

1
[ <5 el

for any x € H.
If in the above theorem we assume that [ = J and f; = e;, i € I,
then we get from the Schwarz inequality |(x,y)| < ||z|| ||ly]| -
IfinJ =9, 1UJ =K, g =¢e, kel go=fr, k€ J and
{9k} ek 1s orthonormal, then from we get:

5™ (. 06) gion) — 5 ()| < 5

keK

(2.124) g lzllyll,  zyeH

which has been obtained earlier by the author in [16].

If I and J reduce to one element, namely e; = <, f; = L with

lell? 10
e, f # 0, then from (2.118) we get

@ ley)  nNUy o @e ) 1

2.12 _9. L

S e N T Tl
<glellol,  wyeH

which is the corresponding complex version of Precupanu ’s inequality

(2.100j).

If in (2.125)) we assume that x = y, then we get

(. N, welfelef) 1
1712 lel® 11.£1” 2

(el

(2.126) @ +
||6||

1

< <l
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The following corollary may be stated [L0]:

COROLLARY 14 (Dragomir, 2004). With the assumptions of Theo-
rem 28, we have:

2121) |3 ) () + 3 o) Ui
— 2 ZJ (x,e) (£ ) (es. f)
< gl + |3 e o+ 3 o) )
~2 3 {ne ) (e )~ 5 )

< S {16 )] + 2l )

PRrOOF. The first inequality follows by the triangle inequality for
the modulus. The second inequality follows by (2.118]) on adding the
quantity 1 |(z,y)| on both sides. &

REMARK 28. (1) If we choose in , x =y, then we get:
(2128) Y Hze)’+ > [, £)
i€l jed
—2 3 e (F,0) e )
i€l jeg
< IS K e P + 3 e £)
iel jeJ
1
—2 Y (we) (@) (e fi) — ’ +§||~”C||2
i€l jed
< |||

We observe that will generate Bessel’s inequality if
{eiticr {3} e, are disjoint parts of a larger orthonormal fam-

aly.
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(2) From one can obtain:

(z,¢) <§,y> L e f) (é”, v, {z.e) <J; v) <§, f>’
le] ILF1l el 11/l

< S el Il + 14,1

(2.129)

and in particular

(2.130) ‘\<ac,e>|2+ (2. N, (e (fe)le )'

2 2
el 1/l el 1 /1
for any x,y € H.

The case of real inner products will provide a natural genearlization
for Precupanu ’s inequality (2.100]) [10]:

COROLLARY 15 (Dragomir, 2004). Let (H;(-,-)) be a real inner
product space and {€;},c;, {fi};c; two finite families of orthonormal
vectors in (H; (-,-)). For any x,y € H\ {0} one has the double inequal-
1ty

(2.131) %[|<I7y>| =zl lyll] < Z (z,€) (y, e Z (v, [3)
=2 ) (zoe) (Y f) (ean £i)
el jed
1
< 5 iyl + K, 1]

In particular, we have

(2132) 0> (me) +) (a, £ =2 Y (w.e) @, f) (en, £)

i€l Jj€J i€l jed
2
< [l

for any x € H.

REMARK 29. Similar particular inequalities to those incorporated
in (2.124) — (2.130) may be stated, but we omit them.

2.6.3. Refinements of Kurepa’s Inequality. The following re-
sult may be stated [10].

THEOREM 29 (Dragomir, 2004). Let (H;(-,-)) be a real inner prod-
uct space and {e;},c;,{fj};c; two finite families in H. If (Hc; (-, +)c)
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is the complezification of (H;(-,-)), then for any w € H¢, we have the
imequalities

(2.133) Z w, €;) —1—2 w fj -2 Z (w, )¢ (w, f5)c (€, fi)
el jeJ i€l jel
1
< 5 [(w, 0) | + Z (w, 61-)(%; + Z (w, fj><?t
iel jet
— 2 Z wez wf]> <eiafj>_%<w7w>(c
iel,jed

2 — 2
< 5 [lwle + Kw, @)¢|] < [lwle -

N | —

PRrROOF. Define g; € Hc, g; :== (e;,0), j € I. For any k,j € I we
have

(9 9i)c = ((er; 0) (€5, 0)) ¢ = (ex, €5) = Ok,
therefore {g;},.; is an orthonormal family in (Hc; (-, *)¢) -

If we apply Corollary (14| for (Hc; (-, )¢), * = w, y = W, we may
write:

(2.134) ) (w, e (enw)e+ Y (w, f;) (f;,w)
icl Jj€J
—2 ) (w e (f5,W)e (e f7)
iel,jed
1
< §||w||(c||w||<c+ Z< (€5, W +Z w, fj) {fj, @
el jeJ
1
— 2 Z wez f]> ) <€17fj> §< 7U_J>(C
el jed

< H<w7w><c| + ||w||<c Hw”C] .

N | —

However, for w := (x,y) € Hc, we have w = (x, —y) and

(e, W) = ((e;,0), (z, —y))c = (&, @) +i{ej,y)
and

<w>€j>(c = ((x,y) ) <€j70)>(c = <:L‘, ej> +1 <€j7y>
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showing that (e;, w) = (w,e;) for any j € I. A similar relation is true
for f; and since

1
lwlle = llolle = (=1 + llyll*)
hence from ([2.134) we deduce the desired inequality (2.133)). B

REMARK 30. It is obvious that, if one family, say { f;},.; is empty,
then, on observing that all sums Zjej should be zero, from one
would get [16]

(2.135) > (w, e
iel
1 _ 9 1 _
< 5 |<w’w>(c| + Z <w’ ei>(C B 5 <w’w>(C
iel
1 2 _ 2
< 5 [lwlle + [w, @)el] < ol
If in one assumes that the family {e;},.; contains only one
element e = H‘;—”,a # 0, then by selecting w = z, one would deduce

, which is a refinement for Kurepa’s inequality.

2.7. Some New Refinements of the Schwarz Inequality

2.7.1. Refinements. The following result holds [12].

THEOREM 30 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K and ry,ro > 0. If v,y € H
are with the property that

(2.136) |z —yl| = re =m0 > [zl — Iyl

then we have the following refinement of Schwarz’s inequality
1
(2.137) 2l lyll = Re (z,49) > 5 (r5 = 1) (= 0).

The constant % 15 best possible in the sense that it cannot be replaced
by a larger quantity.

PROOF. From the first inequality in (2.136]) we have
(2.138) 1 + llyll* = 3 + 2Re (2, y).
Subtracting in (2.138]) the quantity 2 ||z|| ||y|| , we get

2
(2.139) (Il = llyl)” = 3 = 2 (|2l [yl — Re (=, y)) -
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Since, by the second inequality in (2.136]) we have
2
(2.140) i = (el = Iyl
hence from ([2.139)) and (2.140]) we deduce the desired inequality ([2.137)).

To prove the sharpness of the constant % in (2.137)), let us assume
that there is a constant C' > 0 such that

(2.141) =] lyll = Re (z,y) > C (r3 —17),
provided that z and y satisfy (2.136)).
Let e € H with ||e|| = 1 and for ro > r; > 0, define
_ TretT

(2.142) T=——e and y =

rL—7r2

2

Then
[ = yll = r2 and [|lz]] = [[yll| = 1,
showing that the condition ([2.136)) is fulfilled with equality.

If we replace x and y as defined in (2.142)) into the inequality (2.141)),
then we get

2 2
Ty — 77

Z C (T% - ’l“%) )
which implies that C' < %, and the theorem is completely proved. n
The following corollary holds.

COROLLARY 16. With the assumptions of Theorem[30, we have the
mequality:

V2 V2
@143) el + gl = S el 2 53—t

PrOOF. We have, by (2.137)), that
(Il + lyID* = llz + ylI* = 2 (|l lyll = Re {z,y)) = r5 —rf = 0

which gives

2
(2.144) <|\x||+||y||>zz||x+y||2+( r%—r%) .

By making use of the elementary inequality
2@+ %) = (a+ 0", a,5>0;

we get

2
1
2195) ool + (i t) 25 (el i3 nt)

Utilising ([2.144)) and (2.145]), we deduce the desired inequality (2.143)). n

2
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If (H;(-,-)) is a Hilbert space and {e;},.; is an orthornormal family
in H, i.e., we recall that (e;,e;) = d;; for any i,j € I, where J;; is
Kronecker’s delta, then we have the following inequality which is well
known in the literature as Bessel’s inequality

(2.146) Z (z,e)|* < ||z||* for each x € H.

i€l

Here, the meaning of the sum is

Z [(z, e;)|* = sup {Z [(z,e;)|*, F is a finite part of [} :
FcI

i€l el

The following result providing a refinement of the Bessel inequality

[2.146) holds [12].

THEOREM 31 (Dragomir, 2004). Let (H;(-,-)) be a Hilbert space
and {e;};c; an orthonormal family in H. Ifx € H, v # 0, and 5,71 > 0
are such that:

T — Z (x,e;) e

icl

(2.147)

>Try > 2>

Y
8
|
(]
&
o
T
N——
N[
v
=

then we have the inequality

(2.148) ]| = <Z|<xa€i>|2>

el

=
v
N
[\

The constant % 18 best possible.

PRrOOF. Consider y := ) .., (2, €;) ¢;. Obviously, since H is a Hilbert

space, y € H. We also note that
2
2
= Z |<JJ, el>’ J
iel

and thus (2.147) is in fact (2.136|) of Theorem

Iyl = =

Z (x,e;) e

icl

Z (x,e;) e

iel




2.7. SOME NEW REFINEMENTS OF THE SCHWARZ INEQUALITY

Since

[z [yl = Re (z,y) = ||| (Z [, ez-)IQ) —Re <l° D (wede
]l = (ZI(%@DIQ

el

= <Z|<x76i)|2>
iel
hence, by (2.137)), we deduce the desired result (2.148]).

[NIE

i€l

7

We will prove the sharpness of the constant for the case of one
element, ie., [ = {1}, e = e € H, |e]| = 1. For this, assume that

there exists a constant D > 0 such that

(2.149) ] = [z, e}l = D

provided z € H\ {0} satisfies the condition
(2.150) |z = (z,e) el = 2 =1 = Jaf| = [z, €)] -

Assume that v = Xe+puf with e, f € H, |le]| = || f|| =1 and e L f. We

wish to see if there exists positive numbers A, ;1 such that

(2.151) [ = (z,e) el =12 > = [lz]| = [(z,€)].
Since (for A, u > 0)
| = (z,e) el = p

ol = [, e}l = \/A* + 2 = A

hence, by ([2.151f), we get p = r, and

VA i = A=n

A 415 = N+ 20y + 17

and

giving

from where we get

A= g
2T1
With these values for A and p, we have
2 _ 2
o _ _nTn
ol =l el =ra, ool = 2

and thus, from (2.149), we deduce

2 2
Ty —T
2 1
7’1>D' SR
T2
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giving D < % This proves the theorem. &
The following corollary is obvious.

COROLLARY 17. Let x,y € H with (x,y) # 0 and ro > r; > 0 such
that

(,y)
(2.152) HHyH T >y [lyll > iyl

I
> [lzl lyll = [z, 9) (= 0).

Then we have the following refinement of the Schwarz’s inequality:

2159 fellyl - el 2 3 (3 - L 0.

The constant % 18 best possible.
The following lemma holds [12].

LEMMA 3 (Dragomir, 2004). Let (H; (-,-)) be an inner product space
and R > 1. For x,y € H, the subsequent statements are equivalent:

(i) The following refinement of the triangle inequality holds:
(2.154) ]l + 1yl = Rz +yl;
(ii) The following refinement of the Schwarz inequality holds:

1
(2.155) ol Iyl = Re (z,9) > 5 (B* = 1) o+ y]*.

ProoOF. Taking the square in (2.154)), we have
(2156) 2|Jz[| [lyll > (B* = 1) =] + 2R Re (z,y) + (R* — 1) [ly]|*.
Subtracting from both sides of (2.156) the quantity 2 Re (x,y) , we ob-

tain
2 (2l lgll - Re (2, 5)) > (B — 1) [l + 2 Re {z, ) + Iy’
= (R* = 1) o+l
which is clearly equivalent to (2.155)). 1

By the use of the above lemma, we may now state the following
theorem concerning another refinement of the Schwarz inequality [12].

THEOREM 32 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or compler number field and R > 1, r > 0. If
x,y € H are such that

1
(2.157) 7 Ul +1yll) = Nl +yll =
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then we have the following refinement of the Schwarz inequality
1
(2.158) 2l lyll = Re (z,y) > 5 (R* = 1) r*.
The constant % 18 best possible in the sense that it cannot be replaced
by a larger quantity.

PRrROOF. The inequality ([2.158) follows easily from Lemma (3| We
need only prove that % is the best possible constant in ([2.158]).
Assume that there exists a C' > 0 such that

(2.159) 2] lyll = Re(z,y) > C (R* 1) 7?
provided z,y, R and r satisfy (2.157)).
Consider r =1, R > 1 and choose x = %e, Y= %e with e € H,
llell = 1. Then
]| + llyll
— —_— 1
r+y=e, I

and thus (2.157)) holds with equality on both sides.
From ({2.159)), for the above choices, we have § (R* — 1) > C (R? — 1),
which shows that C' < % ]

Finally, the following result also holds [12].

THEOREM 33 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K and r € (0,1]. For z,y €
H, the following statements are equivalent:

(i) We have the inequality
(2.160) [zl =Myl < 7 llz = yll;
(ii) We have the following refinement of the Schwarz inequality

1
(2.161) |z lyll = Re (z,9) > 5 (1 —77) lz =yl

The constant % i (2.161)) is best possible.

ProoOF. Taking the square in (2.160)), we have
2 2 2 2
)l =2 llz[| [yl + [yl < r* (Jlz]I” = 2Re (z,y) + [ly]°)
which is clearly equivalent to
(1 =72) [llel* = 2Re (2, 9) + [lylI*] < 2(ll=[l [ly]l - Re {z,y))

or with (2.161]).
Now, assume that (2.161]) holds with a constant £ > 0, i.e.,
(2.162) || lyll — Re (z,y) = E (1 —r*) [z -y,

provided ([2.160]) holds.
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Define z = e, y = “Sle with e € H, [le[| = 1. Then

ezl =Myl =7, llz—yl =1

showing that (2.160]) holds with equality.
If we replace z and y in (2.162)), then we get E (1 — %) < 1 (1 —1r?),
implying that F < % 1

2.7.2. Discrete Inequalities. Assume that (K (-,-)) is a Hilbert
space over the real or complex number field . Assume also that p; > 0,
i€ H with Y7 p; = 1 and define

=1

C(K) = {x = (2;);en| i €K, i €N and Zpi ]| < oo}

It is well known that £2 (K) endowed with the inner product (-,-),
defined by

(x, Y>p = sz‘ (i, vi)

and generating the norm

o 2
2
1l = (Zpi gl )
i=1

is a Hilbert space over K.
We may state the following discrete inequality improving the Cauchy-
Bunyakovsky-Schwarz classical result [12].

ProposITION 16. Let (K;(-,-)) be a Hilbert space and p; > 0
(1 € N) with 322, p; = 1. Assume that x,y € £2(K) and 1,73 > 0
satisfy the condition

(2.163) zi — yill = 2 > 71 2 [l — [yl

for each i € N. Then we have the following refinement of the Cauchy-
Bunyakovsky-Schwarz inequality

1
[e’e) [e’e) 2 [e’e)
(2,164 (zpi||xin22pi||yiu2) S R )
=1 =1 =1

>~ (r3—1}) >0.

DN | —

The constant % 18 best possible.
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PROOF. From the condition (2.163)) we simply deduce

(2.165) Zpi |z — in|2 >y >y > sz' ([l = H%H)Q

i=1 =1

1 1 2
e8] 2 00 2
2 2
i=1 i=1

In terms of the norm ||-||p7 the inequality ([2.165) may be written as

(2.166) Ix —yll,>rs>7r > ‘Hpr = llyll,

Utilising Theorem [30| for the Hilbert space (612, (K), (-, -)p) , we deduce

the desired inequality ([2.164]).
For n = 1 (p; = 1), the inequality (2.164) reduces to (2.137) for

which we have shown that % is the best possible constant. §

By the use of Corollary we may state the following result as
well.

COROLLARY 18. With the assumptions of Proposition[16], we have
the inequality

oo 1 N ,
0 (ZPZ‘ “fﬁi”Z) + (Zpi ||yz-||2)
=1 i=1
\/§ > ) 2 \/5
— 5 ;pi |l + il > 7\/@

The following proposition also holds [12].

PROPOSITION 17. Let (K;(-,-)) be a Hilbert space and p; > 0
(1 € N) with 32 pi = 1. Assume that x,y € (2(K) and R > 1,
r > 0 satisfy the condition

(2.168) il + Nlwil) = Nl + will = 7

1
=
for each i € N. Then we have the following refinement of the Schwarz
inequality

o0 (0.9} % (0.9]
(2.169) (ZpininQZpiHyiHQ) — " piRe (zi,y)
i=1 =1 =1

> (R —1)r%

N —
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The constant % 1s best possible in the sense that it cannot be replaced
by a larger quantity.

Proor. By (2.168]) we deduce

sz i + Hyz” (sz [z + yill > 2T

By the classmal Mmkowsky inequality for nonnegative numbers, we
have

1 1
(2.171) (Zpil\xiw) +<ZP¢HZJ1'H2>
=1 i=1
o 3
> [Zm(Hme + H%H)zl :
=1

and thus, by utilising (2.170) and (2.171)), we may state in terms of
|][, the following inequality

(2.170)

1
(2.172) = (el +11y1,) > I+, > r

Employing Theorem [32| for the Hilbert space 62 (K) and the inequality
m, we deduce the desired result (2.169)).

Since, for p = 1, n = 1, (2.169) reduced to (2.158)) for which we
have Shown that 1 is the best constant, we conclude that % is the best
constant in (2.169) as well. 1

Finally, we may state and prove the following result [12] incorpo-
rated in

ProposiTION 18. Let (K;(-,-)) be a Hilbert space and p; > 0
(1 € N) with 322, pi = 1. Assume that x,y € (2 (K) and r € (0,1]
such that

(2.173) il = llwilll < 7llwi —will  for each i € N,

holds true. Then we have the following refinement of the Schwarz in-
equality

1
(2.174) (Zpl (Al sz HyzH) —ZpiRe(xi,yi)
= 1—’/” sz‘|$z yz“

DN | —
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The constant % 15 best possible in (2.174)).
ProOF. From (2.173) we have

1 1
o0 2 (o] 2
2 2
[Zmuxiu ~ il ] <r [Zpi s — il ] .
i=1 =1

Utilising the following elementary result

1
2

1 1
[e.e] 2 o0 2 o0
2 2 2
(ZPinEiH ) - <ZP¢ il ) < (ZPz(H%H = llill) > ,
i=1 i=1 i=1
we may state that

<rlx—=yl,-

[, = 11y,

Now, by making use of Theorem we deduce the desired inequality
(2.174) and the fact that % is the best possible constant. We omit the
details. 1

2.7.3. Integral Inequalities. Assume that (K (-,-)) is a Hilbert
space over the real or complex number field K. If p : [a,b] C R — [0, 00)

is a Lebesgue integrable function with fabp(t) dt = 1, then we may
consider the space L2 ([a,b]; K) of all functions f : [a,b] — K, that

are Bochner measurable and fabp () ||f (D)]]* dt < oo. It is known that
Li (la,b] ; K) endowed with the inner product (-, -) , defined by

b
(f.g), = / p (1) (F (t) .9 (1)) dt

and generating the norm

i, = ([ o IIf(t)||2dt>;

is a Hilbert space over K.
Now we may state and prove the first refinement of the Cauchy-
Bunyakovsky-Schwarz integral inequality [12].

PROPOSITION 19. Assume that f,g € L2 ([a,b]; K) and ry,71 > 0
satisfy the condition

(2.175) 1f @) —g@l >ra>m > If O = llg (]l]
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for a.e. t € [a,b]. Then we have the inequality

(2.176) (/abp(t)l\f(t)!\zdt / ) g ()] dt)
>

b
- [ pRe(s )90 d
The constant % 15 best possible in .

PROOF. Integrating (2.175)), we get
b ) 3
21 ([ o0 0s0) - g)Far)

S>> (/ p<t><||f<t>|r—Hg<t>u>2dt)2.

Utilising the obvious fact

( —7"1) (>0).

N | —

21 [ [ o s @l - ls o }

(/abpu) 0T dt) . ( /abp@) ||g<t>||2dt)5‘7

we can state the following inequality in terms of the ||-|| , norm:

>

(2.179) 1F=gll, =72 >m > |11,

Employing Theorem ! for the Hilbert space L? ([a,b]; K) , we deduce

the desired inequality ([2.176]).

To prove the sharpness of % in (2.176)), we choose a = 0, b = 1,
t

f@t)=1,te0,1] and f(t) =z, g(t) =y, t € [a,b], z,y € K. Then

(2.176) becomes

2 2
(7"2 - 7’1)

] lyll = Re (z, y) >

N | —

provided
[z =yl =72 = = ] = llylll,

which, by Theorem has the quantity % as the best possible con-
stant. §

The following corollary holds.
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COROLLARY 19. With the assumptions of Proposition[19, we have
the inequality

a0 ([ o0 ||f<t>u2dt)é ([ o0 Hg(t)szt);
2 ([ o ||f(t)+g(t)||2dt)% > V2 5

The following two refinements of the Cauchy-Bunyakovsky-Schwarz
(CBS) integral inequality also hold.

PROPOSITION 20. If f,g € L?([a,b]; K) and R > 1,7 > 0 satisfy
the condition

1
(2.181) 7 SO+ lg @) =1 @) +g @l =7
for a.e. t € [a,b], then we have the inequality

1
2

21 ([owirora [poloora)

(R2 — 1) r2.

N —

b
- [ rORe (s (0.5 ®)de >
The constant 5 is best possible in .

The proof follows by Theorem |32] and we omit the details.

PROPOSITION 21. If f,g € L2 ([a,b]; K) and ¢ € (0,1] satisfy the
condition

(2.183) A @I =llg O < Cllf @) —g @)l

for a.e. t € |a,b], then we have the inequality

1
2

b b
(2.184) ( / p(t) 1S (1)) dt / p<t>||g<t>||2dt)

—/ p()Re(f (t), g (1)) dt

b
=5 0= [0l -gla

The constant % 15 best possible in (2.184)).

The proof follows by Theorem |33 and we omit the details.
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2.7.4. Refinements of the Heisenberg Inequality. It is well
known that if (H;(-,-)) is a real or complex Hilbert space and f :
la,b] C R —H is an absolutely continuous vector-valued function, then
f is differentiable almost everywhere on [a, b] , the derivative f' : [a, b] —
H is Bochner integrable on [a, b] and

(2.185) f)= / f'(s)ds  forany t € [a,b].

The following theorem provides a version of the Heisenberg inequal-
ities in the general setting of Hilbert spaces [12].

THEOREM 34 (Dragomir, 2004). Let ¢ : [a,b] — H be an absolutely

continuous function with the property that blle (b)]|* = alle (a)|*.
Then we have the inequality:

2 ([ ||90(t)||2dt>2 <a [ elewiar [ 1w

The constant 4 1s best possible in the sense that it cannot be replaced
by a smaller constant.

PrROOF. Integrating by parts, we have successively

(2.187) / o (8)]12 dt

—tlle @I | ~ [t (e @) d
bl I~ alle @]~ [t (e (0.0 (0) d

__ / (e (), 0 (8) + (o (£) , & (£))] dt
_ / tRe (¢ (1), ¢ (t)) dt
_9 / Re (¢! (), (=t) @ (1)) dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality

/abRe (g(t),h(t))dt < (/ab ||g(t)||2dt/ab 1A ()] dt)

forg(t) =¢' (t), h(t) = —te(t),t € [a,b], then we deduce the desired

inequality ([2.176)).

1
2
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The fact that 4 is the best constant in (2.176)) follows from the fact
that in the (CBS) inequality, the case of equality holds iff g (¢) = Ak (¥)
for a.e. t € [a,b] and A a given scalar in K. We omit the details. &

For details on the classical Heisenberg inequality, see, for instance,
[23].

Utilising Proposition , we can state the following refinement [12]
of the Heisenberg inequality obtained above in ([2.186|):

PROPOSITION 22. Assume that ¢ : [a,b] — H is as in the hypothesis
of Theorem [34 In addition, if there exists ro,m1 > 0 so that

I’ (8) + e (D] = ra =1 2 [l (O] = [t [l (D)]]]

for a.e. t € [a,b], then we have the inequality

([ erewia [ HdQ ——/H DI di

b—a)( g—rl) (>0).

The proof follows by Proposition[L9on choosing f () = ¢’ (t), g (t) =
—tp (t) and p (t) = 7=t € [a,}].

On utilising the Proposition [20] for the same choices of f, g and p,
we may state the following results as well [12]:

PROPOSITION 23. Assume that ¢ : [a,b] — H is as in the hypothesis
of Theorem [34. In addition, if there exists R > 1 and r > 0 so that

% (" @I+ e 1) = 1" () = te (Ol = 7

for a.e. t € |a,b], then we have the inequality

([ erewia [1ee |dQ ——/n R

—(b—a)(R*=1)r*(>0).

[\'JH

Finally, we can state

PROPOSITION 24. Let ¢ : [a,b] — H be as in the hypothesis of
Theorem [34] In addition, if there exists ¢ € (0,1] so that

" @I =12l le DI < Clle" (&) + te @]
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for a.e. t € [a,b], then we have the inequality

([ erera [1e (”“th); 3 [ e

(1-¢) / I’ (&) + to (8)]>dt (> 0).

This follows by Proposition 21| and we omit the details.

>

N | —

2.8. More Schwarz Related Inequalities

2.8.1. Introduction. In practice, one may need reverses of the
Schwarz inequality, namely, upper bounds for the quantities

[l [[yll — Re (z,y) , lz* 1lylI* — (Re {z, y))*
and
]| [y
Re (z,y)

or the corresponding expressions where Re (x,y) is replaced by either
|Re (x,y)| or |(z,y)|, under suitable assumptions for the vectors x, y in

an inner product space (H; (-, -)) over the real or complex number field
K.

In this class of results, we mention the following recent reverses of
the Schwarz inequality due to the present author, that can be found,
for instance, in the survey work [4], where more specific references are
provided:

THEOREM 35 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K (K = C,R). Ifa, A € K and z,y € H are such that either

(2.188) Re (Ay — xz,x — ay) > 0,
or, equivalently,

A+a
2

then the following reverse for the quadratic form of the Schwarz in-
equality

(2.190) (0 <) [l l* [lyll* = Kz, )
1A= al Jyl* = (42 vl - (2. )

X

(2.189) y

1
< -]A-—
<l

‘2
LA —=al ylI* = ly*Re (Ay — =, 2 — ay)

1

A=

IN
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holds.
If in addition, we have Re (Aa) > 0, then
1 Rel[(A+a)(z,y) 1 |A+a
2101) ol ol < & Bl D )] 1 Aval
2 Re (Aa) 2 /Re(Aa)
and
1 |A—af
2.192 < 2yl = R G e 2
2192 O ol ol ~ o) < 3 i o)

Also, if (2.188) or (2.189) are valid and A # —a, then we have the
reverse for the simple form of Schwarz inequality

A+a
2198) (0.9l ol ~ o)l < el = [Re | 50 ]|
A+a 1 |A—af
< — < -
< el Iyl - Re [ % o] < - e,

The multiplicative constants i and % above are best possible in the sense
that they cannot be replaced by a smaller quantity.

For some classical results related to Schwarz inequality, see [3], [21],
[28], [29], [30] and the references therein.

The main aim of the present section is to point out other results in
connection with both the quadratic and simple forms of the Schwarz
inequality. As applications, some reverse results for the generalised
triangle inequality, i.e., upper bounds for the quantity

0 el — || Y,
=1 =1

under various assumptions for the vectors z; € H, i € {1,...,n}, are
established.

2.8.2. Refinements and Reverses. The following result holds
7.

PROPOSITION 25. Let (H;(-,-)) be an inner product space over the
real or complexr number field K. The subsequent statements are equiv-
alent.

(i) The following inequality holds

(2.194)

o Y
el < )
T H
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(ii) The following reverse (improvement) of Schwarz’s inequality
holds

1
(2.195) 2l lyll = Re (z,9) < (=) 57 ll=]l 1yl

The constant % 18 best possible in in the sense that it
cannot be replaced by a larger (smaller) quantity.
REMARK 31. Since
Myl = flzltyll = Iyl (2 = ») + lyll = [l y]
< Myl flz =yl + iyl = 01 vl

< 2|yl |z =yl
hence a sufficient condition for (2.194}) to hold is
r
(2.196) lz = yll < 5 ll=[l.
REMARK 32. Utilising the Dunkl-Williams inequality [20]
1 a b
(2.197)  la=bll = 5 ([lall + [16I) || 7= = 77| @, b € H\{0}
2 lall 1ol

with equality if and only if either ||al| = ||b]| or ||a|| + ||b]| = |la — b,
we can state the following inequality

(2198) lzllivl —Relzy) <M)2 v,y € H\ {0} .

]| Iy ]| + lly
Obuviously, if v,y € H\ {0} are such that
(2.199) |z =yl <n (=l + vl

with n € (0,1], then one has the following reverse of the Schwarz
inequality

(2.200) [ [yl] = Re (2, y) < 20* |||l [ly
that is similar to .

The following result may be stated as well [7].
PROPOSITION 26. If x,y € H\ {0} and p > 0 are such that

T Y
(2.201) _—— ' < p,

lyll -l
then we have the following reverse of Schwarz’s inequality
(2.202) O ) Mzl lyll = [z, )] < llzll [yl — Re (z,y)

1
< Zp? .
< 5P ]| |yl
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The case of equality holds in the last inequality in if and only
of
(2.203) [zl =yl and [z =yl =p.
The constant % n cannot be replaced by a smaller quantity.
ProoF. Taking the square in (2.201f), we get

2 2
JzlI”  2Re(z,y) |yl 2
2 7

(2.204)

Since, obviously

Nl ol
— 2 2
IR

with equality iff ||z]| = [|y||, hence by we deduce the second
inequality in ([2.202)).

