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Preface

The purpose of this book, that can be seen as a continuation of the
previous one entitled ”Advances on Inequalities of the Schwarz, Grüss
and Bessel Type in Inner Product Spaces” (Nova Science Publishers,
NY, 2005), is to give a comprehensive introduction to other classes of
inequalities in Inner Product Spaces that have important applications
in various topics of Contemporary Mathematics such as: Linear Oper-
ators Theory, Partial Differential Equations, Nonlinear Analysis, Ap-
proximation Theory, Optimization Theory, Numerical Analysis, Prob-
ability Theory, Statistics and other fields.

The monograph is intended for use by both researchers in various
fields of Mathematical Inequalities, domains which have grown expo-
nentially in the last decade, as well as by postgraduate students and
scientists applying inequalities in their specific areas.

The aim of Chapter 1 is to present some fundamental analytic prop-
erties concerning Hermitian forms defined on real or complex linear
spaces. The basic inequalities as well as various properties of superad-
ditivity and monotonicity for the diverse functionals that can be natu-
rally associated with the quantities involved in the Schwarz inequality
are given. Applications for orthonormal families, Gram determinants,
linear operators defined on Hilbert spaces and sequences of vectors are
also pointed out.

In Chapter 2, classical and recent refinements and reverse inequal-
ities for the Schwarz and the triangle inequalities are presented. Fur-
ther on, the inequalities obtained by Buzano, Richards, Precupanu
and Moore and their extensions and generalizations for orthonormal
families of vectors in both real and complex inner product spaces are
outlined. Recent results concerning the classical refinement of Schwarz
inequality due to Kurepa for the complexification of real inner product
spaces are also reviewed. Various applications for integral inequalities
including a version of Heisenberg inequality for vector valued functions
in Hilbert spaces are provided as well.

The aim of Chapter 3 is to survey various recent reverses for the
generalised triangle inequality in both its simple form, that are closely
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related to the Diaz-Metcalf results, or in the equivalent quadratic form
that maybe be of interest in the Geometry of Inner product Spaces.
Applications for vector valued integral inequalities and for complex
numbers are given as well.

Further on, in Chapter 4, some recent reverses of the continuous tri-
angle inequality for Bochner integrable functions with values in Hilbert
spaces and defined on a compact interval [a, b] ⊂ R are surveyed. Ap-
plications for Lebesgue integrable complex-valued functions that gen-
eralise and extend the classical result of Karamata are provided as well.

In Chapter 5 some reverses of the Cauchy-Buniakovsky-Schwarz
vector-valued integral inequalities under various assumptions of bound-
edness for the functions involved are given. Natural applications for the
Heisenberg inequality for vector-valued functions in Hilbert spaces are
also provided.

The last chapter, Chapter 6, is a potpourri of other inequalities
in inner product spaces. The aim of the first section is to point out
some upper bounds for the distance d (x,M) from a vector x to a finite
dimensional subspace M in terms of the linearly independent vectors
{x1, . . . , xn} that span M . As a by-product of this endeavour, some
refinements of the generalisations for Bessel’s inequality due to several
authors including: Boas, Bellman and Bombieri are obtained. Refine-
ments for the well known Hadamard’s inequality for Gram determi-
nants are also derived.

In the second and third sections of this last chapter, several reverses
for the Cauchy-Bunyakovsky-Schwarz (CBS) inequality for sequences
of vectors in Hilbert spaces are obtained. Applications for bounding
the distance to a finite-dimensional subspace and in reversing the gen-
eralised triangle inequality are also given.

For the sake of completeness, all the results presented are com-
pletely proved and the original references where they have been firstly
obtained are mentioned. The chapters are relatively independent and
can be read separately.

The Author,
March, 2005.



CHAPTER 1

Inequalities for Hermitian Forms

1.1. Introduction

Let K be the field of real or complex numbers, i.e., K = R or C and
X be a linear space over K.

Definition 1. A functional (·, ·) : X × X → K is said to be a
Hermitian form on X if

(H1) (ax+ by, z) = a (x, z) + b (y, z) for a, b ∈ K and x, y, z ∈ X;

(H2) (x, y) = (y, x) for all x, y ∈ X.

The functional (·, ·) is said to be positive semi-definite on a subspace
Y of X if

(H3) (y, y) ≥ 0 for every y ∈ Y,

and positive definite on Y if it is positive semi-definite on Y and

(H4) (y, y) = 0, y ∈ Y implies y = 0.

The functional (·, ·) is said to be definite on Y provided that either
(·, ·) or − (·, ·) is positive semi-definite on Y.

When a Hermitian functional (·, ·) is positive-definite on the whole
space X, then, as usual, we will call it an inner product on X and will
denote it by 〈·, ·〉 .

The aim of this chapter is to present some fundamental analytic
properties concerning Hermitian forms defined on real or complex linear
spaces. The basic inequalities as well as various properties of superad-
ditivity and monotonicity for diverse functionals that can be naturally
associated with the quantities involved in the Schwarz inequality are
given. Applications for orthonormal families, Gram determinants, lin-
ear operators defined on Hilbert spaces and sequences of vectors are
also pointed out. The results are completely proved and the original
references where they have been firstly obtained are mentioned.
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2 1. INEQUALITIES FOR HERMITIAN FORMS

1.2. Hermitian Forms, Fundamental Properties

1.2.1. Schwarz’s Inequality. We use the following notations re-
lated to a given Hermitian form (·, ·) on X :

X0 := {x ∈ X| (x, x) = 0} ,
K := {x ∈ X| (x, x) < 0}

and, for a given z ∈ X,

X(z) := {x ∈ X| (x, z) = 0} and L (z) := {az|a ∈ K} .

The following fundamental facts concerning Hermitian forms hold
[5]:

Theorem 1 (Kurepa, 1968). Let X and (·, ·) be as above.

(1) If e ∈ X is such that (e, e) 6= 0, then we have the decomposition

(1.1) X = L (e)
⊕

X(e),

where
⊕

denotes the direct sum of the linear subspaces X(e)

and L (e) ;
(2) If the functional (·, ·) is positive semi-definite on X(e) for at

least one e ∈ K, then (·, ·) is positive semi-definite on X(f) for
each f ∈ K;

(3) The functional (·, ·) is positive semi-definite on X(e) with e ∈
K if and only if the inequality

(1.2) |(x, y)|2 ≥ (x, x) (y, y)

holds for all x ∈ K and all y ∈ X;
(4) The functional (·, ·) is semi-definite on X if and only if the

Schwarz’s inequality

(1.3) |(x, y)|2 ≤ (x, x) (y, y)

holds for all x, y ∈ X;
(5) The case of equality holds in (1.3) for x, y ∈ X and in (1.2),

for x ∈ K, y ∈ X, respectively; if and only if there exists a
scalar a ∈ K such that

y − ax ∈ X(x)
0 := X0 ∩X(x).

Proof. We follow the argument in [5].
If (e, e) 6= 0, then the element

x := y − (y, e)

(e, e)
e
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has the property that (x, e) = 0, i.e., x ∈ X(e). This proves that X is
a sum of the subspaces L (e) and X(s). The fact that the sum is direct
is obvious.

Suppose that (e, e) 6= 0 and that (·, ·) is positive semi-definite on
X. Then for each y ∈ X we have y = ae+ z with a ∈ K and z ∈ X(e),
from where we get

(1.4) |(e, y)|2 − (e, e) (y, y) = − (e, e) (z, z) .

From (1.4) we get the inequality (1.3), with x = e, in the case that
(e, e) > 0 and (1.2) in the case that (e, e) < 0. In addition to this, from
(1.4) we observe that the case of equality holds in (1.2) or in (1.3) if

and only if (z, z) = 0, i.e., if and only if y − ae ∈ X(e)
0 .

Conversely, if (1.3) holds for all x, y ∈ X, then (x, x) has the same
sign over the whole of X, i.e., (·, ·) is semi-definite on X. In the same
manner, from (1.2), for y ∈ X(e), we get (e, e) ·(y, y) ≤ 0, which implies
(y, y) ≥ 0, i.e., (·, ·) is positive semi-definite on X(e).

Now, suppose that (·, ·) is positive semi-definite on X(e) for at least
one e ∈ K. Let us prove that (·, ·) is positive semi-definite on X(f) for
each f ∈ K.

For a given f ∈ K, consider the vector

(1.5) e′ := e− (e, f)

(f, f)
f.

Now,

(e′, e′) = (e′, e) =
(e, e) (f, f)− |(e, f)|2

(f, f)
, (e′, f) = 0

and together with

|(e, y)|2 ≥ (e, e) (y, y) for any y ∈ X
imply (e′, e′) ≥ 0.

There are two cases to be considered: (e′, e′) > 0 and (e′, e′) = 0.
If (e′, e′) > 0, then for any x ∈ X(f), the vector

x′ := x− ae′ with a =
(x, e′)

(e′, e′)

satisfies the conditions

(x′, e) = 0 and (x′, f) = 0

which implies

x′ ∈ X(e) and (x, x) = |a|2 (e′, e′) + (x′, x′) ≥ 0.

Therefore (·, ·) is a positive semi-definite functional on X(f).
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From the parallelogram identity:

(1.6) (x+ y, x+ y) + (x− y, x− y) = 2 [(x, x) + (y, y)] , x, y ∈ X

we conclude that the set X
(e)
0 = X0 ∩X(e) is a linear subspace of X.

Since

(1.7) (x, y) =
1

4
[(x+ y, x+ y) + (x− y, x− y)] , x, y ∈ X

in the case of real spaces, and

(1.8) (x, y) =
1

4
[(x+ y, x+ y) + (x− y, x− y)]

+
i

4
[(x+ iy, x+ iy)− (x− iy, x− iy)] , x, y ∈ X

in the case of complex spaces, hence (x, y) = 0 provided that x and y

belong to X
(e)
0 .

If (e′, e′) = 0, then (e′, e) = (e′, e′) = 0 and then we can conclude

that e′ ∈ X(e)
0 . Also, since (e′, e′) = 0 implies (e, f) 6= 0, hence we have

f = b (e− e′) with b =
(f, f)

(e, f)
.

Now write
X(e) = X

(e)
0

⊕
X

(e)
+ ,

where X
(e)
+ is any direct complement of X

(e)
0 in the space X(e). If y 6= 0,

then y ∈ X(e)
+ implies (y, y) > 0. For such a vector y, the vector

y′ := e′ − (e′, y)

(y, y)
· y.

is in X(e) and therefore (y′, y′) ≥ 0.
On the other hand

(y′, y′) = (e′, y′) = −|(e
′, y)|2

(y, y)
.

Hence y ∈ X(e)
+ implies that (e′, y) = 0, i.e.,

(e, y) =
(e, f)

(f, f)
(f, y) ,

which together with y ∈ X(e) leads to (f, y) = 0. Thus y ∈ X(e)
+ implies

y ∈ X(f).

On the other hand x ∈ X
(e)
0 and f = b (e− e′) imply (f, x) =

−b (e′, x) = 0 due to the fact that e′, x ∈ X(e)
0 .

Hence x ∈ X(e)
0 implies (x, f) = 0, i.e., x ∈ X(f).
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From X
(e)
0 ⊆ X(f) and X

(e)
+ ⊆ X(f) we get X(e) ⊆ X(f). Since

e /∈ X(f) and X = L (e)
⊕

X(e), we deduce X(e) = X(f) and then (·, ·)
is positive semi-definite on X(f).

The theorem is completely proved.

In the case of complex linear spaces we may state the following
result as well [5]:

Theorem 2 (Kurepa, 1968). Let X be a complex linear space and
(·, ·) a hermitian functional on X.

(1) The functional (·, ·) is semi-definite on X if and only if there
exists at least one vector e ∈ X with (e, e) 6= 0 such that

(1.9) [Re (e, y)]2 ≤ (e, e) (y, y) ,

for all y ∈ X;
(2) There is no nonzero Hermitian functional (·, ·) such that the

inequality

(1.10) [Re (e, y)]2 ≥ (e, e) (y, y) , (e, e) 6= 0,

holds for all y ∈ X and for an e ∈ X.

Proof. We follow the proof in [5].
Let σ and τ be real numbers and x ∈ X(e) a given vector. For

y := (σ + iτ) e+ x we get

(1.11) [Re (e, y)]2 − (e, e) (y, y) = −τ 2 (e, e)2 − (e, e) (x, x) .

If (·, ·) is semi-definite on X, then (1.11) implies (1.9).
Conversely, if (1.9) holds for all y ∈ X and for at least one e ∈ X,

then (·, ·) is semi-definite on X(e). But (1.9) and (1.11) for τ = 0 lead
to − (e, e) (x, x) ≤ 0 from which it follows that (e, e) and (x, x) are of
the same sign so that (·, ·) is semi-definite on X.

Suppose that (·, ·) 6= 0 and that (1.10) holds. We can assume that
(e, e) < 0. Then (1.10) implies that (·, ·) is positive semi-definite on
X(e). On the other hand, if τ is such that

τ 2 > −(x, x)

(e, e)
,

then (1.11) leads to [Re (e, y)]2 < (e, e) (y, y), contradicting (1.10).
Hence, if a Hermitian functional (·, ·) is not semi-definite and if

− (e, e) 6= 0, then the function y 7−→ [Re (e, y)]2 − (e, e) (y, y) takes
both positive and negative values.

The theorem is completely proved.
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1.2.2. Schwarz’s Inequality for the Complexification of a
Real Space. Let X be a real linear space. The complexification XC
of X is defined as a complex linear space X × X of all ordered pairs
{x, y} (x, y ∈ X) endowed with the operations:

{x, y}+ {x′, y′} := {x+ x′, y + y′} ,
(σ + iτ) · {x, y} := {σx− τy, σx+ τy} ,

where x, y, x′, y′ ∈ X and σ, τ ∈ R (see for instance [6]).
If z = {x, y} , then we can define the conjugate vector z̄ of z by

z̄ := {x,−y} . Similarly, with the scalar case, we denote

Re z = {x, 0} and Im z := {0, y} .
Formally, we can write z = x + iy = Re z + i Im z and z̄ = x − iy =
Re z − i Im z.

Now, let (·, ·) be a Hermitian functional on X. We may define on
the complexification XC of X, the complexification of (·, ·) , denoted by
(·, ·)C and defined by:

(x+ iy, x′ + iy′)C := (x, x′) + (y, y′) + i [(y, x′)− (x, y′)] ,

for x, y, x′, y′ ∈ X.
The following result may be stated [5]:

Theorem 3 (Kurepa, 1968). Let X, XC, (·, ·) and (·, ·)C be as
above. An inequality of type (1.2) and (1.3) holds for the functional
(·, ·)C in the space XC if and only if the same type of inequality holds
for the functional (·, ·) in the space X.

Proof. We follow the proof in [5].
Firstly, observe that (·, ·) is semi-definite if and only if (·, ·)C is

semi-definite.
Now, suppose that e ∈ X is such that

|(e, y)|2 ≥ (e, e) (y, y) , (e, e) < 0

for all y ∈ X. Then for x, y ∈ X we have

|(e, x+ iy)C|
2 = [(e, x)]2 + [(e, y)]2

≥ (e, e) [(x, x) + (y, y)]

= (e, e) (x+ iy, x+ iy)C .

Hence, if for the functional (·, ·) on X an inequality of type (1.2) holds,
then the same type of inequality holds in XC for the corresponding
functional (·, ·)C .

Conversely, suppose that e, f ∈ X are such that

(1.12) |(e+ if, x+ iy)C|
2 ≥ (e+ if, e+ if)C (x+ iy, x+ iy)C
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holds for all x, y ∈ X and that

(1.13) (e+ if, e+ if)C = (e, e) + (f, f) < 0.

If e = af with a real number a, then (1.13) implies that (f, f) < 0
and (1.12) for y = 0 leads to

[(f, x)]2 ≥ (f, f) (x, x) ,

for all x ∈ X. Hence, in this case, we have an inequality of type (1.2)
for the functional (·, ·) in X.

Suppose that e and g are linearly independent and by Y = L (e, f)
let us denote the subspace of X consisting of all linear combinations of
e and f. On Y we define a hermitian functional D by setting D (x, y) =
(x, y) for x, y ∈ Y. Let DC be the complexification of D. Then (1.12)
implies:

(1.14) |DC (e+ if, x+ iy)|2

≥ DC (e+ if, e+ if)DC (x+ iy, x+ iy) , x, y ∈ X

and (1.13) implies

(1.15) D (e, e) +D (f, f) < 0.

Further, consider in Y a base consisting of the two vectors {u1, u2} on
which D is diagonal, i.e., D satisfies

D (x, y) = λ1x1y1 + λ2x2y2,

where

x = x1u1 + x2u2, y = y1u1 + y2u2,

and

λ1 = D (u1, u1) , λ2 = D (u2, u2) .

Since for the functional D we have the relations (1.15) and (1.14), we
conclude thatD is not a semi-definite functional on Y. Hence λ1·λ2 < 0,
so we can take λ1 < 0 and λ2 > 0.

Set

X+ := {x| (x, e) = (x, f) = 0, x ∈ X} .
Obviously, (x, e) = (x, f) = 0 if and only if (x1u1) = (x2u2) = 0.

Now, if y ∈ X, then the vector

(1.16) x := y − (y, u1)

(u1, u1)
u1 −

(y, u2)

(u2, u2)
u2

belongs to X+. From this it follows that

X = L (e, f)
⊕

X+.



8 1. INEQUALITIES FOR HERMITIAN FORMS

Now, replacing in (1.12) the vector x + iy with z ∈ X+, we get from
(1.13) that

[(e, e) + (f, f)] (z, z) ≤ 0,

which, together with (1.13) leads to (z, z) ≥ 0. Therefore the functional
(·, ·) is positive semi-definite on X+.

Now, since any y ∈ X is of the form (1.16), hence for y ∈ X(u1) we
get

(y, y) = (x, x) +
[(y, u2)]

2

λ2

,

which is a nonnegative number. Thus, (·, ·) is positive semi-definite on
the space X(u1). Since (u1, u1) < 0 we have [(u1, y)]

2 ≥ (u1, u1) (y, y)
for any y ∈ X and the theorem is completely proved.

1.3. Superadditivity and Monotonicity

1.3.1. The Convex Cone of Nonnegative Hermitian Forms.
Let X be a linear space over the real or complex number field K and
let us denote by H (X) the class of all positive semi-definite Hermitian
forms on X, or, for simplicity, nonnegative forms on X, i.e., the map-
ping (·, ·) : X ×X → K belongs to H (X) if it satisfies the conditions

(i) (x, x) ≥ 0 for all x in X;
(ii) (αx+ βy, z) = α (x, z) + β (y, z) for all x, y ∈ X and α, β ∈ K
(iii) (y, x) = (x, y) for all x, y ∈ X.

If (·, ·) ∈ H (X) , then the functional ‖·‖ = (·, ·)
1
2 is a semi-norm on

X and the following equivalent versions of Schwarz’s inequality hold:

(1.17) ‖x‖2 ‖y‖2 ≥ |(x, y)|2 or ‖x‖ ‖y‖ ≥ |(x, y)|

for any x, y ∈ X.
Now, let us observe that H (X) is a convex cone in the linear space

of all mappings defined on X2 with values in K, i.e.,

(e) (·, ·)1 , (·, ·)2 ∈ H (X) implies that (·, ·)1 + (·, ·)2 ∈ H (X) ;
(ee) α ≥ 0 and (·, ·) ∈ H (X) implies that α (·, ·) ∈ H (X) .

We can introduce on H (X) the following binary relation [1]:

(1.18) (·, ·)2 ≥ (·, ·)1 if and only if ‖x‖2 ≥ ‖x‖1 for all x ∈ X.

We observe that the following properties hold:

(b) (·, ·)2 ≥ (·, ·)1 for all (·, ·) ∈ H (X) ;
(bb) (·, ·)3 ≥ (·, ·)2 and (·, ·)2 ≥ (·, ·)1 implies that (·, ·)3 ≥ (·, ·)1 ;

(bbb) (·, ·)2 ≥ (·, ·)1 and (·, ·)1 ≥ (·, ·)2 implies that (·, ·)2 = (·, ·)1 ;
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i.e., the binary relation defined by (1.18) is an order relation on
H (X) .

While (b) and (bb) are obvious from the definition, we should re-
mark, for (bbb), that if (·, ·)2 ≥ (·, ·)1 and (·, ·)1 ≥ (·, ·)2 , then obviously
‖x‖2 = ‖x‖1 for all x ∈ X, which implies, by the following well known
identity:

(1.19) (x, y)k

:=
1

4

[
‖x+ y‖2

k − ‖x− y‖2
k + i

(
‖x+ iy‖2

k − ‖x− iy‖2
k

)]
with x, y ∈ X and k ∈ {1, 2}, that (x, y)2 = (x, y)1 for all x, y ∈ X.

1.3.2. The Superadditivity and Monotonicity of σ−Mapping.
Let us consider the following mapping [1]:

σ : H (X)×X2 → R+, σ ((·, ·) ; x, y) := ‖x‖ ‖y‖ − |(x, y)| ,

which is closely related to Schwarz’s inequality (1.17).
The following simple properties of σ are obvious:

(s) σ (α (·, ·) ; x, y) = ασ ((·, ·) ; x, y) ;
(ss) σ ((·, ·) ; y, x) = σ ((·, ·) ; x, y) ;

(sss) σ ((·, ·) ; x, y) ≥ 0 (Schwarz’s inequality);

for any α ≥ 0, (·, ·) ∈ H (X) and x, y ∈ X.
The following result concerning the functional properties of σ as a

function depending on the nonnegative hermitian form (·, ·) has been
obtained in [1]:

Theorem 4 (Dragomir-Mond, 1994). The mapping σ satisfies the
following statements:

(i) For every (·, ·)i ∈ H (X) (i = 1, 2) one has the inequality

(1.20) σ ((·, ·)1 + (·, ·)2 ;x, y)

≥ σ ((·, ·)1 ;x, y) + σ ((·, ·)2 ;x, y) (≥ 0)

for all x, y ∈ X, i.e., the mapping σ (·;x, y) is superadditive
on H (X) ;

(ii) For every (·, ·)i ∈ H (X) (i = 1, 2) with (·, ·)2 ≥ (·, ·)1 one has

(1.21) σ ((·, ·)2 ;x, y) ≥ σ ((·, ·)1 ;x, y) (≥ 0)

for all x, y ∈ X, i.e., the mapping σ (·;x, y) is nondecreasing
on H (X) .

Proof. We follow the proof in [1].
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(i) By the Cauchy-Bunyakovsky-Schwarz inequality for real num-
bers , we have(

a2 + b2
) 1

2
(
c2 + d2

) 1
2 ≥ ac+ bd; a, b, c, d ≥ 0.

Therefore,

σ ((·, ·)1 + (·, ·)2 ;x, y)

=
(
‖x‖2

1 + ‖x‖2
2

) 1
2
(
‖y‖2

1 + ‖y‖2
2

) 1
2 − |(x, y)1 + (x, y)2|

≥ ‖x‖1 ‖y‖1 + ‖x‖2 ‖y‖2 − |(x, y)1| − |(x, y)2|
= σ ((·, ·)1 ;x, y) + σ ((·, ·)2 ;x, y) ,

for all (·, ·)i ∈ H (X) (i = 1, 2) and x, y ∈ X, and the statement
is proved.

(ii) Suppose that (·, ·)2 ≥ (·, ·)1 and define (·, ·)2,1 := (·, ·)2−(·, ·)1 .

It is obvious that (·, ·)2,1 is a nonnegative hermitian form and
thus, by the above property one has,

σ ((·, ·)2 ;x, y) ≥ σ
(
(·, ·)2,1 + (·, ·)1 ;x, y

)
≥ σ

(
(·, ·)2,1 ;x, y

)
+ σ ((·, ·)1 ;x, y)

from where we get:

σ ((·, ·)2 ;x, y)− σ ((·, ·)1 ;x, y) ≥ σ
(
(·, ·)2,1 ;x, y

)
≥ 0

and the proof of the theorem is completed.

Remark 1. If we consider the related mapping [1]

σr ((·, ·) ; x, y) := ‖x‖ ‖y‖ − Re (x, y) ,

then we can show, as above, that σ (·;x, y) is superadditive and non-
decreasing on H (X) .

Moreover, if we introduce another mapping, namely, [1]

τ : H (X)×X2 → R+, τ ((·, ·) ; x, y) := (‖x‖+ ‖y‖)2 − ‖x+ y‖2 ,

which is connected with the triangle inequality

(1.22) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ X
then we observe that

(1.23) τ ((·, ·) ; x, y) = 2σr ((·, ·) ; x, y)

for all (·, ·) ∈ H (X) and x, y ∈ X, therefore σ (·;x, y) is in its turn a
superadditive and nondecreasing functional on H (X) .



1.3. SUPERADDITIVITY AND MONOTONICITY 11

1.3.3. The Superadditivity and Monotonicity of δ−Mapping.
Now consider another mapping naturally associated to Schwarz’s in-
equality, namely [1]

δ : H (X)×X2 → R+, δ ((·, ·) ; x, y) := ‖x‖2 ‖y‖2 − |(x, y)|2 .
It is obvious that the following properties are valid:

(i) δ ((·, ·) ; x, y) ≥ 0 (Schwarz’s inequality);
(ii) δ ((·, ·) ; x, y) = δ ((·, ·) ; y, x) ;
(iii) δ (α (·, ·) ; x, y) = α2δ ((·, ·) ; x, y)

for all x, y ∈ X, α ≥ 0 and (·, ·) ∈ H (X) .
The following theorem incorporates some further properties of this

functional [1]:

Theorem 5 (Dragomir-Mond, 1994). With the above assumptions,
we have:

(i) If (·, ·)i ∈ H (X) (i = 1, 2) , then

(1.24) δ ((·, ·)1 + (·, ·)2 ;x, y)− δ ((·, ·)1 ;x, y)− δ ((·, ·)2 ;x, y)

≥
(

det

[
‖x‖1 ‖y‖1

‖x‖2 ‖y‖2

])2

(≥ 0) ;

i.e., the mapping δ (·;x, y) is strong superadditive on H (X) .
(ii) If (·, ·)i ∈ H (X) (i = 1, 2) , with (·, ·)2 ≥ (·, ·)1 , then

(1.25) δ ((·, ·)2 ;x, y)− δ ((·, ·)1 ;x, y)

≥

(
det

[
‖x‖1 ‖y‖1(

‖x‖2
2 − ‖x‖2

1

) 1
2
(
‖y‖2

2 − ‖y‖2
1

) 1
2

])2

(≥ 0) ;

i.e., the mapping δ (·;x, y) is strong nondecreasing on H (X) .

Proof. (i) For all (·, ·)i ∈ H (X) (i = 1, 2) and x, y ∈ X we have

δ ((·, ·)1 + (·, ·)2 ;x, y)(1.26)

=
(
‖x‖2

2 − ‖x‖2
1

) (
‖y‖2

2 − ‖y‖2
1

)
− |(x, y)2 + (x, y)1|

2

≥ ‖x‖2
2 ‖y‖

2
2 + ‖x‖2

1 ‖y‖
2
1 + ‖x‖2

1 ‖y‖
2
2 + ‖x‖2

2 ‖y‖
2
1

− (|(x, y)2|+ |(x, y)1|)
2

= δ ((·, ·)2 ;x, y) + δ ((·, ·)1 ;x, y)

+ ‖x‖2
1 ‖y‖

2
2 + ‖x‖2

2 ‖y‖
2
1 − 2 |(x, y)2 (x, y)1| .

By Schwarz’s inequality we have

(1.27) |(x, y)2 (x, y)1| ≤ ‖x‖1 ‖y‖1 ‖x‖2 ‖y‖2 ,
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therefore, by (1.26) and (1.27), we can state that

δ ((·, ·)1 + (·, ·)2 ;x, y)− δ ((·, ·)1 ;x, y)− δ ((·, ·)2 ;x, y)

≥ ‖x‖2
1 ‖y‖

2
2 + ‖x‖2

2 ‖y‖
2
1 − 2 ‖x‖1 ‖y‖1 ‖x‖2 ‖y‖2

= (‖x‖1 ‖y‖2 − ‖x‖2 ‖y‖1)
2

and the inequality (1.24) is proved.
(ii) Suppose that (·, ·)2 ≥ (·, ·)1 and, as in Theorem 4, define (·, ·)2,1 :=

(·, ·)2 − (·, ·)1 . Then (·, ·)2,1 is a nonnegative hermitian form and by (i)
we have

δ
(
(·, ·)2,1 ;x, y

)
− δ ((·, ·)1 ;x, y)

= δ
(
(·, ·)2,1 + (·, ·)1 ;x, y

)
− δ ((·, ·)1 ;x, y)

≥ δ
(
(·, ·)2,1 ;x, y

)
+

(
det

[
‖x‖1 ‖y‖1

‖x‖2,1 ‖y‖2,1

])2

≥
(

det

[
‖x‖1 ‖y‖1

‖x‖2,1 ‖y‖2,1

])2

.

Since ‖z‖2,1 =
(
‖z‖2

2 − ‖z‖2
1

) 1
2 for z ∈ X, hence the inequality (1.25) is

proved.

Remark 2. If we consider the functional δr ((·, ·) ; x, y) := ‖x‖2 ‖y‖2−
[Re (x, y)]2 , then we can state similar properties for it. We omit the
details.

1.3.4. Superadditivity and Monotonicity of β−Mapping.
Consider the functional β : H (X)×X2 → R defined by [2]

(1.28) β ((·, ·) ; x, y) =
(
‖x‖2 ‖y‖2 − |(x, y)|2

) 1
2 .

It is obvious that β ((·, ·) ; x, y) = [δ ((·, ·) ; x, y)]
1
2 and thus it is mono-

tonic nondecreasing on H (X) . Before we prove that β (·;x, y) is also
superadditive, which apparently does not follow from the properties of
δ pointed out in the subsection above, we need the following simple
lemma:

Lemma 1. If (·, ·) is a nonnegative Hermitian form on X, x, y ∈ X
and ‖y‖ 6= 0, then

(1.29) inf
λ∈K

‖x− λy‖2 =
‖x‖2 ‖y‖2 − |(x, y)|2

‖y‖2 .
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Proof. Observe that

‖x− λy‖2 = ‖x‖2 − 2 Re [λ (x, y)] + |λ|2 ‖y‖2

and, for ‖y‖ 6= 0,

‖x‖2 ‖y‖2 − |(x, y)|2 +
∣∣µ ‖y‖2 − (x, y)

∣∣2
‖y‖2

= ‖x‖2 − 2 Re
[
µ(x, y)

]
+ |µ|2 ‖y‖2 ,

and since Re
[
λ̄ (x, y)

]
= Re

[
λ̄ (x, y)

]
= Re

[
λ(x, y)

]
, we deduce the

equality

(1.30) ‖x− λy‖2 =
‖x‖2 ‖y‖2 − |(x, y)|2 +

∣∣µ ‖y‖2 − (x, y)
∣∣2

‖y‖2 ,

for any x, y ∈ X with ‖y‖ 6= 0.
Taking the infimum over λ ∈ K in (1.30), we deduce the desired

result (1.29).

For the subclass JP (X) , of all inner products defined on X, of
H (X) and y 6= 0, we may define

γ ((·, ·) ; x, y) =
‖x‖2 ‖y‖2 − |(x, y)|2

‖y‖2

=
δ ((·, ·) ; x, y)

‖y‖2 .

The following result may be stated (see also [2]):

Theorem 6 (Dragomir-Mond, 1996). The functional γ (·;x, y) is
superadditive and monotonic nondecreasing on JP (X) for any x, y ∈
X with y 6= 0.

Proof. Let (·, ·)1 , (·, ·)2 ∈ JP (X) . Then

γ ((·, ·)1 + (·, ·)2 ;x, y)(1.31)

=

(
‖x‖2

1 + ‖x‖2
2

) (
‖y‖2

1 + ‖y‖2
2

)
− |(x, y)1 + (x, y)2|

2

‖y‖2
1 ‖y‖

2
2

= inf
λ∈K

[
‖x− λy‖2

1 + ‖x− λy‖2
2

]
,

and for the last equality we have used Lemma 1.
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Also,

γ ((·, ·)i ;x, y) =
‖x‖2

i ‖y‖
2
i − |(x, y)i|

2

‖y‖2
i

(1.32)

= inf
λ∈K

‖x− λy‖2
i , i = 1, 2.

Utilising the infimum property that

inf
λ∈K

(f (λ) + g (λ)) ≥ inf
λ∈K

f (λ) + inf
λ∈K

g (λ) ,

we can write that

inf
λ∈K

[
‖x− λy‖2

1 + ‖x− λy‖2
2

]
≥ inf

λ∈K
‖x− λy‖2

1 + inf
λ∈K

‖x− λy‖2
2 ,

which proves the superadditivity of γ (·;x, y) .
The monotonicity follows by the superadditivity property and the

theorem is completely proved.

Corollary 1. If (·, ·)i ∈ JP (X) with (·, ·)2 ≥ (·, ·)1 and x, y ∈ X
are such that x, y 6= 0, then:

δ ((·, ·)2 ;x, y) ≥ max

{
‖y‖2

2

‖y‖2
1

,
‖x‖2

2

‖x‖2
1

}
δ ((·, ·)1 ;x, y)(1.33)

(≥ δ ((·, ·)1 ;x, y))

or equivalently, [2]

(1.34) δ ((·, ·)2 ;x, y)− δ ((·, ·)1 ;x, y)

≥ max

{
‖y‖2

2 − ‖y‖2
1

‖y‖2
1

,
‖x‖2

2 − ‖x‖2
1

‖x‖2
1

}
δ ((·, ·)1 ;x, y) .

The following strong superadditivity property of δ (·;x, y) that is
different from the one in Subsection 1.3.2 holds [2]:

Corollary 2 (Dragomir-Mond, 1996). If (·, ·)i ∈ JP (X) and
x, y ∈ X with x, y 6= 0, then

(1.35) δ ((·, ·)1 + (·, ·)2 ;x, y)− δ ((·, ·)1 ;x, y)− δ ((·, ·)2 ;x, y)

≥ max

{(
‖y‖2

‖y‖1

)2

δ ((·, ·)1 ;x, y) +

(
‖y‖1

‖y‖2

)2

δ ((·, ·)2 ;x, y) ;

(
‖x‖2

‖x‖1

)2

δ ((·, ·)1 ;x, y) +

(
‖x‖1

‖x‖2

)2

δ ((·, ·)2 ;x, y)

}
(≥ 0) .
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Proof. Utilising the identities (1.31) and (1.32) and taking into
account that γ (·;x, y) is superadditive, we can state that

δ ((·, ·)1 + (·, ·)2 ;x, y)(1.36)

≥ ‖y‖2
1 + ‖y‖2

2

‖y‖2
1

δ ((·, ·)1 ;x, y) +
‖y‖2

1 + ‖y‖2
2

‖y‖2
2

δ ((·, ·)2 ;x, y)

= δ ((·, ·)1 ;x, y) + δ ((·, ·)2 ;x, y)

+

(
‖y‖2

‖y‖1

)2

δ ((·, ·)1 ;x, y) +

(
‖y‖1

‖y‖2

)2

δ ((·, ·)2 ;x, y)

and a similar inequality with x instead of y. These show that the desired
inequality (1.35) holds true.

Remark 3. Obviously, all the inequalities above remain true if
(·, ·)i , i = 1, 2 are nonnegative Hermitian forms for which we have
‖x‖i , ‖y‖i 6= 0.

Finally, we may state and prove the superadditivity result for the
mapping β (see [2]):

Theorem 7 (Dragomir-Mond, 1996). The mapping β defined by
(1.28) is superadditive on H (X) .

Proof. Without loss of generality, if (·, ·)i ∈ H (X) and x, y ∈ X,
we may assume, for instance, that ‖y‖i 6= 0, i = 1, 2.

If so, then(
‖y‖2

‖y‖1

)2

δ ((·, ·)1 ;x, y) +

(
‖y‖1

‖y‖2

)2

δ ((·, ·)2 ;x, y)

≥ 2 [δ ((·, ·)1 ;x, y) δ ((·, ·)2 ;x, y)]
1
2 ,

and by making use of (1.36) we get:

δ ((·, ·)1 + (·, ·)2 ;x, y) ≥
{

[δ ((·, ·)1 ;x, y)]
1
2 + [δ ((·, ·)2 ;x, y)]

1
2

}2

,

which is exactly the superadditivity property for β.

1.4. Applications for General Inner Product Spaces

1.4.1. Inequalities for Orthonormal Families. Let (H; 〈·, ·〉)
be an inner product space over the real or complex number field K. The
family of vectors E := {ei}i∈I (I is a finite or infinite) is an orthonormal
family of vectors if 〈ei, ej〉 = δij for i, j ∈ I, where δij is Kronecker’s
delta.
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The following inequality is well known in the literature as Bessel’s
inequality:

(1.37)
∑
i∈F

|〈x, ei〉|2 ≤ ‖x‖2

for any F a finite part of I and x a vector in H.
If by F (I) we denote the family of all finite parts of I (including

the empty set ∅), then for any F ∈ F (I) \ {∅} the functional (·, ·)F :
H ×H → K given by

(1.38) (x, y)F :=
∑
i∈F

〈x, ei〉 〈ei, y〉

is a Hermitian form on H.
It is obvious that if F1, F2 ∈ F (I) \ {∅} and F1 ∩ F2 = ∅, then

(·, ·)F1∪F2
= (·, ·)F1

+ (·, ·)F2
.

We can define the functional σ : F (I)×H2 → R+ by

(1.39) σ (F ;x, y) := ‖x‖F ‖y‖F − |(x, y)F | ,

where

‖x‖F :=

(∑
i∈F

|〈x, ei〉|2
) 1

2

= [(x, x)F ]
1
2 , x ∈ H.

The following proposition may be stated (see also [2]):

Proposition 1 (Dragomir-Mond, 1995). The mapping σ satisfies
the following

(i) If F1, F2 ∈ F (I) \ {∅} with F1 ∩ F2 = ∅, then

σ (F1 ∪ F2;x, y) ≥ σ (F1;x, y) + σ (F2;x, y) (≥ 0)

for any x, y ∈ H, i.e., the mapping σ (·;x, y) is an index set
superadditive mapping on F (I) ;

(ii) If ∅ 6= F1 ⊆ F2, F1, F2 ∈ F (I) , then

σ (F2;x, y) ≥ σ (F1;x, y) (≥ 0) ,

i.e., the mapping σ (·;x, y) is an index set monotonic mapping
on F (I) .

The proof is obvious by Theorem 4 and we omit the details.
We can also define the mapping σr (·; ·, ·) : F (I)×H2 → R+ by

σr (F ;x, y) := ‖x‖F ‖y‖F − Re (x, y)F ,

which also has the properties (i) and (ii) of Proposition 1.
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Since, by Bessel’s inequality the hermitian form (·, ·)F ≤ 〈·, ·〉 in the
sense of definition (1.18) then by Theorem 4 we may state the following
refinements of Schwarz’s inequality [1]:

Proposition 2 (Dragomir-Mond, 1994). For any F ∈ F (I) \ {0} ,
we have the inequalities

(1.40) ‖x‖ ‖y‖ − |〈x, y〉|

≥

(∑
i∈F

|〈x, ei〉|2
) 1

2
(∑

i∈F

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
and

(1.41) ‖x‖ ‖y‖ − |〈x, y〉|

≥

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
) 1

2
(
‖y‖2 −

∑
i∈F

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
and the corresponding versions on replacing |·| by Re (·) , where x, y are
vectors in H.

Remark 4. Note that the inequality (1.40) and its version for Re (·)
has been established for the first time and utilising a different argument
by Dragomir and Sándor in 1994 (see [3, Theorem 5 and Remark 2]).

If we now define the mapping δ : F (I)×H2 → R+ by

δ (F ;x, y) := ‖x‖2
F ‖y‖

2
F − |(x, y)F |

2

and making use of Theorem 5, we may state the following result [2].

Proposition 3 (Dragomir-Mond, 1995). The mapping δ satisfies
the following properties:

(i) If F1, F2 ∈ F (I) \ {∅} with F1 ∩ F2 = ∅, then

(1.42) δ (F1 ∪ F2;x, y)− δ (F1;x, y)− δ (F2;x, y)

≥
(

det

[
‖x‖F1

‖y‖F1

‖x‖F2
‖y‖F2

])2

(≥ 0) ,

i.e., the mapping δ (·;x, y) is strong superadditive as an index
set mapping;
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(ii) If ∅ 6= F1 ⊆ F2, F1, F2 ∈ F (I) , then

(1.43) δ (F2;x, y)− δ (F1;x, y)

≥

(
det

[
‖x‖F1

‖y‖F1(
‖x‖2

F2
− ‖x‖2

F1

) 1
2
(
‖y‖2

F2
− ‖y‖2

F1

) 1
2

])2

(≥ 0) ,

i.e., the mapping δ (·;x, y) is strong nondecreasing as an index
set mapping.

On applying the same general result in Theorem 5, (ii) for the
hermitian functionals (·, ·)F (F ∈ F (I) \ {∅}) and 〈·, ·〉 for which, by
Bessel’s inequality we know that (·, ·)F ≤ 〈·, ·〉 , we may state the fol-
lowing result as well, which provides refinements for the Schwarz in-
equality.

Proposition 4 (Dragomir-Mond, 1994). For any F ∈ F (I) \ {∅},
we have the inequalities:

(1.44) ‖x‖2 ‖y‖2 − |〈x, y〉|2

≥
∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2 −

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2

(≥ 0)

and

(1.45) ‖x‖2 ‖y‖2 − |〈x, y〉|2

≥

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
)(

‖y‖2 −
∑
i∈F

|〈y, ei〉|2
)

−

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2

(≥ 0) ,

for any x, y ∈ H.

On utilising Corollary 2 we may state the following different super-
additivity property for the mapping δ (·;x, y) .
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Proposition 5. If F1, F2 ∈ F (I) \ {∅} with F1 ∩ F2 = ∅, then

(1.46) δ (F1 ∪ F2;x, y)− δ (F1;x, y)− δ (F2;x, y)

≥ max

{(‖y‖F2

‖y‖F1

)2

δ (F1;x, y) +

(‖y‖F1

‖y‖F2

)2

δ (F2;x, y) ;

(‖x‖F2

‖x‖F1

)2

δ (F1;x, y) +

(‖x‖F1

‖x‖F2

)2

δ (F2;x, y)

}
(≥ 0)

for any x, y ∈ H\ {0} .
Further, for y /∈ M⊥ where M = Sp {ei}i∈I is the linear space

spanned by E = {ei}i∈I , we can also consider the functional γ : F (I)×
H2 → R+ defined by

γ (F ;x, y) :=
δ (F ;x, y)

‖y‖2
F

=
‖x‖2

F ‖y‖
2
F − |(x, y)F |

2

‖y‖2
F

,

where x ∈ H and F 6= ∅.
Utilising Theorem 6, we may state the following result concerning

the properties of the functional γ (·;x, y) with x and y as above.

Proposition 6. For any x ∈ H and y ∈ H\M⊥, the functional
γ (·;x, y) is superadditive and monotonic nondecreasing as an index set
mapping on F (I) .

Since 〈·, ·〉 ≥ (·, ·)F for any F ∈ F (I) , on making use of Corollary
1, we may state the following refinement of Schwarz’s inequality:

Proposition 7. Let x ∈ H and y ∈ H\M⊥
F , where MF := Sp {ei}i∈I

and F ∈ F (I) \ {∅} is given. Then

(1.47) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≥ max

{
‖y‖2∑

i∈F |〈y, ei〉|2
,

‖x‖2∑
i∈F |〈x, ei〉|2

}

×

∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2 −

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2


≥∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2 −

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2
 ,

which is a refinement of (1.45) in the case that y ∈ H\M⊥
F .

Finally, consider the functional β : F (I)×H2 → R+ given by

β (F ;x, y) := [δ (F ;x, y)]
1
2 =

(
‖x‖2

F ‖y‖
2
F − |(x, y)F |

2) 1
2 .
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Utilising Theorem 7, we may state the following:

Proposition 8. The functional β (·;x, y) is superadditive as an
index set mapping on F (I) for each x, y ∈ H.

As a dual approach, one may also consider the following form
(·, ·)C,F : H ×H → R given by:

(1.48) (x, y)C,F := 〈x, y〉 − (x, y)F = 〈x, y〉 −
∑
i∈F

〈x, ei〉 〈ei, y〉 .

By Bessel’s inequality, we observe that (·, ·)C,F is a nonnegative her-
mitian form and, obviously

(·, ·)I + (·, ·)C,F = 〈·, ·〉 .

Utilising the superadditivity properties from Section 1.3, one may state
the following refinement of the Schwarz inequality:

(1.49) ‖x‖ ‖y‖ − |〈x, y〉|

≥

(∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
+

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
) 1

2
(
‖y‖2 −

∑
i∈F

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣ (≥ 0) ,

(1.50) ‖x‖2 ‖y‖2 − |〈x, y〉|2

≥
∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2 −

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2

+

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
)(

‖y‖2 −
∑
i∈F

|〈y, ei〉|2
)

−

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2

(≥ 0)
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and

(1.51)
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

) 1
2

≥

∑
i∈F

|〈x, ei〉|2
∑
i∈F

|〈y, ei〉|2 −

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2
 1

2

+

[(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
)(

‖y‖2 −
∑
i∈F

|〈y, ei〉|2
)

−

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2
 1

2

(≥ 0) ,

for any x, y ∈ H and F ∈ F (I) \ {∅} .

1.4.2. Inequalities for Gram Determinants. Let {x1, . . . , xn}
be vectors in the inner product space (H, 〈·, ·〉) over the real or complex
number field K. Consider the gram matrix associated to the above
vectors:

G (x1, . . . , xn) :=


〈x1, x1〉 〈x1, x2〉 · · · 〈x1, xn〉
〈x2, x1〉 · · · 〈x2, xn〉
· · · · · · · · ·

〈xn, x1〉 〈xn, x2〉 · · · 〈xn, xn〉

 .
The determinant

Γ (x1, . . . , xn) := detG (x1, . . . , xn)

is called the Gram determinant associated to the system {x1, . . . , xn} .
If {x1, . . . , xn} does not contain the null vector 0, then [4]

(1.52) 0 ≤ Γ (x1, . . . , xn) ≤ ‖x1‖2 ‖x2‖2 · · · ‖xn‖2 .

The equality holds on the left (respectively right) side of (1.52) if
and only if {x1, . . . , xn} is linearly dependent (respectively orthogo-
nal). The first inequality in (1.52) is known in the literature as Gram’s
inequality while the second one is known as Hadamard’s inequality.

The following result obtained in [3] may be regarded as a refinement
of Gram’s inequality:

Theorem 8 (Dragomir-Sándor, 1994). Let {x1, . . . , xn} be a system
of nonzero vectors in H. Then for any x, y ∈ H one has:

(1.53) Γ (x, x1, . . . , xn) Γ (y, x1, . . . , xn) ≥ |Γ (x1, . . . , xn) (x, y)|2 ,
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where Γ (x1, . . . , xn) (x, y) is defined by:

Γ (x1, . . . , xn) (x, y)

:= det


〈x, y〉 〈x, x1〉 · · · 〈x, xn〉
〈x1, y〉
· · · G (x1, . . . , xn)

〈xn, y〉

 .
Proof. We follow the proof from [3].
Let us consider the mapping p : H ×H → K given by

p (x, y) = Γ (x1, . . . , xn) (x, y) .

Utilising the properties of determinants, we notice that

p (x, y) = Γ (x, x1, . . . , xn) ≥ 0,

p (x+ y, z) = Γ (x1, . . . , xn) (x+ y, z)

= Γ (x1, . . . , xn) (x, z) + Γ (x1, . . . , xn) (y, z)

= p (x, z) + p (y, z) ,

p (αx, y) = αp (x, y) ,

p (y, x) = p (x, y),

for any x, y, z ∈ H and α ∈ K, showing that p (·, ·) is a nonnegative
hermitian from on X. Writing Schwarz’s inequality for p (·, ·) we deduce
the desired result (1.53).

In a similar manner, if we define q : H ×H → K by

q (x, y) := (x, y)
n∏

i=1

‖xi‖2 − p (x, y)

= (x, y)
n∏

i=1

‖xi‖2 − Γ (x1, . . . , xn) (x, y) ,

then, using Hadamard’s inequality, we conclude that q (·, ·) is also a
nonnegative hermitian form. Therefore, by Schwarz’s inequality ap-
plied for q (·, ·) , we can state the following result as well [3]:
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Theorem 9 (Dragomir-Sándor, 1994). With the assumptions of
Theorem 8, we have:

(1.54)

[
‖x‖2

n∏
i=1

‖xi‖2 − Γ (x, x1, . . . , xn)

]

×

[
‖y‖2

n∏
i=1

‖xi‖2 − Γ (y, x1, . . . , xn)

]

≥

∣∣∣∣∣〈x, y〉
n∏

i=1

‖xi‖2 − Γ (x1, . . . , xn) (x, y)

∣∣∣∣∣
2

,

for each x, y ∈ H.

Observing that, for a given set of nonzero vectors {x1, . . . , xn} ,

p (x, y) + q (x, y) = (x, y)
n∏

i=1

‖xi‖2 ,

for any x, y ∈ H, then, on making use of the superadditivity proper-
ties of the various functionals defined in Section 1.3, we can state the
following refinements of the Schwarz inequality in inner product spaces:

(1.55) [‖x‖ ‖y‖ − |〈x, y〉|]
n∏

i=1

‖xi‖2

≥ [Γ (x, x1, . . . , xn) Γ (y, x1, . . . , xn)]
1
2 − |Γ (x1, . . . , xn) (x, y)|

+

[
‖x‖2

n∏
i=1

‖xi‖2 − Γ (x, x1, . . . , xn)

] 1
2

×

[
‖y‖2

n∏
i=1

‖xi‖2 − Γ (y, x1, . . . , xn)

] 1
2

−

∣∣∣∣∣〈x, y〉
n∏

i=1

‖xi‖2 − Γ (x1, . . . , xn) (x, y)

∣∣∣∣∣ (≥ 0) ,

(1.56)
[
‖x‖2 ‖y‖2 − |〈x, y〉|2

] n∏
i=1

‖xi‖4

Γ (x, x1, . . . , xn) Γ (y, x1, . . . , xn)− |Γ (x1, . . . , xn) (x, y)|2

+

[
‖x‖2

n∏
i=1

‖xi‖2 − Γ (x, x1, . . . , xn)

]
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×

[
‖y‖2

n∏
i=1

‖xi‖2 − Γ (y, x1, . . . , xn)

]

−

∣∣∣∣∣〈x, y〉
n∏

i=1

‖xi‖2 − Γ (x1, . . . , xn) (x, y)

∣∣∣∣∣
2

(≥ 0) ,

and

(1.57) [‖x‖ ‖y‖ − |〈x, y〉|]
1
2

n∏
i=1

‖xi‖2

≥
[
Γ (x, x1, . . . , xn) Γ (y, x1, . . . , xn)− |Γ (x1, . . . , xn) (x, y)|2

] 1
2

+

{[
‖x‖2

n∏
i=1

‖xi‖2 − Γ (x, x1, . . . , xn)

]

×

[
‖y‖2

n∏
i=1

‖xi‖2 − Γ (y, x1, . . . , xn)

]

−

∣∣∣∣∣〈x, y〉
n∏

i=1

‖xi‖2 − Γ (x1, . . . , xn) (x, y)

∣∣∣∣∣
2


1
2

(≥ 0) .

1.4.3. Inequalities for Linear Operators. Let A : H → H be
a linear bounded operator and

‖A‖ := sup {‖Ax‖ , ‖x‖ < 1}
its norm.

If we consider the hermitian forms (·, ·)2 , (·, ·)1 : H → H defined
by

(x, y)1 := 〈Ax,Ay〉 , (x, y)2 := ‖A‖2 〈x, y〉
then obviously (·, ·)2 ≥ (·, ·)1 in the sense of definition (1.18) and utilis-
ing the monotonicity properties of the functional considered in Section
1.3, we may state the following inequalities:

(1.58) ‖A‖2 [‖x‖ ‖y‖ − |〈x, y〉|] ≥ ‖Ax‖ ‖Ay‖− |〈Ax,Ay〉| (≥ 0) ,

(1.59) ‖A‖4 [‖x‖2 ‖y‖2 − |〈x, y〉|2
]

≥ ‖Ax‖2 ‖Ay‖2 − |〈Ax,Ay〉|2 (≥ 0)

for any x, y ∈ H, and the corresponding versions on replacing |·| by
Re (·) .

The results (1.58) and (1.59) have been obtained by Dragomir and
Mond in [1].
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On using Corollary 1, we may deduce the following inequality as
well:

(1.60) ‖A‖2 [‖x‖2 ‖y‖2 − |〈x, y〉|2
]

≥ max

{
‖x‖2

‖Ax‖2 ,
‖y‖2

‖Ay‖2

}[
‖Ax‖2 ‖Ay‖2 − |〈Ax,Ay〉|2

]
(≥ 0)

for any x, y ∈ H with Ax,Ay 6= 0; which improves (1.59) for x, y
specified before.

Similarly, if B : H → H is a linear operator satisfying the condition

(1.61) ‖Bx‖ ≥ m ‖x‖ for any x ∈ H,

where m > 0 is given, then the hermitian forms [x, y]2 := 〈Bx,By〉 ,
[x, y]1 := m2 〈x, y〉 , have the property that [·, ·]2 ≥ [·, ·]1 . Therefore,
from the monotonicity results established in Section 1.3, we can state
that

(1.62) ‖Bx‖ ‖By‖ − |〈Bx,By〉| ≥ m2 [‖x‖ ‖y‖ − |〈x, y〉|] (≥ 0) ,

(1.63) ‖Bx‖2 ‖By‖2 − |〈Bx,By〉|2

≥ m4
[
‖x‖2 ‖y‖2 − |〈x, y〉|2

]
(≥ 0)

for any x, y ∈ H, and the corresponding results on replacing |·| by
Re (·) .

The same Corollary 1, would give the inequality

(1.64) ‖Bx‖2 ‖By‖2 − |〈Bx,By〉|2

≥ m2 max

{
‖Bx‖2

‖x‖2 ,
‖By‖2

‖y‖2

}[
‖x‖2 ‖y‖2 − |〈x, y〉|2

]
for x, y 6= 0, which is an improvement of (1.63).

We recall that a linear self-adjoint operator P : H → H is nonneg-
ative if 〈Px, x〉 ≥ 0 for any x ∈ H. P is called positive if 〈Px, x〉 = 0
and positive definite with the constant γ > 0 if 〈Px, x〉 ≥ γ ‖x‖2 for
any x ∈ H.

If A,B : H → H are two linear self-adjoint operators such that
A ≥ B (this means that A−B is nonnegative), then the corresponding
hermitian forms (x, y)A := 〈Ax, y〉 and (x, y)B := 〈Bx, y〉 satisfies the
property that (·, ·)A ≥ (·, ·)B .

If by P (H) we denote the cone of all linear self-adjoint and non-
negative operators defined in the Hilbert space H, then, on utilising
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the results of Section 1.3, we may state that the functionals σ0, δ0, β0 :
P (H)×H2 → [0,∞] given by

σ0 (P ;x, y) := 〈Ax, x〉
1
2 〈Py, y〉

1
2 − |〈Px, y〉| ,

δ0 (P ;x, y) := 〈Px, x〉 〈Py, y〉 − |〈Px, y〉|2 ,

β0 (P ;x, y) :=
[
〈Px, x〉 〈Py, y〉 − |〈Px, y〉|2

] 1
2 ,

are superadditive and monotonic decreasing on P (H) , i.e.,

γ0 (P +Q;x, y) ≥ γ0 (P ;x, y) + γ0 (Q;x, y) (≥ 0)

for any P,Q ∈ P (H) and x, y ∈ H, and

γ0 (P ;x, y) ≥ γ0 (Q;x, y) (≥ 0)

for any P,Q with P ≥ Q ≥ 0 and x, y ∈ H, where γ ∈ {σ, δ, β} .
The superadditivity and monotonicity properties of σ0 and δ0 have

been noted by Dragomir and Mond in [1].
If u ∈ P (H) is such that I ≥ U ≥ 0, where I is the identity

operator, then on using the superadditivity property of the functionals
σ0, δ0 and β0 one may state the following refinements for the Schwarz
inequality:

(1.65) ‖x‖ ‖y‖ − |〈x, y〉| ≥ 〈Ux, x〉
1
2 〈Uy, y〉

1
2 − |〈Ux, y〉|

+ 〈(I − U)x, x〉
1
2 〈(I − U) y, y〉

1
2 − |〈(I − U)x, y〉| (≥ 0) ,

(1.66) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≥ 〈Ux, x〉 〈Uy, y〉 − |〈Ux, y〉|2

+ 〈(I − U)x, x〉 〈(I − U) y, y〉 − |〈(I − U)x, y〉|2 (≥ 0) ,

and

(1.67)
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

) 1
2 ≥

(
〈Ux, x〉 〈Uy, y〉 − |〈Ux, y〉|2

) 1
2

+
(
〈(I − U)x, x〉 〈(I − U) y, y〉 − |〈(I − U)x, y〉|2

) 1
2 (≥ 0)

for any x, y ∈ H.
Note that (1.67) is a better result than (1.66).
Finally, if we assume that D ∈ P (H) with D ≥ γI, where γ >

0, i.e., D is positive definite on H, then we may state the following
inequalities

(1.68) 〈Dx, x〉
1
2 〈Dy, y〉

1
2 − |〈Dx, y〉| ≥ γ [‖x‖ ‖y‖ − |〈x, y〉|] (≥ 0) ,

(1.69) 〈Dx, x〉 〈Dy, y〉 − |〈Dx, y〉|2

≥ γ2
[
‖x‖2 ‖y‖2 − |〈x, y〉|2

]
(≥ 0) ,
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for any x, y ∈ H and

(1.70) 〈Dx, x〉 〈Dy, y〉 − |〈Dx, y〉|2

≥ γmax

{
〈Dx, x〉
‖x‖2 ,

〈Dy, y〉
‖y‖2

}[
‖x‖2 ‖y‖2 − |〈x, y〉|2

]
(≥ 0)

for any x, y ∈ H\ {0} .
The results (1.68) and (1.69) have been obtained by Dragomir and

Mond in [1].
Note that (1.70) is a better result than (1.69).
The above results (1.65) – (1.70) also hold for Re (·) instead of |·| .

