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ABSTRACT. Semi-Inner Products, that can be naturally defined in
general Banach spaces over the real or complex number field, play
an important role in describing the geometric properties of these
spaces.

In the first chapter of the book, a short introduction to the
main properties of the duality mapping that will be used in the
next chapters is given. Chapter 2 is devoted to the semi-inner
products in the sense of Lumer-Giles while the 3rd chapter is
concerning with the main properties of the superior and inferior
semi-inner products. In the next chapter the main properties of
Milicics semi-inner product and the properties of normed spaces
of (G)—type are presented. The next two chapters investigate the
geometric properties of (Q), (SQ) and 2k—inner product spaces
introduced by the author, while Chapter 7 is entirely devoted to
the study of different mappings that can naturally be associated to
the norm derivatives in general normed spaces and, in particular,
in inner product spaces. Chapters 8 and 9 investigate different or-
thogonalities that may be introduced in normed spaces and their
intimate relationship with semi-inner products. In Chapter 11,
orthogonal decomposition theorems in general normed spaces are
provided, while in the next chapter the problem of approximating
continuous linear functionals in general normed spaces and charac-
terizations of reflexivity in this context are given. A deeper insight
on this problem is then considered in Chapter 13, where some
classes of continuous functionals are introduced and a density re-
sult based on the famous Bishop-Phelps theorem is obtained. In
Chapter 14, the class of smooth normed spaces of (BD)-type and
their application for non-linear operators is presented. In the next
chapter the continuous sublinear functionals defined in Reflexive
Banach spaces is investigated, while Chapter 16 deals with convex
functions defined in more general spaces endowed with subinner
products. The monograph concludes by considering the represen-
tation problem of linear forms defined on modules endowed with
general semi-subinner products.
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1. PREFACE vii

1. Preface

Semi-Inner Products, that can be naturally defined in general Ba-
nach spaces over the real or complex number field, play an important
role in describing the geometric properties of these spaces.

In the last forty years a large number of authors including: G.
Lumer, P.S. Phillips, J.R. Giles, J.R. James, B.W. Glickfeld, E. Tor-
rance, G. Godini, I. Singer, T. Precupanu, I. Rosca, T. Husain, B.D.
Malviya, D.O. Koehler, P.M. Milicic, B. Nath, R.A. Tapia, A. Torgasev,
S.M. Khaleelulla, N.J. Kalton, G.V. Wood, S. Gudder, S. Strawther,
P.L. Papini, G.D. Faulkner, J.A. Canavati, J.L.. Abreu, S.S. Dragomir,
D.K. Sen, C. Benitez, G. Marino, P. Pietramala, M.A. Noor, J.J.
Koliha, M. Crasmareanu and others, have used them as a powerful tool
in investigating various properties such as; reflexivity, strict convexity
and smoothness of Banach spaces as well as the possibility to represent
the continuous linear functionals or to bound sub-linear functionals or
convex functions defined on these spaces. Characterizations of different
types of orthogonality or other geometric properties in normed linear
spaces were also provided by the use of different semi-inner products
as will be shown further in this book.

In the first chapter of the book, a short introduction to the main
properties of the duality mapping that will be used in the next chap-
ters is given. Chapter 2 is devoted to the semi-inner products in the
sense of Lumer-Giles while the third chapter is concerned with the
main properties of the superior and inferior semi-inner products. In
the next chapter the main properties of Milicic?s semi-inner product
and the properties of normed spaces of (G)—type are presented. The
next two chapters investigate the geometric properties of (Q), (SQ)
and 2k—inner product spaces introduced by the author, while Chapter
7 is entirely devoted to the study of different mappings that can nat-
urally be associated to the norm derivatives in general normed spaces
and, in particular, in inner product spaces. Chapters 8 and 9 investi-
gate different orthogonalities that may be introduced in normed spaces
and their intimate relationship with semi-inner products. In Chap-
ter 11, orthogonal decomposition theorems in general normed spaces
are provided, while in the next chapter the problem of approximating
continuous linear functionals in general normed spaces and character-
izations of reflexivity in this context are given. A deeper insight on
this problem is then considered in Chapter 13, where some classes of
continuous functionals are introduced and a density result based on
the famous Bishop-Phelps theorem is obtained. In Chapter 14, the
class of smooth normed spaces of (BD)—type and their application for
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non-linear operators is presented. In the next chapter the continuous
sublinear functionals defined in Reflexive Banach spaces are investi-
gated, while Chapter 16 deals with convex functions defined in more
general spaces endowed with subinner products. The monograph con-
cludes by considering the representation problem of linear forms defined
on modules endowed with general semi-subinner products.

The bibliography at the end of each chapter contains only a list of
the papers cited in the chapter. The interested reader may find more
information on the subject by consulting the list of papers provided at
the end of the work.

The book is intended for use by both researchers and postgraduate
students interested in Functional Analysis. It also provides helpful tools
to mathematicians using Functional Analysis in other domains such as:
Linear and Non-linear Operator Theory, Optimisation Theory, Game
Theory or other related fields.

The author,

January 2003,
Melbourne



CHAPTER 1

The Normalized Duality Mapping

1. Definition and Some Fundamental Properties

In what follows, we recall some of the main properties for the nor-
malized duality mapping which will be used in the sequel. For more
information and details concerning this concept we recommend the
monograph by Ioana Cioranescu [2] where further references are given.

Let (X, ||]]) be a normed linear space over the real or complex
number field which will be denoted by K.

DEFINITION 1. The mapping J : X — 2%, where X* is the dual

space of X, given by:
J(x) = {z" € X[ (&%, z) = |l=*|[ [|«]], [|"]] = [J«[|}, =€ X

will be called the normalised duality mapping of normed linear space
X.

DEFINITION 2. A mappmgNj : X — X* will be called a section of
normalised duality mapping if J (x) € J (z) for all x in X.

The next proposition contains some fundamental properties of these
multifunctions (see for example [1], [2] or [3]):

PROPOSITION 1. Let (X, ||-||) be a normed space. Then the follow-
g statements are true:

a) For each v € X the set J (x) is conver and nonempty in X*;
b) J is monotonic in the following sense:

Re(z* —y", 2 —y) >0
for every x,y € X and x* € J(x), y* € J (y).
c¢) J is antithomogeneous, i.e.,
J(A\z) = \J ()
for all x € X and every scalar A € K.

PROOF. The proof is as follows.

a) If v = 0, then obviously J(0) = {0}. Let z € X, x # 0.
Consider the subspace S, (z) := {A\z|\ € K} and define the
functional ¢ : S, (z) — K, g(u) = A||z|* where u € S, (z),

1



1. THE NORMALIZED DUALITY MAPPING

u = Au (A € K). It is clear that g is a bounded linear func-
tional on S, (z) and ||y|| = ||z||. By a well-known corollary
of the Hahn-Banach theorem, there is a functional x* € X*
which extends the mapping g to X and is such that

[zl = llyll = ||| -
Since
2 *
(,2) =g(x) =g(1-2) = |z[|" = [J"[ [[=]],

it follows that 2* € J (x) which shows that J (z) is nonempty.
Now, we will show that J () is convex in X*.
Suppose = # 0 and let z}, x5 € J (z). Then one has

(try + (L=t oy, 2) = t(x5,2) + (1 - 1) (27, 2)
= 2]+ (1 =) a|* = [l

for all ¢ € [0, 1].
On the other hand,

0 < o]l = <m;+ (-1t ||>

:'<t‘”5+“ R ||>'
< sup

<m; F(1—t)al, i>'
yEX\{0} ly]|

= [[tws + (1 = 1) 21|

which shows that
]| < [t + (1 — 1) 27|

for all ¢ € [0, 1].
However, [lz3]| = [l7[| = [|z[], hence

[tz + (1= 8) 2y|| < ¢lazll + (1 =) [[#1] = [|l]]
for all t € [0,1], which gives that
[tz3 + (1 = 8) 1] < [|=|

and consequently ¢z} + (1 —t) 25 € J (z) for all t € [0,1], i.e
J (x) is a convex subset of X*.
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b) Let z,y € X and z* € J (z), y* € J (y). Then we have:
Re (z" —y*, z — y)
= (2", 7) + (y",y) — Re (2", y) — Re (y", z)
=l ]+ Ny gl = Nyl = [y ]
= lllI* + lll* = 2 [l Iy = (l=] = llyl)* > o,

which proves the assertion.
c) If A =0, the statement is true.
Suppose that A # 0 and z* € J (A\x), i.e.,

(@7, Az) = [l"[|[Az] and [lz"] = [[Az]]
which yields that
1

1 * *
—x*x ) = ||=x
A A
ie., yo* € J (z) and then 2* € AJ () which gives the inclusion

J(\z) C \J (2).

The reverse inclusion goes likewise and we omit the details.

*

= [l

1
|z|| and Hix

Now we will give a characterization of surjectivity of the dual map-
ping in terms of continuous linear functionals (see for example [1], [2]
or [3]).

PROPOSITION 2. Let (X, ||-||) be a normed linear space. Then the
following statements are equivalent:

(i) Ewvery continuous linear functional on X achieves its maximum
on the unit sphere, i.e.,

Mz e X*, (FxeX, ||z|| =1 such that (z* z) =|z"].
(ii) The normalised duality mapping is surjective, i.e.,
(V)z* € X*, (F)ye X such that z* € J(y).
PRrOOF. “(i) =(ii)”. Let z* € X*. Then there exists an element
z € X, |zl =1and (z* z) = ||2*]]. Let y = ||z*|| z. We will show that
z* e J(y).
Indeed, we have:
(@, y) = (2", ™| @) = []a"|| (&%, ) = [l ||* = [ly]|®
and

[l = 1lyll
ie., z* € J(y).
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“(ii) =(i)”. Let 2* € X*. Then there exists an element y € X
such that z* € J (y). We will show that x = Ty achieves its maximum
of £* on the unit sphere. Indeed, we have:

<x,x>=<x,—> (@, y) = 2] Iyl = ll2*]].
Tl ol

vl
and the implication is proved. §

2. Characterisations of Some Classes of Normed Spaces

In this section we point out some characterisations of smooth or
reflexive normed linear spaces in terms of normalised duality mapping.
A characterisation of strictly convex normed spaces is also given.

We start with the following definition (see for example [1], [2] or
[31)-

DEFINITION 3. A normed linear space (X, ||||) is said to be smooth
in the point x # 0 if there is a unique continuous linear functional x*
such that:

(%, 2) = |[zl| and [lz"]| = 1.

The following characterisation theorem holds (see for example [3]).

THEOREM 1. Let (X, ||-||) be as above and xy € X with ||zo| = 1.
Then the following statements are equivalent:

(i) X is smooth in xo;
(i) J (zo) contains a unique element in X*;
(iii) Fwvery section J of normalised duality mapping J has the prop-
erty:
(N an € X, [l =1, 2n 20 2= J (2,) — J (x0)
in the weak topology o (X*, X) of X*;

(iv) The norm ||| is Gateauz differentiable in x;.

PRrOOF. “(i) ==(ii)”. Let us assume that there exists z],z5 €
J (xo) with o7 # 5. Then we have:

(1,20) = [|l27] lwoll = 27]° and [|27]| = [|lzo] = 1
and

(3, 20) = [|l25] lwoll = 23]° and [|23]| = [lzo]l = 1,
which contradicts the smoothness of X at the point x,.

“(ii) =>(iii))”. Now, let us assume that (iii) is not true. Then
there exists a section J of the normalised duality mapping J and a
sequence (o,),cns [|Znll = 1, 2n I xo and with the property that
J (z,) # J(20) in o (X*,X). Thus, one has a neighbourhood U in
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o (X", X) of J(x0) so that in the exterior of U there are an infinite
number of terms of the sequence J (z,). Let us denote these terms

by (j (xp)> . Since the unit ball of the dual space X* is o (X*, X)
peEN
— compact (c.f. the theorem of Alaoglu) then by (j (xp)) we can
peEN

extract a subsequence <j (x )) which converges to a functional z*
qeN
<1

in o(X*,X) and ||z*||

|z4]| = 1). Since we have

(we also used the fact that Hj (xq)

2 (20) = 1] = [ (w0) = (J () ,,)
Tlag)sag)| + [ (T @) o) = (T (o) )

< |2 (@0) = (T (@) 2y )| + lleg = woll, g €N,

I
8

*

~—~
8

N
|

S

hence, by passing at limit over ¢, ¢ — oo, we get z* (z9) = 1. However,
we know that ||z*|| < 1, and thus ||z*|| = 1.

Consequently, the continuous linear functional z* has the proper-
ties:

Iz = 1= llzol and (2", 20) = 1 = |laol|*,

which implies that z* = J (z9) = J () (because J (xy) contains a
unique element). In conclusion J (x,) converges to J (x0) in o (X*, X),
which contradicts the choice of the neighbourhood U.

“(iii) ==(iv)”. Let J be a section of the normalised duality map-
ping J. Then for all t £ 0 and h # 0, h € X, we have:

1
[0 + th| — [z = Tzl [0l l|zo + th]| — [|zol?]
1 ~
> - [Re (Jao, @ + th) — |lao]’
onH
Re<jx0,h>,
||:vo||
which implies that
~ 1
(1) r Re (T, h) < 5 (oo + th]] = flaol)
o t

for all t > 0.
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On the other hand, one has:

1
- (o +m|| ~ Jzol)

th||” — th
" tzo +th +th|\ (llzo + thl* = llzoll llzo + th])
th) o + th)) - th))
t!|xo+th|| (< (o +th) , o + o]l |z + thl
1 -
= 7 J th), >
t ||z + th]] (Re< (w0 +th) , z

+t Re (J (w0 + th) , h) — ||zol| |lzo + tA])

< Re <J (M) ,h>
|zo + thl|

because
Re (J (2 + th) , 30 ) < |lao]l 2o + th]
and then
12 (et thl ~ ol) < Re (T (22540 ) b)),
t ||xo + th]|

Using the inequalities (1.1)) and (|1.2)) we summarize

~ x 1
(1.3) Re<J (ﬂ) ,h> < o + th] ~ [l
gRe<j< To + th ),h>
|z + th|

forallt >0 and h € X, h # 0.
It is well known that for every normed space (X, ||-||), the mapping

X 5 2+ ||z|]| € R is Gateaux differentiable at the right on X\ {0},
i.e., there exists the limit

.z +th| =
() @)= Jigg SR oy e 3 q0y, me x

It is also known that the norm ||-|| is Gateaux differentiable on X\ {0}
if and only if

(Vi -1 () - b= = (v [ () - (=h)
for all h € X.
By the relation ([1.3)) and taking into account the fact that:

lim Re<j (%—m> ,h> :Re<j( il ) h> (V)heX
t—0+ |0 + th| [
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(this follows by (iii)), we deduce that

vl )= (7

On the other hand, we can see that:

— (Vi ) (o) - (=h) = -<J(H§m),_h>

= (Vi l-lD (o) - b, (V) h € X,

which shows that the norm ||-|| is Gateaux differentiable in zy and

el )= (7 (2] k) (9 h e X,
“(iv) =(ii)”. By the inequality we have for all ¢t > 0 and

for every J a section of the normalised duality mapping

X

),h>, (V) heX.

2o

Zo
[l oll

(1) o (o h) < 7 (lleo + thl — flzoll), (95 € X,

o]l

which implies for all s < 0:

1 1 N
(13) 5 o+ shl = flzol) < - Re <J:r;0, h> (M heX.
0
Since the norm ||-|| is assumed Gateaux differentiable in zg, then ({1.4))

yields that:

(VI (o) - b= (Vi 11D (20) - b = tli%i% (llzo + thll = [|zol)

1 .
oo B <Jx0, h> () heX,

and the relation (|1.5)) shows that:

(VI @)+ = (- ) o) - b= Tim (o + sh] — o)

—— _Re{Jzo,hy, (V)he X.
oo R (T 1) )

Consequently, we get:
1 .
(1.6) (/1) (o) B = o Re <Jg:0, h> , (VheX.
0
Now, if we suppose that .J (zo) contains two distinct functionals w7 ,

and zj, and Ji, Jp are two sections of normalised duality mapping J
such that;

Ji (zg) = Ty, and Jo (x0) = Too
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then the relation |) written for J; and J, gives

Re <j1 (20) h> = Re <j2 (20) h> , (WheX.
On the other hand:
Im <j1 (x0), h> = —Re

which gives:
()

Jy (o) = Jo (zo) and xg, = 75,

ie.,

which produces a contradiction; and the implication is thus proved.

“(ii) =>(1)”. Let us assume that X is not smooth in xy. Then
there exists z*, y* € X*, «* # y*, ||z*]| = [|[v*|| = 1 and (2", x¢) =
llzol|l = (y*, zo). If we put

zy = ||lzol| 2" and y; = ||lzoll v,
then
xy € J(x0), yi € J(wo), and ] # yj,

which contradicts the fact that J (z¢) contains a unique element.
The proof of the theorem is thus completed. 1

The following corollary is a natural consequence by the above con-
siderations.

COROLLARY 1. Let (X, ||-||) be a normed linear space. Then the
following statements are equivalent:
(i) X is smooth;
(ii) The normalised duality mapping is univocal;
(iii) Every section J of the normalised duality mapping J is con-
tinuous from X endowed with the norm topology at X* with
the weak topology o (X*, X);
(iv) The norm ||| is Gateauz differentiable on X\ {0}.
Now, let (X, ||-]|) be a normed space, X* its dual, X** the bidual
of X. For a fixed element x € X, we define the mapping F}, : X* — K,

Fo(f) = flx), feX

It is obvious that F), is a linear functional on X™*. Moreover, since

[Fx ()] = 1f @ < ISzl (V) f e X7,
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it follows that F}, is also continuous on X*. In addition, we have
[ F]l < [z -

In this way, we can establish a mapping X > =z 2 F, € X* which
satisfies the inequality

1@ (@) <[l =€ X.

On the other hand, it is clear that ® is a linear operator, and by the
above inequality, also a bounded operator on X. Now, by a well known
consequence of the Hahn-Banach theorem, there exists a functional
fz € X* such that f, (z) = ||z|| and || f.|| = 1. Consequently, we have:

2]l = fo (x) = (@ (2)) (fo) < (12 @) [If ()| = [® ()]l

which shows that ® is an isometry on X with values in X™**.

DEFINITION 4. Let (X, ||-]|) be a normed space. Then it will be said
to be reflexive if the mapping ® defined as above is an isomorphism of
normed linear spaces or, equivalently, ® is surjective.

The following characterisation of reflexivity in terms of the nor-
malised duality mapping holds (see for example [3]).

THEOREM 2. Let (X, ||-]|) be a Banach space. Then the following
statements are equivalent:

(i) X is reflexive;

(ii) The normalised duality mapping J is surjective.

PROOF. We use the following result due to R.C. James (see [4] or
[5]) which states:

THEOREM 3. Let (X, ||-||) be a Banach space. Then X is reflexive
if and only if for every x* a continuous linear functional there exists
an element x € X such that:

(%, 2) = || ||| -
This element is said to be a maximal element for x*.

Now, if we assume that X is reflexive, then for every z* € X\ {0}
there exists, by James’ result, an element u (u = H:;_H’ x # 0) in which
the functional z* achieves its norm and, by Proposition [, we obtain
that J is surjective.

The converse of this implication goes likewise and we omit the de-
tails. 1

Finally, we recall the concept of strictly convex normed spaces and
we give a result containing a characterisation of this class of spaces in
terms of normalised duality mapping.
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DEFINITION 5. A normed linear space (X, ||-||) will be called strictly
convez if for every x,y from X, x #y and ||z|| = ||y|| = 1 we have:

Az +(1=Ny| <1
for all X € (0,1).
Now we can state the following result.
THEOREM 4. Let (X, ||-||) be a normed linear space. Then the fol-
lowing statements are equivalent.
(1) X is strictly convez;
(ii) The duality mapping J is strictly monotonic;
(iii) The duality mapping is injective, i.e.,

J(@)NJ(y) =0 forzxz#y.

The proof follows by the following well known results due to M.G.
Klein (see for example [6]) which states:

THEOREM 5. A normed linear space (X, ||||) is strictly convez iff
every continuous linear functional on it has at most one mazximal ele-
ment having the same norm one.

We omit the details.

For other classical characterisations of reflexive or strictly convex
normed linear spaces we refer the reader to [7] where further references
are given.

3. Other Properties of Normalised Duality Mappings

We start with the following theorem which improves the equivalence
“(i)«<=(iii)” of Theorem || and also gives another characterisation of
smoothness as follows.

THEOREM 6. Let (X, ||-||) be a normed linear space and xy € X\ {0}.
Then the following statements are equivalent:
(i) X is smooth in xo;
(ii) For every J a section of the normalised duality mapping J we

have
(1.7) llfi_r)réRe <j(x0+ty),y> = Re<j:zco,y>
forally € X;
(iii) For every J as above, we have:
_ J (zo +ty) — Jxo B -
(1.8) 121(1)Re< ; .o ) = Re <Jx0,y>

forally € X.
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PROOF. As in the proof of Theorem [l (see the relation (|1.3))), we
have the double inequality:

J tyl| — J t
(19) Re Jxg u) < |20 + tyl| — [|zoll < Re J (zo + y)jy
[EN t |zo + tyl|

for all y € X and t > 0 (J is a section of a duality mapping).
On the other hand, by the first inequality in (1.9, we have

(1.10) Re<J (xo + t9) > _ llzo-+ 21yl 120 + 1)

[0 + tyll ’ t
for all y € X and ¢t > 0. By the inequalities ((1.9) and (1.10|) we have:
o oty — [
t—0+ t
- _—
t—0+ l|lzo + ty|| 0+ t
2 — _
g g Mot 2l = ol o + tyl] — [l
t—0t 2t t—0t t
_ g pi N0yl = ol gy o £ tyl] = o]
s—0F S t—0t t
N
t—0+ t ’

for all y € X, which shows that in every normed space we have the
equality:

(1.11) tim 170t W= llooll ) Re<—J(x0+ty),y>

t—0t t t—0t

for all y € X.
“(i) = (ii)”. If X is smooth in zq, then by (1.11]) we have:

ol (v 1) (20) y = Jim Re (] (a0 +ty) .9)

for all y € X.
On the other hand, one has

lim Re (7 (@0 -+t(=4)) (<)) = ol (v 1)) o) (=)

t—0t

and then
i Re (G0 — 1) ') = = ol (v 1) (o) ()
= [lzoll (V [I]}) (z0) y-
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However,

tli%i Re <j(a:0 — ty) ,y> = lim Re <j(a:0 + sy) ,y> :

s—0~

Consequently, the limit lir% Re <j (zo + ty) ,y> exists and

(L12) T Re (J (w0 +ty),y) = Jzoll (V]}]) (z0) -y

for all y € X.
Now, by the inequality ((1.9) we also have:

(llzo + tyll = llzoll)
t

([[wo + syl — llzoll)
||$0|| s

< Re(J (20),y) < o]
forall t > 0, s < 0 and y € X is smooth in zy we obtain
(113) lzoll (v I11) (w0) -y = Re (F (o) .

for all y € X and then ((1.12) and (|1.13)) show the relation ({1.7)), and
the implication is thus proven.
“(ii) = (i)”. By the inequality (1.9) we deduce:

R6<J(xo) >§ tim W20 =20l oy ) -y

ol 7Y/ = ot /
<j(xo + ty) ,y> Re <ja:0,y>
< lim Re =
t—07F [zo + tyll | ol

then

Re <j (o) ,y>

(Vi [I11) (o) -y = for all y € X.
[
On the other hand, one has:
Re <jx0, —y>
(V=) (o) -y = = (Vo [|-D) (o) - (=y) = ——— 75—
(B
Re <jxo,y>
- ' = \/ . T .
for y € X, which shows that the norm ||-|| is Gateaux differentiable in

Tg, i.e., X is smooth in z.
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“(i) = (iii)”. Firstly, let us observe that the following equality
holds

o + tyll”* — |zl

t
Re <j(:c0 +ty), xo + ty> — <j:c0,x0>
- t
_ Re<i(:co +tty) —~ jx07$0> " Re <J(x0 L) y>

for all y € X and t # 0, where J is a section of a duality mapping.
Now, assume that X is smooth in zy. Then by the above equality we

have:
1imRe<J(x0 +ty) — Jx0,$0>

t—0 t

iy |
= lim o + ty) y>
= 2|[zol[ (VI[-I) (x0) - y = Re {Jxo, 1)
= Re <jx0, y>
(we also used the statement (ii)), and thus (1.8 holds.

Conversely, if (1.8)) holds, then, by the use of identity (1.11)), we
deduce:

tll? — 2 B
oo+l ~lnl” 5

o + tyll* = [l
2 Vi cy=1
zoll (V4 [I]]) (w0) - y t_{%l "

= Re <jx0,y> + lim Re <j($o + ty) ,y>

t—0t+

= Re (Jro,y) + llzoll (V4 [I]) (z0) - y
for all y € X. Consequently,

[[zoll (Ve I]]) (20) - y = Re {J 2o, y)

for all y € X.
Since

ol (V- 1) (o) - (=9) = Re (Jo, (—y) ) = = Re { Jao,y)
= llzoll (V1) (o) - 9

for all y € X, it follows that ||| is Gateaux differentiable in xy and the
proof is completed. 1
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COROLLARY 2. Let X be a normed linear space. Then the following
statements are equivalent:

(i) X is smooth;
(ii) For a section J of normalised duality mapping J, we have
ling Re <j (x + ty) ,y> = Re <jx, y>
forallz,y € X;
(iii) For a section J of duality mapping we have:

- ) _ )
limRe<J(x+ y) Jx,x>:Re<Jx,y>

t—0 t

forall x,y € X.
The proof is clearly embodied in the above theorem and we omit
the details.

REMARK 1. The equivalence “(i) <= (ii)” is similar in a sense
with the result of J.R. Giles [8] which holds for semi-inner products.
On the other hand, equivalence “(i) <= (ii)” of Theorem [ improves
the equivalence “(i) <= (iii)” of Theorem|l]

The following result is due to M. Golomb and R.A. Tapia [9] (see
also [3, p. 283]).

THEOREM 7. Let X be a real (complex) Banach space on which the
normalised duality mapping is univocal. Then J is linear (antilinear)
iff X 1s an inner product space.

Proor. If X is a Hilbert space then by Riesz’s representation the-
orem it follows that .J is a linear operator on X with values in X*.
Conversely, if J is linear, then one has:
|z yl* = (J (@ +y),z+y) = (Jo £ Jy,z+y)
= (Jz,z) + (Jy,y) £ (Jx,y) £ (Jy, x)
for all z,y € X.
Consequently,
2 2 2 2
2z +ylI” + llz = ylI* =2 (=" + [ly°)

which shows, by the well known result of von Neumann and Jordan,
that X is an inner product space. 1

Now, we list some other properties of the normalised duality map-
ping.

THEOREM 8. Let (X, ||-]|) be a normed linear space. Then the fol-
lowing assertions are true:
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(i) If X* is smooth (strictly convez) then X 1is strictly convex
(smooth);
(i) If X is reflexive, then in the above statement we have an equiv-
alence.
For the proof of this fact, we refer the reader to [3, p. 50].
Another result is embodied in the following theorem.

THEOREM 9. Let (X, ||-||) be a normed linear space. Then one has:

(i) If X* is strictly convez, then the normalised duality mapping is
univocal and continuous to X endowed with the norm topology
at X* with the weak topology o (X, X*).

(i) If X and X* are strictly convex and X is reflexive, then J is
strictly monotonic and bijective.

For a proof of these facts, see [3], pp. 283-284].
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CHAPTER 2

Semi-Inner Products in the Sense of Lumer-Giles

1. Definition and Fundamental Properties

In what follows, we assume that X is a linear space over the real
or complex number field K.