The case of equality and the best constant are obvious and we omit
the details. n

(2.205)

REMARK 33. In [24], Hile obtained the following inequality

— HyHU—H ”

[l =1yl

v+1
v v ‘/I:
(2.206) el = = g vl < 12

-y

provided v > 0 and ||z|| # ||y|| -
If in we choose v =1 and take the square, then we get

(2:207)  l2l|* = 2 [|=[l |yl Re (z,y) + ly]I* < (el + IyI)* e = yII*-

Since,
4 4 201112
="+ lylI” = 2= lylI”

hence, by we deduce

2208) (0 Il Iyl Re o,y < & Ll Iyl e =l

1
2 1] 1l ’

provided x,y € H\ {0}.

The following inequality is due to Goldstein, Ryff and Clarke [22]
p. 309]:
Re (z,y)

[l i
Pl e = yl* i > 1

2r 2r r r
(2.209) 2™ + llylI™ =2l lylI" -

<
2r—2 H

gl llz —yl*  if r<1
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provided r € R and z,y € H with ||z| > ||y|| .

Utilising ([2.209)) we may state the following proposition containing
a different reverse of the Schwarz inequality in inner product spaces
lp

PROPOSITION 27. Let (H;(-,-)) be an inner product space over the
real or complex number field K. If v,y € H\{0} and ||z|| > ||ly||, then
we have

(2.210) 0 < [lzll lyll = [{z, »)| < =l lyll - Re (z,y)

EA. 2
2 (B eyl i 21,

IN

1 (=) 2,
PRrOOF. It follows from ([2.209)), on dividing by ||z||" [|y||", that
(2.211) (“ﬂ) + <M> g Relzy)
Iyl ]l [yl

r—2 .
r2. Hﬂ”r |z — y||2 if »>1,

VAN

lyll”
[l

(LY (LY s,
Iyl |z
hence, by (2.211]) one has
Ul o=y i > 1,

lly
[ lyll lyll”~2 I

[E1

—2
=

Iz — ]| if r<l1.

Since

22
I”

—y if r<1.

Dividing this inequality by 2 and multiplying with ||z|| ||y|| , we deduce
the desired result in (2.210]). B

Another result providing a different additive reverse (refinement) of
the Schwarz inequality may be stated [7].

PROPOSITION 28. Let x,y € H with y # 0 and r > 0. The subse-
quent statements are equivalent:
(i) The following inequality holds:
x,Y
s
[yl

(2.212) (=)7;
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(ii) The following reverse (refinement) of the quadratic Schwarz
inequality holds:

(2.213) llI* yll” = Kz, ) < (=) r* [ly]l*

The proof is obvious on taking the square in (2.212]) and performing
the calculation.

REMARK 34. Since
[lyl* & = (@, 9) y|| = [[ly]* (@ = y) = (& =y, 9) ]|
< lyl* llz = yll + [z =y, )] 1y
< 2|z =yl llyll*,
hence a sufficient condition for the inequality to hold is that
(2.214) le =yl < 5.

The following proposition may give a complementary approach [7]:

PROPOSITION 29. Let x,y € H with (x,y) # 0 and p > 0. If

(2.215) 'x-—|§z:z;|-yH <p
then
(2.216) (OSHMMMH—KLwIS%f-

The multiplicative constant 3 is best possible in .

The proof is similar to the ones outlined above and we omit it.
For the case of complex inner product spaces, we may state the
following result [7].

PROPOSITION 30. Let (H;(-,-)) be a complex inner product space
and o € C a given complex number with Rea,, Ima > 0. If z,y € H
are such that
Im o

2.21 — .
( 7 Rea

T

yHSn

then we have the inequality

(2.218) O ) Nzl Myl = [{z, )] < llz[[yll = Re (z,)
1 Rea
< -,

=2 Ima
The equality holds in the second inequality in if and only if the
case of equality holds in and Rea - ||z|| = Ima - ||y|| -
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PROOF. Observe that the condition (2.217]) is equivalent to
(2.219) [Rea)’ ||z|*+ [Ima)’ Jy||* < 2ReaImaRe (z,y) + [Rea] r?.

On the other hand, on utilising the elementary inequality

(2.220) 2ReaIma |zl yll < [Real® z]* + [Ima]” |y,
with equality if and only if Rea - [|z|| = Ima - ||y||, we deduce from
(2.219) that

(2.221) 2ReaIma||z| ||y]| < 2ReaImaRe (z,y) + r? [Real]’

giving the desired inequality ([2.218)).
The case of equality follows from the above and we omit the de-
tails. 1

The following different reverse for the Schwarz inequality that holds
for both real and complex inner product spaces may be stated as well
7.

THEOREM 36 (Dragomir, 2004). Let (H;{(-,-)) be an inner product
space over K, K= C,R. If a € K\ {0}, then

042
(2.222) osmmwwﬁwwnsmﬂmu—m{aﬁ@wﬁ
2
o L [Reolle —yl +mal eyl 1
2 ’Oz’ 2
where
max{|Re o, Jmaf} (= — || + | + ) :
(2223)  T={ (Real’ + Imal")? (lx — gll" + o + ) .

p>1, s +o=1
max {[|z — y[[, [z + y[[} (Rea| + [Im o) .

PROOF. Observe, for a € K\ {0}, that
laz —ay|® = |af* |l2]|* — 2 Re (az, ay) + |af* |ly]”
= laf* (|lz[I* + [lyI*) — 2Re [a* (z,y)] -

Since [|«* + [lyl* = 2|z lly] , hence

_ a?
(2.224) mm—amﬁzszQMMWW4%[Eﬁwwﬂ}.
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On the other hand, we have

(2.225) oz —ay|| = [[(Rea+ilma)xr — (Rea — i Ima) y|
= [[Rea(z —y) +ilma(z +y)|
< [Real |z —y[| + [Imal |z + ]|

Utilising (2.224)) and ([2.225|) we deduce the third inequality in ([2.222]).
For the last inequality we use the following elementary inequality

max {«, 5} (a +b)

(2.226) aa+ Bb < 1 1
(@ + 8% (a? +b%)s, p>1,

provided o, 3,a,0 > 0. 1
The following result may be stated [7].

ProPOSITION 31. Let (H;(-,-)) be an inner product over K and
e€ H, el =1. If x € (0,1), then

(2.227)  Re[(z,y) — (z,€) (e, y)]

< 3 [P+ (=Dl = [+ (1= w.e)).

The constant % 18 best possible.
Proor. Firstly, note that the following equality holds true
(x—(z,e)e;y—(y,e)e) = (z,y) — (z,¢€) (e, ) .
Utilising the elementary inequality
Re(z,w)ﬁi”z—i—wﬂ{ z,w e H

we have

Re(x — (z,e) e,y — (y,e) e)

D Rew—Ome e, (1= Ny — (1= )y e)e)

N1— N
<3 g (e + (=Wl = [0+ (1= Y waf’].

proving the desired inequality ([2.227)). &
_1 - - T
REMARK 35. For A = 3, we get the simpler inequality:

Tty 2_ T +y .
2 2

2

(2.228)  Re[(z,y) — (z,¢) {e,y)] <

Y
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that has been obtained in [4, p. 46|, for which the sharpness of the
inequality was established.

The following result may be stated as well [7].

THEOREM 37 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K and p > 1. Then for any x,y € H we have

(2.229) 0 < [lzHlyll = [{z, ] < |l [yl — Re (z,y)

1
2 2p1 5
[l + 1y )™ =l + 7] 7,

< =X

DN | —

1
2 2p1 »
ez —=oll™ = [ll=ll = lyl] " -

PRrOOF. Firstly, observe that

2(llz llyll = Re {2, m)) = (=l + Iyl = e+l

Denoting D := ||z|| ||ly|| — Re (z,y), then we have
(2.230) 2D + ||z +yl* = (=] + lyl)*-
Taking in ([2.230]) the power p > 1 and using the elementary inequality

(2.231) (a+b)?>a’ +b;a,b>0,
we have

2 2\P 2
(=l + 1yl = 2D + =z +yl")" = 2°D" + [l + y|I

giving
DP < 1 o _ 2p
< o [l + 1lyID™ = lle +I™]
which is clearly equivalent to the first branch of the third inequality in
(2.229)).

With the above notation, we also have
2 2
(2.232) 2D + ([lzll = [lyl)” = llz = yII”-
Taking the power p > 1 in (2.232)) and using the inequality (2.231]) we

deduce
lz =y = 2207 + ||| = [y
from where we get the last part of (2.229). 1
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2.8.3. More Schwarz Related Inequalities. Before we point
out other inequalities related to the Schwarz inequality, we need the
following identity that is interesting in itself [7].

LEMMA 4 (Dragomir, 2004). Let (H;(-,-)) be an inner product space
over the real or complex number field K, e € H, |le|]| =1, a € H and
~v,I' € K. Then we have the identity:

(2.233) lalf” — [(z, )
= (Rel’ — Re(z,e)) (Re(z,e) — Rew)
+ (ImT — Im (x,e)) (Im (z,e) — Im~)

v+ T 2

" 2

xr —

1 9
—Z D=~
e 4| ol

PrOOF. We start with the following known equality (see for in-
stance [5], eq. (2.6)])

(2.234) 2l — [{z, e)"
= Re [(F — (z,e)) (W - 7)} — Re(T'e — z,x — ~e)

holding for x € H, e € H, |le|| =1 and ~,T" € K.
We also know that (see for instance [14])

v+ T
2

2
1
|

(2.235) —Re (e —z,2 —ve) = ||z — e 1

Since

(2.236) Re [(r —(z,e)) (W - 7)}
= (Rel’ — Re(z,e)) (Re(z,e) — Rew)
+ (ImI' = Im (z,e)) (Im (z,e) —Im~),

hence, by (2.234) — (2.236)), we deduce the desired identity (2.233). n

The following general result providing a reverse of the Schwarz in-
equality may be stated [7].

PROPOSITION 32. Let (H;(-,-)) be an inner product space over K,
ec H, |le|| =1, x € H and v,I" € K. Then we have the inequality:

v+ |

2

(2.237) (0<) llll* = [z, e)* < ||« — e
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The constant % s best possible in . The case of equality holds
in if and only if

(2.238) Re<x,e>:Re(¥), Im (z, ¢) — Tm (%)

PrOOF. Utilising the elementary inequality for real numbers
af < }L(“W’ o, €R;
with equality iff o = 3, we have
(2239)  (ReT — Re (z, ) (Re (z, ) — Rery) < i (ReT — Rer)?
and
(2.240) ﬂmF—hn@m»ﬂmCm@—Jmﬁ)SiﬂmF—lmyﬁ

with equality if and only if
Rel'+ Revy
2

2
Finally, on making use of ([2.239)), (2.240|) and the identity (2.233)), we
deduce the desired result (2.237)). n

ImI'4 Im~y

Re (z,e) = and Im (z,e) =

The following result may be stated as well [7].

PROPOSITION 33. Let (H;(-,-)) be an inner product space over K,
ecH, |le||=1,x€ H and~y,I' € K. Ifx € H is such that
(2.241)

Revy < Re(z,e) < Rel and Imy <Im(x,e) <ImT,

then we have the inequality

y+T |

2

The constant }L s best possible in . The case of equality holds
in if and only if
Re (z,e) = Rel" or Re(x,e) = Re~w

(2.242) l]” = [{z, e)]* >

1 2
— — 2 —~P.
T e 4| ol

and
Im (z,e) =ImT or Im (x,e) = Im~.
PRrROOF. From the hypothesis we obviously have
(ReT" — Re(z,e)) (Re(z,e) —Revy) >0
and
(ImT" — Im (z,e)) (Im (x,e) — Im~) > 0.
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Utilising the identity (2.233)) we deduce the desired result (2.242). The

case of equality is obvious. 1

Further on, we can state the following reverse of the quadratic
Schwarz inequality [7]:

PROPOSITION 34. Let (H;{(-,-)) be an inner product space over K,
ec H, |le|| =1. If v,T € K and x € H are such that either

(2.243) Re(l'e —x,x —ve) > 0
or, equivalently,

v+ T

1
(2.244) xr — ell < §|F—7|,

then
(2.245) (0 <) flal|* — [{z, e)]”

< (Rel' = Re (z,e)) (Re(z,e) — Re)

+ (ImT — Im (x, e)) (Im (z,e) — Im~)
1

< 1 T —.
The case of equality holds in if it holds either in or
2.277).

The proof is obvious by Lemma 4] and we omit the details.

REMARK 36. We remark that the inequality may also be

used to get, for instance, the following result

(2.246) ||z” — [(z, &)

N

< [(Rel’ — Re(z, e))’ + (ImT — Im (z, e})Q}
x [(Re (z,€) — Rey)® + (Im (z,€) — Im~7)*] 2,
that provides a different bound than } |T' — v for the quantity ||z|* —
[, e) [
The following result may be stated as well [7].

THEOREM 38 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K and a,y > 0, f € K with |8]> > oy. If x,a € H are such
that a # 0 and

g
—a

(67

- (187 = an)?

(2.247) -

T — ||CLH,
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then we have the following reverses of Schwarz’s inequality
Ref-Re(x,a) +Imf-Im (z,a)

(2.248) el lal] < =
_ Blltw.a)l
< [l
and
22190 O el all® - o a)? < P2 0 gy,

ay
ProoF. Taking the square in (2.247)), it becomes equivalent to

ol — 2 Re [3.e.0)] + 120 o < P29 e,
which is clearly equivalent to
(2.250)  allz|* +7lal* < 2Re [ (z,a)]
=2[Ref-Re(x,a) + ImfF-Im (x,a)].
On the other hand, since
(2.251) 2/a7 ||z| all < allz]* + [lall*,
hence by and we deduce the first inequality in .

The other inequalities are obvious. 1

REMARK 37. The above inequality contains in particular
the reverse (2.191) of the Schwarz inequality. Indeed, if we assume
that « = 1, f = %, d,A € K, with v = Re(A¥) > 0, then the
condition |B]> > av is equivalent to |0 + A]° > 4Re (AY) which is
actually |A — 5]2 > 0. With this assumption, becomes

0+ A
—_—— . a

2
which implies the reverse of the Schwarz inequality

Re [(A + 5) (x, a)}

24/Re (A(_S)

A+0
B0 i),

< =7
2y/Re (Ad)
which s .

The following particular case of Theorem [38| may be stated [7]:

1
<5 18- dlal,

] lall <



2.8. MORE SCHWARZ RELATED INEQUALITIES 101
COROLLARY 20. Let (H;(-,-)) be an inner product space over K,
p€0,2m), 0 € (0, g) . Ifx,a € H are such that a # 0 and
(2.252) |z — (cosp +ising)al < cosf|al,
then we have the reverses of the Schwarz inequality

(2.253) || [lal| < cos p Re (z,a) + sinp Im (a:,a>.

sin 0
In particular, if
|z —al| < cosfla],

then .
< ——Re(z,a);
] llll < —— Re (z,a)
and if
|z —ia| < cosf|af,
then

1
<—1 .
] llll < ——Tm {z, a)

2.8.4. Reverses of the Generalised Triangle Inequality. In
[13], the author obtained the following reverse result for the generalised
triangle inequality

(2.254) > il >
i=1

I

n
D
i=1

provided z; € H, i € {1,...,n} are vectors in a real or complex inner
product (H;(-,-)) :

THEOREM 39 (Dragomir, 2004). Let e,z; € H, i € {1,...,n} with
lle|| = 1. If k; > 0, i € {1,...,n} are such that

(2.255) (0 <) ||z;]| — Re (e, z;) < k; for each ie{l,...,n},
then we have the inequality
>

(2:256) (0<) > llaill =
i=1 i=1
The equality holds in if and only if

(2.257) Yozl =) ki
=1 i=1

and

(2.258) Zx = (Z || — Zk) e.

n

1=1
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By utilising some of the results obtained in Section [2.8.2, we point
out several reverses of the generalised triangle inequality (2.254)) that
are corollaries of the above Theorem [39| [7].

COROLLARY 21. Let e, z; € H\{0}, i € {1,...,n} with |le| = 1.
If

X

(2.259) ‘ S
[[4]]

eHSri for each ied{l,...,n},

then

(2.260) (0 S)Z |l | —

n
>
i=1

n

1
<53l

i=1

IA
N | —
X
<
INGE
=
o
<
~

max ||zl

PRrROOF. The first part follows from Proposition 25| on choosing x =
z;, y = e and applying Theorem[39] The last part is obvious by Holder’s
inequality. 1

REMARK 38. One would obtain the same reverse inequality (2.260)
if one were to use Theorem . In this case, the assumption (2.259
should be replaced by

(2.261)  |||l@il| s — el] < rilla| for each ie{l,...,n}.

On utilising the inequalities (2.198)) and (2.209)) one may state the
following corollary of Theorem [39| [7].

COROLLARY 22. Let e, z; € H\{0}, i € {1,...,n} with |le| = 1.
Then we have the inequality

(2.262) (0 <) Z ||| — < min {A, B},

n
D
i=1
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where

a=23 e (Y A

and
pom 1§ Uil 1 = el

24 [

For vectors located outside the closed unit ball B (0,1) := {z € H|||z|| < 1},
we may state the following result [7].

COROLLARY 23. Assume that z; ¢ B(0,1), i € {1,...,n} and
e€ H, |le|| = 1. Then we have the inequality:

n
>
i=1

1,2 _ .
5P 2 llwll” s — el if p =1
i=1

(2.263) (0=<) 3 lleill =

IA

1 1— 2 )
Q;H%H Pl —ell”,  dif p<1.

The proof follows by Proposition 27] and Theorem
For complex spaces one may state the following result as well [7].

COROLLARY 24. Let (H;(-,-)) be a complex inner product space
and a; € C with Reay, Imay; > 0,1 € {1,....,n}. If ;e € H, i €
{1,...,n} with |le| =1 and

Im o
(2.264) xi—};no‘-eugdi, ief{l,...,n},
(SXe%;
then
Req;
2.2 <) — - LLdP.
(2.265) 0 ZH%H Zw =22 Tma,

The proof follows by Theorems [30] and [39 and the details are omit-
ted.
Finally, by the use of Theorem [37] we can state [7]:



104 2. SCHWARZ RELATED INEQUALITIES

COROLLARY 25. If x;,e € H, i € {1,...,n} with |le]] = 1 and
p > 1, then we have the inequalities:

n
YL
i=1

n 1
2 2p1 p
> [l + D% = llwi + el 7] 7

(2.266) (0=<) 3 llaill =

AN
N | —

n 1
> [l — el ™ = [llzill = 11*] 7.
i=1
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CHAPTER 3

Reverses for the Triangle Inequality

3.1. Introduction

The following reverse of the generalised triangle inequality

n n
COSQZ‘ZH < sz
k=1 k=1

provided the complex numbers zx, k € {1,...,n} satisfy the assump-
tion

Y

a—0<arg(z) <a+0, forany ke {l,...,n},

where a € R and 0 € (0, %) was first discovered by M. Petrovich in
1917, [11] (see [10, p. 492]) and subsequently was rediscovered by
other authors, including J. Karamata [6, p. 300 — 301], H.S. Wilf [12],
and in an equivalent form by M. Marden [8].

In 1966, J.B. Diaz and F.T. Metcalf [1] proved the following reverse
of the triangle inequality:

THEOREM 40 (Diaz-Metcalf, 1966). Let a be a unit vector in the
inner product space (H; (-,-)) over the real or complex number field K.
Suppose that the vectors x; € H\ {0}, i € {1,...,n} satisfy

Re (x;, a)

(3.1) 0<r<
4]

, ie{l,...,n}.

Then

(3.2) ry il <
=1

Y

n
>
i=1

where equality holds if and only if

(3.3) Z:c =r (Z ||xi||> a.

A generalisation of this result for orthonormal families is incorpo-
rated in the following result [1].
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THEOREM 41 (Diaz-Metcalf, 1966). Let aq,...,a, be orthonormal
vectors in H. Suppose the vectors 1, ..., x, € H\ {0} satisfy

R Iz .
(3.4) OST'“SW’ ief{l,....n}, ke{l,... m}
Then
m % n n
(3.5) (Z r,%) Sl < D@
k=1 i=1 i=1
where equality holds if and only if
(3.6) sz = (Z ||xz||> Zrkak.
i=1 i=1 k=1

Similar results valid for semi-inner products may be found in [7]
and [9].

For other classical inequalities related to the triangle inequality, see
Chapter XVII of the book [10] and the references therein.

The aim of the present chapter is to provide various recent reverses
for the generalised triangle inequality in both its simple form that are
closely related to the Diaz-Metcalf results mentioned above, or in the
equivalent quadratic form, i.e., upper bounds for

(Z Hxiu)2 - Zx

2
1> il
5
(i [l
Applications for vector valued integral inequalities and for complex
numbers are given as well.

2

and

3.2. Some Inequalities of Diaz-Metcalf Type

3.2.1. The Case of One Vector. The following result with a
natural geometrical meaning holds [3]:

THEOREM 42 (Dragomir, 2004). Let a be a unit vector in the inner
product space (H;(-,-)) and p € (0,1). If x; € H, i € {1,...,n} are
such that

(3.7) |lzi —al|| < p foreach i€ {l,...,n},
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then we have the inequality
59 VIZZY i <
i=1
with equality if and only if
39) S = Vi=p (2 ||xz-||> ‘
i=1 i=1

PRrROOF. From (3.7) we have
l|2]|* = 2Re (z;,a) +1 < p?,

n
D

=1

giving
(3.10) ]| + 1 — p? < 2Re (a;,a)
for each i € {1,...,n}.
Dividing by /1 — p2 > 0, we deduce
,CEz 2Re .TZ,
V1-— V1—p?

for each i € {1,...,n}.
On the other hand, by the elementary inequality

(3.12) £+qa22\/p, p,¢>0, a>0
a
we have
T
(3.13) 2 ||z < \/"1—_7+\/1—P2

and thus, by (3.11]) and (3.13)), we deduce
Re <ZL'Z', a) > \/1_7p27

£l

for each i € {1,...,n}. Applying Theorem 40| for r = /1 — p?, we
deduce the desired inequality (3.8)). 1

The following results may be stated as well [3].

THEOREM 43 (Dragomir, 2004). Let a be a unit vector in the inner
product space (H;(-,-)) and M >m > 0. Ifz; € H, i € {1,...,n} are
such that either

(3.14) Re (Ma — x;,x; — ma) >0
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or, equivalently,

M 1
(3.15) mi— ol < = (v = m)
2 2
holds for each i € {1 o n} then we have the inequality
(3.16) m+M Z i < sz :

or, equivalently,

n

(B17) (0= el - sz

The equality holds in (07‘ in (3.17)) if and only zf
- 2vVmM [

(3.18) > a= 7 (Z Hxi||> a
i=1 i=1

ProoOF. Firstly, we remark that if x, 2z, Z € H, then the following
statements are equivalent:

(i) Re(Z —x,x — z) > 0;
(i) Jlz— 22z < 2]z - 2.
Using this fact, one may simply realize that (3.14]) and (3.15)) are
equivalent.

Now, from (3.14]), we get
||xz||2 +mM < (M +m)Re (z;,a),

for any ¢« € {1,...,n}. Dividing this inequality by vmM > 0, we
deduce the following inequality that will be used in the sequel

<W f)

H:UlH2 M+m
3.19 +vmM < Re (z;,a),
( ) vmM T vmM < )

for each i € {1,...,n}.
Using the inequality (3.12) from Theorem [42] we also have

2
(3.20) 2 ||z < \”/% +v/mb,
m

for each i € {1,...,n}.
Utilizing (3.19) and (3.20), we may conclude with the following
inequality

M
+mRe <Ii7a>>
M

Jls]| <
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which is equivalent to

2vVmM < Re (z;, a)

3.21
(3:21) m+M ~ ||z

for any i € {1,...,n}.

Finally, on applying the Diaz-Metcalf result in Theorem [0] for r =
2@, we deduce the desired conclusion.

The equivalence between (3.16)) and (3.17]) follows by simple calcu-

lation and we omit the details. g

3.2.2. The Case of m Vectors. In a similar manner to the one
used in the proof of Theorem 42| and by the use of the Diaz-Metcalf
inequality incorporated in Theorem we can also prove the following
result [3] :

PrRoOPOSITION 35. Let ay,...,a, be orthonormal vectors in H. Sup-
pose the vectors 1, ..., x, € H\ {0} satisfy

(3.22) ||z —agl| < p foreach i€ {l,...,n}, ke {l,...,m},

where p, € (0,1),k € {1,...,m}. Then we have the following reverse
of the triangle inequality

1
m 2 n
(3.23) (m - ZPi) Dl <
k=1 i=1
The equality holds in if and only iof
(3.24) sz = (Z H%H) Z (1 - Pi) ak.
i=1 i=1 k=1

Finally, by the use of Theorem [41] and a similar technique to that
employed in the proof of Theorem [43] we may state the following result
[3]:

n
D
i=1

N

ProproOSITION 36. Let ay, ..., a, be orthonormal vectors in H. Sup-
pose the vectors x1,...,x, € H\ {0} satisfy
(3.25) Re (Myay, — x;, x; — pyax) > 0,

or, equivalently,

(3.26)

My + 1
2 — Pyl < S (M- ),
2 2
foranyi € {1,...,n} and k € {1,...,m}, where My > p;, > 0 for
each k € {1,...,m}.
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Then we have the inequality

(3.27) 2(2 t M )lex,||<

>

The equality holds in iff

(3.28) sz =2 (Z Hm) > M—%ak

3.3. Additive Reverses for the Triangle Inequality

3.3.1. The Case of One Vector. In this section we establish
some additive reverses of the generalised triangle inequality in real or
complex inner product spaces.

The following result holds [3]:

THEOREM 44 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K and e, x; € H, i €
{1,...,n} with |le|]| = 1. If k; > 0, i € {1,...,n}, are such that

(3.29) l|z:|| — Re (e, x;) < k; for each i€{1,...,n},

then we have the inequality

(3.30) (0<) Z ]| —

<> ki
i=1
The equality holds in () if and only if

(3.31) S il =Dk
=1 i=1

and

(3.32) Zx = (anin —Zk:) e

PROOF. If we sum in (3.29)) over i from 1 to n, then we get

(3.33) En:HxIH < Re <e,zn:xi> —|—2n:ki.
i=1 i=1 i=1
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By Schwarz’s inequality for e and )., z;, we have

(3.34) Re <e,ixi> < |Re <€,i$i>
i=1 =1
=1 =1 =1

Making use of (3.33) and (3.34), we deduce the desired inequality
E2)
If (3.31)) and (3.32) hold, then

n n n n "
S| = 30 llll = Dok lell = 3 el = 3 b

and the equality in the second part of (3.30]) holds true.
Conversely, if the equality holds in (3.30)), then, obviously (3.31)) is

valid and we need only to prove (3.32).

Now, if the equality holds in (3.30)) then it must hold in for
each i € {1,...,n} and also must hold in any of the inequalities in
(13.34).

It is well known that in Schwarz’s inequality |(u,v)| < ||ul ||v]]
(u,v € H) the case of equality holds iff there exists a A € K such that
u = \v. We note that in the weaker inequality Re (u,v) < [|ul| ||v|| the
case of equality holds iff A > 0 and u = Av.

Consequently, the equality holds in all inequalities simulta-
neously iff there exists a u > 0 with

< |le]]

(3.35) pe = sz
i=1
If we sum the equalities in (3.29)) over i from 1 to n, then we deduce
(3.36) > " |lwill = Re <er> => ki
i=1 i=1 i=1

Replacing > 7 ||z;]| from (3.35)) into (3.36]), we deduce

Dol = plel* =D ki,

i=1 i=1

from where we get p = Y0, ||zl — D, ki Using (3.35), we deduce
(3.32) and the theorem is proved. 1
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3.3.2. The Case of m Vectors. If we turn our attention to the

case of orthogonal families, then we may state the following result as
well [3].

THEOREM 45 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K, {ek}ke{l 77777 my @ family

of orthonormal vectors in H, x; € H, M;, > 0 fori e {1,...,n} and
ke {l,...,m} such that

(3.37) ||lz:]| — Re (eg, ;) < My
foreach i€ {1,....,n}, ke {l,...,m}. Then we have the inequality

EPHNL

i=1 k=1

(3.38) Z ;]| < — Zx

The equality holds true in if and only of

(3.39) Z (e = —ZZMm

=1 k=1
and
(3.40) > a= (Z ]| — —ZZM”J Zek
=1 =1 k=1

PROOF. If we sum over i from 1 to n in (3.37)), then we obtain

Sl < Re < Z> 3 My
=1 =1 =1

for each k € {1,...,m}. Summing these inequalities over k from 1 to
m, we deduce

n

(3.41) Z 2] < — Re <Zek Zx> + % E;;Mk
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By Schwarz’s inequality for Y ,* e, and > | x; we have

k=1

k=1

(3.42) Re <§:ek,zn:xi> < |Re <zm:€k,2n:$i>

m n
ee)
k=1 =1
m n
<D e D

k=1 =1

since, obviously,

Making use of (3.41) and (3.42), we deduce the desired inequality
(3-38).
If (3.39) and (3.40]) hold, then

Sl =[S el - =SS M
=1 =1

i=1 k=1

e (Z e %ijzw)

i=1 k=1

=3l - - 30D M,
=1

i=1 k=1

m

Do

k=1

1
Jm

and the equality in holds true.

Conversely, if the equality holds in (3.38)), then, obviously is
valid.

Now if the equality holds in , then it must hold in for
each i € {1,...,n} and k € {1,...,m} and also must hold in any of
the inequalities in (3.42).

It is well known that in Schwarz’s inequality Re (u,v) < ||ul| ||v]],
the equality occurs iff u = Av with A > 0, consequently, the equality
holds in all inequalities (3.42]) simultaneously iff there exists a u > 0
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with

(3'43) ,Uzek = Z:L‘Z
k=1 =1

If we sum the equality in (3.37)) over ¢ from 1 to n and k from 1 to m,
then we deduce

(3.44) mZ||x,;|| —Re<Zek,in> => ) M.