1.5. Applications for Sequences of Vectors

1.5.1. The Case of Mapping σ. Let Pf (N) be the family of
finite parts of the natural number set N, S+ (R) the cone of nonnegative
real sequences and for a given inner product space (H; 〈·, ·〉) over the
real or complex number field K, S (H) the linear space of all sequences
of vectors from H, i.e.,

S (H) :=
{
x|x = (xi)i∈N , xi ∈ H, i ∈ N

}
.

Consider 〈·, ·〉p,I : S (H)× S (H) → R defined by

〈x,y〉p,I :=
∑
i∈I

pi 〈xi, yi〉 .

We may define the mapping σ by

(1.71) σ (p, I,x,y) :=

(∑
i∈I

pi ‖xi‖2
∑
i∈I

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣∑
i∈I

pi 〈xi, yi〉

∣∣∣∣∣ ,
where p ∈ S+ (R) , I ∈ Pf (N) and x,y ∈ S (H) .

We observe that, for a I ∈ Pf (N) \ {∅} , the functional 〈·, ·〉p,I ≥
〈·, ·〉q,I , provided p ≥ q ≥ 0.

Using Theorem 4, we may state the following result.

Proposition 9. Let I ∈ Pf (N) \ {∅}, x,y ∈ S (H) . Then the
functional σ (·, I,x,y) is superadditive and monotonic nondecreasing
on S+ (R) .

If I, J ∈ Pf (N) \ {∅} , with I ∩ J = ∅, for a given p ∈ S+ (R) , we
observe that

(1.72) 〈·, ·〉p,I∪J = 〈·, ·〉p,I + 〈·, ·〉p,J .

Taking into account this property and on making use of Theorem 4,
we may state the following result.
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Proposition 10. Let p ∈ S+ (R) and x,y ∈ S (H) .

(i) For any I, J ∈ Pf (N) \ {∅} , with I ∩ J = ∅, we have

(1.73) σ (p, I ∪ J,x,y) ≥ σ (p, I,x,y) + σ (p, J,x,y) (≥ 0) ,

i.e., σ (p, ·,x,y) is superadditive as an index set mapping on
Pf (N) .

(ii) If ∅ 6= J ⊆ I, I, J ∈ Pf (N) , then

(1.74) σ (p, I,x,y) ≥ σ (p, J,x,y) (≥ 0) ,

i.e., σ (p, ·,x,y) is monotonic nondecreasing as an index set
mapping on S+ (R) .

It is well known that the following Cauchy-Bunyakovsky-Schwarz
(CBS) type inequality for sequences of vectors in an inner product
space holds true:

(1.75)
∑
i∈I

pi ‖xi‖2
∑
i∈I

pi ‖yi‖2 ≥

∣∣∣∣∣∑
i∈I

pi 〈xi, yi〉

∣∣∣∣∣
2

for I ∈ Pf (N) \ {∅} , p ∈ S+ (R) and x,y ∈ S (H) .
If pi > 0 for all i ∈ I, then equality holds in (1.75) if and only if

there exists a scalar λ ∈ K such that xi = λyi, i ∈ I.
Utilising the above results for the functional σ, we may state the

following inequalities related to the (CBS)-inequality (1.75).

(1) Let αi ∈ R, xi, yi ∈ H, i ∈ {1, . . . , n} . Then one has the
inequality:

(1.76)
n∑

i=1

‖xi‖2
n∑

i=1

‖yi‖2 −

∣∣∣∣∣
n∑

i=1

〈xi, yi〉

∣∣∣∣∣
≥

(
n∑

i=1

‖xi‖2 sin2 αi

n∑
i=1

‖yi‖2 sin2 αi

) 1
2

−

∣∣∣∣∣
n∑

i=1

〈xi, yi〉 sin2 αi

∣∣∣∣∣
+

(
n∑

i=1

‖xi‖2 cos2 αi

n∑
i=1

‖yi‖2 cos2 αi

) 1
2

−

∣∣∣∣∣
n∑

i=1

〈xi, yi〉 cos2 αi

∣∣∣∣∣ ≥ 0.
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(2) Denote Sn (1) := {p ∈ S+ (R) |pi ≤ 1 for all i ∈ {1, . . . , n}} .
Then for all xi, yi ∈ H, i ∈ {1, . . . , n} , we have the bound:

(1.77)

(
n∑

i=1

‖xi‖2
n∑

i=1

‖yi‖2

) 1
2

−

∣∣∣∣∣
n∑

i=1

〈xi, yi〉

∣∣∣∣∣
= sup

p∈Sn(1)

( n∑
i=1

pi ‖xi‖2
n∑

i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
n∑

i=1

pi 〈xi, yi〉

∣∣∣∣∣
 ≥ 0.

(3) Let pi ≥ 0, xi, yi ∈ H, i ∈ {1, . . . , n} . Then we have the
inequality:

(1.78)

(
2n∑
i=1

pi ‖xi‖2
2n∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
2n∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
≥

(
n∑

k=1

p2k ‖x2k‖2
n∑

k=1

p2k ‖y2k‖2

) 1
2

−

∣∣∣∣∣
n∑

k=1

p2k 〈x2k, y2k〉

∣∣∣∣∣
+

(
n∑

k=1

p2k−1 ‖x2k−1‖2
n∑

k=1

p2k−1 ‖y2k−1‖2

) 1
2

−

∣∣∣∣∣
n∑

k=1

p2k−1 〈x2k−1, y2k−1〉

∣∣∣∣∣ (≥ 0) .

(4) We have the bound:

(1.79)

[
n∑

i=1

pi ‖xi‖2
n∑

i=1

pi ‖yi‖2

] 1
2

−

∣∣∣∣∣
n∑

i=1

pi 〈xi, yi〉

∣∣∣∣∣
= sup

∅ 6=I⊆{1,...,n}

[∑
i∈I

pi ‖xi‖2
∑
i∈I

pi ‖yi‖2

] 1
2

−

∣∣∣∣∣∑
i∈I

pi 〈xi, yi〉

∣∣∣∣∣
 ≥ 0.

(5) The sequence Sn given by

Sn :=

(
n∑

i=1

pi ‖xi‖2
n∑

i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
n∑

i=1

pi 〈xi, yi〉

∣∣∣∣∣
is nondecreasing, i.e.,

(1.80) Sk+1 ≥ Sk, k ≥ 2
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and we have the bound

(1.81) Sn ≥ max
1≤i<j≤n

{(
pi ‖xi‖2 + pj ‖xj‖2) 1

2
(
pi ‖yi‖2 + pj ‖yj‖2) 1

2

− |pi 〈xi, yi〉+ pj 〈xj, yj〉|
}
≥ 0,

for n ≥ 2 and xi, yi ∈ H, i ∈ {1, . . . , n} .

Remark 5. The results in this subsection have been obtained by
Dragomir and Mond in [1] for the particular case of scalar sequences
x and y.

1.5.2. The Case of Mapping δ. Under the assumptions of the
above subsection, we can define the following functional

δ (p, I,x,y) :=
∑
i∈I

pi ‖xi‖2
∑
i∈I

pi ‖yi‖2 −

∣∣∣∣∣∑
i∈I

pi 〈xi, yi〉

∣∣∣∣∣
2

,

where p ∈ S+ (R) , I ∈ Pf (N) \ {∅} and x,y ∈ S (H) .
Utilising Theorem 5, we may state the following results.

Proposition 11. We have

(i) For any p,q ∈ S+ (R) , I ∈ Pf (N) \ {∅} and x,y ∈ S (H) we
have

(1.82) δ (p + q, I,x,y)− δ (p, I,x,y)− δ (q, I,x,y)

≥

det


(∑

i∈I

pi ‖xi‖2

) 1
2
(∑

i∈I

pi ‖yi‖2

) 1
2

(∑
i∈I

qi ‖xi‖2

) 1
2
(∑

i∈I

qi ‖yi‖2

) 1
2




2

≥ 0.

(ii) If p ≥ q ≥ 0, then

(1.83) δ (p, I,x,y)− δ (q, I,x,y)

≥

det


(∑

i∈I

pi ‖xi‖2

) 1
2

(∑
i∈I

pi ‖yi‖2

) 1
2

(∑
i∈I

(pi − qi) ‖xi‖2

) 1
2
(∑

i∈I

(pi − qi) ‖yi‖2

) 1
2




2

≥ 0.

Proposition 12. We have
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(i) For any I, J ∈ Pf (N) , with I∩J = ∅ and p ∈ S+ (R) , x,y ∈
S (H) , we have

(1.84) δ (p, I ∪ J,x,y)− δ (p, I,x,y)− δ (p, J,x,y)

≥

det


(∑

i∈I

pi ‖xi‖2

) 1
2
(∑

i∈I

pi ‖yi‖2

) 1
2

(∑
i∈J

pi ‖xi‖2

) 1
2
(∑

i∈J

pi ‖yi‖2

) 1
2




2

≥ 0.

(ii) If ∅ 6= J ⊆ I, I 6= J, I, J ∈ Pf (N) , then we have

(1.85) δ (p, I,x,y)− δ (p, J,x,y)

≥

det


(∑

i∈I

pi ‖xi‖2

) 1
2

(∑
i∈I

pi ‖yi‖2

) 1
2

( ∑
i∈I\J

pi ‖xi‖2

) 1
2
( ∑

i∈I\J
pi ‖yi‖2

) 1
2




2

≥ 0.

The following particular instances that provide refinements for the
(CBS)-inequality may be stated as well:

∑
i∈I

‖xi‖2
∑
i∈I

‖yi‖2 −

∣∣∣∣∣∑
i∈I

〈xi, yi〉

∣∣∣∣∣
2

(1.86)

≥
∑
i∈I

‖xi‖2 sin2 αi

∑
i∈I

‖yi‖2 sin2 αi −

∣∣∣∣∣∑
i∈I

〈xi, yi〉 sin2 αi

∣∣∣∣∣
2

+
∑
i∈I

‖xi‖2 cos2 αi

∑
i∈I

‖yi‖2 cos2 αi

−

∣∣∣∣∣∑
i∈I

〈xi, yi〉 cos2 αi

∣∣∣∣∣
2

≥

det


(∑

i∈I

‖xi‖2 sin2 αi

) 1
2
(∑

i∈I

‖yi‖2 sin2 αi

) 1
2

(∑
i∈I

‖xi‖2 cos2 αi

) 1
2
(∑

i∈I

‖yi‖2 cos2 αi

) 1
2




2

≥ 0,

where xi, yi ∈ H, αi ∈ R, i ∈ I and I ∈ Pf (N) \ {∅} .
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Suppose that pi ≥ 0, xi, yi ∈ H, i ∈ {1, . . . , 2n} . Then

2n∑
i=1

pi ‖xi‖2
2n∑
i=1

pi ‖yi‖2 −

∣∣∣∣∣
2n∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

(1.87)

≥
n∑

k=1

p2k ‖x2k‖2
n∑

k=1

p2k ‖y2k‖2 −

∣∣∣∣∣
n∑

k=1

p2k 〈x2k, y2k〉

∣∣∣∣∣
2

+
n∑

k=1

p2k−1 ‖x2k−1‖2
n∑

k=1

p2k−1 ‖y2k−1‖2

−

∣∣∣∣∣
n∑

k=1

p2k−1 〈x2k−1, y2k−1〉

∣∣∣∣∣
2

≥

det


(

n∑
k=1

p2k ‖x2k‖2

) 1
2

(
n∑

k=1

p2k ‖y2k‖2

) 1
2

(
n∑

k=1

p2k−1 ‖x2k−1‖2

) 1
2
(

n∑
k=1

p2k−1 ‖y2k−1‖2

) 1
2




2

≥ 0.

Remark 6. The above results (1.82) – (1.87) have been obtained
for the case where x and y are real or complex numbers by Dragomir
and Mond [1].

Further, if we use Corollaries 2 and 1, then we can state the follow-
ing propositions as well.

Proposition 13. We have

(i) For any p,q ∈ S+ (R) , I ∈ Pf (N) \ {∅} and x,y ∈ S (H) \ {0}
we have

(1.88) δ (p + q, I,x,y)− δ (p, I,x,y)− δ (q, I,x,y)

≥ max

{∑
i∈I pi ‖xi‖2∑
i∈I qi ‖xi‖2 δ (q, I,x,y) +

∑
i∈I qi ‖xi‖2∑
i∈I pi ‖xi‖2 δ (p, I,x,y) ,

∑
i∈I pi ‖yi‖2∑
i∈I qi ‖yi‖2 δ (q, I,x,y) +

∑
i∈I qi ‖yi‖2∑
i∈I pi ‖yi‖2 δ (p, I,x,y)

}
≥ 0.
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(ii) If p ≥ q ≥ 0 and I ∈ Pf (N) \ {∅}, x,y ∈ S (H) \ {0} , then:

(1.89) δ (p, I,x,y)− δ (q, I,x,y)

≥ max

{∑
i∈I (pi − qi) ‖xi‖2∑

i∈I pi ‖xi‖2 ,

∑
i∈I (pi − qi) ‖yi‖2∑

i∈I pi ‖yi‖2

}
δ (p, I,x,y) ≥ 0.

Proposition 14. We have

(i) For any I, J ∈ Pf (N) \ {∅} , with I∩J = ∅ and p ∈ S+ (R) , x,y ∈
S (H) \ {0} , we have

(1.90) δ (p, I ∪ J,x,y)− δ (p, I,x,y)− δ (p, J,x,y)

≥ max

{∑
i∈I pi ‖xi‖2∑
j∈J pj ‖xj‖2 δ (p, J,x,y) +

∑
j∈J pj ‖xj‖2∑
i∈I pi ‖xi‖2 δ (p, I,x,y) ,

∑
i∈I pi ‖yi‖2∑
j∈J pj ‖yj‖2 δ (p, J,x,y) +

∑
j∈J pj ‖yj‖2∑
i∈I pi ‖yi‖2 δ (p, I,x,y)

}
≥ 0.

(ii) If ∅ 6= J ⊆ I, I 6= J, I, J ∈ Pf (N) \ {∅} and p ∈ S+ (R) \ {0} ,
x,y ∈ S (H) \ {0} , then

(1.91) δ (p, I,x,y)− δ (p, J,x,y)

≥ max

{∑
k∈I\J pk ‖xk‖2∑

i∈I pi ‖xi‖2 ,

∑
k∈I\J pk ‖yk‖2∑

i∈I pi ‖yi‖2

}
δ (p, J,x,y) ≥ 0.

Remark 7. The results in Proposition 13 have been obtained by
Dragomir and Mond in [2] for the case of scalar sequences x and y.

1.5.3. The Case of Mapping β. With the assumptions in the
first subsections, we can define the following functional

β (p, I,x,y) := [δ (p, I,x,y)]
1
2

=

∑
i∈I

pi ‖xi‖2
∑
i∈I

pi ‖yi‖2 −

∣∣∣∣∣∑
i∈I

pi 〈xi, yi〉

∣∣∣∣∣
2
 1

2

,

where p ∈ S+ (R) , I ∈ Pf (N) \ {∅} and x,y ∈ S (H) .
Utilising Theorem 7, we can state the following results:

Proposition 15. We have

(i) The functional β (·, I,x,y) is superadditive on S+ (R) for any
I ∈ Pf (N) \ {∅} and x,y ∈ S (H) .

(ii) The functional β (p, ·,x,y) is superadditive as an index set
mapping on Pf (N) and x,y ∈ S (H) .
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As simple consequences of the above proposition, we may state the
following refinements of the (CBS)-inequality.

(a) If x,y ∈ S (H) and αi ∈ R, i ∈ I with I ∈ Pf (N) \ {∅} , then

(1.92)

∑
i∈I

‖xi‖2
∑
i∈I

‖yi‖2 −

∣∣∣∣∣∑
i∈I

〈xi, yi〉

∣∣∣∣∣
2
 1

2

≥

∑
i∈I

‖xi‖2 sin2 αi

∑
i∈I

‖yi‖2 sin2 αi −

∣∣∣∣∣∑
i∈I

〈xi, yi〉 sin2 αi

∣∣∣∣∣
2
 1

2

+

∑
i∈I

‖xi‖2 cos2 αi

∑
i∈I

‖yi‖2 cos2 αi −

∣∣∣∣∣∑
i∈I

〈xi, yi〉 cos2 αi

∣∣∣∣∣
2
 1

2

≥ 0.

(b) If xi, yi ∈ H, pi > 0, i ∈ {1, . . . , 2n} , then

(1.93)

 2n∑
i=1

pi ‖xi‖2
2n∑
i=1

pi ‖yi‖2 −

∣∣∣∣∣
2n∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2
 1

2

≥

 n∑
k=1

p2k ‖x2k‖2
n∑

k=1

p2k ‖y2k‖2 −

∣∣∣∣∣
n∑

k=1

p2k 〈x2k, y2k〉

∣∣∣∣∣
2
 1

2

+

(
n∑

k=1

p2k−1 ‖x2k−1‖2
n∑

k=1

p2k−1 ‖y2k−1‖2

−

∣∣∣∣∣
n∑

k=1

p2k−1 〈x2k−1, y2k−1〉

∣∣∣∣∣
2
 1

2

(≥ 0) .

Remark 8. Part (i) of Proposition 15 and the inequality (1.91)
have been obtained by Dragomir and Mond in [2] for the case of scalar
sequences x and y.
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CHAPTER 2

Schwarz Related Inequalities

2.1. Introduction

Let H be a linear space over the real or complex number field K.
The functional 〈·, ·〉 : H ×H → K is called an inner product on H if it
satisfies the conditions

(i) 〈x, x〉 ≥ 0 for any x ∈ H and 〈x, x〉 = 0 iff x = 0;
(ii) 〈αx+ βy, z〉 = α 〈x, z〉+β 〈y, z〉 for any α, β ∈ K and x, y, z ∈

H;
(iii) 〈y, x〉 = 〈x, y〉 for any x, y ∈ H.
A first fundamental consequence of the properties (i)-(iii) above, is

the Schwarz inequality:

(2.1) |〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 ,

for any x, y ∈ H. The equality holds in (2.1) if and only if the vectors
x and y are linearly dependent, i.e., there exists a nonzero constant
α ∈ K so that x = αy.

If we denote ‖x‖ :=
√
〈x, x〉, x ∈ H, then one may state the follow-

ing properties

(n) ‖x‖ ≥ 0 for any x ∈ H and ‖x‖ = 0 iff x = 0;
(nn) ‖αx‖ = |α| ‖x‖ for any α ∈ K and x ∈ H;

(nnn) ‖x+ y‖ ≤ ‖x‖+‖y‖ for any x, y ∈ H (the triangle inequality);

i.e., ‖·‖ is a norm on H.
In this chapter we present some classical and recent refinements and

reverse inequalities for the Schwarz and the triangle inequalities. More
precisely, we point out upper bounds or positive lower bounds for the
nonnegative quantities

‖x‖ ‖y‖ − |〈x, y〉| , ‖x‖2 ‖y‖2 − |〈x, y〉|2

and

‖x‖+ ‖y‖ − ‖x+ y‖

under various assumptions for the vectors x, y ∈ H.
37
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If the vectors x, y ∈ H are not orthogonal, i.e., 〈x, y〉 6= 0, then
some upper and lower bounds for the supra-unitary quantities

‖x‖ ‖y‖
|〈x, y〉|

,
‖x‖2 ‖y‖2

|〈x, y〉|2

under appropriate restrictions for the vectors x and y are provided as
well.

The inequalities obtained by Buzano, Richards, Precupanu and
Moore and their extensions and generalizations for orthonormal fami-
lies of vectors in both real and complex inner product spaces are pre-
sented. Recent results concerning the classical refinement of Schwarz
inequality due to Kurepa for the complexification of real inner product
spaces are also reviewed. Various applications for integral inequalities
including a version of Heisenberg inequality for vector valued functions
in Hilbert spaces are provided as well.

2.2. Inequalities Related to Schwarz’s One

2.2.1. Some Refinements. The following result holds [15, The-
orem 1] (see also [18, Theorem 2]).

Theorem 10 (Dragomir, 1985). Let (H, 〈·, ·〉) be a real or complex
inner product space. Then

(2.2)
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

) (
‖y‖2 ‖z‖2 − |〈y, z〉|2

)
≥
∣∣〈x, z〉 ‖y‖2 − 〈x, y〉 〈y, z〉

∣∣2
for any x, y, z ∈ H.

Proof. We follow the proof in [15].
Let us consider the mapping

py : H ×H → K, py (x, z) = 〈x, z〉 ‖y‖2 − 〈x, y〉 〈y, z〉
for each y ∈ H\ {0} .

It is easy to see that py (·, ·) is a nonnegative Hermitian form and
then on writing Schwarz’s inequality

|py (x, z)|2 ≤ py (x, x) py (z, z) , x, z ∈ H
we obtain the desired inequality (2.2).

Remark 9. From (2.2) it follows that [15, Corollary 1] (see also
[18, Corollary 2.1])

(2.3)
(
‖x+ z‖2 ‖y‖2 − |〈x+ z, y〉|2

) 1
2

≤
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

) 1
2 +

(
‖y‖2 ‖z‖2 − |〈y, z〉|2

) 1
2
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for every x, y, z ∈ H.
Putting z = λy in (2.3), we get:

0 ≤ ‖x+ λy‖2 ‖y‖2 − |〈x+ λy, y〉|2(2.4)

≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2

and, in particular,

(2.5) 0 ≤ ‖x± y‖2 ‖y‖2 − |〈x± y, y〉|2 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2

for every x, y ∈ H.

Both inequalities (2.4) and (2.5) have been obtained in [15].
We note here that the inequality (2.4) is in fact equivalent to the

following statement

(2.6) sup
λ∈K

[
‖x+ λy‖2 ‖y‖2 − |〈x+ λy, y〉|2

]
= ‖x‖2 ‖y‖2 − |〈x, y〉|2

for each x, y ∈ H.
The following corollary may be stated [15, Corollary 2] (see also

[18, Corollary 2.2]):

Corollary 3 (Dragomir, 1985). For any x, y, z ∈ H\ {0} we have
the inequality

(2.7)

∣∣∣∣ 〈x, y〉‖x‖ ‖y‖

∣∣∣∣2+∣∣∣∣ 〈y, z〉‖y‖ ‖z‖

∣∣∣∣2+∣∣∣∣ 〈z, x〉‖z‖ ‖x‖

∣∣∣∣2 ≤ 1+2

∣∣∣∣〈x, y〉 〈y, z〉 〈z, x〉‖x‖2 ‖y‖2 ‖z‖2

∣∣∣∣ .
Proof. By the modulus properties we obviously have∣∣〈x, z〉 ‖y‖2 − 〈x, y〉 〈y, z〉

∣∣ ≥ ∣∣|〈x, z〉| ‖y‖2 − |〈x, y〉| |〈y, z〉|
∣∣ .

Therefore, by (2.2) we may state that(
‖x‖2 ‖y‖2 − |〈x, y〉|2

) (
‖y‖2 ‖z‖2 − |〈y, z〉|2

)
≥ |〈x, z〉|2 ‖y‖4 − 2 |〈x, y〉 〈y, z〉 〈z, x〉| ‖y‖2 + |〈x, y〉|2 |〈y, z〉|2 ,

which, upon elementary calculation, is equivalent to (2.7).

Remark 10. If we utilise the elementary inequality a2 + b2 + c2 ≥
3abc when a, b, c ≥ 0, then one can state the following inequality

(2.8) 3

∣∣∣∣〈x, y〉 〈y, z〉 〈z, x〉‖x‖2 ‖y‖2 ‖z‖2

∣∣∣∣ ≤ ∣∣∣∣ 〈x, y〉‖x‖ ‖y‖

∣∣∣∣2 +

∣∣∣∣ 〈y, z〉‖y‖ ‖z‖

∣∣∣∣2 +

∣∣∣∣ 〈z, x〉‖z‖ ‖x‖

∣∣∣∣2
for any x, y, z ∈ H\ {0} . Therefore, the inequality (2.7) may be re-
garded as a reverse inequality of (2.8).

The following refinement of the Schwarz inequality holds [15, The-
orem 2] (see also [18, Corollary 1.1]):
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Theorem 11 (Dragomir, 1985). For any x, y ∈ H and e ∈ H with
‖e‖ = 1, the following refinement of the Schwarz inequality holds:

(2.9) ‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| .

Proof. We follow the proof in [15].
Applying the inequality (2.2), we can state that

(2.10)
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|2 .

Utilising the elementary inequality for real numbers

(2.11)
(
m2 − n2

) (
p2 − q2

)
≤ (mp− nq)2 ,

we can easily see that

(2.12) (‖x‖ ‖y‖ − |〈x, e〉 〈e, y〉|)2

≥
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
for any x, y, e ∈ H with ‖e‖ = 1.

Since, by Schwarz’s inequality

(2.13) ‖x‖ ‖y‖ ≥ |〈x, e〉 〈e, y〉|
hence, by (2.10) and (2.12) we deduce the first part of (2.10).

The second part of (2.10) is obvious.

Corollary 4 (Dragomir, 1985). If x, y, e ∈ H are such that ‖e‖ =
1 and x ⊥ y, then

(2.14) ‖x‖ ‖y‖ ≥ 2 |〈x, e〉 〈e, y〉| .

Remark 11. Assume that A : H → H is a bounded linear operator
on H. For x, e ∈ H with ‖x‖ = ‖e‖ = 1, we have by (2.9) that

(2.15) ‖Ay‖ ≥ |〈x,Ay〉 − 〈x, e〉 〈e, Ay〉|+ |〈x, e〉 〈e, Ay〉| ≥ |〈x,Ay〉|
for any y ∈ H.

Taking the supremum over x ∈ H, ‖x‖ = 1 in (2.15) and noting
that ‖Ay‖ = sup

‖x‖=1

|〈x,Ay〉| , we deduce the representation

(2.16) ‖Ay‖ = sup
‖x‖=1

{|〈x,Ay〉 − 〈x, e〉 〈e, Ay〉|+ |〈x, e〉 〈e, Ay〉|}

for any y ∈ H. Finally, on taking the supremum over y ∈ H, ‖y‖ = 1
in (2.16) we get

(2.17) ‖A‖ = sup
‖y‖=1,‖x‖=1

{|〈x,Ay〉 − 〈x, e〉 〈e, Ay〉|+ |〈x, e〉 〈e, Ay〉|}

for any e ∈ H, ‖e‖ = 1, a representation that has been obtained in [15,
Eq. 9].
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Remark 12. Let (H; 〈·, ·〉) be a Hilbert space. Then for any contin-
uous linear functional f : H → K, f 6= 0, there exists, by the Riesz rep-
resentation theorem a unique vector e ∈ H\ {0} such that f (x) = 〈x, e〉
for x ∈ H and ‖f‖ = ‖e‖ .

If E is a nonzero linear subspace of H and if we denote by E⊥ its
orthogonal complement, i.e., we recall that E⊥ := {y ∈ H|y ⊥ x} then
for any x ∈ E and y ∈ E⊥, by (2.14) we may state that

‖x‖ ‖y‖ ≥ 2

∣∣∣∣〈x, e

‖x‖

〉〈
y,

e

‖y‖

〉∣∣∣∣ ,
giving, for x, y 6= 0, that

(2.18) ‖f‖2 ≥ 2 |〈x, e〉 〈y, e〉| = 2 |f (x)| |f (y)|

for any x ∈ E and y ∈ E⊥.
If by ‖f‖E we denote the norm of the functional f restricted to E,

i.e., ‖f‖E = supx∈E\{0}
|f(x)|
‖x‖ , then, on taking the supremum over x ∈ E

and y ∈ E⊥ in (2.18) we deduce

(2.19) ‖f‖2 ≥ 2 ‖f‖E · ‖f‖E⊥

for any E a nonzero linear subspace of the Hilbert space H and a given
functional f ∈ H∗\ {0} .

We note that the inequality (2.19) has been obtained in [15, Eq.
10].

2.2.2. A Conditional Inequality. The following result provid-
ing a lower bound for the norm product under suitable conditions holds
[19] (see also [18, Theorem 1]):

Theorem 12 (Dragomir-Sándor, 1986). Let x, y, a, b ∈ H, where
(H; 〈·, ·〉) is an inner product space, be such that

(2.20) ‖a‖2 ≤ 2 Re 〈x, a〉 and ‖y‖2 ≤ 2 Re 〈y, b〉

holds true. Then

(2.21) ‖x‖ ‖y‖ ≥
(
2 Re 〈x, a〉 − ‖a‖2) 1

2
(
2 Re 〈y, b〉 − ‖b‖2) 1

2

+ |〈x, y〉 − 〈x, b〉 − 〈a, y〉+ 〈a, b〉| .

Proof. We follow the proof in [19].
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Observe that

|〈x, y〉 − 〈x, b〉 − 〈a, y〉+ 〈a, b〉|(2.22)

= |〈x− a, y − b〉|2

≤ ‖x− a‖2 ‖y − b‖2

=
[
‖x‖2 −

(
2 Re 〈x, a〉 − ‖a‖2)] [‖y‖2 −

(
2 Re 〈y, b〉 − ‖b‖2)] .

Applying the elementary inequality (2.11) we have

(2.23)

{
‖x‖2 −

[(
2 Re 〈x, a〉 − ‖a‖2) 1

2

]2}
×
{
‖y‖2 −

[(
2 Re 〈y, b〉 − ‖b‖2) 1

2

]2}
≤
[
‖x‖ ‖y‖ −

(
2 Re 〈x, a〉 − ‖a‖2) 1

2
(
2 Re 〈y, b〉 − ‖b‖2) 1

2

]
.

Since

0 ≤
(
2 Re 〈x, a〉 − ‖a‖2) 1

2 ≤ ‖x‖ and

0 ≤
(
2 Re 〈y, b〉 − ‖b‖2) 1

2 ≤ ‖y‖
hence

‖x‖ ‖y‖ ≥
(
2 Re 〈x, a〉 − ‖a‖2) 1

2
(
2 Re 〈y, b〉 − ‖b‖2) 1

2

and by (2.22) and (2.23) we deduce the desired result (2.21).

Remark 13. As pointed out in [19], if we consider a = 〈x, e〉 e,
b = 〈y, e〉 e with e ∈ H, ‖e‖ = 1, then the condition (2.20) is obviously
satisfied and the inequality (2.21) becomes

‖x‖ ‖y‖ ≥ |〈x, e〉 〈e, y〉|+ |〈x, y〉 − 〈x, e〉 〈e, y〉|(2.24)

( ≥ |〈x, y〉|),
which is the refinement of the Schwarz inequality incorporated in (2.9).

For vectors located in a closed ball centered at 0 and of radius
√

2,
one can state the following corollary as well [18, Corollary 1.2].

Corollary 5. Let x, y ∈ H such that ‖x‖ , ‖y‖ ≤
√

2. Then

(2.25) ‖x‖ ‖y‖ ≥ |〈x, y〉|2
(
2− ‖x‖2) 1

2
(
2− ‖y‖2) 1

2

+ |〈x, y〉|
∣∣1− ‖x‖2 − ‖y‖2 + |〈x, y〉|2

∣∣ .
Proof. Follows by Theorem 12 on choosing a = 〈x, y〉 y, b =

〈y, x〉x. We omit the details.
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2.2.3. A Refinement for Orthonormal Families. The follow-
ing result provides a generalisation for a refinement of the Schwarz
inequality incorporated in (2.9) [15, Theorem 3] (see also [8, Theorem]
or [18, Theorem 3]):

Theorem 13 (Dragomir, 1985). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K and {ei}i∈I an orthonor-
mal family in I. For any F a nonempty finite part of I we have the
following refinement of Schwarz’s inequality:

‖x‖ ‖y‖ ≥

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+∑
i∈F

|〈x, ei〉 〈ei, y〉|(2.26)

≥

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+
∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
≥ |〈x, y〉| ,

where x, y ∈ H.

Proof. We follow the proof in [15].
We apply the Schwarz inequality to obtain

(2.27)

∣∣∣∣∣
〈
x−

∑
i∈F

〈x, ei〉 ei, y −
∑
i∈F

〈y, ei〉 ei

〉∣∣∣∣∣
2

≤

∥∥∥∥∥x−∑
i∈F

〈x, ei〉 ei

∥∥∥∥∥
2 ∥∥∥∥∥y −∑

i∈F

〈y, ei〉 ei

∥∥∥∥∥
2

.

Since a simple calculation with orthonormal vectors shows that∥∥∥∥∥x−∑
i∈F

〈x, ei〉 ei

∥∥∥∥∥
2

= ‖x‖2 −
∑
i∈F

|〈x, ei〉|2 ,∥∥∥∥∥y −∑
i∈F

〈y, ei〉 ei

∥∥∥∥∥
2

= ‖y‖2 −
∑
i∈F

|〈y, ei〉|2 ,

and〈
x−

∑
i∈F

〈x, ei〉 ei, y −
∑
i∈F

〈y, ei〉 ei

〉
= 〈x, y〉 −

∑
i∈F

〈x, ei〉 〈ei, y〉 ,
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hence (2.27) is equivalent to

(2.28)

∣∣∣∣∣〈x, y〉 −∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
2

≤

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
)(

‖y‖2 −
∑
i∈F

|〈y, ei〉|2
)

for any x, y ∈ H.
Further, we need the following Aczél type inequality

(2.29)

(
α2 −

∑
i∈F

α2
i

)(
β2 −

∑
i∈F

β2
i

)
≤

(
αβ −

∑
i∈F

αiβi

)2

,

provided that α2 ≥
∑

i∈F α
2
i and β2 ≥

∑
i∈F β

2
i , where α, β, αi, βi ∈ R,

i ∈ F.
For an Aczél inequality that holds under slightly weaker conditions

and a different proof based on polynomials, see [26, p. 57].
For the sake of completeness, we give here a direct proof of (2.29).
Utilising the elementary inequality (2.11), we can write

(2.30)

α2 −

(∑
i∈F

α2
i

) 1
2

2β2 −

(∑
i∈F

β2
i

) 1
2

2
≤

|αβ| −(∑
i∈F

α2
i

) 1
2
(∑

i∈F

β2
i

) 1
2

2

.

Since |α| ≥
(∑

i∈F α
2
i

) 1
2 and |β| ≥

(∑
i∈F β

2
i

) 1
2 , then

|αβ| ≥

(∑
i∈F

α2
i

) 1
2
(∑

i∈F

β2
i

) 1
2

.
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Therefore, by the Cauchy-Bunyakovsky-Schwarz inequality, we have
that∣∣∣∣∣∣|αβ| −

(∑
i∈F

α2
i

) 1
2
(∑

i∈F

β2
i

) 1
2

∣∣∣∣∣∣ = |αβ| −

(∑
i∈F

α2
i

) 1
2
(∑

i∈F

β2
i

) 1
2

≤ |αβ| −

∣∣∣∣∣∑
i∈F

αiβi

∣∣∣∣∣
=

∣∣∣∣∣|αβ| −
∣∣∣∣∣∑
i∈F

αiβi

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣αβ −∑
i∈F

αiβi

∣∣∣∣∣ ,
showing that

(2.31)

|αβ| −(∑
i∈F

α2
i

) 1
2
(∑

i∈F

β2
i

) 1
2

2

≤

(
αβ −

∑
i∈F

αiβi

)2

and then, by (2.30) and (2.31) we deduce the desired result (2.29).
By Bessel’s inequality we obviously have that

‖x‖2 ≥
∑
i∈F

|〈x, ei〉|2 and ‖y‖2 ≥
∑
i∈F

|〈y, ei〉|2 ,

therefore, on applying the inequality (2.29) we deduce that

(2.32)

(
‖x‖2 −

∑
i∈F

|〈x, ei〉|2
)(

‖y‖2 −
∑
i∈F

|〈y, ei〉|2
)

≤

(
‖x‖ ‖y‖ −

∑
i∈F

|〈x, ei〉 〈ei, y〉|

)2

.

Since ‖x‖ ‖y‖−
∑

i∈F |〈x, ei〉 〈ei, y〉| ≥ 0, hence by (2.28) and (2.32) we
deduce the first part of (2.26).

The second and third parts are obvious.

When the vectors are orthogonal, the following result may be stated
[8] (see also [18, Corollary 3.1]).
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Corollary 6. If {ei}i∈I is an orthonormal family in (H, 〈·, ·〉) and
x, y ∈ H with x ⊥ y, then we have the inequality:

‖x‖ ‖y‖ ≥

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+∑
i∈F

|〈x, ei〉 〈ei, y〉|(2.33)

≥ 2

∣∣∣∣∣∑
i∈F

〈x, ei〉 〈ei, y〉

∣∣∣∣∣ ,
for any nonempty finite part of I.

2.3. Kurepa Type Refinements for the Schwarz Inequality

2.3.1. Kurepa’s Inequality. In 1960, N.G. de Bruijn proved the
following refinement of the celebrated Cauchy-Bunyakovsky-Schwarz
(CBS) inequality for a sequence of real numbers and the second of
complex numbers, see [2] or [9, p. 48]:

Theorem 14 (de Bruijn, 1960). Let (a1, . . . , an) be an n−tuple of
real numbers and (z1, . . . , zn) an n−tuple of complex numbers. Then∣∣∣∣∣

n∑
k=1

akzk

∣∣∣∣∣
2

≤ 1

2

n∑
k=1

a2
k

[
n∑

k=1

|zk|2 +

∣∣∣∣∣
n∑

k=1

z2
k

∣∣∣∣∣
]

(2.34) (
≤

n∑
k=1

a2
k ·

n∑
k=1

|zk|2
)
.

Equality holds in (2.34) if and only if, for k ∈ {1, . . . , n} , ak =
Re (λzk) , where λ is a complex number such that λ2∑n

k=1 z
2
n is a non-

negative real number.

In 1966, in an effort to extend this result to inner products, Kurepa
[25] obtained the following refinement for the complexification of a real
inner product space (H; 〈·, ·〉) :

Theorem 15 (Kurepa, 1966). Let (H; 〈·, ·〉) be a real inner product
space and (HC, 〈·, ·〉C) its complexification. For any a ∈ H and z ∈ HC
we have the inequality:

|〈z, a〉C|
2 ≤ 1

2
‖a‖2 [‖z‖2

C + |〈z, z̄〉C|
]

(2.35) (
≤ ‖a‖2 ‖z‖2

C
)
.

To be comprehensive, we define in the following the concept of
complexification for a real inner product space.

Let H be a real inner product space with the scalar product 〈·, ·〉
and the norm ‖·‖ . The complexification HC ofH is defined as a complex
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linear space H ×H of all ordered pairs (x, y) (x, y ∈ H) endowed with
the operations

(x, y) + (x′, y′) := (x+ x′, y + y′) , x, x′, y, y′ ∈ H;

(σ + iτ) · (x, y) := (σx− τy, τx+ σy) , x, y ∈ H and σ, τ ∈ R.

On HC one can canonically consider the scalar product 〈·, ·〉C defined
by:

〈z, z′〉C := 〈x, x′〉+ 〈y, y′〉+ i [〈y, x′〉 − 〈x, y′〉]
where z = (x, y) , z′ = (x′, y′) ∈ HC. Obviously,

‖z‖2
C = ‖x‖2 + ‖y‖2 ,

where z = (x, y) .
The conjugate of a vector z = (x, y) ∈ HC is defined by z̄ :=

(x,−y) .
It is easy to see that the elements of HC under defined operations

behave as formal “complex” combinations x+iy with x, y ∈ H. Because
of this, we may write z = x+ iy instead of z = (x, y) . Thus, z̄ = x− iy.

2.3.2. A Generalisation of Kurepa’s Inequality. The follow-
ing lemma is of interest [6].

Lemma 2. Let f : [0, 2π] → R given by

(2.36) f (α) = λ sin2 α+ 2β sinα cosα+ α cos2 α,

where λ, β, γ ∈ R. Then

(2.37) sup
α∈[0,2π]

f (α) =
1

2
(λ+ γ) +

1

2

[
(γ − λ)2 + 4β2

] 1
2 .

Proof. Since

sin2 α =
1− cos 2α

2
, cos2 α =

1 + cos 2α

2
, 2 sinα cosα = sin 2α,

hence f may be written as

(2.38) f (α) =
1

2
(λ+ γ) +

1

2
(γ − λ) cos 2α+ β sin 2α.

If β = 0, then (2.38) becomes

f (α) =
1

2
(λ+ γ) +

1

2
(γ − λ) cos 2α.

Obviously, in this case

sup
α∈[0,2π]

f (α) =
1

2
(λ+ γ) +

1

2
|γ − λ| = max {γ, λ} .
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If β 6= 0, then (2.38) becomes

f (α) =
1

2
(λ+ γ) + β

[
sin 2α+

(γ − λ)

β
cos 2α

]
.

Let ϕ ∈
(
−π

2
, π

2

)
for which tanϕ = γ−λ

2β
. Then f can be written as

f (α) =
1

2
(λ+ γ) +

β

cosϕ
sin (2α+ ϕ) .

For this function, obviously

(2.39) sup
α∈[0,2π]

f (α) =
1

2
(λ+ γ) +

|β|
|cosϕ|

.

Since
sin2 ϕ

cos2 ϕ
=

(γ − λ)2

4β2 ,

hence,

1

|cosϕ|
=

[
(γ − λ)2 + 4β2

] 1
2

2 |β|
,

and from (2.39) we deduce the desired result (2.37).

The following result holds [6].

Theorem 16 (Dragomir, 2004). Let (H; 〈·, ·〉) be a complex inner
product space. If x, y, z ∈ H are such that

(2.40) Im 〈x, z〉 = Im 〈y, z〉 = 0,

then we have the inequality:

Re2 〈x, z〉+ Re2 〈y, z〉(2.41)

= |〈x+ iy, z〉|2

≤ 1

2

{
‖x‖2 + ‖y‖2 +

[(
‖x‖2 − ‖y‖2)2 − 4 Re2 〈x, y〉

] 1
2

}
‖z‖2

≤
(
‖x‖2 + ‖y‖2) ‖z‖2 .

Proof. Obviously, by (2.40), we have

〈x+ iy, z〉 = Re 〈x, z〉+ iRe 〈y, z〉

and the first part of (2.41) holds true.
Now, let ϕ ∈ [0, 2π] be such that 〈x+ iy, z〉 = eiϕ |〈x+ iy, z〉| .

Then

|〈x+ iy, z〉| = e−iϕ 〈x+ iy, z〉 =
〈
e−iϕ (x+ iy) , z

〉
.
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Utilising the above identity, we can write:

|〈x+ iy, z〉| = Re
〈
e−iϕ (x+ iy) , z

〉
= Re 〈(cosϕ− i sinϕ) (x+ iy) , z〉
= Re 〈cosϕ · x+ sinϕ · y − i sinϕ · x+ i cosϕ · y, z〉
= Re 〈cosϕ · x+ sinϕ · y, z〉+ Im 〈sinϕ · x− cosϕ · y, z〉
= Re 〈cosϕ · x+ sinϕ · y, z〉+ sinϕ Im 〈x, z〉 − cosϕ Im 〈y, z〉
= Re 〈cosϕ · x+ sinϕ · y, z〉 ,

and for the last equality we have used the assumption (2.40).
Taking the square and using the Schwarz inequality for the inner

product 〈·, ·〉 , we have

|〈x+ iy, z〉|2 = [Re 〈cosϕ · x+ sinϕ · y, z〉]2(2.42)

≤ ‖cosϕ · x+ sinϕ · y‖2 ‖z‖2 .

On making use of Lemma 2, we have

sup
α∈[0,2π]

‖cosϕ · x+ sinϕ · y‖2

= sup
α∈[0,2π]

[
‖x‖2 cos2 ϕ+ 2 Re 〈x, y〉 sinϕ cosϕ+ ‖y‖2 sin 2ϕ

]
=

1

2

{
‖x‖2 + ‖y‖2 +

[(
‖x‖2 − ‖y‖2)2 + 4 Re2 〈x, y〉

] 1
2

}
and the first inequality in (2.41) is proved.

Observe that(
‖x‖2 − ‖y‖2)2 + 4 Re2 〈x, y〉

=
(
‖x‖2 + ‖y‖2)2 − 4

[
‖x‖2 ‖y‖2 − Re2 〈x, y〉

]
≤
(
‖x‖2 + ‖y‖2)2

and the last part of (2.41) is proved.

Remark 14. Observe that if (H, 〈·, ·〉) is a real inner product space,
then for any x, y, z ∈ H one has:

〈x, z〉2 + 〈y, z〉2(2.43)

≤ 1

2

{
‖x‖2 + ‖y‖2 +

[(
‖x‖2 − ‖y‖2)2 + 4 〈x, y〉2

]} 1
2 ‖z‖2

≤
(
‖x‖2 + ‖y‖2) ‖z‖2 .
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Remark 15. If H is a real space, 〈·, ·〉 the real inner product, HC
its complexification and 〈·, ·〉C the corresponding complexification for
〈·, ·〉, then for x, y ∈ H and w := x+ iy ∈ HC and for e ∈ H we have

Im 〈x, e〉C = Im 〈y, e〉C = 0,

‖w‖2
C = ‖x‖2 + ‖y‖2 , |〈w, w̄〉C| =

(
‖x‖2 − ‖y‖2)2 + 4 〈x, y〉2 ,

where w̄ = x− iy ∈ HC.
Applying Theorem 16 for the complex space HC and complex inner

product 〈·, ·〉C , we deduce

(2.44) |〈w, e〉C|
2 ≤ 1

2
‖e‖2 [‖w‖2

C + |〈w, w̄〉C|
]
≤ ‖e‖2 ‖w‖2

C ,

which is Kurepa’s inequality (2.35).

Corollary 7. Let x, y, z be as in Theorem 16. In addition, if
Re 〈x, y〉 = 0, then

(2.45)
[
Re2 〈x, z〉+ Re2 〈y, z〉

] 1
2 ≤ ‖z‖ ·max {‖x‖ , ‖y‖} .

Remark 16. If H is a real space and 〈·, ·〉 a real inner product on
H, then for any x, y, z ∈ H with 〈x, y〉 = 0 we have

(2.46)
[
〈x, z〉2 + 〈y, z〉2

] 1
2 ≤ ‖z‖ ·max {‖x‖ , ‖y‖} .

2.3.3. A Related Result. Utilising Lemma 2, we may state and
prove the following result as well.

Theorem 17 (Dragomir, 2004). Let (H, 〈·, ·〉) be a real or complex
inner product space. Then we have the inequalities:

1

2

{
|〈v, t〉|2 + |〈w, t〉|2 +

[(
|〈v, t〉|2 − |〈w, t〉|2

)2
(2.47)

+ 4 (Re 〈v, t〉Re 〈w, t〉+ Im 〈v, t〉 Im 〈w, t〉)2] 1
2

}
≤ 1

2
‖t‖2

{
‖v‖2 + ‖w‖2 +

[(
‖v‖2 − ‖w‖2)2 + 4 Re2 (v, w)

] 1
2

}
≤
(
‖v‖2 + ‖w‖2) ‖t‖2 ,

for all v, w, t ∈ H.

Proof. Observe that, by Schwarz’s inequality

(2.48) |(cosϕ · v + sinϕ · w, z)|2 ≤ ‖cosϕ · v + sinϕ · w‖2 ‖z‖2

for any ϕ ∈ [0, 2π] .
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Since

I (ϕ) := ‖cosϕ · v + sinϕ · w‖2

= cos2 ϕ ‖v‖2 + 2 Re (v, w) sinϕ cosϕ+ ‖w‖2 sin2 ϕ,

hence, as in Theorem 16,

sup
ϕ∈[0,2π]

I (ϕ) =
1

2

{
‖v‖2 + ‖w‖2 +

[(
‖v‖2 − ‖w‖2)2 + 4 Re2 (v, w)

] 1
2

}
.

Also, denoting

J (ϕ) := |cosϕ 〈v, z〉+ sinϕ 〈w, z〉|

= cos2 ϕ |〈v, z〉|2 + 2 sinϕ cosϕRe
[
〈v, z〉 〈w, z〉

]
+ sin2 ϕ |〈w, z〉|2 ,

then, on applying Lemma 2, we deduce that

sup
ϕ∈[0,2π]

J (ϕ) =
1

2

{
|〈v, t〉|2 + |〈w, t〉|2

+
[(
|〈v, t〉|2 − |〈w, t〉|2

)2
+ 4 Re2

[
〈v, z〉 〈w, z〉

]] 1
2

}
and, since

Re
[
〈v, z〉 〈w, z〉

]
= Re 〈v, t〉Re 〈w, t〉+ Im 〈v, t〉 Im 〈w, t〉 ,

hence, on taking the supremum in the inequality (2.48), we deduce the
desired inequality (2.47).

Remark 17. In the real case, (2.47) provides the same inequality
we obtained in (2.43).

In the complex case, if we assume that v, w, t ∈ H are such that

Re 〈v, t〉Re 〈w, t〉 = − Im 〈v, t〉 Im 〈w, t〉 ,
then (2.47) becomes:

(2.49) max
{
|〈v, t〉|2 , |〈w, t〉|2

}
≤ 1

2
‖t‖2

{
‖v‖2 + ‖w‖2 +

[(
‖v‖2 − ‖w‖2)2 + 4 Re2 (v, w)

] 1
2

}
.

2.4. Refinements of Buzano’s and Kurepa’s Inequalities

2.4.1. Introduction. In [3], M.L. Buzano obtained the following
extension of the celebrated Schwarz’s inequality in a real or complex
inner product space (H; 〈·, ·〉) :

(2.50) |〈a, x〉 〈x, b〉| ≤ 1

2
[‖a‖ · ‖b‖+ |〈a, b〉|] ‖x‖2 ,
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for any a, b, x ∈ H.
It is clear that for a = b, the above inequality becomes the standard

Schwarz inequality

(2.51) |〈a, x〉|2 ≤ ‖a‖2 ‖x‖2 , a, x ∈ H;

with equality if and only if there exists a scalar λ ∈ K (K = R or C)
such that x = λa.

As noted by M. Fujii and F. Kubo in [21], where they provided
a simple proof of (2.50) by utilising orthogonal projection arguments,
the case of equality holds in (2.50) if

x =


α
(

a
‖a‖ + 〈a,b〉

|〈a,b〉| ·
b
‖b‖

)
, when 〈a, b〉 6= 0

α
(

a
‖a‖ + β · b

‖b‖

)
, when 〈a, b〉 = 0,

where α, β ∈ K.
It might be useful to observe that, out of (2.50), one may get the

following discrete inequality:

(2.52)

∣∣∣∣∣
n∑

i=1

piaixi

n∑
i=1

pixibi

∣∣∣∣∣
≤ 1

2

( n∑
i=1

pi |ai|2
n∑

i=1

pi |bi|2
) 1

2

+

∣∣∣∣∣
n∑

i=1

piaibi

∣∣∣∣∣
 n∑

i=1

pi |xi|2 ,

where pi ≥ 0, ai, xi, bi ∈ C, i ∈ {1, . . . , n} .
If one takes in (2.52) bi = ai for i ∈ {1, . . . , n} , then one obtains

(2.53)∣∣∣∣∣
n∑

i=1

piaixi

n∑
i=1

piaixi

∣∣∣∣∣ ≤ 1

2

[
n∑

i=1

pi |ai|2 +

∣∣∣∣∣
n∑

i=1

pia
2
i

∣∣∣∣∣
]

n∑
i=1

pi |xi|2 ,

for any pi ≥ 0, ai, xi, bi ∈ C, i ∈ {1, . . . , n} .
Note that, if xi, i ∈ {1, . . . , n} are real numbers, then out of (2.53),

we may deduce the de Bruijn refinement of the celebrated Cauchy-
Bunyakovsky-Schwarz inequality [2]

(2.54)

∣∣∣∣∣
n∑

i=1

pixizi

∣∣∣∣∣
2

≤ 1

2

n∑
i=1

pix
2
i

[
n∑

i=1

pi |zi|2 +

∣∣∣∣∣
n∑

i=1

piz
2
i

∣∣∣∣∣
]
,

where zi ∈ C, i ∈ {1, . . . , n} . In this way, Buzano’s result may be
regarded as a generalisation of de Bruijn’s inequality.

Similar comments obviously apply for integrals, but, for the sake of
brevity we do not mention them here.
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The aim of the present section is to establish some related results
as well as a refinement of Buzano’s inequality for real or complex inner
product spaces. An improvement of Kurepa’s inequality for the com-
plexification of a real inner product and the corresponding applications
for discrete and integral inequalities are also provided.

2.4.2. Some Buzano Type Inequalities. The following result
may be stated [16].

Theorem 18 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K. For all α ∈ K\ {0} and
x, a, b ∈ H, α 6= 0, one has the inequality

(2.55)

∣∣∣∣〈a, x〉 〈x, b〉‖x‖2 − 〈a, b〉
α

∣∣∣∣
≤ ‖b‖
|α| ‖x‖

[
|α− 1|2 |〈a, x〉|2 + ‖x‖2 ‖a‖2 − |〈a, x〉|2

]
.

The case of equality holds in (2.55) if and only if there exists a scalar
λ ∈ K so that

(2.56) α · 〈a, x〉
‖x‖2 x = a+ λb.

Proof. We follow the proof in [16].
Using Schwarz’s inequality, we have that

(2.57)

∣∣∣∣〈α · 〈a, x〉‖x‖2 x− a, b

〉∣∣∣∣2 ≤ ∥∥∥∥α · 〈a, x〉‖x‖2 x− a

∥∥∥∥2

‖b‖2

and since∥∥∥∥α · 〈a, x〉‖x‖2 x− a

∥∥∥∥2

= |α|2 |〈a, x〉|
2

‖x‖2 − 2
|〈a, x〉|2

‖x‖2 Reα+ ‖a‖2

=
|α− 1|2 |〈a, x〉|2 + ‖x‖2 ‖a‖2 − |〈a, x〉|2

‖x‖2

and 〈
α · 〈a, x〉

‖x‖2 x− a, b

〉
= α

[
〈a, x〉 〈x, b〉

‖x‖2 − 〈a, b〉
α

]
,

hence by (2.55) we deduce the desired inequality (2.55).
The case of equality is obvious from the above considerations related

to the Schwarz’s inequality (2.51).
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Remark 18. Using the continuity property of the modulus, i.e.,
||z| − |u|| ≤ |z − u| , z, u ∈ K, we have:

(2.58)

∣∣∣∣ |〈a, x〉 〈x, b〉|‖x‖2 − |〈a, b〉|
|α|

∣∣∣∣ ≤ ∣∣∣∣〈a, x〉 〈x, b〉‖x‖2 − 〈a, b〉
α

∣∣∣∣ .
Therefore, by (2.55) and (2.58), one may deduce the following double
inequality:

1

|α|

[
|〈a, b〉| − ‖b‖

‖x‖
(2.59)

×
[(
|α− 1|2 |〈x, a〉|2 + ‖x‖2 ‖a‖2 − |〈a, x〉|2

) 1
2

]]
≤ |〈a, x〉 〈x, b〉|

‖x‖2

≤ 1

|α|

[
|〈a, b〉|+ ‖b‖

‖x‖

]
×
[(
|α− 1|2 |〈x, a〉|2 + ‖x‖2 ‖a‖2 − |〈x, a〉|2

) 1
2

]
,

for each α ∈ K\ {0} , a, b, x ∈ H and x 6= 0.

It is obvious that, out of (2.55), we can obtain various particular
inequalities. We mention in the following a class of these which is
related to Buzano’s result (2.50) [16].

Corollary 8 (Dragomir, 2004). Let a, b, x ∈ H, x 6= 0 and η ∈ K
with |η| = 1, Re η 6= −1. Then we have the inequality:

(2.60)

∣∣∣∣〈a, x〉 〈x, b〉‖x‖2 − 〈a, b〉
1 + η

∣∣∣∣ ≤ ‖a‖ ‖b‖√
2
√

1 + Re η
,

and, in particular, for η = 1, the inequality:

(2.61)

∣∣∣∣〈a, x〉 〈x, b〉‖x‖2 − 〈a, b〉
2

∣∣∣∣ ≤ ‖a‖ ‖b‖
2

.