The following concept was introduced in 1961 by G. Lumer [1I] but
the main properties of it were discovered by J.R. Giles [2], P.L. Papini
[3], P.M. Milici¢ [4] — [13], I. Rosca [14], B. Nath [15] and others.

In this introductory section we give the definition of this concept
and point out the main facts which are derived directly from the defi-
nition.

DEFINITION 6. The mapping |-, : X x X — K will be called the
semi-inner product in the sense of Lumer-Giles or L. — G.—s.i.p., for
short, if the following properties are satisfied:

(i) [z +y, 2] =z, 2]+ [y, 2] foralz,y € X;

(i) [A\x,y] = X[z, y] for all z,y € X and X a scalar in K;
(iii) [z, 2] >0 for all z € X and [x,x] = 0 implies that x = 0;
(iv) |z, 9] < [, 2] [y, 9] for all 2,y € X

(v) [z, \y] = Nz, y] for all x,y € X and X a scalar in K.
Now, we will state and prove the first result.

PROPOSITION 3. Let X be a linear space and [-,-] a L. — G.—s.i.p.
on X. Then the following statements are true:

(i) The mapping X > x I [x,x]% € R, is a norm on X;

(ii) For every y € X the functional X > x b, [z,y] € K is
a continuous linear functional on X endowed with the norm

generated by L. — G.—s.i.p. Moreover, one has || f,|| = ||y|| -
PRrROOF. The proof is as follows.
(i) We will verify the properties of the norm. Let x € X. Then
1
|z|| = [z,2]2 > 0 and if ||z|| = 0, then [z,z] = 0, which
implies that x = 0.
If x € X and A € K| then one has
IAz]| = Az, Az]? = [X-A]? [2,2]2 = [A] ||z
19
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Finally, for every x,y € X, we deduce:

lz+yl> = [+yz+y =|zz+y+yz+y
< Nz, z+y]| + |y, z + vl
< x| |z +yll + [yl |z +

from where we get:
[z +yll < [lzll + [yl

for all z,y € X.
(ii) The fact that f, is linear follows by (i) and (ii) of Definition
6l Now, using Schwartz’s inequality (iv) we get;

|y (@) < [lz] |lyl| for all  in X,
which implies that f, is bounded and

11l < llyll -
On the other hand, we have;
£ Wl Nyl
1fyll = = = [l
! [yl lyll

and then || f,| = |lyll-

The following theorem due to I. Rogca [14] establishes a natural
connection between the normalised duality mapping and the semi-inner
products in the sense of Lumer-Giles.

THEOREM 10. Let (X, ||||) be a normed space. Then every L. —
G.—s.i.p. which generates the norm ||| is of the form

[z, y] = <J(y) ,x> for all x,y in X,
where J is a section of the normalised duality mapping.

PROOF. Let J be a section of the normalised duality mapping J.
Define the functional;

X XX =K, o] = (T(),7).
Then:
lax + By, 2] = <jz,a:c—|—ﬁy>:a<jz,x>—|—ﬁ<jz,y>
= alz,z]+ By, 2]
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for every a, 0 € K and z,y, 2 € X. We also have:

w.ay) = (J(ay),0) = (al (g),2) =a (T (y),2) =a v,y

for all z,y € X and a scalar a in K.
Now, let us observe that one has

2, 2] = <Jm> - HJQ;H |zl = [|lz|> > 0 forallz € X
and
[z,z] =0, i.e, ||| =0 implies x = 0.

Finally, by the properties of bounded linear functionals, we have:

. 2 _ 2
el = [T < [T lel = Il 1217
= [z,2][y,y]

for all x,y € X, and then the mapping [, ] is a L. — G.—s.i.p. which
generates the norm ||-|| of X.

Conversely, let [-,] be a L. — G.—s.i.p. which generates the norm
||I]| of X. Define J : X — X* such that the functional J (y) (y € X) is
given by:

<j(y) ,x> = [z,y] forall z € X.

Then
(Jo.w) = [w.a] = |2, @€ x
and
Hj(y)H =|lz||, y € X (see Proposition [3).
Consequently,

(T(@),2) = || Tz| el and ||Je| = I
for all z € X, i.e., J is a section of the normalised duality mapping. &

2. Characterisation of Some Classes of Normed Spaces

We will start with the next proposition which is a natural conse-
quence of Rogca’s result.

PROPOSITION 4. Let (X, ||-||) be a normed linear space. Then the
following statements are equivalent:
(i) X is smooth;
(ii) There exists a unique L. —G.—s.i.p. which generates the norm
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ProOF. “(i) = (ii)”. If X is smooth, then J is univocal (see
Corollary [1)) and there is a unique section of J, and then, by Theorem
[10} a unique L. — G.—s.i.p. which generates the norm |J-|].

“(ii) = (i)”. If there exists a unique L.—G.—s.i.p. which generates
the norm |||, then J is univocal and by the same corollary it follows
that X is smooth. g

Before we can state a remarkable result due to J.R. Giles [2] that
contains a classical characterisation of smooth normed spaces, we need
the following definition.

DEFINITION 7. A L. — G.—s.i.p. [-,-] defined on the linear space X
is said to be continuous [2], if for every x,y € X one has the equality:
(2.1) %in% Re [y, z + ty] = Re [y, z] .

Now we can state and give a partially new proof of this established
result (compare with [2]).

THEOREM 11. Let (X,||-||) be a normed linear space and [-,-] a
L. — G.—s.i.p. which generates the norm ||-||. Then |-, -] is continuous
if and only if the space X is smooth.

PROOF. Let us suppose that [, -] is continuous. Using the prop-
erties of L. — G.—s.i.p.s we can easily obtain (see also [16], p. 387]):

Rely, 2] _ |l +tyll — [lzl] _ Rely, = +ty]

el t e+t
for every x,y € X, x # 0 and t > 0. Passing at limit after ¢, t — 0T,
we have

(2.2)

Vil D (@) -y = ———
for all x,y € X, x # 0.
On the other hand, one has:

VI @)y = = Vel @) - (=y)
_Re [—y,ﬁ] _ Re [y,l’] _

which shows that the norm ||-|| is Gateaux differentiable, i.e., X is
smooth.
Conversely, let us assume that the norm ||-|| is Gateaux differen-

tiable on X'\ {0}. Then, by the inequalities (2.2)) we can write:

|z +tyl = ll=ll _ Rely,z +ty] _ |lz+ 2tyl| — [l= + ty||
t el T t
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for all t > 0, i.e.,
1
7 (e +tyll = llz) lle +tyll < Rely, = +ty]

1
< 7 (e +2ty] = lle +tyll) |2 + tyll
for all t > 0 and x,y € X. Taking t — 0%, we obtain
Tim Refy,+ ) = [lo] (v []) (2) -y

because a simple computation shows that:

i 1%+ 2yl = [le +tyll
im =
t—0t t

On the other hand, we have:

Jim Re [~y 2+t (=y)] = 2] (V+[]) (2) - (=)

(V1D (@) -y

and then
lim Rely,z —ty] = —|[lzf| (V4 |]]) (=) - (-y)

t—0+
= =l (v=1I-I) (=) -
but
lim Rely,z —ty] = lim Rely, z + sy]

t—0t s—0~
and in conclusion, we derive:

Jim Rely, 2 +ty] = |l]| (V- |-} () -y

for all x,y € X, x # 0.
Since the norm ||-|| is Gateaux differentiable on X\ {0}, the above
considerations yield that

(23) lim Re [y, = + ty)] = [lal| (v 1) (=) -y

for all z,y € X, x # 0.
Now, by the inequalities in (2.2)), we also have:

2l (lz + syl = [l=])) (lz + tyll — [[=)
S t

where s < 0 and ¢t < 0. Passing at limit after s — 07, and t — 0T, we
deduce:

(2.4) Rely, =] = [[z[| (V[[-]) (x) -y
for all x,y € X, x # 0. Taking into account the equalities (2.3) and

< Rely, 2] < [|l=|

(2.4]), we obtain the continuity of |-, -] in the sense of Definition |7 B
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Further on, we will state a result due to Nath [15] containing a
characterisation of strictly convex spaces in terms of semi-inner product
in Lumer-Giles’ sense.

THEOREM 12. Let (X, ||-||) be a normed linear space and [-,-] a
L.—G.—s.i.p. which generates its norm. Then the following statements
are equivalent:

(1) X is strictly convex;
(ii) For every x,y € X, x,y # 0 so that [x,y] = ||z| ||y| there
exists a positive number \ with x = A\y.

PRrROOF. “(i) = (ii)”. Assume that (X, |-]|) is a strictly convex
space and x,y belong to X, z,y # 0 such that [z,y] = ||z| ||y|. Using
Theorem there exists a section of normalised duality mapping so

that
(Tw),2) = llel Iyl

From whence we get

(T 5 ) =l =T @] ma (T =1l = [T 0]

Since X is strictly convex, every continuous linear functional achieves
its norm on at most one point which means that

r Yy
[l«ll Tyl
and putting A = %, we deduce that x = \y.
“(ii) = (i)”. Now, we will show that the condition “(ii)” implies
the property:
(V) z,y € XNA0} and |lz +y| = [z + [lyl| = = = Ay,

with A > 0, which is equivalent with the strict convexity of X.
If [z +y| = [lzll + [lyl| with z,y € X\ {0}, then :

(2.5) Re[z,z+y] = |zl lz+yll or Rely,z+y]=|yllllz+yll.
Indeed, by Schwartz’s inequality, we have
Refe, o+ < oz +yll and Refy,z+y] <yl +yll.

Let us assume that both inequalities are strict, then, by addition, we
get:
Relz, 2 +y]+ Rely, 2 +y] < (2] + lyl)) [|z + v

and since the left membership is ||z + y||>, we deduce that

1z +yll < Nzl + [yl
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which contradicts the initial assumption. Consequently, at least one of
the equalities embodied in ([2.5) is valid.
Suppose that

Relz,z +y] = |lz| |z + y
then by (ii) we get

r=t(x+y) with t#1

from where results = Ay with A = & > 0.
The theorem is thus proved.

3. Other Properties of L. — G.—s.i.p.s

Firstly, we will give the following slight improvement of Giles’ the-
orem.

THEOREM 13. Let (X,|||) be a normed space and [-,-] a L. —
G.—s.i.p. which generates its norm. Then the following statements
are equivalent:

(i) X is smooth,
(ii) The following limit exists:
11511% Re [y, z + ty]
forall z,y € X.

PROOF. We need only prove the implication “(ii) = (i)”. In the
proof of Theorem [12] we have pointed out that:

Jim Rey, 2 +ty] = [l (Vo [-]) () -y

and
lim Re [y, z +ty] = ||z (V_[]]]) (=) -y

t—0~
for all z,y € X, z # 0, where X is an arbitrary normed linear space.
Now, if the limit %ir% Re [y, x + ty| exists it follows that

VI (@) -y = (Vi D (=) -y

for all x,y € X, x # 0, which shows that the space X is smooth.

Another result of this type is embodied in the following theorem.

THEOREM 14. Let (X,|||) be a normed space and [-,-] a L. —
G.—s.i.p. which generates the norm ||-||. Then the following statements
are equivalent:

(i) X is smooth;
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(ii) The following limit exists:

2
t—0 t
forall x,y € X.

Moreover, if (i) or (ii) hold, then one has the equality

R ty] — ||z||”

= Rely, 7]
forallz,y € X.
PRrOOF. Firstly, let us observe that
|z + tyl* = ll* _ Refe,z + ty] — ||
t t
for every x,y € X and t € R\ _{0}.
On the other hand, in every normed space one has:

lim Rely,z +ty] = [l2]| (V4 1)) (2) - y

(2.8)

+ Rely, z + ty]

and
Jim Rely, o +ty] = [l (V- |-} (z) -y
for all z,y € X (see the proof of Theorem .
We also note that:

ety = ol
t—0t t

= 2|zl (v 1) (=) -y

and
ety ol
t—0— t
for all x,y € X and z # 0.
2
“(i) = (ii)”. If X is smooth, then hm w and hm Re [y, x + ty|

exist, which implies that, by . the hmlt also ex1sts for all
x,y € X.

“(ii) = (i)”. By the equality and by the above remarks, we
deduce that

=2z (V- (=) -y

Re[z, z + ty] — |||

l -
Jim - = [zl (v I1D (@) -y
and

. Relr,z+ty ||37||2

e e C AN
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for all x,y € X, © # 0. Since the limit exists, it follows that
Vel (@) -y = (v |-|) (z) -y for all z,y € X, x # 0, which shows
that X is smooth.
The proof of the relation follows by that identity and by
the fact that in smooth normed spaces the L. —G.—s.i.p. is continuous.
We will omit the details. §
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CHAPTER 3

The Superior and Inferior Semi-Inner Products

1. Definition and Some Fundamental Properties

Let (X, ||-]]) be a normed linear space over the real or complex
number field K. The mapping f : X — R, f(z) =1 |||* is obviously
convex and then there exists the following limits:

ly + tz||” = ||y||*

(z,y); = lim 5 ;
|y 4tz = |yl
(z,v), Jim o ;

for every two elements in X. The mapping (-,-), ((-,-),) will be called
the superior semi-inner product (the inferior semi-inner product) as-
sociated to the norm ||-||. These mapping were considered by P.M.
Mili¢ié [I] — [3], R.A. Tapia [4], N. Pavel [5], G. Dinca [6] and others
who pointed out their main properties.

We will start with the following properties which may easily be
derived from the definitions of (-,-), and (-,-),.

PROPOSITION 5. Let (X, ||-||) be a normed linear space. Then the
following statements are true.

1)
(ii) (iw, ), = (z,iz), =0 for all v € X;
(iii) (Az,y), = A(z,y), for all nonnegative scalar A and x,y € X;
(iv) (z,A\y), = A(x,y), for all nonnegative scalar A and z,y € X;
v) (\z,y), = A(z,y), if A\ <0 and v,y € X;
(vi) (z,A\y), = A(2,y), f A <0 and z,y € X;
(vii) (iz,y), = — (z,1y), =0 for allz € X;

where p,q € {s,i} and p # q.

PROOF. The proof is as follows.
31
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(i) One has:

I
(z,2), = tlirilo 2t

2 . ’1—1—75’—1
ol g

- 2
lip = =

for all x € X, which proves the assertion.
(ii) It is clear that;

, PR (£ 2 (el (24
(Z.%',I)p - (I,l(lf)p - tl—ld:() 21
: 2
= o i A2
t—=+0 t
V1i+t2—1
= ||m||2 lim vitrrel 0,
t—=0 2t
for all x € X.

(iii), (v) For every z € X, we have:

I R e 1
()\x,y)p N tl—lg_tlo 2t ‘

Denoting u = At, we have

A\ lim Heru362H2*||y||27 A>0
u—=+0 u
(A\z,y), = o
P R e
u—F0 u
Az,y),, A>0
AMz,y),, A<0

The proofs of the statements (iv) and (vi) go likewise and we
omit the details.
(vii) We have:

Nyt =yl iy — gl — [y
lim = lim
t—=+0 2t t—=+0 2t

- (JI, _iy)p - (flf,iy)q

for all z,y € X, and the assertion is proven.

(i$, y)p =

COROLLARY 3. With the above assumptions, we have

(az,By), = ab(z,y),
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for all a, 8 € R with a8 > 0 and x,y are two elements in X.

COROLLARY 4. We also have:

<_x7y)p = (JI, _y)p == (ZE,y>q7

where x,y € X; p,q € {s,i} and p # q.
The next proposition contains some other properties of (-,-), and
(),
PROPOSITION 6. Let (X, ||-||) be a normed space. Then one has:
(i) The following inequality is valid

2 2
|2 + syl|” — [|=
2s

2 2
[l + ty[|” = [l=]
2t

> (y,2), = (y,2); =

forallz,y € X andt >0, s <0;

(i) |Gz y),| < el gl for all .y € X;

(i) The mapping (-,-), ((,-);) is sub(super)-additive in the first
variable, i.e., for x1, xo andy in X:

(3.1) (z1 + 22, y)s(i) < (=) (21, y)s(i) + (mQay)s(i)

holds.

PROOF. The proof is as follows.

(i) Let us consider the mapping g : [0,00) — R, g (t) := 1 ||z + tyl?
for two z,y fixed in X. It is clear that g is convex on [0, c0)
and then:

which means that

full2 — 2 Hll2 — 2
o+ tyl® = el o el = el
2t t—0+ 2t s

The second inequality follows by the fact that

94 (0) = ¢~ (0),

if g is any convex mapping of a real variable.
The last fact is also obvious.
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(ii) Let z,y € X. Then

oy ] =yl
‘(I’y)p o t1—1>1jr:10 2
oyt ] ]y ] =yl
= | lim lim
t—+0 ot t—+0 2t
4tz =y
< LA LI
< |yl Jim n yll 1]l ,

and the statement is proved.
(iii) By the usual properties of the norm, one has:

(xl + 9, y)s(z)

2 y t—=+0 t
_ ” H lim "y+t$1+y+t$2” _2HyH
Y t—=+0 t
< (>) || ” lim Hy +t$l” + ”y + txz” -2 ”yH
- Y t—=+0 t
_ -y 4+t = lyll |y A+t = lyll
- ||y||t£I£0 t + ”yHtliIEo t

= (21,9)y) + (22,9) )

for every x1, ro and y in X.

2. The Connection Between (-, -)S(,) and the Duality Mapping

7

In this section we will point out the natural connection that exists
between the semi-inner products (-,-), and (-,-), and the normalised
duality mapping J in every normed linear space X.

The following lemma is important in itself as well (see for example

[5]).
LEMMA 1. Let z,y be two given elements in X. Then there exists
the real functionals wy, wy € J () such that:

(y,2), =wi (y) and (y,z); =w2(y).

PRrROOF. Let U = {az + fy|o,f € R} € X. Consider the linear
functional:

fiU =R, flaz+By) =alzl®+ 8y, 2),.
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Then one has f (z) = ||z||*>. We will show that

(3.2) f(ax + By) < |lax + Byl [|z|]

for every a, 5 € R.
Let us denote
ty|| — tull =
N LA e ol tyll =l
t—0+F t t—0— t

Then it is clear that

(.2), = el Ay and (y,2), = 2| A-.
To show the inequality (3.2)), it is sufficient to prove the inequality
(3.3) allz|| + BAy < |lax + By|| for all a, f € R.

On the other hand, since the mapping R 3 t— || + ty|| is convex, we
have (as above):

tAy <z +tyll —[lzfl, t € R
which is equivalent with;
||| + tAy < ||z +ty|| forallte R.
If & > 0, then by the above inequality, we get:

g

allell+ % = a [lel + o] < oz + .

If a < 0, then we also have:

allll + . = (-a) |~ ol + 2o

|
T ——y
(6]

B
—x — —y| = |lex + Byl .
[0}

< (~a) [—2 Jall +

< (-a)

If « =0, we get:
which results by BAy < ||z + By|| — ||z .
Consequently, by (3.2) we can conclude that f is bounded and

LI < Nl

Now, by the Hahn-Banach theorem, there exists a functional w, : X —
R such that w (z) = f (z) = ||[|* and [Jun]| = || f]| < [|=]-
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On the other hand,

T h”1<$>|::|f(x)|::uxu
[z [z
and then
[ws ]| =[]

which shows that w;, € J ().
Since (y,x), = f (y) = w1 (y), the first part of the lemma is proven.
The second part goes likewise and we omit the details. &

Now, we can state and prove the following main result containing
a representation of the norm derivatives (-, -)s(i) in terms of duality
mappings (see for example [5]).

THEOREM 15. Let (X, ||||) be a normed space. Then:

(i) (y,z), =sup{w(y), we J(x), w is a real functional} ;
(i) (y,z), =inf{w(y), we J(x), w is a real functional} ;

and x,y are vectors in X.

PROOF. The proof is as follows.
(i) Let y,z € X and w € J (x), w is a real functional on X. Then

oz eyl = 5 el > e+ tyll (el = w () > o )
because the first inequality is equivalent with:
lz + tyl)* + 2w () > ||2||* + [l= + ty]| ||z
ie.,
lz + tyl* + l«|* > 2 |z + ty|| |z]|, forallt € R
and the second inequality follows by the fact that:
|z +ty|l ||z|| > w(x +ty), forallteR.
Now, for ¢t > 0, we deduce

2 2
2+ tyll” — =] o

57 > w (y)

which gives:

(y,2), > w(y), we J(z).
On the other hand, from the above lemma, there exists a real
functional wy € J (z) such that (y,x), = w; (y), which proves
the statement.
(ii) The proof is similar to that in the above statements and we
will omit the details.
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Now, we will give two very important properties of semi-inner prod-
ucts (-, -), and (-,-), which may be proved with the help of the above
results (see for example [5]).

THEOREM 16. Let (X,||-||) be a normed linear space. Then the
following equality:
(3.4) (az +y,2), = allz|® + (y,2),, pe{s i},
holds, for all z,y in X and o a real number .

PROOF. Let @ € R and z,y € X. Then by Theorem [I5, we can
write

(ax+y,z), = sup{w(az+y)|we J(x), w is real}
= sup{aw (z)+w(y) |w e J(z), w is real}
a||z]|* 4 sup {w (y) |w € J (), w is real}
= allz]” + (y,2),
which shows the equality for p = s.

The case p = i goes likewise and we omit the details.

The second property is embodied in the following theorem.
THEOREM 17. Let x,y, z belong to X. Then one has the inequality:

<yl

-+ 22), - (2,2),
where p =35 or p =1.

Proor. We will prove only in the case p = s.
Let w € J (x) be a real functional. Then

w(y+z)—w(z)=wy) <|z[lyl,

and then

w(y+2) < [lzf yll +w(z).
Taking the supremum after w € J (x), w is real, we deduce

(v +z2), <l lyll + (z.2),, (V)z,y,2€X.

Now, taking the infimum after w € J (z), w is real, we also have:

(v +z2); < =l lyll + (2, 2),
which is equivalent with

y+zx), = =zl lyl + (z,2),, (V)z,y,z€X.

The statement is thus proved.
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COROLLARY 5. The mapping (-, ), is continuous on (X, |-|) for
every x € X, p € {s,1}.

PRrROOF. Let y, — y in (X, ||-]|). Then one has, by the above theo-
rem, that

(ynax)p - (y;x)p S Hyn - y” ||Jf|| —0 as =z — o0,
which shows the assertion. §

Now we give a new theorem of representation of semi-inner products
(-,-), and (), in terms of the normalised duality mapping.

~ THEOREM 18. Let (X, |[|-|[) be a real or complex normed space and
J a section of the normalised duality mapping J. Then we have the
representation:

(3.5) (y,x), = tl_igfr Re <j (x + ty) ,y>
and
(3. (y); = Jim Re (J (z+ ty) )

forallz,y € X.

PROOF. Let J be a section of the normalised dual mapping J. Then
for all z € X\ {0} and ¢ € R one has

[z + 2yl = ]l
7 2
ety ol = o) (Tt t) el
[ . [z
<jm,x> +tRe<jx,y> — ||lz|)? Re<jm,y>

- [E - 7]
from where results:
(3.7) |l (Il +tty|! —l=l) S ¢ <jx,y>,

for all z,y € X and t > 0.
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On the other hand, for t # 0 and x + ty # 0, we get
[z + tyll — ]|
t
e toll o+ tyll _ {7 @)+ ty) — el o + 2]
tllz + tyll tlle+ty|
Re (J(z+1ty),o) +tRe (J (x+1ty),y) — || |+ ty]
N tlle +tyl

Re <j(x + ty) ,y>
|z + tyll

because
Re (J (+1ty),x) < |lz] |+ ty]].
Consequently, we obtain the inequality:

(llz + tyll = ll=I)
t

(38) o+t <Re(J(z+1y),y)

forall t > 0 and z,y € X.
If we replace in inequality ([3.7]) the element = with x+ty, we deduce:

(lz + 2ty[| — [l + tyl)
t

(3.9) |z + ty > Re<j(x—|—ty),y>

forall t > 0 and z,y € X.
Now, we observe that the relations (3.8]) and (3.9) give:

(llz + tyll — ll=I)
t

< Re(J(x+1y),y) < o+ ty]

(3.10) |z + ty||

(= + 2ty[| — [l + tyl)
t

forall t > 0 and z,y € X.
Since

(lz + tyl — [l=]]) _
t t—0+ t

Jim ||+ ]
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and

(lz + 2ty]| — ll= + tyll)

Jim [Jz =+ ]

t
2ty|| — ty|| —
_ e [2 N 2 e N ||x||}
t—0+ t t—0+ t
B e+ tyll = =]
= ] Jim FEEE — (g, ),

for z,y € X, then, if we pass at limit after ¢, ¢ — 07 in the inequality
(3.10), we can conclude that the limit

lim Re <j(:v + ty) ,y>

t—0+

exists for all x,y € X. Moreover,

tlir& Re <j(x + ty) ,y> = (y,x), forall z,y € X.

On the other hand, by (3.5)), we get

(y, ),
= (~y.2), == lim Re (J (e +(~y)), ~y)
= tgr(g Re<j(:c + (—t)y) ,y> = tl_igl_Re <j(:c + ty) ,y>

for all z;y € X, and the theorem is proved. 1

The following result also holds.

THEOREM 19. Let (X, ||-||) be a normed space and J a section of
the normalised duality mapping. Then we have the representation:

L J (x4 ty) — Jx
(3.11) (y,2), = tLH(Br Re < . ,x>
and
- o) _ 7
(3.12) (y,z), = thlgl_ Re < AChs ty) ij JZ>

forallz,y € X.



3. OTHER PROPERTIES OF (-,-), AND (-,-) 41

i

PRrROOF. For every z,y € X and t € R, t # 0, we have the equality
2 2
|z + ty||” — |||

t
<j(a:—|—ty) ,:L‘+ty> — <ja:,x>
B t
Re <j(a:+ty) ,:zc> ~|—tRe<j(:c+ty) ,y> — <j:c,a:>
B t
:Re<j(x+tty)—jx’x> +Re<j(x+ty),y>.
Since , ,
lim ||l‘+ty|!t — ||l 9y 2).
and

lim Re <j(1: + ty) y> = (y,2),

t—0t

hence from the above equality we deduce that the limit

lim Re<J(x+ty)—J:v7$>

t—0t t

exists and is equal with (y,z), for all z,y € X.

The relation (3.11)) is proven,
The argument of (3.12)) goes likewise and we omit the details. &

3. Other Properties of (-,-) and (-, ).

S K3

The following result contains a connection between the norm deriva-
tives (+,-), and (-, -), and the semi-inner product in the sense of Lumer-
Giles (see for example [6]).

THEOREM 20. Let (X, ||-||) be a real normed space and S, the set

of all L. — G.—s.i.p on X which generates the norm ||-||. Then one has
the representation:

(3.13) (y, ), = sup{ly, 2] |[-, -] € Sp}

and

(3.14) (y, 2); = inf {[y, 2] [[-, ] € 5}

forallz,y € X.
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PROOF. Let us consider the mapping f, : X — R, f, (v) = |y, z]
for all y in X. Then f, € X*, ||f.|| = ||z| and f, () = ||z || fz|| which
shows that f, € J (x). Consequently,

sup {[y, =] |[-,"] € S} < sup{w (y) [w € J (2)} = (y,2),

(see Theorem [15).
Now, by Lemma [I], there exists a w; € J (z) such that

(y’ x)s = <y> :
Let us consider a section .J of J such that J (x) = w; and define the
mapping:
ly, 2] == <j(2),y>, 2,y € X.