=1 i=1 k=1

Replacing >°7 | z; from (3.43)) into (3.44]), we deduce
mYy Nl =) llell* =Y Ma
i=1 k=1

i=1 k=1
giving

=Sl = ST M
=1

i=1 k=1

Using (3.43)), we deduce (3.40) and the theorem is proved. &

3.4. Further Additive Reverses

3.4.1. The Case of Small Balls. In this section we point out
different additive reverses of the generalised triangle inequality under
simpler conditions for the vectors involved.

The following result holds [3]:

THEOREM 46 (Dragomir, 2004). Let (H;(-,-)) be an inner prod-
uct space over the real or complex number field K and e,z; € H,
ie{l,...,n} with |le]| = 1. If p € (0,1) and z;, i € {1,...,n} are
such that

(3.45) |z —el| <p foreach ie€{l,....,n},

then we have the inequality

(3.46) (0 <) Z ]| =

n
>
i=1

IA

S

=1

VI=7 (1+V1=7)
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The equality holds in iof and only if

(347) 3l =
i=1

Nier: (1"1 ﬂ) Re <2n;xe>

and

n

(3.48) )

i=1

n 2 n
— [ S il - P Re <er> e.
i=1 V1=p? (1 ++/1- ,02> i=1

PrOOF. We know, from the proof of Theorem [44] that, if ([3.45) is
fulfilled, then we have the inequality

1
Ny

for each i € {1,...,n}, implying

]| < Re (x5, €)

(3.49) |zi]| — Re (x;,e) < < - 1) Re (z;, €)

1
V1=p?
2
= p Re (z;, €)

VI=7 (1+V1=7)

for each i € {1,...,n}.
Now, making use of Theorem [42] for

e

I (BN

we easily deduce the conclusion of the theorem.
We omit the details.

Re(z;,e), i€{l,...,n},

We may state the following result as well [3]:

THEOREM 47 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space and e € Hy M > m > 0. If x; € H, i € {1,...,n} are such that
either
(3.50) Re (Me — z;,z; — me) > 0,
or, equivalently,

M+m
2

(3.51) < % (M = m)

X
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holds for each i € {1,...,n}, then we have the inequality

. VT — ym) n
;xi §< 2\/W> Re<;xi,e>

(VAT - \/@2
<
B 2vVmM

The equality holds in if and only if

n (\/M— ﬁ)z n
(3.53) ; ||z || > Wi Re <Z a:i,e>

1=1

(3:52) (02> flaill -

and

(3.54) in: ZHx,H—( 2\/m—M> Re<2xi,e> e.

i=1

PrOOF. We know, from the proof of Theorem that if (3.50)) is
fulfilled, then we have the inequality

M +m
2vVmM
for each 7 € {1,...,n}. This is equivalent to

VM — /m
|| — Re (zi,e) < (
2vmM

[Jzs]| < Re (z;, ¢)

) Re (z;, €)

for each i € {1,...,n}.
Now, making use of Theorem [44] we deduce the conclusion of the
theorem. We omit the details. 1

REMARK 39. If one uses Theorem[{3 instead of Theorem[{]] above,
then one can state the corresponding generalisation for families of or-

thonormal vectors of the inequalities and respectively. We
do not provide them here.

3.4.2. The Case of Arbitrary Balls. Now, on utilising a slightly
different approach, we may point out the following result [3]:

THEOREM 48 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K and e, x; € H, i € {1,...,n} with |e|]| = 1. If r; > 0,
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ie{l,...,n} are such that
(3.55) |z, —e|| <7 for each i€ {l,...,n},

then we have the inequality

n n 1 n
) < Al — 1< = 2.
(3.56) O_ZH@H Zx < 2;@
The equality holds in 6) if and only if

(3.57) Z 2| > = Z

i=1

and

(3.58) 2:;90 = (ZH%II ——Z )

=1
PROOF. The condition (3.55)) is clearly equivalent to
(3.59) lzil> +1 < Re (x;,€) + 12

for each i € {1,...,n}.
Using the elementary inequality

(3.60) 2 il < flaal® + 1,
for each i € {1,...,n}, then, by (3.59) and (3.60)), we deduce
2 ||x1|| < 2Re <xi76> +Tz'27

giving
1
(3.61) ||xi]] — Re (x;,e) < 5 :
for each i € {1,...,n}.
Now, utlhslng Theorem Al for k; = 312, i € {1,...,n}, we deduce

the desn"ed result. We omit the details. 1
Finally, we may state and prove the following result as well [3].

THEOREM 49 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K and e, x; € H,i € {1,...,n} with |le|| = 1. If M; > m; >
0,7€{l,...,n}, are such that

Mz‘ + m;
— €

(3.62) .

1
T; — 5 (M ml) s

or, equivalently,
(3.63) Re (M;e — z,2 — mye) >0
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foreach i € {1,...,n}, then we have the inequality
(M; — m;)?
3 B e
The equality holds in if and only if
(M; —m;)?
(3.65) Z il > 5 Z T

and

(3.66) Z (ZH@H _ -Z%> c

=1

(3.64) (0 < Z ]| —

PrOOF. The condition (3.62)) is equivalent to:

then we get

M; i M; i 1
2(#) ]| <2 ﬂﬁe@ia@ﬂL— M; —m;)?,

or, equivalently,

ill — Re{wg,e) < - ———
ool = Re (s e) < - =
for each i € {1,...,n}.
Now, making use of Theoremfor ki == %' (%;7:1) ,ie€{1,...,n},
we deduce the desired result.

REMARK 40. If one uses Theorem[{J instead of Theorem[{]] above,
then one can state the corresponding genemlisation for families of or-

thonormal vectors of the inequalities in and m 3.64|) respectively.
We omit the details.
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3.5. Reverses of Schwarz Inequality

In this section we outline a procedure showing how some of the
above results for triangle inequality may be employed to obtain reverses
for the celebrated Schwarz inequality.

For a € H, ||a|| =1 and r € (0,1) define the closed ball

D(ar)i={z e H |z —al <r}.
The following reverse of the Schwarz inequality holds [3]:

PROPOSITION 37. If 2,y € D (a,r) with a € H, |la]] = 1 and
r € (0,1), then we have the inequality
[ lyll = Re{z,y) _ 1
2
(il + llyll) 2

The constant % in (3.67)) is best possible in the sense that it cannot be
replaced by a smaller quantity.

(3.67) (0 <) < —r2,

Proor. Using Theorem 42| for x1 = x, x5 =y, p = r, we have
(3.68) V1=r2(lz]l +lyl) < llz +yll.
Taking the square in (3.68)) we deduce
2 2 2 2
(L =72) (e +2[lz )l Iyl + [1ylI7) < [l2]” +2Re (2, y) + [yl

which is clearly equivalent to (3.67)).
Now, assume that (3.67) holds with a constant C' > 0 instead of

,i.€.,
] ly]l — Re <x2’y> <
([l + Nyl

provided x,y € D (a,r) with a € H, |ja|| = 1 and r € (0,1).
Let e € H with |le|| = 1 and e L a. Define z = a +re,y = a — re.
Then

(3.69)

lzl = V1I+r2=yll, Re(z,y)=1-r
and thus, from (3.69)), we have
2 _ .2
1+7r*—(1—1r) <O

/)’

giving
% <(1+r*)C

for any r € (0,1). If in this inequality we let » — 0+, then we get
C > % and the proposition is proved. &
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In a similar way, by the use of Theorem (3] we may prove the
following reverse of the Schwarz inequality as well [3]:

PROPOSITION 38. Ifa € H, |la]| =1, M > m > 0 and x,y € H
are so that either

Re(Ma — x,x —ma) ,Re (Ma —y,y —ma) >0

or, equivalently,

M M 1
x—m+ a ,y—mjL < = (M —m)
2 2 2
hold, then
— 1/ M—m\°
polillil=Releg) 1 (1—m)?
(]l + M1yl 2\M +m

The constant % cannot be replaced by a smaller quantity.

REMARK 41. On utilising Theorem [35 and Theorem we may
deduce some similar reverses of Schwarz inequality provided z,y €

N7, D (ag, p) , assumed not to be empty, where ay, ..., a, are orthonor-
mal vectors in H and p,, € (0,1) fork € {1,...,m}. We omit the details.

REMARK 42. For various different reverses of Schwarz inequality
in inner product spaces, see the recent survey [2].

3.6. Quadratic Reverses of the Triangle Inequality
3.6.1. The General Case. The following lemma holds [4]:

LEMMA 5 (Dragomir, 2004). Let (H; (-, -)) be an inner product space
over the real or complex number field K, x; € H, i € {1,...,n} and
kij >0 for 1 <1< j <n such that

(3.70) 0 < llasl 1|l — Re (e, ;) < kg

for1 <1 < j <n. Then we have the following quadratic reverse of the
triangle inequality

(3.71) (Z HaziH) < Za:

The case of equality holds in if and only if it holds in for

each i,5 with 1 <1< j < n.

2
+2 Z kij.

1<i<j<n
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PrRoOOF. We observe that the following identity holds:

(3.72) (Z ||xi||> -
= 3" el - <zz>

2,7=1

= Z ]l fl51] = Z Re (z;, 2;)
1,7=1 1,j=1

= > lllaill ;| — Re (i, z5)]
1,7=1

= > [lzill lle) = Re {ai,25)]
1<i<j<n

+ D llaill eyl — Re (s, 25)]
1<j<i<n

=2 > [llaill ;) — Re (s, z5)].

1<i<j<n

Using the condition ((3.70)), we deduce that

> llzillllzl = Re e a)] < Y ki,

1<i<j<n 1<i<j<n

and by (3.72)), we get the desired inequality (3.71)).
The case of equality is obvious by the identity (3.72) and we omit

the details. g

REMARK 43. From one may deduce the coarser inequality
that might be useful in some applications:

OSZZ:;H%H_
\/é( 5 kij)é <§\/§ 5 w?)

1<i<j<n 1<i<j<n

REMARK 44. If the condition is replaced with the following
refinement of Schwarz’s inequality:

(3.73) (0 <) dij < |lzill l|lz;l| — Re (wi, x;) for1l<i<j<mn,
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then the following refinement of the quadratic generalised triangle in-
equality 1s valid:

(3.74) <Z Hxﬂ\) le Zx

The equality holds in the first part of iff the case of equality holds
mn foreach1§i<j§n.

The following result holds [4].

+2 ) 5y

1<i<j<n

PROPOSITION 39. Let (H; (-,-)) be as above, z; € H,i € {1,...,n}
and r > 0 such that

(3.75) o —ayll <
for1 <i<j<n. Then

(3.76) (Z H%“)
The case of equality holds in zf and only if

1
(3.77) il M1 — Re (i, 25) = 57"2

—1
”_>,.2.

for each i,7 with1 <i < j <n.
PROOF. The inequality is obviously equivalent to
lill”* + lla5||* < 2Re (i, ) +
for 1 <i < j <n. Since
2 [laill [l < Nall® + llagl*, 1 <é < <
hence

1,
(3.78) il [l )l = Re (i, 25) < 5r°

for any 7,7 with 1 <i < j <n.
Applying Lemmal o| for k;; = —r and taking into account that

n(n—1)
> k=Tt
1<i<j<n

we deduce the desired inequality (3.76). The case of equality is also
obvious by the above lemma and we omit the details.
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3.6.2. Inequalities in Terms of the Forward Difference. In
the same spirit, and if some information about the forward difference
Az = xp11 — 2k (1 <k <n-—1) are available, then the following
simple quadratic reverse of the generalised triangle inequality may be
stated [4].

COROLLARY 26. Let (H;(-,-)) be an inner product space and z; €
H,ie{l,...,n}. Then we have the inequality

n 2 n 2 n—1
nin-—1
(3.79) (Ejuxin) <[] + 22N A
i=1 =1 k=1

The constant % 15 best possible in the sense that it cannot be replaced
in general by a smaller quantity.

PrROOF. Let 1 <4 < j < n. Then, obviously,

7j—1 7j—1 n—1
ZA% < Z [Azy|| < Z | Azl
k=i o k=1

Applying Proposition [39| for 7 := 327~} || Azy||, we deduce the desired

result (3.79).

To prove the sharpness of the constant %, assume that the inequality

(3.79) holds with a constant ¢ > 0, i.e.,
n 2 n

(3.80) (Z ||xz~||) <> w
i=1 i=1

forn>2 2z, € Hie{l,...,n}.
If we choose in (3.80), n =2, 21 = —3¢, 3 = 2e, e € H, |le]| =1,
then we get 1 < 2¢, giving ¢ > % 1

= sl =

2 n—1
ten(n—1)) || Az
k=1

The following result providing a reverse of the quadratic generalised
triangle inequality in terms of the sup-norm of the forward differences
also holds [4].

PROPOSITION 40. Let (H;(-,-)) be an inner product space and x; €
H,ie{l,...,n}. Then we have the inequality

(3.81) <Z|]mi|\> < Zx

The constant 15 is best possible in .

2
n?(n?—1
+ n(n—1) max || Az’
12 1<k<n—1
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PROOF. As above, we have that

j—1
oy = all < 3 el < G- ), oo, DAl
=1

for1 <i<j<n.
Squaring the above inequality, we get

251> + ||z ]” < 2Re (a, ;) + (j —4)° max HAka

1<k<n
for any ¢, 7 with 1 <7 < 7 < n, and since
2 2
2 [zl Nl < flaes 17 A [zl
hence

(382)  O< @il fayll — Re(ws,25) < 5 ( —4)° max ||A93k||

1<k<n

N —

for any 7,7 with 1 <7 < j <n.

; 2
Applying Lemma §| for kij == 5(j — i) Jpax |Azg||”, we can
state that
(z||x,-n) Sl ¢ X G- e jan
i—1 i—1 1<i<j<n =h=n
However,
1 “
. 2
S MR IO R h o
1<i<j<n 4,j=1 1
n?(n*—1)

12

giving the desired inequality.
To prove the sharpness of the constant, assume that (3.81)) holds
with a constant D > 0, i.e.,

(3.59) (Z ||xi||> >

i=1
forn>2 z, € Hie{l,...,n}.

If in (3.83)) we choose n = 2, :L‘l = —le, 1y =3¢, e € H, |le] =1,
then we get 1 < 12D giving D >

2
+ Dn* (n® —1) max | Az

1<k<n—1

12I

The following result may be stated as well [4].
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PROPOSITION 41. Let (H; (-, -)) be an inner product space and x; €
H,ie{l,...,n}. Then we have the inequality:

(3.84) (Zumzu) + 3 J—Z3<ZHAMHP> ,

1<i<j<n
where p > 1, 5+5:1‘
The constant E =1 in front of the double sum cannot generally be
replaced by a smaller constant.

Proor. Using Holder’s inequality, we have

j—1 j—1
= ]| < Z [Az] < (5 =) (Z IIAxkllp)

(Zumur”) ,
for1 <i<j<n.

Squaring the previous inequality, we get

RS

»Q\)—l

j—’l

2
s 11* + lll® < 2Re (i 25) + (5 — 05 (Z ||A$k|!p> :

for1 <i<j<n.
Utilising the same argument from the proof of Proposition [40] we
deduce the desired inequality ((3.84)).

Now assume that (| m ) holds with a constant £ > 0, i.e.,

(éuxz-n) B Y j_lz<z|,mk”p> |

1<i<j<n
fornZQandxiEHiE{l n},p>1,1 +—:1

For n =2, z; = —3e, 1:2 se, |lef =1, We get 1 < E, showing the
fact that the mequahty is sharp. 1

The particular case p = ¢ = 2 is of interest [4].

COROLLARY 27. Let (H;(-,-)) be an inner product space and z; €
H,ie{l,...,n}. Then we have the inequality:

(3.85) (Z ||x,~||> le

1 .
The constant 5 1is best possible in .

n—1

”an I

k=1
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PROOF. For p=q = 2, Proposition provides the inequality

(znxiu) s J—zznmkn
i=1 1<i<j<n
and since

> (i—i)

1<i<j<n
=1+(1+2)+A+2+3)+--+(1+2+---+n—1)
— k(k+1) n(n*-1)

= —

3
—

Q+2+--+k) =

1

gl
L L

B
Il

hence the inequality (3.84]) is proved. The best constant may be shown
in the same way as above but we omit the details. 1

3.6.3. A Different Quadratic Inequality. Finally, we may state
and prove the following different result [4].

THEOREM 50 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space, y; € H, i € {1,...,n} and M > m > 0 are such that either

(3.86) Re (My; — vi,yi —my;) >0 for1<i<j<n,
or, equivalently,
M+m 1
(3.87) Yi— Vi 5 (M —m) |ly;|| forl<i<j<n.

Then we have the inequality
2 n—1

2 2
n n 1

(3.88) (Z ||?/z||> < Zyi T3 Z kgl
i=1 i=1

The case of equality holds in if and only if
L
4 M+m Yi

(3.89) il lysll — Re (yi, ;) =
for each i,7 with 1 <i < j <n.
PRrROOF. Taking the square in (3.87)), we get

(M = m)*

2
ey

2
il ™ +

M +m 1
< 2Re (31 2y ) 4 2 O = )
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for 1 <i < j <n, and since, obviously,

M+m 9
2 (2L ol ol < B+

(M —m)’
M+m

2
g™

hence

M +m
2 (25 bl
M+m

1 2 2
< 2Re (3, M5 ) 01 = )

giving the much simpler inequality

(M —m)*

1
390) il ol = Re o) < 5+ 5

for1 <1< j<n.

Applying Lemma |5 I for kij :== 1 - A]@J:;) ly; ]I, we deduce
- (M —m)* 2
(3.91) (Z ||?/z||> Zyz 2M——|—m Z [yl
i=1 1<i<j<n

with equality if and only if (3.90]) holds for each i, 7 with 1 < i < j < n.

Since

2 2 2 2
Dol = D0 Myl + Do lwllP++ D>yl
1<i<j<n 1<j<n 2<j<n n—1<j<n

2 2 2 2
=D Myl + DMyl > Nyl + gl
j=2 j=3

j=n—1

n n—1
=X G =D llyll* = Ekllyenl®,
=2 k=1
hence the inequality (3.88)) is obtained. §

3.7. Further Quadratic Refinements

3.7.1. The General Case. The following lemma is of interest in
itself as well [4].

LEMMA 6 (Dragomir, 2004). Let (H; (-,+)) be an inner product space
over the real or complex number field K, xz; € H, i € {1,...,n} and
k > 1 with the property that:

(3.92) lill [l;]| < & Re (i, 25)



130 3. REVERSES FOR THE TRIANGLE INEQUALITY

for each i,5 with 1 <i < j <mn. Then

(3.99) (Z Hrm-!l) FE-DD el <k |

The equality holds in if and only if it holds in for each

i j with1<i<j<n.

2

Proor. Firstly, let us observe that the following identity holds
true:

(3.94) (ZHIzH) —k ZIz
= > Nl sl — & <ZZ>

2

ij=1
= > (il 2]l = kRe (z;, ;)]
ij=1
=2 >l sl = kRe (@i, 25)] + (1= k) > [l
1<i<j<n i=1

since, obviously, Re (z;, z;) = Re (z;,x;) for any 7,j € {1,...,n}.
Using the assumption (3.92)), we obtain

> llill gl — & Re (i, 2;)] < 0

1<i<j<n

and thus, from (3.94]), we deduce the desired inequality ([3.93)).
The case of equality is obvious by the identity (3.94) and we omit
the details. n

REMARK 45. The inequality provides the following reverse
of the quadratic generalised triangle inequality:

n 2 n n 2 n
(3.95) 0< (Z Hl’i\l) =X Ml <k Dl =Dl -
i=1 i=1 i=1 i=1

REMARK 46. Since k =1 and )", |5]|> > 0, hence by (3.99) one
may deduce the following reverse of the triangle inequality

(3.96) >l < V([
i=1 i=1

provided holds true for 1 <i < j <n.

Y
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The following corollary providing a better bound for Y, ||z,
holds [4].

COROLLARY 28. With the assumptions in Lemma[6, one has the
inequality:

(3.97) Z ]| < ,/n+ - le

Proor. Using the Cauchy-Bunyakovsky-Schwarz inequality

n n 2
2
03 il > (z uxin)
=1 =1

we get

(3.98) (k1) Zuxln +<Zuxlu> (1) (Zumr)

Consequently, by - and - we deduce

n 2
B> 2 (Zuxm)
=1

giving the desired inequality ((3.97] - 1

3.7.2. Asymmetric Assumptions. The following result may be
stated as well [4].

THEOREM 51 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space and x; € H\{0}, i€ {1,...,n}, p€ (0,1), such that

Ly
[l

Then we have the inequality

3.100) Vi-) (Dmu) (1= V=) Yl

<

(3.99)

T; —

’Sp for1 <i<j<n.

n 2

>

i=1

The case of equality holds in iff
(3.101) | |51 =

foranyl <i<j<n.
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PROOF. The condition (3.92)) is obviously equivalent to
]l + 1~ p* < 2Re <f’f e >
1251

foreach 1 <i < j<n.

Dividing by /1 — p? > 0, we deduce

2
[l

V1—p?

forl1 <i<j<n.
On the other hand, by the elementary inequality

(3.102) +V1-p2 <

9 )
——  Re <xi,L>,
V1-—p? ;|

(3.103) g—i-qaZQ\/p_, p.g>0, a>0

we have

(3.104) 2| < ”1—ﬂp ey

Making use of and , we deduce that
ol sl < ———s Re {z, )

1 —=p?
for1 <i<j<n.

Now, applying Lemma 5| for k = \/11—2, we deduce the desired
—p

result. &

REMARK 47. If we assume that ||x;|| = 1,47 € {1,...,n}, satisfying
the simpler condition

(3.105) |z, —xil| <p  forl<i<j<nmn,

then, from (3.100]), we deduce the following lower bound for ||> 7 | x|,
namely

1 n
(3.106) [n—i—n(n—l)\/l—/ﬂr <>«
i=1
The equality holds in iff /1 —p?> =Re(z;,z;) for1 <i<j<

n.

REMARK 48. Under the hypothesis of Proposition we have the
coarser but simpler reverse of the triangle inequality

(3.107) V=2 sl < |
=1 =1
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Also, applying C’orollaryfor k= \/11—2, we can state that
—p

n

S

=1

(3.108)

)

- n

zi|| <
DI me———
provided x; € H satisfy forl <i<j<n.

In the same manner, we can state and prove the following reverse
of the quadratic generalised triangle inequality [4].

THEOREM 52 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K, x; € H, i € {1,...,n}
and M > m > 0 such that either

(3.109) Re (Mx; — zj,x; —max;) >0 forl<i<j<n,
or, equivalently,

M+m
— T
2

(3.110) (M —m)||z;]| forl1<i<j<n

1
2

€

hold. Then

m = ’ \/M_
@.111) E+%<ZN%O+< >§]mn

n
>
i=1

The case of equality holds in (3.111) if and only if

M+m
3.112 x| |zl = Re (x;, x; orl <i<j3<n.
3112) ol oyl = S Re (wom) J
Proor. From (3.109)), observe that
(3113) [l + Mm a;]> < (M +m)Re (z,, ;).

for 1 <i < j < n. Dividing (3.113)) by vVmM > 0, we deduce

EAls s M+m
Ny +vmM ||z;]|” < Ny Re (z;, ;) ,

and since, obviously

EAls
2 ||| ||lz;]] < Ny + VmM ||z’
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hence
M+m
2vmM

|| ||;]] < Re (x;,x;), for1 <i<j<n.

Applying Lemma |§| for k = % > 1, we deduce the desired result. &

REMARK 49. We also must note that a simpler but coarser inequal-

ity that can be obtained from (3.111) is

2vmM 2l
) Sl <

i=1
provided holds true.

Finally, a different result related to the generalised triangle inequal-
ity is incorporated in the following theorem [4].

Y

n
>
i=1

THEOREM 53 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K, n >0 and x; € H, 1 € {1,...,n} with the property that

(3.114) |z; — @il <n < ||zj|| foreach i,j €{1,...,n}.
Then we have the following reverse of the triangle inequality
n 2
> iz \ Nl = n? < 1>, fl?z“
1225 il e
The equality holds in iff

(3.116)  ||zi|| \/|lz;]|* — % = Re (x5, 2;) for each i,j € {1,...,n}.

(3.115)

Proor. From (3.114)), we have
lill* + llasl|* = n* < 2Re (wia5), 4,5 € {1,...,n}.
On the other hand,
2 2 2 .
2wl /1P = o <l + s |2 = o, ij € (L., m}
and thus
lzill A/ Nl 1* = 2 < Re (i), dyj € {1,...,n}.

Summing over i,j € {1,...,n}, we deduce the desired inequality

B119).

The case of equality is also obvious from the above, and we omit
the details. g
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3.8. Reverses for Complex Spaces
3.8.1. The Case of One Vector. The following result holds [5].

THEOREM 54 (Dragomir, 2004). Let (H;(-,-)) be a complex inner
product space. Suppose that the vectors x, € H, k € {1,...,n} satisfy
the condition

(3.117) 0 <7y ||lak]] < Re(zg,e), 0<ry|ag| <Im(zy,e)

for each k € {1,...,n}, where e € H is such that |le|]| =1 and ry,ry >
0. Then we have the inequality

(3.118) V3>l <
k=1

where equality holds if and only if

(3.119) > ap=(r +iry) (Z ymu) e.

PROOF. In view of the Schwarz inequality in the complex inner

product space (H;(-,-)), we have
> = 3] 12 (S
k=1 k=1 k=1

g

Y

n
D>
k=1

2 2

2
(3.120) lell> >

2

(3.121) (ZRem,@) 27’%( IkaH)

and

(3.122) (ZIm(xk,e>> z@( ||xk||> .
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If we add (3.121]) and (3.122) and use (3.120)), then we deduce the

desired inequality (3.118

Now, if (3.119)) holds, then
D | =i +irs| (ZII%II) lell = /72 +73 > Il
k=1 k=1 k=1

and the case of equality is valid in (3.118]).

Before we prove the reverse implication, let us observe that for
x € H and e € H, ||le|| = 1, the following identity is true

2 2 2
[z = (z, e) el” = l[z]|” = [{z, &),

therefore ||z|| = |(x,e)| if and only if x = (z,€) e.

If we assume that equality holds in (3.118]), then the case of equality
must hold in all the inequalities required in the argument used to prove
the inequality , and we may state that

j{:a% <j£:1%,6>
k=1 k=1
and

(3.124) r ||zkll = Re(zx,e), 7o ||z = Im (x4, €)

for each k € {1,...,n}.
From ([3.123]) we deduce

(3.125) ixk = <i xk,e> e

and from (3.124)), by multiplying the second equation with ¢ and sum-
ming both equations over k£ from 1 to n, we deduce

(3.126) (r1 +ir2) Y el = <Zwk,e>.
k=1 k=1
Finally, by (13.126)) and (3.125]), we get the desired equality (3.119). n

The following corollary is of interest [5].

(3.123)

)

COROLLARY 29. Let e a unit vector in the complex inner product
space (H;(-,-)) and py,py € (0,1). If x, € H, k € {1,...,n} are such
that

(3.127) |lxx —ell < py, e —ie|| < py  for each ke {l,...,n},
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then we have the inequality

(3.128) V2= =)l <
k=1

with equality if and only if

(3.129) ixk - <\/1—p%+z'\/1—pg> <i”xku) e.

PROOF. From the first inequality in (3.127) we deduce

Y

n
D>
k=1

(3.130) 0 <\/1—p?|ze]] < Re(zg,€)

for each k € {1,...,n}.
From the second inequality in (3.127]) we deduce

0 <4/1 =i llzill < Re (, de)
for each k € {1,...,n}. Since
Re (g, ie) = Im (g, €) ,
hence
(3.131) 0 <\/1—p3||zel] < Im(zy,e€)

for each k € {1,...,n}.
Now, observe from (3.130)) and (3.131)), that the condition (3.117))

of Theorem |54| is satisfied for v, = /1 —p?, 1y = /1 —p% € (0,1),
and thus the corollary is proved. &

The following corollary may be stated as well [5].

COROLLARY 30. Let e be a unit vector in the complex inner product
space (H;{(-,-)) and My > my > 0, My > mg > 0. If x, € H, k €
{1,...,n} are such that either

(3.132) Re (Mye — zy, xp — mqe) >0,
Re (Myie — xy, x), — maie) > 0
or, equivalently,
M 1
(3.133) o ;rml ‘ < 5 (M) —my),
M- 1
Tp 2—2|—m2 H<—(M2—m2),
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for each k € {1,...,n}, then we have the inequality

mq M me M- 2
(3.134) 2[ S L 2] Sl <
(Ml + ml) (M2 -+ mg) —

The equality holds in 4l) if and only if
(3.135) > mp =2 ( v a ) (Z ||xk||)
k=1

M1+m1 M2+m

n
D
k=1

PRrROOF. From the first inequality in (3.132))
2v/my M,
(3.136) 0< m—
M, +
for each k € {1,...,n}.

Now, the proof follows the same path as the one of Corollary
and we omit the details. §

[ k]l < Re (2, €)

3.8.2. The Case of m Orthonormal Vectors. In [1], the au-
thors have proved the following reverse of the generalised triangle in-
equality in terms of orthonormal vectors [5].

THEOREM 55 (Diaz-Metcalf, 1966). Let eq, ..., e, be orthonormal
vectors in (H;(-,-)), i.e., we recall that (e;,e;) =0 if i # j and |le;|| =
1,4,7 € {1,...,m}. Suppose that the vectors x1,...,x, € H satisfy

0 < rlajll < Rezj,en)
je{l,...,n}, ke {l,...,m}. Then

1
313 (3] St =
k=1 j=1

where equality holds if and only if

(3.138) D = (Z iju> > e
j=1 J=1 k=1

If the space (H; (-, -)) is complex and more information is available
for the imaginary part, then the following result may be stated as well
[5].

n
>
j=1

THEOREM 56 (Dragomir, 2004). Let eq,...,e,, € H be an or-
thonormal family of vectors in the complex inner product space H. If
the vectors x1,...,x, € H satisfy the conditions

(3.139) 0 <rllzj|| < Re(xj,exr), 0 < py, l|lz;l| < Im(z;,ep)
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foreach j e {1l,....,n} and k € {1,...,m}, then we have the following
reverse of the generalised tm’angle inequality;

(3.140) [Z e+ k) Z ;| <

k=1
The equality holds in if and only if

(3.141) > ay= (anjn) > (ri+ip)e
j=1 j=1 k

=1

Z%

PROOF. Before we prove the theorem, let us recall that, if x € H

and eq, ..., e, are orthogonal vectors, then the following identity holds
true:

m 2 n
(3.142) e= Y e e| =Nl =Yl el

k=1 k=1

As a consequence of this identity, we note the Bessel inequality

(3.143) > Kaen) < |lz)* z € H.