Proof. It follows by Theorem 18 on choosing α = 1 + η and we
omit the details.

Remark 19. Using the continuity property of modulus, we get from
(2.60) that:

|〈a, x〉 〈x, b〉|
‖x‖2 ≤ |〈a, b〉|+ ‖a‖ ‖b‖√

2
√

1 + Re η
, |η| = 1, Re η 6= −1,

which provides, as the best possible inequality, the above result due to
Buzano (2.50).
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Remark 20. If the space is real, then the inequality (2.55) is obvi-
ously equivalent to:

〈a, b〉
α

− ‖b‖
|α| ‖x‖

[
(α− 1)2 〈a, x〉2 + ‖x‖2 ‖a‖2 − 〈a, x〉2

] 1
2(2.62)

≤ 〈a, x〉 〈x, b〉
‖x‖2

≤ 〈a, b〉
α

+
‖b‖

|α| ‖x‖
[
(α− 1)2 〈a, x〉2 + ‖x‖2 ‖a‖2 − 〈a, x〉2

] 1
2

for any α ∈ R\ {0} and a, b, x ∈ H, x 6= 0.
If in (2.62) we take α = 2, then we get

1

2
[〈a, b〉 − ‖a‖ ‖b‖] ‖x‖2 ≤ 〈a, x〉 〈x, b〉(2.63)

≤ 1

2
[〈a, b〉+ ‖a‖ ‖y‖] ‖x‖2 ,

which apparently, as mentioned by T. Precupanu in [29], has been ob-
tained independently of Buzano, by U. Richard in [30].

In [28], Pečarić gave a simple direct proof of (2.63) without men-
tioning the work of either Buzano or Richard, but tracked down the
result, in a particular form, to an earlier paper due to C. Blatter [1].

Obviously, the following refinement of Buzano’s result may be stated
[16].

Corollary 9 (Dragomir, 2004). Let (H; 〈·, ·〉) be a real or complex
inner product space and a, b, x ∈ H. Then

|〈a, x〉 〈x, b〉| ≤
∣∣∣∣〈a, x〉 〈x, b〉 − 1

2
〈a, b〉 ‖x‖2

∣∣∣∣+ 1

2
|〈a, b〉| ‖x‖2(2.64)

≤ 1

2
[‖a‖ ‖b‖+ |〈a, b〉|] ‖x‖2 .

Proof. The first inequality in (2.64) follows by the triangle in-
equality for the modulus |·| . The second inequality is merely (2.61) in
which we added the same quantity to both sides.

Remark 21. For α = 1, we deduce from (2.55) the following
inequality:

(2.65)

∣∣∣∣〈a, x〉 〈x, b〉‖x‖2 − 〈a, b〉
∣∣∣∣ ≤ ‖b‖

‖x‖
[
‖x‖2 ‖a‖2 − |〈a, x〉|2

] 1
2

for any a, b, x ∈ H with x 6= 0.
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If the space is real, then (2.65) is equivalent to

〈a, b〉 − ‖b‖
‖x‖

[
‖x‖2 ‖a‖2 − |〈a, x〉|2

] 1
2(2.66)

≤ 〈a, x〉 〈x, b〉
‖x‖2

≤ ‖b‖
‖x‖

[
‖x‖2 ‖a‖2 − |〈a, x〉|2

] 1
2 + 〈a, b〉 ,

which is similar to Richard’s inequality (2.63).

2.4.3. Applications to Kurepa’s Inequality. In 1960, N.G. de
Bruijn [2] obtained the following refinement of the Cauchy-Bunyakovsky-
Schwarz inequality:

(2.67)

∣∣∣∣∣
n∑

i=1

aizi

∣∣∣∣∣
2

≤ 1

2

n∑
i=1

a2
i

[
n∑

i=1

|zi|2 +

∣∣∣∣∣
n∑

i=1

z2
i

∣∣∣∣∣
]
,

provided that ai are real numbers while zi are complex for each i ∈
{1, ..., n} .

In [25], S. Kurepa proved the following generalisation of the de
Bruijn result:

Theorem 19 (Kurepa, 1966). Let (H; 〈·, ·〉) be a real inner product
space and (HC, 〈·, ·〉C) its complexification. Then for any a ∈ H and
z ∈ HC, one has the following refinement of Schwarz’s inequality

(2.68) |〈a, z〉C|
2 ≤ 1

2
‖a‖2 [‖z‖2

C + |〈z, z̄〉C|
]
≤ ‖a‖2 ‖z‖2

C ,

where z̄ denotes the conjugate of z ∈ HC.

As consequences of this general result, Kurepa noted the following
integral, respectively, discrete inequality:

Corollary 10 (Kurepa, 1966). Let (S,Σ, µ) be a positive measure
space and a, z ∈ L2 (S,Σ, µ) , the Hilbert space of complex-valued 2 −
µ−integrable functions defined on S. If a is a real function and z is a
complex function, then

(2.69)

∣∣∣∣∫
S

a (t) z (t) dµ (t)

∣∣∣∣2
≤ 1

2
·
∫

S

a2 (t) dµ (t)

[∫
S

|z (t)|2 dµ (t) +

∣∣∣∣∫
S

z2 (t) dµ (t)

∣∣∣∣] .
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Corollary 11 (Kurepa, 1966). If a1, . . . , an are real numbers,
z1, . . . , zn are complex numbers and (Aij) is a positive definite real ma-
trix of dimension n× n, then

(2.70)

∣∣∣∣∣
n∑

i,j=1

Aijaizj

∣∣∣∣∣
2

≤ 1

2

n∑
i,j=1

Aijaiaj

[
n∑

i,j=1

Aijzizj +

∣∣∣∣∣
n∑

i,j=1

Aijzizj

∣∣∣∣∣
]
.

The following refinement of Kurepa’s result may be stated [16].

Theorem 20 (Dragomir, 2004). Let (H; 〈·, ·〉) be a real inner prod-
uct space and (HC, 〈·, ·〉C) its complexification. Then for any e ∈ H
and w ∈ HC, one has the inequality:

|〈w, e〉C|
2 ≤

∣∣∣∣〈w, e〉2C − 1

2
〈w, w̄〉C ‖e‖

2

∣∣∣∣+ 1

2
|〈w, w̄〉C| ‖e‖

2(2.71)

≤ 1

2
‖e‖2 [‖w‖2

C + |〈w, w̄〉C|
]
.

Proof. We follow the proof in [16].
If we apply Corollary 11 for (HC, 〈·, ·〉C) and x = e ∈ H, a = w and

b = w̄, then we have

|〈w, e〉C 〈e, w̄〉C|(2.72)

≤
∣∣∣∣〈w, e〉C 〈e, w̄〉C − 1

2
〈w, w̄〉C ‖e‖

2

∣∣∣∣+ 1

2
|〈w, w̄〉C| ‖e‖

2

≤ 1

2
‖e‖2 [‖w‖C ‖w̄‖C + |〈w, w̄〉C|] .

Now, if we assume that w = (x, y) ∈ HC, then, by the definition of
〈·, ·〉C , we have

〈w, e〉C = 〈(x, y) , (e, 0)〉C
= 〈x, e〉+ 〈y, 0〉+ i [〈y, e〉 − 〈x, 0〉]
= 〈e, x〉+ i 〈e, y〉 ,

〈e, w̄〉C = 〈(e, 0) , (x,−y)〉C
= 〈e, x〉+ 〈0,−y〉+ i [〈0, x〉 − 〈e,−y〉]
= 〈e, x〉+ i 〈e, y〉 = 〈w, e〉C

and

‖w̄‖2
C = ‖x‖2 + ‖y‖2 = ‖w‖2

C .

Therefore, by (2.72), we deduce the desired result (2.71).
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Denote by `2ρ (C) the Hilbert space of all complex sequences z =
(zi)i∈N with the property that for ρi ≥ 0 with

∑∞
i=1 ρi = 1 we have∑∞

i=1 ρi |zi|2 < ∞. If a = (ai)i∈N is a sequence of real numbers such
that a ∈ `2ρ (C) , then for any z ∈ `2ρ (C) we have the inequality:∣∣∣∣∣

∞∑
i=1

ρiaizi

∣∣∣∣∣
2

(2.73)

≤

∣∣∣∣∣∣
(

∞∑
i=1

ρiaizi

)2

− 1

2

∞∑
i=1

ρia
2
i

∞∑
i=1

ρiz
2
i

∣∣∣∣∣∣+ 1

2

∞∑
i=1

ρia
2
i

∣∣∣∣∣
∞∑
i=1

ρiz
2
i

∣∣∣∣∣
≤ 1

2

∞∑
i=1

ρia
2
i

[
∞∑
i=1

ρi |zi|2 +

∣∣∣∣∣
∞∑
i=1

ρiz
2
i

∣∣∣∣∣
]
.

Similarly, if by L2
ρ (S,Σ, µ) we understand the Hilbert space of all

complex-valued functions f : S → C with the property that for the
µ−measurable function ρ ≥ 0 with

∫
S
ρ (t) dµ (t) = 1 we have∫

S

ρ (t) |f (t)|2 dµ (t) <∞,

then for a real function a ∈ L2
ρ (S,Σ, µ) and any f ∈ L2

ρ (S,Σ, µ) , we
have the inequalities∣∣∣∣∫

S

ρ (t) a (t) f (t) dµ (t)

∣∣∣∣2(2.74)

≤

∣∣∣∣∣
(∫

S

ρ (t) a (t) f (t) dµ (t)

)2

− 1

2

∫
S

ρ (t) f 2 (t) dµ (t)

∫
S

ρ (t) a2 (t) dµ (t)

∣∣∣∣
+

1

2

∣∣∣∣∫
S

ρ (t) f 2 (t) dµ (t)

∣∣∣∣ ∫
S

ρ (t) a2 (t) dµ (t)

≤ 1

2

∫
S

ρ (t) a2 (t) dµ (t)

×
[∫

S

ρ (t) |f (t)|2 dµ (t) +

∣∣∣∣∫
S

ρ (t) f 2 (t) dµ (t)

∣∣∣∣] .
2.5. Inequalities for Orthornormal Families

2.5.1. Introduction. In [3], M.L. Buzano obtained the following
extension of the celebrated Schwarz’s inequality in a real or complex
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inner product space (H; 〈·, ·〉) :

(2.75) |〈a, x〉 〈x, b〉| ≤ 1

2
[‖a‖ ‖b‖+ |〈a, b〉|] ‖x‖2 ,

for any a, b, x ∈ H.
It is clear that the above inequality becomes, for a = b, the Schwarz’s

inequality

(2.76) |〈a, x〉|2 ≤ ‖a‖2 ‖x‖2 , a, x ∈ H;

in which the equality holds if and only if there exists a scalar λ ∈ K
(R,C) so that x = λa.

As noted by T. Precupanu in [29], independently of Buzano, U.
Richard [30] obtained the following similar inequality holding in real
inner product spaces:

1

2
‖x‖2 [〈a, b〉 − ‖a‖ ‖b‖] ≤ 〈a, x〉 〈x, b〉(2.77)

≤ 1

2
‖x‖2 [〈a, b〉+ ‖a‖ ‖b‖] .

The main aim of the present section is to obtain similar results for
families of orthonormal vectors in (H; 〈·, ·〉) , real or complex space,
that are naturally connected with the celebrated Bessel inequality and
improve the results of Busano, Richard and Kurepa.

2.5.2. A Generalisation for Orthonormal Families. We say
that the finite family {ei}i∈I (I is finite) of vectors is orthonormal if
〈ei, ej〉 = 0 if i, j ∈ I with i 6= j and ‖ei‖ = 1 for each i ∈ I. The
following result may be stated [11]:

Theorem 21 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner prod-
uct space over the real or complex number field K and {ei}i∈I a finite
orthonormal family in H. Then for any a, b ∈ H, one has the inequality:

(2.78)

∣∣∣∣∣∑
i∈I

〈a, ei〉 〈ei, b〉 −
1

2
〈a, b〉

∣∣∣∣∣ ≤ 1

2
‖a‖ ‖b‖ .

The case of equality holds in (2.78) if and only if

(2.79)
∑
i∈I

〈a, ei〉 ei =
1

2
a+

(∑
i∈I

〈a, ei〉 〈ei, b〉 −
1

2
〈a, b〉

)
· b

‖b‖2 .

Proof. We follow the proof in [11].
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It is well known that, for e 6= 0 and f ∈ H, the following identity
holds:

(2.80)
‖f‖2 ‖e‖2 − |〈f, e〉|2

‖e‖2 =

∥∥∥∥f − 〈f, e〉 e
‖e‖2

∥∥∥∥2

.

Therefore, in Schwarz’s inequality

(2.81) |〈f, e〉|2 ≤ ‖f‖2 ‖e‖2 , f, e ∈ H;

the case of equality, for e 6= 0, holds if and only if

f =
〈f, e〉 e
‖e‖2 .

Let f := 2
∑

i∈I 〈a, ei〉 ei − a and e := b. Then, by Schwarz’s inequality
(2.81), we may state that

(2.82)

∣∣∣∣∣
〈

2
∑
i∈I

〈a, ei〉 ei − a, b

〉∣∣∣∣∣
2

≤

∥∥∥∥∥2∑
i∈I

〈a, ei〉 ei − a

∥∥∥∥∥
2

‖b‖2

with equality, for b 6= 0, if and only if

(2.83) 2
∑
i∈I

〈a, ei〉 ei − a =

〈
2
∑
i∈I

〈a, ei〉 ei − a, b

〉
b

‖b‖2 .

Since 〈
2
∑
i∈I

〈a, ei〉 ei − a, b

〉
= 2

∑
i∈I

〈a, ei〉 〈ei, b〉 − 〈a, b〉

and ∥∥∥∥∥2∑
i∈I

〈a, ei〉 ei − a

∥∥∥∥∥
2

= 4

∥∥∥∥∥∑
i∈I

〈a, ei〉 ei

∥∥∥∥∥
2

− 4 Re

〈∑
i∈I

〈a, ei〉 ei, a

〉
+ ‖a‖2

= 4
∑
i∈I

|〈a, ei〉|2 − 4
∑
i∈I

|〈a, ei〉|2 + ‖a‖2

= ‖a‖2 ,

hence by (2.82) we deduce the desired inequality (2.78).
Finally, as (2.79) is equivalent to∑

i∈I

〈a, ei〉 ei −
a

2
=

(∑
i∈I

〈a, ei〉 〈ei, b〉 −
1

2
〈a, b〉

)
b

‖b‖2 ,
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hence the equality holds in (2.78) if and only if (2.79) is valid.

The following result is well known in the literature as Bessel’s
inequality

(2.84)
∑
i∈I

|〈x, ei〉|2 ≤ ‖x‖2 , x ∈ H,

where, as above, {ei}i∈I is a finite orthonormal family in the inner
product space (H; 〈·, ·〉) .

If one chooses a = b = x in (2.78), then one gets the inequality∣∣∣∣∣∑
i∈I

|〈x, ei〉|2 −
1

2
‖x‖2

∣∣∣∣∣ ≤ 1

2
‖x‖2 ,

which is obviously equivalent to Bessel’s inequality (2.84). Therefore,
the inequality (2.78) may be regarded as a generalisation of Bessel’s
inequality as well.

Utilising the Bessel and Cauchy-Bunyakovsky-Schwarz inequalities,
one may state that

(2.85)

∣∣∣∣∣∑
i∈I

〈a, ei〉 〈ei, b〉

∣∣∣∣∣ ≤
[∑

i∈I

|〈a, ei〉|2
∑
i∈I

|〈b, ei〉|2
] 1

2

≤ ‖a‖ ‖b‖

A different refinement of the inequality between the first and the
last term in (2.85) is incorporated in the following [11]:

Corollary 12 (Dragomir, 2004). With the assumption of Theo-
rem 21, we have∣∣∣∣∣∑

i∈I

〈a, ei〉 〈ei, b〉

∣∣∣∣∣ ≤
∣∣∣∣∣∑

i∈I

〈a, ei〉 〈ei, b〉 −
1

2
〈a, b〉

∣∣∣∣∣+ 1

2
|〈a, b〉|(2.86)

≤ 1

2
[‖a‖ ‖b‖+ |〈a, b〉|]

≤ ‖a‖ ‖b‖ .

Remark 22. If the space (H; 〈·, ·〉) is real, then, obviously, (2.78)
is equivalent to:

(2.87)
1

2
(〈a, b〉 − ‖a‖ ‖b‖) ≤

∑
i∈I

〈a, ei〉 〈ei, b〉 ≤
1

2
[‖a‖ ‖b‖+ 〈a, b〉] .

Remark 23. It is obvious that if the family comprises of only a
single element e = x

‖x‖ , x ∈ H, x 6= 0, then from (2.86) we recapture

the refinement of Buzano’s inequality incorporated in (2.75) while from
(2.87) we deduce Richard’s result from (2.77).
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The following corollary of Theorem 21 is of interest as well [11]:

Corollary 13 (Dragomir, 2004). Let {ei}i∈I be a finite orthonor-
mal family in (H; 〈·, ·〉) . If x, y ∈ H\ {0} are such that there exists the
constants mi, ni, Mi, Ni ∈ R, i ∈ I such that:

(2.88) −1 ≤ mi ≤
Re 〈x, ei〉
‖x‖

· Re 〈y, ei〉
‖y‖

≤Mi ≤ 1, i ∈ I

and

(2.89) −1 ≤ ni ≤
Im 〈x, ei〉
‖x‖

· Im 〈y, ei〉
‖y‖

≤ Ni ≤ 1, i ∈ I

then

(2.90) 2
∑
i∈I

(mi + ni)− 1 ≤ Re 〈x, y〉
‖x‖ ‖y‖

≤ 1 + 2
∑
i∈I

(Mi +Ni) .

Proof. We follow the proof in [11].
Using Theorem 21 and the fact that for any complex number z,

|z| ≥ |Re z| , we have∣∣∣∣∣∑
i∈I

Re [〈x, ei〉 〈ei, y〉]−
1

2
Re 〈x, y〉

∣∣∣∣∣(2.91)

≤

∣∣∣∣∣∑
i∈I

〈x, ei〉 〈ei, y〉 −
1

2
〈x, y〉

∣∣∣∣∣
≤ 1

2
‖x‖ ‖y‖ .

Since

Re [〈x, ei〉 〈ei, y〉] = Re 〈x, ei〉Re 〈y, ei〉+ Im 〈x, ei〉 Im 〈y, ei〉 ,

hence by (2.91) we have:

− 1

2
‖x‖ ‖y‖+

1

2
Re 〈x, y〉(2.92)

≤
∑
i∈I

Re 〈x, ei〉Re 〈y, ei〉+
∑
i∈I

Im 〈x, ei〉 Im 〈y, ei〉

≤ 1

2
‖x‖ ‖y‖+

1

2
Re 〈x, y〉 .

Utilising the assumptions (2.88) and (2.89), we have

(2.93)
∑
i∈I

mi ≤
∑
i∈I

Re 〈x, ei〉Re 〈y, ei〉
‖x‖ ‖y‖

≤
∑
i∈I

Mi
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and

(2.94)
∑
i∈I

ni ≤
∑
i∈I

Im 〈x, ei〉 Im 〈y, ei〉
‖x‖ ‖y‖

≤
∑
i∈I

Ni.

Finally, on making use of (2.92) – (2.94), we deduce the desired result
(2.90).

Remark 24. By Schwarz’s inequality, is it obvious that, in general,

−1 ≤ Re 〈x, y〉
‖x‖ ‖y‖

≤ 1.

Consequently, the left inequality in (2.90) is of interest when
∑

i∈I (mi + ni) >
0, while the right inequality in (2.90) is of interest when

∑
i∈I (Mi +Ni) <

0.

2.5.3. Refinements of Kurepa’s Inequality. The following re-
sult holds [11].

Theorem 22 (Dragomir, 2004). Let {ej}j∈I be a finite orthonormal

family in the real inner product space (H; 〈·, ·〉) . Then for any w ∈
HC, where (HC; 〈·, ·〉C) is the complexification of (H; 〈·, ·〉) , one has the
following Bessel’s type inequality:∣∣∣∣∣∑

j∈I

〈w, ej〉2C

∣∣∣∣∣ ≤
∣∣∣∣∣∑

j∈I

〈w, ej〉2C −
1

2
〈w, w̄〉C

∣∣∣∣∣+ 1

2
|〈w, w̄〉C|(2.95)

≤ 1

2

[
‖w‖2

C + |〈w, w̄〉C|
]
≤ ‖w‖2

C .

Proof. We follow the proof in [11].
Define fj ∈ HC, fj := (ej, 0) , j ∈ I. For any k, j ∈ I we have

〈fi, fj〉C = 〈(ek, 0) , (ej, 0)〉C = 〈ek, ej〉 = δkj,

therefore {fj}j∈I is an orthonormal family in (HC; 〈·, ·〉C) .

If we apply Theorem 21 for (HC; 〈·, ·〉C) , a = w, b = w̄, we may
write:

(2.96)

∣∣∣∣∣∑
j∈I

〈w, ej〉C 〈ej, w̄〉C −
1

2
〈w, w̄〉C

∣∣∣∣∣ ≤ 1

2
‖w‖C ‖w̄‖C .

However, for w := (x, y) ∈ HC, we have w̄ = (x,−y) and

〈ej, w̄〉C = 〈(ej, 0) , (x,−y)〉C = 〈ej, x〉 − i 〈ej,−y〉 = 〈ej, x〉+ i 〈ej, y〉
and

〈w, ej〉C = 〈(x, y) , (ej, 0)〉C = 〈ej, x〉 − i 〈ej,−y〉 = 〈x, ej〉+ i 〈ej, y〉
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for any j ∈ I. Thus 〈ej, w̄〉 = 〈w, ej〉 for each j ∈ I and since

‖w‖C = ‖w̄‖C =
(
‖x‖2 + ‖y‖2) 1

2 ,

we get from (2.96) that

(2.97)

∣∣∣∣∣∑
j∈I

〈w, ej〉2C −
1

2
〈w, w̄〉C

∣∣∣∣∣ ≤ 1

2
‖w‖2

C .

Now, observe that the first inequality in (2.95) follows by the triangle
inequality, the second is an obvious consequence of (2.97) and the last
one is derived from Schwarz’s result.

Remark 25. If the family {ej}j∈I contains only a single element

e = x
‖x‖ , x ∈ H, x 6= 0, then from (2.95) we deduce (2.72), which, in

its turn, provides a refinement of Kurepa’s inequality (2.68).

2.5.4. An Application for L2 [−π, π]. It is well known that in
the Hilbert space L2 [−π, π] of all functions f : [−π, π] → C with the
property that f is Lebesgue measurable on [−π, π] and

∫ π

−π
|f (t)|2 dt <

∞, the set of functions{
1√
2π
,

1√
π

cos t,
1√
π

sin t, . . . ,
1√
π

cosnt,
1√
π

sinnt, . . .

}
is orthonormal.

If by trig t, we denote either sin t or cos t, t ∈ [−π, π] , then on using
the results from Sections 2.5.2 and 2.5.3, we may state the following
inequality:

(2.98)

∣∣∣∣∣ 1π
n∑

k=1

∫ π

−π

f (t) trig (kt) dt ·
∫ π

−π

g (t) trig (kt) dt

−1

2

∫ π

−π

f (t) g (t)dt

∣∣∣∣2
≤ 1

4

∫ π

−π

|f (t)|2 dt
∫ π

−π

|g (t)|2 dt,

where all trig (kt) is either sin kt or cos kt, k ∈ {1, . . . , n} and f ∈
L2 [−π, π] .

This follows by Theorem 21.
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If one uses Corollary 12, then one can state the following chain of
inequalities

∣∣∣∣∣ 1π
n∑

k=1

∫ π

−π

f (t) trig (kt) dt ·
∫ π

−π

g (t) trig (kt) dt

∣∣∣∣∣(2.99)

≤

∣∣∣∣∣ 1π
n∑

k=1

∫ π

−π

f (t) trig (kt) dt ·
∫ π

−π

g (t) trig (kt) dt

−1

2

∫ π

−π

f (t) g (t)dt

∣∣∣∣+ 1

2

∣∣∣∣∫ π

−π

f (t) g (t)dt

∣∣∣∣
≤ 1

2

[(∫ π

−π

|f (t)|2 dt
∫ π

−π

|g (t)|2 dt
) 1

2

+

∣∣∣∣∫ π

−π

f (t) g (t)dt

∣∣∣∣
]

≤
(∫ π

−π

|f (t)|2 dt
∫ π

−π

|g (t)|2 dt
) 1

2

,

where f ∈ L2 [−π, π] .
Finally, by employing Theorem 22, we may state:

1

π

∣∣∣∣∣
n∑

k=1

[∫ π

−π

f (t) trig (kt) dt

]2
∣∣∣∣∣

≤

∣∣∣∣∣ 1π
n∑

k=1

[∫ π

−π

f (t) trig (kt) dt

]2

− 1

2

∫ π

−π

f 2 (t) dt

∣∣∣∣∣+ 1

2

∣∣∣∣∫ π

−π

f 2 (t) dt

∣∣∣∣
≤ 1

2

[∫ π

−π

|f (t)|2 dt+

∣∣∣∣∫ π

−π

f 2 (t) dt

∣∣∣∣] ≤ ∫ π

−π

|f (t)|2 dt,

where f ∈ L2 [−π, π] .

2.6. Generalizations of Precupanu ’s Inequality

2.6.1. Introduction. In 1976, T. Precupanu [29] obtained the
following result related to the Schwarz inequality in a real inner product
space (H; 〈·, ·〉) :
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Theorem 23 (Precupanu , 1976). For any a ∈ H, x, y ∈ H\ {0} ,
we have the inequality:

−‖a‖ ‖b‖+ 〈a, b〉
2

(2.100)

≤ 〈x, a〉 〈x, b〉
‖x‖2 +

〈y, a〉 〈y, b〉
‖y‖2 − 2 · 〈x, a〉 〈y, b〉 〈x, y〉

‖x‖2 ‖y‖2

≤ ‖a‖ ‖b‖+ 〈a, b〉
2

.

In the right-hand side or in the left-hand side of (2.100) we have equal-
ity if and only if there are λ, µ ∈ R such that

(2.101) λ
〈x, a〉
‖x‖2 · x+ µ

〈y, b〉
‖y‖2 · y =

1

2
(λa+ µb) .

Note for instance that [29], if y ⊥ b, i.e., 〈y, b〉 = 0, then by (2.100)
one may deduce:

(2.102)
−‖a‖ ‖b‖+ 〈a, b〉

2
‖x‖2 ≤ 〈x, a〉 〈x, b〉 ≤ ‖a‖ ‖b‖+ 〈a, b〉

2
‖x‖2

for any a, b, x ∈ H, an inequality that has been obtained previously by
U. Richard [30]. The case of equality in the right-hand side or in the
left-hand side of (2.102) holds if and only if there are λ, µ ∈ R with

(2.103) 2λ 〈x, a〉x = (λa+ µb) ‖x‖2 .

For a = b, we may obtain from (2.100) the following inequality [29]

(2.104) 0 ≤ 〈x, a〉2

‖x‖2 +
〈y, a〉2

‖y‖2 − 2 · 〈x, a〉 〈y, a〉 〈x, y〉
‖x‖2 ‖y‖2 ≤ ‖a‖2 .

This inequality implies [29]:

(2.105)
〈x, y〉
‖x‖ ‖y‖

≥ 1

2

[
〈x, a〉
‖x‖ ‖a‖

+
〈y, a〉
‖y‖ ‖a‖

]2

− 3

2
.

In [27], M.H. Moore pointed out the following reverse of the Schwarz
inequality

(2.106) |〈y, z〉| ≤ ‖y‖ ‖z‖ , y, z ∈ H,

where some information about a third vector x is known:

Theorem 24 (Moore, 1973). Let (H; 〈·, ·〉) be an inner product
space over the real field R and x, y, z ∈ H such that:

(2.107) |〈x, y〉| ≥ (1− ε) ‖x‖ ‖y‖ , |〈x, z〉| ≥ (1− ε) ‖x‖ ‖z‖ ,
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where ε is a positive real number, reasonably small. Then

(2.108) |〈y, z〉| ≥ max
{

1− ε−
√

2ε, 1− 4ε, 0
}
‖y‖ ‖z‖ .

Utilising Richard’s inequality (2.102) written in the following equiv-
alent form:

(2.109) 2 · 〈x, a〉 〈x, b〉
‖x‖2 − ‖a‖ ‖b‖ ≤ 〈a, b〉 ≤ 2 · 〈x, a〉 〈x, b〉

‖x‖2 + ‖a‖ ‖b‖

for any a, b ∈ H and a ∈ H\ {0} , Precupanu has obtained the following
Moore’s type result:

Theorem 25 (Precupanu , 1976). Let (H; 〈·, ·〉) be a real inner
product space. If a, b, x ∈ H and 0 < ε1 < ε2 are such that:

ε1 ‖x‖ ‖a‖ ≤ 〈x, a〉 ≤ ε2 ‖x‖ ‖a‖ ,(2.110)

ε1 ‖x‖ ‖b‖ ≤ 〈x, b〉 ≤ ε2 ‖x‖ ‖b‖ ,
then

(2.111)
(
2ε2

1 − 1
)
‖a‖ ‖b‖ ≤ 〈a, b〉 ≤

(
2ε2

1 + 1
)
‖a‖ ‖b‖ .

Remark that the right inequality is always satisfied, since by Schwarz’s
inequality, we have 〈a, b〉 ≤ ‖a‖ ‖b‖. The left inequality may be useful
when one assumes that ε1 ∈ (0, 1]. In that case, from (2.111), we obtain

(2.112) −‖a‖ ‖b‖ ≤
(
2ε2

1 − 1
)
‖a‖ ‖b‖ ≤ 〈a, b〉

provided ε1 ‖x‖ ‖a‖ ≤ 〈x, a〉 and ε1 ‖x‖ ‖b‖ ≤ 〈x, b〉 , which is a refine-
ment of Schwarz’s inequality

−‖a‖ ‖b‖ ≤ 〈a, b〉 .
In the complex case, apparently independent of Richard, M.L. Buzano

obtained in [3] the following inequality

(2.113) |〈x, a〉 〈x, b〉| ≤ ‖a‖ ‖b‖+ |〈a, b〉|
2

· ‖x‖2 ,

provided x, a, b are vectors in the complex inner product space (H; 〈·, ·〉) .
In the same paper [29], Precupanu , without mentioning Buzano’s

name in relation to the inequality (2.113), observed that, on utilising
(2.113), one may obtain the following result of Moore type:

Theorem 26 (Precupanu , 1976). Let (H; 〈·, ·〉) be a (real or) com-
plex inner product space. If x, a, b ∈ H are such that

(2.114) |〈x, a〉| ≥ (1− ε) ‖x‖ ‖a‖ , |〈x, b〉| ≥ (1− ε) ‖x‖ ‖b‖ ,
then

(2.115) |〈a, b〉| ≥
(
1− 4ε+ 2ε2

)
‖a‖ ‖b‖ .
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Note that the above theorem is useful when, for ε ∈ (0, 1], the

quantity 1− 4ε+ 2ε2 > 0, i.e., ε ∈
(
0, 1−

√
2

2

]
.

Remark 26. When the space is real, the inequality (2.115) provides
a better lower bound for |〈a, b〉| than the second bound in Moore’s result
(2.108). However, it is not known if the first bound in (2.108) remains
valid for the case of complex spaces. From Moore’s original proof, ap-
parently, the fact that the space (H; 〈·, ·〉) is real plays an essential role.

Before we point out some new results for orthonormal families of
vectors in real or complex inner product spaces, we state the following
result that complements the Moore type results outlined above for real
spaces [10]:

Theorem 27 (Dragomir, 2004). Let (H; 〈·, ·〉) be a real inner prod-
uct space and a, b, x, y ∈ H\ {0} .

(i) If there exist δ1, δ2 ∈ (0, 1] such that

〈x, a〉
‖x‖ ‖a‖

≥ δ1,
〈y, a〉
‖y‖ ‖a‖

≥ δ2

and δ1 + δ2 ≥ 1, then

(2.116)
〈x, y〉
‖x‖ ‖y‖

≥ 1

2
(δ1 + δ2)

2 − 3

2
(≥ −1) .

(ii) If there exist µ1 (µ2) ∈ R such that

µ1 ‖a‖ ‖b‖ ≤
〈x, a〉 〈x, b〉

‖x‖2 (≤ µ2 ‖a‖ ‖b‖)

and 1 ≥ µ1 ≥ 0 (−1 ≤ µ2 ≤ 0) , then

(2.117) [−1 ≤] 2µ1 − 1 ≤ 〈a, b〉
‖a‖ ‖b‖

(≤ 2µ2 + 1 [≤ 1]) .

The proof is obvious by the inequalities (2.105) and (2.109). We
omit the details.

2.6.2. Inequalities for Orthonormal Families. The following
result may be stated [10].

Theorem 28 (Dragomir, 2004). Let {ei}i∈I and {fj}j∈J be two

finite families of orthonormal vectors in (H; 〈·, ·〉) . For any x, y ∈



2.6. GENERALIZATIONS OF PRECUPANU ’S INEQUALITY 69

H\ {0} one has the inequality

(2.118)

∣∣∣∣∣∑
i∈I

〈x, ei〉 〈ei, y〉+
∑
j∈J

〈x, fj〉 〈fj, y〉

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, y〉 〈ei, fj〉 −
1

2
〈x, y〉

∣∣∣∣∣ ≤ 1

2
‖x‖ ‖y‖ .

The case of equality holds in (2.118) if and only if there exists a λ ∈ K
such that

(2.119) x− λy = 2

(∑
i∈I

〈x, ei〉 ei − λ
∑
j∈J

〈y, fj〉 fj

)
.

Proof. We follow the proof in [10].
We know that, if u, v ∈ H, v 6= 0, then

(2.120)

∥∥∥∥u− 〈u, v〉
‖v‖2 · v

∥∥∥∥2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2

showing that, in Schwarz’s inequality

(2.121) |〈u, v〉|2 ≤ ‖u‖2 ‖v‖2 ,

the case of equality, for v 6= 0, holds if and only if

(2.122) u =
〈u, v〉
‖v‖2 · v,

i.e. there exists a λ ∈ R such that u = λv.
Now, let u := 2

∑
i∈I 〈x, ei〉 ei − x and v := 2

∑
j∈J 〈y, fj〉 fj − y.

Observe that

‖u‖2 =

∥∥∥∥∥2∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥
2

− 4 Re

〈∑
i∈I

〈x, ei〉 ei, x

〉
+ ‖x‖2

= 4
∑
i∈I

|〈x, ei〉|2 − 4
∑
i∈I

|〈x, ei〉|2 + ‖x‖2 = ‖x‖2 ,

and, similarly
‖v‖2 = ‖y‖2 .

Also,

〈u, v〉 = 4
∑

i∈I,j∈J

〈x, ei〉 〈fj, y〉 〈ei, fj〉+ 〈x, y〉

− 2
∑
i∈I

〈x, ei〉 〈ei, y〉 − 2
∑
j∈J

〈x, fj〉 〈fj, y〉 .
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Therefore, by Schwarz’s inequality (2.121) we deduce the desired in-
equality (2.118). By (2.122), the case of equality holds in (2.118) if
and only if there exists a λ ∈ K such that

2
∑
i∈I

〈x, ei〉 ei − x = λ

(
2
∑
j∈J

〈y, fj〉 fj − y

)
,

which is equivalent to (2.119).

Remark 27. If in (2.119) we choose x = y, then we get the in-
equality:

(2.123)

∣∣∣∣∣∑
i∈I

|〈x, ei〉|2 +
∑
j∈J

|〈x, fj〉|2

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, x〉 〈ei, fj〉 −
1

2
‖x‖2

∣∣∣∣∣ ≤ 1

2
‖x‖2

for any x ∈ H.
If in the above theorem we assume that I = J and fi = ei, i ∈ I,

then we get from (2.118) the Schwarz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖ .
If I ∩ J = ∅, I ∪ J = K, gk = ek, k ∈ I, gk = fk, k ∈ J and

{gk}k∈K is orthonormal, then from (2.118) we get:

(2.124)

∣∣∣∣∣∑
k∈K

〈x, gk〉 〈gk, y〉 −
1

2
〈x, y〉

∣∣∣∣∣ ≤ 1

2
‖x‖ ‖y‖ , x, y ∈ H

which has been obtained earlier by the author in [16].

If I and J reduce to one element, namely e1 = e
‖e‖ , f1 = f

‖f‖ with

e, f 6= 0, then from (2.118) we get

(2.125)

∣∣∣∣〈x, e〉 〈e, y〉‖e‖2 +
〈x, f〉 〈f, y〉

‖f‖2 − 2 · 〈x, e〉 〈f, y〉 〈e, f〉
‖e‖2 ‖f‖2 − 1

2
〈x, y〉

∣∣∣∣
≤ 1

2
‖x‖ ‖y‖ , x, y ∈ H

which is the corresponding complex version of Precupanu ’s inequality
(2.100).

If in (2.125) we assume that x = y, then we get

(2.126)

∣∣∣∣∣ |〈x, e〉|2‖e‖2 +
|〈x, f〉|2

‖f‖2 − 2 · 〈x, e〉 〈f, e〉 〈e, f〉
‖e‖2 ‖f‖2 − 1

2
‖x‖2

∣∣∣∣∣
≤ 1

2
‖x‖2 .
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The following corollary may be stated [10]:

Corollary 14 (Dragomir, 2004). With the assumptions of Theo-
rem 28, we have:∣∣∣∣∣∑

i∈I

〈x, ei〉 〈ei, y〉+
∑
j∈J

〈x, fj〉 〈fj, y〉(2.127)

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, y〉 〈ei, fj〉

∣∣∣∣∣
≤ 1

2
|〈x, y〉|+

∣∣∣∣∣∑
i∈I

〈x, ei〉 〈ei, y〉+
∑
j∈J

〈x, fj〉 〈fj, y〉

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, y〉 〈ei, fj〉 −
1

2
|〈x, y〉|

∣∣∣∣∣
≤ 1

2
[|〈x, y〉|+ ‖x‖ ‖y‖] .

Proof. The first inequality follows by the triangle inequality for
the modulus. The second inequality follows by (2.118) on adding the
quantity 1

2
|〈x, y〉| on both sides.

Remark 28. (1) If we choose in (2.127), x = y, then we get:∣∣∣∣∣∑
i∈I

|〈x, ei〉|2 +
∑
j∈J

|〈x, fj〉|2(2.128)

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, x〉 〈ei, fj〉

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈I

|〈x, ei〉|2 +
∑
j∈J

|〈x, fj〉|2

− 2
∑

i∈I,j∈J

〈x, ei〉 〈fj, x〉 〈ei, fj〉 −
1

2
‖x‖2

∣∣∣∣∣+ 1

2
‖x‖2

≤ ‖x‖2 .

We observe that (2.128) will generate Bessel’s inequality if
{ei}i∈I , {fj}j∈J are disjoint parts of a larger orthonormal fam-
ily.
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(2) From (2.125) one can obtain:

(2.129)

∣∣∣∣〈x, e〉 〈e, y〉‖e‖2 +
〈x, f〉 〈f, y〉

‖f‖2 − 2 · 〈x, e〉 〈f, y〉 〈e, f〉
‖e‖2 ‖f‖2

∣∣∣∣
≤ 1

2
[‖x‖ ‖y‖+ |〈x, y〉|]

and in particular

(2.130)

∣∣∣∣∣ |〈x, e〉|2‖e‖2 +
|〈x, f〉|2

‖f‖2 − 2 · 〈x, e〉 〈f, e〉 〈e, f〉
‖e‖2 ‖f‖2

∣∣∣∣∣ ≤ ‖x‖2 ,

for any x, y ∈ H.

The case of real inner products will provide a natural genearlization
for Precupanu ’s inequality (2.100) [10]:

Corollary 15 (Dragomir, 2004). Let (H; 〈·, ·〉) be a real inner
product space and {ei}i∈I , {fj}j∈J two finite families of orthonormal

vectors in (H; 〈·, ·〉) . For any x, y ∈ H\ {0} one has the double inequal-
ity:

1

2
[|〈x, y〉| − ‖x‖ ‖y‖] ≤

∑
i∈I

〈x, ei〉 〈y, ei〉+
∑
j∈J

〈x, fj〉 〈y, fj〉(2.131)

− 2
∑

i∈I,j∈J

〈x, ei〉 〈y, fj〉 〈ei, fj〉

≤ 1

2
[‖x‖ ‖y‖+ |〈x, y〉|] .

In particular, we have

0 ≤
∑
i∈I

〈x, ei〉2 +
∑
j∈J

〈x, fj〉2 − 2
∑

i∈I,j∈J

〈x, ei〉 〈x, fj〉 〈ei, fj〉(2.132)

≤ ‖x‖2 ,

for any x ∈ H.

Remark 29. Similar particular inequalities to those incorporated
in (2.124) – (2.130) may be stated, but we omit them.

2.6.3. Refinements of Kurepa’s Inequality. The following re-
sult may be stated [10].

Theorem 29 (Dragomir, 2004). Let (H; 〈·, ·〉) be a real inner prod-
uct space and {ei}i∈I , {fj}j∈J two finite families in H. If (HC; 〈·, ·〉C)
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is the complexification of (H; 〈·, ·〉) , then for any w ∈ HC, we have the
inequalities∣∣∣∣∣∑

i∈I

〈w, ei〉2C +
∑
j∈J

〈w, fj〉2C − 2
∑

i∈I,j∈J

〈w, ei〉C 〈w, fj〉C 〈ei, fj〉

∣∣∣∣∣(2.133)

≤ 1

2
|〈w, w̄〉C|+

∣∣∣∣∣∑
i∈I

〈w, ei〉2C +
∑
j∈J

〈w, fj〉2C

− 2
∑

i∈I,j∈J

〈w, ei〉C 〈w, fj〉C 〈ei, fj〉 −
1

2
〈w, w̄〉C

∣∣∣∣∣
≤ 1

2

[
‖w‖2

C + |〈w, w̄〉C|
]
≤ ‖w‖2

C .

Proof. Define gj ∈ HC, gj := (ej, 0) , j ∈ I. For any k, j ∈ I we
have

〈gk, gj〉C = 〈(ek, 0) , (ej, 0)〉C = 〈ek, ej〉 = δkj,

therefore {gj}j∈I is an orthonormal family in (HC; 〈·, ·〉C) .

If we apply Corollary 14 for (HC; 〈·, ·〉C) , x = w, y = w̄, we may
write: ∣∣∣∣∣∑

i∈I

〈w, ei〉C 〈ei, w̄〉C +
∑
j∈J

〈w, fj〉 〈fj, w̄〉(2.134)

− 2
∑

i∈I,j∈J

〈w, ei〉C 〈fj, w〉C 〈ei, fj〉

∣∣∣∣∣
≤ 1

2
‖w‖C ‖w̄‖C +

∣∣∣∣∣∑
i∈I

〈w, ei〉C 〈ei, w̄〉C +
∑
j∈J

〈w, fj〉 〈fj, w̄〉

− 2
∑

i∈I,j∈J

〈w, ei〉C 〈fj, w〉C 〈ei, fj〉 −
1

2
〈w, w̄〉C

∣∣∣∣∣
≤ 1

2
[|〈w, w̄〉C|+ ‖w‖C ‖w̄‖C] .

However, for w := (x, y) ∈ HC, we have w̄ = (x,−y) and

〈ej, w̄〉C = 〈(ej, 0) , (x,−y)〉C = 〈ej, x〉+ i 〈ej, y〉

and

〈w, ej〉C = 〈(x, y) , (ej, 0)〉C = 〈x, ej〉+ i 〈ej, y〉
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showing that 〈ej, w̄〉 = 〈w, ej〉 for any j ∈ I. A similar relation is true
for fj and since

‖w‖C = ‖w̄‖C =
(
‖x‖2 + ‖y‖2) 1

2 ,

hence from (2.134) we deduce the desired inequality (2.133).

Remark 30. It is obvious that, if one family, say {fj}j∈J is empty,

then, on observing that all sums
∑

j∈J should be zero, from (2.133) one

would get [16] ∣∣∣∣∣∑
i∈I

〈w, ei〉2C

∣∣∣∣∣(2.135)

≤ 1

2
|〈w, w̄〉C|+

∣∣∣∣∣∑
i∈I

〈w, ei〉2C −
1

2
〈w, w̄〉C

∣∣∣∣∣
≤ 1

2

[
‖w‖2

C + |〈w, w̄〉C|
]
≤ ‖w‖2

C .

If in (2.135) one assumes that the family {ei}i∈I contains only one
element e = a

‖a‖ , a 6= 0, then by selecting w = z, one would deduce

(2.71), which is a refinement for Kurepa’s inequality.

2.7. Some New Refinements of the Schwarz Inequality

2.7.1. Refinements. The following result holds [12].

Theorem 30 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K and r1, r2 > 0. If x, y ∈ H
are with the property that

(2.136) ‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,

then we have the following refinement of Schwarz’s inequality

(2.137) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant 1
2

is best possible in the sense that it cannot be replaced
by a larger quantity.

Proof. From the first inequality in (2.136) we have

(2.138) ‖x‖2 + ‖y‖2 ≥ r2
2 + 2 Re 〈x, y〉 .

Subtracting in (2.138) the quantity 2 ‖x‖ ‖y‖ , we get

(2.139) (‖x‖ − ‖y‖)2 ≥ r2
2 − 2 (‖x‖ ‖y‖ − Re 〈x, y〉) .
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Since, by the second inequality in (2.136) we have

(2.140) r2
1 ≥ (‖x‖ − ‖y‖)2 ,

hence from (2.139) and (2.140) we deduce the desired inequality (2.137).
To prove the sharpness of the constant 1

2
in (2.137), let us assume

that there is a constant C > 0 such that

(2.141) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
r2
2 − r2

1

)
,

provided that x and y satisfy (2.136).
Let e ∈ H with ‖e‖ = 1 and for r2 > r1 > 0, define

(2.142) x =
r2 + r1

2
· e and y =

r1 − r2
2

· e.

Then
‖x− y‖ = r2 and |‖x‖ − ‖y‖| = r1,

showing that the condition (2.136) is fulfilled with equality.
If we replace x and y as defined in (2.142) into the inequality (2.141),

then we get
r2
2 − r2

1

2
≥ C

(
r2
2 − r2

1

)
,

which implies that C ≤ 1
2
, and the theorem is completely proved.

The following corollary holds.

Corollary 16. With the assumptions of Theorem 30, we have the
inequality:

(2.143) ‖x‖+ ‖y‖ −
√

2

2
‖x+ y‖ ≥

√
2

2

√
r2
2 − r2

1.

Proof. We have, by (2.137), that

(‖x‖+ ‖y‖)2 − ‖x+ y‖2 = 2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥ r2
2 − r2

1 ≥ 0

which gives

(2.144) (‖x‖+ ‖y‖)2 ≥ ‖x+ y‖2 +

(√
r2
2 − r2

1

)2

.

By making use of the elementary inequality

2
(
α2 + β2

)
≥ (α+ β)2 , α, β ≥ 0;

we get

(2.145) ‖x+ y‖2 +

(√
r2
2 − r2

1

)2

≥ 1

2

(
‖x+ y‖+

√
r2
2 − r2

1

)2

.

Utilising (2.144) and (2.145), we deduce the desired inequality (2.143).
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If (H; 〈·, ·〉) is a Hilbert space and {ei}i∈I is an orthornormal family
in H, i.e., we recall that 〈ei, ej〉 = δij for any i, j ∈ I, where δij is
Kronecker’s delta, then we have the following inequality which is well
known in the literature as Bessel’s inequality

(2.146)
∑
i∈I

|〈x, ei〉|2 ≤ ‖x‖2 for each x ∈ H.

Here, the meaning of the sum is

∑
i∈I

|〈x, ei〉|2 = sup
F⊂I

{∑
i∈F

|〈x, ei〉|2 , F is a finite part of I

}
.

The following result providing a refinement of the Bessel inequality
(2.146) holds [12].

Theorem 31 (Dragomir, 2004). Let (H; 〈·, ·〉) be a Hilbert space
and {ei}i∈I an orthonormal family in H. If x ∈ H, x 6= 0, and r2, r1 > 0
are such that:

(2.147)

∥∥∥∥∥x−∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥
≥ r2 ≥ r1 ≥ ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

(≥ 0) ,

then we have the inequality

(2.148) ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

≥ 1

2
· r2

2 − r2
1(∑

i∈I |〈x, ei〉|2
) 1

2

(≥ 0) .

The constant 1
2

is best possible.

Proof. Consider y :=
∑

i∈I 〈x, ei〉 ei.Obviously, sinceH is a Hilbert
space, y ∈ H. We also note that

‖y‖ =

∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥ =

√√√√∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥
2

=

√∑
i∈I

|〈x, ei〉|2,

and thus (2.147) is in fact (2.136) of Theorem 30.



2.7. SOME NEW REFINEMENTS OF THE SCHWARZ INEQUALITY 77

Since

‖x‖ ‖y‖ − Re 〈x, y〉 = ‖x‖

(∑
i∈I

|〈x, ei〉|2
) 1

2

− Re

〈
x,
∑
i∈I

〈x, ei〉 ei

〉

=

(∑
i∈I

|〈x, ei〉|2
) 1

2

‖x‖ −(∑
i∈I

|〈x, ei〉|2
) 1

2

 ,
hence, by (2.137), we deduce the desired result (2.148).

We will prove the sharpness of the constant for the case of one
element, i.e., I = {1} , e1 = e ∈ H, ‖e‖ = 1. For this, assume that
there exists a constant D > 0 such that

(2.149) ‖x‖ − |〈x, e〉| ≥ D · r
2
2 − r2

1

|〈x, e〉|
provided x ∈ H\ {0} satisfies the condition

(2.150) ‖x− 〈x, e〉 e‖ ≥ r2 ≥ r1 ≥ ‖x‖ − |〈x, e〉| .
Assume that x = λe+µf with e, f ∈ H, ‖e‖ = ‖f‖ = 1 and e ⊥ f. We
wish to see if there exists positive numbers λ, µ such that

(2.151) ‖x− 〈x, e〉 e‖ = r2 > r1 = ‖x‖ − |〈x, e〉| .
Since (for λ, µ > 0)

‖x− 〈x, e〉 e‖ = µ

and

‖x‖ − |〈x, e〉| =
√
λ2 + µ2 − λ

hence, by (2.151), we get µ = r2 and√
λ2 + r2

2 − λ = r1

giving
λ2 + r2

2 = λ2 + 2λr1 + r2
1

from where we get

λ =
r2
2 − r2

1

2r1
> 0.

With these values for λ and µ, we have

‖x‖ − |〈x, e〉| = r1, |〈x, e〉| = r2
2 − r2

1

2r1

and thus, from (2.149), we deduce

r1 ≥ D · r
2
2 − r2

1

r2
2−r2

1

2r1

,
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giving D ≤ 1
2
. This proves the theorem.

The following corollary is obvious.

Corollary 17. Let x, y ∈ H with 〈x, y〉 6= 0 and r2 ≥ r1 > 0 such
that ∥∥∥∥‖y‖x− 〈x, y〉

‖y‖
· y
∥∥∥∥ ≥ r2 ‖y‖ ≥ r1 ‖y‖(2.152)

≥ ‖x‖ ‖y‖ − |〈x, y〉| (≥ 0) .

Then we have the following refinement of the Schwarz’s inequality:

(2.153) ‖x‖ ‖y‖ − |〈x, y〉| ≥ 1

2

(
r2
2 − r2

1

) ‖y‖2

|〈x, y〉|
(≥ 0) .

The constant 1
2

is best possible.

The following lemma holds [12].

Lemma 3 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space
and R ≥ 1. For x, y ∈ H, the subsequent statements are equivalent:

(i) The following refinement of the triangle inequality holds:

(2.154) ‖x‖+ ‖y‖ ≥ R ‖x+ y‖ ;

(ii) The following refinement of the Schwarz inequality holds:

(2.155) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
‖x+ y‖2 .

Proof. Taking the square in (2.154), we have

(2.156) 2 ‖x‖ ‖y‖ ≥
(
R2 − 1

)
‖x‖2 + 2R2 Re 〈x, y〉+

(
R2 − 1

)
‖y‖2 .

Subtracting from both sides of (2.156) the quantity 2 Re 〈x, y〉 , we ob-
tain

2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥
(
R2 − 1

) [
‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2]

=
(
R2 − 1

)
‖x+ y‖2 ,

which is clearly equivalent to (2.155).

By the use of the above lemma, we may now state the following
theorem concerning another refinement of the Schwarz inequality [12].

Theorem 32 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field and R ≥ 1, r ≥ 0. If
x, y ∈ H are such that

(2.157)
1

R
(‖x‖+ ‖y‖) ≥ ‖x+ y‖ ≥ r,
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then we have the following refinement of the Schwarz inequality

(2.158) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
r2.

The constant 1
2

is best possible in the sense that it cannot be replaced
by a larger quantity.

Proof. The inequality (2.158) follows easily from Lemma 3. We
need only prove that 1

2
is the best possible constant in (2.158).

Assume that there exists a C > 0 such that

(2.159) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
R2 − 1

)
r2

provided x, y, R and r satisfy (2.157).
Consider r = 1, R > 1 and choose x = 1−R

2
e, y = 1+R

2
e with e ∈ H,

‖e‖ = 1. Then

x+ y = e,
‖x‖+ ‖y‖

R
= 1

and thus (2.157) holds with equality on both sides.
From (2.159), for the above choices, we have 1

2
(R2 − 1) ≥ C (R2 − 1) ,

which shows that C ≤ 1
2
.

Finally, the following result also holds [12].

Theorem 33 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K and r ∈ (0, 1]. For x, y ∈
H, the following statements are equivalent:

(i) We have the inequality

(2.160) |‖x‖ − ‖y‖| ≤ r ‖x− y‖ ;

(ii) We have the following refinement of the Schwarz inequality

(2.161) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
1− r2

)
‖x− y‖2 .

The constant 1
2

in (2.161) is best possible.

Proof. Taking the square in (2.160), we have

‖x‖2 − 2 ‖x‖ ‖y‖+ ‖y‖2 ≤ r2
(
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2)

which is clearly equivalent to(
1− r2

) [
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2] ≤ 2 (‖x‖ ‖y‖ − Re 〈x, y〉)

or with (2.161).
Now, assume that (2.161) holds with a constant E > 0, i.e.,

(2.162) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ E
(
1− r2

)
‖x− y‖2 ,

provided (2.160) holds.
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Define x = r+1
2
e, y = r−1

2
e with e ∈ H, ‖e‖ = 1. Then

|‖x‖ − ‖y‖| = r, ‖x− y‖ = 1

showing that (2.160) holds with equality.
If we replace x and y in (2.162), then we get E (1− r2) ≤ 1

2
(1− r2) ,

implying that E ≤ 1
2
.

2.7.2. Discrete Inequalities. Assume that (K; (·, ·)) is a Hilbert
space over the real or complex number field . Assume also that pi ≥ 0,
i ∈ H with

∑∞
i=1 pi = 1 and define

`2p (K) :=

{
x := (xi)i∈N

∣∣ xi ∈ K, i ∈ N and
∞∑
i=1

pi ‖xi‖2 <∞

}
.

It is well known that `2p (K) endowed with the inner product 〈·, ·〉p
defined by

〈x,y〉p :=
∞∑
i=1

pi (xi, yi)

and generating the norm

‖x‖p :=

(
∞∑
i=1

pi ‖xi‖2

) 1
2

is a Hilbert space over K.
We may state the following discrete inequality improving the Cauchy-

Bunyakovsky-Schwarz classical result [12].

Proposition 16. Let (K; (·, ·)) be a Hilbert space and pi ≥ 0
(i ∈ N) with

∑∞
i=1 pi = 1. Assume that x,y ∈ `2p (K) and r1, r2 > 0

satisfy the condition

(2.163) ‖xi − yi‖ ≥ r2 ≥ r1 ≥ |‖xi‖ − ‖yi‖|

for each i ∈ N. Then we have the following refinement of the Cauchy-
Bunyakovsky-Schwarz inequality

(2.164)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi)

≥ 1

2

(
r2
2 − r2

1

)
≥ 0.

The constant 1
2

is best possible.
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Proof. From the condition (2.163) we simply deduce
∞∑
i=1

pi ‖xi − yi‖2 ≥ r2
2 ≥ r2

1 ≥
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2(2.165)

≥

( ∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

2

.

In terms of the norm ‖·‖p , the inequality (2.165) may be written as

(2.166) ‖x− y‖p ≥ r2 ≥ r1 ≥
∣∣∣‖x‖p − ‖y‖p

∣∣∣ .
Utilising Theorem 30 for the Hilbert space

(
`2p (K) , 〈·, ·〉p

)
, we deduce

the desired inequality (2.164).
For n = 1 (p1 = 1) , the inequality (2.164) reduces to (2.137) for

which we have shown that 1
2

is the best possible constant.

By the use of Corollary 16, we may state the following result as
well.