Then [-,-] is a L. — G.—s.i.p which generates the norm ||-|| and
ol = (J(@),y) =wi () = (. 2),
Consequently, there exists a L. — G.—s.i.p [, ] in S, such that

[y, 2] = (y, ),

which shows that the identity (3.13) holds.
To prove the relation (3.14]), we observe that

o) = (9.0), = —swp{[-y,2]|[.] €S}
— —sup{~[p.a]|[] € S}
— inf {ly.al [ € 5,

which ends the proof. §

COROLLARY 6. Let (X, ||-]|) be a real normed space and |-,-] a L. —
G.—s.i.p. which generates the norm ||-||. Then
(y,2); < [y, 2] < (y,2),,
for all x,y in X.

Another representation of (-, -)S(i) in terms of L. — G.—s.i.p. is the
following.

THEOREM 21. Let (X, ||-||) be a normed space over K, K= C or
K=R, and [-,-] a L. — G.—s.i.p. which generates its norm. Then

(y,2), = tl_lg}r Re [y, z + ty]

and

for all x,y in X.
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i

The proof is derived by applying Theorem (18| via Rosca’s result of
representation and we will omit the details.
Finally, we note that the next result of this type also holds.

THEOREM 22. For the above assumption, we have:

Re [y, z + ty] — |Jz|

(y,2), = tl—lforir t
and )
R ty| —
(y,2), = th%l ely,x +t yl — |1l

for all x,y in X.

Now we will give a characterisation of smooth normed spaces in
terms of the superior (inferior) semi-inner product.

THEOREM 23. Let (X, ||]|) be a normed space. Then the following
statements are equivalent.

(i) The norm is Gateauz differentiable on X\ {0}, i.e., the space

18 smooth;

(ii) The semi-inner product (-,-), is homogeneous in the second
argument,

(iii) The semi-inner product (-,-), is homogeneous in the first ar-
gument;

iv e semi-inner product (-,-) is linear in the first argument,
iv) Th -1 product p 18l n th t arg t
where p = s or p =1i.
ProOOF. We only prove in the case p = s.
“(i) = (ii)”. Since (-,-), is positive-homogeneous in the second
argument, it is sufficient to show that:
(#, —y), = = (z,9),

for all z,y in X.
The Gateaux differentiability of the norm implies that

=y ) = ll-wl
(517, _y)s - 11_{% 21
2 2
O
t—0 2t
2 2
iy (P
t—0 2t
2 2
N AT

and the implication is proved.
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“(ii) = (iii)”. We will show that
(—z,y), = — (z,y), foralzyelX.

Indeed, since
(_-777 y)s = ('Tv _y)s - - (x,y)s
for all z,y € X, and the proof of the statement is completed.
“(iii) = (iv)”. Since (-,-), is subadditive (see Proposition [f] (iii))
and homogeneous, it is linear in the first argument.
“(iv) = (1)”. Let z,y € X with y # 0. Then

t—0+ t I I
N R
t—0+ t
I e

s—0— S

i.e., the norm ||| is Gateaux differentiable on X\ {0}, and the theorem
is thus proved. g

Finally, we have:

THEOREM 24. Let (X, ||]|) be a smooth normed space and [-,-] be
the semi-inner product in the sense of Lumer-Giles which generates the
norm ||-||. Then

(i) [x,y] = (z,y),, x,y € X; if X is a real space
and
(i) [z,y] = (z,y), —i(iz,y),, x,y € X; if X is complex.

PrROOF. The proof is as follows.

(i) Since in a smooth normed space there exists a unique L. —
G.—s.i.p. which generates the norm (see Proposition {4 and
(-,), satisfies the conditions of such a semi-inner product, it
follows that the equality [z, y] = (x,y), for all z,y € X holds.

(ii) The argument follows as above and we will omit the details.
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CHAPTER 4

Semi-Inner Products in the Sense of Milicié

1. Definition and the Main Properties

In paper [1], P.M. Mili¢i¢ introduced the following concept.

DEFINITION 8. Let (X, ||-||) be a normed linear space. The mapping
(), X x X — R given by

(09), = 3 [@0), + ()], 2y e X;

is said to be the semi-inner product in the sense of Mili¢i¢ or M —semi-
inner product, for short.
It is clear that the above mapping is well-defined for all x,y € X
and the following properties hold (see [I] — [3]).
PROPOSITION 7. Let (X, ||-||) be a normed linear space. Then the
following statements are true:
(i) (z,2), = |z||* for all x € X;
(ii) (iz, x)g = (x,z'x)g =0 for every x € X;
(iii) (iz,y), = (z,iy), =0 for all z,y € X;
(iv) (ix,z’y)g = (a:,y)g =0 forall z,y € X;
(v) (ozx,ﬁy)g = af (m,y)g =0 for all z,y € X and aff > 0,
a, B eR;
(vi) The following inequality of Schwartz’s type

(@), | < Ul gl for alt 2,y € X

holds.
(vii) We have
<_$ay)g == (:Evy)g ) fO?” all T,y € X.
PROOF. The argument is obvious from Propositions [5] and [6] and

we will omit the details. &

Another important property which will be used in the sequel is:
PROPOSITION 8. Let (X, ||-]|) be a normed space. Then we have the
equality:
(ax +y,2), = allz|® + (y,2),,
47
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for any a a real number and x,y two vectors in X.
ProoFr. By Theorem |16 one has
(ax +y,2), = allz]|* + (g, 2),
and
2
(ax +y, x); = allz]” + (y, @),
foralla e R, z,y € X.
Now, if we add the above equalities, we deduce the desired results. §
By Theorem [I7], we also can state:
PROPOSITION 9. Let x,y, z belong to X. Then we have the inequal-
ity
v+ 22), - (z2),| < Iyl 2]
COROLLARY 7. The mapping (-, z), is continuous on (X, ||-|), for

allr e X.

The following representation theorem of the semi-inner product in
Milici¢’s sense in terms of the normalised duality mapping holds.

~ THEOREM 25. Let (X, ||-|]) be a real or complex normed space and
J a section of the normalised dual mapping J. Then we have the rep-
resentation:

(y,x), = lim Re

t—0+

<j(at+ty)+j(x—ty) y>
2 ;

forallz,y € X.

PROOF. By the use of Theorem we have:

o)y = 52+ 0] = 5 1.0), ~ (~.2),]
- e .0) i (- 0.0)]
_ th%LRe<j(x+ty)—;j(:v—ty)7y>

for all z,y € X, and the statement is proved. 1

Another result of this type which can be proved with the help of
Theorem [19]is the following.
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THEOREM 26. Let (X, ||-||) be a normed space. Then for every J a
section of the normalised dual mapping J, we have the representation:

<j(x+ty)—j(x—ty) :C>
2t ’

(y,r), = lim Re

t—0t

forall x,y € X.

In 6], G. Godini introduced the smoothness subspace of the point
x, denoted by G, and given by

G:Jc = {y € Xle (x7y) = T+ (I,y)},

where 7. are the tangent functionals:

ty|| — tull =
T, (z,y) := lim Iz + ] Hx||, T (x,y) = lim =+ tyll = |l
t—0* t t—0— t

and x,y € X, x # 0. We note that:
W z), =zl T (z,y), (y,2); =zl T-(z,y), 2,y X, z#0

and

.2), = (T @) 4 T (). mye X, #0,

In the above cited paper [6], G. Godini pointed out a representation
theorem for the smoothness subspace GG, in terms of the normalised
dual mapping for the case of real normed spaces. Recently, P.M. Milicié¢
[4, Theorem 2| extended this result to the case of complex normed
spaces using another technique of proof. We will present here this
result. The reader can find the proof in [4].

THEOREM 27. Let (X, ||-||) be a real or complex normed linear space
and x a fized element in X\ _{0}. Then we have the representation:

(4.1) Gy = ReJ (), &S5, (x)
where
(ReJ(z)), :={he X|(V)feJ(x), Ref(x)=0}.

Using this result, we can present the following approximation the-
orem due to P.M. Mili¢i¢ (see [4, Theorem 3]):

THEOREM 28. Let (X, ||-||) be a normed space. Then one has the
estimation

(42)  (y,2), — 2l d(y,Gr) < (y,7), < (y,2); — 2] d (y, Gz)
forall x,y € X and x # 0, where d (y,G,) :=inf {|ly — z||, z € G, }.
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PRrROOF. Let X, be the real normed space associated to X. The set
G, is a linear subspace of the space X, [6].
Now, let fi, fo € J (z) so that:

Re fi (y) = ||zl 7o (z,y), Refo(y) = [lz]| T-(2,y).

Using the representation , it follows that G, C Ker [(fl;QfQ)]
where Re [(£5£2)] € (G,) .

On the other hand, Re [(’012;’[2)] € ReX™ and ‘ < 1.

Now, using the relation (8) from [4], for every real normed spaces X,
we have

(4.3) d(y, Go) = max{p (y) ¢ € (Ga) L, ol < 1}
For ¢ = Re [( )} from 1} we get

d(y,G.) > Re Kfl ; f?)} _ T (@y) - T (@,y)]

Re(f1—f2)
2

2
Consequently, for all real or complex normed spaces, we have:
(44) T—f— (Iay)_T— (:E,y) §2d(y7G$)v IayEX-

Now, by the definition of the functional (-, -) g We get

(.2), = 2| T- () + 121

IlfCII

(73 (z,y) — T- (x,y))

(73 (7,y) = T (v,y))

M ‘

= ||#]| T+ (z,y) +
and applying (4.4) we deduce (4.2)). B

The next corollary is interesting (see also [4]).
COROLLARY 8. In every normed linear space we have the estima-
tion
(@) + (z,3), — [lz]l [d (y, Go) + d (2, Go)]
+2,7),
)y + (z,2), + [zl [d (y, Ga) + d (2, Go)]

IA A

(y

(v,

where x,y,z € X.
PRrROOF. We have:

(,2), + (z,2), < 2l [T- (z,9) + T- (2, 2) + d(y, Ga) + d (2, Go)]

< 2l 7 (2, y + 2) + d (y, Ga) + d (2, Ga)]
< (Wt za),+zlld(y, Go) +d(z,G.)]
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because
T (v,y+2)>7T (x,y)+ 71 (x,2)
and
2| 7= (2, y) < (y,2), < [|2]| T4 (z,y) -

The second inequality goes likewise and we omit the details. &

2. Normed Space of (G)-Type

It is clear that if (z,y), = (z,y), for all z,y € X, or equivalently,
the space (X, ||]|) is smooth, the semi-inner product in the sense of
Mili¢i¢ (-, -), is linear in the first argument. However, we observe that
there also exists non-smooth spaces from which the mapping (-, ), is
linear in the first variable too.

Indeed, if we consider the space [!, then by [1, Example 8.1] we

have:

Yi

= (32 ot el ) e
y; 70 Yi yi=0

and

Yi
= 1 (X = ) e
yi 70 Yi yi=0

Now we observe that

(l’,y)g = HyH Z (Sgn yl) Ty T,Y € lla
=1

which shows that (-, ), is linear in the first variable.
Similarly, if we consider the space L' (0,1), then (-,-), will be given

by
)y =151 [ SO 3 1y a,

1/ (8)]
where A := {t € (0,1)|f (¢t) # 0}.

These facts give us the possibility to introduce the following concept
(see [5]).

DEFINITION 9. Let (X, ||-||) be a normed space. Then X will be
called semi-smooth of (G) — type, or of (G)—type, for short, if the
following condition:

(x+y,2), = (2,2),+(y,2),, forall z,y,z € X,
holds.

The following simple proposition also holds.
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PROPOSITION 10. Let (X, ||-]|) be a real or complex normed space
of the (G) — type. Then (-, -)g is a L. — G.—s.i.p over the real number
field.

The proof is obvious by the properties of the mapping (-, -) g defined
on a normed space of (G) — type. We will omit the details.

The following result for complex spaces is also valid.

PROPOSITION 11. Let (X, ||-]|) be a complex normed space of the
(G) - type. Then the functional

[l’,y}g = (xvy)g — (ixay)gu T,y € X7
satisfies the conditions:
(i) [z, y], = 0 and [z, 2], = 0 implies v = 0;
(11 [x—i_y?’z]g:[l’?z]g_}_[y’z]g fO'r allx’y7Z€X7'

)
(iii) [Az,y], = Az, yl, for allz,y € X and A a complex number;
(iv) One has the inequality:

2 < 2122 ly |12 2
< 2|zl flyll” = |zg (2, 9)7, for all z,y, 2 € X,

‘[x,y]g

where
2 (2.9) = 5 4 0), — (o), +i (), — ()]}

PROOF. The proof is as follows.
(i) We have:

[x7x]g = (‘Tam)g —1 (ix?x)g = (CL’,ZE)Q = ||:I7||2

for all z € X as
(iz,x), =0 for all z in X.

(ii) It is obvious by the properties of the functional (-,-),.
(iii) It is sufficient to show that

iz, y], = i[z,y],

for all z,y € X.
Then we have:

[ixvy]g = (Zx7y)g — 1 (ivay)g = <Z$7y>g +1 (xvy)g
= i|@y), —ilizy),| =iley,.

where x,y € X; and the statement is proved.
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(iv) For 21 = 3 [(2,9), —i(iz,y)], 22 = 3 [(2,y), — i (iz,y),] and
put z = z; — z5. Then [z, y]g = 21 + 29 and from the fact that
|21+ 22 + |21 — 2P = 2 (|a1]? + |22]%)
it follows that

2 1 . .
=2 = 3 (2, 9)? + (2,9)] + (iz, y)? + (iz,y)7].

This inequality and Schwartz’s inequality

‘[lvy]g

2 2 2
< [l* lyll

@)
yield that the statement (iv) is valid.
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CHAPTER 5

(Q) and (SQ)-Inner Product Spaces

1. (@) — Inner Product Spaces

In the paper [1] (see also [2] and [3]) the author introduced the
following generalisation of inner products in a real linear space that
extends this concept in a different manner than the extensions due to
Lumer-Giles, Tapia or Mili¢i¢.

DEFINITION 10. A mapping (-,-,-,), : X* — R will be called a
quaternary-inner product, or (Q) - inner product, for short, if the fol-

lowing conditions are satisfied:
(i) (axr + B, 3, x4, 25), = (21, T3, T4, T5),, + B (T2, T3, T4, T5),,
where a, B € R and x; € X (i:1,_5);
(ii) (xa(l),xg(g),xg(g),xg(4))q = (21,9, 23,14) for any o a permu-
tation of the indices (1,2,3,4) and z; € X, (i =1,4);
(iii) One has the following Schwartz type inequality

4
<

‘(:1?1,:82,333,$4)q (mi’xivxi7$i)q

4
=1
forallz; € X,i=1,4.

DEFINITION 11. A real linear space X endowed with a (Q) - inner

product (+,+,-,-), on it will be called a (Q) - inner product space.

Now, by the definition of (@) — inner product space, we can state
the following simple properties:

(0, x9, x3,4) = 0 for every o, x3, 74 € X

and
(axla aTs, T3, O53:4)(1 = CY4 (:Bla T, X3, .T4>q

for any a € R and x1, 29, 23,24 € X.
Let us now give some examples of (@) — inner product spaces.
Assume that (€, .4, ) is a measure space consisting of a set 0, a
o—algebra A of subsets of {2, and a countably additive and positive
measure g on A with values in RU{oo}. If &1, x9, x3, x4 are in the real

57
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vector space L* (Q) = L* (Q, A, p),

(T1, 02, 23, 74), = / x1(8) o (8) 3 (8) x4 (8) dp ()

Q

then this defines a (Q) — inner product in L* (€). When u (Q2) < oo,
then the above formula defines a (@) — inner product in space L? (Q)
with p > 4.

The following proposition is important in the sequel.

PROPOSITION 12. Let (X; (), -)q> be a (Q) — inner product space.
Then the mapping
1
[l : X = R, lzll, = (2, 2,2, 2);
15 a norm on X.

ProoF. Firstly, we observe that

(5.1) oy + w2lly = llwally + 4 (21, 21, 21, ), + 6 (21, 21, 22, 22),,
-+ 4($1,$2,I2,$2>q -+ ||.T2||;L,

for all 1, x5 € X.
Using the property (iv) of Definition [10] we have

(21,21, 21,25), < ] [l2a]l,
2 2
(l’l,l’l,xQ,xQ)q S ||$1||q ||x2||q
and
(1, T2, 0, 25), < [zl |22l
for all xq, x5 € X.
Now, taking into account the equality (5.1]), we have that
4
or + ally < (laall, + llzall,) o @122 € X
which produces the triangle inequality:
|21 + 22|, < flaall, + [lz2ll,, 21,22 € X
On the other hand, we have:
|21, > 0 for all z; € X

and
|21]], =0 implies x; =0
and finally, we also have:

oz, = |af[[z1]],, where a € R and z; € X.

Consequently, ||||, is a norm and the proposition is proved. 1
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The following definition is also natural.

DEFINITION 12. A real normed (Banach) linear space is said to be
a (Q)— normed (Banach) space if its norm is generated by a (Q) —
inner product space.

By the above considerations, we see that the real Banach space

(L* (), [I[ly) where:

el = ( [ Je o)l dn <3>)‘1‘

is a Q— Banach space.

The following proposition also holds.

PROPOSITION 13. Every real prehilbertian space is a (Q— normed
space. The converse is not generally true.

PROOF. Suppose that (X, |-||) is a prehilbertian space and (-, -)
denotes the inner product which generates its norm. Let us defined the

mapping:

(xla T, T3, $4)q

= % [(z1, 22) (w3, 24) + (21, 3) (02, T4) + (21, T4) (22, 73)]

where z; € X (i =1,4).

It is evident that (-,-,-,-), is linear in the first variable and sym-
metrical. The condition of positivity holds by the same condition as
the inner product (-,-). We must therefore only prove the Schwartz
inequality.

We have
4

’('Ih Xo, T3, $4)q

4
< ([lzall llz | s ll4l])

4
= H Tiy Tjy Ty xz
=1

for all z; € X (z = 1,4).
To show the last part of the proposition, it is sufficient to choose
the Q— Banach space L* () which is not a Hilbert space.

(w1, 22) (73, 24) + (21, 23) (T2, 24) + (21, 74) ($2>$3)]}

IN
Wl— Wl

(21, m2)| [(23, 24)| + [(21, 23)] [ (22, 24)| + |(71, 24)] |(l‘27$3)|]}
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The proof is thus completed. 1

Now we will point out some natural properties that follow by the
definition of ()— inner product.

PROPOSITION 14. Let (X, HHq) be a Q— normed space. Then for

all x1, 29 € X we have:
(5.2)

s+ @ally + g = @ally = 2 (loally + l2all}) + 12 (21, 22,5, 32),
and
(5:3) [lzn + @ally + 21 — 2|y < 2 (IIrmII;l + ||:cz||f§) +12 |zl [l
PrRoOOF. By the equality we can state:
|21 + $2||;1 = ||$1||;l + 4 (z1, 21,71, 2),, + 6 (21, 71, T2, 2),,
+4 ($1,$2,1’2,1’2)q + H$2H;l
and
lor — a2lly = ol — 4 (21, 21,21, 22),, + 6 (21, 21, 22, 22),,
—4 ($1,$2,$2,$2)q + szHi

for all 1, x5 € X.
Adding these equalities, we easily deduce (/5.2]).
The inequality (5.3)) follows by (5.2)) and observing that

<x17x17x27m2)q S ||.T1||§ ||'I2||37 T1,T2 c X
The proposition is thus proven.

PROPOSITION 15. In the above assumption, we also have the rep-
resentation:

(x17 T2, T3, x4)q
1 4 A
= = oy + @2 + @5 + @ally + oy + 22 — 25— 2]

ot + 23 — @0 — @l + |21 + 74 — 22 — 23],

— ||l’1 +ZL’2 —|—l’3 — I4||3 — ||l‘1 +ZL’2 +l‘4 — Z)’J3||;L
— ||I1 +ZE3 +I4 — l‘g”j}l — ||I2 +ZE3 +I‘4 —ZE1||;l

forall x; € X (221,_4)

The proof follows by a simple computation. We will omit the de-
tails.



1. (Q) — INNER PRODUCT SPACES 61
COROLLARY 9. For every x1, x5 € X we have

(xla X1, T2, l’g)q

1
= o5 [lo1 4+ 3aally + 3 llz — 2y = 3 oy + @) — s — 3ol

Further on, we will give two theorems of classification for QQ—
normed linear spaces.

THEOREM 29. Every Q— normed linear space <X, ||||q> is a uni-
formly convex space.

PrROOF. Let 0 < ¢ < 2 and z1, 22 be two elements from X such
that

[zally <1, fleell, <1 and [lay — 2ol > e
Then, from the inequality (5.3)) we can conclude that

4 4 4 2 2
oy + ally < 2 (lleally + llzally ) + 121l [} oo
<16 —¢et

()

et (12

we have d (¢) > 0, which shows that the space (X, ||||q> is uniformly
convex. 1

from where results

T+ X9

Choosing

The second result is
THEOREM 30. Every Q— normed linear space <X, ||||q> is uni-
formly smooth.

PROOF. Let t € R and x,y € X with x # 0. Then

1 4 4
3 (Il +tylly = 2ll}) =4 (@2, 2,9), + 6 (2,2,5,9), ¢
+a(z,y.y,9), 8+ lyll, ¢
from where results, for ||z|,,[[yl|, < 1 that:

4 4
I+ tylly = ll=lly

, <6t +4t* + 3

4(x,z,2,y),
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and then
T+t - T 4
I || qu ” ||q

t—0 t

4(x,z,2,y),
uniformly by rapport with x,y on the unit ball
B(1):={recX||z|| <1}.

On the other hand, we have:

1
7 (Il +tyll, = l1all,)

4 4
Az +tylly — ll=lly 1

t (e + tyl* + l1211%) (llz + eyl + llll)
and since
lim (Il + ty||* + [|z||”) = 2 ||z||* uniformly for z,y € B (1)
and
11_r)%(]|x +ty|| + ||z]]) = 2 ||z|| uniformly for z,y € B (1)

we deduce that:

eyl = lell, _ @),

=0 t T

uniformly by rapport with z,y in B (1), and then |- , is uniformly
Fréchet differentiable on X\ {0} which means that (see [4, p. 36]) the
space is uniformly smooth. g

The following proposition establishes a connection between the )—
inner product and the superior semi-inner product (which is equal with

the inferior semi-inner product because the space is smooth) and which
will be denoted by (-, -).

PROPOSITION 16. Let <X, HHq) be a Q— normed linear space.
Then for every o € X one has:

(z.9,9,9)q if y#0

2
lylly

0 if y=20

Proor. If y = 0, the equality is obvious.

(z,y) =
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Suppose that y # 0. Then we have

2 2
o 1y tel” — |yl

4 4
Nyt =yl 1
= lim - lim 5 5
=0 t =02 ([ly + tz]|” + [ly[°)
Ay, (@),
- 2 - 2
41lyll; lyll,

and the statement is proved. §

2. (SQ)— Inner Product Spaces

This concept is another natural generalisation of inner products on
real or complex linear spaces [3].

DEFINITION 13. Let X be a real or complex linear space. A mapping
(), «)Sq : X - K (K =C, R) is said to be a sesqui-quaternary-inner
product or (SQ) — inner product, for short, if the following conditions
are satisfied:

(1) (axl + 6I27 XT3, Ty, $5)sq = (‘Tla X3, Ty, x5)sq+/6 (I'Q, XT3, Ty, x5)sq
where a, B € K and x; € X (izl,_5);
(ii) (xl,xQ,xg,x4)sq = (xQ,:pl,m,xg)sq forall z; € X (z E) :
(iil) (z1, 72,73, 24),, = (¥3, T4, 71, 72),, for allz; € X (z 1,4) :
)
)

(iv ($1,$1,$1,I1)5q >0 ifr € X, 21 # 0;

4 —
(v < H?:l (xnxz',l‘z‘,xi)sq forxz; € X (z = 1,4) .

By the definition of (SQ) — inner product, it is easy to see that
(), , 18 linear in the third variable and antilinear in the second and
fourth variables and the number (z,z,y,y),, is real for every z,y € X.

Let us now give some examples of (S@Q)— inner product spaces,
i.e., linear spaces endowed with (S@Q) — inner products.

($17 T, X3, x4>5q

a) Every Q— inner product space is a (SQ)— inner product

space;
b) Let (-, -)p : X x X — K be an inner product space over the
real or complex number field K. Then the mapping (-, -, -, ), .

X* — K given by
($1,$2,$3,x4)8q = (mlaxQ)p ($37$4)p7 T; € X7 1= m

is an (SQ) — inner product.



64 5. (Q) AND (5Q)-INNER PRODUCT SPACES

c) Let (2, A, u) be a measure space. If 1, xq, x3, x4 are vectors
in the real or complex linear space L* (Q) and

(5.4) (1,9, T3,24) 1= / x1 (8) 22 (8)xs (s) x4 (8)dp (s)
Q
then this defines a (SQ) — inner product on L* (Q). If 1 (Q) <
00, then the formula (5.4)) on the relation:

S IS IOr o) RACEAC A

Q Q

for every xy, x9, x3, x4 in LP (Q) define a (SQ) — inner product
on L? (Q) with p > 4.

The following proposition will be important later.

PROPOSITION 17. Let (X,(-, eyt) ) be a (SQ)— inner product

59

space. Then the mapping ||-||,, : X — R given by

1
1

lally, = [(@@.2.2),]", v ex
1s a norm on X.

PROOF. Let us observe that for every x,y € X one has the identity

(55) = +uyll,
4
= ||zlly, + 4Re (z,2z,2,9),, + 2 (z,2,9,y),, + 2Re (z,y,2,9),,
+2Re(z,y,y,7),, +4Re(2,9,9,),, + Hy||§q .

By the use of this equality and by Schwartz’s inequality (v) of Definition
[13], we observe that:

4 4 3 2 2

Iz +ylly, < lzlly + 41zl 1yl + 61z, vl
3 4
+4 2, Iyl + Yl

4
= (llzlly, + Iy,

for all x,y € X, which shows that the triangle inequality

2+ ylls < N2l + Yl zyeX

sq )

holds.
The proofs of the other properties of the norm are obvious and the
proposition is thus proved. 1

Now, it is natural to introduce the following definition.
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DEFINITION 14. A real or complex normed (Banach) space is said
to be a (SQ) — normed ((SQ) — Banach) space if its norm is generated
by a (SQ) — inner product.

It is obvious that (L*(2),-|l,) where:

nﬂuz(l}uwﬁwmﬁ)a e (@)

is an (SQ) — Banach space.
The following proposition also holds.
PROPOSITION 18. Every inner product space over the real or com-

plex number field may be regarded as a (SQ)— normed linear space.
The converse is not generally true.

PRrOOF. Let (-, -)p : X x X — K be the inner product which gen-
erates the norm of X. We may define the mapping:

('7 ERS) .)sq : X4 - K7 (xla T, ..'['3,.I4)8q = (xlny)Sq (1’3, x4)sq )
where z; € X (i =1,4).
The fact that (-,-,-,-),, defined above satisfies the axioms of a

(SQ) — inner product is obvious and we will omit the details.
For the converse, it is sufficient to choose the (SQ) — Banach space
(L* (2), ||-]l,) which is not a Hilbert space. &

The following proposition will be used later as well.

PROPOSITION 19. Let (X, H-qu> be a (SQ) — normed space. Then

4 4

4 4
=2 (Jlell, + lgltl,) + 4 (@2, ,9),,
+4Re(z,y,2,y),, +4Re(z,y,y,2),,
and
4 4 4 4 2 2
61 et ol + e — ol <2 (el + olls) + 12 el lol?,
forall x,y € X.
PrOOF. By the identity (5.5) we have
Iz + yll,
= ||xH;1q +4Re (v, 2,7,9),, +2(2,2,9,9),, + 2Re (z,y,2,9),
—I— 2 R’e ("'U7 y7 y? m)sq —I— 4R’e (:'E7 y? y7 y)sq + ||y||;1q *



66 5. (Q) AND (SQ)-INNER PRODUCT SPACES

and
4
HLU - y”sq
= Hx||§q —4Re (v, 2,1,9),, +2(2,7,9,9),, + 2Re (z,y,7,9),,
+2 Re (QT, v, Y, I’)Sq —4Re (9;'7 Y, yvy)sq + ||y||;1q>

which, by addition, give exactly the desired equality (5.6)).
The inequality ([5.7]) follows by the above equality and by Schwartz’s
inequality from (v), Definition (13| B

Now, we can give the following two main results concerning the
classification of (SQ)— normed linear spaces in the class of normed
spaces.