The case of equality holds in (3.143) if and only if (see (3.142)))

m

(3.144) r = Z (x,er) eg.

k=1

Applying Bessel’s inequality for x = Z?Zl xj, we have

k=1 |j=

(ZRexj,ek> ( xj,ek>2
|(Beess) (B

Now, by the hypothesis (3.139) we have

(3.146) (Z Re (7}, ex) ) >y ( ‘%H)

m 2

(3.145)

v

2

I
\ERANERANE

e
Il
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and

o) (S 2 (Sie)
=1 j=1

Further, on making use of (3.145]) — (3.147)), we deduce

ij > Z Ty < H%’H) + pi (Z ||%'H>
j=1 k=1 j=1 j=1
_ (anjn) S (24 42).

j=1 k=1

which is clearly equivalent to (3.140)).

Now, if (3.141]) holds, then
Doal| = DNl ) Do (et ip) e
j=1 j=1 k=1
n 2 m
Dollzsl ) DIk + ol
j=1 k=1
= >l

j=1

and the case of equality holds in (3.140)).
Conversely, if the equality holds in (3.140]), then it must hold in all
the inequalities used to prove (3.140)) and therefore we must have

2

NE

(re + 07)

T

1

2

(3.148) Zx] Z Z xj, ex)
j=1 k=1 | j=1
and
(3.149) i ||7s]] = Re(zj,en),  py llos]] = Im (25, ex)

for each j € {1,...,n} and k € {1,...,m}.
Using the identity (3.142), we deduce from (|3.148]|) that

(3.150) Z:Uj —Z<ij,ek> ek
j=1 k=1 \j=1
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Multiplying the second equality in (3.149)) with the imaginary unit ¢
and summing the equality over j from 1 to n, we deduce

(3.151) (e + i) Y s | = <Z>

for each k € {1,...,n}.
Finally, utlhslng (3:150) and (B.151)), we deduce (3.141) and the

theorem is proved. g
The following corollaries are of interest [5].

COROLLARY 31. Let ey, ..., e, be orthonormal vectors in the com-
plex inner product space (H;(-,-)) and py,n, € (0,1), k€ {1,...,n}.
If v1,...,x, € H are such that

lzj —exll < pro N2y —dexl < my
foreachje{l,...,n} andk € {1,...,m}, then we have the inequality

(3.152) [Z (2- st - ni>] S llasl <[>

k=1

The case of equality holds in if and only if

(3.153) ;xj - (Z“%”) (\/1 —pk—i—z\/l—nk)

The proof employs Theorem [56]and is similar to the one from Corol-

lary 29 We omit the details.

COROLLARY 32. Let eq,...,e, be as in Corollary and M, >
mg >0, Ny >n. >0, ke{l,....m}. Ifxy,...,x, € H are such that
either

Re (Myey — x;,x; — myeg) >0, Re (Nyie, — xj, v; — nyieg) >0

or, equivalently,

M. +m 1

‘l‘j - %ek §(Mk m)
N, 1

‘ Xy — %Z@k (Nk — nk)

foreachje{l,...,n} andk € {1,... ,m} , then we have the inequality

1
m M, Ny 2 n n

3.154) 2 + x| < €T

(3,154 {;[(MHW (Nk+nk)21} il < |3
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The case of equality holds in if and only if
3.155 =2 ; +1
015 2 (Z uxjn) > e

The proof employs Theorem [56]and is similar to the one in Corollary
B0, We omit the details.

3.9. Applications for Vector-Valued Integral Inequalities

Let (H;(-,-)) be a Hilbert space over the real or complex number
field, [a,b] a compact interval in R and 7 : [a,b] — [O oo) a Lebesgue

integrable function on [a, b] with the property that f n(t)dt = 1. If,
by Ly, ([a,b]; H) we denote the Hilbert space of all Bochner measurable

functions f : [a,b] — H with the property that f n (@) ||lf ()| dt < oo,
then the norm |[[-[|, of this space is generated by the inner product
(), t HX H — K defined by

b
(g, = / n(t) (F (t) .9 (1)) dt.

The following proposition providing a reverse of the integral generalised
triangle inequality may be stated [3].

PROPOSITION 42. Let (H;(-,-)) be a Hilbert space and n : |a,b] —

0,00) as above. If g € L, ([a,b]; H) is so that f n (@) |lg(@)|7dt =1
and f; € L, ([a,0]; H),i € {1,...,n}, p € (0,1) are so that

(3.156) 1fi @) =gl <p
for a.e. t € [a,b] and each i € {1,...,n}, then we have the inequality

(3157) VI Z(/ Hﬂ()l!?dt)%

/abn(t)

The case of equality holds in if and only if

Zf V?Z(/ Ollfi o )H2dt);~g(t)

for a.e. t € [a,b].

N |=
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PROOF. Observe, by (3.157)), that

I1fi—gll, = ( / 1 ) —g<t>u2dt)é

S(/abn(t)/fdt)%zp

for each i € {1,...,n}. Applying Theorem for the Hilbert space
L, ([a,b]; H), we deduce the desired result. §

The following result may be stated as well [3].

PROPOSITION 43. Let H,n,g be as in Proposition [{3 If f; €
L,([a,b];H),i€{l,...,n} and M >m > 0 are so that either

Re (Mg (t) — fi (t), fi (t) —mg (t)) =0
or, equivalently,

fi(t)—m;M

for a.e. t € a,b] and each i € {1,...,n}, then we have the inequality

i) YmMy (/ 0 ||fi<t>||2dt)é

m+ M —
b
<\ [
The equality holds in if and only if

n n b %
s =2ty (/ () |1, <t>||2dt) 90,

<5 (M =m)

g9(t)

1
2

2
dt

Zfi (t)

m+ M p

for a.e. t € la,b].

The following proposition providing a reverse of the integral gener-
alised triangle inequality may be stated [4].

PROPOSITION 44. Let (H;(-,-)) be a Hilbert space and 7 : |a,b] —
[0,00) as above. If g € L, ([a,b]; H) is so that fabn(t) g ()|7 dt = 1
and f; € L, ([a,b];H),i € {1,...,n}, and M > m > 0 are so that
either

(3.159) Re (Mf; (t) = fi (), fi (t) —mf; (1)) = 0
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or, equivalently,

ro ="M 0] < 5 0r-ms o1

for a.e. t € a,b] and 1 < i < j <n, then we have the inequality

2
n

(3160 [Z ([ vorswra) ;]
<[] sw

—m 2 b n—1 9
50 [ (;kznfkﬂ ) )dt.

The case of equality holds in if and only if

</abn<t> I, <t>u2dt)é ( / 'O I (t)||2dt);

- / 0 () Re (f; (1), f; (1)) dt

2
dt

_m2 b 9
:3%/ 0 () |1f; (D) dt

for each i,7 with 1 <i < j <n.
PROOF. We observe that
Re (M f; — fi, fi = mfj),
= [ n R (15 @)~ £:0), 5 0) — sy () >0
for any 7,7 with 1 <i < j <n.
Applying Theorem [50| for the Hilbert space L, ([a,b]; H) and for

yi = fi,i € {1,...,n}, we deduce the desired result. §

Another integral inequality incorporated in the following proposi-
tion holds [4]:
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PROPOSITION 45. With the assumptions of Proposition[{4, we have

il ( / bn(t) I” <t>||2dt)§]

N\ — Z/ AGIR

S/an(t)

The case of equality holds in (3.161) if and only if

(/abn ) 1f <1s>||2dt)é ( /abn ol (t)Hth);

_ % n(t)Re (fi (1), f; (1)) dt

2

2vVmM
m+ M

(3.161)

foranyi,j with1 <1< j<n.

The proof is obvious by Theorem [52| and we omit the details.

3.10. Applications for Complex Numbers

The following reverse of the generalised triangle inequality with a
clear geometric meaning may be stated [5].

PROPOSITION 46. Let z1,. .., 2, be complex numbers with the prop-
erty that

(3.162) 0< o, <arg(z) < @y < g
for each k € {1,...,n}. Then we have the inequality

n

(3.163) Vsin? oy +cos? 0, 3 [zl <
k=1

The equality holds in if and only if

n

S .

k=1

(3.164) sz = (Cos¢2+isin¢1)2|zk|.
— k=1
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PRrROOF. Let z, = ap + iby. We may assume that b, > 0, a, > 0,
k€ {1,...,n}, since, by (3.162), % = tan[arg (z)] € [O, %), k €

" ay
1,...,n}. By (3.162)), we obviously have
y Yy
b2
0§tan2¢1§a—%§tan2gp2, ke{l,...,n}

from where we get

b? 2 1
e T Qg <

, ke{l,...,n},%e(o,g)

ai T cos? i,
and
ai+bi<1+tan2901: 1 Fell o E(O z)
ai T tan?y, sin? ¢, A "2

giving the inequalities
|zi| cos vy < Re(zk), |2zk|sing; < Im(zx)

for each k € {1,...,n}.

Now, applying Theorem for the complex inner product C en-
dowed with the inner product (z,w) = z - w for xp = zg, 11 = COS Py,
ry = siny; and e = 1, we deduce the desired inequality . The
case of equality is also obvious by Theorem [54] and the proposition is
proven. i

Another result that has an obvious geometrical interpretation is the
following one.

PROPOSITION 47. Let ¢ € C with |z| = 1 and py,py € (0,1). If
2z € C, ke {l,...,n} are such that

(3.165) |z — | < p1, |z —ic] < py foreach ke {l,...,n},

then we have the inequality

(3.166) V2= =) lal <
k=1

with equality if and only if

(3.167) an;Zk - (\/1 —piy/1- pg> (kzn; \zk|> c.

The proof is obvious by Corollary [29 applied for H = C.

Y

n
Zk
k=1
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~ REMARK 50. If we choose e = 1, and for py,p, € (0,1) we define
D(1,py) == {z€Cllz =1 <pi}, D(i,py) = {z €Cl[|]z — 1| < py},
then obviously the intersection

Sp1yp2 = D (17p1) n D (Z7p2)

is nonempty if and only if p; + py > V2.
If zp € Sy p, for k € {1,...,n}, then holds true. The
equality holds in if and only if

Sa=(yi-d+i/i-a) Sl
k=1 k=1
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CHAPTER 4

Reverses for the Continuous Triangle Inequality
4.1. Introduction

Let f : [a,b] — K, K = C or R be a Lebesgue integrable function.
The following inequality, which is the continuous version of the triangle

imequality
b b
[ 1@\ < 15 @l

plays a fundamental role in Mathematical Analysis and its applications.
It appears, see [8], p. 492|, that the first reverse inequality for (4.1
was obtained by J. Karamata in his book from 1949, [6]. It can be

stated as
b
/ f(z)dx

—0<argf(zr) <0, z€la,b

(4.1)

(4.2) cos@/ |f (x)] dzx <

provided

for given 0 € (O, %) :
This integral inequality is the continuous version of a reverse in-
equality for the generalised triangle inequality

n
D=
i=1

Y

(4.3) COSHZ 2| <
i=1

provided
a—0<arg(z)<a+0, for ie{l,...,n},

where ¢ € R and 6 € (0,%), which, as pointed out in [8], p. 492],
was first discovered by M. Petrovich in 1917, [9], and, subsequently
rediscovered by other authors, including J. Karamata [6, p. 300 — 301],
H.S. Wilf [10], and in an equivalent form, by M. Marden [7].

The first to consider the problem in the more general case of Hilbert
and Banach spaces, were J.B. Diaz and F.T. Metcalf [I] who showed

151
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that, in an inner product space H over the real or complex number
field , the following reverse of the triangle inequality holds

(44) Y el < [
=1 =1

Y

provided
R ) .
0<r< Y ey,
el
and a € H is a unit vector, i.e., ||la|| = 1. The case of equality holds in

([4.4)) if and only if
(4.5) dai=r (Z ||xi|\> a.
=1 i=1

A generalisation of this result for orthonormal families is also well
known [1]:

Let aq,...,a, be m orthonormal vectors in H. Suppose the vectors
x1,...,x, € H\ {0} satisfy
R iy .
Ogrkg%, ie{l,...,n}, ke{l,...,m}.
Z;
Then

m % n
(z) Sl <30
=1

k=1
where equality holds if and only if

n
D
i=1

m
=1

in = (Z ||xz||> Zrkak.

i=1 i=1 k
The main aim of this chapter is to survey some recent reverses of the
triangle inequality for Bochner integrable functions f with values in
Hilbert spaces and defined on a compact interval [a,b] C R. Applica-
tions for Lebesgue integrable complex-valued functions are provided as
well.

4.2. Multiplicative Reverses

4.2.1. Reverses for a Unit Vector. Werecall that f € L ([a,b]; H),
the space of Bochner integrable functions with values in a Hilbert space
H, if and only if f : [a,b] — H is Bochner measurable on [a, b] and the

Lebesgue integral f: ||f (t)]| dt is finite.
The following result holds [2]:
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THEOREM 57 (Dragomir, 2004). If f € L([a,b]; H) is such that
there exists a constant K > 1 and a vector e € H, |le|| = 1 with

(4.6) lf ()] < KRe(f(t),e) fora.e. té€]la,b],

(4.7 [isnas x| [ roa

The case of equality holds in if and only iof

m [ rwa=([wrna)-.

PRrROOF. By the Schwarz inequality in inner product spaces, we have

[ s =] [ roa] e
> ‘</abf(t)dt,e> Re</abf(t)dt,e>‘
2Re</abf(t)dt,e>:/abRe(f(t),e)dt.

From the condition (4.6)), on integrating over [a,b], we deduce

then we have the inequality:

(4.9)

>

b b
(4.10) /%U@@ﬁz%/wwwu

and thus, on making use of (4.9) and (4.10]), we obtain the desired

inequality (4.7)).
If (4.8)) holds true, then, obviously

l%@ﬁ“ﬂﬂl%ﬂ%ﬁ:l%ﬂmﬁ7

showing that holds with equality.

If we assume that the equality holds in , then by the argument
provided at the beginning of our proof, we must have equality in each
of the inequalities from and .

Observe that in Schwarz’s inequality ||z|| ||y|| > Re (z,y), z,y € H,
the case of equality holds if and only if there exists a positive scalar
i such that x = pe. Therefore, equality holds in the first inequality in

(1.9) iff f7f () dt = Ae, with A >0 .

g
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If we assume that a strict inequality holds in on a subset of
nonzero Lebesgue measure in [a, b] , then

/||f ||dt<K/ Re (f

and by we deduce a strict inequality in , which contradicts
the assumption. Thus, we must have ||f (¢)|| = KRe (f (t),e) for a.e.
t € la,bl.

If we integrate this equality, we deduce

/||f )| dt = K/Re e) dt = KRe</f dte>

= KRe()le,e) = \K

giving

1 b
=5 [

and thus the equality (4.8)) is necessary.
This completes the proof. n

A more appropriate result from an applications point of view is
perhaps the following result [2].

COROLLARY 33. Let e be a unit vector in the Hilbert space (H; (-,-)) ,
p€(0,1) and f € L([a,b]; H) so that

(4.11) \f (&) —ell <p forae te]ab].

Then we have the inequality

(4.12) wff/nﬂwﬁs

with equality if and only if

(4.13) l?wﬁzﬁi?([wwwge

ProoFr. From (4.11)), we have
I OIF = 2Re (f (1) €) +1 < 4",

.

giving
1F O +1=p* <2Re(f (1), ¢)
for a.e. t € [a,b].
Dividing by /1 — p? > 0, we deduce

IIF I 5 2Re(f(?).¢)
(4.14) m +1—=p2< T
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for a.e. t € [a,b].
On the other hand, by the elementary inequality

£+qa22\/p, p,q >0, >0
(0%

we have

If @1 2
(4.15) 20l (DIl < == N +V1-p
for each t € [a, b].

Making use of (4.14]) and (4.15)), we deduce

17 0] < ﬁf{e (f(#)e)
for a.e. t € [a,b].

Applying Theorem [57] for K = \/11—2, we deduce the desired in-
—p

equality (4.12)). n

In the same spirit, we also have the following corollary [2].

COROLLARY 34. Let e be a unit vector in H and M > m > 0. If
f € L([a,b]; H) is such that

(4.16) Re(Me — f(t),f(t) —me) >0
or, equivalently,
(4.17) Hf(t)—M;rme <5 (M —m)

for a.e. t € |a,b], then we have the inequality

e Lirona<| [ s

(4.18)

or, equivalently,

(4.19) 0 [ 1@l - o
< WZ;:T) /abf(t)dt |

The equality holds in (or in the second part of (4.19)) if and
only if

(4.20) [ rwa=20 [y ar)
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PRrooF. Firstly, we remark that if z, 2, Z € H, then the following
statements are equivalent
(i) Re(Z —x,x —2) >0
and
) o~ 2] < 517~ 2]

Using this fact, we may simply realise that (4.14) and (4.15)) are
equivalent.

Now, from (4.14])), we obtain
1F (O +mM < (M +m)Re (f (1), )

for a.e. t € [a,b]. Dividing this inequality with vVmM > 0, we deduce
the following inequality that will be used in the sequel

If @)1 M+m
(4.21) N vmM < NN Re (f (). ¢€)

for a.e. t € [a,b].
On the other hand

IfF O -
(4.22) 2[lF @I < Ny vl mM,

for any t € [a,b].
Utilising (4.21)) and (4.22), we may conclude with the following
inequality

M +m
2vVmM
for a.e. t € [a,b].

Applying Theorem |57| for the constant K := 2m+M > 1, we deduce
the desired result. &

LF @I < Re (f(t),e€),

:

4.2.2. Reverses for Orthonormal Families of Vectors. The
following result for orthonormal vectors in H holds [2].

THEOREM 58 (Dragomir, 2004). Let {ey,...,e,} be a family of

orthonormal vectors in H, k; > 0,1 € {1,...,n} and f € L([a,b]; H)
such that

(4.23) kil f O < Re(f (1), i)
for eachi € {1,...,n} and for a.e. t € [a,b].
Then

9

/abf(t)dt

(1.29) (Z kz) [ s <
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where equality holds if and only if

(4.25) /abf () dt = (/b I @l dt) Ej;ke

PROOF. By Bessel’s inequality applied for f; f(t)dt and the or-
thonormal vectors {ey,...,e,}, we have

[ s z </jf<t>dt,ei>

zg{Re</abf(t)dt,ei>r

n b 2
-y U Re(f(t),e,)dt} |
i=1 LJa
Integrating (4.23)), we get for each i € {1,...,n}

b b
Os&-/ IIf(t)HdtS/ Re (f (1), e:) dt,

(4.26) ‘ 2

implying

n

(127) [/R (1), e dtr > Zk (/ 1 ol dt)Q.

=1

On making use of (4.26)) and (4.27)), we deduce
b 2 n b 2
|[ roal =3 ([1ron)
a i=1 a

which is clearly equivalent to (4.24)).
If (4.25)) holds true, then

’/abf(t)dtH: (/b Hf(t)Hdt) éke
- ([ 1rona) [Zk |ei2r

:(Zkf) [ s e

showing that (4.24]) holds with equality.
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Now, suppose that there is an ig € {1,...,n} for which

kio Hf (t)H < Re <f (t)vem)

on a subset of nonzero Lebesgue measure in [a,b]. Then obviously

i / I ()] dt < / Re (f (1) ) d.

and using the argument given above, we deduce

(izn;ki2>%/ab|f(t)dt</abf(t)dtH.

Therefore, if the equality holds in (4.24]), we must have

(4.28) killf (Ol = Re (f (1), ei)

for each i € {1,...,n} and a.e. t € [a,].
Also, if the equality holds in (4.24)), then we must have equality in
all inequalities (4.26)), this means that

(4.29) /abf(t) dt — zn: </abf(t) dt,ei>ei

and

b
(4.30) Im </ f(t)dt,ei> =0 foreach i€ {l,...,n}.
Using (4.28) and (4.30) in (4.29)), we deduce

/abf(t)dt:ZZ:;Re</abf(t)dt,ei>ei
:Z::/abRe (f(t),e) edt

- Z ([ o) e
AL >

and the condition (4.25]) is necessary.
This completes the proof. n

The following two corollaries are of interest [2].
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COROLLARY 35. Let {ey,...,e,} be a family of orthonormal vectors
in H, p; € (0,1),i€{1,...,n} and f € L([a,b]; H) such that:

(4.31)  |If @) —ell <p; for ie€{l,....,n} anda.e. t€ [a,b].

Then we have the inequality

<n—zp$) [ls@la<

with equality if and only if

/f t)dt = /||f ydt ( ) e

PRrROOF. From the proof of Theorem |57, we know that (4.25) implies
the inequality

t) dt

Y

L=p2|lf )] <Re(f(t),e;), i€{l,...,n}, forae. telab].

Now, applying Theorem |58 for k; := /1 —p?, i € {1,...,n}, we de-
duce the desired result. g

A different results is incorporated in (see [2]):

COROLLARY 36. Let {eq,...,e,} be a family of orthonormal vectors
in Hy M; >m; >0,i€{l,...,n} and f € L([a,b]; H) such that

(4.32) Re (Mie; — f (1), f (t) —mie;) > 0
or, equivalently,

Mi + m;

1
2 < 5 (Mi—mi)

Hf<t> -

for ie{l,...,n} and a.e. t € [a,b]. Then we have the reverse of the
continuous triangle mequality

> ] [ sl <

i=1

t)dt

with equality if and only if

[ rwa= [ Hdt<iz 2%)



160 4. REVERSES FOR THE CONTINUOUS TRIANGLE INEQUALITY

PROOF. From the proof of Corollary , we know (|4.32)) implies
that

2v/m; M; .

ﬁ If (&) <Re(f(t),e), ie{l,...,n} andae. t€ [a,b.
Now, applying Theorem |58 for k; := 2%?1\%7 ie{l,...,n}, we deduce
the desired result.

4.3. Some Additive Reverses

4.3.1. The Case of a Unit Vector. The following result holds
[3]-

THEOREM 59 (Dragomir, 2004). If f € L([a,b]; H) is such that

there exists a vector e € H, |le]| =1 and k : [a,b] — [0,00), a Lebesgue
integrable function with
(@33) O] -Relf(t),e) k() forac. t€[at],

then we have the inequality:

asy 09 [Irola-| [ 1o < [roa
The equality holds ma if and On;y if '

(4.3 [swiaz [ koa

and

(4.36) /abf(t)dt: (/:Hf(t)ﬂdt—/abk(t)dt) ‘.

PROOF. If we integrate the inequality (4.33)), we get

(4.37) /abe(t)Hdt < Re</abf(t) dt,e> +/abk(t) dt.

By Schwarz’s inequality for e and fab f (t) dt, we have

(4.38) Re < / o e>
< ‘Re</abf(t)dt,e>
/ab £ dt'

<

(fross)
/abf (®) dtH |

< \ el =
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Making use of (4.37) and (4.38), we deduce the desired inequality
[39).
If (4.35) and (4.36)) hold true, then

\l%wﬁwzlwﬂwﬁ_l%@ﬁ
= [irona- [ v

and the equality holds true in .

Conversely, if the equality holds in , then, obviously is
valid and we need only to prove .

If ||f(¢)]] — Re(f(t),e) < k(t) on a subset of nonzero Lebesgue
measure in [a, b] , then holds as a strict inequality, implying that
also holds as a strict inequality. Therefore, if we assume that
equality holds in , then we must have

(4.39) I1f (O]l = Re (f (t) ) + k(1) for ae. t€ [a,b].

el

It is well known that in Schwarz’s inequality ||z ||y|| > Re (x,y)
the equality holds iff there exists a A > 0 such that = A\y. Therefore,
if we assume that the equality holds in all of , then there exists
a A > 0 such that

(4.40) / " F ) dt = e
Integrating on [a,b], we deduce
/be(t)Hdt:Re</bf(t)dt,e> +/bk(t)dt,
and thus, by , we get
[ 1@l =et+ [ v

giving A = [||f (8)]| dt — [k (¢) dt.
Using (4.40]), we deduce (4.36]) and the theorem is completely proved. §

The following corollary may be useful for applications [3].

COROLLARY 37. If f € L([a,b]; H) is such that there exists a vec-
tore € H, |le]| =1 and p € (0,1) such that

(4.41) If (@) —e|ll <p forae te]al],
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then we have the inequality

(4.42) (0 <) / If (0)]] dt —

104

ﬁ(wﬁ e [ r10aee)
(<ﬂ(lp+ﬂ)

) ) |
The equality holds in if and only iof
b 2 b
aw) [l ’ re( [ foae)
a \/1—/)2(14—\/1—)02) a

and

(4.44) / ’ F(t)dt
(/ I1f (8)]| dt — —p(i — >Re</f dte>)e.

PROOF. Firstly, note that (4.35) is equivalent to
IF O +1—p* < 2Re(f (t) ¢)

giving

ILf ()11" 3 2Relf(t) )

for a.e. t € [a,b].
Since, obviously

f @)l
2o < LOL =

1—p

for any t € [a,b], then we deduce the inequality
R
If ()] < <Re®.0 g ne te [a,b],
V1= p?
which is clearly equivalent to
2
1 Ol = Re (f (1) .e) < < Re(f (1).¢)

VI=7 (14 V1= 7)
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for a.e. t € [a,b].

Applying Theorem [59| for k (t) := Re (f (t),e), we

\/1—p2(1p+\/1—p2)

deduce the desired result. g
In the same spirit, we also have the following corollary [3].

COROLLARY 38. If f € L([a,b]; H) is such that there ezists a vec-
tore € H, |le|| =1 and M > m > 0 such that either

(4.45) Re(Me — f(t),f(t) —me) >0
or, equivalently,
(4.46) 70 -2 < o -m)

for a.e. t € |a,b], then we have the inequality

(4.47) O</||f )| dt — /f dtH

L2 o
_ v

The equality holds in if and only if

/ab\lf(tﬂldtz (?J;_f) Re</abf<t>dt,e>
and

/abf(t)dt: /||f ()] dt — \/2_ Re</f dte> ‘.

PROOF. Observe that (4.45) is clearly equivalent to
1f (DI +mM < (M +m)Re(f (t),e)
for a.e. t € [a, b], giving the inequality

%Jﬂ/_mMé %Rwa),@

for a.e. t € [a,b].

o
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Since, obviously,

2l o < O g

for any t € [a,b], hence we deduce the inequality

If ) <~ =

which is clearly equivalent to

Re(f (t),e) for a.e. t € |a,b],

t R t <<\/M_\/m>2R t
I (Ol = Be (] (1), €) < S Re S (1))

for a.e. t € [a,b].
Finally, applying Theorem [59], we obtain the desired result. §

We can state now (see also [3]):

COROLLARY 39. If f € L([a,b];H) and r € Ly ([a,b]; H), e € H,
lle|| = 1 are such that

(4.48) \f (&) —el <r(t) forae téelab],

then we have the inequality
b b 1 [
aw 09 [Irole-| [ roa <] [Poa

The equality holds in if and only if
b 1/
[z [ @a

[ rwa=([urona-} [ o).

PRrROOF. The condition (4.48)) is obviously equivalent to
If @I +1 < 2Re(f (1) ,e) + 1% (1)

for a.e. t € [a,b].
Using the elementary inequality

2 FOI < If @IF+1, ¢ €lab],

and

we deduce
If ()] =Re(f(t),e) < 57 (t)

for a.e. t € [a,b].
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Applying Theorem [59| for k (¢) := $r2 (¢), t € [a,b], we deduce the
desired result.

Finally, we may state and prove the following result as well [3].

COROLLARY 40. If f € L([a,b];H), e € H, |le]| =1 and M, m :
la,b] — [0,00) with M > m a.e. on [a,b], are such that Mﬁl) €
L a,b] and either

M

g MO0,
or, equivalently,
(4.51) Re(M(t)e—f(t),f(t) —m(t)e) >0

for a.e. t € [a,b], then we have the inequality

M () — 2
(4.52) (0 <) / ILf (£)]| dt — / F)at|| < 4/ [M((?HZ((%] dt.
The equality holds in if and only if

b UM = m (0
éHﬂwﬁzzl TROESTOel

b b 1Y [M () — ’
/f@ﬁz(/nﬂwﬁ—Z/[M%+Z@Lﬂe
ProOOF. The condition is equivalent to

I ol + (2O

§2(M(t)+m(t)

(4.50)

for a.e. t € [a,b], and since
2 (MmO o<+ (FOFE) L v

hence
1F @I —Re(f(t),e) <

for a.e. t € [a,b].
Now, applying Theorem [59| for k (t) :=
deduce the desired inequality. &

B

1 [M(t)—m(#)]?
1 M@E)+m(t) ’ t € [a,b], we
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4.3.2. Additive Reverses for Orthonormal Families. The fol-
lowing reverse of the continuous triangle inequality for vector valued
integrals holds [3].

THEOREM 60 (Dragomir, 2004). Let f € L(|a,b]; H), where H is
a Hilbert space over the real or complex number field K, {ei}ie{l 7777 n}
an orthonormal family in H and M; € Lla,b], i € {1,...,n}. If we
assume that

(4.53) |f ()] —Re(f(t),e;) < M;(t) fora.e. tE€]la,bl,

then we have the inequality
b 1 b 1 n b
(4.54) / I1f ()] dt < 7 ‘ / £ (t) dtH + 5;/ M; (t) dt.
The equality holds in iof and only if
b 1 n b
(459 JALCIEERS Sy ETACT
a i—=1 Ja
and
b b 1 n b n
(4.56) / F(t)dt = (/ £ (8)] dt - 52/ M, (1 dt) Y e
a a i=17a i=1

PRrROOF. If we integrate the inequality (4.53)) on [a, b], we get

/ab||f(t)||dt§Re</abf(t)dt,ei>+/:Mi(t)dt

for each i € {1,...,n}. Summing these inequalities over i from 1 to n,
we deduce

(4.57) / \|f(t)\|dt§%Re</ f(t)dt,Zei>+%Z/ M, (t) dt.