Corollary 18. With the assumptions of Proposition 16, we have
the inequality

(2.167)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

−
√

2

2

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following proposition also holds [12].

Proposition 17. Let (K; (·, ·)) be a Hilbert space and pi ≥ 0
(i ∈ N) with

∑∞
i=1 pi = 1. Assume that x,y ∈ `2p (K) and R ≥ 1,

r ≥ 0 satisfy the condition

(2.168)
1

R
(‖xi‖+ ‖yi‖) ≥ ‖xi + yi‖ ≥ r

for each i ∈ N. Then we have the following refinement of the Schwarz
inequality

(2.169)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi)

≥ 1

2

(
R2 − 1

)
r2.
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The constant 1
2

is best possible in the sense that it cannot be replaced
by a larger quantity.

Proof. By (2.168) we deduce

(2.170)
1

R

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

≥

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥ r.

By the classical Minkowsky inequality for nonnegative numbers, we
have

(2.171)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

≥

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

,

and thus, by utilising (2.170) and (2.171), we may state in terms of
‖·‖p the following inequality

(2.172)
1

R

(
‖x‖p + ‖y‖p

)
≥ ‖x + y‖p ≥ r.

Employing Theorem 32 for the Hilbert space `2p (K) and the inequality
(2.172), we deduce the desired result (2.169).

Since, for p = 1, n = 1, (2.169) reduced to (2.158) for which we
have shown that 1

2
is the best constant, we conclude that 1

2
is the best

constant in (2.169) as well.

Finally, we may state and prove the following result [12] incorpo-
rated in

Proposition 18. Let (K; (·, ·)) be a Hilbert space and pi ≥ 0
(i ∈ N) with

∑∞
i=1 pi = 1. Assume that x,y ∈ `2p (K) and r ∈ (0, 1]

such that

(2.173) |‖xi‖ − ‖yi‖| ≤ r ‖xi − yi‖ for each i ∈ N,
holds true. Then we have the following refinement of the Schwarz in-
equality

(2.174)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi)

≥ 1

2

(
1− r2

) ∞∑
i=1

pi ‖xi − yi‖2 .
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The constant 1
2

is best possible in (2.174).

Proof. From (2.173) we have[
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

] 1
2

≤ r

[
∞∑
i=1

pi ‖xi − yi‖2

] 1
2

.

Utilising the following elementary result∣∣∣∣∣∣
(

∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

∣∣∣∣∣∣ ≤
(

∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

) 1
2

,

we may state that ∣∣∣‖x‖p − ‖y‖p

∣∣∣ ≤ r ‖x− y‖p .

Now, by making use of Theorem 33, we deduce the desired inequality
(2.174) and the fact that 1

2
is the best possible constant. We omit the

details.

2.7.3. Integral Inequalities. Assume that (K; (·, ·)) is a Hilbert
space over the real or complex number field K. If ρ : [a, b] ⊂ R → [0,∞)

is a Lebesgue integrable function with
∫ b

a
ρ (t) dt = 1, then we may

consider the space L2
ρ ([a, b] ;K) of all functions f : [a, b] → K, that

are Bochner measurable and
∫ b

a
ρ (t) ‖f (t)‖2 dt <∞. It is known that

L2
ρ ([a, b] ;K) endowed with the inner product 〈·, ·〉ρ defined by

〈f, g〉ρ :=

∫ b

a

ρ (t) (f (t) , g (t)) dt

and generating the norm

‖f‖ρ :=

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

is a Hilbert space over K.
Now we may state and prove the first refinement of the Cauchy-

Bunyakovsky-Schwarz integral inequality [12].

Proposition 19. Assume that f, g ∈ L2
ρ ([a, b] ;K) and r2, r1 > 0

satisfy the condition

(2.175) ‖f (t)− g (t)‖ ≥ r2 ≥ r1 ≥ |‖f (t)‖ − ‖g (t)‖|
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for a.e. t ∈ [a, b] . Then we have the inequality

(2.176)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant 1
2

is best possible in (2.176).

Proof. Integrating (2.175), we get

(2.177)

(∫ b

a

ρ (t) (‖f (t)− g (t)‖)2 dt

) 1
2

≥ r2 ≥ r1 ≥
(∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

) 1
2

.

Utilising the obvious fact

(2.178)

[∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

] 1
2

≥

∣∣∣∣∣
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

−
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

∣∣∣∣∣ ,
we can state the following inequality in terms of the ‖·‖ρ norm:

(2.179) ‖f − g‖ρ ≥ r2 ≥ r1 ≥
∣∣∣‖f‖ρ − ‖g‖ρ

∣∣∣ .
Employing Theorem 30 for the Hilbert space L2

ρ ([a, b] ;K) , we deduce
the desired inequality (2.176).

To prove the sharpness of 1
2

in (2.176), we choose a = 0, b = 1,
f (t) = 1, t ∈ [0, 1] and f (t) = x, g (t) = y, t ∈ [a, b] , x, y ∈ K. Then
(2.176) becomes

‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
provided

‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,
which, by Theorem 30 has the quantity 1

2
as the best possible con-

stant.

The following corollary holds.
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Corollary 19. With the assumptions of Proposition 19, we have
the inequality

(2.180)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

+

(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
√

2

2

(∫ b

a

ρ (t) ‖f (t) + g (t)‖2 dt

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following two refinements of the Cauchy-Bunyakovsky-Schwarz
(CBS) integral inequality also hold.

Proposition 20. If f, g ∈ L2
ρ ([a, b] ;K) and R ≥ 1, r ≥ 0 satisfy

the condition

(2.181)
1

R
(‖f (t)‖+ ‖g (t)‖) ≥ ‖f (t) + g (t)‖ ≥ r

for a.e. t ∈ [a, b] , then we have the inequality

(2.182)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
R2 − 1

)
r2.

The constant 1
2

is best possible in (2.182).

The proof follows by Theorem 32 and we omit the details.

Proposition 21. If f, g ∈ L2
ρ ([a, b] ;K) and ζ ∈ (0, 1] satisfy the

condition

(2.183) |‖f (t)‖ − ‖g (t)‖| ≤ ζ ‖f (t)− g (t)‖

for a.e. t ∈ [a, b] , then we have the inequality

(2.184)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt

≥ 1

2

(
1− ζ2

) ∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt.

The constant 1
2

is best possible in (2.184).

The proof follows by Theorem 33 and we omit the details.
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2.7.4. Refinements of the Heisenberg Inequality. It is well
known that if (H; 〈·, ·〉) is a real or complex Hilbert space and f :
[a, b] ⊂ R →H is an absolutely continuous vector-valued function, then
f is differentiable almost everywhere on [a, b] , the derivative f ′ : [a, b] →
H is Bochner integrable on [a, b] and

(2.185) f (t) =

∫ t

a

f ′ (s) ds for any t ∈ [a, b] .

The following theorem provides a version of the Heisenberg inequal-
ities in the general setting of Hilbert spaces [12].

Theorem 34 (Dragomir, 2004). Let ϕ : [a, b] → H be an absolutely
continuous function with the property that b ‖ϕ (b)‖2 = a ‖ϕ (a)‖2 .
Then we have the inequality:

(2.186)

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 4

∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt.

The constant 4 is best possible in the sense that it cannot be replaced
by a smaller constant.

Proof. Integrating by parts, we have successively∫ b

a

‖ϕ (t)‖2 dt(2.187)

= t ‖ϕ (t)‖2

∣∣∣∣b
a

−
∫ b

a

t
d

dt

(
‖ϕ (t)‖2) dt

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a

t
d

dt
〈ϕ (t) , ϕ (t)〉 dt

= −
∫ b

a

t [〈ϕ′ (t) , ϕ (t)〉+ 〈ϕ (t) , ϕ′ (t)〉] dt

= −2

∫ b

a

tRe 〈ϕ′ (t) , ϕ (t)〉 dt

= 2

∫ b

a

Re 〈ϕ′ (t) , (−t)ϕ (t)〉 dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality∫ b

a

Re 〈g (t) , h (t)〉 dt ≤
(∫ b

a

‖g (t)‖2 dt

∫ b

a

‖h (t)‖2 dt

) 1
2

for g (t) = ϕ′ (t) , h (t) = −tϕ (t) , t ∈ [a, b] , then we deduce the desired
inequality (2.176).
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The fact that 4 is the best constant in (2.176) follows from the fact
that in the (CBS) inequality, the case of equality holds iff g (t) = λh (t)
for a.e. t ∈ [a, b] and λ a given scalar in K. We omit the details.

For details on the classical Heisenberg inequality, see, for instance,
[23].

Utilising Proposition 19, we can state the following refinement [12]
of the Heisenberg inequality obtained above in (2.186):

Proposition 22. Assume that ϕ : [a, b] → H is as in the hypothesis
of Theorem 34. In addition, if there exists r2, r1 > 0 so that

‖ϕ′ (t) + tϕ (t)‖ ≥ r2 ≥ r1 ≥ |‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖|

for a.e. t ∈ [a, b] , then we have the inequality

(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2
(b− a)

(
r2
2 − r2

1

)
(≥ 0) .

The proof follows by Proposition 19 on choosing f (t) = ϕ′ (t) , g (t) =
−tϕ (t) and ρ (t) = 1

b−a
, t ∈ [a, b] .

On utilising the Proposition 20 for the same choices of f, g and ρ,
we may state the following results as well [12]:

Proposition 23. Assume that ϕ : [a, b] → H is as in the hypothesis
of Theorem 34. In addition, if there exists R ≥ 1 and r > 0 so that

1

R
(‖ϕ′ (t)‖+ |t| ‖ϕ (t)‖) ≥ ‖ϕ′ (t)− tϕ (t)‖ ≥ r

for a.e. t ∈ [a, b] , then we have the inequality

(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2
(b− a)

(
R2 − 1

)
r2 (≥ 0) .

Finally, we can state

Proposition 24. Let ϕ : [a, b] → H be as in the hypothesis of
Theorem 34. In addition, if there exists ζ ∈ (0, 1] so that

|‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖| ≤ ζ ‖ϕ′ (t) + tϕ (t)‖
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for a.e. t ∈ [a, b] , then we have the inequality(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2

(
1− ζ2

) ∫ b

a

‖ϕ′ (t) + tϕ (t)‖2
dt (≥ 0) .

This follows by Proposition 21 and we omit the details.

2.8. More Schwarz Related Inequalities

2.8.1. Introduction. In practice, one may need reverses of the
Schwarz inequality, namely, upper bounds for the quantities

‖x‖ ‖y‖ − Re 〈x, y〉 , ‖x‖2 ‖y‖2 − (Re 〈x, y〉)2

and
‖x‖ ‖y‖
Re 〈x, y〉

or the corresponding expressions where Re 〈x, y〉 is replaced by either
|Re 〈x, y〉| or |〈x, y〉| , under suitable assumptions for the vectors x, y in
an inner product space (H; 〈·, ·〉) over the real or complex number field
K.

In this class of results, we mention the following recent reverses of
the Schwarz inequality due to the present author, that can be found,
for instance, in the survey work [4], where more specific references are
provided:

Theorem 35 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K (K = C,R) . If a,A ∈ K and x, y ∈ H are such that either

(2.188) Re 〈Ay − x, x− ay〉 ≥ 0,

or, equivalently,

(2.189)

∥∥∥∥x− A+ a

2
y

∥∥∥∥ ≤ 1

2
|A− a| ‖y‖ ,

then the following reverse for the quadratic form of the Schwarz in-
equality

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2(2.190)

≤


1
4
|A− a|2 ‖y‖4 −

∣∣A+a
2
‖y‖2 − 〈x, y〉

∣∣2
1
4
|A− a|2 ‖y‖4 − ‖y‖2 Re 〈Ay − x, x− ay〉

≤ 1

4
|A− a|2 ‖y‖4
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holds.
If in addition, we have Re (Aā) > 0, then

(2.191) ‖x‖ ‖y‖ ≤ 1

2
·
Re
[(
Ā+ ā

)
〈x, y〉

]√
Re (Aā)

≤ 1

2
· |A+ a|√

Re (Aā)
|〈x, y〉| ,

and

(2.192) (0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |A− a|2

Re (Aā)
|〈x, y〉|2 .

Also, if (2.188) or (2.189) are valid and A 6= −a, then we have the
reverse for the simple form of Schwarz inequality

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
Ā+ ā

|A+ a|
〈x, y〉

]∣∣∣∣(2.193)

≤ ‖x‖ ‖y‖ − Re

[
Ā+ ā

|A+ a|
〈x, y〉

]
≤ 1

4
· |A− a|2

|A+ a|
‖y‖2 .

The multiplicative constants 1
4

and 1
2

above are best possible in the sense
that they cannot be replaced by a smaller quantity.

For some classical results related to Schwarz inequality, see [3], [21],
[28], [29], [30] and the references therein.

The main aim of the present section is to point out other results in
connection with both the quadratic and simple forms of the Schwarz
inequality. As applications, some reverse results for the generalised
triangle inequality, i.e., upper bounds for the quantity

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
under various assumptions for the vectors xi ∈ H, i ∈ {1, . . . , n} , are
established.

2.8.2. Refinements and Reverses. The following result holds
[7].

Proposition 25. Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K. The subsequent statements are equiv-
alent.

(i) The following inequality holds

(2.194)

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ (≥) r;
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(ii) The following reverse (improvement) of Schwarz’s inequality
holds

(2.195) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ (≥)
1

2
r2 ‖x‖ ‖y‖ .

The constant 1
2

is best possible in (2.195) in the sense that it
cannot be replaced by a larger (smaller) quantity.

Remark 31. Since

‖‖y‖x− ‖x‖ y‖ = ‖‖y‖ (x− y) + (‖y‖ − ‖x‖) y‖
≤ ‖y‖ ‖x− y‖+ |‖y‖ − ‖x‖| ‖y‖
≤ 2 ‖y‖ ‖x− y‖

hence a sufficient condition for (2.194) to hold is

(2.196) ‖x− y‖ ≤ r

2
‖x‖ .

Remark 32. Utilising the Dunkl-Williams inequality [20]

(2.197) ‖a− b‖ ≥ 1

2
(‖a‖+ ‖b‖)

∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ , a, b ∈ H\ {0}

with equality if and only if either ‖a‖ = ‖b‖ or ‖a‖ + ‖b‖ = ‖a− b‖ ,
we can state the following inequality

(2.198)
‖x‖ ‖y‖ − Re 〈x, y〉

‖x‖ ‖y‖
≤ 2

(
‖x− y‖
‖x‖+ ‖y‖

)2

, x, y ∈ H\ {0} .

Obviously, if x, y ∈ H\ {0} are such that

(2.199) ‖x− y‖ ≤ η (‖x‖+ ‖y‖) ,
with η ∈ (0, 1], then one has the following reverse of the Schwarz
inequality

(2.200) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 2η2 ‖x‖ ‖y‖
that is similar to (2.195).

The following result may be stated as well [7].

Proposition 26. If x, y ∈ H\ {0} and ρ > 0 are such that

(2.201)

∥∥∥∥ x

‖y‖
− y

‖x‖

∥∥∥∥ ≤ ρ,

then we have the following reverse of Schwarz’s inequality

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(2.202)

≤ 1

2
ρ2 ‖x‖ ‖y‖ .
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The case of equality holds in the last inequality in (2.202) if and only
if

(2.203) ‖x‖ = ‖y‖ and ‖x− y‖ = ρ.

The constant 1
2

in (2.202) cannot be replaced by a smaller quantity.

Proof. Taking the square in (2.201), we get

(2.204)
‖x‖2

‖y‖2 −
2 Re 〈x, y〉
‖x‖ ‖y‖

+
‖y‖2

‖x‖2 ≤ ρ2.

Since, obviously

(2.205) 2 ≤ ‖x‖2

‖y‖2 +
‖y‖2

‖x‖2

with equality iff ‖x‖ = ‖y‖ , hence by (2.204) we deduce the second
inequality in (2.202).

The case of equality and the best constant are obvious and we omit
the details.

Remark 33. In [24], Hile obtained the following inequality

(2.206) ‖‖x‖v x− ‖y‖v y‖ ≤ ‖x‖v+1 − ‖y‖v+1

‖x‖ − ‖y‖
‖x− y‖

provided v > 0 and ‖x‖ 6= ‖y‖ .
If in (2.206) we choose v = 1 and take the square, then we get

(2.207) ‖x‖4 − 2 ‖x‖ ‖y‖Re 〈x, y〉+ ‖y‖4 ≤ (‖x‖+ ‖y‖)2 ‖x− y‖2 .

Since,

‖x‖4 + ‖y‖4 ≥ 2 ‖x‖2 ‖y‖2 ,

hence, by (2.207) we deduce

(2.208) (0 ≤) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

2
· (‖x‖+ ‖y‖)2 ‖x− y‖2

‖x‖ ‖y‖
,

provided x, y ∈ H\ {0} .

The following inequality is due to Goldstein, Ryff and Clarke [22,
p. 309]:

(2.209) ‖x‖2r + ‖y‖2r − 2 ‖x‖r ‖y‖r · Re 〈x, y〉
‖x‖ ‖y‖

≤

 r2 ‖x‖2r−2 ‖x− y‖2 if r ≥ 1

‖y‖2r−2 ‖x− y‖2 if r < 1
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provided r ∈ R and x, y ∈ H with ‖x‖ ≥ ‖y‖ .
Utilising (2.209) we may state the following proposition containing

a different reverse of the Schwarz inequality in inner product spaces
[7].

Proposition 27. Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K. If x, y ∈ H\ {0} and ‖x‖ ≥ ‖y‖ , then
we have

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(2.210)

≤


1
2
r2
(
‖x‖
‖y‖

)r−1

‖x− y‖2 if r ≥ 1,

1
2

(
‖x‖
‖y‖

)1−r

‖x− y‖2 if r < 1.

Proof. It follows from (2.209), on dividing by ‖x‖r ‖y‖r , that

(2.211)

(
‖x‖
‖y‖

)r

+

(
‖y‖
‖x‖

)r

− 2 · Re 〈x, y〉
‖x‖ ‖y‖

≤


r2 · ‖x‖

r−2

‖y‖r ‖x− y‖2 if r ≥ 1,

‖y‖r−2

‖x‖r ‖x− y‖2 if r < 1.

Since (
‖x‖
‖y‖

)r

+

(
‖y‖
‖x‖

)r

≥ 2,

hence, by (2.211) one has

2− 2 · Re 〈x, y〉
‖x‖ ‖y‖

≤


r2 ‖x‖r−2

‖y‖r ‖x− y‖2 if r ≥ 1,

‖y‖r−2

‖x‖r ‖x− y‖2 if r < 1.

Dividing this inequality by 2 and multiplying with ‖x‖ ‖y‖ , we deduce
the desired result in (2.210).

Another result providing a different additive reverse (refinement) of
the Schwarz inequality may be stated [7].

Proposition 28. Let x, y ∈ H with y 6= 0 and r > 0. The subse-
quent statements are equivalent:

(i) The following inequality holds:

(2.212)

∥∥∥∥x− 〈x, y〉
‖y‖2 · y

∥∥∥∥ ≤ (≥) r;
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(ii) The following reverse (refinement) of the quadratic Schwarz
inequality holds:

(2.213) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ (≥) r2 ‖y‖2 .

The proof is obvious on taking the square in (2.212) and performing
the calculation.

Remark 34. Since∥∥‖y‖2 x− 〈x, y〉 y
∥∥ =

∥∥‖y‖2 (x− y)− 〈x− y, y〉 y
∥∥

≤ ‖y‖2 ‖x− y‖+ |〈x− y, y〉| ‖y‖
≤ 2 ‖x− y‖ ‖y‖2 ,

hence a sufficient condition for the inequality (2.212) to hold is that

(2.214) ‖x− y‖ ≤ r

2
.

The following proposition may give a complementary approach [7]:

Proposition 29. Let x, y ∈ H with 〈x, y〉 6= 0 and ρ > 0. If

(2.215)

∥∥∥∥x− 〈x, y〉
|〈x, y〉|

· y
∥∥∥∥ ≤ ρ,

then

(2.216) (0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ 1

2
ρ2.

The multiplicative constant 1
2

is best possible in (2.216).

The proof is similar to the ones outlined above and we omit it.
For the case of complex inner product spaces, we may state the

following result [7].

Proposition 30. Let (H; 〈·, ·〉) be a complex inner product space
and α ∈ C a given complex number with Reα, Imα > 0. If x, y ∈ H
are such that

(2.217)

∥∥∥∥x− Imα

Reα
· y
∥∥∥∥ ≤ r,

then we have the inequality

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(2.218)

≤ 1

2
· Reα

Imα
· r2.

The equality holds in the second inequality in (2.218) if and only if the
case of equality holds in (2.217) and Reα · ‖x‖ = Imα · ‖y‖ .
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Proof. Observe that the condition (2.217) is equivalent to

(2.219) [Reα]2 ‖x‖2 +[Imα]2 ‖y‖2 ≤ 2 Reα ImαRe 〈x, y〉+[Reα]2 r2.

On the other hand, on utilising the elementary inequality

(2.220) 2 Reα Imα ‖x‖ ‖y‖ ≤ [Reα]2 ‖x‖2 + [Imα]2 ‖y‖2 ,

with equality if and only if Reα · ‖x‖ = Imα · ‖y‖ , we deduce from
(2.219) that

(2.221) 2 Reα Imα ‖x‖ ‖y‖ ≤ 2 Reα ImαRe 〈x, y〉+ r2 [Reα]2

giving the desired inequality (2.218).
The case of equality follows from the above and we omit the de-

tails.

The following different reverse for the Schwarz inequality that holds
for both real and complex inner product spaces may be stated as well
[7].

Theorem 36 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K, K = C,R. If α ∈ K\ {0} , then

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re

[
α2

|α|2
〈x, y〉

]
(2.222)

≤ 1

2
· [|Reα| ‖x− y‖+ |Imα| ‖x+ y‖]2

|α|2
≤ 1

2
· I2,

where

(2.223) I :=


max {|Reα| , |Imα|} (‖x− y‖+ ‖x+ y‖) ;

(|Reα|p + |Imα|p)
1
p (‖x− y‖q + ‖x+ y‖q)

1
q ,

p > 1, 1
p

+ 1
q

= 1;

max {‖x− y‖ , ‖x+ y‖} (|Reα|+ |Imα|) .

Proof. Observe, for α ∈ K\ {0} , that

‖αx− ᾱy‖2 = |α|2 ‖x‖2 − 2 Re 〈αx, ᾱy〉+ |α|2 ‖y‖2

= |α|2
(
‖x‖2 + ‖y‖2)− 2 Re

[
α2 〈x, y〉

]
.

Since ‖x‖2 + ‖y‖2 ≥ 2 ‖x‖ ‖y‖ , hence

(2.224) ‖αx− ᾱy‖2 ≥ 2 |α|2
{
‖x‖ ‖y‖ − Re

[
α2

|α|2
〈x, y〉

]}
.



2.8. MORE SCHWARZ RELATED INEQUALITIES 95

On the other hand, we have

‖αx− ᾱy‖ = ‖(Reα+ i Imα)x− (Reα− i Imα) y‖(2.225)

= ‖Reα (x− y) + i Imα (x+ y)‖
≤ |Reα| ‖x− y‖+ |Imα| ‖x+ y‖ .

Utilising (2.224) and (2.225) we deduce the third inequality in (2.222).
For the last inequality we use the following elementary inequality

(2.226) αa+ βb ≤


max {α, β} (a+ b)

(αp + βp)
1
p (aq + bq)

1
q , p > 1, 1

p
+ 1

q
= 1,

provided α, β, a, b ≥ 0.

The following result may be stated [7].

Proposition 31. Let (H; 〈·, ·〉) be an inner product over K and
e ∈ H, ‖e‖ = 1. If λ ∈ (0, 1) , then

(2.227) Re [〈x, y〉 − 〈x, e〉 〈e, y〉]

≤ 1

4
· 1

λ (1− λ)

[
‖λx+ (1− λ) y‖2 − |〈λx+ (1− λ) y, e〉|2

]
.

The constant 1
4

is best possible.

Proof. Firstly, note that the following equality holds true

〈x− 〈x, e〉 e, y − 〈y, e〉 e〉 = 〈x, y〉 − 〈x, e〉 〈e, y〉 .
Utilising the elementary inequality

Re 〈z, w〉 ≤ 1

4
‖z + w‖2 , z, w ∈ H

we have

Re 〈x− 〈x, e〉 e, y − 〈y, e〉 e〉

=
1

λ (1− λ)
Re 〈λx− 〈λx, e〉 e, (1− λ) y − 〈(1− λ) y, e〉 e〉

≤ 1

4
· 1

λ (1− λ)

[
‖λx+ (1− λ) y‖2 − |〈λx+ (1− λ) y, e〉|2

]
,

proving the desired inequality (2.227).

Remark 35. For λ = 1
2
, we get the simpler inequality:

(2.228) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≤
∥∥∥∥x+ y

2

∥∥∥∥2

−
∣∣∣∣〈x+ y

2
, e

〉∣∣∣∣2 ,
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that has been obtained in [4, p. 46], for which the sharpness of the
inequality was established.

The following result may be stated as well [7].

Theorem 37 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K and p ≥ 1. Then for any x, y ∈ H we have

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(2.229)

≤ 1

2
×


[
(‖x‖+ ‖y‖)2p − ‖x+ y‖2p] 1

p ,

[
‖x− y‖2p − |‖x‖ − ‖y‖|2p] 1

p .

Proof. Firstly, observe that

2 (‖x‖ ‖y‖ − Re 〈x, y〉) = (‖x‖+ ‖y‖)2 − ‖x+ y‖2 .

Denoting D := ‖x‖ ‖y‖ − Re 〈x, y〉 , then we have

(2.230) 2D + ‖x+ y‖2 = (‖x‖+ ‖y‖)2 .

Taking in (2.230) the power p ≥ 1 and using the elementary inequality

(2.231) (a+ b)p ≥ ap + bp; a, b ≥ 0,

we have

(‖x‖+ ‖y‖)2p =
(
2D + ‖x+ y‖2)p ≥ 2pDp + ‖x+ y‖2p

giving

Dp ≤ 1

2p

[
(‖x‖+ ‖y‖)2p − ‖x+ y‖2p] ,

which is clearly equivalent to the first branch of the third inequality in
(2.229).

With the above notation, we also have

(2.232) 2D + (‖x‖ − ‖y‖)2 = ‖x− y‖2 .

Taking the power p ≥ 1 in (2.232) and using the inequality (2.231) we
deduce

‖x− y‖2p ≥ 2pDp + |‖x‖ − ‖y‖|2p ,

from where we get the last part of (2.229).
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2.8.3. More Schwarz Related Inequalities. Before we point
out other inequalities related to the Schwarz inequality, we need the
following identity that is interesting in itself [7].

Lemma 4 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K, e ∈ H, ‖e‖ = 1, α ∈ H and
γ,Γ ∈ K. Then we have the identity:

(2.233) ‖x‖2 − |〈x, e〉|2

= (Re Γ− Re 〈x, e〉) (Re 〈x, e〉 − Re γ)

+ (Im Γ− Im 〈x, e〉) (Im 〈x, e〉 − Im γ)

+

∥∥∥∥x− γ + Γ

2
e

∥∥∥∥2

− 1

4
|Γ− γ|2 .

Proof. We start with the following known equality (see for in-
stance [5, eq. (2.6)])

(2.234) ‖x‖2 − |〈x, e〉|2

= Re
[
(Γ− 〈x, e〉)

(
〈x, e〉 − γ̄

)]
− Re 〈Γe− x, x− γe〉

holding for x ∈ H, e ∈ H, ‖e‖ = 1 and γ,Γ ∈ K.
We also know that (see for instance [14])

(2.235) −Re 〈Γe− x, x− γe〉 =

∥∥∥∥x− γ + Γ

2
e

∥∥∥∥2

− 1

4
|Γ− γ|2 .

Since

(2.236) Re
[
(Γ− 〈x, e〉)

(
〈x, e〉 − γ̄

)]
= (Re Γ− Re 〈x, e〉) (Re 〈x, e〉 − Re γ)

+ (Im Γ− Im 〈x, e〉) (Im 〈x, e〉 − Im γ) ,

hence, by (2.234) – (2.236), we deduce the desired identity (2.233).

The following general result providing a reverse of the Schwarz in-
equality may be stated [7].

Proposition 32. Let (H; 〈·, ·〉) be an inner product space over K,
e ∈ H, ‖e‖ = 1, x ∈ H and γ,Γ ∈ K. Then we have the inequality:

(2.237) (0 ≤) ‖x‖2 − |〈x, e〉|2 ≤
∥∥∥∥x− γ + Γ

2
· e
∥∥∥∥2

.
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The constant 1
2

is best possible in (2.237). The case of equality holds
in (2.237) if and only if

(2.238) Re 〈x, e〉 = Re

(
γ + Γ

2

)
, Im 〈x, e〉 = Im

(
γ + Γ

2

)
.

Proof. Utilising the elementary inequality for real numbers

αβ ≤ 1

4
(α+ β)2 , α, β ∈ R;

with equality iff α = β, we have

(2.239) (Re Γ− Re 〈x, e〉) (Re 〈x, e〉 − Re γ) ≤ 1

4
(Re Γ− Re γ)2

and

(2.240) (Im Γ− Im 〈x, e〉) (Im 〈x, e〉 − Im γ) ≤ 1

4
(Im Γ− Im γ)2

with equality if and only if

Re 〈x, e〉 =
Re Γ + Re γ

2
and Im 〈x, e〉 =

Im Γ + Im γ

2
.

Finally, on making use of (2.239), (2.240) and the identity (2.233), we
deduce the desired result (2.237).

The following result may be stated as well [7].

Proposition 33. Let (H; 〈·, ·〉) be an inner product space over K,
e ∈ H, ‖e‖ = 1, x ∈ H and γ,Γ ∈ K. If x ∈ H is such that
(2.241)

Re γ ≤ Re 〈x, e〉 ≤ Re Γ and Im γ ≤ Im 〈x, e〉 ≤ Im Γ,

then we have the inequality

(2.242) ‖x‖2 − |〈x, e〉|2 ≥
∥∥∥∥x− γ + Γ

2
e

∥∥∥∥2

− 1

4
|Γ− γ|2 .

The constant 1
4

is best possible in (2.242). The case of equality holds
in (2.242) if and only if

Re 〈x, e〉 = Re Γ or Re 〈x, e〉 = Re γ

and
Im 〈x, e〉 = Im Γ or Im 〈x, e〉 = Im γ.

Proof. From the hypothesis we obviously have

(Re Γ− Re 〈x, e〉) (Re 〈x, e〉 − Re γ) ≥ 0

and
(Im Γ− Im 〈x, e〉) (Im 〈x, e〉 − Im γ) ≥ 0.
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Utilising the identity (2.233) we deduce the desired result (2.242). The
case of equality is obvious.

Further on, we can state the following reverse of the quadratic
Schwarz inequality [7]:

Proposition 34. Let (H; 〈·, ·〉) be an inner product space over K,
e ∈ H, ‖e‖ = 1. If γ,Γ ∈ K and x ∈ H are such that either

(2.243) Re 〈Γe− x, x− γe〉 ≥ 0

or, equivalently,

(2.244)

∥∥∥∥x− γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ| ,

then

(0 ≤) ‖x‖2 − |〈x, e〉|2(2.245)

≤ (Re Γ− Re 〈x, e〉) (Re 〈x, e〉 − Re γ)

+ (Im Γ− Im 〈x, e〉) (Im 〈x, e〉 − Im γ)

≤ 1

4
|Γ− γ|2 .

The case of equality holds in (2.245) if it holds either in (2.243) or
(2.244).

The proof is obvious by Lemma 4 and we omit the details.

Remark 36. We remark that the inequality (2.245) may also be
used to get, for instance, the following result

(2.246) ‖x‖2 − |〈x, e〉|2

≤
[
(Re Γ− Re 〈x, e〉)2 + (Im Γ− Im 〈x, e〉)2] 1

2

×
[
(Re 〈x, e〉 − Re γ)2 + (Im 〈x, e〉 − Im γ)2] 1

2 ,

that provides a different bound than 1
4
|Γ− γ|2 for the quantity ‖x‖2 −

|〈x, e〉|2 .

The following result may be stated as well [7].

Theorem 38 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K and α, γ > 0, β ∈ K with |β|2 ≥ αγ. If x, a ∈ H are such
that a 6= 0 and

(2.247)

∥∥∥∥x− β

α
a

∥∥∥∥ ≤
(
|β|2 − αγ

) 1
2

α
‖a‖ ,
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then we have the following reverses of Schwarz’s inequality

‖x‖ ‖a‖ ≤ Re β · Re 〈x, a〉+ Im β · Im 〈x, a〉
√
αγ

(2.248)

≤ |β| |〈x, a〉|
√
αγ

and

(2.249) (0 ≤) ‖x‖2 ‖a‖2 − |〈x, a〉|2 ≤ |β|2 − αγ

αγ
|〈x, a〉|2 .

Proof. Taking the square in (2.247), it becomes equivalent to

‖x‖2 − 2

α
Re
[
β̄ 〈x, a〉

]
+
|β|2

α2
‖a‖2 ≤ |β|2 − αγ

α2
‖a‖2 ,

which is clearly equivalent to

α ‖x‖2 + γ ‖a‖2 ≤ 2 Re
[
β̄ 〈x, a〉

]
(2.250)

= 2 [Re β · Re 〈x, a〉+ Im β · Im 〈x, a〉] .
On the other hand, since

(2.251) 2
√
αγ ‖x‖ ‖a‖ ≤ α ‖x‖2 + γ ‖a‖2 ,

hence by (2.250) and (2.251) we deduce the first inequality in (2.248).
The other inequalities are obvious.

Remark 37. The above inequality (2.248) contains in particular
the reverse (2.191) of the Schwarz inequality. Indeed, if we assume
that α = 1, β = δ+∆

2
, δ,∆ ∈ K, with γ = Re (∆γ̄) > 0, then the

condition |β|2 ≥ αγ is equivalent to |δ + ∆|2 ≥ 4 Re (∆γ̄) which is
actually |∆− δ|2 ≥ 0. With this assumption, (2.247) becomes∥∥∥∥x− δ + ∆

2
· a
∥∥∥∥ ≤ 1

2
|∆− δ| ‖a‖ ,

which implies the reverse of the Schwarz inequality

‖x‖ ‖a‖ ≤
Re
[(

∆̄ + δ̄
)
〈x, a〉

]
2
√

Re
(
∆δ̄
)

≤ |∆ + δ|

2
√

Re
(
∆δ̄
) |〈x, a〉| ,

which is (2.191).

The following particular case of Theorem 38 may be stated [7]:
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Corollary 20. Let (H; 〈·, ·〉) be an inner product space over K,
ϕ ∈ [0, 2π), θ ∈

(
0, π

2

)
. If x, a ∈ H are such that a 6= 0 and

(2.252) ‖x− (cosϕ+ i sinϕ) a‖ ≤ cos θ ‖a‖ ,
then we have the reverses of the Schwarz inequality

(2.253) ‖x‖ ‖a‖ ≤ cosϕRe 〈x, a〉+ sinϕ Im 〈x, a〉
sin θ

.

In particular, if
‖x− a‖ ≤ cos θ ‖a‖ ,

then

‖x‖ ‖a‖ ≤ 1

cos θ
Re 〈x, a〉 ;

and if
‖x− ia‖ ≤ cos θ ‖a‖ ,

then

‖x‖ ‖a‖ ≤ 1

cos θ
Im 〈x, a〉 .

2.8.4. Reverses of the Generalised Triangle Inequality. In
[13], the author obtained the following reverse result for the generalised
triangle inequality

(2.254)
n∑

i=1

‖xi‖ ≥

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided xi ∈ H, i ∈ {1, . . . , n} are vectors in a real or complex inner
product (H; 〈·, ·〉) :

Theorem 39 (Dragomir, 2004). Let e, xi ∈ H, i ∈ {1, . . . , n} with
‖e‖ = 1. If ki ≥ 0, i ∈ {1, . . . , n} are such that

(2.255) (0 ≤) ‖xi‖ − Re 〈e, xi〉 ≤ ki for each i ∈ {1, . . . , n} ,
then we have the inequality

(2.256) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (2.256) if and only if

(2.257)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(2.258)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
e.
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By utilising some of the results obtained in Section 2.8.2, we point
out several reverses of the generalised triangle inequality (2.254) that
are corollaries of the above Theorem 39 [7].

Corollary 21. Let e, xi ∈ H\ {0} , i ∈ {1, . . . , n} with ‖e‖ = 1.
If

(2.259)

∥∥∥∥ xi

‖xi‖
− e

∥∥∥∥ ≤ ri for each i ∈ {1, . . . , n} ,

then

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(2.260)

≤ 1

2

n∑
i=1

r2
i ‖xi‖

≤ 1

2
×



(
max
1≤i≤n

ri

)2 n∑
i=1

‖xi‖ ;

(
n∑

i=1

r2p
i

) 1
p
(

n∑
i=1

‖xi‖q

) 1
q

, p > 1, 1
p

+ 1
q

= 1;

max
1≤i≤n

‖xi‖
n∑

i=1

r2
i .

Proof. The first part follows from Proposition 25 on choosing x =
xi, y = e and applying Theorem 39. The last part is obvious by Hölder’s
inequality.

Remark 38. One would obtain the same reverse inequality (2.260)
if one were to use Theorem 26. In this case, the assumption (2.259)
should be replaced by

(2.261) ‖‖xi‖xi − e‖ ≤ ri ‖xi‖ for each i ∈ {1, . . . , n} .

On utilising the inequalities (2.198) and (2.209) one may state the
following corollary of Theorem 39 [7].

Corollary 22. Let e, xi ∈ H\ {0} , i ∈ {1, . . . , n} with ‖e‖ = 1.
Then we have the inequality

(2.262) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ min {A,B} ,



2.8. MORE SCHWARZ RELATED INEQUALITIES 103

where

A := 2
n∑

i=1

‖xi‖
(
‖xi − e‖
‖xi‖+ 1

)2

,

and

B :=
1

2

n∑
i=1

(‖xi‖+ 1)2 ‖xi − e‖2

‖xi‖
.

For vectors located outside the closed unit ball B̄ (0, 1) := {z ∈ H| ‖z‖ ≤ 1} ,
we may state the following result [7].

Corollary 23. Assume that xi /∈ B̄ (0, 1) , i ∈ {1, . . . , n} and
e ∈ H, ‖e‖ = 1. Then we have the inequality:

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(2.263)

≤


1

2
p2

n∑
i=1

‖xi‖p−1 ‖xi − e‖2 , if p ≥ 1

1

2

n∑
i=1

‖xi‖1−p ‖xi − e‖2 , if p < 1.

The proof follows by Proposition 27 and Theorem 39.
For complex spaces one may state the following result as well [7].

Corollary 24. Let (H; 〈·, ·〉) be a complex inner product space
and αi ∈ C with Reαi, Imαi > 0, i ∈ {1, . . . , n} . If xi, e ∈ H, i ∈
{1, . . . , n} with ‖e‖ = 1 and

(2.264)

∥∥∥∥xi −
Imαi

Reαi

· e
∥∥∥∥ ≤ di, i ∈ {1, . . . , n} ,

then

(2.265) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

2

n∑
i=1

Reαi

Imαi

· d2
i .

The proof follows by Theorems 30 and 39 and the details are omit-
ted.

Finally, by the use of Theorem 37, we can state [7]:
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Corollary 25. If xi, e ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1 and
p ≥ 1, then we have the inequalities:

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(2.266)

≤ 1

2
×


n∑

i=1

[
(‖xi‖+ 1)2p − ‖xi + e‖2p] 1

p ,

n∑
i=1

[
‖xi − e‖2p − |‖xi‖ − 1|2p] 1

p .
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CHAPTER 3

Reverses for the Triangle Inequality

3.1. Introduction

The following reverse of the generalised triangle inequality

cos θ
n∑

k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
provided the complex numbers zk, k ∈ {1, . . . , n} satisfy the assump-
tion

a− θ ≤ arg (zk) ≤ a+ θ, for any k ∈ {1, . . . , n} ,
where a ∈ R and θ ∈

(
0, π

2

)
was first discovered by M. Petrovich in

1917, [11] (see [10, p. 492]) and subsequently was rediscovered by
other authors, including J. Karamata [6, p. 300 – 301], H.S. Wilf [12],
and in an equivalent form by M. Marden [8].

In 1966, J.B. Diaz and F.T. Metcalf [1] proved the following reverse
of the triangle inequality:

Theorem 40 (Diaz-Metcalf, 1966). Let a be a unit vector in the
inner product space (H; 〈·, ·〉) over the real or complex number field K.
Suppose that the vectors xi ∈ H\ {0} , i ∈ {1, . . . , n} satisfy

(3.1) 0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} .

Then

(3.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

(3.3)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
a.

A generalisation of this result for orthonormal families is incorpo-
rated in the following result [1].

107



108 3. REVERSES FOR THE TRIANGLE INEQUALITY

Theorem 41 (Diaz-Metcalf, 1966). Let a1, . . . , an be orthonormal
vectors in H. Suppose the vectors x1, . . . , xn ∈ H\ {0} satisfy

(3.4) 0 ≤ rk ≤
Re 〈xi, ak〉
‖xi‖

, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .

Then

(3.5)

(
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

(3.6)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkak.

Similar results valid for semi-inner products may be found in [7]
and [9].

For other classical inequalities related to the triangle inequality, see
Chapter XVII of the book [10] and the references therein.

The aim of the present chapter is to provide various recent reverses
for the generalised triangle inequality in both its simple form that are
closely related to the Diaz-Metcalf results mentioned above, or in the
equivalent quadratic form, i.e., upper bounds for(

n∑
i=1

‖xi‖

)2

−

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

and

‖
∑n

i=1 xi‖2

(
∑n

i=1 ‖xi‖)2 .

Applications for vector valued integral inequalities and for complex
numbers are given as well.

3.2. Some Inequalities of Diaz-Metcalf Type

3.2.1. The Case of One Vector. The following result with a
natural geometrical meaning holds [3]:

Theorem 42 (Dragomir, 2004). Let a be a unit vector in the inner
product space (H; 〈·, ·〉) and ρ ∈ (0, 1) . If xi ∈ H, i ∈ {1, . . . , n} are
such that

(3.7) ‖xi − a‖ ≤ ρ for each i ∈ {1, . . . , n} ,
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then we have the inequality

(3.8)
√

1− ρ2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
with equality if and only if

(3.9)
n∑

i=1

xi =
√

1− ρ2

(
n∑

i=1

‖xi‖

)
a.

Proof. From (3.7) we have

‖xi‖2 − 2 Re 〈xi, a〉+ 1 ≤ ρ2,

giving

(3.10) ‖xi‖2 + 1− ρ2 ≤ 2 Re 〈xi, a〉 ,

for each i ∈ {1, . . . , n} .
Dividing by

√
1− ρ2 > 0, we deduce

(3.11)
‖xi‖2√
1− ρ2

+
√

1− ρ2 ≤ 2 Re 〈xi, a〉√
1− ρ2

,

for each i ∈ {1, . . . , n} .
On the other hand, by the elementary inequality

(3.12)
p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0

we have

(3.13) 2 ‖xi‖ ≤
‖xi‖2√
1− ρ2

+
√

1− ρ2

and thus, by (3.11) and (3.13), we deduce

Re 〈xi, a〉
‖xi‖

≥
√

1− ρ2,

for each i ∈ {1, . . . , n} . Applying Theorem 40 for r =
√

1− ρ2, we
deduce the desired inequality (3.8).

The following results may be stated as well [3].

Theorem 43 (Dragomir, 2004). Let a be a unit vector in the inner
product space (H; 〈·, ·〉) and M ≥ m > 0. If xi ∈ H, i ∈ {1, . . . , n} are
such that either

(3.14) Re 〈Ma− xi, xi −ma〉 ≥ 0
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or, equivalently,

(3.15)

∥∥∥∥xi −
M +m

2
· a
∥∥∥∥ ≤ 1

2
(M −m)

holds for each i ∈ {1, . . . , n} , then we have the inequality

(3.16)
2
√
mM

m+M

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
or, equivalently,

(3.17) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −
√
m
)2

2
√
mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The equality holds in (3.16) (or in (3.17)) if and only if

(3.18)
n∑

i=1

xi =
2
√
mM

m+M

(
n∑

i=1

‖xi‖

)
a.

Proof. Firstly, we remark that if x, z, Z ∈ H, then the following
statements are equivalent:

(i) Re 〈Z − x, x− z〉 ≥ 0;
(ii)

∥∥x− Z+z
2

∥∥ ≤ 1
2
‖Z − z‖ .

Using this fact, one may simply realize that (3.14) and (3.15) are
equivalent.

Now, from (3.14), we get

‖xi‖2 +mM ≤ (M +m) Re 〈xi, a〉 ,

for any i ∈ {1, . . . , n} . Dividing this inequality by
√
mM > 0, we

deduce the following inequality that will be used in the sequel

(3.19)
‖xi‖2

√
mM

+
√
mM ≤ M +m√

mM
Re 〈xi, a〉 ,

for each i ∈ {1, . . . , n} .
Using the inequality (3.12) from Theorem 42, we also have

(3.20) 2 ‖xi‖ ≤
‖xi‖2

√
mM

+
√
mM,

for each i ∈ {1, . . . , n} .
Utilizing (3.19) and (3.20), we may conclude with the following

inequality

‖xi‖ ≤
M +m√
mM

Re 〈xi, a〉 ,
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which is equivalent to

(3.21)
2
√
mM

m+M
≤ Re 〈xi, a〉

‖xi‖
for any i ∈ {1, . . . , n} .

Finally, on applying the Diaz-Metcalf result in Theorem 40 for r =
2
√

mM
m+M

, we deduce the desired conclusion.
The equivalence between (3.16) and (3.17) follows by simple calcu-

lation and we omit the details.

3.2.2. The Case of m Vectors. In a similar manner to the one
used in the proof of Theorem 42 and by the use of the Diaz-Metcalf
inequality incorporated in Theorem 41, we can also prove the following
result [3] :

Proposition 35. Let a1, . . . , an be orthonormal vectors in H. Sup-
pose the vectors x1, . . . , xn ∈ H\ {0} satisfy

(3.22) ‖xi − ak‖ ≤ ρk for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,
where ρk ∈ (0, 1) , k ∈ {1, . . . ,m} . Then we have the following reverse
of the triangle inequality

(3.23)

(
m−

m∑
k=1

ρ2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The equality holds in (3.23) if and only if

(3.24)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

(
1− ρ2

k

) 1
2 ak.

Finally, by the use of Theorem 41 and a similar technique to that
employed in the proof of Theorem 43, we may state the following result
[3]:

Proposition 36. Let a1, . . . , an be orthonormal vectors in H. Sup-
pose the vectors x1, . . . , xn ∈ H\ {0} satisfy

(3.25) Re 〈Mkak − xi, xi − µkak〉 ≥ 0,

or, equivalently,

(3.26)

∥∥∥∥xi −
Mk + µk

2
ak

∥∥∥∥ ≤ 1

2
(Mk − µk) ,

for any i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , where Mk ≥ µk > 0 for
each k ∈ {1, . . . ,m} .
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Then we have the inequality

(3.27) 2

(
m∑

k=1

µkMk

(µk +Mk)
2

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The equality holds in (3.27) iff

(3.28)
n∑

i=1

xi = 2

(
n∑

i=1

‖xi‖

)
m∑

k=1

√
µkMk

µk +Mk

ak.

3.3. Additive Reverses for the Triangle Inequality

3.3.1. The Case of One Vector. In this section we establish
some additive reverses of the generalised triangle inequality in real or
complex inner product spaces.

The following result holds [3]:

Theorem 44 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K and e, xi ∈ H, i ∈
{1, . . . , n} with ‖e‖ = 1. If ki ≥ 0, i ∈ {1, . . . , n} , are such that

(3.29) ‖xi‖ − Re 〈e, xi〉 ≤ ki for each i ∈ {1, . . . , n} ,

then we have the inequality

(3.30) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (3.30) if and only if

(3.31)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(3.32)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
e.

Proof. If we sum in (3.29) over i from 1 to n, then we get

(3.33)
n∑

i=1

‖xi‖ ≤ Re

〈
e,

n∑
i=1

xi

〉
+

n∑
i=1

ki.
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By Schwarz’s inequality for e and
∑n

i=1 xi, we have

Re

〈
e,

n∑
i=1

xi

〉
≤

∣∣∣∣∣Re

〈
e,

n∑
i=1

xi

〉∣∣∣∣∣(3.34)

≤

∣∣∣∣∣
〈
e,

n∑
i=1

xi

〉∣∣∣∣∣ ≤ ‖e‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Making use of (3.33) and (3.34), we deduce the desired inequality
(3.29).

If (3.31) and (3.32) hold, then∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ −
n∑

i=1

ki

∣∣∣∣∣ ‖e‖ =
n∑

i=1

‖xi‖ −
n∑

i=1

ki,

and the equality in the second part of (3.30) holds true.
Conversely, if the equality holds in (3.30), then, obviously (3.31) is

valid and we need only to prove (3.32).
Now, if the equality holds in (3.30) then it must hold in (3.29) for

each i ∈ {1, . . . , n} and also must hold in any of the inequalities in
(3.34).

It is well known that in Schwarz’s inequality |〈u, v〉| ≤ ‖u‖ ‖v‖
(u, v ∈ H) the case of equality holds iff there exists a λ ∈ K such that
u = λv. We note that in the weaker inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ the
case of equality holds iff λ ≥ 0 and u = λv.

Consequently, the equality holds in all inequalities (3.34) simulta-
neously iff there exists a µ ≥ 0 with

(3.35) µe =
n∑

i=1

xi.

If we sum the equalities in (3.29) over i from 1 to n, then we deduce

(3.36)
n∑

i=1

‖xi‖ − Re

〈
e,

n∑
i=1

xi

〉
=

n∑
i=1

ki.

Replacing
∑n

i=1 ‖xi‖ from (3.35) into (3.36), we deduce

n∑
i=1

‖xi‖ − µ ‖e‖2 =
n∑

i=1

ki,

from where we get µ =
∑n

i=1 ‖xi‖ −
∑n

i=1 ki. Using (3.35), we deduce
(3.32) and the theorem is proved.
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3.3.2. The Case of m Vectors. If we turn our attention to the
case of orthogonal families, then we may state the following result as
well [3].

Theorem 45 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K, {ek}k∈{1,...,m} a family

of orthonormal vectors in H, xi ∈ H, Mi,k ≥ 0 for i ∈ {1, . . . , n} and
k ∈ {1, . . . ,m} such that

(3.37) ‖xi‖ − Re 〈ek, xi〉 ≤Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . Then we have the inequality

(3.38)
n∑

i=1

‖xi‖ ≤
1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

n∑
i=1

m∑
k=1

Mik.

The equality holds true in (3.38) if and only if

(3.39)
n∑

i=1

‖xi‖ ≥
1

m

n∑
i=1

m∑
k=1

Mik

and

(3.40)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

)
m∑

k=1

ek.

Proof. If we sum over i from 1 to n in (3.37), then we obtain

n∑
i=1

‖xi‖ ≤ Re

〈
e,

n∑
i=1

xi

〉
+

n∑
i=1

Mik,

for each k ∈ {1, . . . ,m} . Summing these inequalities over k from 1 to
m, we deduce

(3.41)
n∑

i=1

‖xi‖ ≤
1

m
Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
+

1

m

n∑
i=1

m∑
k=1

Mik.



3.3. ADDITIVE REVERSES FOR THE TRIANGLE INEQUALITY 115

By Schwarz’s inequality for
∑m

k=1 ek and
∑n

i=1 xi we have

Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉
≤

∣∣∣∣∣Re

〈
m∑

k=1

ek,
n∑

i=1

xi

〉∣∣∣∣∣(3.42)

≤

∣∣∣∣∣
〈

m∑
k=1

ek,

n∑
i=1

xi

〉∣∣∣∣∣
≤

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
=
√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
since, obviously,∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

√√√√∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
2

=

√√√√ m∑
k=1

‖ek‖2 =
√
m.

Making use of (3.41) and (3.42), we deduce the desired inequality
(3.38).

If (3.39) and (3.40) hold, then

1√
m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =

∣∣∣∣∣
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

∣∣∣∣∣
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥
=

√
m√
m

(
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik

)

=
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik,

and the equality in (3.38) holds true.
Conversely, if the equality holds in (3.38), then, obviously (3.39) is

valid.
Now if the equality holds in (3.38), then it must hold in (3.37) for

each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} and also must hold in any of
the inequalities in (3.42).

It is well known that in Schwarz’s inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ ,
the equality occurs iff u = λv with λ ≥ 0, consequently, the equality
holds in all inequalities (3.42) simultaneously iff there exists a µ ≥ 0
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with

(3.43) µ
m∑

k=1

ek =
n∑

i=1

xi.

If we sum the equality in (3.37) over i from 1 to n and k from 1 to m,
then we deduce

(3.44) m

n∑
i=1

‖xi‖ − Re

〈
m∑

k=1

ek,

n∑
i=1

xi

〉
=

n∑
i=1

m∑
k=1

Mik.

Replacing
∑n

i=1 xi from (3.43) into (3.44), we deduce

m
n∑

i=1

‖xi‖ − µ

m∑
k=1

‖ek‖2 =
n∑

i=1

m∑
k=1

Mik

giving

µ =
n∑

i=1

‖xi‖ −
1

m

n∑
i=1

m∑
k=1

Mik.

Using (3.43), we deduce (3.40) and the theorem is proved.

3.4. Further Additive Reverses

3.4.1. The Case of Small Balls. In this section we point out
different additive reverses of the generalised triangle inequality under
simpler conditions for the vectors involved.

The following result holds [3]:

Theorem 46 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner prod-
uct space over the real or complex number field K and e, xi ∈ H,
i ∈ {1, . . . , n} with ‖e‖ = 1. If ρ ∈ (0, 1) and xi, i ∈ {1, . . . , n} are
such that

(3.45) ‖xi − e‖ ≤ ρ for each i ∈ {1, . . . , n} ,
then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(3.46)

≤ ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉
≤ ρ2√

1− ρ2
(
1 +

√
1− ρ2

) ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
 .
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The equality holds in (3.46) if and only if

(3.47)
n∑

i=1

‖xi‖ ≥
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉
and

(3.48)
n∑

i=1

xi

=

 n∑
i=1

‖xi‖ −
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re

〈
n∑

i=1

xi, e

〉 e.

Proof. We know, from the proof of Theorem 44, that, if (3.45) is
fulfilled, then we have the inequality

‖xi‖ ≤
1√

1− ρ2
Re 〈xi, e〉

for each i ∈ {1, . . . , n} , implying

‖xi‖ − Re 〈xi, e〉 ≤

(
1√

1− ρ2
− 1

)
Re 〈xi, e〉(3.49)

=
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re 〈xi, e〉

for each i ∈ {1, . . . , n} .
Now, making use of Theorem 42, for

ki :=
ρ2√

1− ρ2
(
1 +

√
1− ρ2

) Re 〈xi, e〉 , i ∈ {1, . . . , n} ,

we easily deduce the conclusion of the theorem.
We omit the details.

We may state the following result as well [3]:

Theorem 47 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space and e ∈ H, M ≥ m > 0. If xi ∈ H, i ∈ {1, . . . , n} are such that
either

(3.50) Re 〈Me− xi, xi −me〉 ≥ 0,

or, equivalently,

(3.51)

∥∥∥∥xi −
M +m

2
e

∥∥∥∥ ≤ 1

2
(M −m)
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holds for each i ∈ {1, . . . , n} , then we have the inequality

(0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
(√

M −
√
m
)2

2
√
mM

Re

〈
n∑

i=1

xi, e

〉
(3.52) ≤

(√
M −

√
m
)2

2
√
mM

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
 .

The equality holds in (3.52) if and only if

(3.53)
n∑

i=1

‖xi‖ ≥

(√
M −

√
m
)2

2
√
mM

Re

〈
n∑

i=1

xi, e

〉
and

(3.54)
n∑

i=1

xi =

 n∑
i=1

‖xi‖ −

(√
M −

√
m
)2

2
√
mM

Re

〈
n∑

i=1

xi, e

〉 e.

Proof. We know, from the proof of Theorem 43, that if (3.50) is
fulfilled, then we have the inequality

‖xi‖ ≤
M +m

2
√
mM

Re 〈xi, e〉

for each i ∈ {1, . . . , n} . This is equivalent to

‖xi‖ − Re 〈xi, e〉 ≤

(√
M −

√
m
)2

2
√
mM

Re 〈xi, e〉

for each i ∈ {1, . . . , n} .
Now, making use of Theorem 44, we deduce the conclusion of the

theorem. We omit the details.

Remark 39. If one uses Theorem 45 instead of Theorem 44 above,
then one can state the corresponding generalisation for families of or-
thonormal vectors of the inequalities (3.46) and (3.52) respectively. We
do not provide them here.

3.4.2. The Case of Arbitrary Balls. Now, on utilising a slightly
different approach, we may point out the following result [3]:

Theorem 48 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If ri > 0,
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i ∈ {1, . . . , n} are such that

(3.55) ‖xi − e‖ ≤ ri for each i ∈ {1, . . . , n} ,
then we have the inequality

(3.56) 0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

2

n∑
i=1

r2
i .