THEOREM 31. Every (SQ)— normed space <X, “'qu) is a uni-

formly convex space.

PrROOF. Let 0 < £ < 2 and assume that x1, x5 are two elements in
X such that

[z1llyy <1, [J2afly, <1 and 21 — 2, > €.
Then, by the inequality (5.7) we deduce that:
4 4 4 2 2 4
21+ 22l < 2|zallg, + 2 [l22lly, + 12 [lzall, Nl22lls, — llzn — 2,

< 16 — &%

1
Putting 6 (¢) :==1 — (1 — %) " > 0 the last inequality shows that

T+ X2

<1—-46(e)

59

i.e., the normed space (X ) ||-||Sq> is uniformly convex. &

The second result is embodied in the following theorem.

THEOREM 32. Every (SQ)— normed linear space is a uniformly
smooth space.

PROOF. Let t € R and x,y € X with x # 0. Then:

4 4
HQ? + y”sq o ||Iqu
t

= 4Re(z,z,x, y)sq + [2 (z,z,y, y)sq + 2Re (z,y, x, y)sq

+2 R‘e (x7 y’ y? $)5q:| t + 4 Re (CL" y? y7 y)sq t2 _I_ ||y||;lq t37
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which implies:

4 4
||l’ + stq B ||x||sq

t

—4Re (z,2,2,9),,| < 6t| + 42 + |t

for all @,y with [|z|,,, [lyll,, <1, and consequently

4 4
T+ — ||z
hm H y”sz || qu — 4R,e (x’x’x’y)sq

t—0

for all x,y in the unit ball
B(1) = {x e X| [z, < 1} .

Now, the argument is similar to that embodied in the proof of Theorem
and we will omit the details. 1

Finally, we will establish the connection between the superior (in-
ferior) semi-inner product and the (SQ) — inner product. Namely, we
have the following proposition.

PROPOSITION 20. Let (X, ||-qu) be a (SQ)— normed space and

(+,+) the superior (inferior) semi-inner product. Then

R@vyWeq i 4 £ )

IyIIZ,
(z,y) =
0 if y=0
The proof is similar to that embodied in the proof of Proposition
[16l and we will omit the details.
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CHAPTER 6

2k-Inner Products on Real Linear Spaces

1. Introduction

In the last decade, the author gave (see [4] — [9]) an extension of the
usual notion of inner product, namely the quaternary inner product,
or, for short, the @-inner product. Some of the properties of an inner
product and of the associated norm, such as:

(i) uniform convexity,
(ii) Gateaux differentiability,
(iii) equivalence of Birkhoff orthogonality with the inner product
orthogonality,
(iv) the Riesz form of linear continuous functionals

were reobtained in this new framework.

The present chapter, following the recent paper [3], is devoted to
a generalization of both the classical inner product and the @Q-inner
product.

In the first section we introduce the concept of 2k-inner products
and prove the properties (i)-(ii) above. Also, it is proved that a 2k-inner
product space is a smooth space of (BD)-type, and two remarkable
identities, equivalent with the parallelogram identity, are given. The
following two sections deal with the properties (iii) and (iv) and some
results related to projections are obtained.

2. Main Properties of 2k-Inner Products

Let X be a real linear space and k # 0 a natural number. As usual,
we shall denote X?* = X x ... x X . We introduce the following new
—_———

2k times
concept [3]:
DEFINITION 15. A mapping (-,...,-) : X** — R is said to be a
2k-inner product if:
(i) (ar@1 + aoxo, 3, ..., Topg1) = o (T1, T3, .. ., Tog41)
tag (2, T3, ..., Topp1), 1,2 €R;
(ii) (ma(l), . ,a:a(gk)) = (T1,...,T), 0 € S, where Sy de-

notes the set of all permutations of the indices {1,...,2k};
71



72 6. 2k-INNER PRODUCTS ON REAL LINEAR SPACES

(iii) (z,...,x) >0 if x #0;
(iv) Cauchy-Buniakowski-Schwarz’s inequality (CBS for short)

with equality if and only if x1, ..., xo are linearly dependent.

The pair (X, (+,...,-)) is called 2k-inner product space [3]. Let us
remark that our notion is different from the n-inner product of Misiak

([ro)).

For £ =1 we have the usual notion of inner product and for k = 2
we obtain the notion of Q-inner product from [4]-[8]. Also, it follows
that

(0,29, ...,09:) = 0and (amxy,...,cxe) = (21,..., 20) .

n 2k
EXAMPLE 1. ) X =R", (z1,...,29) =, <H xé) ifr; =
i=1

j=1
(33]1-, . ,x?)

IT) Let (2, A, 1) be a measure space consisting of a set €, a o-
algebra A of subsets of ), and a countably additive and positive
measure p on A with 11 (Q) < co. Then on X = L* (Q, A, n)

we have the 2k-inner product

<%”“W:/H“WW@'

A remarkable class of 2k-inner products is provided by [3]:

PROPOSITION 21. An usual inner product (-,-) on X gives rise to
a 2k-inner product on X for every k.

Proor. By induction after k. Let us suppose that the given inner

product yields the 2k-inner product (-,...,-)s. Then:
($1> e ,$2k+2)2k+2
1
= 2% 11 [(901, 902) (953, e ,I2k+2)gk + (1‘1, $3) ($2, Ty, ,$2k+2)2k
oo (T, Torr2) (T3, - -5 Topgn ) o)

is a (2k + 2)-inner product. B

In the following we call simple the above type of 2k-inner products.
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EXAMPLE 2. (i) For k=2 ([6l, p. 76], [8, p. 20]) we have the
following 4-inner product:

(@1, 29, 23, T4),
1

=3 (w1, 22) (3, 1) + (21, 23) (T2, 24) + (21, T4) (T2, 3)] .

(ii) For k = 3 we have the 6-inner product

(@1,...,%6)g

(iii) In the general case we have (2k — 1)l =1-3.----(2k — 1)

terms. So, for k =4 we have 7' =3 -5-7 =105 terms.

The previous proposition leads to the definition of orthogonal basis.
Let us suppose that X has dimension n and let B = {e; }1<i<, be a basis
for X. For k =1 as usual B is said to be orthogonal if (e;,e;) = d;;
and for £ > 1 we define recurrently using the relation from the proof
of Proposition [21} For example, B is orthogonal for a ()-inner product
if:

1
g (5i1i25’i3i4 + 5i1i35i2i4 + 6i1’i45i2i3) :
Then, for i # j, we have (e;,¢;,¢;,¢;) = 5 and (e;, €, €;,¢;) = 0.
A first property is [3]:
PROPOSITION 22. [If (-,...,-) is a 2k-inner product then || - ||2x :
1

X =Ry, ||z|lox = (z,...,2)2% is a norm on X for which the following
generalization of parallelogram identity holds:

k
2k
4yl + ||z -yl =2 < ,)(x,...,x, ,...,).
o+ o+ = ol =23 (5 vy

2t times 2(k—1i) times

(eiu €iy, Cig, ei4) =

PROOF. By definition of the 2k—norm, we get

2k

2k
ool =3 (%) (s

=0 i times 2k—i times
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However,
(yy) < el Iyl
i times 2k—17 times
and then

2k
21{: i —i 2k
ety <y ( Z. )qu%uynzﬁz — (e + l1yll)
1=0

which gives the triangle inequality. The relations:
|lz|l2x > 0, [|z||2x =0 < 2 =0

and |[Ax|2x =| A | ||z]|2k, A a real number, immediately follow. The
parallelogram identity is obvious. 1

REMARK 2. (i) For Example|l| part I, we have
1
n ok 2k
b= (309
i=1

if v = (xi)gign-

(ii) CBS has the form

2k
(@1, wa) | < T illon
i=1

(ild) If (-, ..., ")g 15 a simple 2k-inner product with the inner prod-
uct (+,+) as generator then || - ||ox is exactly the norm || - || of

(+,+). Also, we have

2(k—1
(xa"'axay)Qk: Hx‘|21(c )(.Z',y),
a relation important for orthogonality theory, see Remark [3
part (ii) of Section[q
The previous result leads to [3]:

DEFINITION 16. A real normed space is said to be a 2k-normed
space if its norm is defined by a 2k-inner product.

An important property of 2k—normed spaces is provided by [3]:

THEOREM 33. A 2k-normed space is uniformly convez.

PROOF. Let 0 < ¢ < 2 and z,y € X with ||z < 1, [|y]lex < 1

and ||z — yl||ar > €. Applying the parallelogram identity and the CBS
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inequality, we have that

k
lo+ylZ < Z( )nmn IR — o — g2

i=0
< 22k) o €2k — 22k 1 o (£>2k
- 2
and then )
2k\ 2%
it | [P 1—<5> ol
2 2
Putting

e\ 2k\ 2k
1 (1)
@=1-(1-(5)")
we have 0 (¢) > 0, which gives the desired result. §

Another remarkable result of this section is [3]:

THEOREM 34. The norm of a 2k-normed space is Gateauz differ-
entiable with:

(@) = (- ) (=) (9) = W 0.

PRrROOF. Let 2,y € X, x # 0 and t # 0 a real number. Since

1 19 (2
= 1) = 5 3 () (oot )

=0 . .
! i times 2k—i times

we have
lim — (||$+y|| — [lzll3%) = 2k (z,...,2,y).

Also, from:

1
7 (e + tyllze — llll2r)

1 | 4 tyll5r — [|=]3;
t (e + tyllb, + lllhe) Xy e+ tylls s,
we get:
2k( T y)

which is the requlred relation. g

Let us recall, following [9], the following notions:
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DEFINITION 17. (i) On a normed linear space (X, | -||) the
semi-inner-product (-, )y X x X = R,

1
= lim — 2 2
(@ 0)p o= tim o (y -+ 2] = )

18 called semi-inner-product in the Tapia sense.
(ii) A smooth normed space is called of (D)-type [9] if there exists:

’ 1
(:L‘7y)T = %E%% [($7y + tw)T - (way)T]

and a space of (D)-type is called of (BD)-type if there exists a

real number k so that (z,y)y < k2||y||2. The least number k is
called the boundedness modulus (for details, see Chapter 14).

The following result is known.

ProposITION 23. ([9, p. 1]) A normed linear space is smooth if
and only if (-,-)p is linear in the first variable.

A straightforward computation for the 2k—normed spaces gives [3]:
PROPOSITION 24. A 2k-normed space is smooth since
(y7 Tt y7 'r)

(k—1)

(xay)T = 2
19112

Also, a 2k-normed space is of (BD)-type with boundedness modulus 1
because (2,y)r = ||yl13;-
We finish this section with two identities in a 2k-inner product
space. A simple calculation gives the equivalences:
1 1 2
+ = ;
b+c a+b a+c

a’ + & = 2% —

a c 2b

a?+ =2 — + = .
b+c a+b a+c

Using the above parallelogram identity, let

a = |lz+ylly, =z -yl and
. 1
2k
b = Tyoo s Xy Yyenns
;(m—z’)) S Lo

27 times  2(k—3i) times



3. 2k-ORTHOGONALITY 7

to obtain:
1
1
2
k 2%k
|z — y”ék + Zi:O (Q(k—i)) Tyooih Xy Yyuo o Y
2i times  2(k—i) times
1
+

x+yllk + ok R TN
|| y||2k szo (Q(k—z)) Y Y

2¢ times  2(k—i) times
2
Iz + yl15 + ll= = yll5

and
|2 + yll5
3
k k
”x_y”gk—i_ Zi:O (2(]3_2)) Lyoo s Ly Yyooh Y
2t times  2(k—i) times
2 — yll5

=

k 2k
|z + y||§k + Zi:O (2(k_¢)) Tyoo sy YyonhlY
2¢ times  2(k—i) times

[N

k 2k
2>, (Q(k—i)) Tyooh @y Yy Y
_ 2t times  2(k—i) times

|z + yllhe + |z — yll&,

3. 2k-Orthogonality
We shall begin with:

DErINITION 18. If 2,y € (X, (- ...,")) then x is said to be 2k-
orthogonal to y if (x,...,z,y) = 0 and we denote this fact by x Loy y.
REMARK 3. (i) Obviously, x Lo x = x = 0.

(ii) From Remark[d part (iti), it follows that for a simple 2k-inner
product generated by (-,-) we have x Loy y < x Lo y.

Let us recall that on a normed space (X, ||]|), x is called Birkhoff
orthogonal to y if ||z + Ay|| > ||z|| for all real A and denote this fact
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by z L g y. The following characterization of Birkhoff orthogonality is
due by R. C. James:

ProposiTION 25. (11, p. 92]) z Lpy < 7-(x,y) <0 <714 (x,y)
where:

1
7— (@) =1im o (o + tyl| — =),

1
7+ (o) i=lim 7 (o + tyll = [lz]).

The following lemma is useful [3]:

LEMMA 2. If (X, (-,...,")) is a 2k-inner product space then the
2k-orthogonality is equivalent with Birkhoff orthogonality.

Proor. If z 1L g y then applying Proposition [25|it results that

0 S T (xay> S 0 S T+ (l‘,y)
which implies
T(@y) =7 (2,y) =74 (x,y) =0

and then x Lo y. Conversely, if Lo y and = # 0 then
(,...,2,9)

[ Cra

and applying Proposition [25| we have the conclusion. §

T (z,y) =74 (2,y) = =0

This result has an important consequence. Thus, applying Ex. 24
from [2, V. 66] it results that x Loy y is equivalent with y Lo x if
and only if || - ||ox is generated by an usual inner product. For example,
this is the case of simple 2k-inner products, see Remark [2 part (iii) or
Remark [3| part (ii).

DEFINITION 19. Given a subset Y C (X, (-,...,")), the set Y+2x =
{z € X5z Lopy for ally € Y} is called the 2k-orthogonal complement
of Y.

Remark that Y NY+2r = {0} and if A € R and z € Y12 then
Az € Y12 showing that Y2 is a linear subspace. However, from
Proposition X is smooth and applying Ex. 26 from [2, V. 66] it
results that Y+2¢ is a linear subspace.

The following orthogonal decomposition theorem holds [3].

THEOREM 35. Let Y be a closed linear subspace in a complete 2k-
inner product space (X, (+,...,+)). Then, for x € X there exists a
unique y € Y and z € Y2+ such that v = y + 2.
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PRrOOF. FExistence. From uniform convexity it follows that X is
reflexive ( [11], p. 368]), and thus there exists a projection of z on Y,
i.e., an element y € Y such that

2 = yllox < Il =yl

for all ¥ € Y. Denoting z = z — y we have the required relation.
Now, we prove that z € Y2, For ¢/ € Y we have

1z 4+ A [l = [z = (y = Ay') ll2e = [l2 = yllow = [12]2
for all real A and then z L 3. Applying Lemmawe obtain z € Yt2*,
Unicity. The above y is in Py (z), where Py (x) denotes the set of
best approximation elements in Y referring to z. Since X is uniformly

convex it results that X is strictly convex and then Py (x) contains a
unique element ( [11], p. 110]). u

In the following we obtain some results in the spirit of [10], which
appear as a counterpart of the above results.

Let a € X\{0} and denote by X (a) the linear subspace generated
by a. Let us consider the mapping

(a,...,a,x)

pro: X — X, pro(x) = a.

llall3k
It follows that [3]:

PROPOSITION 26. (i) prq is independent of the choice of a in
X (a) i.e. for X\ € R we have pry, = prq.
(i) pr, is a projection onto X (a).
(iii) For arbitrary x € X, a is 2k-orthogonal to x — prox and

1pra (@) ll2e < |22
PROOF. The proof is as follows.
(i) We observe that
(Aa, ..., a, ) _)\Zk(a,...,a,x)
Pl Al

(ii)) We note that pr, is onto because pr, (a) = a. Obviously, pr,
is linear and:

Prag (x) = a=pry(x).

(a,...,a,prq (x))

pra (pra (z)) = a
lall3;
(a,...,a)(a,...,a,x)
= a
lall

= pro (z).



80 6. 2k-INNER PRODUCTS ON REAL LINEAR SPACES

(iii) We remark that

(ay...,a,x —prqo(z)) = (a,...,a,z) — (a,...,a,prq, (x))

= (a’7a’x) _ (ay,aﬁaia;k;anx) :O
2%k
and

| (a, ..., a, ) |[[a]|2 | (a,...,a,x)]

[pra () [|2x = _ !

a el lalZE
H@HQk_lHﬂfHQk
= % = [|z| 2%,

HGH%

and the proposition is proved.

4. The Riesz Property

Let us denote by X* the usual dual of X, that is, the space of linear
continuous functionals f : X — R. Fix an element y € X and consider
the functional f : X — R, f (z) := (z,y,...,y). It follows that f € X*
with

|f ()] < llllonllyll3™ for all 2 € X,

hence
A1 < Nlylize
Also,
1A llar > f () = llylar,
so that

LFIF= Niyllz: "

Conversely, we shall show that any f € X* has the above form
if X is complete, obtaining the following generalization of the Riesz
representation theorem [3]:

THEOREM 36. If (X, (+,...,")) is a complete 2k-inner product space
and f € X* then there exists an element y € X such that f(x) =
(2,9,-..,y) for allz € X and || f]| = |lyll5 "

PROOF. If f =0 then y = 0. If f # 0 let xqg € X with f (zg) # 0.
Applying the Proposition 35| for zg and Y = Ker (f) which is a closed
linear subspace of X, there is a unique yy € Ker (f) and a unique 2o €
Ker (f)™2 such that 2y = yo + 20. It results that zo ¢ Ker (f).

Let A € R with

A\ZE—1 [ (z0)
120135
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and y = Azp. Because f(x)zy — f(20)x € Ker (f) for all x € X we
have

20 Lok (f (2) 20 — f (20) ),
that is,
(f(z)20— f(20)x,20,...,20) =0
which implies
[ (20)

T = R

= (z,Az20,...,A20) = (,y,...,7)
forall z € X. &

(z,20,...,2) = A (z,2,..., 2)

Finally, we shall prove the theorem of unicity for the representation
element [3].

THEOREM 37. Let (X,(-,...,-)) be a complete 2k-inner product
space and f € X*\ {0}. Then there exists an unique u € X with
llu|lox = 1 such that f(z) = || f|| (z,u,...,u) for allz € X.

PROOF. Eristence. As above, there exists a zo € Ker (f)"2\ {0}

such that
f () = L) (:c,| &l _>

HZOH2k |ZOH2k7' HZOsz

for all z € X and

1l = £z
HZOH2k
With
\ ( f(ZO) )1/2k—1
|f(20)‘
we get
f(Z(J) 20 20
flz)=|f x, e
@ = ™ Tl Teolln
_ Z 2
= (e ) = W ),
where u = 22— Obviously ||u/2; = 1.

20| 2k

Unicity. We have f (u) = || f||. Since (X, (+,-)) is strictly convex
and u satisfy the last relations, by the Krein theorem ([11], p. 110]), it
follows that u is unique. g
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CHAPTER 7

Mappings Associated with the Norm Derivatives

1. Introduction

In this chapter we introduce some natural mappings associated to
the semi-inner products (-, -), and (-, -), and study their main properties
both in the general setting of normed linear spaces and in the case of
inner product spaces.

2. Some Mappings Associated with the Norm Derivatives

Let (X, ||-]|) be a real normed linear space and z,y two fixed ele-
ments in X. We can defined the following mappings:

Moy R—=R, ngy (1) = |z +tyll,
Ory + R=R, bpy (1) = 2|z + tyl| = [z + 2ty]},

tyll —
Vsy @ RNA{O0}—= R, vy, (t) = |l + yt” ||x||’
— z + 2ty|| — ||z + ty

Using the semi-inner products (-,-), and (-,-), and assuming that z,y
are linearly independent, we can also consider the mappings:

, T+t
9 RoR @ ()= LWy
Y Y |z +ty||
and
Tz, r+1
W OR R, WP (t):—( y>p,
Y Y |z + ty||

where p € {s,i}.
There are some natural connections between the previous mappings.
We shall incorporate them in the following proposition:

PROPOSITION 27. If x,y are two linearly independent vectors in the
normed linear space X, then we have that:
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(i) The following equalities for the mappings v, hold:

1
(7.1) Yoy (t) = 0Oy2 <Z> for t>0;
1
(7.2) Yoy (W) = —0yz - for u < 0;
1
(7.3) Oey (1) = Yoy i for t>0
and
1
(7.4) Oay (U) = —Voy 4 (a) for u <O0.
(ii) The following equalities for the mappings P, WP hold:
1
(7.5) o, (?) =Wh (t) for t>0
and
1
(7.6) o, (E) =Wl (u) for u<Q0.
(iii) The following equalities for the mappings ®F, WP and n hold:
(7.7) Wh o, (t) =ngy (t) =101 (t) for >0
and
(7.8) Wh (u) =ngy (u) —udh  (u) for u <O,

where p,q € {s,i} and p # q.
PROOF. The proof is as follows:
(i) For o > 0, we have that

1
Vg (;) = |12y +az| - ||y+aa:||—2Hy+a H—Hy+2a H
= Oy ()

from where results (7.1]).
We observe that (7.3]) follows by (7.1)).

For B < 0 we have that:

w(3) = (257 -5)
w\B) ~ E
2y—|—ﬁx y+ﬁx

8 H — ly + Bl — 12y + el

- _5y,§ (ﬁ)

K==
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from where results ((7.2) and by ([7.2]), we obtain ((7.4)).
(ii) We have for ¢ > 0 that:

T+ T Y+t
§y<1>:(yx 1ty)p:(y Y+ w)p:qjgx(t)'
AW |z + Ly ly + tz|] ,

If u <0, then
) (1) ey, (w -yt u),
S\ u |z + Ly (—u) ly + uz|
(y,y + ux)
= 0 =V (u)

ly + u]

and the statement is proved.
(iii) If ¢ > 0, then

(+ty—ty,x+ty), lo+tyl*+t(—yz+1ty),

PP (1) = =

v @) o+ o] o+ ]
(y,z +ty)

= gy (t) —t——-L =mn,, (1) —tPL (¢
w (1) o+ v (0) » ()

and the identity (7.7]) is proved.

If u < 0, then:
2
r+u +u(y,x+u
o () | vl (v Y),

|z + uyl|
= Nay (u) —udf  (u)

and the proposition is thus proved.
For the sake of completeness, we shall point out here some proper-
ties of the mappings v and v as well.

PROPOSITION 28. Let x,y be fixed in X. We have

(1) nyy is continuous convex on R;
(i) g, has lateral derivatives in each point on R;
(i) If z,y are linearly independent, then

dtng, (1)
. —22 2 =P (t),teR
(7 9) dt T,y ( ) ’ €
and
dng, ()
(7.10) L A A @x’y (t),teR.

dt
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PRrOOF. (i), (ii). Are obvious.
(iii). Let t € R. Then

A ugy () _ (2 +ayl — o+ ty]
dt et a—t
— lim (HZ‘ +ty+ Byl — ||z +t’yH)
—0
50 b
oy ety Byl — e+ ty)?
B—0+ 20

1
X lim
8ty + Oyl + o +

t
et g
[z + ty ’

and the relation (7.9)) is proved.
The equality ([7.10]) goes likewise and we shall omit the details. §
For the mapping v, , we have the following properties [3].
THEOREM 38. Let z,y be fized in X. Then:

(i) vgy is monotonic decreasing on RN\ {0};
(ii) vy, @s bounded and

(7.11) Vo (O] < llyll - for all t € R\ {0};
(iii) We have the inequalities:
(7.12) ®; (1) < vgy (u) < (:’y”:j‘)l for allu <0
and
(7.13) B (1) > vay () > (1|/|7;"‘)3 for all t > 0;

assuming that x,y are linearly independent.
(iv) We have the limits:

(T14)  lim v, () =yl and T v, () = ]
and
. (y, ), . (y, )
(7.15) lim v,, (u) = L oand  lim v, (u) = s
R e A P

assuming that x # 0;
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(V) vgy is laterally derivable in each point ty € R\ {0} and if x,y
are linearly independent we have that

dt v, (t Lo
@) O S ) )+ ]
and
d™ vz, (T 1 i
@ O S ) )+ ]

for all t € R\ {0}.

PROOF. The proof is as follows.

(i) The mapping n,, being convex, we have that

Ngy (t2) — Mgy (0 Ngy (1) — Mgy (0
’Uamy (tZ) = 7y( iz —0 ’y( ) Z 7y( 1)t1 7y( ) :Ux,y (tl)

for all to > t1, 11, tg € R.
(ii) By the continuity of the norm, we have that

llz +tyll = ll=ll| < llo+ty — x| =t[l=]], t€R
from where results the inequality ((7.11)).
(iii) Let u < 0. Then by Schwartz’s inequality we have that
(@, 2 +uy), < 2| [l +tyll.

By the properties of semi-inner product (-,-),, we can state

that

S

(x,x+uy), = (v +uy —uy,x +uy),
= |l +uyl* + (—uy, = + uy),
= [lo +uyl* —u (y, = + uy),
and thus, by the previous inequality, we can state that
7+ wyll* — u(y, = +uy), < |lz| |« + ty|

for all u < 0, from where we get
_ Nz tuyll =l o sr +uy), o

e (1) w7 eru]

and the first inequality in ([7.12]) is proved.
By Schwartz’s inequality, we can also state

(u)

el lz + wyll = (2 + uy, ),

for all © < 0.
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A simple calculation shows us that
(@ +uy,x), = |z”+ (uy, ), = |l2]* = u(~y, ),
= |lz[* + (uy, ),
for all u < 0, and thus, the above inequality gives us

2
el lz + uyll = [l2]” = w(y, 2);, w <0

from where we obtain
oy Il =l _ (o),

u ]

and the second part of ([7.12) is also proved.
The inequality ((7.13) goes likewise and we shall omit the

details.
(iv) We have
. . 1 e+ L]
tEIQD Ury (1) = aEI(I)lJr Yoy (E) N ali%l-k 1
— tim (ly+ aall - alzl) = ly].
The second limit in ((7.14) goes likewise and we shall omit the
details.
Now, let us observe that
2 2
t — 2
R el L i
REIS T B o Tty + Tl
(y’ x)s
]

for all € X\ {0}.
The second limit in is similar and we shall omit the
details.
(v) The fact that v,, is laterally derivable in each point t €
RN\ {0} is obvious. Let us compute the lateral derivatives.

We have
Qe (©) _ 4" (12 (1) o]
dt dt t
_ 1 [dTuay ()
[Py 0 - )
1 S
= 5, ()~ ey 0+ ]

and the relation ([7.16|) is obtained.
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The identity (7.17) goes likewise and we shall omit the
details.

REMARK 4. In the case of general normed linear spaces the graph

of the mapping n,, for fived linearly independent vectors x,y is incor-
porated in Figure 1]

FIGURE 1.

REMARK 5. In the case of general normed linear spaces, the graph

of the mapping v, for fized linearly independent vectors x,y is incor-
porated in Figure [9

L ¥

Wl 2 e e

FIGURE 2.
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Note that if the space (X, ||-||) is smooth in x, then (y,z), = (y,x),.
The line v = ||y|| in Figure @ is the asymptotic of v at t = 400 and
v =—|y|| is the asymptotic for t = —oc.