By Schwarz’s inequality for fab f(t)dt and > | e;, we have

b n
(4.58)  Re < / () dt, Ze>

< Re</abf(t)dt,iei> < </abf(t)dt7zn;ei>
<|[[ reraf Z _Va /abfa)dtH,
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since

n
D lleill* = v
i=1

Making use of (4.57) and (4.58), we deduce the desired inequality
[5I).
If (4.55) and (4.56)) hold, then

o= | [ urwna =23 [ a

b n b
- (/ I @lde- 2> [ Mi<t>dt>

and the equality in (4.54)) holds true.

Conversely, if the equality holds in (4.54)), then, obviously, (4.55) is
valid.

Taking into account the argument presented above for the previous
result , it is obvious that, if the equality holds in , then it
must hold in for a.e. t € [a,b] and for each 7 € {1,...,n} and
also the equality must hold in any of the inequalities in .

It is well known that in Schwarz’s inequality Re (u,v) < ||lu||||v||,
the equality occurs if and only if u = Av with A > 0, consequently, the
equality holds in all inequalities from simultaneously iff there
exists a p > 0 with

(4.59) y Z 6 — / £ (1) dt

If we integrate the equality in (4.53) and sum over ¢, we deduce

(4.60) /f t)dt = Re</f tydt,» e,>+Z/M

Replacing fa f (t)dt from (4.59)) into (4.60]), we deduce

(4.61) n/bf (t) dt =

0t -

Finally, we note that (4.59) and (4.61]) will produce the required
identity (4.56)), and the proof is complete. §
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The following corollaries may be of interest for applications [3].

.....

family in H and p; € (0,1), 1 € {1,...,n} such that

(4.62) If (t) —eil| < p; forae t€lab].

Then we have the inequalities:

b b
asy  [rolas—| [ f(t>dtH
+R F(t)dt, = i e,
VAL n;ﬁ—p%(u 1p§)>
1 b
S_

n

o

x (14 lzn: pi
T 1= p? <1+\/1—p?>

The equality holds in the first inequality in iof and only if

/abe(t)HdtZRe</abf(t)dt,%i ri >>

1\/1—,012(1%—\/1—&2

N

and
b
| s

_ /ab||f(t)|!dt—Re</abf(t)dt7

BN P >
Wi V1= p? <1+\/1—p?>

PROOF. As in the proof of Corollary the assumption (4.62)
implies

1Ol = Re (f (1) ) < b Re (£ (t)., )
A )

for a.e. t € [a,b] and for each i € {1,...,n}.
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Now, if we apply Theorem [60] for
2
, t) . e
M) = LR ®e) o e,
\/1—p?(\/1—p?+1>

we deduce the first inequality in (4.63]).
By Schwarz’s inequality in H, we have

Re</f D ﬁ(lplw—*) >

) dtH li pi e

N Vl—p?(l—i— 1—p?>

‘ n

2\ 3

pi
iz:; \/l—p%<1—|—\/1—pf> ’

which implies the second inequality in (4.63)). B

The second result is incorporated in [3]:

COROLLARY 42. Let f € L([a,b]; H), {ei},cy
family in H and M; > m; > 0 such that either

or, equivalently,

ny O orthonormal

-----

Hf(t)—T-ei < 3 (M= m)

for a.e. t € [a,b] and each i€ {1 .,n}.Then we have

(4.65) /||f Hdt<—

/ f(t dt i:1 (\/2_\/_\/_) ez>

a1 (5320 ﬂ)

0t

4m; M;

The equality holds in the first inequality in if and only if

/||f ||dt>Re</f nzﬂ <¢2_\/_V_) >
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and

/:f(t)dt

=</ ||f(t)|!dt—Re</ roya 2 >o V) >>

n

XE@Z’.

i=1

PROOF. As in the proof of Corollary from (4.64]), we have

(VAL — ;)
[f (] —Re(f(t),e) < NG Re (f (1), e:)

for a.e. t € [a,b] and i € {1,...,n}.
Applying Theorem [60] for
(VI - i)

M; (t) :== SN Re(f (t),e:), tela,b],ie{l,...,n},

we deduce the desired result. §

In a different direction, we may state the following result as well

&i}

77777

family in H and r; € L*([a,b]), i € {1,...,n} such that
If (@) —ell <ri(t) forae telab and i€ {l,...,n}.

/abf(t)dtHJr%ii(/abrf(t)dt),

The equality holds in iof and only of

[ranaz 5> ([roa)

=1

/abf(t)dt: [/j”f(t)fldt—%i(/abr?(t)dt)] Z::e

=1

Then we have the inequality

(4.66) / ||f(t)||dt§%‘

and
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PROOF. As in the proof of Corollary , from (4.48), we deduce
that

(4.67) LF (O = Re (£ (), e5) < 577 (1)
for a.e. t € [a,b] and i € {1,...,n}.
Applying Theorem [60] for
1
Mi () =57 (), telab], ie{l,....n},

we get the desired result. n

Finally, the following result holds [3].

.....

family in H, M;;m; : [a,b] — [0,00) with M; > m; a.e. on [a,b] and

% € La,b], and either

2

€;

(169) Hf(t) -

or, equivalently,
Re (M; (t)e; — [ (), f () —m; (t)e;) 20
for a.e. t € a,b] and any i € {1,...,n}, then we have the inequality

frod
([ St

The equality holds in if and only if

’ 1 ¢ P [M; (t) —mi ()]
/aHf(t)HdtZR;</a A dt)

and
/a b F(t)dt

[/ Lgs ([P PE0=m0P V) 5
—(/ Hf(t)ﬂdt—RZl(/a TR RS dt))Zei.

(4.69) / uf<t>udts%

~+

1=
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PROOF. As in the proof of Corollary (4.68), implies that

1 (M () — my (1)
1f Ol = Re (f (1) en) < 7 M; (t) +m; (t)

for a.e. t € [a,b] and i € {1,...,n}.
Applying Theorem [60 . for

we deduce the desired result. ]

,1e{l,...,n},

4.4. Quadratic Reverses of the Triangle Inequality
4.4.1. Additive Reverses. The following lemma holds [4].

LEMMA 7 (Dragomir, 2004). Let f € L([a,b]; H) be such that there
exists a function k : A C R*? - R, A := {(t,s)|a <t < s < b} with
the property that k € L (A) and

(4.70) O F OIS ) =Re(F (), f(s)) <k (Es),

for a.e. (t,s) € A. Then we have the following quadratic reverse of the

continuous triangle inequality:
2
+ 2// k (t,s) dtds.
A

am (| b ||f(t)||dt)2

The case of equality holds in if and only if it holds in for
a.e. (t,s) € A.

PROOF. We observe that the following identity holds

(172) (/ 17 Hdt) a
= [ [usonisenaas—( [ soa [ roas)
= [ [ - [ [ rets 0.5 ) s

= [ [ U @15 )] = Re s (0.7 s)) s = 1.

Now, observe that for any (¢, s) € [a,b] X [a,b], we have

LF OIS (I = Re {f @), f(s))
= 17O @O =Re {f(s), f ()

t) dt

t) dt
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and thus

(473)  I1=2 / /A U OIS )] = Re (f (1) f (s))] deds.

Using the assumption (4.70)), we deduce

/ /A UF O () = Re (f (£). £ (s))] deds < / /A k(. s) dids,

and, by the identities (4.72]) and (4.73]), we deduce the desired inequal-
ity (4.71)).

The case of equality is obvious and we omit the details. 1

REMARK 51. From one may deduce a coarser inequality that
can be useful in some applications. It is as follows:

(0 S)/abe(t)Hdt—‘/abf(t)dtH < ﬁ(//ﬂm)dtds);.

REMARK 52. If the condition is replaced with the following
refinement of the Schwarz inequality

(4.74) (0 <)k (L, s) < IF OIS ()l = Re (f(£), f(s))
for a.e. (t,s) € A, then the following refinement of the quadratic tri-

angle inequality is valid
b 2
/f(t)dt +2//k(t,s)dtds
a A

am ([ 1ol dt)2 >
(Z [ 1o )

The equality holds in iff the case of equality holds in for
a.e. (t,s) € A.

The following result holds [4].

THEOREM 61 (Dragomir, 2004). Let f € L([a,b]; H) be such that
there exists M > 1> m > 0 such that either

(4.76) Re(Mf(s) = f(t),f () —mf(s)) =0
or, equivalently,

M+m
2

FO) <5 AL =m)If @]

(w77) Hf(t) -
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for a.e. (t,s) € A. Then we have the énequalz’ty:

b
@m)(/uﬂmwQ val|
m b )
+§ %§IE¥/<»ﬂmu@Md&

The case of equality holds in if and only if

@79) IO )~ Re(f6). 5 () = 3 - =

for a.e. (t,s) € A.
PrOOF. Taking the square in (4.77)), we get

|U@W+(M+m)nﬂ>w

<2Re (£ (0. 211 (9)) 4 O = m I )

for a.e. (t,s) € A, and obviously, since

2(M+m)W(WW@WSHﬂmf+(M+m>Hﬂ)H

we deduce that

2(M+m)w<mwww

<2Re (£ (0. 21 (9)) 4 O = m I )1

giving the much simpler inequality:

£ (s)II”

(M —m)*

1 2
(80)  [F OIS ()] =Re(f (1), F () < 73— £ 9)]

for a.e. (t,s) € A.
Applying Lemmafor k(t,s):=7%- (Or-m)* £ (s)]|?, we deduce
£) dt

M+m
4 81 t
) ( Hf|m)
/ 1
= M+m/7w )12 ds

with equality if and only if (4.80)) holds for a.e. (¢,s) € A.
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Since

If ()" ds = b NF P a) ds = b(s—a)llf(8>||2ds,
A a a a

then by (4.81)) we deduce the desired result (4.78)). n

Another result which is similar to the one above is incorporated in
the following theorem [4].

THEOREM 62 (Dragomir, 2004). With the assumptions of Theorem
we have

(1.52) (/HfHﬁ>

t) dt

or, equivalently,

(183) /quw<<M+m)

The case of equality holds in (4.82) or 44.831) if and only if

%iﬁ e(f (1), £ ().

dtH

(4.84) LF @IS ()]l =

for a.e. (t,s) € A.

ProoF. From (4.76)), we deduce

LF O + Mmlf (s)]” < (M +m)Re(f (t), f (s))
for a.e. (t,s) € A. Dividing by v Mm > 0, we deduce

O, mi1r 61 < 22 Re s (1) £ ()

vVMm vMm
and, obviously, since
I1f )] 2
2LF OIS )l < T +VMm|f ()",
hence
L @IS () < Mrmpe (f(t), f(s))
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for a.e. (t,s) € A, giving

ILF OIS I =Re {f @), f(s)

IN

(VI—ym)’

Applying LemmaHfor k(t,s):= N

(4.85) (lﬂuquﬁgs

Re (f(t), f (s)), we deduce

b (t) dt

(31— vm)’
2v/Mm

+ Re (f (1), f (s))-

On the other hand, since
Re(f(t),f(s)) =Re(f(s),f(t)) forany (ts)€ [a, b]2,

hence

//ARe (f@), f(s)dtds == // )) dtds
L 100

1

t)dt

and thus, from (4.85]), we get (4.82]

The equivalence between |D and (4.83) is obvious and we omit
the details. g

4.4.2. Related Results. The following result also holds [4].

THEOREM 63 (Dragomir, 2004). Let f € L([a,b]; H) and v,I' € R
be such that either

(4.86) Re(lf(s) = f (), f(t) —7f(s)) =0
or, equivalently,

£ty - 225 (s)| <

for a.e. (t,s) € A. Then we have the inequality:

asn | ST =11 )

b
(4.88) /[w—@+wr@—wwf
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The case of equality holds in ([4.88) if and only if the case of equality
holds in either (4.80) or (4.87) for a.e. (t,s) € A.

PROOF. The inequality (4.86)) is obviously equivalent to

(4.89) LF @I +AT1Lf $)IF < (T +7)Re (f (2), f (5))

for a.e. (t,s) € A.
Integrating (4.89) on A, we deduce

(190) /(/qud0@+w/(w e [ ) as
=@+ﬁ%é(lI%UK)f@Dﬁ>@-

It is easy to see, on integrating by parts, that

[ ([urora)e=s [ora - [rore
= [ WeRas- [ iR

— [-9)lre)ds

and

z[OU@WKwQ%:la“”MﬂMWB

t)dt

o )= ([ s [ s0a)
:<f@l£f(w§ <Z}M®ﬁj@»
:2Re<£sf@ﬁ%f($>a
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hence

[ ([ rewrsona)as= [re{ [ swaro)a
(I o)
[ ol

Utilising (4.90]), we deduce the desired inequality (|4.88]).

The case of equality is obvious and we omit the details.

t) dt

REMARK 53. Consider the function ¢ (s) = (b—s) +~I' (s —a),
s € [a,b] . Obviously,

p(s)=Ty—1)s+b—~Ta.
Observe that, if 'y > 1, then
b—a=p(a)<p(s)<pb)=T(0b-a), sé€lab]
and, if 'y < 1, then
A (b—a)<e(s)<b—a, sé€Ela,b].

Taking into account the above remark, we may state the following
corollary [4].

COROLLARY 45. Assume that f,~,T" are as in Theorem [63
a) If Ty > 1, then we have the mequality

F+
wa/w J2ds < 7

b) If 0 < I'y < 1, then we have the mequalzty

wa/w )7 ds < LT

4.5. Refinements for Complex Spaces

4.5.1. The Case of a Unit Vector. The following result holds
[5].

THEOREM 64 (Dragomir, 2004). Let (H;(-,-)) be a complex Hilbert
space. If f € L([a,b]; H) is such that there exists ki, ko > 0 with

(4.91) kullf @O < Re(f(8),e), klf @) <Im(f(t),e)
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for a.e. t € [a,b], where e € H, |le|| =1, is given, then

(192) N /ab||f(t)||dt < /abf(t) dtH.

The case of equality holds in if and only if

(4.93) /abf (£ dt = (ky + iky) </b I @l dt) ‘.

Proor. Using the Schwarz inequality ||ul| [|v]| > [{u,v)|, u,v € H;
in the complex Hilbert space (H; (-,)), we have

[ 1w :\/;m)dt
</:f<t>dt,e>2 /ab<f(t),e>dt
/abRe<f(t),e>dt+7;(/ablm<f(t),e>dt>

— (/abRe<f(t),e)dt)2+ (/ab1m<f(t),e>dt)2.

Now, on integrating (4.91]), we deduce

2
(4.94) le]l”

2
>

2

(1.95 [ 1@l [ retr @ .o

o [l [ @.oa
implying
woo ([reo.aw) zi([Irona)
and

2

(197) (/ab1m<f<t>,e>dt)22k%(/abnf@)udt).

If we add (4.96) and (4.97)) and use (4.94)), we deduce the desired in-
1.97).

equality (|
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Further, if (4.93)) holds, then obviously

] =ttt (17 ) e

b
=Mﬁ+%/nﬂwﬁ,

and the equality case holds in (4.92)).
Before we prove the reverse implication, let us observe that, for

x € H and e € H, ||e]| = 1, the following identity is valid
2 2 2
|z = (z,e) el = [lz]|” = [(z, )],

therefore ||z|| = |(x,e)| if and only if x = (z,€) e.

If we assume that equality holds in , then the case of equality
must hold in all the inequalities required in the argument used to prove
the inequality . Therefore, we must have

)
and

(4.99) kullf @O =Re(f(8),e), R lf ()] =Im(f (), €)
for a.e. t € [a,b].

From (4.98) we deduce

(4.100) /abf(t) dt — </abf(t) dt,e> ‘.

and from (4.99)), by multiplying the second equahty with 4, the imagi-
nary unit, and mtegratlng both equations on [a, ], we deduce

(4.101) k1+zk2/||f )|| dt = </f t)dt e>

Finally, by (4.100) and (4.101)), we deduce the desired equality (4.93). u

The following corollary is of interest [5].

(4.98)

t)dt

COROLLARY 46. Let e be a unit vector in the complex Hilbert space
(H;(-,-)) and ny,my € (0,1). If f € L([a,b]; H) is such that

(4.102) 1 () — el <y, 1S (8) — del] < my

for a.e. t € [a,b], then we have the inequality

b
(4.103) \M—ﬁ—%/Hﬂwﬁg

t) dtH.
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The case of equality holds in if and only if

i [ rwa= (i eafioa) ([Irona).

PRrROOF. From the first inequality in (4.102) we deduce, by taking
the square, that

If )7 +1 =1 <2Re(f(t),e),

implying
2
(4.105) FOF A 2Re{f(t).¢)
V1I=ni 1 - 771
for a.e. t € [a,b].
Since, obviously
Ir@n”
4.106 20| f (@) <
(4.106) 170l ﬂ_ﬁ .
hence, by (4.105) and (4.106]) we get
(4.107) 0<\/IT=ntllf () <Re(f(t),e)

for a.e. t € [a,b].
From the second inequality in (4.102)) we deduce

0<\/1=n3[lf () <Re(f(t),ie)
for a.e. t € [a,b]. Since
Re (f(t),ie) =Im (f(t),¢)
hence
(4.108) 0<\/I=n3[lf O <Im(f(t),e)

for a.e. t € [a,b].
Now, observe from (4.107)) and (4.108]), that the condition (4.91]) of

Theorem (64 is satisfied for ky = /1 — 72, ky = /1 —n2 € (0,1), and

thus the corollary is proved. 1

The following corollary may be stated as well [5].

COROLLARY 47. Let e be a unit vector in the complex Hilbert space
(H; () and My > my >0, My > my > 0. If f € L([a,b]; H) is such
that either
(4.109) Re (Mye — f(t), f (t) — mye)

> 07
Re (Mste — f (), f (t) — maie) >0
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or, equivalently,

(4.110) Hf(t)—we‘ %(M1 mi),
Hf(t) M H 1 (M — ms)

for a.e. t € [a,b], then we have the inequality

M M
(4.111) 2{ M e } /||f )| dt
(M +my) (M3 + my)

f dtH.

The equality holds in if and only if
ST
I ([ oar) e

b
(4.112) /af(t)dt_Q(M1+m1 M2+m

PROOF. From the first inequality in (4.109)), we get
1f (07 +maMy < (My +ma) Re (f (1), €)

implying

(4.113)

for a.e. t € [a,b].
Since, obviously,

(4.114) 2[[f Ol <

hence, by (4.113)) and (4.114))
2v/m
(4.115) 0< ———

_M+m

L F @) < Re (£ (1))

for a.e. t € [a,b].
Using the same argument as in the proof of Corollary [46] we deduce
the desired inequality. We omit the details.
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4.5.2. The Case of Orthonormal Vectors. The following re-
sult holds [5].

THEOREM 65 (Dragomir, 2004). Let {e1,...,e,} be a family of
orthonormal vectors in the complex Hilbert space (H; (-,-)). If k;, h; >
0,7€{l,...,n} and f € L([a,b]; H) are such that

(4116) K [f (O <Re(f (), ¢;), hillf @) <Tm(f(2),e;)

foreach j € {1,...,n} and a.e. t € [a,b], then
n % b b

(4.117) [Z (k3 + h3) / £ ()] dt < / 110 dtH.
j=1 a a

The case of equality holds in if and only if

(4.118) /abf(t) dt = (/ab||f(t)||dt) zi;(k:j + ih;) €;.

ProOF. Before we prove the theorem, let us recall that, if x € H
and eq, . .., e, are orthonormal vectors, then the following identity holds
true:

n

r= > el

=1

2 n
(4.119) = [ll* = > [, e
j=1

As a consequence of this identity, we have the Bessel inequality

(4120) S el < ol v e 8,
j=1

in which, the case of equality holds if and only if

n

(4.121) T = Z (x,e5) ;.

j=1

Now, applying Bessel’s inequality for x = fab f (t) dt, we have succes-

sively
b
/ f(t)dt

zé </abf(t)dt,ej>

(4.122) 2

2 n

-3

j=1

2

/ab(f(t),ej)dt
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n
j=11"a

:i; (/:Re<f(t),ej>dt>2+ (/ab1m<f(t)vej>dt>2] .

Integrating (4.116]) on [a,b], we get

2

/bRe<f(t),ej>dt+z' </ab1m(f(t),ej>dt)

@) [ Retr@e)dzk [0l
and

b b
(4.124) [meraeyazn 1@l

for each j € {1,...,n}.
Squaring and adding the above two inequalities (4.123|) and (4.124])),

we deduce
+ (/ab1m<f(t),ej)dt)2]

([ retr0.car)
> Z o) ([ Hf(t)||dt)2,

which combined with (4.122]) will produce the desired inequality (4.117]).
Now, if (4.118]) holds true, then

[ 10 i - ([ wrana)
> (ki +ihy) e,

~([1rena)

— ( / b||f(t)||dt) _i (kS + h3)

Lj=1

n 2

2.

j=1

n

> (ki +ihy)e;

J=1

[

n 2\ 2

=

Y

and the case of equality holds in (4.117)).
Conversely, if the equality holds in (4.117)), then it must hold in all
the inequalities used to prove (4.117) and therefore we must have

[ —Z </abf<t>dt,ej>

(4.125) ’ 2
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and

(4126) & [If (Ol =Re (f (1) .¢;) and hy[[f ()] = Re{f (), c;)
for each j € {1,...,n} and a.e. t € [a,b].
From (4.125)), on using the identity (4.121)), we deduce that

(4.127) /abf(t) dt — §:</abf(t) dt,ej>e]

Now, multiplying the second equality in (4.126]) with the imaginary
unit 7, integrating both inequalities on [a, b] and summing them up, we
get

(4.128) (ky + ihy) /Hf )| dt — </f dte]>

for each j € {1,...,n}.
Finally, utlhsmg [.127) and ([(@.128), we deduce (£.118) and the

theorem is proved. 1
The following corollaries are of interest [5].

COROLLARY 48. Let eq,. .., e, be orthonormal vectors in the com-
plex Hilbert space (H;(-,-)) and p,n, € (0,1), k € {1,...,n}. [
f € L([a,b];H) is such that

1F (&) —exll < (IS (1) — el <y

for each k € {1,...,n} and for a.e. t € [a,b], then we have the
inequality

n % b
(4.129) [Z (2—pk - ni)] / If ()] dt <

The case of equality holds in if and only if

(4.130) / f(t

.

(o) E (-

The proof follows by Theorem [65] and is similar to the one from
Corollary 46l We omit the details.
Next, the following result may be stated [5]:



186 4. REVERSES FOR THE CONTINUOUS TRIANGLE INEQUALITY

COROLLARY 49. Let ey,..., ey, be as in Corollary [{§ and M, >
my >0, Ny >np >0, ke{l,...,n}. If f € L([a,b]; H) is such that
either

Re (Myer — f(t), f (1) — mpex) >0,
Re <NkZ€k—f(t),f Z 0

or, equivalently,

M, +m 1

|70 - 2 | < 5 (ot - m),
Ny +ny . 1

Hf(t)— kz Rien Sé(Nk—nk)

for each k € {1,...,n} and a.e. t € [a,b], then we have the inequality
1
m M N 2 b
(4.131) Z[ Ttk Tkl 2} /Hf(t)l\dt
= L(Mg + my) (Nk + ny) a
b

S ‘

t) dtH.

The case of equality holds in (4.131) if and only if

(4.132) /f dt_2</ I (t) |dt>

().

Mk—i—mk Nk—i-nk

The proof employs Theorem |65(and is similar to the one in Corollary
47 We omit the details.

4.6. Applications for Complex-Valued Functions
The following proposition holds [2].

PROPOSITION 48. If f : [a,b] — C is a Lebesgue integrable function
with the property that there exists a constant K > 1 such that

(4.133) F )] < K [eRe f (t) + B1m f (1)

for a.e. t € [a,b], where o, B € R, o+ 3% =1 are given, then we have
the following reverse of the continuous triangle inequality:

/abf(t)dt‘.

(4.134) /b|f(t)|dt <K
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The case of equality holds in 4)) if and only if

/f a+zﬁ/|f )/ dt.

The proof is obvious by Theorem [57, and we omit the details.

REMARK 54. If in the above Proposition[48 we choose o = 1, f =0
then the condition for Re f (t) > 0 is equivalent to

[Re f (1)) + [lm f (1))* < K* [Re f ()]

or with the inequality:

|Im f ()]
Ref =V
Now, if we assume that
(4.135) larg £ ()] <0, 6O¢ (0, g) ,
then, for Re f (t) >0
[tan [arg f (1)]| = % < tan6

and if we choose K =
cos 0

VK?—1=tanb,

and by Proposition [{8, we deduce

(4.136) cose/b F(O)ldt <

which 1s exactly the Karamata inequality from the Introduction.

£)dt|

Obviously, the result from Proposition is more comprehensive
since for other values of (a, ) € R? with o + #* = 1 we can get
different sufficient conditions for the function f such that the inequality

(4.134)) holds true.

A different sufficient condition in terms of complex disks is incor-
porated in the following proposition [2].

PROPOSITION 49. Let e = a +if8 with o + %> =1, r € (0,1) and
f :la,b] — C a Lebesgue integrable function such that

(4137) f(t)eD(e,r):={2€C| |[z—e| <1} fora.e. te€]la,b].

Then we have the inequality

(4.138) \/1—r2/b|f(t)|dt§

t) dt‘.
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The case of equality holds in if and only iof

/f 1—r2a+zﬁ/]f )| dt.

The proof follows by Corollary [33] and we omit the details.
Further, we may state the following proposition as well [2].

PROPOSITION 50. Let e = a+if with o>+ 3% =1 and M > m > 0.
If f:[a,b] — C is such that

(4.139)  Re [(Me — (1) (m - mé)] >0 forae. te€]ab],
or, equivalently,
OB

then we have the inequality

1
e §§(M—m) for a.e. t € |a,b],

(4.140)

(4.141) t)|dt < t)dt|,
or, equivalently,

b
(4.142) 0 §)/ |f (t)] dt — t) dt'

t)dt|.
M +m / St
The equality holds in 1) (or in the second part of ) if and

only if
b
IR

The proof follows by Corollary [34] and we omit the details.

m b
i) [l

REMARK 55. Since
Me— f(t)=Ma—Ref(t)+i[MB—Tm f(t)],
f(t) —me=Ref(t) —ma —i[lm f(t) — mpj]
hence
(4.143) Re|(Me — f () (m— mé)]
= [Ma —Re f ()] [Re f (t) — ma]
+ MG =T f ()] [lm f (t) — mf3].
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It is obvious that, if

(4.144) ma < Ref(t) < Ma forae. te€]alb],
and
(4.145) mpB <Imf(t) < MG fora.e. tela,bl,

then, by ,
Re [(Me — f(1)) <m— mé)} >0 fora.e. té€]la,bl,
and then either or hold true.
We observe that the conditions and are very easy

to verify in practice and may be useful in various applications where
reverses of the continuous triangle inequality are required.

REMARK 56. Similar results may be stated for functions f : [a,b] —
R™ or f : [a,b] — H, with H particular instances of Hilbert spaces of
significance in applications, but we leave them to the interested reader.

Let e = a4+ i (o, f € R) be a complex number with the property
that |e| = 1, i.e., a®> + 3% = 1. The following proposition concern-
ing a reverse of the continuous triangle inequality for complex-valued
functions may be stated [3]:

PROPOSITION 51. Let f : [a,b] — C be a Lebesgue integrable func-
tion with the property that there exists a constant p € (0,1) such that

(4.146) |f(t) —e| < p fora.e te€lab],

where e has been defined above. Then we have the following reverse of
the continuous triangle inequality
b
[ rwa

/1= <1+\/1—p2>
b b
X {a/ Ref(t)dt+ﬁ/ Imf(t)dt} :
The proof follows by Corollary [37, and the details are omitted.

On the other hand, the following result is perhaps more useful for
applications [3]:

(4.147) (0<) / (@) dt -
< p2
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PROPOSITION 52. Assume that f and e are as in Proposition [51].
If there exists the constants M > m > 0 such that either

(4.148) Re [(Me — ) (m . mé)] >0
or, equivalently,
(4.149) 'f(t) _Mam, %(M m)

for a.e. t € la,b], holds, then

(4.150) 0</|f )| dt —

< <\/2_\/_\/_> [a/abRef(t)dt—l—ﬁ/ablmf(t)dt}.

The proof may be done on utilising Corollary [38], but we omit the
details

Subsequently, on making use of Corollary 0] one may state the
following result as well [3]:

dt‘

PROPOSITION 53. Let f be as in Proposition[51] and the measurable
functions K,k : [a,b] — [0,00) with the property that
(K —k)*
~————— € Lja,b
K+k E [a’7 ]
and

ok (t) < Re f () < ok (1) and Bk (t) < Tm f (1) < BK (1

for a.e. t € [a,b], where v, B are assumed to be positive and satisfying
the condition o>+ 3% = 1. Then the following reverse of the continuous
triangle inequality is valid:

b
©02) [ 15 @l
1 — 2
< _/ (K () —k@OF
4/, K(@t)+k(t)
The constant % 15 best possible in the sense that it cannot be replaced
by a smaller quantity.

t) dt’

REMARK 57. One may realise that similar results can be stated if
the Corollaries |4 1444 obtained above are used. For the sake of brevity,
we do not mention them here.
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Let f : [a,b] — C be a Lebesgue integrable function and M >
1 > m > 0. The condition from Theorem which plays a
fundamental role in the results obtained above, can be translated in
this case as

(4.151) Re [(M (s) = £ (1) (7 - mF ()] = 0

for ae. a<t<s<hb.
Since, obviously

Re [(M () = £ (1) (&) = m[ (5))]
= [(MRe f(s) =Re f (1)) (Re f (t) —mRe f (s))]
+ (M Im f (s) =T f (£)) (Im f (£) — mIm f (s))]
hence a sufficient condition for the inequality in to hold is
(4.152) mRe f(s) <Ref(t) < MRef(s)

and
mm f (s) < T f (1) < MTm f (s)
for ae. a <t <s<hb.
Utilising Theorems[61} [62] and [63] we may state the following results

incorporating quadratic reverses of the continuous triangle inequality
[4]:

PROPOSITION 54. With the above assumptions for f, M and m, and
if (4.151) holds true, then we have the inequalities

(/ablf(t)ldt)2§ /abf(t)dt
1

(M—m)2 b 2
+§-M—+m/a (s—a)|f (5)ds,

/ablf(t)ldtSGf/L_Z)% /abf(t)dt

/ (b= 8) +mM (s — a)] | (s)*ds < / £ (s) ds

REMARK 58. One may wonder if there are functions satisfying the
condition above. It suffices to find examples of real functions
¢ : [a,b] — R wverifying the following double inequality

(4.153) Yo (s) <@ (t) <Tp(s)

2

9

and
2

M+m
2




192 4. REVERSES FOR THE CONTINUOUS TRIANGLE INEQUALITY

for some given v, I" with 0 <y <1 <T' < o0 forae a<t<s<b.