The equality holds in (3.56) if and only if

(3.57)
n∑

i=1

‖xi‖ ≥
1

2

n∑
i=1

r2
i

and

(3.58)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

2

n∑
i=1

r2
i

)
e.

Proof. The condition (3.55) is clearly equivalent to

(3.59) ‖xi‖2 + 1 ≤ Re 〈xi, e〉+ r2
i

for each i ∈ {1, . . . , n} .
Using the elementary inequality

(3.60) 2 ‖xi‖ ≤ ‖xi‖2 + 1,

for each i ∈ {1, . . . , n} , then, by (3.59) and (3.60), we deduce

2 ‖xi‖ ≤ 2 Re 〈xi, e〉+ r2
i ,

giving

(3.61) ‖xi‖ − Re 〈xi, e〉 ≤
1

2
r2
i

for each i ∈ {1, . . . , n} .
Now, utilising Theorem 44 for ki = 1

2
r2
i , i ∈ {1, . . . , n} , we deduce

the desired result. We omit the details.

Finally, we may state and prove the following result as well [3].

Theorem 49 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K and e, xi ∈ H, i ∈ {1, . . . , n} with ‖e‖ = 1. If Mi ≥ mi >
0, i ∈ {1, . . . , n} , are such that

(3.62)

∥∥∥∥xi −
Mi +mi

2
e

∥∥∥∥ ≤ 1

2
(Mi −mi) ,

or, equivalently,

(3.63) Re 〈Mie− x, x−mie〉 ≥ 0
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for each i ∈ {1, . . . , n} , then we have the inequality

(3.64) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

4

n∑
i=1

(Mi −mi)
2

Mi +mi

.

The equality holds in (3.64) if and only if

(3.65)
n∑

i=1

‖xi‖ ≥
1

4

n∑
i=1

(Mi −mi)
2

Mi +mi

and

(3.66)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
1

4

n∑
i=1

(Mi −mi)
2

Mi +mi

)
e.

Proof. The condition (3.62) is equivalent to:

‖xi‖2 +

(
Mi +mi

2

)2

≤ 2 Re

〈
xi,

Mi +mi

2
e

〉
+

1

4
(Mi −mi)

2

and since

2

(
Mi +mi

2

)
‖xi‖ ≤ ‖xi‖2 +

(
Mi +mi

2

)2

,

then we get

2

(
Mi +mi

2

)
‖xi‖ ≤ 2 · Mi +mi

2
Re 〈xi, e〉+

1

4
(Mi −mi)

2 ,

or, equivalently,

‖xi‖ − Re 〈xi, e〉 ≤
1

4
· (Mi −mi)

2

Mi +mi

for each i ∈ {1, . . . , n} .
Now, making use of Theorem 44 for ki := 1

4
· (Mi−mi)

2

Mi+mi
, i ∈ {1, . . . , n} ,

we deduce the desired result.

Remark 40. If one uses Theorem 45 instead of Theorem 44 above,
then one can state the corresponding generalisation for families of or-
thonormal vectors of the inequalities in (3.56) and (3.64) respectively.
We omit the details.
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3.5. Reverses of Schwarz Inequality

In this section we outline a procedure showing how some of the
above results for triangle inequality may be employed to obtain reverses
for the celebrated Schwarz inequality.

For a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) define the closed ball

D (a, r) := {x ∈ H, ‖x− a‖ ≤ r} .
The following reverse of the Schwarz inequality holds [3]:

Proposition 37. If x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and
r ∈ (0, 1) , then we have the inequality

(3.67) (0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1

2
r2.

The constant 1
2

in (3.67) is best possible in the sense that it cannot be
replaced by a smaller quantity.

Proof. Using Theorem 42 for x1 = x, x2 = y, ρ = r, we have

(3.68)
√

1− r2 (‖x‖+ ‖y‖) ≤ ‖x+ y‖ .
Taking the square in (3.68) we deduce(

1− r2
) (
‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2) ≤ ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2

which is clearly equivalent to (3.67).
Now, assume that (3.67) holds with a constant C > 0 instead of

1
2
, i.e.,

(3.69)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ Cr2

provided x, y ∈ D (a, r) with a ∈ H, ‖a‖ = 1 and r ∈ (0, 1) .
Let e ∈ H with ‖e‖ = 1 and e ⊥ a. Define x = a + re, y = a − re.

Then
‖x‖ =

√
1 + r2 = ‖y‖ , Re 〈x, y〉 = 1− r2

and thus, from (3.69), we have

1 + r2 − (1− r2)(
2
√

1 + r2
)2 ≤ Cr2

giving
1

2
≤
(
1 + r2

)
C

for any r ∈ (0, 1) . If in this inequality we let r → 0+, then we get
C ≥ 1

2
and the proposition is proved.
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In a similar way, by the use of Theorem 43, we may prove the
following reverse of the Schwarz inequality as well [3]:

Proposition 38. If a ∈ H, ‖a‖ = 1, M ≥ m > 0 and x, y ∈ H
are so that either

Re 〈Ma− x, x−ma〉 ,Re 〈Ma− y, y −ma〉 ≥ 0

or, equivalently,∥∥∥∥x− m+M

2
a

∥∥∥∥ ,∥∥∥∥y − m+M

2
a

∥∥∥∥ ≤ 1

2
(M −m)

hold, then

(0 ≤)
‖x‖ ‖y‖ − Re 〈x, y〉

(‖x‖+ ‖y‖)2 ≤ 1

2

(
M −m

M +m

)2

.

The constant 1
2

cannot be replaced by a smaller quantity.

Remark 41. On utilising Theorem 35 and Theorem 36, we may
deduce some similar reverses of Schwarz inequality provided x, y ∈
∩m

k=1D (ak, ρk) , assumed not to be empty, where a1, ..., an are orthonor-
mal vectors in H and ρk ∈ (0, 1) for k ∈ {1, ...,m} . We omit the details.

Remark 42. For various different reverses of Schwarz inequality
in inner product spaces, see the recent survey [2].

3.6. Quadratic Reverses of the Triangle Inequality

3.6.1. The General Case. The following lemma holds [4]:

Lemma 5 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K, xi ∈ H, i ∈ {1, . . . , n} and
kij > 0 for 1 ≤ i < j ≤ n such that

(3.70) 0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤ kij

for 1 ≤ i < j ≤ n. Then we have the following quadratic reverse of the
triangle inequality

(3.71)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

kij.

The case of equality holds in (3.71) if and only if it holds in (3.70) for
each i, j with 1 ≤ i < j ≤ n.
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Proof. We observe that the following identity holds:(
n∑

i=1

‖xi‖

)2

−

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

(3.72)

=
n∑

i,j=1

‖xi‖ ‖xj‖ −

〈
n∑

i=1

xi,
n∑

j=1

xj

〉

=
n∑

i,j=1

‖xi‖ ‖xj‖ −
n∑

i,j=1

Re 〈xi, xj〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

=
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

+
∑

1≤j<i≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] .

Using the condition (3.70), we deduce that∑
1≤i<j≤n

[‖xi‖ ‖xj‖ − Re 〈xi, xj〉] ≤
∑

1≤i<j≤n

kij,

and by (3.72), we get the desired inequality (3.71).
The case of equality is obvious by the identity (3.72) and we omit

the details.

Remark 43. From (3.71) one may deduce the coarser inequality
that might be useful in some applications:

0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
≤
√

2

( ∑
1≤i<j≤n

kij

) 1
2

(
≤
√

2
∑

1≤i<j≤n

√
kij

)
.

Remark 44. If the condition (3.70) is replaced with the following
refinement of Schwarz’s inequality:

(3.73) (0 ≤) δij ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 for 1 ≤ i < j ≤ n,
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then the following refinement of the quadratic generalised triangle in-
equality is valid:

(3.74)

(
n∑

i=1

‖xi‖

)2

≥

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ 2
∑

1≤i<j≤n

δij

≥ ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2
 .

The equality holds in the first part of (3.74) iff the case of equality holds
in (3.73) for each 1 ≤ i < j ≤ n.

The following result holds [4].

Proposition 39. Let (H; 〈·, ·〉) be as above, xi ∈ H, i ∈ {1, . . . , n}
and r > 0 such that

(3.75) ‖xi − xj‖ ≤ r

for 1 ≤ i < j ≤ n. Then

(3.76)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2
r2.

The case of equality holds in (3.76) if and only if

(3.77) ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 =
1

2
r2

for each i, j with 1 ≤ i < j ≤ n.

Proof. The inequality (3.75) is obviously equivalent to

‖xi‖2 + ‖xj‖2 ≤ 2 Re 〈xi, xj〉+ r2

for 1 ≤ i < j ≤ n. Since

2 ‖xi‖ ‖xj‖ ≤ ‖xi‖2 + ‖xj‖2 , 1 ≤ i < j ≤ n;

hence

(3.78) ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤
1

2
r2

for any i, j with 1 ≤ i < j ≤ n.
Applying Lemma 5 for kij := 1

2
r2 and taking into account that∑

1≤i<j≤n

kij =
n (n− 1)

4
r2,

we deduce the desired inequality (3.76). The case of equality is also
obvious by the above lemma and we omit the details.
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3.6.2. Inequalities in Terms of the Forward Difference. In
the same spirit, and if some information about the forward difference
∆xk := xk+1 − xk (1 ≤ k ≤ n− 1) are available, then the following
simple quadratic reverse of the generalised triangle inequality may be
stated [4].

Corollary 26. Let (H; 〈·, ·〉) be an inner product space and xi ∈
H, i ∈ {1, . . . , n} . Then we have the inequality

(3.79)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n (n− 1)

2

n−1∑
k=1

‖∆xk‖ .

The constant 1
2

is best possible in the sense that it cannot be replaced
in general by a smaller quantity.

Proof. Let 1 ≤ i < j ≤ n. Then, obviously,

‖xj − xi‖ =

∥∥∥∥∥
j−1∑
k=i

∆xk

∥∥∥∥∥ ≤
j−1∑
k=i

‖∆xk‖ ≤
n−1∑
k=1

‖∆xk‖ .

Applying Proposition 39 for r :=
∑n−1

k=1 ‖∆xk‖ , we deduce the desired
result (3.79).

To prove the sharpness of the constant 1
2
, assume that the inequality

(3.79) holds with a constant c > 0, i.e.,

(3.80)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ cn (n− 1)
n−1∑
k=1

‖∆xk‖

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .
If we choose in (3.80), n = 2, x1 = −1

2
e, x2 = 1

2
e, e ∈ H, ‖e‖ = 1,

then we get 1 ≤ 2c, giving c ≥ 1
2
.

The following result providing a reverse of the quadratic generalised
triangle inequality in terms of the sup-norm of the forward differences
also holds [4].

Proposition 40. Let (H; 〈·, ·〉) be an inner product space and xi ∈
H, i ∈ {1, . . . , n} . Then we have the inequality

(3.81)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
n2 (n2 − 1)

12
max

1≤k≤n−1
‖∆xk‖2 .

The constant 1
12

is best possible in (3.81).
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Proof. As above, we have that

‖xj − xi‖ ≤
j−1∑
k=i

‖∆xk‖ ≤ (j − i) max
1≤k≤n−1

‖∆xk‖ ,

for 1 ≤ i < j ≤ n.
Squaring the above inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2 Re 〈xi, xj〉+ (j − i)2 max
1≤k≤n−1

‖∆xk‖2

for any i, j with 1 ≤ i < j ≤ n, and since

2 ‖xi‖ ‖xj‖ ≤ ‖xj‖2 + ‖xi‖2 ,

hence

(3.82) 0 ≤ ‖xi‖ ‖xj‖ − Re 〈xi, xj〉 ≤
1

2
(j − i)2 max

1≤k≤n−1
‖∆xk‖2

for any i, j with 1 ≤ i < j ≤ n.
Applying Lemma 5 for kij := 1

2
(j − i)2 max

1≤k≤n−1
‖∆xk‖2 , we can

state that(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)2 max
1≤k≤n−1

‖∆xk‖2 .

However,

∑
1≤i<j≤n

(j − i)2 =
1

2

n∑
i,j=1

(j − i)2 = n
n∑

k=1

k2 −

(
n∑

k=1

k

)2

=
n2 (n2 − 1)

12

giving the desired inequality.
To prove the sharpness of the constant, assume that (3.81) holds

with a constant D > 0, i.e.,

(3.83)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+Dn2
(
n2 − 1

)
max

1≤k≤n−1
‖∆xk‖2

for n ≥ 2, xi ∈ H, i ∈ {1, . . . , n} .
If in (3.83) we choose n = 2, x1 = −1

2
e, x2 = 1

2
e, e ∈ H, ‖e‖ = 1,

then we get 1 ≤ 12D giving D ≥ 1
12
.

The following result may be stated as well [4].



3.6. QUADRATIC REVERSES OF THE TRIANGLE INEQUALITY 127

Proposition 41. Let (H; 〈·, ·〉) be an inner product space and xi ∈
H, i ∈ {1, . . . , n} . Then we have the inequality:

(3.84)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

where p > 1, 1
p

+ 1
q

= 1.

The constant E = 1 in front of the double sum cannot generally be
replaced by a smaller constant.

Proof. Using Hölder’s inequality, we have

‖xj − xi‖ ≤
j−1∑
k=i

‖∆xk‖ ≤ (j − i)
1
q

(
j−1∑
k=i

‖∆xk‖p

) 1
p

≤ (j − i)
1
q

(
n−1∑
k=1

‖∆xk‖p

) 1
p

,

for 1 ≤ i < j ≤ n.
Squaring the previous inequality, we get

‖xj‖2 + ‖xi‖2 ≤ 2 Re 〈xi, xj〉+ (j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

for 1 ≤ i < j ≤ n.
Utilising the same argument from the proof of Proposition 40, we

deduce the desired inequality (3.84).
Now assume that (3.84) holds with a constant E > 0, i.e.,(

n∑
i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+ E
∑

1≤i<j≤n

(j − i)
2
q

(
n−1∑
k=1

‖∆xk‖p

) 2
p

,

for n ≥ 2 and xi ∈ H, i ∈ {1, . . . , n} , p > 1, 1
p

+ 1
q

= 1.

For n = 2, x1 = −1
2
e, x2 = 1

2
e, ‖e‖ = 1, we get 1 ≤ E, showing the

fact that the inequality (3.84) is sharp.

The particular case p = q = 2 is of interest [4].

Corollary 27. Let (H; 〈·, ·〉) be an inner product space and xi ∈
H, i ∈ {1, . . . , n} . Then we have the inequality:

(3.85)

(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
(n2 − 1)n

6

n−1∑
k=1

‖∆xk‖2 .

The constant 1
6

is best possible in (3.85).
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Proof. For p = q = 2, Proposition 41 provides the inequality(
n∑

i=1

‖xi‖

)2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

+
∑

1≤i<j≤n

(j − i)
n−1∑
k=1

‖∆xk‖2 ,

and since∑
1≤i<j≤n

(j − i)

= 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + · · ·+ n− 1)

=
n−1∑
k=1

(1 + 2 + · · ·+ k) =
n−1∑
k=1

k (k + 1)

2
=
n (n2 − 1)

6
,

hence the inequality (3.84) is proved. The best constant may be shown
in the same way as above but we omit the details.

3.6.3. A Different Quadratic Inequality. Finally, we may state
and prove the following different result [4].

Theorem 50 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space, yi ∈ H, i ∈ {1, . . . , n} and M ≥ m > 0 are such that either

(3.86) Re 〈Myj − yi, yi −myj〉 ≥ 0 for 1 ≤ i < j ≤ n,

or, equivalently,

(3.87)

∥∥∥∥yi −
M +m

2
yj

∥∥∥∥ ≤ 1

2
(M −m) ‖yj‖ for 1 ≤ i < j ≤ n.

Then we have the inequality

(3.88)

(
n∑

i=1

‖yi‖

)2

≤

∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
2

+
1

2
· (M −m)2

M +m

n−1∑
k=1

k ‖yk+1‖2 .

The case of equality holds in (3.88) if and only if

(3.89) ‖yi‖ ‖yj‖ − Re 〈yi, yj〉 =
1

4
· (M −m)2

M +m
‖yj‖2

for each i, j with 1 ≤ i < j ≤ n.

Proof. Taking the square in (3.87), we get

‖yi‖2 +
(M −m)2

M +m
‖yj‖2

≤ 2 Re

〈
yi,

M +m

2
yj

〉
+

1

n
(M −m)2 ‖yj‖2
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for 1 ≤ i < j ≤ n, and since, obviously,

2

(
M +m

2

)
‖yi‖ ‖yj‖ ≤ ‖yi‖2 +

(M −m)2

M +m
‖yj‖2 ,

hence

2

(
M +m

2

)
‖yi‖ ‖yj‖

≤ 2 Re

〈
yi,

M +m

2
yj

〉
+

1

n
(M −m)2 ‖yj‖2 ,

giving the much simpler inequality

(3.90) ‖yi‖ ‖yj‖ − Re 〈yi, yj〉 ≤
1

4
· (M −m)2

M +m
‖yj‖2 ,

for 1 ≤ i < j ≤ n.

Applying Lemma 5 for kij := 1
4
· (M−m)2

M+m
‖yj‖2 , we deduce

(3.91)

(
n∑

i=1

‖yi‖

)2

≤

∥∥∥∥∥
n∑

i=1

yi

∥∥∥∥∥
2

+
1

2

(M −m)2

M +m

∑
1≤i<j≤n

‖yj‖2

with equality if and only if (3.90) holds for each i, j with 1 ≤ i < j ≤ n.
Since∑
1≤i<j≤n

‖yj‖2 =
∑

1<j≤n

‖yj‖2 +
∑

2<j≤n

‖yj‖2 + · · ·+
∑

n−1<j≤n

‖yj‖2

=
n∑

j=2

‖yj‖2 +
n∑

j=3

‖yj‖2 + · · ·+
n∑

j=n−1

‖yj‖2 + ‖yn‖2

=
n∑

j=2

(j − 1) ‖yj‖2 =
n−1∑
k=1

k ‖yk+1‖2 ,

hence the inequality (3.88) is obtained.

3.7. Further Quadratic Refinements

3.7.1. The General Case. The following lemma is of interest in
itself as well [4].

Lemma 6 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K, xi ∈ H, i ∈ {1, . . . , n} and
k ≥ 1 with the property that:

(3.92) ‖xi‖ ‖xj‖ ≤ kRe 〈xi, xj〉 ,
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for each i, j with 1 ≤ i < j ≤ n. Then

(3.93)

(
n∑

i=1

‖xi‖

)2

+ (k − 1)
n∑

i=1

‖xi‖2 ≤ k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The equality holds in (3.93) if and only if it holds in (3.92) for each
i, j with 1 ≤ i < j ≤ n.

Proof. Firstly, let us observe that the following identity holds
true: (

n∑
i=1

‖xi‖

)2

− k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

(3.94)

=
n∑

i,j=1

‖xi‖ ‖xj‖ − k

〈
n∑

i=1

xi,
n∑

j=1

xj

〉

=
n∑

i,j=1

[‖xi‖ ‖xj‖ − kRe 〈xi, xj〉]

= 2
∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − kRe 〈xi, xj〉] + (1− k)
n∑

i=1

‖xi‖2 ,

since, obviously, Re 〈xi, xj〉 = Re 〈xj, xi〉 for any i, j ∈ {1, . . . , n} .
Using the assumption (3.92), we obtain∑

1≤i<j≤n

[‖xi‖ ‖xj‖ − kRe 〈xi, xj〉] ≤ 0

and thus, from (3.94), we deduce the desired inequality (3.93).
The case of equality is obvious by the identity (3.94) and we omit

the details.

Remark 45. The inequality (3.93) provides the following reverse
of the quadratic generalised triangle inequality:

(3.95) 0 ≤

(
n∑

i=1

‖xi‖

)2

−
n∑

i=1

‖xi‖2 ≤ k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

−
n∑

i=1

‖xi‖2

 .
Remark 46. Since k = 1 and

∑n
i=1 ‖xi‖2 ≥ 0, hence by (3.93) one

may deduce the following reverse of the triangle inequality

(3.96)
n∑

i=1

‖xi‖ ≤
√
k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided (3.92) holds true for 1 ≤ i < j ≤ n.
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The following corollary providing a better bound for
∑n

i=1 ‖xi‖ ,
holds [4].

Corollary 28. With the assumptions in Lemma 6, one has the
inequality:

(3.97)
n∑

i=1

‖xi‖ ≤
√

nk

n+ k − 1

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Proof. Using the Cauchy-Bunyakovsky-Schwarz inequality

n
n∑

i=1

‖xi‖2 ≥

(
n∑

i=1

‖xi‖

)2

we get

(3.98) (k − 1)
n∑

i=1

‖xi‖2 +

(
n∑

i=1

‖xi‖

)2

≥
(
k − 1

n
+ 1

)( n∑
i=1

‖xi‖

)2

.

Consequently, by (3.98) and (3.93) we deduce

k

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≥ n+ k − 1

n

(
n∑

i=1

‖xi‖

)2

giving the desired inequality (3.97).

3.7.2. Asymmetric Assumptions. The following result may be
stated as well [4].

Theorem 51 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space and xi ∈ H\ {0} , i ∈ {1, . . . , n} , ρ ∈ (0, 1) , such that

(3.99)

∥∥∥∥xi −
xj

‖xj‖

∥∥∥∥ ≤ ρ for 1 ≤ i < j ≤ n.

Then we have the inequality

(3.100)
√

1− ρ2

(
n∑

i=1

‖xi‖

)2

+
(
1−

√
1− ρ2

) n∑
i=1

‖xi‖2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The case of equality holds in (3.100) iff

(3.101) ‖xi‖ ‖xj‖ =
1√

1− ρ2
Re 〈xi, xj〉

for any 1 ≤ i < j ≤ n.
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Proof. The condition (3.92) is obviously equivalent to

‖xi‖2 + 1− ρ2 ≤ 2 Re

〈
xi,

xj

‖xj‖

〉
for each 1 ≤ i < j ≤ n.

Dividing by
√

1− ρ2 > 0, we deduce

(3.102)
‖xi‖2√
1− ρ2

+
√

1− ρ2 ≤ 2√
1− ρ2

Re

〈
xi,

xj

‖xj‖

〉
,

for 1 ≤ i < j ≤ n.
On the other hand, by the elementary inequality

(3.103)
p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0

we have

(3.104) 2 ‖xi‖ ≤
‖xi‖2√
1− ρ2

+
√

1− ρ2.

Making use of (3.102) and (3.104), we deduce that

‖xi‖ ‖xj‖ ≤
1√

1− ρ2
Re 〈xi, xj〉

for 1 ≤ i < j ≤ n.
Now, applying Lemma 5 for k = 1√

1−ρ2
, we deduce the desired

result.

Remark 47. If we assume that ‖xi‖ = 1, i ∈ {1, . . . , n} , satisfying
the simpler condition

(3.105) ‖xj − xi‖ ≤ ρ for 1 ≤ i < j ≤ n,

then, from (3.100), we deduce the following lower bound for ‖
∑n

i=1 xi‖ ,
namely

(3.106)
[
n+ n (n− 1)

√
1− ρ2

] 1
2 ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The equality holds in (3.106) iff

√
1− ρ2 = Re 〈xi, xj〉 for 1 ≤ i < j ≤

n.

Remark 48. Under the hypothesis of Proposition 41, we have the
coarser but simpler reverse of the triangle inequality

(3.107) 4
√

1− ρ2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
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Also, applying Corollary 28 for k = 1√
1−ρ2

, we can state that

(3.108)
n∑

i=1

‖xi‖ ≤
√

n

n
√

1− ρ2 + 1−
√

1− ρ2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided xi ∈ H satisfy (3.99) for 1 ≤ i < j ≤ n.

In the same manner, we can state and prove the following reverse
of the quadratic generalised triangle inequality [4].

Theorem 52 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K, xi ∈ H, i ∈ {1, . . . , n}
and M ≥ m > 0 such that either

(3.109) Re 〈Mxj − xi, xi −mxj〉 ≥ 0 for 1 ≤ i < j ≤ n,

or, equivalently,

(3.110)

∥∥∥∥xi −
M +m

2
xj

∥∥∥∥ ≤ 1

2
(M −m) ‖xj‖ for 1 ≤ i < j ≤ n

hold. Then

(3.111)
2
√
mM

M +m

(
n∑

i=1

‖xi‖

)2

+

(√
M −

√
m
)2

M +m

n∑
i=1

‖xi‖2

≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

The case of equality holds in (3.111) if and only if

(3.112) ‖xi‖ ‖xj‖ =
M +m

2
√
mM

Re 〈xi, xj〉 for 1 ≤ i < j ≤ n.

Proof. From (3.109), observe that

(3.113) ‖xi‖2 +Mm ‖xj‖2 ≤ (M +m) Re 〈xi, xj〉 ,

for 1 ≤ i < j ≤ n. Dividing (3.113) by
√
mM > 0, we deduce

‖xi‖2

√
mM

+
√
mM ‖xj‖2 ≤ M +m√

mM
Re 〈xi, xj〉 ,

and since, obviously

2 ‖xi‖ ‖xj‖ ≤
‖xi‖2

√
mM

+
√
mM ‖xj‖2
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hence

‖xi‖ ‖xj‖ ≤
M +m

2
√
mM

Re 〈xi, xj〉 , for 1 ≤ i < j ≤ n.

Applying Lemma 6 for k = M+m
2
√

mM
≥ 1, we deduce the desired result.

Remark 49. We also must note that a simpler but coarser inequal-
ity that can be obtained from (3.111) is(

2
√
mM

M +m

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided (3.109) holds true.

Finally, a different result related to the generalised triangle inequal-
ity is incorporated in the following theorem [4].

Theorem 53 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K, η > 0 and xi ∈ H, i ∈ {1, . . . , n} with the property that

(3.114) ‖xj − xi‖ ≤ η < ‖xj‖ for each i, j ∈ {1, . . . , n} .

Then we have the following reverse of the triangle inequality

(3.115)

∑n
i=1

√
‖xi‖2 − η2

‖
∑n

i=1 xi‖
≤ ‖

∑n
i=1 xi‖∑n

i=1 ‖xi‖
.

The equality holds in (3.115) iff

(3.116) ‖xi‖
√
‖xj‖2 − η2 = Re 〈xi, xj〉 for each i, j ∈ {1, . . . , n} .

Proof. From (3.114), we have

‖xi‖2 + ‖xj‖2 − η2 ≤ 2 Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

On the other hand,

2 ‖xi‖
√
‖xj‖2 − η2 ≤ ‖xi‖2 + ‖xj‖2 − η2, i, j ∈ {1, . . . , n}

and thus

‖xi‖
√
‖xj‖2 − η2 ≤ Re 〈xi, xj〉 , i, j ∈ {1, . . . , n} .

Summing over i, j ∈ {1, . . . , n} , we deduce the desired inequality
(3.115).

The case of equality is also obvious from the above, and we omit
the details.
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3.8. Reverses for Complex Spaces

3.8.1. The Case of One Vector. The following result holds [5].

Theorem 54 (Dragomir, 2004). Let (H; 〈·, ·〉) be a complex inner
product space. Suppose that the vectors xk ∈ H, k ∈ {1, . . . , n} satisfy
the condition

(3.117) 0 ≤ r1 ‖xk‖ ≤ Re 〈xk, e〉 , 0 ≤ r2 ‖xk‖ ≤ Im 〈xk, e〉

for each k ∈ {1, . . . , n} , where e ∈ H is such that ‖e‖ = 1 and r1, r2 ≥
0. Then we have the inequality

(3.118)
√
r2
1 + r2

2

n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ,
where equality holds if and only if

(3.119)
n∑

k=1

xk = (r1 + ir2)

(
n∑

k=1

‖xk‖

)
e.

Proof. In view of the Schwarz inequality in the complex inner
product space (H; 〈·, ·〉) , we have∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

‖e‖2 ≥

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣
2

(3.120)

=

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

k=1

Re 〈xk, e〉+ i

(
n∑

k=1

Im 〈xk, e〉

)∣∣∣∣∣
2

=

(
n∑

k=1

Re 〈xk, e〉

)2

+

(
n∑

k=1

Im 〈xk, e〉

)2

.

Now, by hypothesis (3.117)

(3.121)

(
n∑

k=1

Re 〈xk, e〉

)2

≥ r2
1

(
n∑

k=1

‖xk‖

)2

and

(3.122)

(
n∑

k=1

Im 〈xk, e〉

)2

≥ r2
2

(
n∑

k=1

‖xk‖

)2

.
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If we add (3.121) and (3.122) and use (3.120), then we deduce the
desired inequality (3.118).

Now, if (3.119) holds, then∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ = |r1 + ir2|

(
n∑

k=1

‖xk‖

)
‖e‖ =

√
r2
1 + r2

2

n∑
k=1

‖xk‖

and the case of equality is valid in (3.118).
Before we prove the reverse implication, let us observe that for

x ∈ H and e ∈ H, ‖e‖ = 1, the following identity is true

‖x− 〈x, e〉 e‖2 = ‖x‖2 − |〈x, e〉|2 ,

therefore ‖x‖ = |〈x, e〉| if and only if x = 〈x, e〉 e.
If we assume that equality holds in (3.118), then the case of equality

must hold in all the inequalities required in the argument used to prove
the inequality (3.118), and we may state that

(3.123)

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
k=1

xk, e

〉∣∣∣∣∣ ,
and

(3.124) r1 ‖xk‖ = Re 〈xk, e〉 , r2 ‖xk‖ = Im 〈xk, e〉

for each k ∈ {1, . . . , n} .
From (3.123) we deduce

(3.125)
n∑

k=1

xk =

〈
n∑

k=1

xk, e

〉
e

and from (3.124), by multiplying the second equation with i and sum-
ming both equations over k from 1 to n, we deduce

(3.126) (r1 + ir2)
n∑

k=1

‖xk‖ =

〈
n∑

k=1

xk, e

〉
.

Finally, by (3.126) and (3.125), we get the desired equality (3.119).

The following corollary is of interest [5].

Corollary 29. Let e a unit vector in the complex inner product
space (H; 〈·, ·〉) and ρ1, ρ2 ∈ (0, 1) . If xk ∈ H, k ∈ {1, . . . , n} are such
that

(3.127) ‖xk − e‖ ≤ ρ1, ‖xk − ie‖ ≤ ρ2 for each k ∈ {1, . . . , n} ,
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then we have the inequality

(3.128)
√

2− ρ2
1 − ρ2

2

n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ,
with equality if and only if

(3.129)
n∑

k=1

xk =

(√
1− ρ2

1 + i
√

1− ρ2
2

)( n∑
k=1

‖xk‖

)
e.

Proof. From the first inequality in (3.127) we deduce

(3.130) 0 ≤
√

1− ρ2
1 ‖xk‖ ≤ Re 〈xk, e〉

for each k ∈ {1, . . . , n} .
From the second inequality in (3.127) we deduce

0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Re 〈xk, ie〉

for each k ∈ {1, . . . , n} . Since

Re 〈xk, ie〉 = Im 〈xk, e〉 ,

hence

(3.131) 0 ≤
√

1− ρ2
2 ‖xk‖ ≤ Im 〈xk, e〉

for each k ∈ {1, . . . , n} .
Now, observe from (3.130) and (3.131), that the condition (3.117)

of Theorem 54 is satisfied for r1 =
√

1− ρ2
1, r2 =

√
1− ρ2

2 ∈ (0, 1) ,
and thus the corollary is proved.

The following corollary may be stated as well [5].

Corollary 30. Let e be a unit vector in the complex inner product
space (H; 〈·, ·〉) and M1 ≥ m1 > 0, M2 ≥ m2 > 0. If xk ∈ H, k ∈
{1, . . . , n} are such that either

Re 〈M1e− xk, xk −m1e〉 ≥ 0,(3.132)

Re 〈M2ie− xk, xk −m2ie〉 ≥ 0

or, equivalently, ∥∥∥∥xk −
M1 +m1

2
e

∥∥∥∥ ≤ 1

2
(M1 −m1) ,(3.133) ∥∥∥∥xk −

M2 +m2

2
ie

∥∥∥∥ ≤ 1

2
(M2 −m2) ,
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for each k ∈ {1, . . . , n} , then we have the inequality

(3.134) 2

[
m1M1

(M1 +m1)
2 +

m2M2

(M2 +m2)
2

] 1
2

n∑
k=1

‖xk‖ ≤

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ .
The equality holds in (3.134) if and only if

(3.135)
n∑

k=1

xk = 2

( √
m1M1

M1 +m1

+ i

√
m2M2

M2 +m2

)( n∑
k=1

‖xk‖

)
e.

Proof. From the first inequality in (3.132)

(3.136) 0 ≤ 2
√
m1M1

M1 +m1

‖xk‖ ≤ Re 〈xk, e〉

for each k ∈ {1, . . . , n} .
Now, the proof follows the same path as the one of Corollary 29

and we omit the details.

3.8.2. The Case of m Orthonormal Vectors. In [1], the au-
thors have proved the following reverse of the generalised triangle in-
equality in terms of orthonormal vectors [5].

Theorem 55 (Diaz-Metcalf, 1966). Let e1, . . . , em be orthonormal
vectors in (H; 〈·, ·〉), i.e., we recall that 〈ei, ej〉 = 0 if i 6= j and ‖ei‖ =
1, i, j ∈ {1, . . . ,m} . Suppose that the vectors x1, . . . , xn ∈ H satisfy

0 ≤ rk ‖xj‖ ≤ Re 〈xj, ek〉 ,
j ∈ {1, . . . , n} , k ∈ {1, . . . ,m} . Then

(3.137)

(
m∑

k=1

r2
k

) 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ ,
where equality holds if and only if

(3.138)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

rkek.

If the space (H; 〈·, ·〉) is complex and more information is available
for the imaginary part, then the following result may be stated as well
[5].

Theorem 56 (Dragomir, 2004). Let e1, . . . , em ∈ H be an or-
thonormal family of vectors in the complex inner product space H. If
the vectors x1, . . . , xn ∈ H satisfy the conditions

(3.139) 0 ≤ rk ‖xj‖ ≤ Re 〈xj, ek〉 , 0 ≤ ρk ‖xj‖ ≤ Im 〈xj, ek〉
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the following
reverse of the generalised triangle inequality;

(3.140)

[
m∑

k=1

(
r2
k + ρ2

k

)] 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .
The equality holds in (3.140) if and only if

(3.141)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

(rk + iρk) ek.

Proof. Before we prove the theorem, let us recall that, if x ∈ H
and e1, . . . , em are orthogonal vectors, then the following identity holds
true:

(3.142)

∥∥∥∥∥x−
m∑

k=1

〈x, ek〉 ek

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|2 .

As a consequence of this identity, we note the Bessel inequality

(3.143)
m∑

k=1

|〈x, ek〉|2 ≤ ‖x‖2 , x ∈ H.

The case of equality holds in (3.143) if and only if (see (3.142))

(3.144) x =
m∑

k=1

〈x, ek〉 ek.

Applying Bessel’s inequality for x =
∑n

j=1 xj, we have∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≥
m∑

k=1

∣∣∣∣∣
〈

n∑
j=1

xj, ek

〉∣∣∣∣∣
2

=
m∑

k=1

∣∣∣∣∣
n∑

j=1

〈xj, ek〉

∣∣∣∣∣
2

(3.145)

=
m∑

k=1

∣∣∣∣∣
(

n∑
j=1

Re 〈xj, ek〉

)
+ i

(
n∑

j=1

Im 〈xj, ek〉

)∣∣∣∣∣
2

=
m∑

k=1

( n∑
j=1

Re 〈xj, ek〉

)2

+

(
n∑

j=1

Im 〈xj, ek〉

)2
 .

Now, by the hypothesis (3.139) we have

(3.146)

(
n∑

j=1

Re 〈xj, ek〉

)2

≥ r2
k

(
n∑

j=1

‖xj‖

)2
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and

(3.147)

(
n∑

j=1

Im 〈xj, ek〉

)2

≥ ρ2
k

(
n∑

j=1

‖xj‖

)2

.

Further, on making use of (3.145) – (3.147), we deduce∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

≥
m∑

k=1

r2
k

(
n∑

j=1

‖xj‖

)2

+ ρ2
k

(
n∑

j=1

‖xj‖

)2


=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

(
r2
k + ρ2

k

)
,

which is clearly equivalent to (3.140).
Now, if (3.141) holds, then∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥
2

=

(
n∑

j=1

‖xj‖

)2 ∥∥∥∥∥
m∑

k=1

(rk + iρk) ek

∥∥∥∥∥
2

=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

|rk + iρk|
2

=

(
n∑

j=1

‖xj‖

)2 m∑
k=1

(
r2
k + ρ2

k

)
,

and the case of equality holds in (3.140).
Conversely, if the equality holds in (3.140), then it must hold in all

the inequalities used to prove (3.140) and therefore we must have

(3.148)

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥
2

=
m∑

k=1

∣∣∣∣∣
n∑

j=1

〈xj, ek〉

∣∣∣∣∣
2

and

(3.149) rk ‖xj‖ = Re 〈xj, ek〉 , ρk ‖xj‖ = Im 〈xj, ek〉

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} .
Using the identity (3.142), we deduce from (3.148) that

(3.150)
n∑

j=1

xj =
m∑

k=1

〈
n∑

j=1

xj, ek

〉
ek.
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Multiplying the second equality in (3.149) with the imaginary unit i
and summing the equality over j from 1 to n, we deduce

(3.151) (rk + iρk)
n∑

j=1

‖xj‖ =

〈
n∑

j=1

xj, ek

〉
for each k ∈ {1, . . . , n} .

Finally, utilising (3.150) and (3.151), we deduce (3.141) and the
theorem is proved.

The following corollaries are of interest [5].

Corollary 31. Let e1, . . . , em be orthonormal vectors in the com-
plex inner product space (H; 〈·, ·〉) and ρk, ηk ∈ (0, 1) , k ∈ {1, . . . , n} .
If x1, . . . , xn ∈ H are such that

‖xj − ek‖ ≤ ρk, ‖xj − iek‖ ≤ ηk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality

(3.152)

[
m∑

k=1

(
2− ρ2

k − η2
k

)] 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .
The case of equality holds in (3.152) if and only if

(3.153)
n∑

j=1

xj =

(
n∑

j=1

‖xj‖

)
m∑

k=1

(√
1− ρ2

k + i
√

1− η2
k

)
ek.

The proof employs Theorem 56 and is similar to the one from Corol-
lary 29. We omit the details.

Corollary 32. Let e1, . . . , em be as in Corollary 31 and Mk ≥
mk > 0, Nk ≥ nk > 0, k ∈ {1, . . . ,m} . If x1, . . . , xn ∈ H are such that
either

Re 〈Mkek − xj, xj −mkek〉 ≥ 0, Re 〈Nkiek − xj, xj − nkiek〉 ≥ 0

or, equivalently, ∥∥∥∥xj −
Mk +mk

2
ek

∥∥∥∥ ≤ 1

2
(Mk −mk) ,∥∥∥∥xj −

Nk + nk

2
iek

∥∥∥∥ ≤ 1

2
(Nk − nk)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then we have the inequality

(3.154) 2

{
m∑

k=1

[
mkMk

(Mk +mk)
2 +

nkNk

(Nk + nk)
2

]} 1
2 n∑

j=1

‖xj‖ ≤

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ .



142 3. REVERSES FOR THE TRIANGLE INEQUALITY

The case of equality holds in (3.154) if and only if

(3.155)
n∑

j=1

xj = 2

(
n∑

j=1

‖xj‖

)
m∑

k=1

( √
mkMk

Mk +mk

+ i

√
nkNk

Nk + nk

)
ek.

The proof employs Theorem 56 and is similar to the one in Corollary
30. We omit the details.

3.9. Applications for Vector-Valued Integral Inequalities

Let (H; 〈·, ·〉) be a Hilbert space over the real or complex number
field, [a, b] a compact interval in R and η : [a, b] → [0,∞) a Lebesgue

integrable function on [a, b] with the property that
∫ b

a
η (t) dt = 1. If,

by Lη ([a, b] ;H) we denote the Hilbert space of all Bochner measurable

functions f : [a, b] → H with the property that
∫ b

a
η (t) ‖f (t)‖2 dt <∞,

then the norm ‖·‖η of this space is generated by the inner product

〈·, ·〉η : H ×H → K defined by

〈f, g〉η :=

∫ b

a

η (t) 〈f (t) , g (t)〉 dt.

The following proposition providing a reverse of the integral generalised
triangle inequality may be stated [3].

Proposition 42. Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] →
[0,∞) as above. If g ∈ Lη ([a, b] ;H) is so that

∫ b

a
η (t) ‖g (t)‖2 dt = 1

and fi ∈ Lη ([a, b] ;H) , i ∈ {1, . . . , n} , ρ ∈ (0, 1) are so that

(3.156) ‖fi (t)− g (t)‖ ≤ ρ

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality

(3.157)
√

1− ρ2

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

≤

∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

 1
2

.

The case of equality holds in (3.157) if and only if

n∑
i=1

fi (t) =
√

1− ρ2

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

· g (t)

for a.e. t ∈ [a, b] .
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Proof. Observe, by (3.157), that

‖fi − g‖η =

(∫ b

a

η (t) ‖fi (t)− g (t)‖2 dt

) 1
2

≤
(∫ b

a

η (t) ρ2dt

) 1
2

= ρ

for each i ∈ {1, . . . , n} . Applying Theorem 42 for the Hilbert space
Lη ([a, b] ;H) , we deduce the desired result.

The following result may be stated as well [3].

Proposition 43. Let H, η, g be as in Proposition 42. If fi ∈
Lη ([a, b] ;H) , i ∈ {1, . . . , n} and M ≥ m > 0 are so that either

Re 〈Mg (t)− fi (t) , fi (t)−mg (t)〉 ≥ 0

or, equivalently, ∥∥∥∥fi (t)−
m+M

2
g (t)

∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} , then we have the inequality

(3.158)
2
√
mM

m+M

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

≤

∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

 1
2

.

The equality holds in (3.158) if and only if

n∑
i=1

fi (t) =
2
√
mM

m+M

n∑
i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

· g (t) ,

for a.e. t ∈ [a, b] .

The following proposition providing a reverse of the integral gener-
alised triangle inequality may be stated [4].

Proposition 44. Let (H; 〈·, ·〉) be a Hilbert space and η : [a, b] →
[0,∞) as above. If g ∈ Lη ([a, b] ;H) is so that

∫ b

a
η (t) ‖g (t)‖2 dt = 1

and fi ∈ Lη ([a, b] ;H) , i ∈ {1, . . . , n} , and M ≥ m > 0 are so that
either

(3.159) Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 ≥ 0
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or, equivalently,∥∥∥∥fi (t)−
m+M

2
fj (t)

∥∥∥∥ ≤ 1

2
(M −m) ‖fj (t)‖

for a.e. t ∈ [a, b] and 1 ≤ i < j ≤ n, then we have the inequality

(3.160)

[
n∑

i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

]2

≤
∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt

+
1

2
· (M −m)2

m+M

∫ b

a

η (t)

(
n−1∑
k=1

k ‖fk+1 (t)‖2

)
dt.

The case of equality holds in (3.160) if and only if

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2
(∫ b

a

η (t) ‖fj (t)‖2 dt

) 1
2

−
∫ b

a

η (t) Re 〈fi (t) , fj (t)〉 dt

=
1

4
· (M −m)2

m+M

∫ b

a

η (t) ‖fj (t)‖2 dt

for each i, j with 1 ≤ i < j ≤ n.

Proof. We observe that

Re 〈Mfj − fi, fi −mfj〉η

=

∫ b

a

η (t) Re 〈Mfj (t)− fi (t) , fi (t)−mfj (t)〉 dt ≥ 0

for any i, j with 1 ≤ i < j ≤ n.
Applying Theorem 50 for the Hilbert space Lη ([a, b] ;H) and for

yi = fi, i ∈ {1, . . . , n} , we deduce the desired result.

Another integral inequality incorporated in the following proposi-
tion holds [4]:
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Proposition 45. With the assumptions of Proposition 44, we have

(3.161)
2
√
mM

m+M

[
n∑

i=1

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2

]2

+

(√
M −

√
m
)2

m+M

n∑
i=1

∫ b

a

η (t) ‖fi (t)‖2 dt

≤
∫ b

a

η (t)

∥∥∥∥∥
n∑

i=1

fi (t)

∥∥∥∥∥
2

dt.

The case of equality holds in (3.161) if and only if

(∫ b

a

η (t) ‖fi (t)‖2 dt

) 1
2
(∫ b

a

η (t) ‖fj (t)‖2 dt

) 1
2

=
M +m

2
√
mM

∫ b

a

η (t) Re 〈fi (t) , fj (t)〉 dt

for any i, j with 1 ≤ i < j ≤ n.

The proof is obvious by Theorem 52 and we omit the details.

3.10. Applications for Complex Numbers

The following reverse of the generalised triangle inequality with a
clear geometric meaning may be stated [5].

Proposition 46. Let z1, . . . , zn be complex numbers with the prop-
erty that

(3.162) 0 ≤ ϕ1 ≤ arg (zk) ≤ ϕ2 <
π

2

for each k ∈ {1, . . . , n} . Then we have the inequality

(3.163)
√

sin2 ϕ1 + cos2 ϕ2

n∑
k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ .
The equality holds in (3.163) if and only if

(3.164)
n∑

k=1

zk = (cosϕ2 + i sinϕ1)
n∑

k=1

|zk| .
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Proof. Let zk = ak + ibk. We may assume that bk ≥ 0, ak > 0,
k ∈ {1, . . . , n} , since, by (3.162), bk

ak
= tan [arg (zk)] ∈

[
0, π

2

)
, k ∈

{1, . . . , n} . By (3.162), we obviously have

0 ≤ tan2 ϕ1 ≤
b2k
a2

k

≤ tan2 ϕ2, k ∈ {1, . . . , n}

from where we get

b2k + a2
k

a2
k

≤ 1

cos2 ϕ2

, k ∈ {1, . . . , n} , ϕ2 ∈
(
0,
π

2

)
and

a2
k + b2k
a2

k

≤ 1 + tan2 ϕ1

tan2 ϕ1

=
1

sin2 ϕ1

, k ∈ {1, . . . , n} , ϕ1 ∈
(
0,
π

2

)
giving the inequalities

|zk| cosϕ2 ≤ Re (zk) , |zk| sinϕ1 ≤ Im (zk)

for each k ∈ {1, . . . , n} .
Now, applying Theorem 54 for the complex inner product C en-

dowed with the inner product 〈z, w〉 = z · w̄ for xk = zk, r1 = cosϕ2,
r2 = sinϕ1 and e = 1, we deduce the desired inequality (3.163). The
case of equality is also obvious by Theorem 54 and the proposition is
proven.

Another result that has an obvious geometrical interpretation is the
following one.

Proposition 47. Let c ∈ C with |z| = 1 and ρ1, ρ2 ∈ (0, 1) . If
zk ∈ C, k ∈ {1, . . . , n} are such that

(3.165) |zk − c| ≤ ρ1, |zk − ic| ≤ ρ2 for each k ∈ {1, . . . , n} ,

then we have the inequality

(3.166)
√

2− ρ2
1 − ρ2

2

n∑
k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
with equality if and only if

(3.167)
n∑

k=1

zk =

(√
1− ρ2

1 + i
√

1− ρ2
2

)( n∑
k=1

|zk|

)
c.

The proof is obvious by Corollary 29 applied for H = C.
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Remark 50. If we choose e = 1, and for ρ1, ρ2 ∈ (0, 1) we define
D̄ (1, ρ1) := {z ∈ C| |z − 1| ≤ ρ1} , D̄ (i, ρ2) := {z ∈ C| |z − i| ≤ ρ2} ,
then obviously the intersection

Sρ1,ρ2
:= D̄ (1, ρ1) ∩ D̄ (i, ρ2)

is nonempty if and only if ρ1 + ρ2 ≥
√

2.
If zk ∈ Sρ1,ρ2

for k ∈ {1, . . . , n} , then (3.166) holds true. The
equality holds in (3.166) if and only if

n∑
k=1

zk =

(√
1− ρ2

1 + i
√

1− ρ2
2

) n∑
k=1

|zk| .
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[9] P.M. MILIČIĆ, On a complementary inequality of the triangle inequality
(French), Mat. Vesnik 41(1989), No. 2, 83-88.
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CHAPTER 4

Reverses for the Continuous Triangle Inequality

4.1. Introduction

Let f : [a, b] → K, K = C or R be a Lebesgue integrable function.
The following inequality, which is the continuous version of the triangle
inequality

(4.1)

∣∣∣∣∫ b

a

f (x) dx

∣∣∣∣ ≤ ∫ b

a

|f (x)| dx,

plays a fundamental role in Mathematical Analysis and its applications.
It appears, see [8, p. 492], that the first reverse inequality for (4.1)

was obtained by J. Karamata in his book from 1949, [6]. It can be
stated as

(4.2) cos θ

∫ b

a

|f (x)| dx ≤
∣∣∣∣∫ b

a

f (x) dx

∣∣∣∣
provided

−θ ≤ arg f (x) ≤ θ, x ∈ [a, b]

for given θ ∈
(
0, π

2

)
.

This integral inequality is the continuous version of a reverse in-
equality for the generalised triangle inequality

(4.3) cos θ
n∑

i=1

|zi| ≤

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ,
provided

a− θ ≤ arg (zi) ≤ a+ θ, for i ∈ {1, . . . , n} ,

where a ∈ R and θ ∈
(
0, π

2

)
, which, as pointed out in [8, p. 492],

was first discovered by M. Petrovich in 1917, [9], and, subsequently
rediscovered by other authors, including J. Karamata [6, p. 300 – 301],
H.S. Wilf [10], and in an equivalent form, by M. Marden [7].

The first to consider the problem in the more general case of Hilbert
and Banach spaces, were J.B. Diaz and F.T. Metcalf [1] who showed
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that, in an inner product space H over the real or complex number
field , the following reverse of the triangle inequality holds

(4.4) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided

0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} ,

and a ∈ H is a unit vector, i.e., ‖a‖ = 1. The case of equality holds in
(4.4) if and only if

(4.5)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
a.

A generalisation of this result for orthonormal families is also well
known [1]:

Let a1, . . . , am be m orthonormal vectors in H. Suppose the vectors
x1, . . . , xn ∈ H\ {0} satisfy

0 ≤ rk ≤
Re 〈xi, ak〉
‖xi‖

, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .

Then (
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

n∑
i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkak.

The main aim of this chapter is to survey some recent reverses of the
triangle inequality for Bochner integrable functions f with values in
Hilbert spaces and defined on a compact interval [a, b] ⊂ R. Applica-
tions for Lebesgue integrable complex-valued functions are provided as
well.

4.2. Multiplicative Reverses

4.2.1. Reverses for a Unit Vector. We recall that f ∈ L ([a, b] ;H) ,
the space of Bochner integrable functions with values in a Hilbert space
H, if and only if f : [a, b] → H is Bochner measurable on [a, b] and the

Lebesgue integral
∫ b

a
‖f (t)‖ dt is finite.

The following result holds [2]:
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Theorem 57 (Dragomir, 2004). If f ∈ L ([a, b] ;H) is such that
there exists a constant K ≥ 1 and a vector e ∈ H, ‖e‖ = 1 with

(4.6) ‖f (t)‖ ≤ K Re 〈f (t) , e〉 for a.e. t ∈ [a, b] ,

then we have the inequality:

(4.7)

∫ b

a

‖f (t)‖ dt ≤ K

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.7) if and only if

(4.8)

∫ b

a

f (t) dt =
1

K

(∫ b

a

‖f (t)‖ dt
)
e.

Proof. By the Schwarz inequality in inner product spaces, we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ‖e‖(4.9)

≥
∣∣∣∣〈∫ b

a

f (t) dt, e

〉∣∣∣∣ ≥ ∣∣∣∣Re

〈∫ b

a

f (t) dt, e

〉∣∣∣∣
≥ Re

〈∫ b

a

f (t) dt, e

〉
=

∫ b

a

Re 〈f (t) , e〉 dt.

From the condition (4.6), on integrating over [a, b] , we deduce

(4.10)

∫ b

a

Re 〈f (t) , e〉 dt ≥ 1

K

∫ b

a

‖f (t)‖ dt,

and thus, on making use of (4.9) and (4.10), we obtain the desired
inequality (4.7).

If (4.8) holds true, then, obviously

K

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ = ‖e‖
∫ b

a

‖f (t)‖ dt =

∫ b

a

‖f (t)‖ dt,

showing that (4.7) holds with equality.
If we assume that the equality holds in (4.7), then by the argument

provided at the beginning of our proof, we must have equality in each
of the inequalities from (4.9) and (4.10).

Observe that in Schwarz’s inequality ‖x‖ ‖y‖ ≥ Re 〈x, y〉 , x, y ∈ H,
the case of equality holds if and only if there exists a positive scalar
µ such that x = µe. Therefore, equality holds in the first inequality in

(4.9) iff
∫ b

a
f (t) dt = λe, with λ ≥ 0 .
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If we assume that a strict inequality holds in (4.6) on a subset of
nonzero Lebesgue measure in [a, b] , then∫ b

a

‖f (t)‖ dt < K

∫ b

a

Re 〈f (t) , e〉 dt,

and by (4.9) we deduce a strict inequality in (4.7), which contradicts
the assumption. Thus, we must have ‖f (t)‖ = K Re 〈f (t) , e〉 for a.e.
t ∈ [a, b] .

If we integrate this equality, we deduce∫ b

a

‖f (t)‖ dt = K

∫ b

a

Re 〈f (t) , e〉 dt = K Re

〈∫ b

a

f (t) dt, e

〉
= K Re 〈λe, e〉 = λK

giving

λ =
1

K

∫ b

a

‖f (t)‖ dt,

and thus the equality (4.8) is necessary.
This completes the proof.

A more appropriate result from an applications point of view is
perhaps the following result [2].

Corollary 33. Let e be a unit vector in the Hilbert space (H; 〈·, ·〉) ,
ρ ∈ (0, 1) and f ∈ L ([a, b] ;H) so that

(4.11) ‖f (t)− e‖ ≤ ρ for a.e. t ∈ [a, b] .

Then we have the inequality

(4.12)
√

1− ρ2

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if

(4.13)

∫ b

a

f (t) dt =
√

1− ρ2

(∫ b

a

‖f (t)‖ dt
)
e.

Proof. From (4.11), we have

‖f (t)‖2 − 2 Re 〈f (t) , e〉+ 1 ≤ ρ2,

giving
‖f (t)‖2 + 1− ρ2 ≤ 2 Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .

Dividing by
√

1− ρ2 > 0, we deduce

(4.14)
‖f (t)‖2√

1− ρ2
+
√

1− ρ2 ≤ 2 Re 〈f (t) , e〉√
1− ρ2
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for a.e. t ∈ [a, b] .
On the other hand, by the elementary inequality

p

α
+ qα ≥ 2

√
pq, p, q ≥ 0, α > 0

we have

(4.15) 2 ‖f (t)‖ ≤ ‖f (t)‖2√
1− ρ2

+
√

1− ρ2

for each t ∈ [a, b] .
Making use of (4.14) and (4.15), we deduce

‖f (t)‖ ≤ 1√
1− ρ2

Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
Applying Theorem 57 for K = 1√

1−ρ2
, we deduce the desired in-

equality (4.12).

In the same spirit, we also have the following corollary [2].

Corollary 34. Let e be a unit vector in H and M ≥ m > 0. If
f ∈ L ([a, b] ;H) is such that

(4.16) Re 〈Me− f (t) , f (t)−me〉 ≥ 0

or, equivalently,

(4.17)

∥∥∥∥f (t)− M +m

2
e

∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , then we have the inequality

(4.18)
2
√
mM

M +m

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
or, equivalently,

(0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥(4.19)

≤

(√
M −

√
m
)2

M +m

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The equality holds in (4.18) (or in the second part of (4.19)) if and
only if

(4.20)

∫ b

a

f (t) dt =
2
√
mM

M +m

(∫ b

a

‖f (t)‖ dt
)
e.
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Proof. Firstly, we remark that if x, z, Z ∈ H, then the following
statements are equivalent

(i) Re 〈Z − x, x− z〉 ≥ 0
and

(ii)
∥∥x− Z+z

2

∥∥ ≤ 1
2
‖Z − z‖ .

Using this fact, we may simply realise that (4.14) and (4.15) are
equivalent.

Now, from (4.14), we obtain

‖f (t)‖2 +mM ≤ (M +m) Re 〈f (t) , e〉

for a.e. t ∈ [a, b] . Dividing this inequality with
√
mM > 0, we deduce

the following inequality that will be used in the sequel

(4.21)
‖f (t)‖2

√
mM

+
√
mM ≤ M +m√

mM
Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
On the other hand

(4.22) 2 ‖f (t)‖ ≤ ‖f (t)‖2

√
mM

+
√
mM,

for any t ∈ [a, b] .
Utilising (4.21) and (4.22), we may conclude with the following

inequality

‖f (t)‖ ≤ M +m

2
√
mM

Re 〈f (t) , e〉 ,

for a.e. t ∈ [a, b] .
Applying Theorem 57 for the constant K := m+M

2
√

mM
≥ 1, we deduce

the desired result.