3. Properties of the Mapping d,,

The following theorem contains the main properties of the mapping
s, in the general case of normed linear spaces [5].

THEOREM 39. Let (X, ||-||) be a real normed linear space and x,y
two fized vectors in X. We have:

(i) 64y ts bounded and
(7.18) 100y )] < |lz|| for allt € R;

(i) If x,y are linearly independent, then we have the inequalities:

(7.19) Oay (1) < Wy, (1) <03, (1) < |2
and
(7.20) duy (1) > Wi, (t) = Wi, (1) > [lo+ 2ty] — 21t/ |yl
@9y,
Iyl
>
—M if t<O.
Iyl
(iii) The mapping 6, is continuous on R and we have the limits:
: (.I, y) . B (:U7 y)
(7.21) lim d,,(t) = 2 lim §,, (t) = ——,
t—too lyll 7 om0 [yl

where x,y are linearly independent;
(iv) The mapping 0., is laterally derivable in each point and if x,y
are linearly independent, then we have

dt 0., (1)

(7.22) T 2(®5, (1) — @3, (2t))
and
diél’ Yy % [
(7.23) d—;f(t) = 2(@L (t) — DL (21))
for allt € R;

(v) The mapping d,, is monotonic nondecreasing on (—oo, 0] and
monotonic nonincreasing on (0, 00).

PrRoOOF. The proof is as follows:
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(i) By the continuity property of the norm, we have
00y (0] = [[122 + 2ty[| — ||z + 2ty[| < [|22 + 2ty — 2 — 2ty|| = ||z|

for all ¢ € R, and the inequality (7.18)) is obtained.
(ii) Using Schwartz’s inequality and the properties of norm deriva-
tives (-, ),, we have that
|z + 2ty | |22 + 2ty ||
> (x+2ty, 20+ 2ty), = 2z + 2ty — x, 2z + 2ty),
= |12z + 2ty|* — (z, 22 + 2ty),

from where we get

2 2ty).
o+ 2tyl| — 120 + 28] > — B 22+ 20,

20+ 2ty|
which is equivalent with
(x,z + ty),
2|z +tyll — [l + 2ty|| < 7
[l + ty|

for all t € R, and the first inequality in ([7.19) is proved.
The second inequality is obvious.
The third inequality follows by Schwartz’s inequality:

(z, 2 +ty), <[l +tyll[lzf], t€R.

To prove the first inequality in ([7.20]), we also use Schwartz’s
inequality:
122 + 2ty|| [l + 2ty||
> 2z +2ty,x + 2ty), = (x + x4+ 2ty, x + 2ty),
= o +2tyl* + (w2 + 2ty),
from where we get

(x,x + 2ty), R

2|+ ty|| — ||z + 2ty|| > =0’

(1)

for all t € R, and the first inequality in ([7.20]) is proved.
The second inequality is obvious.
By Schwartz’s inequality, we also have

[l + 2ty || [|12ty]|
> (2ty,x+2ty), = (v + 2ty — x,x + 2ty),
= o+ 2ty — (a2 + 2ty),
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from where we get

(x, x4 2ty),
o 2 e 2ty = 2t [y
[l + 2ty]|

for all ¢ € R and the third inequality in ([7.20]) is proved.
Now, suppose that ¢ > 0. Then

[l + 2ty = 2[¢| [yl = [lo + 2ty[| = 2¢ [[y] -
By Schwartz’s inequality, we have that
2 + 2ty lyll > (= + 2ty, ), = (z,1), + 2t |ly||*,
from where we get

(z,9),
lyll

Ift <0, let t = —u with u > 0. Then
[l + 2tyl| = 2[t| [yl = [z = 2uyl| — 2u[ly[| .

I+ 2tyl| — 2t [ly]| =

By Schwartz’s inequality, we also have that

o = 2uy]l lyll > (& = 2uy, ), = (@, —y), + 2ujy|

from where we get

(ZE, _y)s o _(m7y)i _(:E7y)5
Wl Tl = Tl

and the last inequality in ((7.20)) is also proved.
(iii) The continuity of ¢,, on R is obvious.

By the inequalities ((7.19) and (7.20) we have that
Woy () 2 0ay (1) 2 W3, (1) = W3 (20) .

z,2y

[l = 2uy| = 2ulyl| =

)

s (),
oo (=71

we get the first limit in . The second limit goes likewise
and we shall omit the details.
(iv) The fact that ¢,, is laterally derivable in each point of R
follows by the same property of the norm ||-||.
We now have

dtd,, (1) 2d+ux7y (t)  drugy(2t)
dt dt dt
= 2(®;, (1) — @5, (20))

lim
t—-+o0

(see Section [6])
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and similarly,
d™ 8y, (1)
dt
for all t € R.
We know that the mappings ®2 = p € {s,i} are monotonic
nondecreasing on R (see Section .
If t <0, then 2t < t and then ® (¢) > ®¢ (2t) from
where we get that
A6, (1)
dt
If £ >0, then 2t > ¢ and then ®¢ (2t) > @ (¢) from where
we get that
A6, (1)
dt
In conclusion, the mapping d, , is monotonic nondecreasing on
(—00,0) and nonincreasing on [0, 00).

=2 (@}, (1) -, (20))

>0 for t € (—00,0).

<0 for t € (—00,0).

The theorem is thus proved. g

REMARK 6. In what follows, we shall show the approximative graph
of the mapping 6, in the general case of normed spaces.

a)

If we assume that (z,y), > 0, we have the following graph
incorporated in Figure[3. We are not sure about the convezity

FIGURE 3.

of the mapping d,,. We know that
(l‘7y)@ > (:Euy)s

7/
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but — (z,y), do not always have to be negative.
b) If (x,y), <0, then we have the following graph incorprated in
Figure[f] We are not sure about the convezity of the mapping

FIGURE 4.

dzy. We know that

() o (@y),
Wl = Tl

but — (x,y), do not have to be positive in each case.

4. Properties of the Mapping 7, ,

It is natural to consider the following mapping

|z + 2ty|| — ||z + ty||
Yoy () = ;

where x,y are two fixed elements in X.

The main properties of this mapping are embodied in the following
theorem [2].

THEOREM 40. Let (X, ||]|) be a real normed linear space and x,y
two fized vectors in X. We have:

(i) The mapping v, is bounded on R\ {0} and
(7.24) Yy O] <yl for all t € R\ {0};

(ii) If z,y are linearly independent, then we have the inequalities:

, t € R\ {0},

(725) Il <7y () < 9L, (w) for all w<0
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and
(7.26) ol = 0y ()2 95, () for all £ 0;
(iii) The mapping 7, is continuous on R\ {0} and we have the
limits;
: (y,2), .. (v, @)
(7.27) lim v, , (u) = Lo lim oy, (t) = >
u=0— 59 [yl = w0 1yl
and
(7.28) Jim g, (u) ==yl dim e, () = [yl

if x,y are linearly independent;
(iv) We have the inequalities:

(7.29) Yoy (£) < Pe (8) <%, (1) < |lyl| forall >0
and
(7.30) Yoy (1) > %, (u) < @%’y (u) > —|ly|| for all uw<0

of x,y are linearly independent;
(v) The mapping v,, has one sided derivatives at each point of
RN\ A0} and, if z,y are linearly independent, then

- -, (1) & [V, () =Wl (2t)] if t<0
31 L ANV
dt L[ws () - v, (@20)] if t>0
and
1 s S .
a0 [ ® (U5, () —ws, (20)] 4f t<0
(7.32) d—ty =

(Wi, (t) — Wi (20)] if t>0;

(vi) The mapping ,,, is monotonic nondecreasing on R\ {0}.

=

PROOF. The proof is as follows.
(i) By the continuity property of the norm, we have that
|z + 2ty[| — [l + tyl]| < [z + 2ty — @ —tyl[ = [¢] [[y]], t€R

from where results the inequality ((7.24)).
(ii) By Schwartz’s inequality and by the properties of the norm
derivatives (-, -),, we have that:
lz+ 2uyll |z +wyll = (24 2uy, 2 + uy),
= (v +uy +uy,z + uy),
= o +uyl® +uly, = +uy),
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from where we get
(lz 4 2uyl| = llz + uyll) | + vyl = u (y, = + uy),
for all u < 0, which implies

|+ 2uy| — |z +uyll _ uly,z+uy),
u ~ oyl

and the second inequality in ([7.25)) is proved.
The second inequality in ([7.26)) goes likewise and we shall
omit the details.
(iii) The continuity of the mapping v, , on R\ {0} is obvious.
We have:

|l + 2uyl] — [le]l = (lz + uyll = =[]

uli%l— ’)/%y (U) - uli%l—

u
2 — —
gy let 2wl el et gl o]
u—0— u u—0— u
_ w2 (w2), _ (y,2),
[z Ed| |

and the first limit in ((7.27)) is obtained.
The second limit goes likewise and we shall omit the details.

We have
fm vy, () = i 1200 )
U——00 ’ U——00 u
1. S
=l el

U——00

. 1 1
= — lim 2+ —x|| — |ly+ —=
u u

)

== lim ([2y + azf| - |ly + az])

= =2yl +llyll = = [lyll

and the first limit in ([7.28)) is obtained.
The second limit goes likewise and we shall omit the details.

(iv) We shall prove the inequality ((7.30)).
By Schwartz’s inequality, we have that

|z 4+ 2uy|| ||z +uyl] > (z+uy,x+ 2uy),

= (v 4 2uy —uy,r + 2uy),

= o+ 2uy|® — uly, = + 2uy),,
which is equivalent with

u(y, w+2uy), 2 ||z + 2uyl| ([l + 2uy|| — ||z + uyl])
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that is,
2 2uyl|| —
W,z +2uy), e+ 2ull = llz+uyll oy o)
|z + 2uyl| “
However,
(y, z + 2uy)
iy (w) =%, (2u) = —r——— "
2y (u) §,y( u) |z + 2uyl|

and the first inequality in is proved.
The second and third inequalities are obvious, and the
statement is proved.
The inequality goes likewise and we shall omit the
details.
(v) The fact that the mapping 7, has one sided derivatives at
each point of R\ {0} is obvious.

We have
iy (1) _ ¥ ( (2) — o,y <t>)
dt dt t
1 [d*
= [ (20 =y ()1 1y 20) =y )]
[ ),
= 122, (20) — B3, (1)) — ey (20) + 10y (1)
1

=3 2007 (28) — gy (2t) — (1D, (1) — tay (1))]
for all t € R.
If t > 0, we have that (see Proposition
Nay (2) — 2005 (2t) = WL (2t)
and '
N,y (t) - tq);,y (t) = ‘Ilzc,y (t) :
If t < 0, we know that

Ny (20) — 205 (26) = WS (2t)

and
Ny (1) =195, (1) = W3, (¢).
Thus,
By, () [ (Ve () =W, @0] i >0

dt [ws () — W, (2)] if t<0

=
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The equality goes likewise, and we shall omit the details.
(vi) We know that the mapping W%  p € {s,i} are nondecreasing
on (—oo,0] and nonincreasing on (0, +00).
If t < 0, then 2t < ¢ and then W, (t) > ¥, (2t) which
gives us that

d+ t
T2y ® g5 4
dt
If t > 0, then 2t > ¢t and V3 (t) > U3 (2t) which gives us
that .
d t
T2y ® g4 450
dt

In conclusion, the mapping v, , is monotonic nondecreasing on
RN\ {0}. n

REMARK 7. In the general case of normed linear spaces, the graph
0f Vs 15 as follows (see Figure @) We are not sure about the convezity

FIGURE 5.
0f V-

5. Properties of ¢/ Mappings

For two linearly independent vectors in X, x,y, we consider the
mapping
(y7 X + ty)p p
lz +tyll
which is well defined for all ¢t € R.

CIDZy (t) :== =s or p=1i;
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The main properties of these mappings are embodied in the follow-
ing theorem [1].

THEOREM 41. Let (X, ||-||) be a real normed linear space and x,y
two linearly independent vectors in X. Then

(i) The mapping ¥ is bounded on R and

Y
(7.33) |22 ()] <lyll for allt € R;
ii) We have the inequalities
(7.34 Yoy (1) < @;,y (u) < @5 (u) S wvgy(u) forallu<0
and
(7.35) Yoy (£) = @ () > L (t) > vy (t) for all t > 0
(iii) The mappings o, are monotonic nondecreasing on R;
(iv) We have the limits:
(736)  Jim 92, ()= g and Jim 82, (1) =}y
and
wan  gman, 0 = 0w ez, 0 - B2

(v) The mapping P35, is right continuous in every point of R and
CIDQy 18 left continuous.
PROOF. The proof is as follows.

(i) Follows by the Schwartz inequality.
(ii) The first inequalities in ([7.34]) and (7.35) were proved in The-

orem 40l
The last inequalities in (7.34])) and (7.35)) were proved in
Theorem B8

(iii) Suppose that p € {s,i} and t; > t;. Then, by Schwartz’s
inequality, we have that

|+ tayl| [z + tayl| = (= +tay, @ + t1y),

for all z,y € X.
Using the properties of the norm derivatives, we get that

(r+tay,x+ty), = (b—t)y+o+ty,x+ty),
= o+ tyll* + (ta — t1) (v, 2 + t1y),,
and thus, by the above inequality, we deduce
2+ tayll 1z + tayl| = [l + tiyl* + (82 = 1) (v, 2 + tay),,,
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from where we get

(y, 2 + ty), < Nz +tayll — [l +t1y\|‘
|z +tiy| — to — 11

(DI;:,y (tl) =

Now, let us put ¢ := to —t; > 0. Then by ((7.35) we have that:

|z + tayl| — [z + try]|
ty — 11
|+ tiy + tyll = llz + tayll _

= ty — 1 ¢§+t1y y (t)

Tty +t T+t
_ W wrty), 2Y)p _ o (1)
|z + tiy + ty|| |z + tay| ’

and the statement is proved.
(iv) We know from Theorem [38| that

lim 7, (u) ==y and lm 2, (t) = |y

U——00

and from Theorem [40Q that

lim 5, (u) =~y and Tim v, ()= |y

U—

Using the inequalities and we deduce the desired
limits .
The proof of limits go likewise, and we shall omit
the details.
(v) Let ty € R. Then we have

t t
lim ® (a) = lim ® (to+1t) = lim @ + toy + 1)
a—to+ Y t—0+ t—0+ ||l’ + toy + ty”

) (y,r+ty) o,
= th%}r (bx+t0yy (t) = m - )

and the right continuity is proved.
The proof of left continuity goes likewise and we shall omit
the details.

REMARK 8. In the general case of normed linear spaces, the graphs
of @ vy and @3 - are incorporated in Fzgure@ We are not sure about
the convexity of the mappings @ .
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Ul §- - - SR —

il

FIGURE 6.

6. Properties of the Mappings V% |

Let x,y be two fixed linearly independent vectors in the normed
linear space (X, ||-||). Consider the mapping
(z,x +ty),
|z + ty||

which is well defined for all ¢ € R.
The main properties of these mappings are embodied in the follow-
ing theorem [4].
THEOREM 42. With the above assumptions, we have:
(i) The mapping V% is bounded on R and we have the inequality

o7, () = , p€{s,i}

(7.38) (w2 @) < ||z forallteR;
(ii) We have the inequalities:
(7.39) un (1) < WL (1) < W2, (1) < |
and

Sug (t) > WS (1) > WL (1)
> ||z — 2ty[| — 2 [¢| ||y
(z,y)s Zf t Z ()

>
(@), if t<0
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for allt € R;
(iii) WP is continuous in 0 and we have the limits:
: (z,9)
(7.40) lim W2 (t) = s
t=oo O 1yl
and
(7.41) lim 0P (u) = #
U——00 ’ Yy

(iv) W2 is monotonic nondecreasing on (—oc,0] and nonincreas-

ing on [0,00).

PRrROOF. The proof is as follows.
(i) Goes by the Schwartz inequality.
(ii) Were proved in Theorem [39]

(iii) We know that

lim 6, (1) = ]

Then by the inequality ((7.39) the limits lir% W? () exist and

are equal to ||z||.

We have
T, o+t t(z, 1z +y
lim ¥? (f)= lim @rtty), im (f—l)z’
t—otoo DY t—too ||z + ty|| t—too t|ly + 1]
T,y +ax
= lim (@9 )y = lim ¢¥ («a)
A TE

By Theorem [42] we have that:

lim @ (a) = 2Ys
amlt ¥ Iyl

and the limit ([7.40) is obtained.
On the other hand, we also have

lim U2 (u)= lim —2 — [j b
B Vo () = I T W T [y = e
. - (a:’y—i_ %x)q . (x7y+ﬂ'r>q
= lim T =— lim ————
u——o0 Hy—l—EI” p—0- ||y + Bl
. (z,y),
=] oy} = L,
A Pa (9= T
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By Theorem [42] we have that

lim &7 (8) = 3
A P (0= T

and the limit (7.41)) is obtained.
(iv) Let —oo < ¢1 < t < 0. By Proposition 27, we have:

\Ijg,y (tQ) - qjg,y (tl)

o —1
Ny (ta) — @8 (ta) — nuy (1) + 01 9%, (4)
N lo — 1ty
o nx,y (t2) - nx,y (tl) th)g,y <t2> - th)];,y (tl)
B to — 11 a ta — 11 .

In Theorem we proved among others that the following
inequality holds

Ny (t2) — Nay (41)
to — 1
where t1, to € R and t; < t».

Using (7.42)), we have that

\Iﬂaz,y (tQ) - \Ilfc,y (tl)
o —t
09, (L) — 0Py, (0)
to — t1
(ta — 1) @8, (t1) — 12®F  (t2) + 11 DF  (t1)
to — t1
ta (2, (1) — @8 (t2)) + 1 (DL, (1) — DL (t2))
tg — 11
(@2, (t1) — D2, (t2)) (t1 + t2)
to — 11 '

(7.42) 8 (1) < < ®f, (t2)

> (I)f:,y (tl)

However,
Cbgy (tl) < (I):g’y (tg), t1+1t, <0 and to > 1

then

Vo (t2) — 03, () 0
to — 11 -

which shows the monotonicity of WL ~on (—o0,0].
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Let +00 > ty > t; > 0. Then, by Proposition 27, we have
‘Ijg,y (t2) - \Iﬂz?,y (tl)

lo — 1
Nay (ta) — Nay (1) 2@, (t2) — P2, (1)
B lo—t - lo —ty
to®9  (ty) — ;DL (t
< @1, (1) - 22 2 — )
B (tg — tl) (I)g’y (ng) — t2®g,y (tz) + th)gc,y (tl)
lo — 1

and the monotonicity of W2 —on [0,00) is proved. i

REMARK 9. In the general case of normed linear spaces, the graph

of the mapping V% are incorporated in Figure @ and Figure @

a) If (x,y), > 0, then we have the graph below (see Figure [7).
We know that

‘_[7 Wiy
, ’ " L1 R - .‘_-—_h___-'_'?va—-_‘—'b
’ ; 121
"
rai
s
FIGURE 7.

_ (ZL‘,y)Z > — (x7y)s
177 ]
but — (z,y), do not always have to be negative.
We are not sure aboul the convexity of the mappings V%
p=sorp=i.
b) If (z,y), <0, then we have the following graph (see Figure[§).
We know that

_(m7y)i _($7y)s
Wl =l
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R I.I. 1
1 ,/\
P LTS ‘\
,. > "
- - " s nau A}
——— : o LY
“““ SEISImITAE m o oz AN=wlee Ty
1 .o
5\ \\
< ~
. ~
~ ~
~ ~
- \—
LALT T 25 o _\-“_‘"“:—_—_
1l
FIGURE 8.

but — (z,y); do not always have to be positive.

7. The Case of Inner Products

In this section we will investigate the properties of the mappings
Ny Oxys Vays Vayr Ph, and WP in the particular case of inner product
spaces.

The following proposition holds [3].

THEOREM 43. If (X;(+,)) is a real linear inner product space, then
the mapping vy, is convex on (0,00), where x,y are fired linearly in-
dependent vectors in X.

PrOOF. If (X;(+,-)) is an inner product space, then v, , is derivable
on R\ {0} and

dvsy (1) 1|, (y,2) + ¢yl
7 = = t .
dt 12 Uy y (t) Ny ( ) + ||(L'||

The second derivative of v, , also exists and

d?vy, (1) B I
dt? tn2_(t)’
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where
o= S )+ 2P 2y 1)+ ey (1) Py ()
() + P = 02 (0 + el ey () 5 (P (1)
= (o) + 2 [yl — 2y (£, () + 2l L, (1)) 210y (8
() + 2 Il = 2, (0 + ol g 1)) (2t (1) + 1, 1)
= 2 () () — 202, ()1 (£) + 203, (1) — 2t ]| 02, (1)
() — )P, (1)
= 8 (yx)nay (£) + 203 (1) — 2 |2]| 2, (1)
N R 1 PN (CRORSA
T O e T
—t4|| H2 (yvx)+t||y||2 — J
Moy (D) g (1)
where
J o= £ (ya)nd, () +2tnd (1) — 2t x| nd, (1)
en2, (0) (5,2) — 2, () [l — € (o) — ¢ [P (y.2)
1 () — £ [
However,

4 2 2 2
— & lyll* =t lyll” (v, 2) = lyl|” (v, 2) — £ (v, 2)
2

and
vy () = 2t 2| 03, () = 262 (y, ) n3 , (1) — °n, (8) |yl
= tng, () (2ng,, (t )+2||x||nx,y( ) =2t (y,x) = £ |lyll*)
= tng, (t) (n;, ()+||x+ty|| =2l ey () = 2t (g, 2) — £ |ly]]*)
= tn}, (1) (ng,, (6) + [l=]” + 2t (y, ) + £ |ly]|”

=2 [l nay (1) — 2t (y,2) — £ |ly]]*)
= tn}, (t) (nay (1) = l2)*.

In conclusion, we obtain

Puay (1) _, 12y (1) ey (6) 2l = 2 (g, + 1)°
L =t1- Y i t R .
a* tnd,, 0 HERNO)
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Using known inequalities

(y.2+1y) _ o+ tyl = |

< it t<0
[l + tyll t
and
o+t~ lell _ Gzt t9) o,
t [l + tyll
We have for all ¢t € R\ {0} that
2+ tyll = llll | _ [(y, 2+ ty)]
t [l + tyll

from where results

n2y (8) (nay (1) = l2]))* < ¢ (y, @ + ty)?

which shows us that
dsz,y (t) .

and
d?vyy (1)
dt?
and the proposition is proved. 1

<0 if ¢t>0

109

REMARK 10. If we assume for the mapping n,, that (X;(-,-)) is an
inner product space, then we can provide more information (see Figure
@. Here the mapping n,, 1s strictly convez, has a unique minimum in

\

FIGURE 9.
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(y,7)

= _W cmd
(=l Iyl = (=, 9)*)*
no = Ngy (to) =
’ e Iyl
Indeed,
dng,y (t) (y, z + ty)
—= = cI)z,y (t) =
dt |z + ty||
and y 0
Ny )
jz =0 iff t=tg
and )
_ o), (Il lyl? = (z,9)%)?
Ny (o) = |7 — 5 || =
Iyl [yl

REMARK 11. If we assume that (X;(+,-)) is an inner product space,
then vy, is strictly conver and monotonic increasing on (—o0,0) and
strictly concave and monotonic increasing on (0,00).

The line v = ||y|| is an asymptote at t = oo and the line v = — ||y|| is
an asymptote at t = —oo (see Figure @)

FIGURE 10.

Note that v, (t) =0 iff ||z + ty|| = ||z||, t # 0, i.e.,
2 2 2
l]|” + 2t (y, ) = ¢ [ly|I” = ||«
from where we get
(y, )

lwl?
is the point where the graph of v, intersects the t axis.

O:
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We shall now investigate the function ¢, , in the case of inner prod-
ucts [5].

THEOREM 44. Let (X;(+,-)) be an inner product space over the real
number field R. The mapping 0, is twice differentiable on R and

d?0y., (t)
dt?
_ 2 (el ll* = (2, 9)%) (n2, (2) — 203, (1))
ng, (2t)nd , (t)

(7.43)

, teR,

where x,y are linearly independent.
Moreover, §,, is conver on (—oo,t1] U [t2, +00) and concave on
(t1,t2), where

o (2\3/1— 4) (x,y) — \/Asy
(7.44) t = (a9 ,

o (2\3/1 — 4) (x,y) +/Asy
(7.45) ty = 5 (1 \3/1)

and
Ay (4-292) () +4 (4 V) (VI 1) al* ) > 0.

ProOOF. It is obvious, by the above proposition, that

doy, (t)
d—i =2 (q):r,y (t) - cbz,y (2t>> )
where
(y,z) +t|ly|I”
b, ()= F~F0— "
v =

As @, , is differentiable on R and

00, (1) _ el gl - (2.9)°
dt w2, (0

, teR,

and we get that

e (O 5 d®,., (t)_zdcbx,y (2t)
dt? dt dt

1 2
_ 2 12 2 B
(P11 = @) (555~ )
and the relation ([7.43)) is obtained.
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Note that the equation
0oy (1) _ 0
dt?
is equivalent with
lz + 2ty ||* = V4 ||z + ty]?

(4= Va) lyl> 2 + (4= 2V/1) (2. ) t + (1= V4) Jlal* = 0.

The solutions of this equation on 1, t5 are given by (7.44) and (7.45)).
Note that t; < 0 < ts.
In addition, we should observe that
d*0qy (t)
dt?

>0 if t € (—o0,t1] U [t, 00)
and
d?0,, (t)

dt?
and the convexity of 9, , is thus proved.
In the particular case of inner product spaces, we have

Ouy (t) =0 iff 4z +ty|* = ||z + 2ty

<0 if te(t,ts)

that is,
A(z,y)t==3|lz].
In this case, we are certain about the convexity of d, .
The graph of 4, , is the following one:

FIGURE 11.
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if (x,y) > 0 (see Figure [11)).
If (z,y) < 0, then we have Figure [12 and if (z,y) = 0, i.e., the

FIGURE 12.

2
vectors x,y are orthogonal, we have Figure 13| where £, = —% and

FIGURE 13.
t1, ty are as above. Here ty = —t1. 1

Now we point out some results for the mapping v, , [2].

PROPOSITION 29. Let (X;(-,-)) be an inner product space. The
mapping v,.,, where x,y are two linearly independent vectors in X, is

twice differentiable on R\ {0} and

vy, () K., (2t) - K,
(7.46) Vd;(): ,y(zf)t3 ,y(t)’ te RN {0},
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where

Koy (1) = e O ) o P lya s 1)

PrRoOOF. We have
_ e+ 2ty|| — = + ty

Ve (t) .
_ e+ 2ty|| — flzll — (lz + tyll — ll=]])
t
_ollz 2ty —flzll |z +tyl] — [|=]]
2t ¢

= 20,4 (2t) — vy, (1).
Then we obtain:
Ay (1) 4dvxyy (2t)  dugy (1)

dt dt dt
and
Py () _ Py (28)  dPvey (1)
dt2 di2 dt2

We know (see the proof of Theorem that

Puay (8) _ My (1) (nay (1) - lz])* = (y, 2 + ty)Q.

dt? t4n§7y (1)
Then
dt? (2t)'n3, (2t)
. 2, (1) (nay () = |l2))* = (y, 2 + ty)*
t4n§:7y (t)

and the identity (7.46|) is proved. 1

PROPOSITION 30. With the above assumptions, the mapping K, ,
is differentiable on R\ {0} and

ran Kol g0t W) 12 o “@) — Iyl 22, ()]

‘Z.iy

forallt € R. Moreover, K, , is monotonic increasing on (—oo, — (z"q'@),

and decreasing on ( ) +oo>.