For this purpose, consider ¢ : |a,b] — R a differentiable function
on (a,b), continuous on |a,b] and with the property that there exists
O > 0> 0 such that

(4.154) 6 < (u) <O for any u € (a,b).
By Lagrange’s mean value theorem, we have, for any a <t <s<b
U(s) =¥ (t) =4 (§) (s —1)

with t < & < s. Therefore, fora <t < s <b, by (4.154)), we have the
imequality

0b—a)<O(s—t)<YP(s)—v({t)<O(s—t)<O(b—a).
If we choose the function ¢ : [a,b] — R given by
¥ (t) = exp [_w (t)] , te [CL, b} )

and v :=explf(b—a)] <1, :=exp[O(b—a)], then holds
true for any a <t < s <b.

The following reverse of the continuous triangle inequality for complex-
valued functions that improves Karamata'’s result (4.1]) holds [5].

PROPOSITION 55. Let f € L([a,b];C) with the property that
(4.155) 0<p Sagf() Sy <3

for a.e. t € [a,b]. Then we have the inequality

b b
(4.156) \/sin @, + cos? %/ £ ()] dt < / £ dt‘ |
The equality holds in if and only if
b b
(4.157) / f(t)dt = (cospy + isin cpl)/ |f (t)| dt.

PROOF. Let f(t) = Ref(t) + ilm f(t). We may assume that
Ref(t) > 0, Imf(t) > 0, for a.e. t € [a,b], since, by (4.155),
EZ%; = tan[arg f (t)] € [0,%), for a.e. t € [a,b]. By (4.155), we
obviously have

2 Imf(t)
05t = {Rem)

for a.e. t € [a,b], from where we get
o f (OF + Re f (0F _ 1
[Re f (1)]” ~ cosZpy’

2
] < tan? Vo,
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for a.e. t € [a,b], and
[l f (O] + [Ref () _ 1+tan’y, 1
[Im f ()] ~ tan’yp,  sing,’
for a.e. t € [a,b], giving the simpler inequalities

[f (W)l cos gy <Re(f (1)), [f(@)|sing; <Im(f (1))

for a.e. t € [a,b].

Now, applying Theorem [64] for the complex Hilbert space C en-
dowed with the inner product (z, w) = z-w for k; = cos p,, ky = sin g,
and e = 1, we deduce the desired inequality . The case of equal-
ity is also obvious and we omit the details.

Another result that has an obvious geometrical interpretation is the
following one [5].

PROPOSITION 56. Let e € C with |e|] = 1 and py,py € (0,1). If
f(t) € L([a,b];C) such that

(4.158)  |f(t) —e| <py, |f () —ie| < py for a.e. t € la,b],
then we have the inequality
b
| s

w1 oA [ Il
with equality if and only if '
(4.160) /bf(t)dtz (\/ipfﬂ'\/fpg) /b|f(t)|dt-e.
The proof is obvious by Corollary [46] applied for H = C and we
omit the details.

Y

REMARK 59. If we choose e =1, and for py, ps € (0,1) we define
D(1,p):={2€Cllz=1<p}, D(i,p,):={z€Cllz—i| <py},
then obviously the intersection domain

Spl,pz = ‘D (17p1) N D (Z7p2>

1s nonempty if and only if p; + py > V2.
If f(t) € Sy, p, for ae. t € [a,b], then holds true. The
equality holds in if and only if

/abf(t)dt: (\/1—p%~|—i\/1—p§) /ab|f(t)|dt.
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CHAPTER 5

Reverses of the CBS and Heisenberg Inequalities

5.1. Introduction
Assume that (K (-,-)) is a Hilbert space over the real or com-
plex number field K. If p : [a,b] C R — [0,00) is a Lebesgue inte-

grable function with f; p(t)dt = 1, then we may consider the space
L2 ([a,b]; K) of all functionsf : [a,b] — K, that are Bochner measur-

able and fab,o(t) If ()] dt < oo. It is well known that L2 ([a,b]; K)
endowed with the inner product (-,-), defined by

b
()= [ o009 (0)de

and generating the norm

i, = ([ oo |\f<t>H2dzt)é ,

is a Hilbert space over K.
The following integral inequality is known in the literature as the
Cauchy-Bunyakovsky-Schwarz (CBS) inequality

b b
(5.1) /,O(t) IIf(t)Ilzdt/ p (1) llg ()] at

/ p (1) (f (), g (1)) di| .

>

provided f,g € L? ([a,b]; K) .
The case of equality holds in (5.1)) iff there exists a constant A € K
such that f (t) = A\g (¢t) for a.e. ¢t € [a,b].
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Another version of the (CBS) inequality for one vector-valued and
one scalar function is incorporated in:

(5.2) /p®MWw/mwﬂw%
N 2

Y

b
[ e swa
provided a € L? ([a,b]) and f € L? ([a,b] ; K), where L? ([a, b]) denotes
the Hilbert space of scalar functions « for which fab p(t)|a )] dt < co.
The equality holds in iff there exists a vector e € K such that
f () =al(t)e for ae. t € [a,b].

In this chapter some reverses of the inequalities and are
given under various assumptions for the functions involved. Natural

applications for the Heisenberg inequality for vector-valued functions
in Hilbert spaces are also provided.

5.2. Some Reverse Inequalities

5.2.1. The General Case. The following result holds [1].

THEOREM 66 (Dragomir, 2004). Let f,g € L? ([a,b]; K) and r > 0
be such that

(5:3) 1A (&) =g @Ol <7 < llg @

for a.e. t € a,b]. Then we have the inequalities:

G o< [p@lr@ird [ p@ s i

2

b
/p@ﬁ@y@ﬂt

< [l @id [ pols ol @

—Mﬁ@mvwgmmﬂ
b
gﬂlp@wmww

The constant C = 1 in front of r* is best possible in the sense that it
cannot be replaced by a smaller quantity.
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ProOF. We will use the following result obtained in [2]:
In the inner product space (H;(-,-)), if z,y € H and r > 0 are
such that ||z —y|| <r <|y[|, then

(5:5) 0 < [llf* lyll* — [z, )1
< Jlzl* [lyll* = Re {a, )]* < r? ]|

The constant ¢ = 1 in front of 72 is best possible in the sense that it
cannot be replaced by a smaller quantity.

If (5.3) holds, true, then

b b
||f—g||,2)=/ P(t)||f(t)—9(7f)||2dt§7’2/ p(t)dt = r?
and

Hng,—/ p(t)\lg(t)\l2dt2r2/ p(t)dt =1

and thus |[f —gl, < r < |lg]l,. Applying the inequality (5.5) for
(L% (la,b]; K), (-, -)p) , we deduce the desired inequality 1}
If we choose p(t) = =, f(t) =z, g(t) =y, v,y € K, t € [a,}],

b—a’

then from ([5.4]) we recapture (5.5)) for which the constant ¢ = 1 in front
of r? is best possible. §

We next point out some general reverse inequalities for the second

(CBS) inequality [.

THEOREM 67 (Dragomir, 2004). Leta € L2 ([a,b]), g € L2 ([a,b]; K)
and a € K, r > 0 such that ||a|| > r. If the following condition holds

(5.6) lg ) = a(t) all < 7o (t)]

for a.e. t € [a,b], (note that, if a(t) # 0 for a.e. t € [a,b], then the
condition (@ 15 equivalent to

9,

(5.7) 20

<r
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for a.e. t € [a, b)), then we have the following inequality

59 ([ewmora [ oo <t>||2dt)é
<mae</abp<t>a<t>g<t>dt,a>

/abpa)a(t)g(t) dtH;

59 0 (| o) (P di / o) ||g<t>u2dzf)é

[ rwaon |

< (/abm\a(t)\ dt/ab <t>ug<t>u2dt);

b
e /ap<t>a<t>g<t>dt,m>

/bp<t>a<t>g<t>dtu;

i
2 2 a
al? = (lall + y/llal? - )

<

(

- \/W(Ha||+\/m)
<
(

sy [l [ ool

< HaHzl— = [Re </abp(t)a(t)g(t) dt,a>r

2

[ roawowa .
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and

s oz | oW (P di / "o ) g (1)1 dt
s/abp<t>|a<t>|2dt/abp<t> lg (8)|” dt
- [Re</abp<t>a<t>g<t>dt,ﬁﬂz

S P re{ [ rasana)

/ p(t)a(t)g(t)dt

2

b
/ p(t)a(t)g(t)dt

2

7,2

S s
lal[” —r?

All the inequalities (@ - are sharp.

PRrROOF. From ([5.6) we deduce
lg (D" = 2Re (g (1), a (1) a) + | (O [la]* < |a ()] 72
for a.e. t € [a,b], which is clearly equivalent to:
(5.12) lg (OI7 + (llall”* = %) la (1)]* < 2Re(a(t) g (1), a)

for a.e. t € [a,b].
If we multiply (5.12)) by p () > 0 and integrate over t € [a, b], then
we deduce

(5.13) / o (&) g (02 dt + (Ja]? - 2) / o (1) o (D)2 dt
§2Re</ p(t)a(t)g(t)dt,a>.
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Now, dividing (5.13) by \/HaH2 — 72> 0, we get

) dt

(5.14) W/ gt
\/m/ ()2 dt

b
< —Re</ (t)a(t)g(t)dt,a>.
2
y lall” =72 “
On the other hand, by the elementary inequality

1
ap‘f‘@C]EQ\/p’ a>oapaq207

we can state that

(.15 2\/ / p<t>|a<t>|2dt-\/ JNCICIRY

\/F/ ) llg (O] at
\/m/ ()2 dt.

Making use of (5.14) and (5.15]), we deduce the first part of (5.8]).
The second part of ([5.8)) is obvious by Schwarz’s inequality

Re</abp(t)a(t)g(t)dt,a> g‘

If p(t) = 52, a(t) =1, g(t) =z € K, then, from (5.8) we get

Ml flall ||a||

— 1 Rewa
\/llal* =2 \/ lal|* -

provided ||z — al| < r < ||a||, z,a € K. The sharpness of this inequality
has been shown in [2], and we omit the details.

The other inequalities are obvious consequences of and we
omit the details. &

lall -

/a”p@a(t)g(t)dt‘

] <
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5.2.2. Some Particular Cases. It has been shown in [2] that, for
Aja € K (K=C,R) and z,y € H, where (H; (-,-)) is an inner product
over the real or complex number field K, the following inequality holds

1 Re[(A+a) (z,y)]
(5.16) lzlHyll < 5 - 1
=2 [Re (Aa)]?
Lo_A+d .
<3 oyt
provided Re (Aa) > 0 and
(5.17) Re (Ay — x,x — ay) > 0,

or, equivalently,

a+ A
2

(5.18) xr —

1
o <314 allol,

holds. The constant % is best possible in 1)
From (j5.16)), we can deduce the following results

(5.19) 0 < lz]lyll — Re (z,y)
1 Re [(A+a —2[Re (/ia)]2> <x,y>]
2 [Re (Aa)]2
1 ‘A+a—2[Re(Aa)]% o
>~ 5 1 €,y
2 [Re (Aa)]>
and
(5.20) 0 < [lz][ {lyll = [{z, v)|
1 |A+a|—2[Re(A4a))? N
<3 o (Aa)] [{z,9)]|

If one assumes that A = M, a = m, M > m > 0, then, from ([5.16),
(5.19) and (5.20) we deduce the much simpler and more useful results:

(5.21) ] lyll < 5 -

(5.22) 0 <[lzll{lyl — Re(z,y) <
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and

2
(5.23) 0 < [l [y[l — I >\<1 <\/M—\/ﬁ) [(z,y)]
. < ||z| ||y T,y =5 \/m T, Y),
provided

Re (My — x,x —my) >0
or, equivalently

1

M*’”yH < Lr—m .

2

(5.24)

v =3

Squaring the second inequality in ([5.16[), we can get the following re-
sults as well:
1 |A—af

92 < 2 2 2< - 2
5:25) 0ol Iyl = o) < 3 ey N

provided (5.17)) or (5.16) holds. Here the constant  is also best possi-
ble.

Using the above inequalities for vectors in inner product spaces,
we are able to state the following theorem concerning reverses of the
(CBS) integral inequality for vector-valued functions in Hilbert spaces
[

THEOREM 68 (Dragomir, 2004). Let f,g € L2 ([a,b]; K) and~y,T" €
K with Re (I'y) > 0. If

(5.26) Re(Tg (t) — £ (£). £ (t) — g (t)) > 0
for a.e. t € [a,b], or, equivalently,

s |ro-25E @] < 5=l

for a.e. t € [a,b], then we have the inequalities

1

s ([ewnrera [ solore)

Re [(D+9) 2 () {f (1), 9(1)) dt]
[Re (17)]

b
/ p (1) (F (1) 9 (1)) dt

IN

T+
[Re (T7)]

IN
N e NN

Y

N|=
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529 o< ([ o) ||f(t)||2dt)% (/ o) ||g<t>u2dt)é

530 o<(/ "o IIf(t)IIth)% (/ o) ||g<t>||2dt)é

and

(5.31) 0< / o (1)1 ()] dt / p (1) llg (8)]2dt

2

/ p(8) (F (1) g (1)) dt

2

— ~2 b
] [ o .gwal

1
~ 4 Re(I9)

The constants % and }L above are sharp.

In the case where I', v are positive real numbers, the following corol-
lary incorporating more convenient reverses for the (CBS) integral in-
equality, may be stated [].

COROLLARY 50. Let f,g € L2 ([a,b]; K) and M >m > 0. If
(5.3 Re (Mg (1) — £ (). (£) — mg () > 0

for a.e. t € [a,b], or, equivalently,
1

o) < 5 1 = m) g 0

m+ M

(5.33) 5

f(#)
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for a.e. t € [a,b], then we have the inequalities

1
2

(5.34) (/abp(t) 1 (@)1 at /abp(t) lg (t)llzdt)

[\

sl-%/ p(t)Re (f (1) g (1)) dt,

([ ro1a0ra)

—/ p()Re (f (t) g (1)) di

M
N

s o< ([ rwirore)

(VA - ym
Neo,

IN

>Abp<t>Re<f<t>,g<t>>dt,

1
2
(/ o)l <t>||2dt)é
/ o ) ,g<t>>dt\

(v - vy
vmM

N[

530 o=/ o) IF 0l i)

IN

b
/ p(8) (F (1) 9 (1)) dt

1
2

9

and

b b
(5.37) OS/ p(t) IIf(t)IIth/ p (1) llg ()] dt

2

/ p (1) (f ()9 () dt

(M —m)? 2

.
— 4 mM

[ o0 ®) .9

The constants % and }l above are best possible.

On utilising the general result of Theorem [67], we are able to state a
number of interesting reverses for the (CBS) inequality in the case when
one function takes vector-values while the other is a scalar function [1J.
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THEOREM 69 (Dragomir, 2004). Let o € L2 ([a,b]), g € L2 ([a,b]; K),
ee K, |le|| =1, ~,T € K with Re (I'y) > 0. If

‘F+’y

(5.38) ‘ < %

g(t)—al(l) el < 5T =lla(@)

for a.e. t € la,b], or, equivalently
(5.39) Re (Tat (1) e — g (1) g (1) — 7 () €) > 0
for a.e. t € [a,b], (note that, if a(t) # 0 for a.e. t € [a,b], then

15 equivalent to

(t) T'+~y 1
(5.40) o 2 ¢ S el
for a.e. t € la,b], and is equivalent to
(5.41) Re <Fe - %, % - 'ye> >0
for a.e. t € [a,b]), then the following reverse inequalities are valid:
b b 3
s ([owwora [ sol0Fa)
Re [(f +7) <faf’ p(t)a(t)g(t)dt, e>}
) 2[Re (17)]*
1 T+ b H
< . - « dti;
<3 ey |, POats 0

1

sa3 o< (/ oW P di / o) lo P ar)’

[ raon a

<([oomwra [ poroora)

ke[ ([ patgtar.e))

=
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2
< Il

" 2y/Re (1) ([T +9] +2/Re (7))
« Re L?—H </abp(t)a(t)g(t)dt,e>}

-9 ' ,
§2 Re(F7)<|F+7!+2\/W> /ap(t)a(t)g(t)dtH,

ca) [ p@ i@l [ p@la @) i

si-ﬁfﬁjFBQF+W<AZW%W”“”“£>N2

N NINtrecrer:

~— 4 Re(I'y)

and

b b
(5.45) os/p@mwwﬁ/pmwwwﬂ
b ‘ b
s/mmmwﬁ/mmmm%t

[ { romonons)

1 =)
4 I'+9"Re(I'y)

X [Re ((F+7) </abp(t)oz(t)g(t) dt,e>>]

<1 ey | rOa@e@a

2

/pwawmmﬁ

2

<

2

The constants % and }L above are sharp.

In the particular case of positive constants, the following simpler
version of the above inequalities may be stated.
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COROLLARY 51. Let o € L2 ([a,b])\ {0}, g € L2 ([a, 0] ; K) , e € K,
lle|| =1 and M, m € R with M >m > 0. If

g(t) M+m 1

(5.46) Z0 " 2 ° <5 (M—m)
for a.e. t € [a,b], or, equivalently,
e e (t) M —me

(5.47) R <M A ORAG > >0
for a.e. t € |a,b], then we have
(5.48) IRCICIRy 0 ||g<t>||2dt)2

<5 e [ pway@ae)

m b
<5 | [omawawa;

519 o/ o) (O di / o) Hg(t)Hthf
/abp@)a(t)g(t) i

< (/abp<t>|a<t>|2dt/abp<t>||g<t>||2dt)§
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(5.50) os/p@mwﬁﬁ/pwwwwﬁ

% [Re</abp(t)a(t)g(t)dt,e>}

m2 b 2
@%7llp@ww@ﬁ

2

VAN

IN
= =

and

a5 02 [ pwlala [ ol

{l%@ww@ﬁQ

s/mmmWw/mmmm%

- [Re</abp(t)a(t)g(t) dt,e>]

2

2

<3 O o [y a s @are)]
< 1O gy

The constants % and 411 above are sharp.

5.2.3. Reverses of the Heisenberg Inequality. It is well known
that if (H;(-,-)) is a real or complex Hilbert space and f : [a,b] C
R —H is an absolutely continuous vector-valued function, then f is
differentiable almost everywhere on [a, bl , the derivative [ : [a,b] — H
is Bochner integrable on [a, b] and

(5.52) / f'(s)ds  for any t € [a,b].

The following theorem provides a version of the Heisenberg inequal-
ities in the general setting of Hilbert spaces [1].

THEOREM 70 (Dragomir, 2004). Let ¢ : [a,b] — H be an absolutely
continuous function with the property that blle (b)]|> = alle (a)]*.
Then we have the inequality:

(5.53) ([ﬁwanfw)igglﬁﬂwanﬁw-Lﬂwwwwdt
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The constant 4 1is best possible in the sense that it cannot be replaced
by a smaller quantity.

PROOF. Integrating by parts, we have successively
’ 2
CENI N IR

- [ e

=W¢@W—GMWMV—/t%@Mﬂw@Dﬁ

=t ()]

:‘/7K¢@x¢@»+wu»¢@mw
_ _2/ tRe (¢ (1), (t))dt
:;/meu»«wwu»w

If we apply the (CBS) integral inequality

/abRe (g (@), h(t))dt < (/ab Hg(t)||2dt/ab||h(t)||2dt)%

for g(t) =¢' (t), h(t) = —te(t),t € [a,b], then we deduce the desired
inequality .

The fact that 4 is the best possible constant in follows from
the fact that in the (CBS) inequality, the case of equality holds iff
g (t) = Ah(t) for a.e. t € [a,b] and A a given scalar in K. We omit the
details. 1

For details on the classical Heisenberg inequality, see, for instance,

[4].
The following reverse of the Heisenberg type inequality (5.53|) holds
1.

THEOREM 71 (Dragomir, 2004). Assume that ¢ : [a,b] — H is as
in the hypothesis of Theorem [70 In addition, if there exists a r > 0
such that

(5.55) l" () =t ()| < < [l¢" @)



212 5. CBS AND HEISENBERG INEQUALITIES

for a.e. t € [a,b], then we have the inequalities

b b b 2
550 o< [l 1@ a5 ([lewle)
b
< [ Ele ) a

PROOF. We observe, by the identity ([5.54)), that

(5.57) ﬁ([ﬂwwwwd02=:(Aﬁm«ﬂa>¢wu»d02.

NOW, if we apply Theorem for the choices f(t) = tp(t), g(t) =
¢ (t), and p(t) = —, then by (/5.4) and ( - we deduce the desired
inequality ({5.56} - |

REMARK 60. Interchanging the place of ty (t) with ¢’ (t) in Theo-
rem [71, we also have

(5.58) og/ﬁw |ﬁ/m@ |ﬁ——</n I )
sﬁl“d@ﬁ%

provided
I () =t (DIl < p < [t] le (D)l

for a.e. t € [a,b], where p > 0 is a given positive number.

2

The following result also holds [1].

THEOREM 72 (Dragomir, 2004). Assume that ¢ : [a,b] — H is as in
the hypothesis of Theorem[70. In addition, if there exists M > m > 0
such that

(5.59) Re (Mtp (t) — ¢’ () ¢’ (t) —mte (1)) = 0
for a.e. t € [a,b], or, equivalently,
son |- e < gm0

for a.e. t € [a,b], then we have the inequalities

(5.61) ([fW@WﬁLW¢@Wﬁ
< B pa)
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and

o) [ elewra g oFa- ([ ||so<t>||2dt>2

g%-%(/@bn@(wnzdt)

2

respectively.

PrROOF. We use Corollary |50| for the choices f () = ¢’ (t), g (t) =
to (t), p(t) = 525, to get

b b
[ e e [ e o
2

s%(/jlﬁ@'(w,w(t»dt) .

Since, by (5.57)

(/abRe<90/ (t),tgo(t)>dt>2 _ i (/abHsD(t)H?dt)Q,

hence we deduce the desired result (5.61))
The inequality ([5.62)) follows from ([5.61]), and we omit the details. 1

REMARK 61. If one is interested in reverses for the Heisenberg
inequality for scalar valued functions, then all the other inequalities
obtained above for one scalar function may be applied as well. For the
sake of brevity, we do not list them here.

5.3. Other Reverses
5.3.1. The General Case. The following result holds [3].

THEOREM 73 (Dragomir, 2004). Let f,g € L2 ([a,b]; K) and 7 >0
be such that

(5.63) If @) —g@l <r
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for a.e. t € [a,b]. Then we have the inequalities:
(5.64)  0< ( / o (1) |1 (1) dt / o (1) ||g<t>||2dt)2
[ oo ,g<t>>dt'

< </abp(t)\|f(t)\|2dt/abp(t) ||g(t)||2dt)2

/ p()Re (f (t). g (1)) di

= (/abp(t)Hf(t)Hth/abp(t) ||g(t>||2dt);

—/ p()Re (f (). g (b)) dt

|—=

< =72

N | —

The constant % in front of r% is best possible in the sense that it cannot
be replaced by a smaller quantity.

Proor. We will use the following result obtained in [2]:
In the inner product space (H;(-,-)), if z,y € H and r > 0 are
such that ||z — y|| < r, then

(5:65) 0 [yl = I{w. )] < 2] 1yl = [Re (e, )
1
< Jlol ] = Re (.3 < 5

The constant % in front of r? is best possible in the sense that it cannot
be replaced by a smaller constant.

If (5.63)) holds true, then
b b
=9l = [ p®1s® - g @I de<s? [ pieyar =7

and thus [[f —g[[, <.
Applying the inequality ([5.65) for <L§ (la,b]; K), (-, )
duce the desired inequality ((5.64]).
If we choose p(t) = ﬁ, ft)=xz9) =y, z,y € K, t € a,bl,
then from ([5.64)) we recapture 1) for which the constant % in front
of 72 is best possible. §

), we de-

p
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We next point out some general reverse inequalities for the second
CBS inequality (5.2))[3]

THEOREM 74 (Dragomir, 2004). Let a € L2 ([a,b]), g € L ([a,b]; K)
andv € K, r> 0. If

g9(t)

== —v

a(t)

for a.e. t € [a,b], then we have the inequality

son o< ([ owlara [ sl @)
| —/:p@b)a(t)g(t)dt |
<([rwaora [ polowr )
</:p<t>a<t>g<t>dt7|“71|>
< (/abpa)!a(t)!%t/;p(t) ||g<t>|!2dt)2
- ‘Re</abp(t)a(t)g(t) dt,lﬁ»
< (/abp<t>|a<t>|2dt/abp<t> ||g<t>||2dt)2
—Re</bp<t>a<t>g<t>dt,”2—n>
<3 an/ (O d.

The constant 5 18 best possible in the sense that it cannot be replaced
by a smaller quantity.

(5.66) <r

=

PROOF. From ([5.66|) we deduce

lg (DII* = 2Re{a (£) g (£) ,0) + | (O [Jol* < r* |or (1)
which is clearly equivalent to

(5.68) g (I +la(OF [lo]* < 2Re{a(t) g (t),0) + 1% |a ()]
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If we multiply (5.68) by p(t) > 0 and integrate over ¢ € [a,b], then
we deduce

569 [ owls@lPar ol [ pwla o a

<ore( [ piatg <>dt,v> w0 [ ol

Since, obviously

(5:70) 2o (/:p<>|a<>|2dt/b <>|\g<>r|2dt);
< [o@tswa o [ oo ofa

hence, by (5.69) and ([5.70]), we deduce

20l ([ p0ara [ o0 ||g<t>|r2dt)%
g2Re</;p<t>a<t>g<t>dt,v>+r2/abp<t>\a<t>\2dt,

which is clearly equivalent with the last inequality in (5.67]).

The other inequalities are obvious and we omit the details.

Now, if p(t) = 7=, a(t) =1, g(t) = 2, « € K, then, by the last
inequality in we get

1
2] o]l = Re (z,v) < 5r*,

provided ||z — v|| < r, for which we know that (see [2]), the constant 3
is best possible. 1

5.3.2. Some Particular Cases of Interest. It has been shown
n [2] that, for v,' ¢ K (K= C or K=R) with I' # —v and z,y € H,
(H; (-,-)) is an inner product over the real or complex number field K,
such that either

(5.71) Re(l'y — z,x —yy) >0,
or, equivalently,
v+T 1
(5.72) m—TyH < 5=yl
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holds, then one has the following reverse of Schwarz’s inequality

(5.73) 0 < [lzll llyll = (=, )]

< ol ol = [Re [ 2 (o)

L+75
< ||z y—Re{ x,y]
]| Iy |F+ﬂ< )

_1r=qf
—4 T'+4]

The constant }l is best possible in {D in the sense that it cannot be
replaced by a smaller constant.

If we assume that I' = M, v = m with M > m > 0, then from
(5.73)) we deduce the much simpler and more useful result

611y 0< el Iyl - o)l < llzl vl - [Re (2, 5)]
- Mo m) Iyl

< |2l = Re {z,y) < 7
provided (5.71)) or (5.72)) holds true with M and m instead of I" and ~.
Using the above inequalities for vectors in inner product spaces, we
are able to state the following theorem concerning reverses of the CBS
integral inequality for vector-valued functions in Hilbert spaces [3].

THEOREM 75 (Dragomir, 2004). Let f,g € L2 ([a,b]; K) and »,T €
K withT # —v. If

(5.75) Re(Tg (t) = f(t), f(t) =g (1)) =0
for a.e. t € [a,b], or, equivalently,

516 o5 g0 < gr-allsol

for a.e. t € [a,b], then we have the inequalities

o o< ([owirora [ poloora)

[ apa

=
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< (/abp(t) £ ()] dt /abp(t> g (t)||2dt>é

- |re [ o010 .9@na |

([ oo1rora [ solsore)
(/ [ )
WH / 9(0) ‘”]

_1r-qf /
dt.
- 4 |F + 7 H
The constant i 1s best possible in .
PROOF. Since, by (5.75),
Re(Tg—f.f—9),

b
:/ p(t)Re (Tg (1) — (), f (£) —vg (£)) dt > 0,

hence, by (5.73|) applied for the Hilbert space (Li (la,b); K); (-, ->p> ,

we deduce the desired inequality (5.77]).
The best constant follows by the fact that % is a best constant in

(5.77) and we omit the details. 1
COROLLARY 52. Let f,g € L7 ([a,0]; K) and M >m > 0. If

(5.78) Re (Mg (t) = f(t), f () —mg (t)) 2 0

for a.e. t € [a,b], or, equivalently,

1

mE M ~g(t)H < S (M =m)lg®)]

2

(5.79) Hf(t) -

for a.e. t € |a,b], then

ss) o< ([ownera [ oo Hg(t)|!2dt);

/ o) o
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< ([ ownrmiza [ o lew)a
([ [ )
[ o@Retr 1.0t
([ oorrora [ solsore)
([ /b )
/ ), g () di
<O g

The constant i 1s best possible.

=

The case when a function is scalar is incorporated in the following
theorem [3].