4.2.2. Reverses for Orthonormal Families of Vectors. The
following result for orthonormal vectors in H holds [2].

Theorem 58 (Dragomir, 2004). Let {e1, . . . , en} be a family of
orthonormal vectors in H, ki ≥ 0, i ∈ {1, . . . , n} and f ∈ L ([a, b] ;H)
such that

(4.23) ki ‖f (t)‖ ≤ Re 〈f (t) , ei〉
for each i ∈ {1, . . . , n} and for a.e. t ∈ [a, b] .

Then

(4.24)

(
n∑

i=1

k2
i

) 1
2 ∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
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where equality holds if and only if

(4.25)

∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt
) n∑

i=1

kiei.

Proof. By Bessel’s inequality applied for
∫ b

a
f (t) dt and the or-

thonormal vectors {e1, . . . , en} , we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

≥
n∑

i=1

∣∣∣∣〈∫ b

a

f (t) dt, ei

〉∣∣∣∣2(4.26)

≥
n∑

i=1

[
Re

〈∫ b

a

f (t) dt, ei

〉]2

=
n∑

i=1

[∫ b

a

Re 〈f (t) , ei〉 dt
]2

.

Integrating (4.23), we get for each i ∈ {1, . . . , n}

0 ≤ ki

∫ b

a

‖f (t)‖ dt ≤
∫ b

a

Re 〈f (t) , ei〉 dt,

implying

(4.27)
n∑

i=1

[∫ b

a

Re 〈f (t) , ei〉 dt
]2

≥
n∑

i=1

k2
i

(∫ b

a

‖f (t)‖ dt
)2

.

On making use of (4.26) and (4.27), we deduce∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

≥
n∑

i=1

k2
i

(∫ b

a

‖f (t)‖ dt
)2

,

which is clearly equivalent to (4.24).
If (4.25) holds true, then∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

(∫ b

a

‖f (t)‖ dt
)∥∥∥∥∥

n∑
i=1

kiei

∥∥∥∥∥
=

(∫ b

a

‖f (t)‖ dt
)[ n∑

i=1

k2
i ‖ei‖2

] 1
2

=

(
n∑

i=1

k2
i

) 1
2 ∫ b

a

‖f (t)‖ dt,

showing that (4.24) holds with equality.
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Now, suppose that there is an i0 ∈ {1, . . . , n} for which

ki0 ‖f (t)‖ < Re 〈f (t) , ei0〉

on a subset of nonzero Lebesgue measure in [a, b] . Then obviously

ki0

∫ b

a

‖f (t)‖ dt <
∫ b

a

Re 〈f (t) , ei0〉 dt,

and using the argument given above, we deduce(
n∑

i=1

k2
i

) 1
2 ∫ b

a

‖f (t)‖ dt <
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Therefore, if the equality holds in (4.24), we must have

(4.28) ki ‖f (t)‖ = Re 〈f (t) , ei〉

for each i ∈ {1, . . . , n} and a.e. t ∈ [a, b] .
Also, if the equality holds in (4.24), then we must have equality in

all inequalities (4.26), this means that

(4.29)

∫ b

a

f (t) dt =
n∑

i=1

〈∫ b

a

f (t) dt, ei

〉
ei

and

(4.30) Im

〈∫ b

a

f (t) dt, ei

〉
= 0 for each i ∈ {1, . . . , n} .

Using (4.28) and (4.30) in (4.29), we deduce∫ b

a

f (t) dt =
n∑

i=1

Re

〈∫ b

a

f (t) dt, ei

〉
ei

=
n∑

i=1

∫ b

a

Re 〈f (t) , ei〉 eidt

=
n∑

i=1

(∫ b

a

‖f (t)‖ dt
)
kiei

=

∫ b

a

‖f (t)‖ dt
n∑

i=1

kiei,

and the condition (4.25) is necessary.
This completes the proof.

The following two corollaries are of interest [2].
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Corollary 35. Let {e1, . . . , en} be a family of orthonormal vectors
in H, ρi ∈ (0, 1) , i ∈ {1, . . . , n} and f ∈ L ([a, b] ;H) such that:

(4.31) ‖f (t)− ei‖ ≤ ρi for i ∈ {1, . . . , n} and a.e. t ∈ [a, b] .

Then we have the inequality(
n−

n∑
i=1

ρ2
i

) 1
2 ∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if∫ b

a

f (t) dt =

∫ b

a

‖f (t)‖ dt
n∑

i=1

(
1− ρ2

i

)1/2
ei.

Proof. From the proof of Theorem 57, we know that (4.25) implies
the inequality√

1− ρ2
i ‖f (t)‖ ≤ Re 〈f (t) , ei〉 , i ∈ {1, . . . , n} , for a.e. t ∈ [a, b] .

Now, applying Theorem 58 for ki :=
√

1− ρ2
i , i ∈ {1, . . . , n}, we de-

duce the desired result.

A different results is incorporated in (see [2]):

Corollary 36. Let {e1, . . . , en} be a family of orthonormal vectors
in H, Mi ≥ mi > 0, i ∈ {1, . . . , n} and f ∈ L ([a, b] ;H) such that

(4.32) Re 〈Miei − f (t) , f (t)−miei〉 ≥ 0

or, equivalently, ∥∥∥∥f (t)− Mi +mi

2
ei

∥∥∥∥ ≤ 1

2
(Mi −mi)

for i ∈ {1, . . . , n} and a.e. t ∈ [a, b] . Then we have the reverse of the
continuous triangle inequality[

n∑
i=1

4miMi

(mi +Mi)
2

] 1
2 ∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if∫ b

a

f (t) dt =

∫ b

a

‖f (t)‖ dt

(
n∑

i=1

2
√
miMi

mi +Mi

ei

)
.
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Proof. From the proof of Corollary 35, we know (4.32) implies
that

2
√
miMi

mi +Mi

‖f (t)‖ ≤ Re 〈f (t) , ei〉 , i ∈ {1, . . . , n} and a.e. t ∈ [a, b] .

Now, applying Theorem 58 for ki := 2
√

miMi

mi+Mi
, i ∈ {1, . . . , n} , we deduce

the desired result.

4.3. Some Additive Reverses

4.3.1. The Case of a Unit Vector. The following result holds
[3].

Theorem 59 (Dragomir, 2004). If f ∈ L ([a, b] ;H) is such that
there exists a vector e ∈ H, ‖e‖ = 1 and k : [a, b] → [0,∞), a Lebesgue
integrable function with

(4.33) ‖f (t)‖ − Re 〈f (t) , e〉 ≤ k (t) for a.e. t ∈ [a, b] ,

then we have the inequality:

(4.34) (0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ ∫ b

a

k (t) dt.

The equality holds in (4.34) if and only if

(4.35)

∫ b

a

‖f (t)‖ dt ≥
∫ b

a

k (t) dt

and

(4.36)

∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

)
e.

Proof. If we integrate the inequality (4.33), we get

(4.37)

∫ b

a

‖f (t)‖ dt ≤ Re

〈∫ b

a

f (t) dt, e

〉
+

∫ b

a

k (t) dt.

By Schwarz’s inequality for e and
∫ b

a
f (t) dt, we have

Re

〈∫ b

a

f (t) dt, e

〉
(4.38)

≤
∣∣∣∣Re

〈∫ b

a

f (t) dt, e

〉∣∣∣∣ ≤ ∣∣∣∣〈∫ b

a

f (t) dt, e

〉∣∣∣∣
≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ‖e‖ =

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
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Making use of (4.37) and (4.38), we deduce the desired inequality
(4.34).

If (4.35) and (4.36) hold true, then∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

∣∣∣∣∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

∣∣∣∣ ‖e‖
=

∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

and the equality holds true in (4.34).
Conversely, if the equality holds in (4.34), then, obviously (4.35) is

valid and we need only to prove (4.36).
If ‖f (t)‖ − Re 〈f (t) , e〉 < k (t) on a subset of nonzero Lebesgue

measure in [a, b] , then (4.37) holds as a strict inequality, implying that
(4.34) also holds as a strict inequality. Therefore, if we assume that
equality holds in (4.34), then we must have

(4.39) ‖f (t)‖ = Re 〈f (t) , e〉+ k (t) for a.e. t ∈ [a, b] .

It is well known that in Schwarz’s inequality ‖x‖ ‖y‖ ≥ Re 〈x, y〉
the equality holds iff there exists a λ ≥ 0 such that x = λy. Therefore,
if we assume that the equality holds in all of (4.38), then there exists
a λ ≥ 0 such that

(4.40)

∫ b

a

f (t) dt = λe.

Integrating (4.39) on [a, b] , we deduce∫ b

a

‖f (t)‖ dt = Re

〈∫ b

a

f (t) dt, e

〉
+

∫ b

a

k (t) dt,

and thus, by (4.40), we get∫ b

a

‖f (t)‖ dt = λ ‖e‖2 +

∫ b

a

k (t) dt,

giving λ =
∫ b

a
‖f (t)‖ dt−

∫ b

a
k (t) dt.

Using (4.40), we deduce (4.36) and the theorem is completely proved.

The following corollary may be useful for applications [3].

Corollary 37. If f ∈ L ([a, b] ;H) is such that there exists a vec-
tor e ∈ H, ‖e‖ = 1 and ρ ∈ (0, 1) such that

(4.41) ‖f (t)− e‖ ≤ ρ for a.e. t ∈ [a, b] ,
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then we have the inequality

(0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥(4.42)

≤ ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈∫ b

a

f (t) dt, e

〉
≤ ρ2√

1− ρ2
(
1 +

√
1− ρ2

) ∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
 .

The equality holds in (4.42) if and only if

(4.43)

∫ b

a

‖f (t)‖ dt ≥ ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈∫ b

a

f (t) dt, e

〉
and

(4.44)

∫ b

a

f (t) dt

=

∫ b

a

‖f (t)‖ dt− ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re

〈∫ b

a

f (t) dt, e

〉 e.

Proof. Firstly, note that (4.35) is equivalent to

‖f (t)‖2 + 1− ρ2 ≤ 2 Re 〈f (t) , e〉 ,
giving

‖f (t)‖2√
1− ρ2

+
√

1− ρ2 ≤ 2 Re 〈f (t) , e〉√
1− ρ2

for a.e. t ∈ [a, b] .
Since, obviously

2 ‖f (t)‖ ≤ ‖f (t)‖2√
1− ρ2

+
√

1− ρ2

for any t ∈ [a, b] , then we deduce the inequality

‖f (t)‖ ≤ Re 〈f (t) , e〉√
1− ρ2

for a.e. t ∈ [a, b] ,

which is clearly equivalent to

‖f (t)‖ − Re 〈f (t) , e〉 ≤ ρ2√
1− ρ2

(
1 +

√
1− ρ2

) Re 〈f (t) , e〉
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for a.e. t ∈ [a, b] .

Applying Theorem 59 for k (t) := ρ2√
1−ρ2

(
1+
√

1−ρ2
) Re 〈f (t) , e〉 , we

deduce the desired result.

In the same spirit, we also have the following corollary [3].

Corollary 38. If f ∈ L ([a, b] ;H) is such that there exists a vec-
tor e ∈ H, ‖e‖ = 1 and M ≥ m > 0 such that either

(4.45) Re 〈Me− f (t) , f (t)−me〉 ≥ 0

or, equivalently,

(4.46)

∥∥∥∥f (t)− M +m

2
e

∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , then we have the inequality

(0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥(4.47)

≤

(√
M −

√
m
)2

2
√
mM

Re

〈∫ b

a

f (t) dt, e

〉
≤

(√
M −

√
m
)2

2
√
mM

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
 .

The equality holds in (4.47) if and only if∫ b

a

‖f (t)‖ dt ≥

(√
M −

√
m
)2

2
√
mM

Re

〈∫ b

a

f (t) dt, e

〉
and∫ b

a

f (t) dt =

∫ b

a

‖f (t)‖ dt−

(√
M −

√
m
)2

2
√
mM

Re

〈∫ b

a

f (t) dt, e

〉 e.

Proof. Observe that (4.45) is clearly equivalent to

‖f (t)‖2 +mM ≤ (M +m) Re 〈f (t) , e〉
for a.e. t ∈ [a, b] , giving the inequality

‖f (t)‖2

√
mM

+
√
mM ≤ M +m√

mM
Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
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Since, obviously,

2 ‖f (t)‖ ≤ ‖f (t)‖2

√
mM

+
√
mM

for any t ∈ [a, b] , hence we deduce the inequality

‖f (t)‖ ≤ M +m√
mM

Re 〈f (t) , e〉 for a.e. t ∈ [a, b] ,

which is clearly equivalent to

‖f (t)‖ − Re 〈f (t) , e〉 ≤

(√
M −

√
m
)2

2
√
mM

Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
Finally, applying Theorem 59, we obtain the desired result.

We can state now (see also [3]):

Corollary 39. If f ∈ L ([a, b] ;H) and r ∈ L2 ([a, b] ;H) , e ∈ H,
‖e‖ = 1 are such that

(4.48) ‖f (t)− e‖ ≤ r (t) for a.e. t ∈ [a, b] ,

then we have the inequality

(4.49) (0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ 1

2

∫ b

a

r2 (t) dt.

The equality holds in (4.49) if and only if∫ b

a

‖f (t)‖ dt ≥ 1

2

∫ b

a

r2 (t) dt

and ∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt− 1

2

∫ b

a

r2 (t) dt

)
e.

Proof. The condition (4.48) is obviously equivalent to

‖f (t)‖2 + 1 ≤ 2 Re 〈f (t) , e〉+ r2 (t)

for a.e. t ∈ [a, b] .
Using the elementary inequality

2 ‖f (t)‖ ≤ ‖f (t)‖2 + 1, t ∈ [a, b] ,

we deduce

‖f (t)‖ − Re 〈f (t) , e〉 ≤ 1

2
r2 (t)

for a.e. t ∈ [a, b] .
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Applying Theorem 59 for k (t) := 1
2
r2 (t) , t ∈ [a, b], we deduce the

desired result.

Finally, we may state and prove the following result as well [3].

Corollary 40. If f ∈ L ([a, b] ;H), e ∈ H, ‖e‖ = 1 and M,m :

[a, b] → [0,∞) with M ≥ m a.e. on [a, b] , are such that (M−m)2

M+m
∈

L [a, b] and either

(4.50)

∥∥∥∥f (t)− M (t) +m (t)

2
e

∥∥∥∥ ≤ 1

2
[M (t)−m (t)]

or, equivalently,

(4.51) Re 〈M (t) e− f (t) , f (t)−m (t) e〉 ≥ 0

for a.e. t ∈ [a, b] , then we have the inequality

(4.52) (0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ 1

4

∫ b

a

[M (t)−m (t)]2

M (t) +m (t)
dt.

The equality holds in (4.52) if and only if∫ b

a

‖f (t)‖ dt ≥ 1

4

∫ b

a

[M (t)−m (t)]2

M (t) +m (t)
dt

and ∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt− 1

4

∫ b

a

[M (t)−m (t)]2

M (t) +m (t)
dt

)
e.

Proof. The condition (4.50) is equivalent to

‖f (t)‖2 +

(
M (t) +m (t)

2

)2

≤ 2

(
M (t) +m (t)

2

)
Re 〈f (t) , e〉+

1

4
[M (t)−m (t)]2

for a.e. t ∈ [a, b] , and since

2

(
M (t) +m (t)

2

)
‖f (t)‖ ≤ ‖f (t)‖2 +

(
M (t) +m (t)

2

)2

, t ∈ [a, b]

hence

‖f (t)‖ − Re 〈f (t) , e〉 ≤ 1

4

[M (t)−m (t)]2

M (t) +m (t)

for a.e. t ∈ [a, b] .

Now, applying Theorem 59 for k (t) := 1
4

[M(t)−m(t)]2

M(t)+m(t)
, t ∈ [a, b], we

deduce the desired inequality.
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4.3.2. Additive Reverses for Orthonormal Families. The fol-
lowing reverse of the continuous triangle inequality for vector valued
integrals holds [3].

Theorem 60 (Dragomir, 2004). Let f ∈ L ([a, b] ;H) , where H is
a Hilbert space over the real or complex number field K, {ei}i∈{1,...,n}
an orthonormal family in H and Mi ∈ L [a, b] , i ∈ {1, . . . , n} . If we
assume that

(4.53) ‖f (t)‖ − Re 〈f (t) , ei〉 ≤Mi (t) for a.e. t ∈ [a, b] ,

then we have the inequality

(4.54)

∫ b

a

‖f (t)‖ dt ≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

n

n∑
i=1

∫ b

a

Mi (t) dt.

The equality holds in (4.54) if and only if

(4.55)

∫ b

a

‖f (t)‖ dt ≥ 1

n

n∑
i=1

∫ b

a

Mi (t) dt

and

(4.56)

∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt− 1

n

n∑
i=1

∫ b

a

Mi (t) dt

)
n∑

i=1

ei.

Proof. If we integrate the inequality (4.53) on [a, b] , we get∫ b

a

‖f (t)‖ dt ≤ Re

〈∫ b

a

f (t) dt, ei

〉
+

∫ b

a

Mi (t) dt

for each i ∈ {1, . . . , n} . Summing these inequalities over i from 1 to n,
we deduce

(4.57)

∫ b

a

‖f (t)‖ dt ≤ 1

n
Re

〈∫ b

a

f (t) dt,
n∑

i=1

ei

〉
+

1

n

n∑
i=1

∫ b

a

Mi (t) dt.

By Schwarz’s inequality for
∫ b

a
f (t) dt and

∑n
i=1 ei, we have

Re

〈∫ b

a

f (t) dt,
n∑

i=1

ei

〉
(4.58)

≤

∣∣∣∣∣Re

〈∫ b

a

f (t) dt,
n∑

i=1

ei

〉∣∣∣∣∣ ≤
∣∣∣∣∣
〈∫ b

a

f (t) dt,
n∑

i=1

ei

〉∣∣∣∣∣
≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥ =
√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
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since ∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥ =

√√√√∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

‖ei‖2 =
√
n.

Making use of (4.57) and (4.58), we deduce the desired inequality
(4.54).

If (4.55) and (4.56) hold, then

1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =
1√
n

∣∣∣∣∣
∫ b

a

‖f (t)‖ dt− 1

n

n∑
i=1

∫ b

a

Mi (t) dt

∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥
=

(∫ b

a

‖f (t)‖ dt− 1

n

n∑
i=1

∫ b

a

Mi (t) dt

)
and the equality in (4.54) holds true.

Conversely, if the equality holds in (4.54), then, obviously, (4.55) is
valid.

Taking into account the argument presented above for the previous
result (4.54), it is obvious that, if the equality holds in (4.54), then it
must hold in (4.53) for a.e. t ∈ [a, b] and for each i ∈ {1, . . . , n} and
also the equality must hold in any of the inequalities in (4.58).

It is well known that in Schwarz’s inequality Re 〈u, v〉 ≤ ‖u‖ ‖v‖ ,
the equality occurs if and only if u = λv with λ ≥ 0, consequently, the
equality holds in all inequalities from (4.58) simultaneously iff there
exists a µ ≥ 0 with

(4.59) µ
n∑

i=1

ei =

∫ b

a

f (t) dt.

If we integrate the equality in (4.53) and sum over i, we deduce

(4.60) n

∫ b

a

f (t) dt = Re

〈∫ b

a

f (t) dt,
n∑

i=1

ei

〉
+

n∑
i=1

∫ b

a

Mi (t) dt.

Replacing
∫ b

a
f (t) dt from (4.59) into (4.60), we deduce

n

∫ b

a

f (t) dt = µ

∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
2

+
n∑

i=1

∫ b

a

Mi (t) dt(4.61)

= µn+
n∑

i=1

∫ b

a

Mi (t) dt.

Finally, we note that (4.59) and (4.61) will produce the required
identity (4.56), and the proof is complete.
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The following corollaries may be of interest for applications [3].

Corollary 41. Let f ∈ L ([a, b] ;H) , {ei}i∈{1,...,n} an orthonormal

family in H and ρi ∈ (0, 1) , i ∈ {1, . . . , n} such that

(4.62) ‖f (t)− ei‖ ≤ ρi for a.e. t ∈ [a, b] .

Then we have the inequalities:∫ b

a

‖f (t)‖ dt ≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥(4.63)

+ Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)ei

〉

≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
×

1 +

 1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)
 1

2

 .
The equality holds in the first inequality in (4.63) if and only if∫ b

a

‖f (t)‖ dt ≥ Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)ei

〉

and∫ b

a

f (t) dt

=

∫ b

a

‖f (t)‖ dt− Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)ei

〉
×

n∑
i=1

ei.

Proof. As in the proof of Corollary 37, the assumption (4.62)
implies

‖f (t)‖ − Re 〈f (t) , ei〉 ≤
ρ2

i√
1− ρ2

i

(√
1− ρ2

i + 1
) Re 〈f (t) , ei〉

for a.e. t ∈ [a, b] and for each i ∈ {1, . . . , n} .
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Now, if we apply Theorem 60 for

Mi (t) :=
ρ2

i Re 〈f (t) , ei〉√
1− ρ2

i

(√
1− ρ2

i + 1
) , i ∈ {1, . . . , n} , t ∈ [a, b] ,

we deduce the first inequality in (4.63).
By Schwarz’s inequality in H, we have

Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)ei

〉

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥∥ 1

n

n∑
i=1

ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)ei

∥∥∥∥∥∥
=

1

n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
 n∑

i=1

 ρ2
i√

1− ρ2
i

(
1 +

√
1− ρ2

i

)
2

1
2

,

which implies the second inequality in (4.63).

The second result is incorporated in [3]:

Corollary 42. Let f ∈ L ([a, b] ;H) , {ei}i∈{1,...,n} an orthonormal
family in H and Mi ≥ mi > 0 such that either

(4.64) Re 〈Miei − f (t) , f (t)−miei〉 ≥ 0

or, equivalently,∥∥∥∥f (t)− Mi +mi

2
· ei

∥∥∥∥ ≤ 1

2
(Mi −mi)

for a.e. t ∈ [a, b] and each i ∈ {1, . . . , n} .Then we have∫ b

a

‖f (t)‖ dt ≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥(4.65)

+ Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

(√
Mi −

√
mi

)2
2
√
miMi

ei

〉

≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
1 +

(
1

n

n∑
i=1

(√
Mi −

√
mi

)4
4miMi

) 1
2

 .
The equality holds in the first inequality in (4.65) if and only if∫ b

a

‖f (t)‖ dt ≥ Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

(√
Mi −

√
mi

)2
2
√
miMi

ei

〉
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and∫ b

a

f (t) dt

=

(∫ b

a

‖f (t)‖ dt− Re

〈∫ b

a

f (t) dt,
1

n

n∑
i=1

(√
Mi −

√
mi

)2
2
√
miMi

ei

〉)

×
n∑

i=1

ei.

Proof. As in the proof of Corollary 38, from (4.64), we have

‖f (t)‖ − Re 〈f (t) , ei〉 ≤
(√

Mi −
√
mi

)2
2
√
miMi

Re 〈f (t) , ei〉

for a.e. t ∈ [a, b] and i ∈ {1, . . . , n} .
Applying Theorem 60 for

Mi (t) :=

(√
Mi −

√
mi

)2
2
√
miMi

Re 〈f (t) , ei〉 , t ∈ [a, b] , i ∈ {1, . . . , n} ,

we deduce the desired result.

In a different direction, we may state the following result as well
[3].

Corollary 43. Let f ∈ L ([a, b] ;H) , {ei}i∈{1,...,n} an orthonormal

family in H and ri ∈ L2 ([a, b]) , i ∈ {1, . . . , n} such that

‖f (t)− ei‖ ≤ ri (t) for a.e. t ∈ [a, b] and i ∈ {1, . . . , n} .

Then we have the inequality

(4.66)

∫ b

a

‖f (t)‖ dt ≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

2n

n∑
i=1

(∫ b

a

r2
i (t) dt

)
.

The equality holds in (4.66) if and only if∫ b

a

‖f (t)‖ dt ≥ 1

2n

n∑
i=1

(∫ b

a

r2
i (t) dt

)
and ∫ b

a

f (t) dt =

[∫ b

a

‖f (t)‖ dt− 1

n

n∑
i=1

(∫ b

a

r2
i (t) dt

)] n∑
i=1

ei.
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Proof. As in the proof of Corollary 39, from (4.48), we deduce
that

(4.67) ‖f (t)‖ − Re 〈f (t) , ei〉 ≤
1

2
r2
i (t)

for a.e. t ∈ [a, b] and i ∈ {1, . . . , n} .
Applying Theorem 60 for

Mi (t) :=
1

2
r2
i (t) , t ∈ [a, b] , i ∈ {1, . . . , n} ,

we get the desired result.

Finally, the following result holds [3].

Corollary 44. Let f ∈ L ([a, b] ;H) , {ei}i∈{1,...,n} an orthonormal

family in H, Mi,mi : [a, b] → [0,∞) with Mi ≥ mi a.e. on [a, b] and
(Mi−mi)

2

Mi+mi
∈ L [a, b] , and either

(4.68)

∥∥∥∥f (t)− Mi (t) +mi (t)

2
ei

∥∥∥∥ ≤ 1

2
[Mi (t)−mi (t)]

2

or, equivalently,

Re 〈Mi (t) ei − f (t) , f (t)−mi (t) ei〉 ≥ 0

for a.e. t ∈ [a, b] and any i ∈ {1, . . . , n}, then we have the inequality

(4.69)

∫ b

a

‖f (t)‖ dt ≤ 1√
n

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
+

1

4n

n∑
i=1

(∫ b

a

[Mi (t)−mi (t)]
2

Mi (t) +mi (t)
dt

)
.

The equality holds in (4.69) if and only if∫ b

a

‖f (t)‖ dt ≥ 1

4n

n∑
i=1

(∫ b

a

[Mi (t)−mi (t)]
2

Mi (t) +mi (t)
dt

)
and∫ b

a

f (t) dt

=

(∫ b

a

‖f (t)‖ dt− 1

4n

n∑
i=1

(∫ b

a

[Mi (t)−mi (t)]
2

Mi (t) +mi (t)
dt

))
n∑

i=1

ei.
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Proof. As in the proof of Corollary 40, (4.68), implies that

‖f (t)‖ − Re 〈f (t) , ei〉 ≤
1

4
· [Mi (t)−mi (t)]

2

Mi (t) +mi (t)

for a.e. t ∈ [a, b] and i ∈ {1, . . . , n} .
Applying Theorem 60 for

Mi (t) :=
1

4
· [Mi (t)−mi (t)]

2

Mi (t) +mi (t)
, t ∈ [a, b] , i ∈ {1, . . . , n} ,

we deduce the desired result.

4.4. Quadratic Reverses of the Triangle Inequality

4.4.1. Additive Reverses. The following lemma holds [4].

Lemma 7 (Dragomir, 2004). Let f ∈ L ([a, b] ;H) be such that there
exists a function k : ∆ ⊂ R2 → R, ∆ := {(t, s) |a ≤ t ≤ s ≤ b} with
the property that k ∈ L (∆) and

(4.70) (0 ≤) ‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉 ≤ k (t, s) ,

for a.e. (t, s) ∈ ∆. Then we have the following quadratic reverse of the
continuous triangle inequality:

(4.71)

(∫ b

a

‖f (t)‖ dt
)2

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

+ 2

∫∫
∆

k (t, s) dtds.

The case of equality holds in (4.71) if and only if it holds in (4.70) for
a.e. (t, s) ∈ ∆.

Proof. We observe that the following identity holds(∫ b

a

‖f (t)‖ dt
)2

−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

(4.72)

=

∫ b

a

∫ b

a

‖f (t)‖ ‖f (s)‖ dtds−
〈∫ b

a

f (t) dt,

∫ b

a

f (s) ds

〉
=

∫ b

a

∫ b

a

‖f (t)‖ ‖f (s)‖ dtds−
∫ b

a

∫ b

a

Re 〈f (t) , f (s)〉 dtds

=

∫ b

a

∫ b

a

[‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉] dtds := I.

Now, observe that for any (t, s) ∈ [a, b]× [a, b] , we have

‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉
= ‖f (s)‖ ‖f (t)‖ − Re 〈f (s) , f (t)〉
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and thus

(4.73) I = 2

∫∫
∆

[‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉] dtds.

Using the assumption (4.70), we deduce∫∫
∆

[‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉] dtds ≤
∫∫

∆

k (t, s) dtds,

and, by the identities (4.72) and (4.73), we deduce the desired inequal-
ity (4.71).

The case of equality is obvious and we omit the details.

Remark 51. From (4.71) one may deduce a coarser inequality that
can be useful in some applications. It is as follows:

(0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ √
2

(∫∫
∆

k (t, s) dtds

) 1
2

.

Remark 52. If the condition (4.70) is replaced with the following
refinement of the Schwarz inequality

(4.74) (0 ≤) k (t, s) ≤ ‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉

for a.e. (t, s) ∈ ∆, then the following refinement of the quadratic tri-
angle inequality is valid(∫ b

a

‖f (t)‖ dt
)2

≥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

+ 2

∫∫
∆

k (t, s) dtds(4.75) (
≥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2
)
.

The equality holds in (4.75) iff the case of equality holds in (4.74) for
a.e. (t, s) ∈ ∆.

The following result holds [4].

Theorem 61 (Dragomir, 2004). Let f ∈ L ([a, b] ;H) be such that
there exists M ≥ 1 ≥ m ≥ 0 such that either

(4.76) Re 〈Mf (s)− f (t) , f (t)−mf (s)〉 ≥ 0

or, equivalently,

(4.77)

∥∥∥∥f (t)− M +m

2
f (s)

∥∥∥∥ ≤ 1

2
(M −m) ‖f (s)‖



174 4. REVERSES FOR THE CONTINUOUS TRIANGLE INEQUALITY

for a.e. (t, s) ∈ ∆. Then we have the inequality:

(4.78)

(∫ b

a

‖f (t)‖ dt
)2

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

+
1

2
· (M −m)2

M +m

∫ b

a

(s− a) ‖f (s)‖2 ds.

The case of equality holds in (4.78) if and only if

(4.79) ‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉 =
1

4
· (M −m)2

M +m
‖f (s)‖2

for a.e. (t, s) ∈ ∆.

Proof. Taking the square in (4.77), we get

‖f (t)‖2 +

(
M +m

2

)2

‖f (s)‖2

≤ 2 Re

〈
f (t) ,

M +m

2
f (s)

〉
+

1

4
(M −m)2 ‖f (s)‖2 ,

for a.e. (t, s) ∈ ∆, and obviously, since

2

(
M +m

2

)
‖f (t)‖ ‖f (s)‖ ≤ ‖f (t)‖2 +

(
M +m

2

)2

‖f (s)‖2 ,

we deduce that

2

(
M +m

2

)
‖f (t)‖ ‖f (s)‖

≤ 2 Re

〈
f (t) ,

M +m

2
f (s)

〉
+

1

4
(M −m)2 ‖f (s)‖2 ,

giving the much simpler inequality:

(4.80) ‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉 ≤ 1

4
· (M −m)2

M +m
‖f (s)‖2

for a.e. (t, s) ∈ ∆.

Applying Lemma 7 for k (t, s) := 1
4
· (M−m)2

M+m
‖f (s)‖2 , we deduce

(4.81)

(∫ b

a

‖f (t)‖ dt
)2

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

+
1

2
· (M −m)2

M +m

∫∫
∆

‖f (s)‖2 ds

with equality if and only if (4.80) holds for a.e. (t, s) ∈ ∆.
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Since∫∫
∆

‖f (s)‖2 ds =

∫ b

a

(∫ s

a

‖f (s)‖2 dt

)
ds =

∫ b

a

(s− a) ‖f (s)‖2 ds,

then by (4.81) we deduce the desired result (4.78).

Another result which is similar to the one above is incorporated in
the following theorem [4].

Theorem 62 (Dragomir, 2004). With the assumptions of Theorem
61, we have

(4.82)

(∫ b

a

‖f (t)‖ dt
)2

−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

≤

(√
M −

√
m
)2

2
√
Mm

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

or, equivalently,

(4.83)

∫ b

a

‖f (t)‖ dt ≤
(
M +m

2
√
Mm

) 1
2
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.82) or (4.83) if and only if

(4.84) ‖f (t)‖ ‖f (s)‖ =
M +m

2
√
Mm

Re 〈f (t) , f (s)〉 ,

for a.e. (t, s) ∈ ∆.

Proof. From (4.76), we deduce

‖f (t)‖2 +Mm ‖f (s)‖2 ≤ (M +m) Re 〈f (t) , f (s)〉

for a.e. (t, s) ∈ ∆. Dividing by
√
Mm > 0, we deduce

‖f (t)‖2

√
Mm

+
√
Mm ‖f (s)‖2 ≤ M +m√

Mm
Re 〈f (t) , f (s)〉

and, obviously, since

2 ‖f (t)‖ ‖f (s)‖ ≤ ‖f (t)‖2

√
Mm

+
√
Mm ‖f (s)‖2 ,

hence

‖f (t)‖ ‖f (s)‖ ≤ M +m√
Mm

Re 〈f (t) , f (s)〉
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for a.e. (t, s) ∈ ∆, giving

‖f (t)‖ ‖f (s)‖ − Re 〈f (t) , f (s)〉 ≤

(√
M −

√
m
)2

2
√
Mm

Re 〈f (t) , f (s)〉 .

Applying Lemma 7 for k (t, s) :=
(
√

M−
√

m)
2

√
Mm

Re 〈f (t) , f (s)〉 , we deduce

(4.85)

(∫ b

a

‖f (t)‖ dt
)2

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

+

(√
M −

√
m
)2

2
√
Mm

Re 〈f (t) , f (s)〉 .

On the other hand, since

Re 〈f (t) , f (s)〉 = Re 〈f (s) , f (t)〉 for any (t, s) ∈ [a, b]2 ,

hence∫∫
∆

Re 〈f (t) , f (s)〉 dtds =
1

2

∫ b

a

∫ b

a

Re 〈f (t) , f (s)〉 dtds

=
1

2
Re

〈∫ b

a

f (t) dt,

∫ b

a

f (s) ds

〉
=

1

2

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

and thus, from (4.85), we get (4.82).
The equivalence between (4.82) and (4.83) is obvious and we omit

the details.

4.4.2. Related Results. The following result also holds [4].

Theorem 63 (Dragomir, 2004). Let f ∈ L ([a, b] ;H) and γ,Γ ∈ R
be such that either

(4.86) Re 〈Γf (s)− f (t) , f (t)− γf (s)〉 ≥ 0

or, equivalently,

(4.87)

∥∥∥∥f (t)− Γ + γ

2
f (s)

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖f (s)‖

for a.e. (t, s) ∈ ∆. Then we have the inequality:

(4.88)

∫ b

a

[(b− s) + γΓ (s− a)] ‖f (s)‖2 ds ≤ Γ + γ

2

∥∥∥∥∫ b

a

f (s) ds

∥∥∥∥2

.
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The case of equality holds in (4.88) if and only if the case of equality
holds in either (4.86) or (4.87) for a.e. (t, s) ∈ ∆.

Proof. The inequality (4.86) is obviously equivalent to

(4.89) ‖f (t)‖2 + γΓ ‖f (s)‖2 ≤ (Γ + γ) Re 〈f (t) , f (s)〉

for a.e. (t, s) ∈ ∆.
Integrating (4.89) on ∆, we deduce

(4.90)

∫ b

a

(∫ s

a

‖f (t)‖2 dt

)
ds+ γΓ

∫ b

a

(
‖f (s)‖2

∫ s

a

dt

)
ds

= (Γ + γ)

∫ b

a

(∫ s

a

Re 〈f (t) , f (s)〉 dt
)
ds.

It is easy to see, on integrating by parts, that

∫ b

a

(∫ s

a

‖f (t)‖2 dt

)
ds = s

∫ s

a

‖f (t)‖2 dt

∣∣∣∣b
a

−
∫ b

a

s ‖f (s)‖2 ds

= b

∫ s

a

‖f (s)‖2 ds−
∫ b

a

s ‖f (s)‖2 ds

=

∫ b

a

(b− s) ‖f (s)‖2 ds

and ∫ b

a

(
‖f (s)‖2

∫ s

a

dt

)
ds =

∫ b

a

(s− a) ‖f (s)‖2 ds.

Since

d

ds

(∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2
)

=
d

ds

〈∫ s

a

f (t) dt,

∫ s

a

f (t) dt

〉
=

〈
f (s) ,

∫ s

a

f (t) dt

〉
+

〈∫ s

a

f (t) dt, f (s)

〉
= 2 Re

〈∫ s

a

f (t) dt, f (s)

〉
,
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hence∫ b

a

(∫ s

a

Re 〈f (t) , f (s)〉 dt
)
ds =

∫ b

a

Re

〈∫ s

a

f (t) dt, f (s)

〉
ds

=
1

2

∫ b

a

d

ds

(∥∥∥∥∫ s

a

f (t) dt

∥∥∥∥2
)
ds

=
1

2

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

.

Utilising (4.90), we deduce the desired inequality (4.88).
The case of equality is obvious and we omit the details.

Remark 53. Consider the function ϕ (s) := (b− s) + γΓ (s− a) ,
s ∈ [a, b] . Obviously,

ϕ (s) = (Γγ − 1) s+ b− γΓa.

Observe that, if Γγ ≥ 1, then

b− a = ϕ (a) ≤ ϕ (s) ≤ ϕ (b) = γΓ (b− a) , s ∈ [a, b]

and, if Γγ < 1, then

γΓ (b− a) ≤ ϕ (s) ≤ b− a, s ∈ [a, b] .

Taking into account the above remark, we may state the following
corollary [4].

Corollary 45. Assume that f, γ,Γ are as in Theorem 63.

a) If Γγ ≥ 1, then we have the inequality

(b− a)

∫ b

a

‖f (s)‖2 ds ≤ Γ + γ

2

∥∥∥∥∫ b

a

f (s) ds

∥∥∥∥2

.

b) If 0 < Γγ < 1, then we have the inequality

γΓ (b− a)

∫ b

a

‖f (s)‖2 ds ≤ Γ + γ

2

∥∥∥∥∫ b

a

f (s) ds

∥∥∥∥2

.

4.5. Refinements for Complex Spaces

4.5.1. The Case of a Unit Vector. The following result holds
[5].

Theorem 64 (Dragomir, 2004). Let (H; 〈·, ·〉) be a complex Hilbert
space. If f ∈ L ([a, b] ;H) is such that there exists k1, k2 ≥ 0 with

(4.91) k1 ‖f (t)‖ ≤ Re 〈f (t) , e〉 , k2 ‖f (t)‖ ≤ Im 〈f (t) , e〉



4.5. REFINEMENTS FOR COMPLEX SPACES 179

for a.e. t ∈ [a, b] , where e ∈ H, ‖e‖ = 1, is given, then

(4.92)
√
k2

1 + k2
2

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.92) if and only if

(4.93)

∫ b

a

f (t) dt = (k1 + ik2)

(∫ b

a

‖f (t)‖ dt
)
e.

Proof. Using the Schwarz inequality ‖u‖ ‖v‖ ≥ |〈u, v〉| , u, v ∈ H;
in the complex Hilbert space (H; 〈·, ·〉) , we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

‖e‖2(4.94)

≥
∣∣∣∣〈∫ b

a

f (t) dt, e

〉∣∣∣∣2 =

∣∣∣∣∫ b

a

〈f (t) , e〉 dt
∣∣∣∣2

=

∣∣∣∣∫ b

a

Re 〈f (t) , e〉 dt+ i

(∫ b

a

Im 〈f (t) , e〉 dt
)∣∣∣∣2

=

(∫ b

a

Re 〈f (t) , e〉 dt
)2

+

(∫ b

a

Im 〈f (t) , e〉 dt
)2

.

Now, on integrating (4.91), we deduce

k1

∫ b

a

‖f (t)‖ dt ≤
∫ b

a

Re 〈f (t) , e〉 dt,(4.95)

k2

∫ b

a

‖f (t)‖ dt ≤
∫ b

a

Im 〈f (t) , e〉 dt

implying

(4.96)

(∫ b

a

Re 〈f (t) , e〉 dt
)2

≥ k2
1

(∫ b

a

‖f (t)‖ dt
)2

and

(4.97)

(∫ b

a

Im 〈f (t) , e〉 dt
)2

≥ k2
2

(∫ b

a

‖f (t)‖ dt
)2

.

If we add (4.96) and (4.97) and use (4.94), we deduce the desired in-
equality (4.92).
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Further, if (4.93) holds, then obviously∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ = |k1 + ik2|
(∫ b

a

‖f (t)‖ dt
)
‖e‖

=
√
k2

1 + k2
2

∫ b

a

‖f (t)‖ dt,

and the equality case holds in (4.92).
Before we prove the reverse implication, let us observe that, for

x ∈ H and e ∈ H, ‖e‖ = 1, the following identity is valid

‖x− 〈x, e〉 e‖2 = ‖x‖2 − |〈x, e〉|2 ,
therefore ‖x‖ = |〈x, e〉| if and only if x = 〈x, e〉 e.

If we assume that equality holds in (4.92), then the case of equality
must hold in all the inequalities required in the argument used to prove
the inequality (4.92). Therefore, we must have

(4.98)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

∣∣∣∣〈∫ b

a

f (t) dt, e

〉∣∣∣∣
and

(4.99) k1 ‖f (t)‖ = Re 〈f (t) , e〉 , k2 ‖f (t)‖ = Im 〈f (t) , e〉
for a.e. t ∈ [a, b] .

From (4.98) we deduce

(4.100)

∫ b

a

f (t) dt =

〈∫ b

a

f (t) dt, e

〉
e,

and from (4.99), by multiplying the second equality with i, the imagi-
nary unit, and integrating both equations on [a, b] , we deduce

(4.101) (k1 + ik2)

∫ b

a

‖f (t)‖ dt =

〈∫ b

a

f (t) dt, e

〉
.

Finally, by (4.100) and (4.101), we deduce the desired equality (4.93).

The following corollary is of interest [5].

Corollary 46. Let e be a unit vector in the complex Hilbert space
(H; 〈·, ·〉) and η1, η2 ∈ (0, 1) . If f ∈ L ([a, b] ;H) is such that

(4.102) ‖f (t)− e‖ ≤ η1, ‖f (t)− ie‖ ≤ η2

for a.e. t ∈ [a, b] , then we have the inequality

(4.103)
√

2− η2
1 − η2

2

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
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The case of equality holds in (4.103) if and only if

(4.104)

∫ b

a

f (t) dt =

(√
1− η2

1 + i
√

1− η2
2

)(∫ b

a

‖f (t)‖ dt
)
e.

Proof. From the first inequality in (4.102) we deduce, by taking
the square, that

‖f (t)‖2 + 1− η2
1 ≤ 2 Re 〈f (t) , e〉 ,

implying

(4.105)
‖f (t)‖2√

1− η2
1

+
√

1− η2
1 ≤

2 Re 〈f (t) , e〉√
1− η2

1

for a.e. t ∈ [a, b] .
Since, obviously

(4.106) 2 ‖f (t)‖ ≤ ‖f (t)‖2√
1− η2

1

+
√

1− η2
1,

hence, by (4.105) and (4.106) we get

(4.107) 0 ≤
√

1− η2
1 ‖f (t)‖ ≤ Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
From the second inequality in (4.102) we deduce

0 ≤
√

1− η2
2 ‖f (t)‖ ≤ Re 〈f (t) , ie〉

for a.e. t ∈ [a, b] . Since

Re 〈f (t) , ie〉 = Im 〈f (t) , e〉
hence

(4.108) 0 ≤
√

1− η2
2 ‖f (t)‖ ≤ Im 〈f (t) , e〉

for a.e. t ∈ [a, b] .
Now, observe from (4.107) and (4.108), that the condition (4.91) of

Theorem 64 is satisfied for k1 =
√

1− η2
1, k2 =

√
1− η2

2 ∈ (0, 1) , and
thus the corollary is proved.

The following corollary may be stated as well [5].

Corollary 47. Let e be a unit vector in the complex Hilbert space
(H; 〈·, ·〉) and M1 ≥ m1 > 0, M2 ≥ m2 > 0. If f ∈ L ([a, b] ;H) is such
that either

Re 〈M1e− f (t) , f (t)−m1e〉 ≥ 0,(4.109)

Re 〈M2ie− f (t) , f (t)−m2ie〉 ≥ 0
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or, equivalently, ∥∥∥∥f (t)− M1 +m1

2
e

∥∥∥∥ ≤ 1

2
(M1 −m1) ,(4.110) ∥∥∥∥f (t)− M2 +m2

2
ie

∥∥∥∥ ≤ 1

2
(M2 −m2) ,

for a.e. t ∈ [a, b] , then we have the inequality

(4.111) 2

[
m1M1

(M1 +m1)
2 +

m2M2

(M2 +m2)
2

] 1
2
∫ b

a

‖f (t)‖ dt

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The equality holds in (4.111) if and only if

(4.112)

∫ b

a

f (t) dt = 2

( √
m1M1

M1 +m1

+ i

√
m2M2

M2 +m2

)(∫ b

a

‖f (t)‖ dt
)
e.

Proof. From the first inequality in (4.109), we get

‖f (t)‖2 +m1M1 ≤ (M1 +m1) Re 〈f (t) , e〉

implying

(4.113)
‖f (t)‖2

√
m1M1

+
√
m1M1 ≤

M1 +m1√
m1M1

Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
Since, obviously,

(4.114) 2 ‖f (t)‖ ≤ ‖f (t)‖2

√
m1M1

+
√
m1M1,

hence, by (4.113) and (4.114)

(4.115) 0 ≤ 2
√
m1M1

M1 +m1

‖f (t)‖ ≤ Re 〈f (t) , e〉

for a.e. t ∈ [a, b] .
Using the same argument as in the proof of Corollary 46, we deduce

the desired inequality. We omit the details.
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4.5.2. The Case of Orthonormal Vectors. The following re-
sult holds [5].

Theorem 65 (Dragomir, 2004). Let {e1, . . . , en} be a family of
orthonormal vectors in the complex Hilbert space (H; 〈·, ·〉). If kj, hj ≥
0, j ∈ {1, . . . , n} and f ∈ L ([a, b] ;H) are such that

(4.116) kj ‖f (t)‖ ≤ Re 〈f (t) , ej〉 , hj ‖f (t)‖ ≤ Im 〈f (t) , ej〉

for each j ∈ {1, . . . , n} and a.e. t ∈ [a, b] , then

(4.117)

[
n∑

j=1

(
k2

j + h2
j

)] 1
2 ∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.117) if and only if

(4.118)

∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt
) n∑

j=1

(kj + ihj) ej.

Proof. Before we prove the theorem, let us recall that, if x ∈ H
and e1, . . . , en are orthonormal vectors, then the following identity holds
true:

(4.119)

∥∥∥∥∥x−
n∑

j=1

〈x, ej〉 ej

∥∥∥∥∥
2

= ‖x‖2 −
n∑

j=1

|〈x, ej〉|2 .

As a consequence of this identity, we have the Bessel inequality

(4.120)
n∑

j=1

|〈x, ej〉|2 ≤ ‖x‖2 , x ∈ H,

in which, the case of equality holds if and only if

(4.121) x =
n∑

j=1

〈x, ej〉 ej.

Now, applying Bessel’s inequality for x =
∫ b

a
f (t) dt, we have succes-

sively ∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

(4.122)

≥
n∑

j=1

∣∣∣∣〈∫ b

a

f (t) dt, ej

〉∣∣∣∣2 =
n∑

j=1

∣∣∣∣∫ b

a

〈f (t) , ej〉 dt
∣∣∣∣2
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=
n∑

j=1

∣∣∣∣∫ b

a

Re 〈f (t) , ej〉 dt+ i

(∫ b

a

Im 〈f (t) , ej〉 dt
)∣∣∣∣2

=
n∑

j=1

[(∫ b

a

Re 〈f (t) , ej〉 dt
)2

+

(∫ b

a

Im 〈f (t) , ej〉 dt
)2
]
.

Integrating (4.116) on [a, b] , we get

(4.123)

∫ b

a

Re 〈f (t) , ej〉 dt ≥ kj

∫ b

a

‖f (t)‖ dt

and

(4.124)

∫ b

a

Im 〈f (t) , ej〉 dt ≥ hj

∫ b

a

‖f (t)‖ dt

for each j ∈ {1, . . . , n} .
Squaring and adding the above two inequalities (4.123) and (4.124),

we deduce

n∑
j=1

[(∫ b

a

Re 〈f (t) , ej〉 dt
)2

+

(∫ b

a

Im 〈f (t) , ej〉 dt
)2
]

≥
n∑

j=1

(
k2

j + h2
j

)(∫ b

a

‖f (t)‖ dt
)2

,

which combined with (4.122) will produce the desired inequality (4.117).
Now, if (4.118) holds true, then∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

(∫ b

a

‖f (t)‖ dt
)∥∥∥∥∥

n∑
j=1

(kj + ihj) ej

∥∥∥∥∥
=

(∫ b

a

‖f (t)‖ dt
)∥∥∥∥∥

n∑
j=1

(kj + ihj) ej

∥∥∥∥∥
2
 1

2

=

(∫ b

a

‖f (t)‖ dt
)[ n∑

j=1

(
k2

j + h2
j

)] 1
2

,

and the case of equality holds in (4.117).
Conversely, if the equality holds in (4.117), then it must hold in all

the inequalities used to prove (4.117) and therefore we must have

(4.125)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥2

=
n∑

j=1

∣∣∣∣〈∫ b

a

f (t) dt, ej

〉∣∣∣∣2
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and

(4.126) kj ‖f (t)‖ = Re 〈f (t) , ej〉 and hj ‖f (t)‖ = Re 〈f (t) , ej〉

for each j ∈ {1, . . . , n} and a.e. t ∈ [a, b] .
From (4.125), on using the identity (4.121), we deduce that

(4.127)

∫ b

a

f (t) dt =
n∑

j=1

〈∫ b

a

f (t) dt, ej

〉
ej.

Now, multiplying the second equality in (4.126) with the imaginary
unit i, integrating both inequalities on [a, b] and summing them up, we
get

(4.128) (kj + ihj)

∫ b

a

‖f (t)‖ dt =

〈∫ b

a

f (t) dt, ej

〉
for each j ∈ {1, . . . , n} .

Finally, utilising (4.127) and (4.128), we deduce (4.118) and the
theorem is proved.

The following corollaries are of interest [5].

Corollary 48. Let e1, . . . , em be orthonormal vectors in the com-
plex Hilbert space (H; 〈·, ·〉) and ρk, ηk ∈ (0, 1) , k ∈ {1, . . . , n} . If
f ∈ L ([a, b] ;H) is such that

‖f (t)− ek‖ ≤ ρk, ‖f (t)− iek‖ ≤ ηk

for each k ∈ {1, . . . , n} and for a.e. t ∈ [a, b] , then we have the
inequality

(4.129)

[
n∑

k=1

(
2− ρ2

k − η2
k

)] 1
2 ∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.129) if and only if

(4.130)

∫ b

a

f (t) dt

=

(∫ b

a

‖f (t)‖ dt
) n∑

k=1

(√
1− ρ2

k + i
√

1− η2
k

)
ek.

The proof follows by Theorem 65 and is similar to the one from
Corollary 46. We omit the details.

Next, the following result may be stated [5]:
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Corollary 49. Let e1, . . . , em be as in Corollary 48 and Mk ≥
mk > 0, Nk ≥ nk > 0, k ∈ {1, . . . , n} . If f ∈ L ([a, b] ;H) is such that
either

Re 〈Mkek − f (t) , f (t)−mkek〉 ≥ 0,

Re 〈Nkiek − f (t) , f (t)− nkiek〉 ≥ 0

or, equivalently,∥∥∥∥f (t)− Mk +mk

2
ek

∥∥∥∥ ≤ 1

2
(Mk −mk) ,∥∥∥∥f (t)− Nk + nk

2
iek

∥∥∥∥ ≤ 1

2
(Nk − nk)

for each k ∈ {1, . . . , n} and a.e. t ∈ [a, b] , then we have the inequality

(4.131) 2

{
m∑

k=1

[
mkMk

(Mk +mk)
2 +

nkNk

(Nk + nk)
2

]} 1
2 ∫ b

a

‖f (t)‖ dt

≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (4.131) if and only if

(4.132)

∫ b

a

f (t) dt = 2

(∫ b

a

‖f (t)‖ dt
)

×
n∑

k=1

( √
mkMk

Mk +mk

+ i

√
nkNk

Nk + nk

)
ek.

The proof employs Theorem 65 and is similar to the one in Corollary
47. We omit the details.

4.6. Applications for Complex-Valued Functions

The following proposition holds [2].

Proposition 48. If f : [a, b] → C is a Lebesgue integrable function
with the property that there exists a constant K ≥ 1 such that

(4.133) |f (t)| ≤ K [αRe f (t) + β Im f (t)]

for a.e. t ∈ [a, b] , where α, β ∈ R, α2 + β2 = 1 are given, then we have
the following reverse of the continuous triangle inequality:

(4.134)

∫ b

a

|f (t)| dt ≤ K

∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ .
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The case of equality holds in (4.134) if and only if∫ b

a

f (t) dt =
1

K
(α+ iβ)

∫ b

a

|f (t)| dt.

The proof is obvious by Theorem 57, and we omit the details.

Remark 54. If in the above Proposition 48 we choose α = 1, β = 0,
then the condition (4.133) for Re f (t) > 0 is equivalent to

[Re f (t)]2 + [Im f (t)]2 ≤ K2 [Re f (t)]2

or with the inequality:

|Im f (t)|
Re f (t)

≤
√
K2 − 1.

Now, if we assume that

(4.135) |arg f (t)| ≤ θ, θ ∈
(
0,
π

2

)
,

then, for Re f (t) > 0,

|tan [arg f (t)]| = |Im f (t)|
Re f (t)

≤ tan θ,

and if we choose K = 1
cos θ

> 1, then
√
K2 − 1 = tan θ,

and by Proposition 48, we deduce

(4.136) cos θ

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ,
which is exactly the Karamata inequality (4.2) from the Introduction.

Obviously, the result from Proposition 48 is more comprehensive
since for other values of (α, β) ∈ R2 with α2 + β2 = 1 we can get
different sufficient conditions for the function f such that the inequality
(4.134) holds true.

A different sufficient condition in terms of complex disks is incor-
porated in the following proposition [2].

Proposition 49. Let e = α + iβ with α2 + β2 = 1, r ∈ (0, 1) and
f : [a, b] → C a Lebesgue integrable function such that

(4.137) f (t) ∈ D̄ (e, r) := {z ∈ C| |z − e| ≤ r} for a.e. t ∈ [a, b] .

Then we have the inequality

(4.138)
√

1− r2

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ .
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The case of equality holds in (4.138) if and only if∫ b

a

f (t) dt =
√

1− r2 (α+ iβ)

∫ b

a

|f (t)| dt.

The proof follows by Corollary 33 and we omit the details.
Further, we may state the following proposition as well [2].

Proposition 50. Let e = α+iβ with α2+β2 = 1 and M ≥ m > 0.
If f : [a, b] → C is such that

(4.139) Re
[
(Me− f (t))

(
f (t)−me

)]
≥ 0 for a.e. t ∈ [a, b] ,

or, equivalently,

(4.140)

∣∣∣∣f (t)− M +m

2
e

∣∣∣∣ ≤ 1

2
(M −m) for a.e. t ∈ [a, b] ,

then we have the inequality

(4.141)
2
√
mM

M +m

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ,
or, equivalently,

(0 ≤)

∫ b

a

|f (t)| dt−
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣(4.142)

≤

(√
M −

√
m
)2

M +m

∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ .
The equality holds in (4.141) (or in the second part of (4.142)) if and
only if ∫ b

a

f (t) dt =
2
√
mM

M +m
(α+ iβ)

∫ b

a

|f (t)| dt.

The proof follows by Corollary 34 and we omit the details.

Remark 55. Since

Me− f (t) = Mα− Re f (t) + i [Mβ − Im f (t)] ,

f (t)−me = Re f (t)−mα− i [Im f (t)−mβ]

hence

(4.143) Re
[
(Me− f (t))

(
f (t)−me

)]
= [Mα− Re f (t)] [Re f (t)−mα]

+ [Mβ − Im f (t)] [Im f (t)−mβ] .
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It is obvious that, if

(4.144) mα ≤ Re f (t) ≤Mα for a.e. t ∈ [a, b] ,

and

(4.145) mβ ≤ Im f (t) ≤Mβ for a.e. t ∈ [a, b] ,

then, by (4.143),

Re
[
(Me− f (t))

(
f (t)−me

)]
≥ 0 for a.e. t ∈ [a, b] ,

and then either (4.141) or (4.144) hold true.

We observe that the conditions (4.144) and (4.145) are very easy
to verify in practice and may be useful in various applications where
reverses of the continuous triangle inequality are required.

Remark 56. Similar results may be stated for functions f : [a, b] →
Rn or f : [a, b] → H, with H particular instances of Hilbert spaces of
significance in applications, but we leave them to the interested reader.