- 2
7
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PRrROOF. We have

dK,, (1)
dt
= s | (G 02 0y 0 = 1)) = (4 10 ), 20
(12, (0) (na (0~ Lol = -+ 0?) ]
However
(2, 1) 1y (1) — 2]
= 2y (1) (1) (1 (1) — )P + 202, () Oy () ) s, (1)
= 20y (1) Oy () 2] [ 8) 010 (8) = ) iy ()L, 0]
= 21y (1) (10 1) — ) (20l (O () = i, (1) 2]
2y (0 () 2y 8) ) (1 () = )
= 2y () L () < ) 20y (1) )

Ny (t)
=2(y, x +ty) (Nay (t) — |2]]) (2nay () — [|2]]) -
We also have
d (* (y,x + ty)*
( e ) =2 (y,x + ty)* + 26 (y, z + ty) ||y||*
=2t (y,x +ty) [(y, 2 + ty) + t[|y|*]

=2t (y, @ +ty) [2tly[|* + (z,9)] .

We have:

Azy =2y, z +ty) (nay () — |lzl]) (2nay (£) — |z]])
— 2t (y,x + ty) [2t||y|| + (z,9)]
= 2(y, @+ ty) [(nay (1) = [2])) ey () = 2])) = 2t yll* = ¢ (z,9)]
=2(y,x +ty) (2n = 3y () [l + lel® = 26 lyl* — ¢ (2, )
=2(y,x +ty) [2 (||$|| +2(z,y) ¢+ lyl)
= 3ngy () [lzl| + lz]1” = 26 lyll® — ¢ (2, )]
=6 (y,z+ty) [(z,2 +ty) — nay () ||=]].

Consequently,
dK,y (1)  Bay

dt nb (t)
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where
Bay =6 (y, 2 +ty) [(z,2 + ty) — nay (8) 2] 23, ()
— [n2, () (nay (t) = ll2l))* = £ (y, 2 + ty)°] x 3n2, ()0, (t)
=6 (y,z +ty) [(z,2 + ty) — ngy (t) [|2]]] 23, (1)
—3(y, &+ ty) nay (02, () (nay (1) — l2])* — £ (y, 2 + ty)?]
= 3”wy (t) (y, +ty) (22, (t) (2,2 + ty) — 14y (t) [12])
20 () (nay (8) = [[2])* = 2 (y, 2 + ty)*]
= 3”ry (t) (y, x +ty) {n, (t) 2 (x, 2 + ty) — 2n., () 2]
+ 20y (t) |2l = 2)*] = £ (y, 2 + ty)*}
= 3”xy (1) (g, + ty) [n2, (£) (2 ||2]* + 2t (z,y) — 2n4,y (1) ||2]|?
20 O+ 200y (1) 2]l = |=]®) + ¢ (y, 2 + ty)°]
= 3nay (t) (y, 2+ ty) [n2, (t) (l2]]° + 2t (z,y) —n2, (1))
+12 (y, x + ty)°]
= 3nay (t) (y, 2 + ty) [n2, (t) (l]* + 2t (2, y) — |||
=2t (z,y) — * |yl*) + £* (y, = + ty)’]
= 3nay (1) (y, 2 + ty) [* (y, 2 + ty)* — £ |yl n2, (t)]
= 3ty (1) (v, 2 + ty) [(y, 2+ ty)” — |lylI* n2, (1))

and the equality ((7.47) is obtained.
Note that
lyll* n2,, (6) > (y, 2 + ty)”
with equality iff y and x are linearly dependent.
Also,
(z,9)
2
[yl

(ty +x,y) =0 iff t =—

then es® > 0 for t € (—oo, (H ”2)}, and %’ty(t) < 0 for t €

[ (Hx I?IQ ; +OO> which shows that K, is monotonic increasing on

(—oo7 —W>, and decreasing on (—%,n%o). i

We are now able to give the following partial result on the convexity
of 7, in the particular case of inner product spaces [2].

PROPOSITION 31. If z,y are orthogonal, then the mapping v, , 18
strictly convex on (—o0,0) and strictly concave on (0, +00).
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PrOOF. If z L y, the mapping K, , is strictly increasing on (—oo, 0)
and strictly decreasing on (0, 400).
If t <0, then 2t < t and K, (2t) < K, (t), which give us that

Ky (2) — Ky ()] < 0

i.e.,

d*y,., (t)
a2

which proves the strict concavity of 7, on (0, +00). N

<0 for t e (0,+00),

REMARK 12. The convexity of vy, , in the general case of fived lin-
early independent vectors x,y s still open.

The following result for the function @, , holds [1].

THEOREM 45. Let (X;(+,-)) be an inner product space over the real
number field R. If x,y are linearly independent, then we have

40, (1) _ |yl 2l — (x.9)?

dt ng,y (t)
and
2 2 2
P, (1) _ =3z +ty) (vl 2l — (z.9)°)
dt? ng,y (t) '
Moreover, ®,,, is convex on (—oo, —%] and concave on (—?é’ﬁ@,oo).
Proor. We have successively,
d®, , ()
dt
Ml ey (8) = (o + ty)mly, (8 (W17 g () = (g, + ty) L
_ Y x,y Y, Yy T,y _ T,y ) nz’y(t)
n3, (t) nz, (t)
ez, () = (y,x + ty)’
ni, (t)

2 2 2 2 2 4
Al (el + 2t Gy, ) + 2 lyl17) = (g, 2)° + 2t (g, 2) Iyl + 2 lyl")
a ni, (t)

T,y

2 1112 2
Iy l™ =] — (=, 9)"

n3 ., (1)
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We also have:
2, () —3n2, (), @) (I lz]* - (y,2)°)

a2 ng, (t)
x 2112 2
a2, (0L (P el - (5,0)?)
ng , (t)
20 112 2
_ 3y +ty) (M=l - (v, 2))
n3y (1)
It is clear now that % >0ift e (—oo, —f@ﬁ@) and % <0

ifte <—(x’y) oo) ]

2
vl

REMARK 13. In the particular case of inner product spaces, we have

the following graph for ®,, (see Figure ﬂ/ Note that ty = —T‘yyﬁ? is

FIGURE 14.

the point where ®,, (t) is zero and also the point where ®,, changes
1ts convexity.

The following result for the mapping ¥, , holds [4].

THEOREM 46. Let (X;(+,-)) be an inner product space over the real
number field R and x,y two given linearly independent vectors in X.
The mapping ¥, , : R — R,

lz]* +t (2, y)

, tER
[l + tyl|

\ijvy (t) =
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1s twice differentiable on R,

U 2 212
2 Rl
dt |z + ty||
and
d* Wy, () I]* [ly]l* = (=, y)° 2 2
7.49 YL =t ’ 2 ly||” + t (z,y) — ||=]|) .
(7.49) e B0 (o Ly 0, ) = )

Moreover, the mapping U, ,, is convex on (—o0,t1] U [t2, +00) and con-
cave on (t1,ts) where

- (ZE, y) - Aa:,y t - (JZ, y) + Az,y

tl - 2 y 2 — P}
Ayl Ayl

and Dy, = 8lJz)* lyl* + (z,9)* > 0.

Proor. We have

d\pzy (t)

dt
_ [xy ey (6) = (]2 41 (o, ) {20+ >]

— g [ Ol ) (0= (ol ) 22

Mgy (1)

_ [(x,y 2, (1) = (lz° + t (@ v)) ((@.y) + ¢ |yll*)]

2] + 2t (x,y) + 2 |Jy||°)

i e

= (I=l* + £ (2,)) ((z.9) +tyl*)]

(z,9)" — [l Iyl

t-
Mgy (1)

and the relation ([7.48)) is proved.
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We have
U0 (@) — el ) 2 o
T ns, (1) (2, (8) = 3tnZ, (1)l (1)
B ()t T PP O R 1
_ Pl (1) =3
((z,9)* = l=|” lylI*)

_ 0 (n2,, (1) =3t (y, =) + 3t ly]*)

= ((@.9)” = =l wl)
o lll® + 2t (g, 2) + £ lyll” = 3¢ (v, 2) + 3¢ yl]’)

)
@) =2l Il o o 2
_ 2 gl +t (5 2) — o).
RO )

Consider the equation
20 |lyl* + ¢ (y, ) — ||z]* = 0, tER.
This equation has two distinct solutions ¢;, 5 given by
(y,7) £ /Asy
4|lyll*

where A, = 8|z]* [ly[* + (2, 9)* > 0.
PLes® > 0if ¢ € (—o00, 1] U [fa, +00) and

>V, , (1)

dt?

The theorem is thus proved. g

t12

Y

Now, it is clear that

<0 if te (tl,t2>.

In the case of inner product spaces, we have
Woy (1) =0 iff o]+ (2,) = 0.

In this case, we are certain about the convexity of ¥, .
The graph of ¥, , is the following one
a) If (z,y) > 0, then the plot of ¥, , is incorporated in Figure
b) If (z,y) < 0, then the plot of ¥, , is incorporated in Figure
c) If (z,y) = 0, i.e., the vectors x, y are orthogonal, then the plot of ¥,

_lel?

(z,y)"

is incorporated in Figure !, where t, t5 are as above and ty =
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Lwa
T

FIGURE 16.
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FIGURE 17.
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CHAPTER 8

Orthogonality in the Sense of Birkhoff-James

1. Definition and Preliminary Results

In 1935, G. Birkhoff [I] introduced the following concept that is a
natural generalisation of the usual orthogonality which holds in inner
product spaces over the real number field.

DEFINITION 20. Let (X, ||-||) be a real or complex normed linear

space and x,y be two given elements in X. We will say that x s
Birkhoff-orthogonal over y and denote this x L y (B) iff:

|z|| < ||z +ty|| for allt € R.

It is clear that if (X; (-, -)) is an inner product space then the usual
orthogonality introduced by the inner product, i.e., z L y iff (xz,y) =0
is equivalent with Birkhoff’s orthogonality.

In 1947, R.C. James [2] extended this concept of orthogonality for
the case of complex normed spaces. Namely, we have:

DEFINITION 21. Let (X,||-||) be a complex normed space and x,y

two vectors in X. We will say that x is James-orthogonal over y and
we will denote this by x Ly (J), iff

|lz|| < ||z + Ay|| for all X € C.
Now, we note here that if (X; (+,-)) is a complex prehilbertian space,

then the usual orthogonality is equivalent with James’ orthogonality.

REMARK 14. It is obvious that x L y(B[J]) implies that x L
(o) (B[J]) for every scalar « € K (K=R or C), x L x(B[J]) im-
plies x = 0 and x L y(B[J]), * L z(B[J]) do not imply x L
(y+ z) (B[J]) and also x L y (B [J]) is not connected withy L x (B [J]).

The following theorem holds (see [3], p. 25]).

THEOREM 47. Let (X, ||-||) be a real or complex normed space, f :
X — K (K=R orC) a bounded linear functional on X and x € X,
x # 0. Then the following statements are equivalent:

(i) « L Ker (f) in the sense of Birkhoff or James;
(ii) « is a mazimal element for f, i.e.,

(8.1) [f @)= A ]l

125
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PROOF. Let us assume that = L Ker(f), i.e., x L y for all y €
Ker (f). Suppose also that:

(8:2) [f (@) = pllll-

Now, for all y in Ker (f) we have:

[f @+l =If @) =plzll <plz+yl.
Since « ¢ Ker (f), we have:
X={ANz+y | eK, ye Ker(f)}

and then

1O+ )]
el -

On the other hand, we have |f (z)| = p||z|| and then || f|| = p, which
gives by the desired relation .

Conversely, if we assume that x is a maximal element for the func-
tional f, then for every A € K, we have:

o = L@@l el

il A=l

which shows that 1 y(B[J]) wherever y € Ker(f), ie., x L
Ker (f)(B][J]) and the theorem is proved. §

/I = sup

The following two corollaries are obvious by the above theorem (see
also [3], p. 25]).

COROLLARY 10. Let x be a nonzero vector in Banach space X.
Then x is Birkhoff (James) orthogonal over a hyperplane containing
the null element.

COROLLARY 11. Let x,y € X with x # 0. Then there exists a
a € R such that x | (ax +y) (B[J]).

REMARK 15. We observe that x L (ax +vy) (B[J]), o € K if and

only if there exists a functional f € X*, || f|| =1 such that f (x) = ||z|

and a = — LW

f(x)

REMARK 16. If z L (ax +y), then |a| < %

In the following section, we will give some characterisations of
smoothness and strict convexity in terms of Birkhoff orthogonality.
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2. Characterisation of Some Classes of Normed Spaces

We will start with the following theorem which contains two charac-
terisation of smooth normed spaces in terms of Birkhoft’s orthogonality
(see for example [3], p. 26]).

THEOREM 48. Let (X, ||-]|) be a normed space. Then the following
statements are equivalent:

(i) X is smooth;
(ii) the Birkhoff orthogonality is unique in the right hand side, i.e.,
for every x € X\ {0} and y € X there exists a unique scalar
« such that © L (ax +y) (B).
(iii) the Birkhoff orthogonality is additive at right, i.e., for every
r,y,z € X with x L y(B) and x L z(B), we also have
r Ll (y+2)(B).

PrOOF. “(i) = (ii)”. Let us assume that X is smooth and let
x € X, x # 0. Then there exists a unique functional f € X* with

I|fll = 1 and such that f(z) = ||z||. Using Remark the scalar

a= —% is unique with the property that x L (ax + y) (B).
“(ii) = (i)”. Suppose that the orthogonality in the sense of
Birkhoff is unique at the right hand and let z € X\ {0}. Take f € X*,

||l = 1 with the property that f(x) = ||z| . If y € X, then by the

unicity of “L”, x 1 axz+y with the unique scalar a = — W and then

f (y) = —af (z), which implies that the element x has a uﬁic)lue support
functional, i.e., a bounded linear functional g € X* with [|g|| = 1 and
g(x) =1, ie., X is smooth.

“(i) = (ili))”. Now, assume that X is smooth and consider the
support mapping, i.e., the mapping X\ {0} > = — f, € X\ {0}
given by

a) |[z|| =1 implies [|f;|| =1 = f; (z);
b) A > 0 implies fr, = Afs.

Let z € X\ {0} and assume that x L y(B) and = L z(B) where
y,z € X. Then by the unicity at right the unique scalar with = L
(ax +y) (B) is @ = 0 and the unique § with x L (fz +y) (B) is also
B = 0. In both cases (see Remark we have f, (y) = f. (2) = 0.
Then f, (y+2) = fz (y) + fz (2) = 0 and by Theorem 47| we deduce
that © L (y + 2) (B).

“(iii) = (ii)”. Let us assume that Birkhoff orthogonality is ad-
ditive at right and let z € X\ {0} such that z L (az+y) and
x L (Bfr+y). Then x L —(Bx+y) and by the additivity at right
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we have:
z L [(az+y) — (Bz +y)]
i.e., z L (v — () x and then

[zl < o+ Ala = B) x| = [T+ A(a = B[ ||z

for all A € K, which implies that a = (3.
The theorem is thus proved.

The second result is embodied in the following theorem (see also
[Bl p. 27]).
THEOREM 49. Let (X, ||-||) be a real normed space. Then the fol-
lowing statements are equivalent:
(1) X is strictly convez;
(ii) the Birkhoff orthogonality is unique at left, i.e., for every x,y €
X with x # 0, there exists a unique o such that (ax +y) L
x (B).

Proor. We will firstly prove the following lemma which guarantees
the existence of a scalar a such that (ax +y) L z(B).

LEMMA 3. Let x,y € X. Then there exists a real number o such
that (ax +vy) L x (B). Moreover, this scalar « is the real number which
achieves the minimum of the following real functionals:

R3k— ||kz+y| € R;.

In addition, if (ax +y) L x(B) and (bx +vy) L x(B), then for all
between a and b we also have (ax +y) L x (B).

PROOF. Let us consider the mapping n: R — K, n (t) = ||tz + y||.
This mapping is clearly convex on R and then n achieves its minimum
for a certain a € R. Moreover, the set of points in which n achieves its
minimum is an interval.

Now, let us observe that (az +y) L x (B) if and only if

laz +y|| < |laz +y+ Az = [[(a+ Nz +y|
for every A € R which is equivalent with
oz +y[| < [[kz +yl| forall k € R,

i.e., o is the point in which the mapping n achieves its minimum.
The lemma is thus proven. &

Let us now prove the theorem.
“(ii) = (i)”. It is obvious.
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“(i) = (ii)”. Let us assume that X is not strictly convex and
there exist z,y € X, z € y, ||z|| = |ly|]| = 1 such that Az + (1 — )y €
S(X):={z€ X|||z]| = 1} for all X € [0,1].

Denote u = x +y and v = z — y. We will show that:

|lu|| < ||lu+ po]] for all u € R.

It is sufficient to prove the above inequality for p > 0.
Let us observe that:

[+ vl =2|lz]l =2, flu—of =2]yll =2
and
lull = llz + yl| = 2.
Consider 0 < p < 1. Then

|lu+ || = [le+y+pe—py| =0 +p)z+1—py|
= 2=|u

because
0<1—p<1l4p<2 and 14+pu+(1—p) =2

Consequently, for 0 < p <1 we get ||u + pov| = |Jull.
If £ > 1, then 4 — 1> 0 and thus

lu+pol = lle+y+pe—pyl =1+ p)z+ 1 -yl

]
oD
= bt | (1 2 ) b = (52 ) ] =2 =

In conclusion, ||u|| < ||u+ pv|| for every u € R and the equality holds
in the above inequality for |u| < 1.
Now, we will show that for |u| < 1 we have (u+ pv) L v(B)
(v # 0), which contradicts the unicity at left of Birkhoff orthogonality.
Indeed, we have:

lu+ poll = flull < flu+ A+ p) vl = llu+ po+ Av]|

for all p with |u] <1, 1i.e., (u+ pv) L v, and the statement is proved. §
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3. Birkhoff’s Orthogonality and the Semi-inner Products

Let (X, ]|-]|) be a real normed space. Then the following characteri-
sation of Birkhoff’s orthogonality in terms of semi-inner products (-, -)
and (-, ), holds.

THEOREM 50. Let (X, ||-||) be as above. Then the following state-
ments are equivalent:

(i) = L z(B);
(ii) (z,2); <0< (z,2),
where r,z € X.

S

PROOF. “(i) = (ii)”. Let us assume that x L z (B), i.e., ||z + tz|| >
|||, for all £ € R. Then we have:
2

2 2
o+t = llal® o o .
2t 2s

for all t > 0 and s < 0, which implies that (z,z), > 0> (z,z),.

“(ii) = (i)”. Now, let us observe that for all t € R, we have:

(tz +z,2), < |lz+ 2 - [l
On the other hand, we have
(z+tz,z), =t(z,2), + ||lz||*, t >0,
which implies:
t(z,2), < (lz + izl = z[]) ||«

for all t € Ry. Since (z,z), > 0, then

|z +tz]| — ||| >0 for all ¢ > 0.

Now, as (z,z), < 0, we get — (z,2), = (—z,2), > 0 which shows that
|z +s(=2)| = ||z|]| > 0 for all s > 0. Consequently, ||z + tz|| > ||z,
for all t <0 and thus = L 2z (B).

The theorem is thus proved.

The following corollary is due to R.C. James [2].

COROLLARY 12. Let (X, ||-]|) be a normed space over the real num-
ber field and o a given real number. Then the following statements are
equivalent:

(i) = L (0z +y) (B);
(ii) we have the estimation

(wa)i < -« Htz < (y,l’)s,

where x,y belong to X.
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PRrROOF. Let 2z :== ax +y. Then z L 2 (B) iff (2,2), <0 < (2,2),.
However, (2,7), = (ax +y,7), = a H:L'H2+(y,:c)p where p € {s,i}, and
the corollary is thus proved. 1

The following theorem gives us the opportunity to approximate the
bounded linear functionals defined on a real normed space with the
help of semi-inner products (-,-), and (-,-), (see also [4] and [5]).

THEOREM 51. Let (X, |||) be a real normed space, f : X — R a
nonzero bounded linear functional on X and w € X, w # 0. Then the
following statements are equivalent:

(i) w L Ker (f)(B);
(ii) we have the estimation:

)

forallx € X.

PRrROOF. “(i) = (ii)”. Let us assume that w L Ker (f). Then,
by Theorem [50] we have

(y,2), <0< (y,z),,

for all y € Ker (f).
Now, let x € X. Then the element y = f (z) w — f (w) x belongs

to Ker (f) because f(y) = f(f(z)w — f(w)z,w) (@) f (w) —
f(w) f (x) = 0. Consequently, one has:

(8.4) (f @) w—=fw)z,w); <0< (f (2)w— f(w)z,w),

for all z € X.

Using the properties of semi-inner products (-, -)
derive

,and (-,-),, we

(f (2)w = f (w) 2, w), = f (2) [Jw]|* = (2, f (w) w),
and
(f () w = f (w)z,w), = f (@) |w]® = (2, f (w)w),
for all x € X. By the double inequality , we deduce
(@, f (w)w); < f (@) [Jw]]* < (2, f (w)w),
for all x € X, which is equivalent with .
“(ii) == (i)”. Firstly, we observe that f (w) # 0, because f (w) =

easily implies that f () = 0 for all € X, which is false.
By (8.3)), it follows that

(z, f (w)w), <0< (z, f (w)w),
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ie, f(w)w L Ker(f)(B). However f(w) # 0 and then w L Ker (f)
which completes the proof. §

The following corollary is obvious.

COROLLARY 13. Let (X, ||-||) be a real normed space, f € X*\ {0}
and w € X\ {0}. Then the following statements are equivalent:

(i) w L Ker(f) (B);
(i) [f ()| = 1/ 1wl '
(iii) We have the estimation (8.3).

Now, we can state the following general result, which contains the
Birkhoff orthogonality of an element over a closed linear subspace in a
normed space.

Namely, we have the following theorem.

THEOREM 52. Let (X, ||-]|) be a real normed space, G' a closed linear
subspace in X and xyg € X\ {G}. Then the following statements are
equivalent.

(i) 20 L G (B):
(ii) Wherever f € (G & S, (x0))" with Ker (f) = G, we have the
estimation:

(x, %x) <f) < (x ﬁm)

forallz € G S, (x).

The proof is obvious.

Now, we will give some characterisations of Birkhoff-James’ orthog-
onality in terms of quadratic functionals.

The first result is embodied in the following theorem.

THEOREM 53. Let (X, ||-||) be a real normed space, f : X — R
a nonzero continuous linear functional and w € X\ {0}. Then the
following statements are equivalent:

(i) We have the estimation:
(85) (z,w); < f(2) < (z,0),

forallz € X;
(i) w manimizes the quadratic functional Fr: X — R,

Fy (u) = [lu]]* = 2f (u).
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PROOF. “(i) = (ii)”. If w satisfies , we have f (w) = [|w||*.
Now, for all u € X we can obtain
Fr(u) = Fy(w) = |lu* =2f (u) = [lw]|* + 2f (w)
= Jlull* = 2f (u) + [Jw]®
> lul® = 21full [lw]| + [|w]|*
= (llull = [lwl)* =0
because
fu) < (u,w), foraluelX

and
—(u,w), > — |luf| [|w]] for all u € X.

In conclusion,
Fy(u) > Fy(w) forallu e X,

i.e., w minimizes the functional F.
“(ii) = (1)”. If w minimizes the functional F, then for all u € X
and A € R, we have:

Fr(w+ Au) — Fr (w) > 0.
On the other hand, we have:
Fy (w+Xu) = Fy (w) = [w+Xul* = 2f (w+ M) = w]* +2f (w)
= Jlw+xul* = Jw]* = 27f (u)
and thus
(8.6) ONF () < Jlw+ X — [Jo]?

for all u € X and A € R.
Suppose that A > 0. Then from , we have:

o+l = o
<
() <

which gives, by passing at limit after A\, A — 0+,
fu) < (u,w),

for all u € X.
Now, if we replace u by —u, we get

f (u> > - <_u7w)s = (u7w)i

for all u € X, which completes the proof. &

The second result is the following.
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THEOREM bH4. Let (X, ||||) be a real normed space, f : X — R a
nonzero bounded linear functional and w € X\ {0}. Then the follow-
ing statements are equivalent:

(i) w L Ker (f)(B);

(ii) The element ug := ﬁfgﬁ%

FriX =R, Fy(u) = Jul’ -2/ (u).

PROOF. By Theorem [51] we have that w L Ker (f) (B) iff one has
the estimation:

@%w) <fl)< (wﬁw)
for all x € X.

Now, the above estimation is equivalent, by Theorem [53] to the fact
that the vector ug = ﬁjﬁ;w minimizes the quadratic functional F¥.

The proof is thus completed. 1

w minimizes the quadratic functional:

COROLLARY 14. Let (X, ||-||) be a real normed space, G a closed
linear subspace in X and xo € X\ {G}. Then the following statements
are equivalent.

(i) zo L G (B);

(i) Wherever f € (G® S, (x0))" with Ker (f) = G, the element
uy = ﬁjﬁ%xo manimizes the quadratic functional Fy, r(u) :
G @ S, (z9) — R given by

Fagg (u) = |lull® = 2f (u).
The proof is obvious from the above theorem for X, := G .S, (zo).
We omit the details.
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CHAPTER 9

Orthogonality Associated to the Semi-Inner
Product

1. Orthogonality in the Sense of Giles

Let (X, ||]|) be a normed linear space and [, -] a L. —G.—s.i.p which
generates the norm ||-||. In [I], J. R. Giles introduced the following
concept.

DEFINITION 22. An element x € X is said to be Giles-orthogonal
over the element y € X relative to L. —G.—s.i.p [+, -] or G—orthogonal,
for short, if the condition

ly,z] =0
holds. We denote this by v L y (G).

It is obvious that L z (G) implies that =0,z L y (G) and a € K
imply that (az) L y(G) and x L (ay) (G) and x L y(G), = L z(G)
imply the right additivity, i.e., z L (y + 2) (G). The argument of these
facts follows by the properties of semi-inner product in the sense of
Lumer-Giles.

Now, if F is a linear subspace in normed linear space X, then
by E+ (G) we will denote the orthogonal complement in Giles’ sense
associated to E. It is easy to see that it satisfies £ N E+(G) = {0},
a € Kand r € E+ (GQ) imply that az € E+ (G) and generally E+ (GQ)
is not a linear subspace in X.

The following theorem contains a result concerning the (G) — or-
thogonality of an element over a hyperplane defined by a bounded linear
functional on a normed linear space (see also [2] or [3]).

THEOREM b55. Let (X, ||-||) be a normed linear space and [-,-] a
L. — G .—s.i.p which generates the norm ||-||. If f : X — K is a bounded
linear functional on X, f # 0, and w € X\ {0}, then the following
statements are equivalent:

(i) w L Ker (f)(G);

(ii) We have the representation:
(9.1) f(z) = [3:, / (wgw] :
[]]
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Moreover, if (i) or (ii) holds, then:
|f (w)]

lwll

(9.2) 1F1l =

PROOF. “(i) = (ii)” Let us assume that w L Ker (f)(G). Then
we have [y, w] =0 for all y € Ker (f).

Let v € X and y = f(z)w — f(w)z. It is obvious (see Theorem
that y € Ker (f) and then:

(9.3) f(x)w— f(w)z,w] =0 forall z € X,

which is equivalent with

f(x) = [x,Mw], re X,

2
]l

and the implication is proven.
“(ii) = (1)” If the representation (9.1)) holds, then clearly, f (w) #
0, which gives:

[x,w| =0 forall z € Ker(f)

ie, w L Ker(f)(G), and the implication is proven.

The relation follows by Proposition |3 and we shall omit the
details.

The proof of the theorem is thus completed. 1

By the use of the above result, we can also state the following
theorem.