THEOREM 76 (Dragomir, 2004). Leta € L2 ([a,b]), g € L2 ([a,b]; K),
and v,I' € K withT'# —. Ife € K, |le]| =1 and

g(t) T+~

(5.81) 0 5

1
< I —
6‘_2| ol

for a.e. t € [a,b], or, equivalently,

@) g(

g

=

|

)

m
\/

vV

o

(5.82) Re <Fe -

o

=
o

=

for a.e. t € [a,b], then we have the inequalities

553 o< ([ o@lawla [ o0l )

| rwawand

<([owmwra [ pw Hg(twdtf
([ rwatriswac)

N
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< (/abp(t)|a(t)|2dt/abp(t) ||9(t)||2dt);
_‘Re{FﬂLv </abp(t)a(t)g(t)dt,e>H
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T+~

< (/abp<t>|a<t>\2dt/:p<t> ||g<t>||2ohf)é

ke[ ([ pwatgware)

1 |F_7|2 ’ 2
< —. t t)|” dt.
<1 ETar ) POl

The constant i 18 best possible in .
Proor. Follows by Theorem [74] on choosing

r 1
v::¥e and r::§|f‘—7|.

We omit the details. g
COROLLARY 53. Let o € L2 ([a, b)), g € L3 ([a,b]; K), and M >

m>0.Ifee K, |le] =1 and
gt) M+m
a (1) 2

for a.e. t € [a,b], or, equivalently,

Re<Me—&,&—me>20

e

a(t) alt)

for a.e. t € |a,b], then we have the inequalities:

o5y o= (| o) (P di / o) Hg<t>u2dt)é
/ o tg () dtH
< (/abp<t>|a<t>|2dt/abpof)uga)u%zt)é

- ]</abp<t>a<t>g<t>dt,e>
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<([oomwra [ poro0ra)

~fre( [ patig.e)

s(l%@maWwLZ@M@wﬁf
ke [pt1awaic)

<1 S [rwlkora.

N|=

The constant 7 1is best possible in m

5.3.3. Applications for the Heisenberg Inequality. The fol-
lowing reverse of the Heisenberg type inequality (5.53)) holds [3].

THEOREM 77 (Dragomir, 2004). Assume that ¢ : [a,b] — H is as
in the hypothesis of Theorem [70. In addition, if there exists a r > 0
such that

(5.85) le" (&) +tp (D] <

for a.e. t € [a,b], then we have the inequalities

b , 5 1 b
o) o< ([ elewia [ 1o wra) - [leora
1

2(b—a).

IA
oL

PROOF. We observe, by the identity (5.54)), that

651 [ Reld 0. (0w @)= [ N

Now, if we apply Theorem (73| for the choices f(t) = tp (t), g(t) =
—ty' (t), p(t) = 7=, t € [a,b], then we deduce the desired inequality

(5.86). 1

REMARK 62. It is interesting to remark that, from , we ob-
viously have

b b
638 5 [ leId=| [ Re( 1), tp (1) at].
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Now, if we apply the inequality (see (5-64))

1
[isora [looPa-| [Reir@.00)1a < 30—,
for the choices f(t) = ¢’ (t), g (t ) =tp(t), t € [a,b], then we get the
same inequality (5.86 (-) but under the condztzon
(5.89) le" () =t (DI <r

for a.e. t € [a,b].
The following result holds as well [3].

THEOREM 78 (Dragomir, 2004). Assume that ¢ : [a,b] — H is as in
the hypothesis of Theorem[77. In addition, if there exists M > m > 0
such that

(5.90) Re (Mtp (t) — ¢' (1) ,¢' (t) —mtp (1)) =0
for a.e. t € [a,b], or, equivalently,
son o0 -5 0] < 50r-mle

for a.e. t € [a,b], then we have the inequalities

<wm<x(/#w n@/w uﬁ)—i/w ) de
1
i

o

M+m

PRrROOF. The proof follows by Corollary [52| applied for the function
g(t) = te(t) and f(t) = ¢'(t), and on making use of the identity
(5.88]). We omit the details. &

REMARK 63. If one is interested in reverses for the Heisenberg in-
equality for real or complex valued functions, then all the other inequal-
ities obtained above for one scalar and one vectorial function may be
applied as well. For the sake of brevity, we do not list them here.
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CHAPTER 6

Other Inequalities in Inner Product Spaces

6.1. Bounds for the Distance to Finite-Dimensional
Subspaces

6.1.1. Introduction. Let (H;(-,-)) be an inner product space
over the real or complex number field K, {y1,...,y,} a subset of H
and G (yi, ..., Yy,) the Gram matriz of {yi,...,y,} where (i, 7) —entry
is (yi,y;) . The determinant of G (y1,...,¥,) is called the Gram deter-
minant of {y1,...,y,} and is denoted by I' (y1,...,y,). Thus,

Wi,1) Wi,v2) - (Y1, Yn)
(W2, v1) (Y2,92) - (Y2, Un)

Yns 1) Ynsy2) <+ (Yns Un)

F(yla"'7yn) =

Following [4, p. 129 — 133], we state here some general results for
the Gram determinant that will be used in the sequel.

(1) Let {x1,...,2,} C H. Then I' (xy,...,2,) # 0 if and only if
{z1,...,x,} is linearly independent;

(2) Let M = span{x,...,x,} be n—dimensional in H, i.e., {z,...,
x,,} is linearly independent. Then for each € H, the distance
d (z, M) from z to the linear subspace H has the representations

I'(zq,...,2,, 2
(6.1) &? (z, M) = é(;’h - ’xn))
and
(6.2) & (x, M) = ||lz||* = g*G~'5,
where G = G (11,...,,), G~! is the inverse matrix of G and

BT = ((z,21), (2, 29) ..., (z, 1)),

denotes the transpose of the column vector [3.

225
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Moreover, one has the simpler representation

n 2,7 22
||LUH2 - (Zz:ll( i) ) lf T ¢ ML,

63 )= ISt e
|z if ve Mt
where M~ denotes the orthogonal complement of M.
(3) Let {z1,...,x,} be a set of nonzero vectors in H. Then
(6.4) 0<T (21,0 .y @) < [l o [l
The equality holds on the left (respectively right) side of (6.4))
if and only if {xy,...,2,} is linearly dependent (respectively

orthogonal). The first inequality in (6.4)) is known in the lit-
erature as Gram’s inequality while the second one is known as
Hadamard’s inequality.

(4) If {x1,...,2,} is an orthonormal set in H, i.e., (x;, x;) = d;,
i,j €{1,...,n}, where §;; is Kronecker’s delta, then

(6.5) d* (z, M) = ||z||* ~ Z [z, @)

The following inequalities which involve Gram determinants may
be stated as well [17], p. 597]:

U (z,...,2,) < [ (zg,...,2,)

. <...<T m),
(6.6) Tz, an) Do, a) = = (Tt - - Tn)
(6.7) U (21, mn) ST (@1, 20) T (Thgs -, 20)
and

(68) F% (xl + Y1,T2, ... 73371)
< s (1,22, ...,2,) 4T (y1, T2y ..o Ty

The main aim of this section is to point out some upper bounds
for the distance d (z, M) in terms of the linearly independent vectors
{x1,...,2,} that span M and x ¢ M=+, where M~ is the orthogonal
complement of M in the inner product space (H; (-, )).

As a by-product of this endeavour, some refinements of the general-
isations for Bessel’s inequality due to several authors including: Boas,
Bellman and Bombieri are obtained. Refinements for the well known
Hadamard’s inequality for Gram determinants are also derived.
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6.1.2. Upper Bounds for d (z, M). The following result may be
stated [16].

THEOREM 79 (Dragomir, 2005). Let {z1,...,z,} be a linearly in-
dependent system of wvectors in H and M = span{zi,...,x,}. If
v ¢ M+, then

d2 (z, M) < H-T”Q 22;1 H%Hz - Z?:l |<.CE,£L’Z>|2

&9) Sl

or, equivalently,

(6.10) T (z1,...,2p,2)
2 n 2 n 2
el i bl S VP
D i [l
Proor. If we use the Cauchy-Bunyakovsky-Schwarz type inequality

n 2 n n
Zaiyi < Z\%FZHI%HQ’
i=1 i=1 i=1

that can be easily deduced from the obvious identity

n n n 2 n
612) Sl S Il — S e =5 3l —
=1 =1 =1

ij=1
we can state that

(6.11)

n

2 n n
Y o(wrdm| <D Hw )Y
=1 =1 =1

Note that the equality case holds in (6.13)) if and only if, by (6.12]),

(6.13)

(6.14) (x, x)x; = (@, 1)

for each 4,5 € {1,...,n}.
Utilising the expression ([6.3)) of the distance d (z, M), we have

n 2

n 2 n 2
(615) 42 (ij) _ ”xHQ . Zizl |<‘Z= Il>| Zizl |2|$1H . ZZ:; |<I7'T%Z| ‘
12200 (2, i) i D i |l

Since {z1,...,x,} are linearly independent, hence (6.14) cannot be
achieved and then we have strict inequality in ((6.13)).

Finally, on using (6.13)) and (6.15]) we get the desired result (6.9).
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REMARK 64. It is known that (see (6.4))) if not all {z1,...,x,} are
orthogonal on each other, then the following result, which is well known
in the literature as Hadamard’s inequality holds:

(6.16) T (@1,-eeo@n) <zl llz2])” - llzal*.

Utilising the inequality , we may write successively:

lan el = Yz )
T (21,22) < 2 ]l < llo |2 2,
o]
2 2 2
(o, 0. y) < 127 Sl = S s

Zizl ||$z||

2 -1 2
a1 00 llall® = 0 [{n, 2:3)]

Uz, @1, Tp) <
o Zi:ll ’sz2
X F(ml,...,xn_l)
< ||$nH2F(x17 - an—l) :

Multiplying the above inequalities, we deduce

(6.17) U (z1,...,Tp 1,Tp)

< JJanl” H (H oll” = S
n
2
) | RE7I
j=1

valid for a system of n > 2 linearly independent vectors which are not
orthogonal on each other.

k—1
2 E ’ xkaxz
=1

:1

In [1I5], the author has obtained the following inequality.

LEMMA 8 (Dragomir, 2004). Let zq,...,2, € H and ay,...,a, €
K. Then one has the inequalities:

(6.18)
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IN

max [a|” Z =il

1<i<n

=1

1 1
n 9 o n 9 P

<Z il ") (Z 12l B)
i=1 i=1

1,1 4.
where o > 1, 5—1—3—1,

n
2 e ail” max |||

max {lagasl} >0 [z 2]

1<i#j<n 1<i#j<n

1
2 )
(z |ai|”) ~ S ] ( S e )l )
+ | \i=1 i=1 1<i£j<n
where v > 1, %Y+%:1;

(Elad) = Stk | 1wz

\ L

where any term in the first branch can be combined with each term from
the second branch giving 9 possible combinations.

Out of these, we select the following ones that are of relevance for
further consideration:

(6.19)

n
< max 5] ) fof*
1<i<n p
2 n
2
ol (Sel) -3
1=

<Z\% (max P + (0= 1), (51 )

1<i<j<n
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and

2

(6.20)

n
E 07%%)
i=1

1/2

n n 2 n
< Yl | (S - Y
S=n =1 =1 =1

N

X( > |<Ziazj>!2)

1<i#j<n
n 3
2 2 2
<3 ol | s 1) +( 5 |<zi,zj>|)
i=1 == 1<i#j<n

Note that the last inequality in (6.19)) follows by the fact that

n 2 n
(Dml) <nS o
=1 =1

while the last inequality in is obvious.

Utilising the above inequalities and which provide al-
ternatives to the Cauchy-Bunyakovsky-Schwarz inequality , we
can state the following results [16].

THEOREM 80 (Dragomir, 2005). Let {xy,...,x,}, M and x be as
in Theorem[79. Then

(6.21) d*(x, M)

1
2 2 2\’ " 2
el | max flil[" 4+ | >0 (e a5)] = > Kz, 2)|
n 1< n

1< <i#j< i=1

1
2
2 2
max [l + <1§#z;§n|<xz,xj>| )
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or, equivalently,

(6.22) I'(z1,...,2p,2)

l2]* | e |1 +< 2. \(xi,xj>|2> —ﬁl(w,wﬁf

1<iZj<n

2
2
max X + XTi, T
max [z <1§§§§n‘< i m)

X T (z,...,2,).

Proor. Utilising the inequality (6.20) for a; = (z,z;) and z; = ;,
ie{l,...,n}, we can write:

n 2
(6.23) Z (x,x;) @5
- n 3
<3 ) | max o] + ( > |<xi,xj>|2>
i=1 - 1<i#j<n
for any x € H.

Now, since, by the representation formula 1)

S N, )|
(6.24) d* (z, M) = ||z||* ~ 5 1( Py Z|

for x ¢ M+, hence, by (6.23) and (6.24) we deduce the desired result

G200

REMARK 65. In 1941, R.P. Boas [2]| and in 1944, R. Bellman
[1], independent of each other, proved the following generalisation of
Bessel’s inequality:

1
2
2 2
(6.25) Zlyyz < llyll” | max ]| +< > |<yi,yj>|) ,

1<i#j<n

provided y and y; (i € {1,...,n}) are arbitrary vectors in the inner

product space (H;(-,-)). If {yi}icr1, .y are orthonormal, then
reduces to Bessel’s inequality.

In this respect, one may see as a refinement of the Boas-

Bellman result .
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REMARK 66. On making use of a similar argument to that utilised
in Remark[64), one can obtain the following refinement of the Hadamard
mequality:

(6.26) I'(xy,...,2,)
< fJanl”

k—1

n S [aw, )|
2 i—1
XH [ : T
k=2 2 2\’
s el (5 )

1<i#j<k—1

n

2

< T llsl*
j=1

Further on, if we choose o; = (x,2;), z; = z;, ¢ € {1,...,n} in
(6.19), then we may state the inequality

n 2

(6.27) E (x, ;) x;
i=1
2 2
<> la ) (lrgﬂgllxill +(n—1)1<rggj>gn|<wuxj>|)-
=1 - -

Utilising (6.27) and (6.24) we may state the following result as well
[16]:

THEOREM 81 (Dragomir, 2005). Let {xy,...,z,}, M and x be as
in Theorem[79. Then

(6.28) d? (z, M)

2 2 n 2
el [+ = 2), e )] = S o)

2
max ||z + (n — 1) max |z, ;)]
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or, equivalently,

(6.29) T'(x1,...,7p, )

2 2 2
2l | max llzill” + (n = 1) max |z, a5)|| =3 ({2, 24)l

2
max flzi|" + (n — 1) max |(z;,;)]

X I'(zq,...,2,).

REMARK 67. The above result provides a refinement for the
following generalisation of Bessel’s inequality:

2 2 2
(6.30) ;K%wiﬂ < [l | max flzall” + (n = 1) max [{wi, 25,

<i 1<i#j<n

obtained by the author in [15].
One can also provide the corresponding refinement of Hadamard’s

inequality on using , 1.€.,

(6.31) T'(z1,...,7p)

< [l
k—1 )
2 |{ww )]

2
| Dnax |z:]]” + (k —2) L ax (@i, 25)]

n
2
< ]| el =
k=2

n
2
S
j=1

6.1.3. Other Upper Bounds for d(z, M). In [7, p. 140] the
author obtained the following inequality that is similar to the Cauchy-
Bunyakovsky-Schwarz result.
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LEMMA 9 (Dragomir, 2004). Let zy,...,2, € H and ay,...,a, €
K. Then one has the inequalities:

n 2 n n
Sa]| <SP Y 15
i=1 i=1 Jj=1

Z Jovs|” max [E |<Z¢7Zj>|] ;

($210,)" (z (z <>)>

1,1 2.
where p > 1, 5+E_1’

(6.32)

IN

n
el X 16
We can state and prove now another upper bound for the distance

d(z, M) as follows [16].

THEOREM 82 (Dragomir, 2005). Let {xy,...,z,}, M and x be as
in Theorem[79. Then

1<i<n

o [Z r<xi,a:j>\] - Sl

(6.33) & (z, M) <

or, equivalently,

(6.34) T'(z1,...,2,, )

1<i<n

]|? max [z |<x,.,xj>|] =3 ()

<

1<i<n —

max [z \<:ci,xj>r]

Proor. Utilising the first branch in (6.32)) we may state that

n

E a:x-m <E T, T max g XTiy X
'1’Z’ € Z1<<n[ [is 25)]
K

for any x € H.

(6.35)
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Now, since, by the representation formula (6.3) we have

Yo |xxz
(6.36) & (x, M) = ||z|* - 5 (o il Z| ,

for x ¢ M+, hence, by (6.35) and (6.36) we deduce the desired result
(6.33)). n

REMARK 68. In 1971, E. Bombieri [3] proved the following gener-
alisation of Bessel’s inequality, however not stated in the general form
for inner products. The general version can be found for instance in
[17, p. 394]. It reads as follows: if y,yi,...,yn are vectors in the inner
product space (H; (-,-)), then

630 Dl < ol {Z |<yz-,yj>|}.

Obviously, when {y1,...,yn} are orthonormal, the inequality
produces Bessel’s inequality.

In this respect, we may regard our result as a refinement of
the Bombieri inequality .

REMARK 69. On making use of a similar argument to that in Re-
mark[64), we obtain the following refinement for the Hadamard inequal-
1ty

6.38) T (xy,...,1,) < 2 2 =1
(6.38) T (x1,...,2q) < |lzal* T | Nl =
max |3 {2, 25)]

2
o | LT
j=1
Another different Cauchy-Bunyakovsky-Schwarz type inequality is
incorporated in the following lemma [13].
LeEMMA 10 (Dragomir, 2004). Let zy,...,2z, € H and oy, ..., a, €

K. Then
2 " %
(g (£
i=1 ij=1

(6.39)

n
E ;25
i=1

1,1
forp>1,5—|—a—1.
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If in we choose p = q = 2, then we get

n 2 n n
Z@izi < Z !%’\2 (Z ’(Zi>2j>|2>
=1 =1

1,j=1

Based on ([6.40]), we can state the following result that provides yet
another upper bound for the distance d (z, M) [16].

[SIE

(6.40)

THEOREM 83 (Dragomir, 2005). Let {xy,...,z,}, M and x be as
in Theorem[79. Then

> Nz zp)™ | =20 o, z3)
i,j=1 i=1

QiJ@w%W>

[Ed§ (
(6.41) d? (z, M) <

or, equivalently,

(6.42) I'(z1,...,2p,2)

i,j=1 i=1

z T2y, ..,y .
('Zzl |<Ii7xj>|2>

Similar comments apply related to Hadamard’s inequality. We omit
the details.

HwQ(i|@me> =3 [ @)
<

6.1.4. Some Conditional Bounds. In the recent paper [6], the
author has established the following reverse of the Bessel inequality.
Let (H;(-,-)) be an inner product space over the real or complex

number field K, {e;},.,; a finite family of orthonormal vectors in H,
oi¢; €K, i€l and z € H.If

(6.43) Re <Z ¢,ei — T, x — Z (piei> >0

i€l i€l

or, equivalently,

N|=

(6.44) Hx_§:fggﬁ@ <

el

<Z |9 — 90i|2> )
i€l

N | —
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then

645) <)ol = Y e < 1316wl

il i€l

The constant % is best possible in the sense that it cannot be replaced

by a smaller constant [16].

THEOREM 84 (Dragomir, 2005). Let {x1,...x,} be a linearly in-

dependent system of vectors in H and M := span {xi, .

I, eK,ie{l,...,n} and x € H\M* is such that

(6.46) Re <z": Lz, —x,x — z”: %-xi> >0,
i=1 =1

then we have the bound
2

1
i=1
or, equivalently,
1 || i
(6.43) [(z1,..0 20, 2) < 4 (T = va) @i|| T (a2,
i=1

cxpte If s,

T

PROOF. It is easy to see that in an inner product space for any

x, 2,/ € H one has

2+ 7 2

2

X

therefore, the condition (6.46)) is actually equivalent to

2 2

(6.49) T — ; —5 Fll =3 ; (i =) i

Now, obviously,

(6.50) d? (z, M) = inf ||z —y|* < x—imxl
’ yeM - P 2

and thus, by (6.49) and (6.50)) we deduce (6.47)).

1
— 17— 2P =Re(Z—z,22),

2

The last inequality is obvious by the representation ((6.2]). §

REMARK 70. Utilising various Cauchy-Bunyakovsky-Schwarz type
inequalities we may obtain more convenient (although coarser) bounds
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for d* (x, M) . For instance, if we use the inequality we can State
the inequality:

2

<er il (s el + (0= 1) g [,

1<i<j<n

giving the bound:

(6.51) d?(x, M) Z|F

. [mx o+ (n = 1), o [{os23)1].

provided holds true.
Obviously, if {z1,...,x,} is an orthonormal family in H, then from
we deduce the reverse of Bessel’s inequality incorporated in .
If we use the inequality , then we can state the inequality

Z(Fi_%)x
2 2
o 3 [ S DTN |

1<i#j<n

2

NI

giving the bound

(6.52) d?(z, M) Z|F

N

2
X | max (e +< > |<xi,xj>|> ,

1<i#j<n

provided holds true.
In this case, when one assumes that {1, ... ,x,} is an orthonormal

family of vectors, then reduces to as well.
Finally, on utilising the first branch of the inequality , we can

state that

1< .
(6.53) & (z, M) < ZZI [T = il” max [lewxj)!] ,
1= J=



6.2. REVERSING THE CBS INEQUALITY FOR SEQUENCES 239

provided holds true.
This inequality is also a generalisation of .

6.2. Reversing the CBS Inequality for Sequences

6.2.1. Introduction. Let (H;(:,-)) be an inner product space
over the real or complex number field K. One of the most impor-
tant inequalities in inner product spaces with numerous applications,
is the Schwarz inequality

(6.54) [, o)* < ll2l*llyl*,  =yeH
or, equivalently,
(6.55) (@) <=l llyll,  =yeH.

The case of equality holds iff there exists a scalar o € K such that
r = ay.

By a multiplicative reverse of the Schwarz inequality we understand
an inequality of the form

2 2
R
{2.9) . 9)]

with appropriate k; and ks and under various assumptions for the vec-
tors x and y, while by an additive reverse we understand an inequality
of the form

(6.57) O <) llzlHlyll = (=, 9)[ < b1 or
(0 <) ll2” g1l = [, ) < ho.

(6.56) (1<)

Similar definition apply when [(x,y)| is replaced by Re (z,y) or
Re (z, )|

The following recent reverses for the Schwarz inequality hold (see
for instance the monograph on line [7), p. 20]).

THEOREM 85 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K. If x,y € H and r > 0
are such that

(6.58) le =yl <7 <lyll,

then we have the following multiplicative reverse of the Schwarz inequality

(6.59) Q<NWMWH<HMMMI< [yl

" [z, y)| T Re(z,y) — Nyl = r2
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and the subsequent additive reverses

660) (0l Iyl — e w)] < el gl - Re (2, )
< TQ Re (7, y)
NI (uyu Il = )
and
(6.61) 0<) lle)? Iyl = (e )
< Jlel Iyl — [Re (a, )
<0 |,

All the above inequalities are sharp.

Other additive reverses of the quadratic Schwarz’s inequality are
incorporated in the following result |7, p. 18-19].

THEOREM 86 (Dragomir, 2004). Let x,y € H and a, A € K. If
(6.62) Re (Ay — x,x —ay) > 0

or, equivalently,

a—+ A 1
(6.63) T — Y|l < 5 1A=alllyll,
9 9
then
(6.64) O <) [lz)* yll® = [z, vy
A+ta 2 2
1 |45 |y[|* = (z,y)]
< ZIA—aVHyH4— ,
ly|I” Re (Ay — z, 2 — ay)
1
<37 |A—al”|lyllI*.

The constant i 18 best possible in all inequalities.

If one were to assume more about the complex numbers A and a,
then one may state the following result as well [7], p. 21-23].

THEOREM 87 (Dragomir, 2004). With the assumptions of Theorem
and, if in addition, Re (Aa) > 0, then

1 Re [(A+a) (z,y)] 1 JA+a|
2 Re (Aa) 2 /Re(Aa)

(6.65) [l [lyll <
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666)  (0<) ] ]l ~ Rer.v)
<1.Re[<A+d—2 Re (4a) ) (z,4)|
~ 2 Re (Aa)

and

060 O el Iyl ~ o)l < § - foc g i)

The constants % and }L are best possible.
REMARK 71. If A= M, a=m and M > m > 0, then and
may be written in a more convenient form as
M+m
2vmM

(6.68) [yl < Re (z,y)

and
VM - /m
2vVmM

Here the constant % 1 sharp in both inequalities.

(6.69) O < llzlHlyll = Re {z, y) < < ) Re (z,y) .

In this section several reverses for the Cauchy-Bunyakovsky-Schwarz
(CBS) inequality for sequences of vectors in Hilbert spaces are obtained.
Applications for bounding the distance to a finite-dimensional subspace
and in reversing the generalised triangle inequality are also given.

6.2.2. Reverses of the (C'BS) —Inequality for Two Sequences
in (2 (K). Let (K, (-,-)) be a Hilbert space over K, p; > 0, i € N with
> iy pi = 1. Consider £2 (K) as the space

z; € K, 1€ N and szHSL’zHQ <oo}.

=1

by () = {x = (Ti)ien
It is well known that ¢ (K') endowed with the inner product

(z, y>p = sz‘ (i, vi)

2
p
1
2

is a Hilbert space over K. The norm ||-||, of £ (K) is given by

o0
2
el = (Zpi ] )
i=1
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If 2,y € £2 (K), then the following Cauchy-Bunyakovsky-Schwarz (CB\S)
inequality holds true

2

(6.70) > willzll* Y pillyl® =
=1 i=1

sz‘ (i, i)
=1

with equality iff there exists a A € K such that x; = Ay; for each ¢ € N.
This is an obvious consequence of the Schwarz inequality
written for the inner product (-,-), defined on €3 (K).
The following proposition may be stated [11].

PROPOSITION 57. Let x,y € 3 (K) and r > 0. Assume that
(6.71) i — il <7 < ||yl for each i€ N.

Then we have the inequality

1

o) 2 [e%s) 2\ 3

(o pillall” Y22 i llwall™)
|Zfil Di <$z‘, yz>|

1

0 2 e’} 2\ 3

< (Zi:lpi Al Zi:1pi‘|yiu )2
- > ooy pi Re (i, y3)

1
o) 2\ 2
o (Sl
oo 2
VIl — 2

(6.72) (1<)

?

1
2

673) 0<) (zpz- S w) S (o)
=1 =1 =1
[oe] o0 % o0
< (sz sz\|2zpz\|yzH2> _ZPiRG (i, y2)
=1 =1 =1

2> piRe (i, yi)
=1

1
0 9 0 5 2 0 9
\/leiHyiH —r? [(le I\yi||> + ;piHyiH —7“2]

IN
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and

2 2
(6.74) (0<) Zpi ;] sz‘ sl —
=1 =1 =1
[e.9] oo o 2
2 2
< sz‘ [ sz' lyall” — [sz Re <x27y1>]
=1 =1 =1
<1y pillwll”
=1

Proor. From (6.71f), we have
2 2 2 2
lo = yl2 =3 pilles -l <23 p <> i il = Il
i=1 i=1 i=1

giving [z —yl, < r < [lyll, . Applying Theorem [85] for (3 (K) and
(*;7)p» we deduce the desired inequality. &

The following proposition holds [11].
PROPOSITION 58. Let x,y € (2 (K) and a, A € K. If
(6.75) Re (Ay; — x4, x; —ay;) >0 for eachi € N

or, equivalently,

a+ A
y.

(6.76) .

1
<3 |A —al||ly;|| for eachi €N

T; —

then

6.77)  (0<) sz- [l sz- lall*
1
Z - al sz ”yzH

a 00 2
A; Zi:l Di H%H — > im Pi (@i, yz>‘
> i i ||yz'H2 > o1 pi Re (Ay; — i, x; — ay;)
2
1 o0
< lA—af (Zpi IIinIQ)
i=1

The proof follows by Theorem [86] we omit the details.
Finally, on using Theorem we may state [11]:

o 2
sz' (i, yi)
i=1
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PROPOSITION 59. Assume that x,y,a and A are as in Proposition
. Moreover, if Re (Aa) > 0, then we have the inequality:

(6.78) (sz ||$z||22pz ||yz||2)
, =1
_ 1 Re [([l + d) zfil pi <371>Z/z>}
<1l Az Z i i)

=2 Re (Aa)

)

679 09 (sz-\|xiu?2p@-|ryi||2> - Yo pile )
Re [(A+a—2«/Re Aa) 1 Di $Z,yl)}

<L
2 Re (Aa)
and
(6.80) (0 S)Zpi ”xiH2zpi il — (s yi)
1 \A — a|
Z sz xmyz

6.2.3. Reverses of the (CBS)—Inequality for Mixed Se-
quences. Let (K, (-,-)) be a Hilbert space over K and for p; > 0,
i € N with >7°, p; = 1, and £2 (K) the Hilbert space defined in the
previous section.

It

a € l?(K) = {a = (04);en

oo
a; €K, i € N and Zpi|ai]2<oo}

=1

and z € f?, (K), then the following Cauchy-Bunyakovsky-Schwarz (C'BS)
inequality holds true:

[ee) o0 (oo} 2
(6.81) S pilail Y pilled? = |3 piosa,
=1 =1 1=1

with equality if and only if there exists a vector v € K such that
x; = agu for any ¢ € N.

Y
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The inequality (6.81]) follows by the obvious identity

i QL

= % S pipj g, — aga|

i=1 j=1

n n
2 2
sz‘ | sz' @ ]|” —
=1 =1

for any n € N, n > 1.

In the following we establish some reverses of the (C'BS) —inequality
in some of its various equivalent forms that will be specified where they
occur [11].