Let e = α + iβ (α, β ∈ R) be a complex number with the property
that |e| = 1, i.e., α2 + β2 = 1. The following proposition concern-
ing a reverse of the continuous triangle inequality for complex-valued
functions may be stated [3]:

Proposition 51. Let f : [a, b] → C be a Lebesgue integrable func-
tion with the property that there exists a constant ρ ∈ (0, 1) such that

(4.146) |f (t)− e| ≤ ρ for a.e. t ∈ [a, b] ,

where e has been defined above. Then we have the following reverse of
the continuous triangle inequality

(0 ≤)

∫ b

a

|f (t)| dt−
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣(4.147)

≤ ρ2√
1− ρ2

(
1 +

√
1− ρ2

)
×
[
α

∫ b

a

Re f (t) dt+ β

∫ b

a

Im f (t) dt

]
.

The proof follows by Corollary 37, and the details are omitted.
On the other hand, the following result is perhaps more useful for

applications [3]:
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Proposition 52. Assume that f and e are as in Proposition 51.
If there exists the constants M ≥ m > 0 such that either

(4.148) Re
[
(Me− f (t))

(
f (t)−me

)]
≥ 0

or, equivalently,

(4.149)

∣∣∣∣f (t)− M +m

2
e

∣∣∣∣ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , holds, then

(0 ≤)

∫ b

a

|f (t)| dt−
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣(4.150)

≤

(√
M −

√
m
)2

2
√
Mm

[
α

∫ b

a

Re f (t) dt+ β

∫ b

a

Im f (t) dt

]
.

The proof may be done on utilising Corollary 38, but we omit the
details

Subsequently, on making use of Corollary 40, one may state the
following result as well [3]:

Proposition 53. Let f be as in Proposition 51 and the measurable
functions K, k : [a, b] → [0,∞) with the property that

(K − k)2

K + k
∈ L [a, b]

and

αk (t) ≤ Re f (t) ≤ αK (t) and βk (t) ≤ Im f (t) ≤ βK (t)

for a.e. t ∈ [a, b] , where α, β are assumed to be positive and satisfying
the condition α2 +β2 = 1. Then the following reverse of the continuous
triangle inequality is valid:

(0 ≤)

∫ b

a

|f (t)| dt−
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣
≤ 1

4

∫ b

a

[K (t)− k (t)]2

K (t) + k (t)
dt.

The constant 1
4

is best possible in the sense that it cannot be replaced
by a smaller quantity.

Remark 57. One may realise that similar results can be stated if
the Corollaries 41-44 obtained above are used. For the sake of brevity,
we do not mention them here.
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Let f : [a, b] → C be a Lebesgue integrable function and M ≥
1 ≥ m ≥ 0. The condition (4.76) from Theorem 61, which plays a
fundamental role in the results obtained above, can be translated in
this case as

(4.151) Re
[
(Mf (s)− f (t))

(
f (t)−mf (s)

)]
≥ 0

for a.e. a ≤ t ≤ s ≤ b.
Since, obviously

Re
[
(Mf (s)− f (t))

(
f (t)−mf (s)

)]
= [(M Re f (s)− Re f (t)) (Re f (t)−mRe f (s))]

+ [(M Im f (s)− Im f (t)) (Im f (t)−m Im f (s))]

hence a sufficient condition for the inequality in (4.151) to hold is

(4.152) mRe f (s) ≤ Re f (t) ≤M Re f (s)

and

m Im f (s) ≤ Im f (t) ≤M Im f (s)

for a.e. a ≤ t ≤ s ≤ b.
Utilising Theorems 61, 62 and 63 we may state the following results

incorporating quadratic reverses of the continuous triangle inequality
[4]:

Proposition 54. With the above assumptions for f,M and m, and
if (4.151) holds true, then we have the inequalities(∫ b

a

|f (t)| dt
)2

≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣2
+

1

2
· (M −m)2

M +m

∫ b

a

(s− a) |f (s)|2 ds,

∫ b

a

|f (t)| dt ≤
(
M +m

2
√
Mm

) 1
2
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ,
and ∫ b

a

[(b− s) +mM (s− a)] |f (s)|2 ds ≤ M +m

2

∣∣∣∣∫ b

a

f (s) ds

∣∣∣∣2 .
Remark 58. One may wonder if there are functions satisfying the

condition (4.152) above. It suffices to find examples of real functions
ϕ : [a, b] → R verifying the following double inequality

(4.153) γϕ (s) ≤ ϕ (t) ≤ Γϕ (s)
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for some given γ,Γ with 0 ≤ γ ≤ 1 ≤ Γ <∞ for a.e. a ≤ t ≤ s ≤ b.
For this purpose, consider ψ : [a, b] → R a differentiable function

on (a, b), continuous on [a, b] and with the property that there exists
Θ ≥ 0 ≥ θ such that

(4.154) θ ≤ ψ′ (u) ≤ Θ for any u ∈ (a, b) .

By Lagrange’s mean value theorem, we have, for any a ≤ t ≤ s ≤ b

ψ (s)− ψ (t) = ψ′ (ξ) (s− t)

with t ≤ ξ ≤ s. Therefore, for a ≤ t ≤ s ≤ b, by (4.154), we have the
inequality

θ (b− a) ≤ θ (s− t) ≤ ψ (s)− ψ (t) ≤ Θ (s− t) ≤ Θ (b− a) .

If we choose the function ϕ : [a, b] → R given by

ϕ (t) := exp [−ψ (t)] , t ∈ [a, b] ,

and γ := exp [θ (b− a)] ≤ 1, Γ := exp [Θ (b− a)] , then (4.153) holds
true for any a ≤ t ≤ s ≤ b.

The following reverse of the continuous triangle inequality for complex-
valued functions that improves Karamata’s result (4.1) holds [5].

Proposition 55. Let f ∈ L ([a, b] ; C) with the property that

(4.155) 0 ≤ ϕ1 ≤ arg f (t) ≤ ϕ2 <
π

2

for a.e. t ∈ [a, b] . Then we have the inequality

(4.156)
√

sin2 ϕ1 + cos2 ϕ2

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ .
The equality holds in (4.156) if and only if

(4.157)

∫ b

a

f (t) dt = (cosϕ2 + i sinϕ1)

∫ b

a

|f (t)| dt.

Proof. Let f (t) = Re f (t) + i Im f (t) . We may assume that
Re f (t) ≥ 0, Im f (t) > 0, for a.e. t ∈ [a, b] , since, by (4.155),
Im f(t)
Re f(t)

= tan [arg f (t)] ∈
[
0, π

2

)
, for a.e. t ∈ [a, b] . By (4.155), we

obviously have

0 ≤ tan2 ϕ1 ≤
[
Im f (t)

Re f (t)

]2

≤ tan2 ϕ2,

for a.e. t ∈ [a, b] , from where we get

[Im f (t)]2 + [Re f (t)]2

[Re f (t)]2
≤ 1

cos 2ϕ2

,
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for a.e. t ∈ [a, b] , and

[Im f (t)]2 + [Re f (t)]2

[Im f (t)]2
≤ 1 + tan2 ϕ1

tan2 ϕ1

=
1

sinϕ1

,

for a.e. t ∈ [a, b] , giving the simpler inequalities

|f (t)| cosϕ2 ≤ Re (f (t)) , |f (t)| sinϕ1 ≤ Im (f (t))

for a.e. t ∈ [a, b] .
Now, applying Theorem 64 for the complex Hilbert space C en-

dowed with the inner product 〈z, w〉 = z · w̄ for k1 = cosϕ2, k2 = sinϕ1

and e = 1, we deduce the desired inequality (4.156). The case of equal-
ity is also obvious and we omit the details.

Another result that has an obvious geometrical interpretation is the
following one [5].

Proposition 56. Let e ∈ C with |e| = 1 and ρ1, ρ2 ∈ (0, 1) . If
f (t) ∈ L ([a, b] ; C) such that

(4.158) |f (t)− e| ≤ ρ1, |f (t)− ie| ≤ ρ2 for a.e. t ∈ [a, b] ,

then we have the inequality

(4.159)
√

2− ρ2
1 − ρ2

2

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ,
with equality if and only if

(4.160)

∫ b

a

f (t) dt =

(√
1− ρ2

1 + i
√

1− ρ2
2

)∫ b

a

|f (t)| dt · e.

The proof is obvious by Corollary 46 applied for H = C and we
omit the details.

Remark 59. If we choose e = 1, and for ρ1, ρ2 ∈ (0, 1) we define

D̄ (1, ρ1) := {z ∈ C| |z − 1| ≤ ρ1} , D̄ (i, ρ2) := {z ∈ C| |z − i| ≤ ρ2} ,
then obviously the intersection domain

Sρ1,ρ2
:= D̄ (1, ρ1) ∩ D̄ (i, ρ2)

is nonempty if and only if ρ1 + ρ2 >
√

2.
If f (t) ∈ Sρ1,ρ2

for a.e. t ∈ [a, b] , then (4.159) holds true. The
equality holds in (4.159) if and only if∫ b

a

f (t) dt =

(√
1− ρ2

1 + i
√

1− ρ2
2

)∫ b

a

|f (t)| dt.
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CHAPTER 5

Reverses of the CBS and Heisenberg Inequalities

5.1. Introduction

Assume that (K; 〈·, ·〉) is a Hilbert space over the real or com-
plex number field K. If ρ : [a, b] ⊂ R → [0,∞) is a Lebesgue inte-

grable function with
∫ b

a
ρ (t) dt = 1, then we may consider the space

L2
ρ ([a, b] ;K) of all functionsf : [a, b] → K, that are Bochner measur-

able and
∫ b

a
ρ (t) ‖f (t)‖2 dt < ∞. It is well known that L2

ρ ([a, b] ;K)
endowed with the inner product 〈·, ·〉ρ defined by

〈f, g〉ρ :=

∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

and generating the norm

‖f‖ρ :=

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

,

is a Hilbert space over K.
The following integral inequality is known in the literature as the

Cauchy-Bunyakovsky-Schwarz (CBS) inequality

(5.1)

∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

≥
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2 ,

provided f, g ∈ L2
ρ ([a, b] ;K) .

The case of equality holds in (5.1) iff there exists a constant λ ∈ K
such that f (t) = λg (t) for a.e. t ∈ [a, b] .
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Another version of the (CBS) inequality for one vector-valued and
one scalar function is incorporated in:

(5.2)

∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖f (t)‖2 dt

≥
∥∥∥∥∫ b

a

ρ (t)α (t) f (t) dt

∥∥∥∥2

,

provided α ∈ L2
ρ ([a, b]) and f ∈ L2

ρ ([a, b] ;K) , where L2
ρ ([a, b]) denotes

the Hilbert space of scalar functions α for which
∫ b

a
ρ (t) |α (t)|2 dt <∞.

The equality holds in (5.2) iff there exists a vector e ∈ K such that

f (t) = α (t)e for a.e. t ∈ [a, b] .
In this chapter some reverses of the inequalities (5.1) and (5.2) are

given under various assumptions for the functions involved. Natural
applications for the Heisenberg inequality for vector-valued functions
in Hilbert spaces are also provided.

5.2. Some Reverse Inequalities

5.2.1. The General Case. The following result holds [1].

Theorem 66 (Dragomir, 2004). Let f, g ∈ L2
ρ ([a, b] ;K) and r > 0

be such that

(5.3) ‖f (t)− g (t)‖ ≤ r ≤ ‖g (t)‖

for a.e. t ∈ [a, b] . Then we have the inequalities:

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(5.4)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2

≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt
]2

≤ r2

∫ b

a

ρ (t) ‖f (t)‖2 dt.

The constant C = 1 in front of r2 is best possible in the sense that it
cannot be replaced by a smaller quantity.
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Proof. We will use the following result obtained in [2]:
In the inner product space (H; 〈·, ·〉) , if x, y ∈ H and r > 0 are

such that ‖x− y‖ ≤ r ≤ ‖y‖ , then

0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2(5.5)

≤ ‖x‖2 ‖y‖2 − [Re 〈x, y〉]2 ≤ r2 ‖x‖2 .

The constant c = 1 in front of r2 is best possible in the sense that it
cannot be replaced by a smaller quantity.

If (5.3) holds, true, then

‖f − g‖2
ρ =

∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt ≤ r2

∫ b

a

ρ (t) dt = r2

and

‖g‖2
ρ =

∫ b

a

ρ (t) ‖g (t)‖2 dt ≥ r2

∫ b

a

ρ (t) dt = r2

and thus ‖f − g‖ρ ≤ r ≤ ‖g‖ρ . Applying the inequality (5.5) for(
L2

ρ ([a, b] ;K) , 〈·, ·〉p
)
, we deduce the desired inequality (5.4).

If we choose ρ (t) = 1
b−a

, f (t) = x, g (t) = y, x, y ∈ K, t ∈ [a, b] ,
then from (5.4) we recapture (5.5) for which the constant c = 1 in front
of r2 is best possible.

We next point out some general reverse inequalities for the second
(CBS) inequality (5.2) [1].

Theorem 67 (Dragomir, 2004). Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ;K)
and a ∈ K, r > 0 such that ‖a‖ > r. If the following condition holds

(5.6) ‖g (t)− ᾱ (t) a‖ ≤ r |α (t)|

for a.e. t ∈ [a, b] , (note that, if α (t) 6= 0 for a.e. t ∈ [a, b] , then the
condition (5.6) is equivalent to

(5.7)

∥∥∥∥ g (t)

ᾱ (t)
− a

∥∥∥∥ ≤ r



200 5. CBS AND HEISENBERG INEQUALITIES

for a.e. t ∈ [a, b]), then we have the following inequality

(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.8)

≤ 1√
‖a‖2 − r2

Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉

≤ ‖a‖√
‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ;

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.9)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

〈∫ b

a

ρ (t)α (t) g (t) dt,
a

‖a‖

〉
≤ r2√

‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

)
× Re

〈∫ b

a

ρ (t)α (t) g (t) dt,
a

‖a‖

〉
≤ r2√

‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) ∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ;

∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.10)

≤ 1

‖a‖2 − r2

[
Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉]2

≤ ‖a‖2

‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

,
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and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.11)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a

ρ (t)α (t) g (t) dt,
a

‖a‖

〉]2

≤ r2

‖a‖2 (‖a‖2 − r2
) [Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉]2

≤ r2

‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

.

All the inequalities (5.8) – (5.11) are sharp.

Proof. From (5.6) we deduce

‖g (t)‖2 − 2 Re 〈g (t) , ᾱ (t) a〉+ |α (t)|2 ‖a‖2 ≤ |α (t)|2 r2

for a.e. t ∈ [a, b] , which is clearly equivalent to:

(5.12) ‖g (t)‖2 +
(
‖a‖2 − r2

)
|α (t)|2 ≤ 2 Re 〈α (t) g (t) , a〉

for a.e. t ∈ [a, b] .
If we multiply (5.12) by ρ (t) ≥ 0 and integrate over t ∈ [a, b] , then

we deduce

(5.13)

∫ b

a

ρ (t) ‖g (t)‖2 dt+
(
‖a‖2 − r2

) ∫ b

a

ρ (t) |α (t)|2 dt

≤ 2 Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉
.
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Now, dividing (5.13) by
√
‖a‖2 − r2 > 0, we get

(5.14)
1√

‖a‖2 − r2

∫ b

a

ρ (t) ‖g (t)‖2 dt

+

√
‖a‖2 − r2

∫ b

a

ρ (t) |α (t)|2 dt

≤ 2√
‖a‖2 − r2

Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉
.

On the other hand, by the elementary inequality

1

α
p+ αq ≥ 2

√
pq, α > 0, p, q ≥ 0,

we can state that

(5.15) 2

√∫ b

a

ρ (t) |α (t)|2 dt ·

√∫ b

a

ρ (t) ‖g (t)‖2 dt

≤ 1√
‖a‖2 − r2

∫ b

a

ρ (t) ‖g (t)‖2 dt

+

√
‖a‖2 − r2

∫ b

a

ρ (t) |α (t)|2 dt.

Making use of (5.14) and (5.15), we deduce the first part of (5.8).
The second part of (5.8) is obvious by Schwarz’s inequality

Re

〈∫ b

a

ρ (t)α (t) g (t) dt, a

〉
≤
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ‖a‖ .
If ρ (t) = 1

b−a
, α (t) = 1, g (t) = x ∈ K, then, from (5.8) we get

‖x‖ ≤ 1√
‖a‖2 − r2

Re 〈x, a〉 ≤ ‖x‖ ‖a‖√
‖a‖2 − r2

,

provided ‖x− a‖ ≤ r < ‖a‖ , x, a ∈ K. The sharpness of this inequality
has been shown in [2], and we omit the details.

The other inequalities are obvious consequences of (5.8) and we
omit the details.
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5.2.2. Some Particular Cases. It has been shown in [2] that, for
A, a ∈ K (K = C,R) and x, y ∈ H, where (H; 〈·, ·〉) is an inner product
over the real or complex number field K, the following inequality holds

‖x‖ ‖y‖ ≤ 1

2
·
Re
[(
Ā+ ā

)
〈x, y〉

]
[Re (Aā)]

1
2

(5.16)

≤ 1

2
· |A+ a|
[Re (Aā)]

1
2

|〈x, y〉|

provided Re (Aā) > 0 and

(5.17) Re 〈Ay − x, x− ay〉 ≥ 0,

or, equivalently,

(5.18)

∥∥∥∥x− a+ A

2
· y
∥∥∥∥ ≤ 1

2
|A− a| ‖y‖ ,

holds. The constant 1
2

is best possible in (5.16).
From (5.16), we can deduce the following results

0 ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(5.19)

≤ 1

2
·
Re
[(
Ā+ ā− 2 [Re (Aā)]

1
2

)
〈x, y〉

]
[Re (Aā)]

1
2

≤ 1

2
·

∣∣∣Ā+ ā− 2 [Re (Aā)]
1
2

∣∣∣
[Re (Aā)]

1
2

|〈x, y〉|

and

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(5.20)

≤ 1

2
· |A+ a| − 2 [Re (Aā)]

1
2

[Re (Aā)]
1
2

|〈x, y〉| .

If one assumes that A = M, a = m, M ≥ m > 0, then, from (5.16),
(5.19) and (5.20) we deduce the much simpler and more useful results:

(5.21) ‖x‖ ‖y‖ ≤ 1

2
· M +m√

Mm
Re 〈x, y〉 ,

(5.22) 0 ≤ ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

2
·

(√
M −

√
m
)2

√
Mm

Re 〈x, y〉
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and

(5.23) 0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ 1

2
·

(√
M −

√
m
)2

√
Mm

|〈x, y〉| ,

provided

Re 〈My − x, x−my〉 ≥ 0

or, equivalently

(5.24)

∥∥∥∥x− M +m

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ .

Squaring the second inequality in (5.16), we can get the following re-
sults as well:

(5.25) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |A− a|2

Re (Aā)
|〈x, y〉|2 ,

provided (5.17) or (5.16) holds. Here the constant 1
4

is also best possi-
ble.

Using the above inequalities for vectors in inner product spaces,
we are able to state the following theorem concerning reverses of the
(CBS) integral inequality for vector-valued functions in Hilbert spaces
[1].

Theorem 68 (Dragomir, 2004). Let f, g ∈ L2
ρ ([a, b] ;K) and γ,Γ ∈

K with Re (Γγ̄) > 0. If

(5.26) Re 〈Γg (t)− f (t) , f (t)− γg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.27)

∥∥∥∥f (t)− γ + Γ

2
· g (t)

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖g (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.28)

≤ 1

2
·
Re
[(

Γ̄ + γ̄
) ∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

≤ 1

2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣ ,
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0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.29)

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

2
·
Re
[{

Γ̄ + γ̄ − 2 [Re (Γγ̄)]
1
2

}∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

≤ 1

2
·

∣∣∣Γ̄ + γ̄ − 2 [Re (Γγ̄)]
1
2

∣∣∣
[Re (Γγ̄)]

1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣ ,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.30)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣

≤ 1

2
· |Γ + γ| − 2 [Re (Γγ̄)]

1
2

[Re (Γγ̄)]
1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣ ,

and

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(5.31)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2

≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2 .

The constants 1
2

and 1
4

above are sharp.

In the case where Γ, γ are positive real numbers, the following corol-
lary incorporating more convenient reverses for the (CBS) integral in-
equality, may be stated [1].

Corollary 50. Let f, g ∈ L2
ρ ([a, b] ;K) and M ≥ m > 0. If

(5.32) Re 〈Mg (t)− f (t) , f (t)−mg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.33)

∥∥∥∥f (t)− m+M

2
· g (t)

∥∥∥∥ ≤ 1

2
(M −m) ‖g (t)‖
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for a.e. t ∈ [a, b] , then we have the inequalities

(5.34)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

≤ 1

2
· M +m√

mM

∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.35)

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

2
·

(√
M −

√
m
)2

√
mM

∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.36)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣

≤ 1

2
·

(√
M −

√
m
)2

√
mM

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣ ,

and

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(5.37)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2

≤ 1

4
· (M −m)2

mM

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣2 .

The constants 1
2

and 1
4

above are best possible.

On utilising the general result of Theorem 67, we are able to state a
number of interesting reverses for the (CBS) inequality in the case when
one function takes vector-values while the other is a scalar function [1].
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Theorem 69 (Dragomir, 2004). Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ;K) ,
e ∈ K, ‖e‖ = 1, γ,Γ ∈ K with Re (Γγ̄) > 0. If

(5.38)

∥∥∥∥g (t)− ᾱ (t) · Γ + γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ| |α (t)|

for a.e. t ∈ [a, b] , or, equivalently

(5.39) Re 〈Γᾱ (t) e− g (t) , g (t)− γᾱ (t) e〉 ≥ 0

for a.e. t ∈ [a, b] , (note that, if α (t) 6= 0 for a.e. t ∈ [a, b] , then (5.38)
is equivalent to

(5.40)

∥∥∥∥∥ g (t)

α (t)
− Γ + γ

2
e

∥∥∥∥∥ ≤ 1

2
|Γ− γ|

for a.e. t ∈ [a, b] , and (5.39) is equivalent to

(5.41) Re

〈
Γe− g (t)

α (t)
,
g (t)

α (t)
− γe

〉
≥ 0

for a.e. t ∈ [a, b]), then the following reverse inequalities are valid:(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.42)

≤
Re
[(

Γ̄ + γ̄
) 〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉]
2 [Re (Γγ̄)]

1
2

≤ 1

2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ;

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.43)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]
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≤ |Γ− γ|2

2
√

Re (Γγ̄)
(
|Γ + γ|+ 2

√
Re (Γγ̄)

)
× Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]
≤ |Γ− γ|2

2
√

Re (Γγ̄)
(
|Γ + γ|+ 2

√
Re (Γγ̄)

) ∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ;

∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.44)

≤ 1

4
· 1

Re (Γγ̄)

[
Re

((
Γ + γ

)〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉)]2

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.45)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

(
Γ + γ

|Γ + γ|

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉)]2

≤ 1

4
· |Γ− γ|2

|Γ + γ|2 Re (Γγ̄)

×
[
Re

((
Γ + γ

)〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉)]2

≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

.

The constants 1
2

and 1
4

above are sharp.

In the particular case of positive constants, the following simpler
version of the above inequalities may be stated.
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Corollary 51. Let α ∈ L2
ρ ([a, b]) \ {0} , g ∈ L2

ρ ([a, b] ;K) , e ∈ K,
‖e‖ = 1 and M,m ∈ R with M ≥ m > 0. If

(5.46)

∥∥∥∥ g (t)

ᾱ (t)
− M +m

2
· e
∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , or, equivalently,

(5.47) Re

〈
Me− g (t)

ᾱ (t)
,
g (t)

ᾱ (t)
−me

〉
≥ 0

for a.e. t ∈ [a, b] , then we have

(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.48)

≤ 1

2
· M +m√

Mm
Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉
≤ 1

2
· M +m√

Mm

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥ ;

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.49)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉

≤

(√
M −

√
m
)2

2
√
Mm

Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉

≤

(√
M −

√
m
)2

2
√
Mm

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
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0 ≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.50)

≤ 1

4
· (M +m)2

Mm

[
Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]2

≤ 1

4
· (M +m)2

Mm

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt(5.51)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]2

≤ 1

4
· (M −m)2

Mm

[
Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]2

≤ 1

4
· (M −m)2

Mm

∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥2

.

The constants 1
2

and 1
4

above are sharp.

5.2.3. Reverses of the Heisenberg Inequality. It is well known
that if (H; 〈·, ·〉) is a real or complex Hilbert space and f : [a, b] ⊂
R →H is an absolutely continuous vector-valued function, then f is
differentiable almost everywhere on [a, b] , the derivative f ′ : [a, b] → H
is Bochner integrable on [a, b] and

(5.52) f (t) =

∫ t

a

f ′ (s) ds for any t ∈ [a, b] .

The following theorem provides a version of the Heisenberg inequal-
ities in the general setting of Hilbert spaces [1].

Theorem 70 (Dragomir, 2004). Let ϕ : [a, b] → H be an absolutely
continuous function with the property that b ‖ϕ (b)‖2 = a ‖ϕ (a)‖2 .
Then we have the inequality:

(5.53)

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 4

∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt.
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The constant 4 is best possible in the sense that it cannot be replaced
by a smaller quantity.

Proof. Integrating by parts, we have successively∫ b

a

‖ϕ (t)‖2 dt(5.54)

= t ‖ϕ (t)‖2

∣∣∣∣b
a

−
∫ b

a

t
d

dt

(
‖ϕ (t)‖2) dt

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a

t
d

dt
〈ϕ (t) , ϕ (t)〉 dt

= −
∫ b

a

t [〈ϕ′ (t) , ϕ (t)〉+ 〈ϕ (t) , ϕ′ (t)〉] dt

= −2

∫ b

a

tRe 〈ϕ′ (t) , ϕ (t)〉 dt

= 2

∫ b

a

Re 〈ϕ′ (t) , (−t)ϕ (t)〉 dt.

If we apply the (CBS) integral inequality

∫ b

a

Re 〈g (t) , h (t)〉 dt ≤
(∫ b

a

‖g (t)‖2 dt

∫ b

a

‖h (t)‖2 dt

) 1
2

for g (t) = ϕ′ (t) , h (t) = −tϕ (t) , t ∈ [a, b] , then we deduce the desired
inequality (5.53).

The fact that 4 is the best possible constant in (5.53) follows from
the fact that in the (CBS) inequality, the case of equality holds iff
g (t) = λh (t) for a.e. t ∈ [a, b] and λ a given scalar in K. We omit the
details.

For details on the classical Heisenberg inequality, see, for instance,
[4].

The following reverse of the Heisenberg type inequality (5.53) holds
[1].

Theorem 71 (Dragomir, 2004). Assume that ϕ : [a, b] → H is as
in the hypothesis of Theorem 70. In addition, if there exists a r > 0
such that

(5.55) ‖ϕ′ (t)− tϕ (t)‖ ≤ r ≤ ‖ϕ′ (t)‖
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for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

(5.56)

≤ r2

∫ b

a

t2 ‖ϕ (t)‖2 dt.

Proof. We observe, by the identity (5.54), that

(5.57)
1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

=

(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt
)2

.

Now, if we apply Theorem 66 for the choices f (t) = tϕ (t) , g (t) =
ϕ′ (t) , and ρ (t) = 1

b−a
, then by (5.4) and (5.57) we deduce the desired

inequality (5.56).

Remark 60. Interchanging the place of tϕ (t) with ϕ′ (t) in Theo-
rem 71, we also have

0 ≤
∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

(5.58)

≤ ρ2

∫ b

a

‖ϕ′ (t)‖2
dt,

provided
‖ϕ′ (t)− tϕ (t)‖ ≤ ρ ≤ |t| ‖ϕ (t)‖

for a.e. t ∈ [a, b] , where ρ > 0 is a given positive number.

The following result also holds [1].

Theorem 72 (Dragomir, 2004). Assume that ϕ : [a, b] → H is as in
the hypothesis of Theorem 70. In addition, if there exists M ≥ m > 0
such that

(5.59) Re 〈Mtϕ (t)− ϕ′ (t) , ϕ′ (t)−mtϕ (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.60)

∥∥∥∥ϕ′ (t)− M +m

2
tϕ (t)

∥∥∥∥ ≤ 1

2
(M −m) |t| ‖ϕ (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities

(5.61)

∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt

≤ 1

16
· (M +m)2

Mm

(∫ b

a

‖ϕ (t)‖2 dt

)2
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and

(5.62)

∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 1

16
· (M −m)2

Mm

(∫ b

a

‖ϕ (t)‖2 dt

)2

respectively.

Proof. We use Corollary 50 for the choices f (t) = ϕ′ (t) , g (t) =
tϕ (t) , ρ (t) = 1

b−a
, to get

∫ b

a

‖ϕ′ (t)‖2
dt

∫ b

a

t2 ‖ϕ (t)‖2 dt

≤ (M +m)2

4Mm

(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt
)2

.

Since, by (5.57)

(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt
)2

=
1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

,

hence we deduce the desired result (5.61).
The inequality (5.62) follows from (5.61), and we omit the details.

Remark 61. If one is interested in reverses for the Heisenberg
inequality for scalar valued functions, then all the other inequalities
obtained above for one scalar function may be applied as well. For the
sake of brevity, we do not list them here.

5.3. Other Reverses

5.3.1. The General Case. The following result holds [3].

Theorem 73 (Dragomir, 2004). Let f, g ∈ L2
ρ ([a, b] ;K) and r > 0

be such that

(5.63) ‖f (t)− g (t)‖ ≤ r
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for a.e. t ∈ [a, b] . Then we have the inequalities:

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.64)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣

≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt
∣∣∣∣

≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

2
r2.

The constant 1
2

in front of r2 is best possible in the sense that it cannot
be replaced by a smaller quantity.

Proof. We will use the following result obtained in [2]:
In the inner product space (H; 〈·, ·〉) , if x, y ∈ H and r > 0 are

such that ‖x− y‖ ≤ r, then

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − |Re 〈x, y〉|(5.65)

≤ ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

2
r2.

The constant 1
2

in front of r2 is best possible in the sense that it cannot
be replaced by a smaller constant.

If (5.63) holds true, then

‖f − g‖2
ρ =

∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt ≤ r2

∫ b

a

ρ (t) dt = r2

and thus ‖f − g‖ρ ≤ r.

Applying the inequality (5.65) for
(
L2

ρ ([a, b] ;K) , 〈·, ·〉p
)
, we de-

duce the desired inequality (5.64).
If we choose ρ (t) = 1

b−a
, f (t) = x, g (t) = y, x, y ∈ K, t ∈ [a, b] ,

then from (5.64) we recapture (5.65) for which the constant 1
2

in front
of r2 is best possible.
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We next point out some general reverse inequalities for the second
CBS inequality (5.2)[3].

Theorem 74 (Dragomir, 2004). Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ;K)
and v ∈ K, r > 0. If

(5.66)

∥∥∥∥∥ g (t)

α (t)
− v

∥∥∥∥∥ ≤ r

for a.e. t ∈ [a, b] , then we have the inequality

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.67)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣〈∫ b

a

ρ (t)α (t) g (t) dt,
v

‖v‖

〉∣∣∣∣
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣Re

〈∫ b

a

ρ (t)α (t) g (t) dt,
v

‖v‖

〉∣∣∣∣
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

〈∫ b

a

ρ (t)α (t) g (t) dt,
v

‖v‖

〉
≤ 1

2
· r

2

‖v‖

∫ b

a

ρ (t) |α (t)|2 dt.

The constant 1
2

is best possible in the sense that it cannot be replaced
by a smaller quantity.

Proof. From (5.66) we deduce

‖g (t)‖2 − 2 Re 〈α (t) g (t) , v〉+ |α (t)|2 ‖v‖2 ≤ r2 |α (t)|2

which is clearly equivalent to

(5.68) ‖g (t)‖2 + |α (t)|2 ‖v‖2 ≤ 2 Re 〈α (t) g (t) , v〉+ r2 |α (t)|2 .
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If we multiply (5.68) by ρ (t) ≥ 0 and integrate over t ∈ [a, b] , then
we deduce

(5.69)

∫ b

a

ρ (t) ‖g (t)‖2 dt+ ‖v‖2

∫ b

a

ρ (t) |α (t)|2 dt

≤ 2 Re

〈∫ b

a

ρ (t)α (t) g (t) dt, v

〉
+ r2

∫ b

a

ρ (t) |α (t)|2 dt.

Since, obviously

(5.70) 2 ‖v‖
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

≤
∫ b

a

ρ (t) ‖g (t)‖2 dt+ ‖v‖2

∫ b

a

ρ (t) |α (t)|2 dt,

hence, by (5.69) and (5.70), we deduce

2 ‖v‖
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

≤ 2 Re

〈∫ b

a

ρ (t)α (t) g (t) dt, v

〉
+ r2

∫ b

a

ρ (t) |α (t)|2 dt,

which is clearly equivalent with the last inequality in (5.67).
The other inequalities are obvious and we omit the details.
Now, if ρ (t) = 1

b−a
, α (t) = 1, g (t) = x, x ∈ K, then, by the last

inequality in (5.67) we get

‖x‖ ‖v‖ − Re 〈x, v〉 ≤ 1

2
r2,

provided ‖x− v‖ ≤ r, for which we know that (see [2]), the constant 1
2

is best possible.

5.3.2. Some Particular Cases of Interest. It has been shown
in [2] that, for γ,Γ ∈ K (K = C or K = R) with Γ 6= −γ and x, y ∈ H,
(H; 〈·, ·〉) is an inner product over the real or complex number field K,
such that either

(5.71) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(5.72)

∥∥∥∥x− γ + Γ

2
· y
∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖ ,
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holds, then one has the following reverse of Schwarz’s inequality

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(5.73)

≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉

]∣∣∣∣
≤ ‖x‖ ‖y‖ − Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉

]
≤ 1

4
· |Γ− γ|2

|Γ + γ|
‖y‖2 .

The constant 1
4

is best possible in (5.73) in the sense that it cannot be
replaced by a smaller constant.

If we assume that Γ = M, γ = m with M ≥ m > 0, then from
(5.73) we deduce the much simpler and more useful result

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − |Re 〈x, y〉|(5.74)

≤ ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

4
· (M −m)2

Mm
‖y‖2 ,

provided (5.71) or (5.72) holds true with M and m instead of Γ and γ.
Using the above inequalities for vectors in inner product spaces, we

are able to state the following theorem concerning reverses of the CBS
integral inequality for vector-valued functions in Hilbert spaces [3].

Theorem 75 (Dragomir, 2004). Let f, g ∈ L2
ρ ([a, b] ;K) and γ,Γ ∈

K with Γ 6= −γ. If

(5.75) Re 〈Γg (t)− f (t) , f (t)− γg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.76)

∥∥∥∥f (t)− γ + Γ

2
· g (t)

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖g (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.77)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣
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≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
]∣∣∣∣

≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
]

≤ 1

4
· |Γ− γ|2

|Γ + γ|

∫ b

a

ρ (t) ‖g (t)‖2 dt.

The constant 1
4

is best possible in (5.77).

Proof. Since, by (5.75),

Re 〈Γg − f, f − γg〉ρ

=

∫ b

a

ρ (t) Re 〈Γg (t)− f (t) , f (t)− γg (t)〉 dt ≥ 0,

hence, by (5.73) applied for the Hilbert space
(
L2

ρ ([a, b] ;K) ; 〈·, ·〉ρ
)
,

we deduce the desired inequality (5.77).
The best constant follows by the fact that 1

4
is a best constant in

(5.77) and we omit the details.

Corollary 52. Let f, g ∈ L2
ρ ([a, b] ;K) and M ≥ m > 0. If

(5.78) Re 〈Mg (t)− f (t) , f (t)−mg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.79)

∥∥∥∥f (t)− m+M

2
· g (t)

∥∥∥∥ ≤ 1

2
(M −m) ‖g (t)‖

for a.e. t ∈ [a, b] , then

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.80)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt
∣∣∣∣
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≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt
∣∣∣∣

≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

4
· (M −m)2

M +m

∫ b

a

ρ (t) ‖g (t)‖2 dt.

The constant 1
4

is best possible.

The case when a function is scalar is incorporated in the following
theorem [3].

Theorem 76 (Dragomir, 2004). Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ;K) ,
and γ,Γ ∈ K with Γ 6= −γ. If e ∈ K, ‖e‖ = 1 and

(5.81)

∥∥∥∥∥ g (t)

α (t)
− Γ + γ

2
e

∥∥∥∥∥ ≤ 1

2
|Γ− γ|

for a.e. t ∈ [a, b] , or, equivalently,

(5.82) Re

〈
Γe− g (t)

α (t)
,
g (t)

α (t)
− γe

〉
≥ 0

for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.83)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉∣∣∣∣
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≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]∣∣∣∣
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉]
≤ 1

4
· |Γ− γ|2

|Γ + γ|

∫ b

a

ρ (t) |α (t)|2 dt.

The constant 1
4

is best possible in (5.83).

Proof. Follows by Theorem 74 on choosing

v :=
Γ + γ

2
e and r :=

1

2
|Γ− γ| .

We omit the details.

Corollary 53. Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ;K) , and M ≥
m > 0. If e ∈ K, ‖e‖ = 1 and∥∥∥∥∥ g (t)

α (t)
− M +m

2
· e

∥∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , or, equivalently,

Re

〈
Me− g (t)

α (t)
,
g (t)

α (t)
−me

〉
≥ 0

for a.e. t ∈ [a, b], then we have the inequalities:

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(5.84)

−
∥∥∥∥∫ b

a

ρ (t)α (t) g (t) dt

∥∥∥∥
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉∣∣∣∣
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≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉∣∣∣∣
≤
(∫ b

a

ρ (t) |α (t)|2 dt
∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

− Re

〈∫ b

a

ρ (t)α (t) g (t) dt, e

〉
≤ 1

4
· (M −m)2

M +m

∫ b

a

ρ (t) |α (t)|2 dt.

The constant 1
4

is best possible in (5.84).

5.3.3. Applications for the Heisenberg Inequality. The fol-
lowing reverse of the Heisenberg type inequality (5.53) holds [3].

Theorem 77 (Dragomir, 2004). Assume that ϕ : [a, b] → H is as
in the hypothesis of Theorem 70. In addition, if there exists a r > 0
such that

(5.85) ‖ϕ′ (t) + tϕ (t)‖ ≤ r

for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
(∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt(5.86)

≤ 1

2
r2 (b− a) .

Proof. We observe, by the identity (5.54), that

(5.87)

∫ b

a

Re 〈ϕ′ (t) , (−t)ϕ (t)〉 dt =
1

2

∫ b

a

‖ϕ (t)‖2 dt.

Now, if we apply Theorem 73 for the choices f (t) = tϕ (t) , g (t) =
−tϕ′ (t) , ρ (t) = 1

b−a
, t ∈ [a, b] , then we deduce the desired inequality

(5.86).

Remark 62. It is interesting to remark that, from (5.87), we ob-
viously have

(5.88)
1

2

∫ b

a

‖ϕ (t)‖2 dt =

∣∣∣∣∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt
∣∣∣∣ .
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Now, if we apply the inequality (see (5.64))∫ b

a

‖f (t)‖2 dt

∫ b

a

‖g (t)‖2 dt−
∣∣∣∣∫ b

a

Re 〈f (t) , g (t)〉 dt
∣∣∣∣ ≤ 1

2
r2 (b− a) ,

for the choices f (t) = ϕ′ (t) , g (t) = tϕ (t) , t ∈ [a, b] , then we get the
same inequality (5.86), but under the condition

(5.89) ‖ϕ′ (t)− tϕ (t)‖ ≤ r

for a.e. t ∈ [a, b] .

The following result holds as well [3].

Theorem 78 (Dragomir, 2004). Assume that ϕ : [a, b] → H is as in
the hypothesis of Theorem 77. In addition, if there exists M ≥ m > 0
such that

(5.90) Re 〈Mtϕ (t)− ϕ′ (t) , ϕ′ (t)−mtϕ (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(5.91)

∥∥∥∥ϕ′ (t)− M +m

2
tϕ (t)

∥∥∥∥ ≤ 1

2
(M −m) |t| ‖ϕ (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
(∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt(5.92)

≤ 1

4
· (M −m)2

M +m

∫ b

a

t2 ‖ϕ (t)‖2 dt.

Proof. The proof follows by Corollary 52 applied for the function
g (t) = tϕ (t) and f (t) = ϕ′ (t) , and on making use of the identity
(5.88). We omit the details.

Remark 63. If one is interested in reverses for the Heisenberg in-
equality for real or complex valued functions, then all the other inequal-
ities obtained above for one scalar and one vectorial function may be
applied as well. For the sake of brevity, we do not list them here.
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CHAPTER 6

Other Inequalities in Inner Product Spaces

6.1. Bounds for the Distance to Finite-Dimensional
Subspaces

6.1.1. Introduction. Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K, {y1, . . . , yn} a subset of H
and G (y1, . . . , yn) the Gram matrix of {y1, . . . , yn} where (i, j)−entry
is 〈yi, yj〉 . The determinant of G (y1, . . . , yn) is called the Gram deter-
minant of {y1, . . . , yn} and is denoted by Γ (y1, . . . , yn) . Thus,

Γ (y1, . . . , yn) =

∣∣∣∣∣∣∣∣
〈y1, y1〉 〈y1, y2〉 · · · 〈y1, yn〉
〈y2, y1〉 〈y2, y2〉 · · · 〈y2, yn〉

· · · · · · · · · · · · · · ·
〈yn, y1〉 〈yn, y2〉 · · · 〈yn, yn〉

∣∣∣∣∣∣∣∣ .
Following [4, p. 129 – 133], we state here some general results for

the Gram determinant that will be used in the sequel.

(1) Let {x1, . . . , xn} ⊂ H. Then Γ (x1, . . . , xn) 6= 0 if and only if
{x1, . . . , xn} is linearly independent;

(2) LetM = span {x1, . . . , xn} be n−dimensional inH, i.e., {x1, . . . ,
xn} is linearly independent. Then for each x ∈ H, the distance
d (x,M) from x to the linear subspaceH has the representations

(6.1) d2 (x,M) =
Γ (x1, . . . , xn, x)

Γ (x1, . . . , xn)

and

(6.2) d2 (x,M) = ‖x‖2 − βTG−1β,

where G = G (x1, . . . , xn) , G−1 is the inverse matrix of G and

βT = (〈x, x1〉 , 〈x, x2〉 , . . . , 〈x, xn〉) ,

denotes the transpose of the column vector β.
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Moreover, one has the simpler representation

(6.3) d2 (x,M) =


‖x‖2 − (

∑n
i=1|〈x,xi〉|2)

2

‖∑n
i=1〈x,xi〉xi‖2 if x /∈M⊥,

‖x‖2 if x ∈M⊥,

where M⊥ denotes the orthogonal complement of M.
(3) Let {x1, . . . , xn} be a set of nonzero vectors in H. Then

(6.4) 0 ≤ Γ (x1, . . . , xn) ≤ ‖x1‖2 ‖x2‖2 · · · ‖xn‖2 .

The equality holds on the left (respectively right) side of (6.4)
if and only if {x1, . . . , xn} is linearly dependent (respectively
orthogonal). The first inequality in (6.4) is known in the lit-
erature as Gram’s inequality while the second one is known as
Hadamard’s inequality.

(4) If {x1, . . . , xn} is an orthonormal set in H, i.e., 〈xi, xj〉 = δij,
i, j ∈ {1, . . . , n} , where δij is Kronecker’s delta, then

(6.5) d2 (x,M) = ‖x‖2 −
n∑

i=1

|〈x, xi〉|2 .

The following inequalities which involve Gram determinants may
be stated as well [17, p. 597]:

(6.6)
Γ (x1, . . . , xn)

Γ (x1, . . . , xk)
≤ Γ (x2, . . . , xn)

Γ (x1, . . . , xk)
≤ · · · ≤ Γ (xk+1, . . . , xn) ,

(6.7) Γ (x1, . . . , xn) ≤ Γ (x1, . . . , xk) Γ (xk+1, . . . , xn)

and

(6.8) Γ
1
2 (x1 + y1, x2, . . . , xn)

≤ Γ
1
2 (x1, x2, . . . , xn) + Γ

1
2 (y1, x2, . . . , xn) .

The main aim of this section is to point out some upper bounds
for the distance d (x,M) in terms of the linearly independent vectors
{x1, . . . , xn} that span M and x /∈ M⊥, where M⊥ is the orthogonal
complement of M in the inner product space (H; 〈·, ·〉).

As a by-product of this endeavour, some refinements of the general-
isations for Bessel’s inequality due to several authors including: Boas,
Bellman and Bombieri are obtained. Refinements for the well known
Hadamard’s inequality for Gram determinants are also derived.
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6.1.2. Upper Bounds for d (x,M). The following result may be
stated [16].

Theorem 79 (Dragomir, 2005). Let {x1, . . . , xn} be a linearly in-
dependent system of vectors in H and M := span {x1, . . . , xn} . If
x /∈M⊥, then

(6.9) d2 (x,M) <
‖x‖2∑n

i=1 ‖xi‖2 −
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2

or, equivalently,

(6.10) Γ (x1, . . . , xn, x)

<
‖x‖2∑n

i=1 ‖xi‖2 −
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2 · Γ (x1, . . . , xn) .

Proof. If we use the Cauchy-Bunyakovsky-Schwarz type inequality

(6.11)

∥∥∥∥∥
n∑

i=1

αiyi

∥∥∥∥∥
2

≤
n∑

i=1

|αi|2
n∑

i=1

‖yi‖2 ,

that can be easily deduced from the obvious identity

(6.12)
n∑

i=1

|αi|2
n∑

i=1

‖yi‖2 −

∥∥∥∥∥
n∑

i=1

αiyi

∥∥∥∥∥
2

=
1

2

n∑
i,j=1

‖αixj − αjxi‖2 ,

we can state that

(6.13)

∥∥∥∥∥
n∑

i=1

〈x, xi〉xi

∥∥∥∥∥
2

≤
n∑

i=1

|〈x, xi〉|2
n∑

i=1

‖xi‖2 .

Note that the equality case holds in (6.13) if and only if, by (6.12),

(6.14) 〈x, xi〉xj = 〈x, xi〉xi

for each i, j ∈ {1, . . . , n} .
Utilising the expression (6.3) of the distance d (x,M), we have

(6.15) d2 (x,M) = ‖x‖2 −
∑n

i=1 |〈x, xi〉|2
∑n

i=1 ‖xi‖2

‖
∑n

i=1 〈x, xi〉xi‖2 ·
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2 .

Since {x1, . . . , xn} are linearly independent, hence (6.14) cannot be
achieved and then we have strict inequality in (6.13).

Finally, on using (6.13) and (6.15) we get the desired result (6.9).
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Remark 64. It is known that (see (6.4)) if not all {x1, . . . , xn} are
orthogonal on each other, then the following result, which is well known
in the literature as Hadamard’s inequality holds:

(6.16) Γ (x1, . . . , xn) < ‖x1‖2 ‖x2‖2 · · · ‖xn‖2 .

Utilising the inequality (6.10), we may write successively:

Γ (x1, x2) ≤
‖x1‖2 ‖x2‖2 − |〈x2, x1〉|2

‖x1‖2 ‖x1‖2 ≤ ‖x1‖2 ‖x2‖2 ,

Γ (x1, x2, x3) <
‖x3‖2∑2

i=1 ‖xi‖2 −
∑2

i=1 |〈x3, xi〉|2∑2
i=1 ‖xi‖2 Γ (x1, x2)

≤ ‖x3‖2 Γ (x1, x2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Γ (x1, . . . , xn−1, xn) <
‖xn‖2∑n−1

i=1 ‖xi‖2 −
∑n−1

i=1 |〈xn, xi〉|2∑n−1
i=1 ‖xi‖2

× Γ (x1, . . . , xn−1)

≤ ‖xn‖2 Γ (x1, . . . , xn−1) .

Multiplying the above inequalities, we deduce

Γ (x1, . . . , xn−1, xn)(6.17)

< ‖x1‖2
n∏

k=2

(
‖xk‖2 − 1∑k−1

i=1 ‖xi‖2

k−1∑
i=1

|〈xk, xi〉|2
)

≤
n∏

j=1

‖xj‖2 ,

valid for a system of n ≥ 2 linearly independent vectors which are not
orthogonal on each other.

In [15], the author has obtained the following inequality.

Lemma 8 (Dragomir, 2004). Let z1, . . . , zn ∈ H and α1, . . . , αn ∈
K. Then one has the inequalities:

(6.18)

∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥
2
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≤



max
1≤i≤n

|αi|2
n∑

i=1

‖zi‖2 ;

(
n∑

i=1

|αi|2α

) 1
α
(

n∑
i=1

‖zi‖2β

) 1
p

where α > 1, 1
α

+ 1
β

= 1;

n∑
i=1

|αi|2 max
1≤i≤n

‖zi‖2 ;

+



max
1≤i6=j≤n

{|αiαj|}
∑

1≤i6=j≤n

|〈zi, zj〉| ;

[(
n∑

i=1

|αi|γ
)2

−
n∑

i=1

|αi|2γ

] 1
γ
( ∑

1≤i6=j≤n

|〈zi, zj〉|δ
) 1

δ

where γ > 1, 1
γ

+ 1
δ

= 1;[(
n∑

i=1

|αi|
)2

−
n∑

i=1

|αi|2
]

max
1≤i6=j≤n

|〈zi, zj〉| ;

where any term in the first branch can be combined with each term from
the second branch giving 9 possible combinations.

Out of these, we select the following ones that are of relevance for
further consideration:

∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥
2

(6.19)

≤ max
1≤i≤n

‖zi‖2
n∑

i=1

|αi|2

+ max
1≤i<j≤n

|〈zi, zj〉|

( n∑
i=1

|αi|

)2

−
n∑

i=1

|αi|2


≤
n∑

i=1

|αi|2
(

max
1≤i≤n

‖zi‖2 + (n− 1) max
1≤i<j≤n

|〈zi, zj〉|
)
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and

∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥
2

(6.20)

≤ max
1≤i≤n

‖zi‖2
n∑

i=1

|αi|2 +

( n∑
i=1

|αi|2
)2

−
n∑

i=1

|αi|4
1/2

×

( ∑
1≤i6=j≤n

|〈zi, zj〉|2
) 1

2

≤
n∑

i=1

|αi|2
max

1≤i≤n
‖zi‖2 +

( ∑
1≤i6=j≤n

|〈zi, zj〉|2
) 1

2

 .
Note that the last inequality in (6.19) follows by the fact that

(
n∑

i=1

|αi|

)2

≤ n
n∑

i=1

|αi|2 ,

while the last inequality in (6.20) is obvious.
Utilising the above inequalities (6.19) and (6.20) which provide al-

ternatives to the Cauchy-Bunyakovsky-Schwarz inequality (6.11), we
can state the following results [16].

Theorem 80 (Dragomir, 2005). Let {x1, . . . , xn} , M and x be as
in Theorem 79. Then

(6.21) d2 (x,M)

≤

‖x‖2

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2

− n∑
i=1

|〈x, xi〉|2

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2
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or, equivalently,

(6.22) Γ (x1, . . . , xn, x)

≤

‖x‖2

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2

− n∑
i=1

|〈x, xi〉|2

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2

× Γ (x1, . . . , xn) .

Proof. Utilising the inequality (6.20) for αi = 〈x, xi〉 and zi = xi,
i ∈ {1, . . . , n} , we can write:

(6.23)

∥∥∥∥∥
n∑

i=1

〈x, xi〉xi

∥∥∥∥∥
2

≤
n∑

i=1

|〈x, xi〉|2
max

1≤i≤n
‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2


for any x ∈ H.

Now, since, by the representation formula (6.3)

(6.24) d2 (x,M) = ‖x‖2 −
∑n

i=1 |〈x, xi〉|2

‖
∑n

i=1 〈x, xi〉xi‖2 ·
n∑

i=1

|〈x, xi〉|2 ,

for x /∈ M⊥, hence, by (6.23) and (6.24) we deduce the desired result
(6.21).

Remark 65. In 1941, R.P. Boas [2] and in 1944, R. Bellman
[1], independent of each other, proved the following generalisation of
Bessel’s inequality:

(6.25)
n∑

i=1

|〈y, yi〉|2 ≤ ‖y‖2

max
1≤i≤n

‖yi‖2 +

( ∑
1≤i6=j≤n

|〈yi, yj〉|2
) 1

2

 ,
provided y and yi (i ∈ {1, . . . , n}) are arbitrary vectors in the inner
product space (H; 〈·, ·〉) . If {yi}i∈{1,...,n} are orthonormal, then (6.25)
reduces to Bessel’s inequality.

In this respect, one may see (6.21) as a refinement of the Boas-
Bellman result (6.25).
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Remark 66. On making use of a similar argument to that utilised
in Remark 64, one can obtain the following refinement of the Hadamard
inequality:

Γ (x1, . . . , xn)(6.26)

≤ ‖x1‖2

×
n∏

k=2

‖xk‖2 −

k−1∑
i=1

|〈xk, xi〉|2

max
1≤i≤k−1

‖xi‖2 +

( ∑
1≤i6=j≤k−1

|〈xi, xj〉|2
) 1

2


≤

n∏
j=1

‖xj‖2 .

Further on, if we choose αi = 〈x, xi〉 , zi = xi, i ∈ {1, . . . , n} in
(6.19), then we may state the inequality

(6.27)

∥∥∥∥∥
n∑

i=1

〈x, xi〉xi

∥∥∥∥∥
2

≤
n∑

i=1

|〈x, xi〉|2
(

max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|
)
.

Utilising (6.27) and (6.24) we may state the following result as well
[16]:

Theorem 81 (Dragomir, 2005). Let {x1, . . . , xn} , M and x be as
in Theorem 79. Then

(6.28) d2 (x,M)

≤
‖x‖2

[
max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|
]
−
∑n

i=1 |〈x, xi〉|2

max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|
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or, equivalently,

(6.29) Γ (x1, . . . , xn, x)

≤
‖x‖2

[
max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|
]
−
∑n

i=1 |〈x, xi〉|2

max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|

× Γ (x1, . . . , xn) .

Remark 67. The above result (6.28) provides a refinement for the
following generalisation of Bessel’s inequality:

(6.30)
n∑

i=1

|〈x, xi〉|2 ≤ ‖x‖2

[
max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i6=j≤n

|〈xi, xj〉|
]
,

obtained by the author in [15].
One can also provide the corresponding refinement of Hadamard’s

inequality (6.4) on using (6.29), i.e.,

Γ (x1, . . . , xn)(6.31)

≤ ‖x1‖2

×
n∏

k=2

‖xk‖2 −

k−1∑
i=1

|〈xk, xi〉|2

max
1≤i≤k−1

‖xi‖2 + (k − 2) max
1≤i6=j≤k−1

|〈xi, xj〉|


≤

n∏
j=1

‖xj‖2 .

6.1.3. Other Upper Bounds for d (x,M). In [7, p. 140] the
author obtained the following inequality that is similar to the Cauchy-
Bunyakovsky-Schwarz result.
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Lemma 9 (Dragomir, 2004). Let z1, . . . , zn ∈ H and α1, . . . , αn ∈
K. Then one has the inequalities:∥∥∥∥∥

n∑
i=1

αizi

∥∥∥∥∥
2

≤
n∑

i=1

|αi|2
n∑

j=1

|〈zi, zj〉|(6.32)

≤



n∑
i=1

|αi|2 max
1≤i≤n

[
n∑

j=1

|〈zi, zj〉|

]
;

(
n∑

i=1

|αi|2p

) 1
p

(
n∑

i=1

(
n∑

j=1

|〈zi, zj〉|

)q) 1
q

where p > 1, 1
p

+ 1
q

= 1;

max
1≤i≤n

|αi|2
n∑

i,j=1

|〈zi, zj〉| .

We can state and prove now another upper bound for the distance
d (x,M) as follows [16].

Theorem 82 (Dragomir, 2005). Let {x1, . . . , xn} , M and x be as
in Theorem 79. Then

(6.33) d2 (x,M) ≤
‖x‖2 max

1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

]
−

n∑
i=1

|〈x, xi〉|2

max
1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

]
or, equivalently,

(6.34) Γ (x1, . . . , xn, x)

≤
‖x‖2 max

1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

]
−

n∑
i=1

|〈x, xi〉|2

max
1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

] · Γ (x1, . . . , xn) .

Proof. Utilising the first branch in (6.32) we may state that

(6.35)

∥∥∥∥∥
n∑

i=1

〈x, xi〉xi

∥∥∥∥∥
2

≤
n∑

i=1

|〈x, xi〉|2 max
1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

]
for any x ∈ H.
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Now, since, by the representation formula (6.3) we have

(6.36) d2 (x,M) = ‖x‖2 −
∑n

i=1 |〈x, xi〉|2

‖
∑n

i=1 〈x, xi〉xi‖2 ·
n∑

i=1

|〈x, xi〉|2 ,

for x /∈ M⊥, hence, by (6.35) and (6.36) we deduce the desired result
(6.33).

Remark 68. In 1971, E. Bombieri [3] proved the following gener-
alisation of Bessel’s inequality, however not stated in the general form
for inner products. The general version can be found for instance in
[17, p. 394]. It reads as follows: if y, y1, . . . , yn are vectors in the inner
product space (H; 〈·, ·〉) , then

(6.37)
n∑

i=1

|〈y, yi〉|2 ≤ ‖y‖2 max
1≤i≤n

{
n∑

j=1

|〈yi, yj〉|

}
.