THEOREM 56. Let (X, ||-||) be a normed linear space, E a closed
linear subspace in X and xqg € X\ FE. Then the following statements
are equivalent:

(i) zo L E(G);
(ii) For every f € (E® S, (z0))" with E = Ker (f), we have the
representation:

f (x0)

210
ol

for all x in E & S, (o).
In addition, if (i) or (ii) holds, then one has:

Hf“ceesp(xo) -
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The proof is obvious from Theorem [55|applied for the normed space
Xxo =F& Sp ($0)

Let us now establish the connection between Birkhoff-James’ and
Giles’ orthogonality.

PROPOSITION 32. Let (X, ||]|) be a real or complex normed space
and [-,+] a L. — G.—s.i.p which generates the norm ||-||. If z,y € X and
x L y(GQ) then x L y(BIJ]). The converse is generally not true.

PROOF. Let us assume that x L y (G), i.e., [y,2] = 0. Then
|z]|> = [x,2] = Re [z + Ay, 2] < |2 ||z + \y||

for all A € K| i.e., [|z|| < ||z + Ay|| for all A € K which is equivalent
with z L y (B[J]).
For the converse, let us consider the space [ (C). It is known that

TkYk
[yax] - HxH Z ma T,y € ll (C)
70 k

isa L — G —s.iponl!(C).
Consider the vectors
r=(i,1,0,...,0) and y=(2,4,0,...,0).
We obtain
lz =2 and [lz+ Myl = (1+432)% + (1+23)?, AeR
and then
|z + Ay|| > ||z|| for all A e R,

because a simple calculation shows that

(1+4X)7 + (1+22)? >2 forall AeR.

On the other hand, it is obvious that [y, 2] = —2i # 0 and the proof is
completed. §

We note that the following result also holds.

PROPOSITION 33. Let (X, ||]|) be a real or complex normed space,
E its linear subspace and x € X\ E. Ifx L E(B[J]), then there exists
at least one L. — G.—s.i.p which generates the norm ||-|| and for which
we have v L E (G).

PROOF. Let us consider the subspace E; := S, (x¢) @ E and ¢; €
E,. Then g; = Ax+g¢ and this decomposition is unique (A € K, g € E).
Define the functional

fo: By =K, fo(g)=\z|*.
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Then fy is well-defined and fj is linear on E;. We also have fy (z) =
|z||> and f; (¢) = 0 for all g € G.
Now, for all g; € E; with: g = Az + g and A # 0, one has

fo ()] _ Al z||”

gl Az +gll [z + 19|

because x | E (B [J]), which shows that || fo||; = |lz[. On the other
hand, one has:

o ()] _ Jl]”
> =
Vollzy 2 ™ = e
which shows that | fol| 5, = [|=]].
By the Hahn-Banach theorem, there exists a functional f : X — K
such that:

= ||zl

fe, = fo and ||f]| = [lfollg, = llzl
and then

f(@)=folx)=lz|* and [Ifl = [lll, ie., f€ J(x)
(J is the normalised duality mapping).

Now, let J be a section of the duality mapping such that J (x) = f,
then the L. — G.—s.i.p which can be generated by J is given by [y, z] :=

<j(z) ,y>, z,x € X.
It is easy to see that [y, z] = <j($) ,y> = f(y) =0 for every y € E

and then x 1 E (G) relatively at L. — G.—s.i.p defined above.
The proposition is thus proved. 1

By the use of the above proposition, we can state the following
characterisation of Birkhoff-James orthogonality in terms of G— or-
thogonality.

THEOREM 57. Let (X, ||-||) be a normed space, E its linear subspace
and xog € X\ FE. Then the following statements are equivalent:

(i) zo L E(B[J]);
(ii) There exists a L. —G.—s.i.p [-,-] which generates the norm ||-||
and for which xy L E (G).

Finally, using Theorems [56] and [57], we can state the following the-

orem of representation for the continuous linear functionals.

THEOREM 58. Let (X, |[|-]|) be a normed space, E a closed linear
subspace in X and xvo € X\E. Then the following statements are
equivalent:

(i) zo L E(B[J]);
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(ii) There exists a L.—G.—s.i.p on X which generates the norm ||-||
and is such that for all f € (E® S, (x0))" with E = Ker (f)
one has the representation:

f @) = {

forallx € E® S, (xg).

f (o) }

ol

2. Orthogonality in the Sense of Milici¢

Let (X, [|-||) be a real or complex normed space and (-, -, ), the semi-

inner product in the sense of Mili¢i¢ associated to the norm |||, i.e.,
the mapping (-,-,), : X x X — R given by
1
(z,y), = 5 [(z,y), + (x,y),] forall z,y € X,

where (-, -, ), and (-, -, ), are given as:

2 2
. ly + tx||* — [yl
11m
t—0— 2t

(z,y); =

and

- ly + t]* — [yl
(.= Ji 1
where z,y € X.

In 1987, P.M. Mili¢i¢ [4] introduced the following concept of or-
thogonality associated to the semi-inner product (-, -,) , on a real or
complex normed space.

DEFINITION 23. Let x,y be two vectors in X. The vector x is said
to be g—orthogonal over the vector y iff (y,x)g = 0. We denote this by
xLyl(g).

In the case when the space X is complex, we can also introduce the
concept of complex g—orthogonality [4, Definition 2]:

DEFINITION 24. Let x,y € X, X is here a complex normed space.
Then x 1s said to be complex-g-orthogonal over y of cg—orthogonal, for
short, if (y,x), = (iy,x), = 0. We denote this by x L y(cg).

REMARK 17. ([]). If in X we can introduce an inner product (-, -)
then (y,x), = i(iy,x), = (y,x) in the case of complex cases.

If the normed space X has the (G) —property, i.e., the functional
(,-), is linear in the first variable (see Section 2 of Chapter {4}, then it
is easy to see that [z,y] = (2,y), is a L. — G.—s.1.p in the real case and
(y,2), = (y,x) in the case of real spaces and [z,y] = (z,y), = i (iz,y),
is also a L. — G.—s.i.p in the complex case.
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Consequently, in the case of normed spaces of (G) —type, we have
the equivalence:

i) z Ly(G)iff z Ly(g)if X is real
and
(ii))  Ly(GQ) iff z L y(cg) if X is complex.
Now, we will point out the connection between Birkhoff-James’,
Giles” and Mili¢i¢’s orthogonality in the case of general normed spaces.

The first result is embodied in the following proposition [4].

PROPOSITION 34. Let (X, ||-||) be a complex normed space. Then
x L y(cq) implies x L y(g). The converse is not generally true.

PRroOF. The implication is obvious by the definition of the involved
orthogonalities.
For the converse, let us consider the complex space I* (C) endowed

with the usual norm ||z| = > 7, |#;| < co. It is well known that (see
[4])
Re ( l’lmyk
70
and
xkuyk
(y, 2), —i(iy, x), = [|l| Z
70

Now, if we put
r=1(i,1,0,...) and y=(2,4,0,0,...)

we obtain
(y,2),=0 and (iy,x), = 2i
which completes the proof. i

PROPOSITION 35. Let (X, ||]]) be a real or complex normed space.
Then x L y(g) implies x L y(B). The converse is generally not true.

PROOF. ([4]) Let us assume that = L y(g), i.e., (y,2), = 0. Then
for all A € R we have:

(x+ Ny, z), = ||z + Ay, 2), = [[z]* + A(y, ), = [|z]|*.
On the other hand we have:
(x+ Ay, z), <[z lz + Ay
from where results

|z + A\y|| > ||z|| forall AeR
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which shows that = L y (B).

For the converse, we choose z,y € [' (C) with

r=(1,0,0,...) and y=(1,54,0,...)
Then we have:
le+ Ayl =14+ A +5|A >1=z|| forall AeR
ie., z L y(B). However, a simple calculation shows that
(y7 ‘T)g - ]'

and the proof is completed. 1

The following proposition established the connection between James’
orthogonality and cg—orthogonality in a complex normed space.

PROPOSITION 36. Let (X, ||]|) be a complex normed space. If x L
y (cg) then x L y(J). The converse is not generally true.

PROOF. Let z L y(cg), ie., (y,2), = (iy,z), = 0. Consider the

functional f, : X — C given by
fo(2) = (2,2), —i(iz,2z),, z€X.
This functional is linear on X (see Proposition (ii), (iii)) and
bounded (the same proposition (iv)). In the paper [4, Theorem 1],
P.M. Mili¢i¢ proved that f, also belongs to J (z) and then || f.| = ||z||.
Thus, we can state:
[fo (2 + A9) = |fe (@) + Ao )] = |2 (2)] = |2

for all A € C.
On the other hand, one has:

[ (z 4+ Ay)| < [lzf ]|z + Ay]| for all A € C,

which shows that ||z|| < ||z + Ayl for all A € C, i.e., x Ly (J).
For the converse, we may choose:

r=(1,0,0,...) and y=(1,5i,0,...) €' (C).
Then one has:
o+ Agll = [14 A+ 53] = [1+ A+ 5\ = 1 = [la]
for all A € C, which is equivalent with
zLy(J).
Now, we observe that (y, x) , = 1, which completes the proof. &

Next, we present some other characterisations of (¢) —orthogonality
in terms of bounded linear functionals which will improve some known
results obtained by P.M. Mili¢i¢ in [4].
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THEOREM 59. Let (X, ||-||) be a real normed space and f : X — R a
bounded linear functional on X, f # 0 and w an element from X\ _{0}.
Then the following statements are equivalent:

(i) w L Ker(f)(g);
(ii) we have the representation:

(9.4 £ = (= 1)
[wl™/
forallz € X.
In addition, if (i) or (ii) holds, then || f|| = %
PROOF. “(i) = (ii)”. Let us assume that w L Ker (f)(g), i.e.,
(y,w), = 0 for all y € Ker(f). Let z € X and put y = f(z)w —
f(w)z. Then y € Ker (f) and

(f(@)w—f(w)z,w), =0 forall z € X.
Using the properties of (-, -) g We have:
f @) |w|? = f (w) (z,w), =0 forallz € X

which gives:

Fo) =1 o, =

2
]l

T, / (wz) w)

[wll™/,
for all z € X.

“(ii) = (i)”. It is clear that f (w) # 0 because f (w) = 0 implies
the fact f = 0, which is a contradiction.

Since f (z) = f(l‘”) (z,w), forall z € X, which implies that (z,w), =

JJw]?
0 for all z in Ker (f), which is equivalent with w L Ker (f) (g).
Now, let us prove the last part of theorem.
By the representation (9.4)), we have:
|/ (w)]
f ()] = Tl (z,w),

[

for all  in X, which gives:

f

]

—~

w)]

1f]l <

On the other hand, we have |J|C|EZU””)| < || f|l, which gives the desired
result. B

As a corollary of this theorem, we can state the following result.
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THEOREM 60. Let (X, ||-]|) be a real normed space, G a closed linear
subspace in X and ro € X\G. Then the following statements are
equivalent:

(i) mo L G (9);
(ii) For every f € (G® S, (x0))" such that Ker (f) = G, we have
the representation:

o= (0

5 +0
lzoll® T/,

for allz € G& S, (z0).
Moreover, if (i) or (ii) holds, then one has:

_ |f($0)’

1 lces, @) = zoll

The proof is obvious from the above theorem for the space X, :=
G ) Sp (LIZ'())

3. The Superior and Inferior Orthogonality

Let (X, ]|-||) be a real or complex normed space and let (), (-, ),
be the semi-inner products associated with this normed space. The
following definition is natural to be considered.

DEFINITION 25. Let (X, ||-||) be a normed space and let x,y be two
fized elements in X. Then x is said to be superior-orthogonal (inferior
orthogonal) or (s) —orthogonal ((i) —orthogonal) over y, for short, iff

We denote this by z Ly (s[i]). If Ly (s) and z L y (i), then we
will write this as x L y (s, 7).

REMARK 18. Since the mapping R 3 t — |ly +tz|* € R is a
convex mapping, then one has:
2 2
T

Ny + P =yl
=1 <1
(z,y); = lim 57 < Jlim, 57

for all x,y in X.

= (,9),

The following proposition is obvious by the definition of (s) and ()
orthogonality.

PROPOSITION 37. Let x,y € X. Then the following statements are
true:
i)z Lz [s(i)=2=0;
(i) 2 Ly [s())] = (—2) Ly [i(s)] <=z L (—y) [i(s)];
(i) z Ly [s(i)] <= (=2) L (=y) [s(D)];
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(iv) z Ly [s(i)] <= ax L By [s(i)] with af > 0.
Now, we are able to establish the connection between these orthog-
onalities and those introduced by Mili¢i¢ and Birkhoff.

PROPOSITION 38. Let x,y be two vectors in X. Then x L y [s(i)]
implies that © 1y (B). The converse generally does not hold.

PROOF. Let us assume that x L y(s), ie., (y,z), = 0. Since
(y,2), < (y,x),, we can write (y,z), < 0 < (y, ), which implies that
(see Theorem p0) = L y (B).

For the converse, let us consider the space I' (C) in which we know

that:
Re (g;z;)
b= (4 3.
Yi#0 ’ yi=0
If we choose the vectors
r=(i,1,1,0,...) and y=(1,4,1,1,0,...) € [*(C)
we have:
1

|z =3 and |lz+ Xyl =2(1+ )2+ |1+ A +]A], AeR.

A simple calculation shows that
|z + Ay|| > ||z|| forall A e R

which means that x L y (B).

On the other hand, it is easy to see that

(%y)s = (':an)l =1

which proves the assertion. &

Another result which establishes the connection between (g) —orthogonality
and (s,17) —orthogonality is the following one.

PROPOSITION 39. Let z,y be two elements from X. If v 1L y(s,i),
then also x L y(g). The converse is not generally true.

Proor. If ¢ L y(s,i), then (y,z), = (y,x), = 0, which gives

(y,2),=0,ie,z Ly(g).
For the converse, let us consider in ! (C), the vectors:

r = (i,1,1,0,...)
= (1,4,0,...).
Then we have:

1 Re (gix;)
(,9)y = 5 Iyl > Tl 0
Yi#0 !
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and
(xvy)s = 17 (':Evy)z =-L
The proposition is thus proven.

REMARK 19. We will show that (s) — orthogonality or (i) —orthogonality
does not imply the orthogonality in the sense of Milicic.
Indeed, if we choose x = (—1,—1,2,0,...) and y = (1,1,0,...) in
' (C), we get:

(z,y), =—4 and (z,y),=0

which shows that y L x (i) but y L = (g).

Now, we will state and prove a result which gives a characterisation
of (s)[(7)] — orthogonality.

THEOREM 61. Let (X, ||]|) be a real normed space and f : X — R
a bounded linear functional on X, f # 0. If w € X\ {0}, then the
following statements are equivalent:

(i) w L Ker(f)(s);
(il) w L Ker (f)(i);
(iii) We have the representation

(o),

for all x in X;
(iv) We have the representation

- (10
[w]l™/;
for all x in X;

Moreover, each of the above statements implies the following statements
which are also equivalent:
(v) We have (z,w), = (z,w), for every x € X;
(vi) The norm ||-|| is Gateauz differentiable in w;
(vii) w is a point of smoothness for the space .

PROOF. The equivalences “(v) <= (vi) <= (vii)” follow by The-
orem [I] and Theorem 23

“(iii) = (iv)”. Suppose that f (z) ( i ”2w) for all z in X.
Then we have:

f<w>:—f<—x>=—( " Hﬁf)w) :< ﬁ(u) )

which proves the implication.
“(iv) = (iii)”. Is similar.
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“(iii) = (1)”. Is obvious.
“(i) = (iil)”. Let us assume that w L Ker (f)(s). Then for all
r € X we have y = f (z)w — f(w)x € Ker (f) and thus

(f (@)w— f(w)z,w), =0, z€X.

A simple calculation shows that
f(x) = (x, Jlw)w (w)Qw) ; xeX
Jwll™ /;

and since “(iv) <= (iii)”, the implication is also proved.
“(i) <= (ii)”. It is obvious by the definition.
“(iii) == (v)”. Let us assume that f (w) > 0. Then we have:

f (@) [Jwl]*
T,w), = ————
0= )
which shows that (z,w), = (z,w), for all z in X.

The case when f(w) < 0 follows likewise and we will omit the
details. g

REMARK 20. If any one of the statements (i), (ii), (iii) or (iv) from
above is valid, we also have that:

1F1l =

As a consequence of the above theorem, we can also state:

THEOREM 62. Let (X, ||-]|) be a real normed space and G its closed
linear subspace. Suppose vy € X\ G. Then the following assertions
are equivalent:

(1) To 1L G (S),’
(iii) For all f € (G® S, (xo))" with Ker(f) = G, we have the

representation
f(x
P = (o,
[zol™ /

forallz € G& S, (x);
(iv) For all f € (G® S, (xo))" with Ker (f) = G, we have the

representation
x
f(z) = (x, —f( 02) :170)
(B

for allz € G& S, (z0).

, e X,

|f (w)]

lwl
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CHAPTER 10

Characterisations of Certain Classes of Spaces

1. The Case of Giles Orthogonality

Let X be a complex normed space and [-,:] a L. — G.—s.i.p. which
generates the norm of X. We will denote by S the unit sphere, i.e., S :=
{z € X|||z|| = 1} and by B, the unit ball given by B := {z € X]| ||z|| < 1}.

DEFINITION 26. We will say that the point x € S is an extremal
point of the ball B if 1, 22 € B and v = % (x1 + x2) implies that
T =T = Ty.

It is known that if every point = of S is an extremal point for the
unit ball B, then (X, ||-]|) is a strictly convex space.

DEFINITION 27. We will say that the point x € S is a point of
smoothness of the unit ball B if there exists a unique functional f € X*

such that f (x) = ||f]] = 1.

It is also clear that if every point of the sphere S is a point a
smoothness, then the space (X, ||-||) is smooth.

The following characterization of extremal points in terms of the
semi-inner product in Lumer-Giles’ sense holds (see [1]).

THEOREM 63. Let (X, ||]|) be a complex normed space and x € S.
Then the following statements are equivalent:
(i) « is an extremal point of B;
(i) ||lz £ y|| < 1 implies that y = 0;
(iii) Re[y,x + y] = 0 implies that y = 0;
(iv) Ify € S and y # x, then Rely, z] < 1.

We need the following lemmas which are also interesting in them-
selves [1].

LEMMA 4. Let (X,||-||) be as above, x € S and y € X such that
letyl| < 1. Then z L y(G) and for every t € [—1,1] one has
o+ g = 1.

PRrooOF. Using the properties of L. — G.—s.i.p., we can state that:

Az + py, 2] = Az, 2] + ply, 2]
151
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for all A\, u € C and z,y, z € X; and one has the inequality

| 9l < ]l - [lyll

for all z,y € X.
Now, if z € S, and ||z £ y|| < 1, we get

1+ [y, 2]] = [z £y, 2] < [le £yl |lz]] <1
which shows that [y, 2] = 0 and for every A € C we have
1= |z 4+ My, z]| < ||z + Myl

For A = £1, we obtain 1 < |z £y| < 1, ie, ||z £ y|| = 1. Now let
€ [-1,1]. Then

[z tty,z] = 1< ||z ty| =]z—ty+te Lty
= [I=t)ha+txty||<1-t+t=1
which gives ||z £ ty|| = 1, and the lemma is thus proven.

LEMMA 5. Let (X, ||-||) be as above, and [-,-] a L.—G.—s.i.p. which

generates the norm ||||. Then:

(y.7); < Rely, 7] < (y,2),
forall z,y in X.
PROOF. Let us consider the mapping f, : X — R, f, (y) = Re[y, z].

Then it is obvious that z 1 Ker (f,) (G) and by the use of Proposition
32] it follows that x L Ker (f,)(B). Now, Theorem [51] yields that:

(i), = o = ().
for all y € X, i.e.,

(y,2); < Rely, 2] < (y,2),
for all y € X, and the proof is completed. &

PROOF. (of the Theorem) “(i) <= (ii)”. Let ||z £y| < 1. Put
z+y=uvand x —y=v. Thenz =3 (u+v) and u,v € B. By (i), we
have x = y; i.e., y = 0.

Now, let z = %($1—|—ZL‘2) with zq, o € B. Let us put y =
s (1 —a2). Then z +y = z; and 2 — y = x5 and thus ||z +y|| < 1.
By ( i), we get y =0, i.e., 11 = x5 = x and the statement is proved.

“(ii) <= (iii)”. Let us assume that Re [y, z £ y] = 0. Then
le£ylI* = Relr+y,x+y]=Relz,x+y]£Rely,z £y
S ESE

thus ||z +y|| < 1.
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Now, by Lemma [4 for all ¢ € [~1, 1] we have ||z + ty|| = 1. Using
Lemma [5] we can write:

.l E+ Nyl -1 lz+(Et+ Nyl -1
< < .
,\h—f(r)l— A Rely,@+1y] )\l—>0+ A

Since Hx + (% + )\) yH =1 for every \ € [—%, %}, the above limits are
zero for t = % and t = —3. Consequently,

1

5
1

Re {y,xiéy} =0

and then

1 1
Re |-y, 2+ -y| =0
e{zy,x zy} :

which implies

1
§y =0, ie.,y=0.
“(ii) <= (iv)”. Let y # = with y € S and Re [y, 2] = 1. Then
I+1=Relz+yz]=lz+ya]<[zt+y[l<1+1
ie, lr+y||l=2 Ifze+y=vand z —y =, thenx— 5 (u+wv) and
y = 1(u—v) and ||%]| = 1. Consequently, |4+ 2| < 1 and by (ii),
5 =0, i.e., y = x which produces a contradiction.

Now, let y # 0 and |z £ y|| < 1. By virtue of Lemma [4] we have
Re[y,z] =0 and ||z £ y|| = 2, and, by (iv) (for y # 0) we get
Re[r —y,z] =1—Rely,z] < 1, ie, Rely,z] <0,

which contradicts the relation Re [y, z] = 0.
The theorem is thus proved. &

COROLLARY 15. Let (X, ||-]|) be a complex normed space. The fol-

lowing statements are equivalent:
(i) The space (X, ||-||) is strictly convex;

(ii) For allxz € S and ||z £y|| <1 implies that y = 0;
(iii) For allx € S and Re [y, z + y] = 0 implies that y = 0;

(iv) For every x,y € S and y # x implies that Re [y, z] < 1.

REMARK 21. Using the property (iv) of Corollary we can easily
see that the spaces I* (C) and € [a,b] are not strictly convex spaces.

a) For the space I* (C) it is known that the functional

TEYk
oyl =yl p_ =
y;géo |yk|
G.—s.i.p. on I (C). The vectors x = (i,0,...) and

a L —
= (% % 0,. ) belong to S, y # x and Rely, z| = 1.
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b) By a function y € €[a,b], let us denote by the real number t
in [a,b] for which

lyll = max fy (1) =y (t) .

Then the functional [x,y] ==z (t;) y (t,) is a L.—G.—s.i.p. on
¢ [a, b] which genemtes the norm of €[a,b]. For z(t) =1 and

y(t) = (b—a) " (t - a) we have lal] = gl = 1 and = £ y.
On the other hand, we have:

Re [y’x] = [yax] =2 (b) Y (b) =1,
which shows that € [a,b] is not strictly conver.

Now, we will give a characterisation of smooth normed spaces in
terms of Birkhoft’s and Giles’ orthogonality.

THEOREM 64. Let (X, ||-||) be a complex normed space. The fol-
lowing statements are equivalent:
(i) X is smooth,
(ii) We have y L x(B) if and only if Re[z,y] = 0 where x,y are
vectors in X.

PRrROOF. Firstly, we observe that Rely,z] = 0 implies that y L
x (B). Indeed, for every A € R and z,y € X we have:
lyl* = llyI* + ARe [z, 9] = Re [y + Az, ]
< |y + Az, yll < [yl ly + Az|
ie.,
lyll < |ly + Az|| for all A € R,

which means that y L z (B).
On the other hand, if y L z (B), we have:

ly + Azl = [yl ly + tzfl = llyll
A t

(10.1) <0<

for all A < 0 and t > 0.
Finally, let us observe, by Lemma [5], we also have the estimation:

o bl =l Relr) _ s el
t—0— t ‘ | Yy | ’ t—0+ t

(10.2)

Now, let us assume that X is smooth. Then

tr| — tr| —
el =Dyl _ et = ol
t—0— t t—0+ t

and by ((10.1)) and ((10.2)), we can state:

Re [z, y] = 0.
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Let us assume that (ii) holds. If [-,-]; is another L. — G.—s.i.p.
on X which generates the norm |||, then it is clear that Re [z, y] and
Re [z, y], are semi inner products in the sense of Lumer-Giles on the
real space X. Put f, (z) := Re[z,y] and g, () := Re|z,y],, v € X.
Then f, and g, are two bounded linear functionals on the real space
X. We have g, (r) = 0 implies Re [z,y], = 0 and then y L z (B).

By (ii), it follows that Re [y, z] =0, i.e., f, (x) = 0. Consequently,

Ker(g,) € Ker (f,)
and similarly

Ker(g,) 2 Ker (fy),
which means that

Ker (gy) = Ker (fy) -
Since g, (y) = f, (y) = ||y||%, it follows that f, = g,, i..,
Re[z,y] = Relz,y],, forall z,y € X.
On the other hand
[z,y] = Relz,y] —iReliz,y] = Relz,y]; — iReliz,y),
= [z,y],, foralzyeX,
thus there exists a unique L. — G.—s.i.p. on X which generates the

norm ||-||. Using Proposition [4] we conclude that (X, ||-||) is smooth.
|

THEOREM 65. Let (X, ||-||) be a real (complex) normed space. The
the following statements are equivalent:
(i) X is smooth,
(ii) we have y L x (BJ]) if and only if y L x (G), where x,y are
vectors from X.

PRroOF. If the space is real, the proof is contained in the above
theorem.
“(i) = (ii)”. Suppose that X is complex and y L x (J), i.e.,

ly + Azl > [y
for all A € C.
If A € R, then we have ||z + Az| > ||z||, which implies, by (i) that
Re [z, y] = 0.

On the other hand, we have:
|y + itz| > |ly|| forallt € R
which implies that Re [iz, y] = 0.
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Since [z,y] = Re[x,y] — i Re[iz,y|, we obtain that [z,y] = 0, i.e.,
y Lz (G).

Asz 1 y(G) implies z L y (J) in every complex normed space, the
implication “(i) = (ii)” is proven.

“(ii) = (i)”. Let us assume that [,-] and [, -], are two L. —
G.—s.i.p.s which generate the norm ||-||. The functionals f, (z) := [z, y]
and g, () = [z,y], are linear and bounded on X. As above, we can

state: Ker (f,) = Ker(g,) and since f, (y) = g, (y) = ||ylI%, it follows
that f, = g, and consequently, [-,-] = [-,-];, which shows that X is
smooth. &

The following lemma is interesting as well.

LEMMA 6. Let (X,|||) be a normed space and [-,-],, [-,+], are two
L. — G.—s.i.p.s on X which generate the norm ||-||. Then the following
statements are equivalent:

(i) = Ly y(G) implies x Ly y (G) where x,y are vectors in X;
(ii) [z, w], = [z, w], for all z,w in X.

Proor. “(ii) = (i)”. It is obvious.
“(i) = (ii)”. Let w € X, w # 0 and suppose that x is in X. Then
[z, w], w — |Jw||” z L; w(G) because we have:

[ 0]y w = [lw]* 2, 0], = [z,0], [w,w], —[Jw]|* [,w],
= [Jwl|* [z, w] = [lw]* [, w], = 0.
Now, by (i) it follows that [z, w], w — |w|]*z Ly w (G), which means
that:
[z w]y w — JJw]|* 2, w], = 0,
ie.,
0 = [z,w], [w,w], — 0] [z, w], = 0] [z, w], = [zw],).
Since ||w|| # 0, one gets
[z,w], = [z,w], forall ze€ X.
If w =0, then also
[2,0], = [2,0], forall z € X,
which means that [-, -], = [-,],- §
Now we can state the following theorem.