THEOREM 88 (Dragomir, 2005). Let a € (3 (K), z € £ (K) and
a € K, r>0 such that ||a|| > r. If the following condition holds

(6.82) |z; — @Gal| < rl|ai|  for each i € N,

(note that if a; # 0 for any i € N, then the condition 1S equiva-
lent to

(6.83) <r foreach i€ N),

then we have the following inequalities

1 o0
(6.84) (sz |a;|” Z:pZ ||| ) < WRe <Zpiozixi,a>
al|*—r? i=1

B I

| /\

7

sza T

lal|* -

i

1
(6.85) 0< (ZPMO@PZM H%‘HZ) -
i=1 i=1
1
< (Zpi’aiyzzpi H%HZ) - <sz@z$u‘_>
i=1 i=1
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2 o0
< r Re <sz’04i$i7 ﬁ>
Jlal? =2 (Hau il - ) g

o0

7a2

= i (el + yal? = 2)

(6.56) Zm(m Zm' S afF—e H [ <ZPZW“ >r

PiCGT;
i=1

Y

QG

and

oo oo o0 2
657 0= pila S pi il — | S i
=1 =1 =1

2 2

2
7"2 >
< Re QG T, O
—||au2(||a||2—2 [ <Zp >]

QX

All the inequalities in - are sharp.
ProoF. From (6.82)) we deduce
l:]1* — 2Re (25, @wa) + |au|” [lal|* < Jaul*r®
for any ¢ € N, which is clearly equivalent to
(6.88) ]| + (||a||2 —r?) lag|* < 2Re (o2, a)

for each 7 € N.
If we multiply (6.88)) by p; > 0 and sum over i € N, then we deduce

(6.89) Zpi ||xz||2 + (||a||2 — r2) Zpi |ozi|2 < 2Re <Zpiozixi,a> )
=1 =1 i—1
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Now, dividing (6.89) by \/HaH2 — 72> 0 we get

o 22@ lil|* + 4/ llall® —7“2sz|%
a — 7 =1

(6.90)

2 o0
< ——=Re <Zpiaixi, a> .
VialP =2 'S

On the other hand, by the elementary inequality

1
_p‘l’QQZQ\/p, Oé>0, pquov
«

we can state that:

(6.91) [sz|06@| sz [EA ]
sz' lz:* + \ al|* — 72 Zpi o |
= =

Making use of (6.90) and (6.91]), we deduce the first part of (6.84)).

The second part is obvious by Schwarz’s inequality

o0 [o/¢]
Re <ZPiOéi$z‘, a> < sz'aﬂi
i=1 i=1

fpp=12z1=2,ap0=1and p, =0, a; =0, x; =0 for 7 > 2, then
from ([6.84)) we deduce the inequality

1
Re (2. ay < 1 lal

2 - 2
VA e al|” —r2

provided ||z — al| < r < ||a||, z,a € K. The sharpness of this inequality
has been shown in [7], p. 20], and we omit the details.

The other inequalities are obvious consequences of and we
omit the details. &

lall

]l <

The following corollary may be stated [11].

COROLLARY 54. Let a € (2 (K), z € (2 (K), e € H, |le]| =1 and
0,6 € K with Re (6p) > 0. If

(2 (2 2

1
(6.92) < 56— ollai|
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for each i € N, or, equivalently
(6.93) Re (paze — x;, x; — page) > 0

for each i € N, (note that, if a; # 0 for any i € N, then 18
equivalent to

T, o+o
e
o; 2

1
(6.94) <slo—v

for each i € N and s equivalent to

Re<¢e—g,g—<pe>20
;O

for each i € N), then the following reverses of the (CBS) —inequality
are valid:

(6.95) (Z D |041| sz [EA ) [(¢ ) (Do PicviTs, 6)]

2[Re (¢7)]2

1 +
<L |0 ¢|l sza%
2 [Re(¢p))

| /\

7

=

i Qi

(6.96) 0< <sz o | Zpi ||$z||2>
=1 =1

(Zpi |ai|22pi ||$z||2>

o+@

“llo+dl <ZW”“ >]

16— |

IA

g
Re¢w<w+¢HﬂvRe¢¢>
+
222 (S >]
< 6 — | |

Rd@p0¢+¢HﬂvRE¢¢)
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(6.97) > piled®> il
=1 =1

2
1 - ) 0
i {9 (En )
2
1 o+ ¢ ||
SZ Re (6) izlpiaixz

and

[ QL

(6.98) 0< sz‘ o |? Zpi | ]|* —
i=1 i=1
< Zpi o | Zpi el
i=1 i=1

ST
(5+7) <Zmz, >”

6 — o {
‘4W+Mﬁmw@

< lo—wl” ol
- 4Re gzﬁgp

2

i O

All the inequalities in - are sharp.

REMARK 72. We remark that if M > m > 0 and for a € (2 (K),
zel2(K), ec H with |e|]| =1, one would assume that either

@ 2

<5 (M —m)

(6.99) ‘e

for each i € N, or, equivalently

a;

(6.100) Re <M - me> >0
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for eachi € N, then the following, much simpler reverses of the (CBS) —
imequality may be stated:

m
(6.101) <Zpi|ai’22pi”$i”2> < Re<2pza2xz,>
=1 =1

M+m

| N

j V3

7

N|=

(6.102) 0< (sz \Oéi|2 Zpi sz’|2> Zpi@ifl?i
i—1 i1 i—1
< (Zpi‘ai|2zpi||xi“2> — Re <Zpi04i33iae>
i=1 =1 =1

N|=

(M —m) e QT €
2(¢mm)2mR <Zp >

(M — m o,
(\/_+\/_> vmM [’ sz

<

7

2

iU Tg

(6.103) sz- |ai|22pi [E

2
(M +m)
< W Zplaﬂfz,
(M + m
L .

and

2

i Oy

(6.104) 0<> pileal®> pillll? -
i=1 i=1
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o0 oo o0 2
< Zpi|ai|2zpi||$i||2 - Re<zpi0¢z‘$i,€>]
i—1 i—1 i=1

2
o)
4mM ZPZO‘ i

6.2.4. Reverses for the Generalised Triangle Inequality. In
1966, J.B. Diaz and F.T. Metcalf [5] proved the following reverse of
the generalised triangle inequality holding in an inner product space
(H;(-,-)) over the real or complex number field K:

(6.105) P>l <

provided the vectors x1,...,z, € H\ {0} satisfy the assumption

(6.106) 0<r<

where a € H and ||a|| = 1.
In an attempt to diversify the assumptions for which such reverse
results hold, the author pointed out in [10] that

(6.107) VI=p2Y il < D
=1 =1

where the vectors z;i € {1,...,n} satisfy the condition
(6.108) |lzi —al| < p, ie{l,...,n}

where a € H, ||a|| =1 and p € (0,1).
If, for M > m > 0, the vectors x; € H, i € {1,...,n} verify either

Y

(6.109) Re (Ma — z;,x; — ma) > 0, ie{l,...,n},
or, equivalently,
M 1
(6.110) i — ;_m-a <S(M-m),  ie{l...n},
where a € H, |la]] = 1, then the following reverse of the generalised

triangle inequality may be stated as well [10]

(6.111) <] =
=1
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Note that the inequalities (6.105)), (6.107)), and (6.111]) are sharp;
necessary and sufficient equality conditions were provided (see [5] and
[10]).

It is obvious, from Theorem [88] that, if

(6.112) |z —al|| <r, for 1e€{l,...,n},

where ||a|| > r, a € H and x; € H, i € {1,...,n}, then one can state
the inequalities

6113) 3l < va (Z |r:cz-u2>

1 n
< ———Re <Z T, a>
VlalP =r2 S

el -

S -
\/llall® =2

X
i=1

and

(6.114)  0< Y il —
=1

< f(z ] ) sz

() ()

T2

< Re<zxi,ﬁ>
lalP = (nan +/lal? - ) = e
2 n

>

r
i=1

T (1l + lal? = 2)

We note that for ||a]| =1 and r € (0,1), the inequality (6.89)) becomes

(6.115) \/1—r22||xz||< (1 —1r2) <Z||xz||>
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< Re <i x;, a> <
i=1

which is a refinement of (6.107)).
With the same assumptions for a and r, we have from (6.114)) the
following additive reverse of the generalised triangle inequality:

n
D
i=1

(6.116) 0< > ]l -
=1

S i) <§ >

2

SV

=1

We can obtain the following reverses of the generalised triangle
inequality from Corollary when the assumptions are in terms of
complex numbers ¢ and ¢ :

If ,¢ € K with Re(¢p) >0 and z; € H,i € {1,...,n}, e € H,
lle|| = 1 are such that

_90+¢€
' 2

1
(6.117) ‘x §§\¢—g0| for each i€ {1,...,n},

or, equivalently,
Re (¢e — xj, x; — pe) > 0 for each i€ {1,...,n},

then we have the following reverses of the generalised triangle inequal-
ity:

(6.118) >l < v (Z rmu?)

Re [(¢+@) (i =i e)]
Re (¢@)

1o lo+el

2 \/Re(¢p)
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and

(6.119)  0< ) flall -
=1

n
>
i=1

1

< ﬁ(Z ||$i||2) - Z%

Sﬁ( y ||$i||2)2—PLe M< y xi’6>
6 — of

2¢/Re (¢9) (| + ¢l + 2¢/Re (¢¢>)

+0 /<
6 — |
2/Re(97) (|6 + ¢l +2v/Re (67

Obviously (6.118) for ¢ = M, ¢ = m, M > m > 0 provides a
6.111])

refinement for (6.

<

n
D

=1

IN

6.2.5. Lower Bounds for the Distance to Finite-Dimensional
Subspaces. Let (H;(-,-)) be an inner product space over the real or
complex number field K, {y,...,y,} a subset of H and G (y1,...,Yn)
the Gram matriz of {y1,...,y,} where (4, j) —entry is (y;, y;) . The de-
terminant of G (y1, . . ., y,) is called the Gram determinant of {y1, ..., yn}
and is denoted by T (y1,...,yn)-

Following [4, p. 129 — 133], we state here some general results for
the Gram determinant that will be used in the sequel:

(1) Let {xy,...,2,} C H. Then I' (xy,...,2,) # 0 if and only if
{z1,...,x,} is linearly independent;

(2) Let M = span{x,...,x,} be n—dimensional in H, i.e., {z,...,
x,,} is linearly independent. Then for each z € H, the distance
d (z, M) from z to the linear subspace H has the representations

[(xg,... 2., 1)
Uz, ... x)

(6.120) d? (z, M) =
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and

n A2 2
) — (EEME) g g
(6.121) & (2, M) = |Zim weie]

[k it ©e M

where M+ denotes the orthogonal complement of M.
The following result may be stated [11].

PROPOSITION 60. Let {x1,...,2,} be a system of linearly indepen-
dent vectors, M = span{x1,...,z,}, v € H\M*, a € H, r > 0 and
lla|| > r. If

(6.122)
(note that if (z,x;) # 0 for each i € {1,...,n}, then can be

written as

x; — (x,:v»a” < |z, z;)|r for each i€ {l,...,n},

T
<"L‘7$i>

then we have the inequality

—al <r foreach i€ {l,...,n}),

(6.123) ‘

2 2
lall™ 3oy [, i)
lal* =72 32 el

(6.124) &2 (z, M) > || -
> 0.

Proor. Utilising (6.121)) we can state that

2 2 Yl ¢ 2
. d“(x, M) = ||z : T, T)| .
(6.125) (@, M) = [lz[|” — 5 (o il ;J( )|

Also, by the inequality applied for a; = (r,z;), p; = %, 1€
{1,...,n}, we can state that
6.1 W G S
1305 () all” — flall” =2 3200
provided the condition ((6.123)) holds true.
Combining (6.125)) with (6.126)) we deduce the first inequality in

(6.124]).
The last inequality is obvious since, by Schwarz’s inequality

ol < :
ol anzu >Z\ re)l* 2 s S e
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REMARK 73. Utilising (6.120), we can state the following result for
Gram determinants

(6.127) T'(z1,...,2p, )
>PMF_ lall® i |2

2 2
lall® =2 320 [l

for x ¢ M+ and x,7;,a and r are as in Proposition @

]F(xl,...,xn)ZO

The following corollary of Proposition [60|may be stated as well [11].

COROLLARY 55. Let {z1,...,z,} be a system of linearly indepen-
dent vectors, M = span{x1,...,x,}, v € H\M* and ¢, € K with
Re(pp) > 0. Ife € H, |le]| =1 and

(6.128)

+0 1
o= Tooad 252 < 10 -l
or, equivalently,

Re <¢>’ (x,20)e — 2500 — 0 - (, xi>e> >0,
foreach i € {1,...,n}, then

2 n 2
(6120) @ (a, M) > lop — £ 2oL L@ mll
4 Re(9p) L llail

or, equivalently,
(6.130) I'(z1,...,2n,7)

L Jetol” X [z, @)l
> llf)” = 5 - R I (

4 Re(dp) 0 [l

6.2.6. Applications for Fourier Coefficients. Let (H;(:,-)) be
a Hilbert space over the real or complex number field K and {e;},., an
orthornormal basis for H. Then (see for instance [4, p. 54 — 61])

Tiy...,Ty) > 0.

(i) Every element x € H can be expanded in a Fourier series, i.e.,
=Y (xe)e,
i€l
where (x,e;), i € I are the Fourier coefficients of x;
(ii) (Parseval identity)

|zl =) (z,e)e @€ H;

el
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(iii) (Extended Parseval identity)
<x7y>zz<l‘76i> <€i7y>a faiUGH;
iel
(iv) (Elements are uniquely determined by their Fourier coefficients
)
(x,e;) = (y,e;) for every i € I implies that z = y.

Now, we must remark that all the results can be stated for K = K
where K is the Hilbert space of complex (real) numbers endowed with
the usual norm and inner product .

Therefore, we can state the following proposition [11].

PROPOSITION 61. Let (H;(-,-)) be a Hilbert space over K and
{ei},e; an orthornormal base for H. If v,y € H (y #0), a € K (C,R)
and r > 0 such that |a| > r and

<£C, €i>
<y7 €i>
then we have the following reverse of the Schwarz inequality

1 _
||$|| ”yH < \/ﬁRe [a~ <957y>]
al” —r
|a|
< ()l
\l0al” =72

(6.133) (0 <) =l Iyl = [{=, )]

< el Iyl = Re | & )]

(6.131) —a| <r foreach 1€ 1,

(6.132)

al
< r Re [i (z y>]
= |a‘2 _ 7,2 (|CL‘ + |a|2 o TQ) |a|
< r [z
S T,Y)|s
Vil =52 (1ol +loP =)
| .
(6.134) Joll* o) < 5 (Rela- (=)
|’ 2
<l
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and

(6.135) (0 <) ll2[* lyll* = e, )l

< [ll* lylI” — (Re {ﬂ | <“"’y>D |

= JaP (rc:\z —) (re [ W>D2

The proof is similar to the one in Theorem [88] when instead of x;
we take (x,e;), instead of a; we take (e;,y), ||| = ||, pi = 1, and we
use the Parseval identities mentioned above in (ii) and (iii). We omit
the details.

The following result may be stated as well [11].

PROPOSITION 62. Let (H;(-,-)) be a Hilbert space over K and
{ei}ier an orthornormal base for H. If x,y € H (y #0), e,0,¢ € K
with Re (¢p) > 0, |e| =1 and, either

(6.136)

or, equivalently,

o o) () o

for each i € I, then the following reverses of the Schwarz inequality
hold:

N Re[(o+p)efwy)] 1 le+ol
(6138) el £ — et < 5 sl

(6.139) O ) =l iyl = Kz, y)|
Lre)e <x,y>]

< |||l |yl — Re
o+ &)
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2
< [ — ¢l

" 2VRe (@) (| + 9l +2v/Re (67))

X (§] —(&S_FQ)E X
N NPE <’y>]
< __1#-¢ —[{z,y)
2/Re(99) (I + 0l + 2¢/Re (67 )
and
(6.140) (0 <) | y)? — |G )P

2 2
< [l lwll” = {Re

6 — |
T 4¢ + ¢’ Re (¢p)
< ool
“ 4Re(pp) "7

REMARK 74. If o = M > m = ¢ > 0, then one may state simpler
inequalities from (6.138) — (0.140}). We omit the details.

©re)e (z, y>] }2

o + ¢

{Re[(0+0)efr.p)]}"

6.3. Other Reverses of the CBS Inequality

6.3.1. Introduction. Let (H;(-,-)) be an inner product space
over the real or complex number field K.

The following reverses for the Schwarz inequality hold (see [8], or
the monograph on line [7], p. 27]).

THEOREM 89 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over the real or complex number field K. If x,a € H and r > 0
are such that

(6.141) r € B(x,r):={z€ H|||z—al| <r},
then we have the inequalities
(6.142) (0 <) [zl lall = [{z, a)| < |[z[{lal]] = [Re (z,a)]
< ll#] lall - Re {x,a) < 5r*

The constant % 15 best possible in (|6.141)) in the sense that it cannot be

replaced by a smaller quantity.
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An additive version for the Schwarz inequality that may be more
useful in applications is incorporated in [8] (see also [7], p. 28]).

THEOREM 90 (Dragomir, 2004). Let (H;(-,-)) be an inner product
space over K and x,y € H and v,I" € K with I' # —v and either

(6.143) Re(ly —z,z —yy) >0,
or, equivalently,

v+T
(6.144) H _ —yH < SI0 =l ol

holds. Then we have the inequalities

©145) o< el Iyl - e
I+7
< el Il ~ |Re |- G|
T +7
< el Iyl = Re | (o)
Ly
4 D47 '

The constant i in the last inequality is best possible.

We remark that a simpler version of the above result may be stated
if one assumed that the scalars are real:

COROLLARY 56. If M > m > 0, and either

(6.146) Re (My — x,x — my) > 0,

or, equivalently,

(6.147 o= 22 < S 0r-m )
holds, then

(6.148) 0 < [lzfHyll = [{z, )]

< [lz[[lyll = [Re (z, )]

< [lz]l lyll = Re (z, )
1 (M—m)” m)°

<7 lyll*
4 M+m

The constant % 1S sharp.
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Now, let (K, (-,-)) be a Hilbert space over K, p; > 0, ¢ € N with
> i1 pi = 1. Consider £2 (K) as the space

2 (K) = {x:(xi)\xieK, i €N and Zpi|\$iH2<oo}.

=1

It is well known that ¢ (K') endowed with the inner product

(z, y>p = sz‘ (i, vi)

2
p
1
2

is a Hilbert space over K. The norm ||-||, of £ (K) is given by

o0
2
el = (Zpi ] )
i=1

Ifr,y € Ef, (K), then the following Cauchy-Bunyakovsky-Schwarz (CBS)
inequality holds true:

2 2
(6.149) Yopillzl® Y willyill® = D i wi)
i=1 =1 i=1

with equality iff there exists a A € K such that x; = A\y; for each i € N.
If

2

o€ éi (K) := {a = (ai)ieN‘ a; €K, ie N and Zpi|ai|2 < oo}

i=1

and x € Kf) (K), then the following (CBS)-type inequality is also valid:

[e.e] [ee] (o)
(6.150) Zpi |ai|22pi ]|* > sz‘OéiiUi
i=1 i=1 i=1

with equality if and only if there exists a vector v € K such that
x; = agv for each i € N.

In [11], by the use of some preliminary results obtained in [9],
various reverses for the (CBS)-type inequalities and for
sequences of vectors in Hilbert spaces were obtained. Applications for
bounding the distance to a finite-dimensional subspace and in reversing
the generalised triangle inequality have also been provided.

The aim of the present section is to provide different results by
employing some inequalities discovered in [8]. Similar applications are
pointed out.

2
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6.3.2. Reverses of the (CBS)-Inequality for Two Sequences
in (2 (K). The following proposition may be stated [12].

PROPOSITION 63. Let x,y € (3 (K) and r > 0. If
(6.151) lvi —yil| <r for each i €N,
then

o)
=1

(6.152)  (0<) (Zpi el S p uyz-nQ) -

% =1

o0 >
S( piniHQZpiHyiHQ> -
i=1 i=1
oo

1
[e'e} 2 [e’e]
2 2
< i ||| E pz’”?ﬁ”) —E pi Re (i, ys)
=1 =1

—1

sz' (i, i)
i=1

Zpi Re (74, yi)
i=1

1
—r2
2

The constant % in front of r? is best possible in the sense that it cannot
be replaced by a smaller quantity.

Proor. If (6.151]) holds true, then

o0 o0
lz =yl =D pilles —wll* <r* ) pi=r°
=1 =1

and thus ||z —y[[, <.
Applying the inequality (6.142|) for the inner product (éf) (K), (-, -)p> ,

we deduce the desired result (6.152)).
The sharpness of the constant follows by Theorem [89) and we omit
the details. g

<

The following result may be stated as well [12].

PROPOSITION 64. Let x,y € Ef, (K) and v, € K with T # —~. If
either

(6.153) Re (Ty; — x;,x; — vy;) > 0 for each i € N
or, equivalently,

+T 1 ,
Z,_VT%. < T =] |lwll  for each i €N

6.154
CRETI <
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holds, then:

i <I'i, yi)

o0 oo 3
(6.155) (0<) (Zpi [ ||yi||2) -

=1 i=1

- o0 2

2 2

=1 i=1

F+7
pi (i, Yi

|IT 71 & Z ”

0 00 5
2 2
< (Zpiuxiu S bl )
i=1 i=1

=1

The constant i 18 best possible in .

PROOF. Since, by (6.153)),

Re <Fy —T,T— 'Yy Zpl Re Fyz Ly Xj — ’sz> = 0

=1

hence, on applying the inequality (6.145] m for the Hilbert space
(EQ (K), (-, ->p) we deduce the desired inequality (6.155)).

The best constant follows by Theorem . and we omit the details. &

COROLLARY 57. If the conditions m and m hold for I' =
M, v =m with M > m > 0, then

i <$z‘, yi)

- o0 3
(6.156) (0<) (sz (el sz‘ ||yz||2> -
=1 i=1
o0 oo >
2 2
< (ZPzH%” szHyzH > -
=1 =1

Zpi Re (zi, ;)
i=1
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1
(o) o0 2 oo
(Zpiuxiwzpiuyiuz> — > " piRe(xi, ;)
=1 =1 =1

1 (M —m)* & 2
<. 7Y M 112
<1 M=m ;:1 pi [|uill

The constant i 18 best possible.

A

6.3.3. Reverses of the (CBS)-Inequality for Mixed Sequences.
The following result holds [12]:

THEOREM 91 (Dragomir, 2005). Let v € 2 (K), z € 2 (K) and
ve K\{0},r>0.1If

(6.157) |z; — @v|| < rlag| for each i €N
(note that if a; # 0 for any i € N, then the condition is equiv-

alent to the simpler one

L
—
Q;

(6.158) <r foreach i€ N),

then

1
o] 00 2 o]
6159 09 (Sninlnlal) - |3 s
=1 =1 =1
o (o ¢] o v
<D o pilal> pillal*) - <Zpiail'i7m>'
=1 =1 =1

(NI

(NI

(oo} o0 [ee]
v
< ZPH%FZI% [EH o Re<zpﬂi$i,ﬂ>‘
=1 i—1 =1 v
< ZPH%‘FZM‘ ||$z||2 —Re <Zpi04i$z‘7m>
i—1 i—1 i—1 v
1 Tz > 2
<o ) pilailn
3 o 27 b

The constant % 18 best possible in .
ProoOF. From we deduce
l:]1* = 2Re (i, 0) + e [[o]|* < 72 ||,
which is clearly equivalent to
(6.160) ]| + |as]? [|0]]* < 2 Re (s, v) + 12 |ag]?
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for each 7 € N.
If we multiply (6.160) by p; > 0, ¢ € N and sum over ¢ € N, then
we deduce

00 [ee)
2 2 2
(6.161) >y flal® + ol Y pife
=1 i=1

< 2Re <§:piai$i, U> +r? ipi o]
i—1

i=1

Since, obviously
1
o0 o 2
(6.162) 210 (ZpilaiIQZpi ||33i||2>
i=1 i=1

2 2 2
< pillwll* + ol* Y il
i=1 i=1
hence, by (6.161)) and (6.162)), we deduce

oo o %
2 2
2 |Jvll <sz‘|04i| sz‘Hsz‘H )
i=1 i=1

which is clearly equivalent to the last inequality in (6.159)).
The other inequalities are obvious.
The best constant follows by Theorem [39] &

The following corollary may be stated [12].

COROLLARY 58. Let a € (3 (K), x € 3 (K), e € H, |e|]| =1 and
v, ' € K with I # —~. If

_v+T
T; — Q4

(6.163)

1
cell < 20— |
eH_2| e

for each i € N, or, equivalently,
(6.164) Re (T'aze — x;, x; — yage)

for each i € N (note that, if a; # 0 for any i € N, then is
equivalent to

x; ’Y"’Fe

a; 2

(6.165) <5 [F=1]

L
-2
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for each i € N and (6.164) is equivalent to

(6.166) Re <re _nn 76> >0

Q; O

for each i € N), then the following reverse of the (CBS)-inequality is
valid:

6167) (<) (fjp |ai|2f;pz- ) - ipa
< (ip |az-|2§pi ) - ‘<ipa>|
< (imwipi )

B2fE)

< @piwipi ||xi||2>2

o[ (S

cL = I
Za’L
_4 |T+7| Zp|

The constant * 1 18 best possible.

REMARK 75. If M > m > 0, o; # 0 and for e as above, either

. - <= (M—
(6.168) = 5 <3 (M —m) for each i €N
or, equivalently,
T T; .
Re<Me——,——me> >0 foreach 1 €N
QG Q5

holds, then

0 <) (Zpi @i pi ||17z‘||2>
=1 =1

NG

AT
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< ipi’@i’2§pi|\$i"2 %— <§Piai$i,€>

= ipi!aif2ipi|\$i“2 %— Re<ipio‘i$i’e>
=1 =1 =1

= ipi!aiVQipi|\$i\|2 éRe<ipic””“’e>
=1 =1 =1

< S Snled

i=1
The constant i 18 best possible.
6.3.4. Reverses for the Generalised Triangle Inequality. In

1966, Diaz and Metcalf [5] proved the following interesting reverse of
the generalised triangle inequality:

(6.169) Py <
=1

)

o0
D
i=1

provided the vectors x1,...,z, € H\ {0} satisfy the assumption

Re (z;, a)
]|

where a € H, ||a|]| = 1 and (H; (-, ")) is a real or complex inner product

space.
In an attempt to provide other sufficient conditions for (6.169)) to
hold, the author pointed out in [14] that

(6.171) VI=p2) il <D
=1 =1

where the vectors z;, i € {1,...,n} satisfy the condition
(6172) ||l’l—(l|| §P7 (S {L"'?n}v

where r € H, |la]| =1 and p € (0,1).
Following [14], if M > m > 0 and the vectors z; € H,i € {1,...,n}
verify either

(6.173) Re (Ma — x;,z; — ma) > 0, ie{l,....,n},

or, equivalently,

(6.170) 0<r< , ie{l,....,n},

M+m
J— .a
2

<

1
174 =
(6174) <3

T (M —m), ie{l,...,n},
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where a € H, ||a|| = 1, then

(6.175)

>

M+mZszH <

It is obvious from Theorem [91] that, if
(6.176) |z — vl <, for ie{l,...,n},

where x; € H, 1 € {1,...,n},v € H\ {0} and r > 0, then we can state
the inequality

©17) (09 <%Z ) )

IA

| —
]

NN N

D=

| |

=

@D
/\
S|
M:
_X

IN
S|

|'M

Bl

=1

1 7r?
S_._
2 ol

Since, by the (CBS)-inequality we have

(6.178) LSl < (5 > ||xi||2> ,
i=1 i=1

hence, by (6.177) and (6.173]) we have [12]:

(6.179) (0<) > llill =

provided that ({6.176)) holds true.
Utilising Corollary [58, we may state that, if
v+
2

1
(6.180) x; — <§|F—'y\, ie{l,....,n},

or, equivalently,

(6.181) Re (l'e — x;, x; — ve) > 0, ie{l,...,n},
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where e € H, |le|| = 1,7, T € K, T' # —yand x; € H,i € {1,...,n},
then

6182 (09 (%Z Hmf) -

1 — 1 —
. 5;H%H> <-z>
1 — ) F'+7 /1<
< |- i — R - )
< {5 2 Ml © I oD e
i=1 i=1
1 — 71
< =) =Y e
> ') w<n§ >]
1 r—qf
4 T+

Now, making use of (6.178)) and ((6.182]) we can establish the following
additive reverse of the generalised triangle inequality [12]

Z 1 P=yf

6.183 (0 <) il —
(6.183) ZH =] < 3n e

provided either (6.180)) or (6.181)) hold true.

6.3.5. Applications for Fourier Coefficients. Let (H;(:,-)) be
a Hilbert space over the real or complex number field K and {e;},., an
orthonormal basis for H. Then (see for instance [4, p. 54 — 61]):

(i) Every element x € H can be expanded in a Fourier series, i.e.,
r = E (x,e;) e,
iel

where (x,e;), i € I are the Fourier coefficients of x;
(ii) (Parseval identity)

lz* = Z (z,e;)ei, =€ H;
el
(iii) (Extended Parseval’s identity)

(x,y)zZ(x,eiMei,y), l',yGH;

iel
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(iv) (Elements are uniquely determined by their Fourier coeffi-
cients)

(x,e;) = (y,e;) forevery i € I implies that = =y.

We must remark that all the results from the second and third sec-
tions may be stated for K = K where K is the Hilbert space of complex
(real) numbers endowed with the usual norm and inner product .

Therefore we can state the following reverses of the Schwarz in-
equality [12]:

PROPOSITION 65. Let (H;(-,-)) be a Hilbert space over K and
{ei},e; an orthonormal base for H. If v,y € H, y # 0, a € K (C,R)
with r > 0 such that

(6.184) (w.e) al <r  foreach i€,

<y7 ei)
then we have the following reverse of the Schwarz inequality:
(6.185) 0 <) =l Tyl = Kz, )]

< Yl ol = [Re (e - |

< el Iyl - e (o) - ]

T2

1 2
< - — .

The constant % 18 best possible in .

The proof is similar to the one in Theorem [91] where instead of z;
we take (x,e;), instead of a; we take (e;,y), ||-|| = ||, pi = 1 and use
the Parseval identities mentioned above in (ii) and (iii). We omit the
details.

The following result may be stated as well [12].

PROPOSITION 66. Let (H;(-,-)) be a Hilbert space over K and
{ei},e; an orthonormal base for H. If v,y € H, y # 0, e,7,I' € K
with le] =1, T # —v and

(r,e;) ~+7T

(6.186) e 5

or equivalently,

on el () (o)) 2
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for each i € I, then

©188) (0 el Iyl ~ I
T+75 _
< el Iy - [Re | i (e
['+75 _
< el Iyl = Re | i e
1| =
<y,
4 T+~

The constant i is best possible.

271

REMARK 76. If ' =M > m =~ > 0, then one may state simpler

inequalities from . We omit the details.
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