Obviously, when {y1, . . . , yn} are orthonormal, the inequality (6.37)
produces Bessel’s inequality.

In this respect, we may regard our result (6.33) as a refinement of
the Bombieri inequality (6.37).

Remark 69. On making use of a similar argument to that in Re-
mark 64, we obtain the following refinement for the Hadamard inequal-
ity:

Γ (x1, . . . , xn) ≤ ‖x1‖2
n∏

k=2

‖xk‖2 −

k−1∑
i=1

|〈xk, xi〉|2

max
1≤i≤k−1

[
k−1∑
j=1

|〈xi, xj〉|

]
(6.38)

≤
n∏

j=1

‖xj‖2 .

Another different Cauchy-Bunyakovsky-Schwarz type inequality is
incorporated in the following lemma [13].

Lemma 10 (Dragomir, 2004). Let z1, . . . , zn ∈ H and α1, . . . , αn ∈
K. Then

(6.39)

∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥
2

≤

(
n∑

i=1

|αi|p
) 2

p
(

n∑
i,j=1

|〈zi, zj〉|q
) 1

q

for p > 1, 1
p

+ 1
q

= 1.
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If in (6.39) we choose p = q = 2, then we get

(6.40)

∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥
2

≤
n∑

i=1

|αi|2
(

n∑
i,j=1

|〈zi, zj〉|2
) 1

2

.

Based on (6.40), we can state the following result that provides yet
another upper bound for the distance d (x,M) [16].

Theorem 83 (Dragomir, 2005). Let {x1, . . . , xn} , M and x be as
in Theorem 79. Then

(6.41) d2 (x,M) ≤
‖x‖2

(
n∑

i,j=1

|〈xi, xj〉|2
) 1

2

−
n∑

i=1

|〈x, xi〉|2(
n∑

i,j=1

|〈xi, xj〉|2
) 1

2

or, equivalently,

(6.42) Γ (x1, . . . , xn, x)

≤
‖x‖2

(
n∑

i,j=1

|〈xi, xj〉|2
) 1

2

−
n∑

i=1

|〈x, xi〉|2(
n∑

i,j=1

|〈xi, xj〉|2
) 1

2

· Γ (x1, . . . , xn) .

Similar comments apply related to Hadamard’s inequality. We omit
the details.

6.1.4. Some Conditional Bounds. In the recent paper [6], the
author has established the following reverse of the Bessel inequality.

Let (H; 〈·, ·〉) be an inner product space over the real or complex
number field K, {ei}i∈I a finite family of orthonormal vectors in H,
ϕi, φi ∈ K, i ∈ I and x ∈ H. If

(6.43) Re

〈∑
i∈I

φiei − x, x−
∑
i∈I

ϕiei

〉
≥ 0

or, equivalently,

(6.44)

∥∥∥∥∥x−∑
i∈I

ϕi + φi

2
ei

∥∥∥∥∥ ≤ 1

2

(∑
i∈I

|φi − ϕi|
2

) 1
2

,
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then

(6.45) (0 ≤) ‖x‖2 −
∑
i∈I

|〈x, ei〉|2 ≤
1

4

∑
i∈I

|φi − ϕi|
2 .

The constant 1
4

is best possible in the sense that it cannot be replaced
by a smaller constant [16].

Theorem 84 (Dragomir, 2005). Let {x1, . . . xn} be a linearly in-
dependent system of vectors in H and M := span {x1, . . . xn} . If γi,
Γi ∈ K, i ∈ {1, . . . , n} and x ∈ H\M⊥ is such that

(6.46) Re

〈
n∑

i=1

Γixi − x, x−
n∑

i=1

γixi

〉
≥ 0,

then we have the bound

(6.47) d2 (x,M) ≤ 1

4

∥∥∥∥∥
n∑

i=1

(Γi − γi)xi

∥∥∥∥∥
2

or, equivalently,

(6.48) Γ (x1, . . . , xn, x) ≤
1

4

∥∥∥∥∥
n∑

i=1

(Γi − γi)xi

∥∥∥∥∥
2

Γ (x1, . . . , xn) .

Proof. It is easy to see that in an inner product space for any
x, z, Z ∈ H one has∥∥∥∥x− z + Z

2

∥∥∥∥2

− 1

4
‖Z − z‖2 = Re 〈Z − x, x− z〉 ,

therefore, the condition (6.46) is actually equivalent to

(6.49)

∥∥∥∥∥x−
n∑

i=1

Γi + γi

2
xi

∥∥∥∥∥
2

≤ 1

4

∥∥∥∥∥
n∑

i=1

(Γi − γi)xi

∥∥∥∥∥
2

.

Now, obviously,

(6.50) d2 (x,M) = inf
y∈M

‖x− y‖2 ≤

∥∥∥∥∥x−
n∑

i=1

Γi + γi

2
xi

∥∥∥∥∥
2

and thus, by (6.49) and (6.50) we deduce (6.47).
The last inequality is obvious by the representation (6.2).

Remark 70. Utilising various Cauchy-Bunyakovsky-Schwarz type
inequalities we may obtain more convenient (although coarser) bounds
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for d2 (x,M) . For instance, if we use the inequality (6.19) we can state
the inequality:∥∥∥∥∥

n∑
i=1

(Γi − γi)xi

∥∥∥∥∥
2

≤
n∑

i=1

|Γi − γi|
2

(
max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i<j≤n

|〈xi, xj〉|
)
,

giving the bound:

(6.51) d2 (x,M) ≤ 1

4

n∑
i=1

|Γi − γi|
2

×
[

max
1≤i≤n

‖xi‖2 + (n− 1) max
1≤i<j≤n

|〈xi, xj〉|
]
,

provided (6.46) holds true.
Obviously, if {x1, . . . , xn} is an orthonormal family in H, then from

(6.51) we deduce the reverse of Bessel’s inequality incorporated in (6.45).
If we use the inequality (6.20), then we can state the inequality∥∥∥∥∥

n∑
i=1

(Γi − γi)xi

∥∥∥∥∥
2

≤
n∑

i=1

|Γi − γi|
2

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2

 ,
giving the bound

(6.52) d2 (x,M) ≤ 1

4

n∑
i=1

|Γi − γi|
2

×

max
1≤i≤n

‖xi‖2 +

( ∑
1≤i6=j≤n

|〈xi, xj〉|2
) 1

2

 ,
provided (6.46) holds true.

In this case, when one assumes that {x1, . . . , xn} is an orthonormal
family of vectors, then (6.52) reduces to (6.45) as well.

Finally, on utilising the first branch of the inequality (6.32), we can
state that

(6.53) d2 (x,M) ≤ 1

4

n∑
i=1

|Γi − γi|
2 max

1≤i≤n

[
n∑

j=1

|〈xi, xj〉|

]
,
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provided (6.46) holds true.
This inequality is also a generalisation of (6.45).

6.2. Reversing the CBS Inequality for Sequences

6.2.1. Introduction. Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K. One of the most impor-
tant inequalities in inner product spaces with numerous applications,
is the Schwarz inequality

(6.54) |〈x, y〉|2 ≤ ‖x‖2 ‖y‖2 , x, y ∈ H

or, equivalently,

(6.55) |〈x, y〉| ≤ ‖x‖ ‖y‖ , x, y ∈ H.

The case of equality holds iff there exists a scalar α ∈ K such that
x = αy.

By a multiplicative reverse of the Schwarz inequality we understand
an inequality of the form

(6.56) (1 ≤)
‖x‖ ‖y‖
|〈x, y〉|

≤ k1 or (1 ≤)
‖x‖2 ‖y‖2

|〈x, y〉|2
≤ k2

with appropriate k1 and k2 and under various assumptions for the vec-
tors x and y, while by an additive reverse we understand an inequality
of the form

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ h1 or(6.57)

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ h2.

Similar definition apply when |〈x, y〉| is replaced by Re 〈x, y〉 or
|Re 〈x, y〉| .

The following recent reverses for the Schwarz inequality hold (see
for instance the monograph on line [7, p. 20]).

Theorem 85 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K. If x, y ∈ H and r > 0
are such that

(6.58) ‖x− y‖ ≤ r < ‖y‖ ,

then we have the following multiplicative reverse of the Schwarz inequality

(6.59) (1 ≤)
‖x‖ ‖y‖
|〈x, y〉|

≤ ‖x‖ ‖y‖
Re 〈x, y〉

≤ ‖y‖√
‖y‖2 − r2
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and the subsequent additive reverses

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉| ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(6.60)

≤ r2√
‖y‖2 − r2

(
‖y‖+

√
‖y‖2 − r2

) Re 〈x, y〉

and

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2(6.61)

≤ ‖x‖2 ‖y‖2 − [Re 〈x, y〉]2

≤ r2 ‖x‖2 .

All the above inequalities are sharp.

Other additive reverses of the quadratic Schwarz’s inequality are
incorporated in the following result [7, p. 18-19].

Theorem 86 (Dragomir, 2004). Let x, y ∈ H and a,A ∈ K. If

(6.62) Re 〈Ay − x, x− ay〉 ≥ 0

or, equivalently,

(6.63)

∥∥∥∥x− a+ A

2
· y
∥∥∥∥ ≤ 1

2
|A− a| ‖y‖ ,

then

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2(6.64)

≤ 1

4
|A− a|2 ‖y‖4 −


∣∣A+a

2
‖y‖2 − 〈x, y〉

∣∣2
‖y‖2 Re 〈Ay − x, x− ay〉

≤ 1

4
|A− a|2 ‖y‖4 .

The constant 1
4

is best possible in all inequalities.

If one were to assume more about the complex numbers A and a,
then one may state the following result as well [7, p. 21-23].

Theorem 87 (Dragomir, 2004). With the assumptions of Theorem
86 and, if in addition, Re (Aā) > 0, then

(6.65) ‖x‖ ‖y‖ ≤ 1

2
·
Re
[(
Ā+ ā

)
〈x, y〉

]√
Re (Aā)

≤ 1

2
· |A+ a|√

Re (Aā)
|〈x, y〉| ,



6.2. REVERSING THE CBS INEQUALITY FOR SEQUENCES 241

(0 ≤) ‖x‖ ‖y‖ − Re 〈x, y〉(6.66)

≤ 1

2
·
Re
[(
Ā+ ā− 2

√
Re (Aā)

)
〈x, y〉

]
√

Re (Aā)

and

(6.67) (0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |A− a|2

Re (Aā)
|〈x, y〉|2 .

The constants 1
2

and 1
4

are best possible.

Remark 71. If A = M, a = m and M ≥ m > 0, then (6.65) and
(6.66) may be written in a more convenient form as

(6.68) ‖x‖ ‖y‖ ≤ M +m

2
√
mM

Re 〈x, y〉

and

(6.69) (0 ≤) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤

(√
M −

√
m
)2

2
√
mM

Re 〈x, y〉 .

Here the constant 1
2

is sharp in both inequalities.

In this section several reverses for the Cauchy-Bunyakovsky-Schwarz
(CBS) inequality for sequences of vectors in Hilbert spaces are obtained.
Applications for bounding the distance to a finite-dimensional subspace
and in reversing the generalised triangle inequality are also given.

6.2.2. Reverses of the (CBS)−Inequality for Two Sequences
in `2p (K). Let (K, 〈·, ·〉) be a Hilbert space over K, pi ≥ 0, i ∈ N with∑∞

i=1 pi = 1. Consider `2p (K) as the space

`2p (K) :=

{
x = (xi)i∈N

∣∣∣∣∣xi ∈ K, i ∈ N and
∞∑
i=1

pi ‖xi‖2 <∞

}
.

It is well known that `2p (K) endowed with the inner product

〈x, y〉p :=
∞∑
i=1

pi 〈xi, yi〉

is a Hilbert space over K. The norm ‖·‖p of `2p (K) is given by

‖x‖p :=

(
∞∑
i=1

pi ‖xi‖2

) 1
2

.
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If x, y ∈ `2p (K) , then the following Cauchy-Bunyakovsky-Schwarz (CBS)
inequality holds true

(6.70)
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 ≥

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

with equality iff there exists a λ ∈ K such that xi = λyi for each i ∈ N.
This is an obvious consequence of the Schwarz inequality (6.54)

written for the inner product 〈·, ·〉p defined on `2p (K) .

The following proposition may be stated [11].

Proposition 57. Let x, y ∈ `2p (K) and r > 0. Assume that

(6.71) ‖xi − yi‖ ≤ r < ‖yi‖ for each i ∈ N.

Then we have the inequality

(1 ≤)

(∑∞
i=1 pi ‖xi‖2∑∞

i=1 pi ‖yi‖2) 1
2

|
∑∞

i=1 pi 〈xi, yi〉|
(6.72)

≤
(∑∞

i=1 pi ‖xi‖2∑∞
i=1 pi ‖yi‖2) 1

2∑∞
i=1 pi Re 〈xi, yi〉

≤
(∑∞

i=1 pi ‖yi‖2) 1
2√∑∞

i=1 pi ‖yi‖2 − r2

,

(0 ≤)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣(6.73)

≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re 〈xi, yi〉

≤
r2 ·

∞∑
i=1

pi Re 〈xi, yi〉√ ∞∑
i=1

pi ‖yi‖2 − r2

[(
∞∑
i=1

pi ‖yi‖2

) 1
2

+

√ ∞∑
i=1

pi ‖yi‖2 − r2

]
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and

(0 ≤)
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 −

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

(6.74)

≤
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 −

[
∞∑
i=1

pi Re 〈xi, yi〉

]2

≤ r2

∞∑
i=1

pi ‖xi‖2 .

Proof. From (6.71), we have

‖x− y‖2
p =

∞∑
i=1

pi ‖xi − yi‖2 ≤ r2

∞∑
i=1

pi ≤
∞∑
i=1

pi ‖yi‖2 = ‖y‖2
p ,

giving ‖x− y‖p ≤ r ≤ ‖y‖p . Applying Theorem 85 for `2p (K) and

〈·, ·〉p , we deduce the desired inequality.

The following proposition holds [11].

Proposition 58. Let x, y ∈ `2p (K) and a,A ∈ K. If

(6.75) Re 〈Ayi − xi, xi − ayi〉 ≥ 0 for each i ∈ N

or, equivalently,

(6.76)

∥∥∥∥xi −
a+ A

2
yi

∥∥∥∥ ≤ 1

2
|A− a| ‖yi‖ for each i ∈ N

then

(0 ≤)
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 −

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

(6.77)

≤ 1

4
|A− a|2

(
∞∑
i=1

pi ‖yi‖2

)2

−


∣∣A+a

2

∑∞
i=1 pi ‖yi‖2 −

∑∞
i=1 pi 〈xi, yi〉

∣∣2
∑∞

i=1 pi ‖yi‖2∑∞
i=1 pi Re 〈Ayi − xi, xi − ayi〉

≤ 1

4
|A− a|2

(
∞∑
i=1

pi ‖yi‖2

)2

.

The proof follows by Theorem 86, we omit the details.
Finally, on using Theorem 87, we may state [11]:



244 6. OTHER INEQUALITIES

Proposition 59. Assume that x, y, a and A are as in Proposition
58. Moreover, if Re (Aā) > 0, then we have the inequality:(

∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

(6.78)

≤ 1

2
·
Re
[(
Ā+ ā

)∑∞
i=1 pi 〈xi, yi〉

]√
Re (Aā)

≤ 1

2
· |A− a|√

Re (Aā)

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣ ,
(0 ≤)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re 〈xi, yi〉(6.79)

≤ 1

2
·
Re
[(
Ā+ ā− 2

√
Re (Aā)

)∑∞
i=1 pi 〈xi, yi〉

]
√

Re (Aā)

and

(0 ≤)
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 −

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

(6.80)

≤ 1

4
· |A− a|2

Re (Aā)

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

.

6.2.3. Reverses of the (CBS)−Inequality for Mixed Se-
quences. Let (K, 〈·, ·〉) be a Hilbert space over K and for pi ≥ 0,
i ∈ N with

∑∞
i=1 pi = 1, and `2p (K) the Hilbert space defined in the

previous section.
If

α ∈ `2p (K) :=

{
α = (αi)i∈N

∣∣∣∣∣αi ∈ K, i ∈ N and
∞∑
i=1

pi |αi|2 <∞

}
and x ∈ `2p (K) , then the following Cauchy-Bunyakovsky-Schwarz (CBS)
inequality holds true:

(6.81)
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 ≥

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

,

with equality if and only if there exists a vector v ∈ K such that
xi = αiv for any i ∈ N.
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The inequality (6.81) follows by the obvious identity

n∑
i=1

pi |αi|2
n∑

i=1

pi ‖xi‖2 −

∥∥∥∥∥
n∑

i=1

piαixi

∥∥∥∥∥
2

=
1

2

n∑
i=1

n∑
j=1

pipj ‖αixj − αjxi‖2 ,

for any n ∈ N, n ≥ 1.
In the following we establish some reverses of the (CBS)−inequality

in some of its various equivalent forms that will be specified where they
occur [11].

Theorem 88 (Dragomir, 2005). Let α ∈ `2p (K) , x ∈ `2p (K) and
a ∈ K, r > 0 such that ‖a‖ > r. If the following condition holds

(6.82) ‖xi − αia‖ ≤ r |αi| for each i ∈ N,

(note that if αi 6= 0 for any i ∈ N, then the condition (6.82) is equiva-
lent to

(6.83)

∥∥∥∥xi

αi

− a

∥∥∥∥ ≤ r for each i ∈ N),

then we have the following inequalities

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

≤ 1√
‖a‖2 − r2

Re

〈
∞∑
i=1

piαixi, a

〉
(6.84)

≤ ‖a‖√
‖a‖2 − r2

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;

0 ≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥(6.85)

≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

〈
∞∑
i=1

piαixi,
a

‖a‖

〉
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≤ r2√
‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) Re

〈
∞∑
i=1

piαixi,
a

‖a‖

〉

≤ r2√
‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) ∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;

∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 ≤ 1

‖a‖2 − r2

[
Re

〈
∞∑
i=1

piαixi, a

〉]2

(6.86)

≤ ‖a‖2

‖a‖2 − r2

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

and

0 ≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

(6.87)

≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

[
Re

〈
∞∑
i=1

piαixi,
a

‖a‖

〉]2

≤ r2

‖a‖2 (‖a‖2 − r2
) [Re

〈
∞∑
i=1

piαixi, a

〉]2

≤ r2

‖a‖2 − r2

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

.

All the inequalities in (6.84) – (6.87) are sharp.

Proof. From (6.82) we deduce

‖xi‖2 − 2 Re 〈xi, αia〉+ |αi|2 ‖a‖2 ≤ |αi|2 r2

for any i ∈ N, which is clearly equivalent to

(6.88) ‖xi‖2 +
(
‖a‖2 − r2

)
|αi|2 ≤ 2 Re 〈αixi, a〉

for each i ∈ N.
If we multiply (6.88) by pi ≥ 0 and sum over i ∈ N, then we deduce

(6.89)
∞∑
i=1

pi ‖xi‖2 +
(
‖a‖2 − r2

) ∞∑
i=1

pi |αi|2 ≤ 2 Re

〈
∞∑
i=1

piαixi, a

〉
.
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Now, dividing (6.89) by
√
‖a‖2 − r2 > 0 we get

(6.90)
1√

‖a‖2 − r2

∞∑
i=1

pi ‖xi‖2 +

√
‖a‖2 − r2

∞∑
i=1

pi |αi|2

≤ 2√
‖a‖2 − r2

Re

〈
∞∑
i=1

piαixi, a

〉
.

On the other hand, by the elementary inequality

1

α
p+ αq ≥ 2

√
pq, α > 0, p, q ≥ 0,

we can state that:

(6.91) 2

[
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

] 1
2

≤ 1√
‖a‖2 − r2

∞∑
i=1

pi ‖xi‖2 +

√
‖a‖2 − r2

∞∑
i=1

pi |αi|2 .

Making use of (6.90) and (6.91), we deduce the first part of (6.84).
The second part is obvious by Schwarz’s inequality

Re

〈
∞∑
i=1

piαixi, a

〉
≤

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ‖a‖ .
If p1 = 1, x1 = x, α1 = 1 and pi = 0, αi = 0, xi = 0 for i ≥ 2, then

from (6.84) we deduce the inequality

‖x‖ ≤ 1√
‖a‖2 − r2

Re 〈x, a〉 ≤ ‖x‖ ‖a‖√
‖a‖2 − r2

provided ‖x− a‖ ≤ r < ‖a‖ , x, a ∈ K. The sharpness of this inequality
has been shown in [7, p. 20], and we omit the details.

The other inequalities are obvious consequences of (6.84) and we
omit the details.

The following corollary may be stated [11].

Corollary 54. Let α ∈ `2p (K) , x ∈ `2p (K) , e ∈ H, ‖e‖ = 1 and
ϕ, φ ∈ K with Re (φϕ̄) > 0. If

(6.92)

∥∥∥∥xi − αi ·
ϕ+ φ

2
· e
∥∥∥∥ ≤ 1

2
|φ− ϕ| |αi|
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for each i ∈ N, or, equivalently

(6.93) Re 〈φαie− xi, xi − ϕαie〉 ≥ 0

for each i ∈ N, (note that, if αi 6= 0 for any i ∈ N, then (6.92) is
equivalent to

(6.94)

∥∥∥∥xi

αi

− ϕ+ φ

2
· e
∥∥∥∥ ≤ 1

2
|φ− ϕ|

for each i ∈ N and (6.93) is equivalent to

Re

〈
φe− xi

αi

,
xi

αi

− ϕe

〉
≥ 0

for each i ∈ N), then the following reverses of the (CBS)−inequality
are valid:(

∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

≤
Re
[(
φ̄+ ϕ̄

)
〈
∑∞

i=1 piαixi, e〉
]

2 [Re (φϕ)]
1
2

(6.95)

≤ 1

2
· |ϕ+ φ|
[Re (φϕ)]

1
2

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;

0 ≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥(6.96)

≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

[
φ̄+ ϕ̄

|ϕ+ φ|

〈
∞∑
i=1

piαixi, e

〉]

≤ |φ− ϕ|2

2
√

Re (φϕ)
(
|ϕ+ φ|+ 2

√
Re (φϕ)

)
× Re

[
φ̄+ ϕ̄

|ϕ+ φ|

〈
∞∑
i=1

piαixi, e

〉]

≤ |φ− ϕ|2

2
√

Re (φϕ)
(
|ϕ+ φ|+ 2

√
Re (φϕ)

) ∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;
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∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2(6.97)

≤ 1

4 Re (φϕ̄)

[
Re

{(
φ̄+ ϕ̄

)〈 ∞∑
i=1

piαixi, e

〉}]2

≤ 1

4
· |ϕ+ φ|2

Re (φϕ̄)

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

and

0 ≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

(6.98)

≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

−

[
Re

{
φ̄+ ϕ̄

|ϕ+ φ|

〈
∞∑
i=1

piαixi, e

〉}]2

≤ |φ− ϕ|2

4 |φ+ ϕ|2 Re (φϕ̄)

{
Re

[(
φ̄+ ϕ̄

)〈 ∞∑
i=1

piαixi, e

〉]}2

≤ |φ− ϕ|2

4 Re (φϕ̄)

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

.

All the inequalities in (6.95) – (6.98) are sharp.

Remark 72. We remark that if M ≥ m > 0 and for α ∈ `2p (K) ,

x ∈ `2p (K) , e ∈ H with ‖e‖ = 1, one would assume that either

(6.99)

∥∥∥∥xi

αi

− M +m

2
· e
∥∥∥∥ ≤ 1

2
(M −m)

for each i ∈ N, or, equivalently

(6.100) Re

〈
Me− xi

αi

,
xi

αi

−me

〉
≥ 0
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for each i ∈ N, then the following, much simpler reverses of the (CBS)−
inequality may be stated:

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

≤ M +m

2
√
mM

Re

〈
∞∑
i=1

piαixi, e

〉
(6.101)

≤ M +m

2
√
mM

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;

0 ≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥(6.102)

≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

〈
∞∑
i=1

piαixi, e

〉

≤ (M −m)2

2
(√

M +
√
m
)2√

mM
Re

〈
∞∑
i=1

piαixi, e

〉

≤ (M −m)2

2
(√

M +
√
m
)2√

mM

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥ ;

∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

(6.103)

≤ (M +m)2

4mM

[
Re

〈
∞∑
i=1

piαixi, e

〉]2

≤ (M +m)2

4mM

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

and

(6.104) 0 ≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2
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≤
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 −

[
Re

〈
∞∑
i=1

piαixi, e

〉]2

≤ (M −m)2

4mM

[
Re

〈
∞∑
i=1

piαixi, e

〉]2

≤ (M −m)2

4mM

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

.

6.2.4. Reverses for the Generalised Triangle Inequality. In
1966, J.B. Diaz and F.T. Metcalf [5] proved the following reverse of
the generalised triangle inequality holding in an inner product space
(H; 〈·, ·〉) over the real or complex number field K:

(6.105) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
provided the vectors x1, . . . , xn ∈ H\ {0} satisfy the assumption

(6.106) 0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

,

where a ∈ H and ‖a‖ = 1.
In an attempt to diversify the assumptions for which such reverse

results hold, the author pointed out in [10] that

(6.107)
√

1− ρ2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where the vectors xi,i ∈ {1, . . . , n} satisfy the condition

(6.108) ‖xi − a‖ ≤ ρ, i ∈ {1, . . . , n}
where a ∈ H, ‖a‖ = 1 and ρ ∈ (0, 1) .

If, for M ≥ m > 0, the vectors xi ∈ H, i ∈ {1, . . . , n} verify either

(6.109) Re 〈Ma− xi, xi −ma〉 ≥ 0, i ∈ {1, . . . , n} ,
or, equivalently,

(6.110)

∥∥∥∥xi −
M +m

2
· a
∥∥∥∥ ≤ 1

2
(M −m) , i ∈ {1, . . . , n} ,

where a ∈ H, ‖a‖ = 1, then the following reverse of the generalised
triangle inequality may be stated as well [10]

(6.111)
2
√
mM

M +m

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
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Note that the inequalities (6.105), (6.107), and (6.111) are sharp;
necessary and sufficient equality conditions were provided (see [5] and
[10]).

It is obvious, from Theorem 88, that, if

(6.112) ‖xi − a‖ ≤ r, for i ∈ {1, . . . , n} ,

where ‖a‖ > r, a ∈ H and xi ∈ H, i ∈ {1, . . . , n} , then one can state
the inequalities

n∑
i=1

‖xi‖ ≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

(6.113)

≤ 1√
‖a‖2 − r2

Re

〈
n∑

i=1

xi, a

〉

≤ ‖a‖√
‖a‖2 − r2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
and

0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(6.114)

≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

−

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

− Re

〈
n∑

i=1

xi,
a

‖a‖

〉

≤ r2√
‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) Re

〈
n∑

i=1

xi,
a

‖a‖

〉

≤ r2√
‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
We note that for ‖a‖ = 1 and r ∈ (0, 1) , the inequality (6.89) becomes

(6.115)
√

1− r2

n∑
i=1

‖xi‖ ≤
√

(1− r2)n

(
n∑

i=1

‖xi‖2

) 1
2
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≤ Re

〈
n∑

i=1

xi, a

〉
≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
which is a refinement of (6.107).

With the same assumptions for a and r, we have from (6.114) the
following additive reverse of the generalised triangle inequality:

0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(6.116)

≤ r2

√
1− r2

(
1 +

√
1− r2

) Re

〈
n∑

i=1

xi, a

〉

≤ r2

√
1− r2

(
1 +

√
1− r2

) ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
We can obtain the following reverses of the generalised triangle

inequality from Corollary 54 when the assumptions are in terms of
complex numbers φ and ϕ :

If ϕ, φ ∈ K with Re (φϕ̄) > 0 and xi ∈ H, i ∈ {1, . . . , n} , e ∈ H,
‖e‖ = 1 are such that

(6.117)

∥∥∥∥xi −
ϕ+ φ

2
e

∥∥∥∥ ≤ 1

2
|φ− ϕ| for each i ∈ {1, . . . , n} ,

or, equivalently,

Re 〈φe− xi, xi − ϕe〉 ≥ 0 for each i ∈ {1, . . . , n} ,

then we have the following reverses of the generalised triangle inequal-
ity:

n∑
i=1

‖xi‖ ≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

(6.118)

≤
Re
[(
φ̄+ ϕ̄

)
〈
∑n

i=1 xi, e〉
]

2
√

Re (φϕ̄)

≤ 1

2
·
∣∣φ̄+ ϕ̄

∣∣√
Re (φϕ̄)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
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and

0 ≤
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥(6.119)

≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

−

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
≤
√
n

(
n∑

i=1

‖xi‖2

) 1
2

− Re

 ∣∣φ̄+ ϕ̄
∣∣√

Re
(
φ̄ϕ̄
)
〈

n∑
i=1

xi, e

〉
≤ |φ− ϕ|2

2
√

Re (φϕ̄)
(
|φ+ ϕ|+ 2

√
Re (φϕ̄)

)
× Re

[
φ̄+ ϕ̄∣∣φ̄+ ϕ̄

∣∣
〈

n∑
i=1

xi, e

〉]

≤ |φ− ϕ|2

2
√

Re (φϕ̄)
(
|φ+ ϕ|+ 2

√
Re (φϕ̄)

) ∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Obviously (6.118) for φ = M, ϕ = m, M ≥ m > 0 provides a

refinement for (6.111).

6.2.5. Lower Bounds for the Distance to Finite-Dimensional
Subspaces. Let (H; 〈·, ·〉) be an inner product space over the real or
complex number field K, {y1, . . . , yn} a subset of H and G (y1, . . . , yn)
the Gram matrix of {y1, . . . , yn} where (i, j)−entry is 〈yi, yj〉 . The de-
terminant ofG (y1, . . . , yn) is called the Gram determinant of {y1, . . . , yn}
and is denoted by Γ (y1, . . . , yn) .

Following [4, p. 129 – 133], we state here some general results for
the Gram determinant that will be used in the sequel:

(1) Let {x1, . . . , xn} ⊂ H. Then Γ (x1, . . . , xn) 6= 0 if and only if
{x1, . . . , xn} is linearly independent;

(2) LetM = span {x1, . . . , xn} be n−dimensional inH, i.e., {x1, . . . ,
xn} is linearly independent. Then for each x ∈ H, the distance
d (x,M) from x to the linear subspaceH has the representations

(6.120) d2 (x,M) =
Γ (x1, . . . , xn, x)

Γ (x1, . . . , xn)
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and

(6.121) d2 (x,M) =


‖x‖2 − (

∑n
i=1|〈x,xi〉|2)

2

‖∑n
i=1〈x,xi〉xi‖2 if x /∈M⊥,

‖x‖2 if x ∈M⊥,

where M⊥ denotes the orthogonal complement of M.

The following result may be stated [11].

Proposition 60. Let {x1, . . . , xn} be a system of linearly indepen-
dent vectors, M = span {x1, . . . , xn} , x ∈ H\M⊥, a ∈ H, r > 0 and
‖a‖ > r. If

(6.122)
∥∥∥xi − 〈x, xi〉a

∥∥∥ ≤ |〈x, xi〉| r for each i ∈ {1, . . . , n} ,

(note that if 〈x, xi〉 6= 0 for each i ∈ {1, . . . , n} , then (6.122) can be
written as

(6.123)

∥∥∥∥∥ xi

〈x, xi〉
− a

∥∥∥∥∥ ≤ r for each i ∈ {1, . . . , n}),

then we have the inequality

d2 (x,M) ≥ ‖x‖2 − ‖a‖2

‖a‖2 − r2
·
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2(6.124)

≥ 0.

Proof. Utilising (6.121) we can state that

(6.125) d2 (x,M) = ‖x‖2 −
∑n

i=1 |〈x, xi〉|2

‖
∑n

i=1 〈x, xi〉xi‖2 ·
n∑

i=1

|〈x, xi〉|2 .

Also, by the inequality (6.86) applied for αi = 〈x, xi〉 , pi = 1
n
, i ∈

{1, . . . , n} , we can state that

(6.126)

∑n
i=1 |〈x, xi〉|2

‖
∑n

i=1 〈x, xi〉xi‖2 ≤
‖a‖2

‖a‖2 − r2
· 1∑n

i=1 ‖xi‖2

provided the condition (6.123) holds true.
Combining (6.125) with (6.126) we deduce the first inequality in

(6.124).
The last inequality is obvious since, by Schwarz’s inequality

‖x‖2
n∑

i=1

‖xi‖2 ≥
n∑

i=1

|〈x, xi〉|2 ≥
‖a‖2

‖a‖2 − r2

n∑
i=1

|〈x, xi〉|2 .
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Remark 73. Utilising (6.120), we can state the following result for
Gram determinants

(6.127) Γ (x1, . . . , xn, x)

≥

[
‖x‖2 − ‖a‖2

‖a‖2 − r2
·
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2

]
Γ (x1, . . . , xn) ≥ 0

for x /∈M⊥ and x, xi, a and r are as in Proposition 60.

The following corollary of Proposition 60 may be stated as well [11].

Corollary 55. Let {x1, . . . , xn} be a system of linearly indepen-
dent vectors, M = span {x1, . . . , xn} , x ∈ H\M⊥ and φ, ϕ ∈ K with
Re (φϕ̄) > 0. If e ∈ H, ‖e‖ = 1 and

(6.128)

∥∥∥∥xi − 〈x, xi〉 ·
ϕ+ φ

2
e

∥∥∥∥ ≤ 1

2
|φ− ϕ| |〈x, xi〉|

or, equivalently,

Re
〈
φ· 〈x, xi〉e− xi, xi − ϕ · 〈x, xi〉e

〉
≥ 0,

for each i ∈ {1, . . . , n} , then

(6.129) d2 (x,M) ≥ ‖x‖2 − 1

4
· |ϕ+ φ|2

Re (φϕ̄)
·
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2 ≥ 0,

or, equivalently,

(6.130) Γ (x1, . . . , xn, x)

≥

[
‖x‖2 − 1

4
· |ϕ+ φ|2

Re (φϕ̄)
·
∑n

i=1 |〈x, xi〉|2∑n
i=1 ‖xi‖2

]
Γ (x1, . . . , xn) ≥ 0.

6.2.6. Applications for Fourier Coefficients. Let (H; 〈·, ·〉) be
a Hilbert space over the real or complex number field K and {ei}i∈I an
orthornormal basis for H. Then (see for instance [4, p. 54 – 61])

(i) Every element x ∈ H can be expanded in a Fourier series, i.e.,

x =
∑
i∈I

〈x, ei〉 ei,

where 〈x, ei〉 , i ∈ I are the Fourier coefficients of x;
(ii) (Parseval identity)

‖x‖2 =
∑
i∈I

〈x, ei〉 ei, x ∈ H;
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(iii) (Extended Parseval identity)

〈x, y〉 =
∑
i∈I

〈x, ei〉 〈ei, y〉 , x, y ∈ H;

(iv) (Elements are uniquely determined by their Fourier coefficients
)

〈x, ei〉 = 〈y, ei〉 for every i ∈ I implies that x = y.

Now, we must remark that all the results can be stated for K = K
where K is the Hilbert space of complex (real) numbers endowed with
the usual norm and inner product .

Therefore, we can state the following proposition [11].

Proposition 61. Let (H; 〈·, ·〉) be a Hilbert space over K and
{ei}i∈I an orthornormal base for H. If x, y ∈ H (y 6= 0) , a ∈ K (C,R)
and r > 0 such that |a| > r and

(6.131)

∣∣∣∣〈x, ei〉
〈y, ei〉

− a

∣∣∣∣ ≤ r for each i ∈ I,

then we have the following reverse of the Schwarz inequality

‖x‖ ‖y‖ ≤ 1√
|a|2 − r2

Re [ā · 〈x, y〉](6.132)

≤ |a|√
|a|2 − r2

|〈x, y〉| ;

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉|(6.133)

≤ ‖x‖ ‖y‖ − Re

[
ā

|a|
· 〈x, y〉

]
≤ r2√

|a|2 − r2

(
|a|+

√
|a|2 − r2

) Re

[
ā

|a|
· 〈x, y〉

]

≤ r2√
|a|2 − r2

(
|a|+

√
|a|2 − r2

) |〈x, y〉| ;
‖x‖2 ‖y‖2 ≤ 1

|a|2 − r2
(Re [ā · 〈x, y〉])2(6.134)

≤ |a|2

|a|2 − r2
|〈x, y〉|2
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and

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2(6.135)

≤ ‖x‖2 ‖y‖2 −
(

Re

[
ā

|a|
· 〈x, y〉

])2

≤ r2

|a|2
(
|a|2 − r2

) − (Re

[
ā

|a|
· 〈x, y〉

])2

≤ r2

|a|2 − r2
|〈x, y〉| .

The proof is similar to the one in Theorem 88, when instead of xi

we take 〈x, ei〉 , instead of αi we take 〈ei, y〉 , ‖·‖ = |·| , pi = 1, and we
use the Parseval identities mentioned above in (ii) and (iii). We omit
the details.

The following result may be stated as well [11].

Proposition 62. Let (H; 〈·, ·〉) be a Hilbert space over K and
{ei}i∈I an orthornormal base for H. If x, y ∈ H (y 6= 0) , e, ϕ, φ ∈ K
with Re (φϕ̄) > 0, |e| = 1 and, either

(6.136)

∣∣∣∣〈x, ei〉
〈y, ei〉

− ϕ+ φ

2
· e
∣∣∣∣ ≤ 1

2
|φ− ϕ|

or, equivalently,

(6.137) Re

[(
φe− 〈x, ei〉

〈y, ei〉

)(
〈ei, x〉
〈ei, y〉

− ϕ̄ē

)]
≥ 0

for each i ∈ I, then the following reverses of the Schwarz inequality
hold:

(6.138) ‖x‖ ‖y‖ ≤
Re
[(
φ̄+ ϕ̄

)
ē 〈x, y〉

]
2
√

Re (φϕ̄)
≤ 1

2
· |ϕ+ φ|√

Re (φϕ̄)
|〈x, y〉| ,

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉|(6.139)

≤ ‖x‖ ‖y‖ − Re

[(
φ̄+ ϕ̄

)
ē

|ϕ+ φ|
〈x, y〉

]
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≤ |φ− ϕ|2

2
√

Re (φϕ̄)
(
|ϕ+ φ|+ 2

√
Re (φϕ̄)

)
× Re

[(
φ̄+ ϕ̄

)
ē

|ϕ+ φ|
〈x, y〉

]

≤ |φ− ϕ|2

2
√

Re (φϕ̄)
(
|ϕ+ φ|+ 2

√
Re (φϕ̄)

) |〈x, y〉|
and

(0 ≤) ‖x‖2 ‖y‖2 − |〈x, y〉|2(6.140)

≤ ‖x‖2 ‖y‖2 −

{
Re

[(
φ̄+ ϕ̄

)
ē

|ϕ+ φ|
〈x, y〉

]}2

≤ |φ− ϕ|2

4 |φ+ ϕ|2 Re (φϕ̄)

{
Re
[(
φ̄+ ϕ̄

)
ē 〈x, y〉

]}2

≤ |φ− ϕ|2

4 Re (φϕ̄)
|〈x, y〉|2 .

Remark 74. If φ = M ≥ m = ϕ > 0, then one may state simpler
inequalities from (6.138) – (6.140). We omit the details.

6.3. Other Reverses of the CBS Inequality

6.3.1. Introduction. Let (H; 〈·, ·〉) be an inner product space
over the real or complex number field K.

The following reverses for the Schwarz inequality hold (see [8], or
the monograph on line [7, p. 27]).

Theorem 89 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over the real or complex number field K. If x, a ∈ H and r > 0
are such that

(6.141) x ∈ B (x, r) := {z ∈ H| ‖z − a‖ ≤ r} ,

then we have the inequalities

(0 ≤) ‖x‖ ‖a‖ − |〈x, a〉| ≤ ‖x‖ ‖a‖ − |Re 〈x, a〉|(6.142)

≤ ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1

2
r2.

The constant 1
2

is best possible in (6.141) in the sense that it cannot be
replaced by a smaller quantity.
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An additive version for the Schwarz inequality that may be more
useful in applications is incorporated in [8] (see also [7, p. 28]).

Theorem 90 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product
space over K and x, y ∈ H and γ,Γ ∈ K with Γ 6= −γ and either

(6.143) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(6.144)

∥∥∥∥x− γ + Γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖

holds. Then we have the inequalities

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(6.145)

≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|
· 〈x, y〉

]∣∣∣∣
≤ ‖x‖ ‖y‖ − Re

[
Γ̄ + γ̄

|Γ + γ|
· 〈x, y〉

]
≤ 1

4
· |Γ− γ|2

|Γ + γ|
‖y‖2 .

The constant 1
4

in the last inequality is best possible.

We remark that a simpler version of the above result may be stated
if one assumed that the scalars are real:

Corollary 56. If M ≥ m > 0, and either

(6.146) Re 〈My − x, x−my〉 ≥ 0,

or, equivalently,

(6.147)

∥∥∥∥x− m+M

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖

holds, then

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(6.148)

≤ ‖x‖ ‖y‖ − |Re 〈x, y〉|
≤ ‖x‖ ‖y‖ − Re 〈x, y〉

≤ 1

4
· (M −m)2

M +m
‖y‖2 .

The constant 1
4

is sharp.
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Now, let (K, 〈·, ·〉) be a Hilbert space over K, pi ≥ 0, i ∈ N with∑∞
i=1 pi = 1. Consider `2p (K) as the space

`2p (K) :=

{
x = (xi) |xi ∈ K, i ∈ N and

∞∑
i=1

pi ‖xi‖2 <∞

}
.

It is well known that `2p (K) endowed with the inner product

〈x, y〉p :=
∞∑
i=1

pi 〈xi, yi〉

is a Hilbert space over K. The norm ‖·‖p of `2p (K) is given by

‖x‖p :=

(
∞∑
i=1

pi ‖xi‖2

) 1
2

.

If x, y ∈ `2p (K) , then the following Cauchy-Bunyakovsky-Schwarz (CBS)
inequality holds true:

(6.149)
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2 ≥

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣
2

with equality iff there exists a λ ∈ K such that xi = λyi for each i ∈ N.
If

α ∈ `2p (K) :=

{
α = (αi)i∈N

∣∣αi ∈ K, i ∈ N and
∞∑
i=1

pi |αi|2 <∞

}
and x ∈ `2p (K) , then the following (CBS)-type inequality is also valid:

(6.150)
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2 ≥

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
2

with equality if and only if there exists a vector v ∈ K such that
xi = αiv for each i ∈ N.

In [11], by the use of some preliminary results obtained in [9],
various reverses for the (CBS)-type inequalities (6.149) and (6.150) for
sequences of vectors in Hilbert spaces were obtained. Applications for
bounding the distance to a finite-dimensional subspace and in reversing
the generalised triangle inequality have also been provided.

The aim of the present section is to provide different results by
employing some inequalities discovered in [8]. Similar applications are
pointed out.
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6.3.2. Reverses of the (CBS)-Inequality for Two Sequences
in `2p (K). The following proposition may be stated [12].

Proposition 63. Let x, y ∈ `2p (K) and r > 0. If

(6.151) ‖xi − yi‖ ≤ r for each i ∈ N,

then

(0 ≤)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣(6.152)

≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi Re 〈xi, yi〉

∣∣∣∣∣
≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re 〈xi, yi〉

≤ 1

2
r2.

The constant 1
2

in front of r2 is best possible in the sense that it cannot
be replaced by a smaller quantity.

Proof. If (6.151) holds true, then

‖x− y‖2
p =

∞∑
i=1

pi ‖xi − yi‖2 ≤ r2

∞∑
i=1

pi = r2

and thus ‖x− y‖p ≤ r.

Applying the inequality (6.142) for the inner product
(
`2p (K) , 〈·, ·〉p

)
,

we deduce the desired result (6.152).
The sharpness of the constant follows by Theorem 89 and we omit

the details.

The following result may be stated as well [12].

Proposition 64. Let x, y ∈ `2p (K) and γ,Γ ∈ K with Γ 6= −γ. If
either

(6.153) Re 〈Γyi − xi, xi − γyi〉 ≥ 0 for each i ∈ N

or, equivalently,

(6.154)

∥∥∥∥xi −
γ + Γ

2
yi

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖yi‖ for each i ∈ N
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holds, then:

(0 ≤)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣(6.155)

≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

∞∑
i=1

pi 〈xi, yi〉

]∣∣∣∣∣
≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

∞∑
i=1

pi 〈xi, yi〉

]

≤ 1

4
· |Γ− γ|2

|Γ + γ|

∞∑
i=1

pi ‖yi‖2 .

The constant 1
4

is best possible in (6.155).

Proof. Since, by (6.153),

Re 〈Γy − x, x− γy〉p =
∞∑
i=1

pi Re 〈Γyi − xi, xi − γyi〉 ≥ 0,

hence, on applying the inequality (6.145) for the Hilbert space(
`2p (K) , 〈·, ·〉p

)
, we deduce the desired inequality (6.155).

The best constant follows by Theorem 90 and we omit the details.

Corollary 57. If the conditions (6.153) and (6.154) hold for Γ =
M, γ = m with M ≥ m > 0, then

(0 ≤)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi 〈xi, yi〉

∣∣∣∣∣(6.156)

≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−

∣∣∣∣∣
∞∑
i=1

pi Re 〈xi, yi〉

∣∣∣∣∣
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≤

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re 〈xi, yi〉

≤ 1

4
· (M −m)2

M +m

∞∑
i=1

pi ‖yi‖2 .

The constant 1
4

is best possible.

6.3.3. Reverses of the (CBS)-Inequality for Mixed Sequences.
The following result holds [12]:

Theorem 91 (Dragomir, 2005). Let α ∈ `2p (K) , x ∈ `2p (K) and
v ∈ K\ {0} , r > 0. If

(6.157) ‖xi − αiv‖ ≤ r |αi| for each i ∈ N
(note that if αi 6= 0 for any i ∈ N, then the condition (6.157) is equiv-
alent to the simpler one

(6.158)

∥∥∥∥xi

αi

− v

∥∥∥∥ ≤ r for each i ∈ N),

then

(0 ≤)

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥(6.159)

≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣
〈

∞∑
i=1

piαixi,
v

‖v‖

〉∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣Re

〈
∞∑
i=1

piαixi,
v

‖v‖

〉∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

〈
∞∑
i=1

piαixi,
v

‖v‖

〉

≤ 1

2
· r

2

‖v‖

∞∑
i=1

pi |αi|2 .

The constant 1
2

is best possible in (6.159).

Proof. From (6.157) we deduce

‖xi‖2 − 2 Re 〈αixi, v〉+ |αi|2 ‖v‖2 ≤ r2 |αi|2 ,
which is clearly equivalent to

(6.160) ‖xi‖2 + |αi|2 ‖v‖2 ≤ 2 Re 〈αixi, v〉+ r2 |αi|2
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for each i ∈ N.
If we multiply (6.160) by pi ≥ 0, i ∈ N and sum over i ∈ N, then

we deduce

(6.161)
∞∑
i=1

pi ‖xi‖2 + ‖v‖2
∞∑
i=1

pi |αi|2

≤ 2 Re

〈
∞∑
i=1

piαixi, v

〉
+ r2

∞∑
i=1

pi |αi|2 .

Since, obviously

(6.162) 2 ‖v‖

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

≤
∞∑
i=1

pi ‖xi‖2 + ‖v‖2
∞∑
i=1

pi |αi|2 ,

hence, by (6.161) and (6.162), we deduce

2 ‖v‖

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

≤ 2 Re

〈
∞∑
i=1

piαixi, v

〉
+ r2

∞∑
i=1

pi |αi|2 ,

which is clearly equivalent to the last inequality in (6.159).
The other inequalities are obvious.
The best constant follows by Theorem 89.

The following corollary may be stated [12].

Corollary 58. Let α ∈ `2p (K) , x ∈ `2p (K) , e ∈ H, ‖e‖ = 1 and
γ,Γ ∈ K with Γ 6= −γ. If

(6.163)

∥∥∥∥xi − αi
γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ| |αi|

for each i ∈ N, or, equivalently,

(6.164) Re 〈Γαie− xi, xi − γαie〉
for each i ∈ N (note that, if αi 6= 0 for any i ∈ N, then (6.163) is
equivalent to

(6.165)

∥∥∥∥xi

αi

− γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ|
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for each i ∈ N and (6.164) is equivalent to

(6.166) Re

〈
Γe− xi

αi

,
xi

αi

− γe

〉
≥ 0

for each i ∈ N), then the following reverse of the (CBS)-inequality is
valid:

(0 ≤)

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥(6.167)

≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣
〈

∞∑
i=1

piαixi, e

〉∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

〈
∞∑
i=1

piαixi, e

〉]∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

〈
∞∑
i=1

piαixi, e

〉]

≤ 1

4
· |Γ− γ|2

|Γ + γ|

∞∑
i=1

pi |αi|2 .

The constant 1
4

is best possible.

Remark 75. If M ≥ m > 0, αi 6= 0 and for e as above, either

(6.168)

∥∥∥∥xi

αi

− M +m

2
e

∥∥∥∥ ≤ 1

2
(M −m) for each i ∈ N

or, equivalently,

Re

〈
Me− xi

αi

,
xi

αi

−me

〉
≥ 0 for each i ∈ N

holds, then

(0 ≤)

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∥∥∥∥∥
∞∑
i=1

piαixi

∥∥∥∥∥
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≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣
〈

∞∑
i=1

piαixi, e

〉∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

−

∣∣∣∣∣Re

〈
∞∑
i=1

piαixi, e

〉∣∣∣∣∣
≤

(
∞∑
i=1

pi |αi|2
∞∑
i=1

pi ‖xi‖2

) 1
2

− Re

〈
∞∑
i=1

piαixi, e

〉

≤ 1

4
· (M −m)2

M +m

∞∑
i=1

pi |αi|2 .

The constant 1
4

is best possible.

6.3.4. Reverses for the Generalised Triangle Inequality. In
1966, Diaz and Metcalf [5] proved the following interesting reverse of
the generalised triangle inequality:

(6.169) r
∞∑
i=1

‖xi‖ ≤

∥∥∥∥∥
∞∑
i=1

xi

∥∥∥∥∥ ,
provided the vectors x1, . . . , xn ∈ H\ {0} satisfy the assumption

(6.170) 0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} ,

where a ∈ H, ‖a‖ = 1 and (H; 〈·, ·〉) is a real or complex inner product
space.

In an attempt to provide other sufficient conditions for (6.169) to
hold, the author pointed out in [14] that

(6.171)
√

1− ρ2

∞∑
i=1

‖xi‖ ≤

∥∥∥∥∥
∞∑
i=1

xi

∥∥∥∥∥
where the vectors xi, i ∈ {1, . . . , n} satisfy the condition

(6.172) ‖xi − a‖ ≤ ρ, i ∈ {1, . . . , n} ,
where r ∈ H, ‖a‖ = 1 and ρ ∈ (0, 1) .

Following [14], if M ≥ m > 0 and the vectors xi ∈ H, i ∈ {1, . . . , n}
verify either

(6.173) Re 〈Ma− xi, xi −ma〉 ≥ 0, i ∈ {1, . . . , n} ,
or, equivalently,

(6.174)

∥∥∥∥xi −
M +m

2
· a
∥∥∥∥ ≤ 1

2
(M −m) , i ∈ {1, . . . , n} ,
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where a ∈ H, ‖a‖ = 1, then

(6.175)
2
√
mM

M +m

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
It is obvious from Theorem 91, that, if

(6.176) ‖xi − v‖ ≤ r, for i ∈ {1, . . . , n} ,

where xi ∈ H, i ∈ {1, . . . , n} , v ∈ H\ {0} and r > 0, then we can state
the inequality

(0 ≤)

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥(6.177)

≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∣∣∣∣∣
〈

1

n

n∑
i=1

xi,
v

‖v‖

〉∣∣∣∣∣
≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∣∣∣∣∣Re

〈
1

n

n∑
i=1

xi,
v

‖v‖

〉∣∣∣∣∣
≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

− Re

〈
1

n

n∑
i=1

xi,
v

‖v‖

〉

≤ 1

2
· r

2

‖v‖
.

Since, by the (CBS)-inequality we have

(6.178)
1

n

n∑
i=1

‖xi‖ ≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

,

hence, by (6.177) and (6.173) we have [12]:

(6.179) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

2
n · r

2

‖v‖

provided that (6.176) holds true.
Utilising Corollary 58, we may state that, if

(6.180)

∥∥∥∥xi −
γ + Γ

2
· e
∥∥∥∥ ≤ 1

2
|Γ− γ| , i ∈ {1, . . . , n} ,

or, equivalently,

(6.181) Re 〈Γe− xi, xi − γe〉 ≥ 0, i ∈ {1, . . . , n} ,
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where e ∈ H, ‖e‖ = 1, γ,Γ ∈ K, Γ 6= −γ and xi ∈ H, i ∈ {1, . . . , n} ,
then

(0 ≤)

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥(6.182)

≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∣∣∣∣∣
〈

1

n

n∑
i=1

xi, e

〉∣∣∣∣∣
≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

−

∣∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|

〈
1

n

n∑
i=1

xi, e

〉]∣∣∣∣∣
≤

(
1

n

n∑
i=1

‖xi‖2

) 1
2

− Re

[
Γ̄ + γ̄

|Γ + γ|

〈
1

n

n∑
i=1

xi, e

〉]

≤ 1

4
· |Γ− γ|2

|Γ + γ|
.

Now, making use of (6.178) and (6.182) we can establish the following
additive reverse of the generalised triangle inequality [12]

(6.183) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

4
n · |Γ− γ|2

|Γ + γ|
,

provided either (6.180) or (6.181) hold true.

6.3.5. Applications for Fourier Coefficients. Let (H; 〈·, ·〉) be
a Hilbert space over the real or complex number field K and {ei}i∈I an
orthonormal basis for H. Then (see for instance [4, p. 54 – 61]):

(i) Every element x ∈ H can be expanded in a Fourier series, i.e.,

x =
∑
i∈I

〈x, ei〉 ei,

where 〈x, ei〉 , i ∈ I are the Fourier coefficients of x;
(ii) (Parseval identity)

‖x‖2 =
∑
i∈I

〈x, ei〉 ei, x ∈ H;

(iii) (Extended Parseval’s identity)

〈x, y〉 =
∑
i∈I

〈x, ei〉 〈ei, y〉 , x, y ∈ H;
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(iv) (Elements are uniquely determined by their Fourier coeffi-
cients)

〈x, ei〉 = 〈y, ei〉 for every i ∈ I implies that x = y.

We must remark that all the results from the second and third sec-
tions may be stated for K = K where K is the Hilbert space of complex
(real) numbers endowed with the usual norm and inner product .

Therefore we can state the following reverses of the Schwarz in-
equality [12]:

Proposition 65. Let (H; 〈·, ·〉) be a Hilbert space over K and
{ei}i∈I an orthonormal base for H. If x, y ∈ H, y 6= 0, a ∈ K (C,R)
with r > 0 such that

(6.184)

∣∣∣∣〈x, ei〉
〈y, ei〉

− a

∣∣∣∣ ≤ r for each i ∈ I,

then we have the following reverse of the Schwarz inequality:

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉|(6.185)

≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
〈x, y〉 · ā

|a|

]∣∣∣∣
≤ ‖x‖ ‖y‖ − Re

[
〈x, y〉 · ā

|a|

]
≤ 1

2
· r

2

|a|
‖y‖2 .

The constant 1
2

is best possible in (6.185).

The proof is similar to the one in Theorem 91, where instead of xi

we take 〈x, ei〉, instead of αi we take 〈ei, y〉 , ‖·‖ = |·| , pi = 1 and use
the Parseval identities mentioned above in (ii) and (iii). We omit the
details.

The following result may be stated as well [12].

Proposition 66. Let (H; 〈·, ·〉) be a Hilbert space over K and
{ei}i∈I an orthonormal base for H. If x, y ∈ H, y 6= 0, e, γ,Γ ∈ K
with |e| = 1, Γ 6= −γ and

(6.186)

∣∣∣∣〈x, ei〉
〈y, ei〉

− γ + Γ

2
· e
∣∣∣∣ ≤ 1

2
|Γ− γ|

or equivalently,

(6.187) Re

[(
Γe− 〈x, ei〉

〈y, ei〉

)(
〈ei, x〉
〈ei, y〉

− γ̄ē

)]
≥ 0
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for each i ∈ I, then

(0 ≤) ‖x‖ ‖y‖ − |〈x, y〉|(6.188)

≤ ‖x‖ ‖y‖ −
∣∣∣∣Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉 · ē

]∣∣∣∣
≤ ‖x‖ ‖y‖ − Re

[
Γ̄ + γ̄

|Γ + γ|
〈x, y〉 · ē

]
≤ 1

4
· |Γ− γ|2

|Γ + γ|
‖y‖2 .

The constant 1
4

is best possible.

Remark 76. If Γ = M ≥ m = γ > 0, then one may state simpler
inequalities from (6.188). We omit the details.
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