THEOREM 66. In a normed space the orthogonalities induced by two
semi-inner products in the sense of Lumer-Giles are either incompara-
ble or coincidental.
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The proof is evident by the above lemma and we will omit the
details.
COROLLARY 16. Let (X, ||]|) be a real (complex) normed space.
Then the following statements are equivalent.
(i) X is smooth;
(ii) There exists a L. — G.—s.i.p. for which

x Ly(B[J]) implies = Ly (G),

where x,y are vectors in X.

2. The Case of Milici¢ Orthogonality

Now, we will give some results regarding the characterisation of
smooth and strictly convex normed spaces in terms of g—orthogonality.
We will follow the paper [2] of Milici¢.

The first result is embodied in the following theorem.

THEOREM 67. Let (X, ||-||) be a real or complex normed space. Then
the following statements are equivalent.

(i) X is smooth,
(ii)  Ly(B) iff v L y(g), where z,y are vectors in X .

PRroOOF. Firstly, let us assume that the space X is real. If X is
smooth, then there exists a unique L. — G.—s.i.p. which generates the
norm ||-|| and this s.i.p. is given by

(10.3) [z,y] = (z,y), = (z,9); = (z,9),, v, yeX.

Now using the implication “(i) = (ii)” of Theorem (65| (the real case),
we obtain that the orthogonality in Birkhoft’s sense is equivalent with
that of Giles, and, by the above equality, with that of Milic¢i¢.

Let us suppose that “(ii)” holds. Fix f in J (z) (J is the normalized
duality mapping). Then = L Ker (f) (B) (see for example Corollary
and by “(ii)” we deduce that x L Ker (f)(g). This shows that
Ker (f) C Ker (-, z),.

On the other hand, if there exists y € Ker (-, ), and y ¢ Ker (f),
then we have y = Az + h with A € R and h € Ker (f). Consequently,
by the use of the properties of (-, ~)g, we have:

0=(y,2),= Az +h,2) = Alz|* + (h,2), = A |||

from where results A = 0 and y = h € Ker(f), which produces
a contradiction. In conclusion, we have Ker(-,x), C Ker(f), ie.,
Ker (-,z), = Ker (f). Since (z,2), = |z||> = f (), we deduce that
(‘7 x)g = f
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Since the formula defines a L.—G.—s.1.p. for which Re [z, y| =
0 <= x L y(B), in virtue of Theorem , we can conclude that X is
smooth.

Now, suppose that X is complex and let Xk be the restriction of X
over the real number field R. Xp is a normed space. If X is smooth,
then

T (x,y) =Ty (z,y) forevery z,ye X; z#0

where

et tyl -l
T (@y) = lm "

,r,ye X; v #0

which clearly implies that
T (2,y) = T. (z,y) for every 2,y € Xz,

i.e., Xg is also a smooth normed space in which we have the condition
Lc(ii)w .

Conversely, if “(ii)” holds, then 7_ (z,y) = 7, (z,y) for all z,y €
Xg, which implies that the same relation holds for all x,y in X, i.e.,
X is smooth. g

The second result contains a characterisation of strictly convex
spaces in terms of g— orthogonality.

THEOREM 68. Let (X, ||-||) be a normed space. Then the following
statements are equivalent:

(1) X is strictly convex;
(i) Ifr L (x —y)(9) and z,y € S(X), then x =y, where S (X)
is the unit sphere {x € X| ||z|| = 1}.

PROOF. Let us assume that X is strictly convex and z,y € S (X)
with L (z —y) (g). Then we have

0=(z—y2), = 2]’ - (y,2),=1-(y,2),; ie, (y,2), =1
and
(@ +y.2), = |* + (y,2), = 2
On the other hand, we have:

< [l flz + gl <2

2 = ‘(x—l—y,x)g

and then ||z + y|| = 2 and by the strict convexity of X we deduce that
r=y.

For the converse, we need the following lemma due the Guder and
Strawther (see for example [2]).
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LEMMA 7. A normed space is strictly convez iff x # y implies that
J(x) N J(y) =0, where J is the normalised duality mapping.

The proof of this lemma is obvious.

Let us assume that (ii) holds, but X is not strictly convex. Then,
by Lemma [7] there exists z,y € X with  # y and J (z) N J (y) # 0.
Let ¢ € J(x) N J (y). Then we have

(@) = llellllzll, @) =llelllyl and |zl = [lel =yl
Put
vo =/ |zl yo = y/ llyll and ¢q:= @ llell.
It is obvious that ¢, € J (o) N J (yo). Then

o (20 +y0) = 2 < loll [lzo + woll = [lzo + yoll <2,

which gives ||z + yo| = 2. Let us put u = 230 ¢ = =¥ Then

lul| =1, ||[v|| <1 and ||u+v|| = 1.
Now we will state two lemmas that are also important in themselves.

LEMMA 8. Ifz,y € X, ||z £ y|| < ||z|| (x # 0) then for all f € J (x)
we have f (y) = 0.

PRrROOF. Let f € J(X). Then

2 2
[flexy)l=f @)= fWl= [l f@)| <zl llz £yl < =l
It is easy to see that the system of inequalities

zll” + 2| < =],
zeC
z)l* = 2| < [l=]l,

has the unique solution z = 0, i.e., f(y) = 0. 1

LEMMA 9. The vector x € X is normal on the hyperplane H,
i.e., d(x,H) = ||z|| iff there exists a bounded linear functional f with
fH{0Y) = H and such that f (x) = |[f]| [lz].-

Now, using Lemma [§, we can state that Re f (v) = 0 for every
f € J(v). By Lemma [J] we deduce that there exists f € J(v)
such that Re f (v) = (v,u),. Consequently, (v,u), = 0 from where

we have (%;%,u)g = 0 or (u—yo,u), = 0 which is equivalent to

u L (u—yo,u)(g) (u,y0 €S (X)).

By condition “(ii)”, it follows that u = g, thus zy = yo and also
xr =y, which is a contradiction.

Consequently, X is strictly convex and the theorem is proved.
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CHAPTER 11

Orthogonal Decomposition Theorems

1. The Case of General Normed Linear Spaces

Let (X, ||-]]) be a real or complex normed linear space and E a
nonempty subset of X. By E+) we will denote the orthogonal com-
plement of E in Birkhoff’s sense, i.e.

(11.1) EYB) .=y e X|y L z(B) for each z € E}.

It is obvious that 0 € E+®) and E N E+®) C {0} . However, E+(5) is
not generally a linear subspace of X.

The notation X = E+ E+®) (X = E ¢ E+P)) will be understood
as: for any x € X, there exists a (unique) 2/ € E and a (unique)
2" € E+B) such that v = 2’ + 2”.

The following result holds [2].

THEOREM 69. Let (X, ||]|) be a reflexive Banach space. Then for
any E a closed linear subspace of X, we have the orthogonal decompo-
sitton:

(11.2) X =E+EH®,

PROOF. Let E be a closed linear subspace of X with E # X and
reX. Ifx € E, then 2 =z + 0 with 0 € B+,

If x ¢ E, since E is reflexive, then there exists a best approximant
in E, i.e., there exists an element 2’ € E such that ||z — 2'|| = d (z, F) .

Let A € R and y € E. Denote z” := x — 2’. Then

o+ Ml = lle = & + Xyl = Il = &' = W)l = e = '] = [}a"]

for any A € R and y € E (since, obviously, ' — Ay € FE). Thus,
" € EYB) e, x =2 4+ 2" where 2’ € E and 2’ € E+®) and the
proof is completed.

The following theorem provides a decomposition in a direct sum of
the space X [2].

THEOREM 70. Let (X,||-||) be a strictly convex reflexive Banach
space. Then for any E a closed linear subspace in X, we have the
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decomposition:
(11.3) X=EoE®,

PrROOF. We need to prove only the unicity of the decomposition
with elements from E and E-(5),
Assume that there exists an element x € X, so that

r = 2 +2" with 2/ € E and 2" € P,
y = v +vy" with ¢ € E and y" € B+,
Then, as above, z — 2’ L E(B),z—vy L E(B).
We utilise the following well known lemma characterising the best
approximants in normed linear spaces (see for example [5, p. 85]).

LEMMA 10. Let (X, ||-]]) be a normed linear space and E its non-
dense linear subpace. If o € X\E and go € E, then gy € Pg (z0)

(where Pg (xy) = {go € Elllgo — ol = ;QgHg —xOH}) if and only if
.Io—goJ_E(B).

We deduce that a',y € Pg(x), which contradicts the strict con-
vexity of X (see for example [5 p. 102]). 1

2. The Case of Smooth Normed Linear Spaces

In what follows, we will apply the general results obtained above
for the particular case of smooth normed linear spaces.

Let E be a nonempty subset on the normed linear space (X, ||-]|)
and [-,-] a L.-G. s.i.p. generating the norm ||-||. The set E+(©) defined
by

(11.4) EH9 = {y e X|y L z(G) for each z € E}

will be called the orthogonal complement in Giles” sense, or, the Giles’
(G) —orthogonal complement for short.

We observe that 0 € B+ ENEHE) C {0} and v € EH 9 a € K
imply ax € E+© but, in general, (%) is not a linear subspace of X.

The following result holds (see also [2]).

THEOREM T71. Let (X, ||||) be a (strictly convex) smooth reflexive
Banach space. Then for any E a closed linear subspace in X, we have
the orthogonal decomposition

(11.5) X=FE+E"Y (X=E@FE"Y).

PROOF. Since, in the case of smooth normed linear spaces, the
Birkhoff orthogonality is equivalent to Giles’ orthogonality, the proof
follows by the above two Theorems [69 and [70] u
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The following concept was introduced in [1].

DEFINITION 28. Assume that (X, |-||) is a smooth normed linear
space. It is said to be of (N) —type if the L.-G.-s.i.p. [-,-] that generates
the norm satisfies the condition:

(11.6) 2,y + 2]] <z, yll + [z, 2| for any 2,y,z € X.

REMARK 22. It is obvious that any inner product space is a smooth
normed space of (N) —type. It is an open problem whether the prop-
erty (N) is characteristic for inner product spaces. We may prove the
following fact (see for example [1, Theorem 2.3]).

THEOREM 72. Let (X,||-]|) be a smooth normed linear space of
(N) —type. If E is a closed linear subspace in X, then E+S) is also a
closed linear subspace in X.

PROOF. Assume that 2,y € E& . Then for any x € E we have
e,z +y]| < |[le, z]| +[[e, y]| = O

implying  +y € E+(),

Since a € K, z € EHS obviously imply az € EHY | we deduce
that E is a linear subspace in X.

Consider now the functional p. : X — R, p. (z) = |[e, z]| where
re X, e#0.

Let z, — x in X. Then

[lle, zall = lle, ][] = [pe (2n) = pe (2)] < pe (20 — )
= [le;xn — 2| < lel[ lzn — =],

showing that |[e, z,]| — |[e, z]| .
Now, if 3, € E+%) and y,, — y, then for any e € E we have

= [[e, ]l

0= [le,ya]l = lim [le, yn]| = ‘[e,gl%yn}
showing that y € E-©). Thus, E® is closed and the theorem is
proved. 1

The following result holds [1].

THEOREM 73. Let (X, ||-||) be a smooth reflexive Banach space with
the (N) —property. Then for any E a closed linear subspace in X, we
have X = E ® E+ as a linear topological direct sum.

PROOF. We need to only prove the unicity of the representation.
Let x € X and

r = 2 +2" with 2/ € E and 2" € EH9),
= ¢ 49" with ¢/ € E and ¢ € EX9,
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be two representations of the vector z with elements from F and E+(©).
Then obviously,

2z — y/ — " y//
and since 2’ — ¢y € E, 2" — 3" € E*+ and EN E+% = {0}, we obtain
2=y and 2/ =" o

The following corollary is natural to be stated [1].

COROLLARY 17. Let (X,||-||) be a smooth reflexive Banach space
with the (N) —property. Then X is topological-linear isomorphic to a
Hilbert space.

Proor. Follows by the above theorem and by the well known
Lindenstrauss-Tzafriri theorem:

THEOREM T74. Let (X, ||-||) be a Banach space. If for any E a
closed linear subspace in X there exists a closed linear subspace F' such
that X = E @ F as a linear-topological direct sum, then (X, |-]|) is
topological-linear isomorphic to a Hilbert space.

3. The Case of () —Banach and (5SQ) —Banach Spaces

Let E be a nonempty set in the (Q)[(SQ)] —normed linear space
X. The set

EHOISQT .= £ e X|y L 2(Q)[(SQ)] for any = € E}

is called the @—orthonormal [(SQ) —orthonormal| complement of E in
X.

It is obvious that 0 € E+@ISQ)] g EH@ISQ! C {0} and neither
E+@) nor E+5(@ are linear subspaces of X.

The following result holds [3].

THEOREM 75. Let <X, H||q> be a Q— Banach space. Then for any
E a closed linear subspace in X, we have the decomposition
(11.7) X =EoEH@,

PRrROOF. We know that (X -l q> is a reflexive and strictly con-

vex Banach space, being a uniformly convex Banach space (see for
example Theorem 31). It is also a smooth space, being uniformly
smooth (cf. Theorem 32). Since the @)—orthogonality is equivalent
to (G) —orthogonality (this follows from Proposition 16, for example),
the result may be obtained via Theorem [70] &

Analogously, the following result holds [4].
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THEOREM 76. Let (X, H'qu) be a (SQ)—Banach space over the

real or complex number field. Then for any E a closed linear subspace
in X, we have the decomposition

(11.8) X = Eg@ES9,
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CHAPTER 12

Approximation of Continuous Linear Functionals

1. Introduction
Let (X, ||-||) be a real normed space and consider the norm deriva-
tives (see [2] or [8]):

oy + ) =yl
o= 1
@D =, m S

for all z,y in X.

For the sake of completeness we list some usual properties of these
mappings that will be used in the sequel [2]:
(i) (z,2), = |z||” for all z in X;
(ii) (—= ) (x,—y), = — (z,y), if x,y are in X;
(iii) (ax ﬁy) = af (z,y), for all z,y in X and aﬁ > 0;
(iv) (a%—i— y,x), = a(z,z), + (y,z), if 2,y belong to X and « is
in
(v) the element z in X is Birkhoff orthogonal over y in X, i.e.,
[+ tyl| = [l]| for all # in R iff (y,z), <0 < (y,2),;
i) (a +9.2), < ol ] + (y.2), for all 2.y, = in X:
(vii) the space (X, ||-]]) is smooth iff (y,z), = (y,z), for all z,y in
X oriff (+,-), is linear in the first variable;

p

where p = s or p = 1.

For other properties of (-, ~)p in connection to best approximation
elements or continuous linear functionals, see [2] where further refer-
ences are given.

2. A Characterisation of Reflexivity

To recall some well-known theorems of reflexivity due to R.C. James,
we need the following concept: the nonzero element u € X is a maximal
element for the functional f € X*if f (u) = || f]| [|ull, [9, p. 35].

THEOREM 77. [6] Let X be a Banach space. X is reflexive iff every
nonzero continuous linear functional on E has at least one mazximal
element in X.

Another famous result of R.C. James is the following.
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THEOREM 78. [7] Let X be a Banach space. Then X is reflexive iff
for every closed and homogeneous hyperplane H in X (i.e., H contains
the null element) there exists a point u € X\ {0} such that uw Lg H.

The following characterisation of reflexivity in terms of norm deriva-
tives also holds.

THEOREM 79. [3] Let X be a Banach space. X is reflexive if and
only if for every continuous linear functional f on X there exists an
element u in X such that the following inequality holds

(12.1) (z,u), < f(z) < (z,u), forallz in X
and || f]| = [lull

PRrOOF. Let H be a closed and homogeneous hyperplane in X and
f + X — R be a continuous linear functional on X such that H =
Ker (f). Then from ((12.1]) it follows that u Lz H and by Theorem
we conclude that X is reflexive.

Now, assume that X is reflexive and let f be a nonzero continuous
linear functional on it. Since Ker(f) is a closed and homogeneous

hyperplane in X, then there exists, by Theorem [78] a nonzero element
wp in X such that:

(12.2) (x,wp);, <0< (z,wp), forall xze Ker(f).

Since f () wo— f (wp) z € Ker (f) for all x in X, from ((12.2)) we derive
that:

(12.3)  (f (x) wo = f (wo) #,wo); <0 < (f (&) wo — f (wo) x, wo),

for all x in X.
On the other hand, by the use of norm derivative properties, we
have

(f (@) wo — f (wo) z,wo), = f () [lwol|* = (, f (wo) wo),, z€X,

where p # ¢, p,q € {3, 5} .
We conclude, by ([12.3)), that

(x,f(wo)wo)'sf(x)é (IM) reX,

J[wol|? [Jawo |
from where results
(z,u);, < f(z) < (x,u), forall zin X

J(wo)wo

where u := 2.
[[woll




3. APPROXIMATION OF CONTINUOUS LINEAR FUNCTIONALS 173

To prove the fact that || f|| = ||u||, we observe that

“allllull < - (@ —u), = (@.u); < f (@)
< (@), < |zl ], =€ X,
and
TR AR C

lall = [l

The theorem is thus proved. g

REMARK 23. If u is an “interpolation” element satisfying the rela-
tion then u is a mazximal element for the functional f.
Indeed, we have f (u) = |[u|® and since |ju| = ||f| we obtain f (u) =
11 el

REMARK 24. The above theorem is a natural generalization of Riesz’s
representation theorem which works in Hilbert spaces via a result of
R.A. Tapia [10] for smooth spaces which is embodied in the following
corollary.

COROLLARY 18. [3] Let X be a real Banach space. Then the fol-
lowing statements are equivalent:

(i) X is reflexive and smooth;
(i) for every continuous linear functional f : X — R there exists
an element u in X such that:

f(z)=(z,u), foralzeX

and || ]| = llull

In what follows, we shall point out other approximations of contin-
uous linear functionals on real normed spaces in terms of norm deriva-
tives.

3. Approximation of Continuous Linear Functionals
Let f € X* with ||f|| = 1 and let £ > 0. Define [1], p. 1]:

K (f,k) = {z e X[|lz]| < kf (2)};
K (f, k) is a closed convex cone. If £ > 1, then the interior of K (f,k)
is nonempty.

THEOREM 80. ([3]) Let X be a real normed space, € € (0,1), f €
X* with || f|l =1 and v € X, ||u|]| = 1 such that the norm derivative
(,u), (p=s orp=1i)is linear on X. If k > 1+ 2/¢ and (z,u), > 0
on K (f,k) then we have the estimation:

f(z) = (z,u),| <ellz|| forallzeX.
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ProOF. The proof follows from Lemma 3 of [1, p. 3| for the con-
tinuous linear functional g : X — R, g (z) := (x,u), and we shall omit
the details. &

The following approximation theorem for the continuous linear func-
tionals on a general normed linear space also holds [3].

THEOREM 81. Let f : X — R be a continuous linear functional
such that for any 6 € (0,1) there exists a nonzero element xys in X
with the property:

(A) (z,25); < Ozl lwpsll  for all x € Ker(f).

Then for each € > 0 there exists a nonzero element uy. in X such that
the following estimation holds:

(12.4) — |zl + (2 upe); < f (@) < (2, upe), + ez
for all x in X.

PROOF. Since f is nonzero, it follows that Ker (f) is closed in X
and Ker (f) # X.

Let € > 0 and put § (¢) := sy 1 d () > 1, then there exists an

element x4 in X\ Ker (f) such that

(12.5) (y,xm(g))i <6 () |yl ||zrs)| for all z € Ker (f).

If 0 < d(e) <1, and since the functional f has the -property, then
there exists an element 5.y in X\ Ker (f) (the fact that x4 is not
in Ker (f) follows from (A])) such that (12.5) is valid as well.

. X .
Put in all cases, z;. = ” f";(e)”. Then for all z in X we have
’ Tf6(e)

y = f(x)zpe — f (272) x belongs to Ker (f) which implies, by (12.5),
that:

(f (@) zpe = [ (zre) @ 216); S O(E) 1 (%) 272 = [ (27) ]|
<25 () 1=l < e l]

for all z in X.
On the other hand, as above, we have:

(f (@) zpe = [ (2re) m26); = [ (@) — (2, (212) 2p6),
for all  in X and denoting uys. := f (z7.) # 0, we obtain:
f(z) < (z,up.), +¢ellz| forall zin X.
Now, if we replace x by —z in the above estimation, we derive
f(x) > (w,up.), —e|lz| forall xin X
and the proof is finished. n
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COROLLARY 19. ([3]) Let X be a smooth normed space over the
real number field and denote [z,y] = (z,y), = (x,y),, v,y € X. If
f € X* is a nonzero functional such that for any § € (0,1) there exists
an element x5 € X\ {0} with the property

(A7) [z, 2 psll < O llxll sl for all x € ker (f),
then for any € > 0 there is an element us. € X\ {0} such that
(12.6) \f(x) =[x, upe]| <ellz|| for all x in X.

The proof is obvious from the above theorem and by the fact that
[-,-] is linear in the first variable.

To give the main result of our paper, we need the famous theorem
of Bishop-Phelps which says [1], p. 3]:

THEOREM 82. Let C be a closed bounded convex set in the Banach
space X, then the collection of linear functionals that achieve their maz-
imum on C' is dense in X*.

Now, we can state and prove our main result (see [3]).

THEOREM 83. Let X be a real Banach space. Then for every con-
tinuous linear functional f: X — R and for any € > 0 there exists an

element uys. in X such that the estimation holds.

PROOF. By the use of Bishop-Phelps’ theorem for C = B (0,1),
it follows that the collection of linear functionals which achieve their
norm on the unit closed ball is dense in X*, i.e., for every f € X* and
€ > 0 there exists a continuous linear functional f. on X which achieve
their norm on B (0,1) and such that

(12.7) |f (x) — f- (x)] <ellz|| forall xin X.
Suppose f. # 0 and f. (vs.) = ||f2|| with v;. € B(0,1). Then
fs (vf,s) o fs (Uf,a + Ay)

A A

forall A € R and y € Ker (f.), ie., vs. Lp Ker(f.).
By a similar argument as in Theorem [79, we get:

(x, —fa (V) ;}f’5> < fe(z) < (x, —fa (vre) ;Jf’6>
[vrell . [vg.|l .

0<flupell <1 = < lvge + Ayl

for all z € X. Denoting uy. := %, we obtain
Uf,E
(12.8) (z,ufe); < fo () < (w,up.), forall zin X.

If f. =0, then (12.4) holds with u;. = 0.
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Now, we observe that the relations ((12.7)) and ((12.8)) give the desired
evaluation and the proof is completed. &

COROLLARY 20. ([3])Let X be a smooth Banach space. Then for
every f € X* and for any € > 0 there exists an element us. in X such
that:

|f (ZL‘) - [xvuf,a]

where [-, -] is as above.

<e|z|| for all x in X,

4. A Characterization of Reflexivity in Terms of Convex
Functions

The following characterisation of reflexivity holds (see [5]).

THEOREM 84. Let X be a real Banach space. The following state-
ments are equivalent.
(1) X is reflexive;
(ii) For every F: X — R a continuous convex mapping on X and
for any xy € X there exists an element up,, € X such that
the estimation

(12.9) F(x) 2 F(x0) + (v — %0, Uru,);
holds for all x in X.

PRrROOF. “(i) = (ii)”. Since F' is continuous convex on X, F' is
subdifferentiable on X, i.e., for every xg € X there exists a functional

fzo € X* such that
(12.10) F(x) = F(x0) > fuo, (x —x9) forall zin X,

X being reflexive, then, by James’ theorem, there is an element wg,, €
X\ {0} such that wg,, L Ker(f;,). Since

Jao (@) WEzy — [ (Wrg,) x € Ker (fy,) forall xe X
by the property (vi), we get that

(fwo (l’) WFzy — fﬂco (wF,zo) x’wF,I0)¢

S 0 S (fxo (.I') WEF o — fCL“o (wF,IO) x7wF,IO)s

for all z in X, which are equivalent, by the above properties of (-,-)
with

p

(2, Upgy); < fao () < (@, Upg,), for all in X,

where
L fﬂﬁo (wF,mo) WE,zo

uF,xo = 3
[wEa |

Now, by ((12.10]), we obtain the estimation (|12.9)).
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“(ii) = (1)”. Let H be as in James’ theorem and f € X*\ {0}
with H = Ker (f). Then, by (ii), for F = f and xy = 0, there exists
an element uy € X such that

f(x) > (x,up), forall zin X.
Substituting = with (—z) we also have
f(z) < (x,up), forallzin X.
Now, we observe that uy # 0 (because f # 0) and then
(w,uf), <0< (z,up), forall zin H,
ie., uy L H and by James’ theorem we deduce that X is reflexive. 1

COROLLARY 21. Let X be a real Banach space. Then X 1is reflexive
iff for every p . X — R a continuous sublinear functional on X there
is an element u, in X such that

p(x) > (w,up,), for all xin X.

COROLLARY 22. [3] Let X be a real Banach space. Then X is

reflexive iff for every f € X* there is an element uy in X such that
(w,up), < f(x) < (w,ugp), forall x in X.

COROLLARY 23. [3] Let X be a real Banach space. Then X is
smooth and reflexive iff for all f € X* there is an element uy € X such
that

f(x) = (z,uy), forallwin X,

where p = s or p = 1.
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CHAPTER 13

Some Classes of Continuous Linear Functionals

1. The Case of Semi-Inner Products

The following local approximation of continuous linear functionals
on incomplete normed linear spaces in terms of semi-inner-products

holds (see [2]).

THEOREM 85. Let X be a normed linear space and [-,-] be a s.i.p.
on it which generates the norm. Then for all f € X*\ {0} and for any
e > 0 there exists a nonzero element us. in X and a positive number
Tt such that:

(13.1) |f (z) = [v,upe]| < e forallz € B(0,r;.),
where B (0,7;.) is the closed ball {z € X |||z|| <rpe}.
PROOF. Let f € X*\ {0} and £ > 0. Then there exists an element

yre € X\ {0} such that ||ys.|| = € and y;. is not in Ker (f).
We obtain:

s yrell < Myl lysell = < llyll

for all y € Ker (f).
Let us put y := f (2)ys. — f (yy.) * where x € X. Then y € Ker (f)
and:

I @) yre = Fyre) vypell S ellf @) ype = f (yre) el < 2 [1f] ]l

for all x in X.
On the other hand, we have:

U @)y = £ (re) w2 = £ @) lygell? = [ T Cpedvse|
for all x € X, which gives:
| (@) e = [z, f (yre) yrel| < 2 M f 2], @ € X,

from where results:

fa) - [x (M> yf,g]

181

< Zellfll=]
£




182 13. SOME CLASSES OF CONTINUOUS LINEAR FUNCTIONALS

for x € X.
Putting
f(yf,s)
fé‘ - < 62 yf,€ ?é O
and -
Tre = >0
ST

the theorem is proved. &

Another result which improves in one sense the above theorem is
the following ([2]):

THEOREM 86. Let X be a normed linear space and [-,-] a s.i.p.
on it which generates the norm. If f is a nonzero continuous linear
functional on X such that for every 6 > 0 there exists an element ¢
in X\ {0} with the property:

(13.2) o, zpoll < Olll Mgl for all z in Ker(f),

then for every € > 0 there exists an element uy. in X such that the
following estimation holds:

(13.3) |f () = [z, upe]| < ellz]| for all x in X.
PROOF. Let € > 0 and put § (¢) := a7y > 0- Then there exists an

element yy () in X\ {0} such that:

[y yrse ]| <6 ) Iyl |yrse |

for all y € Ker (f).

Put
Y£.6(e)

T yroe

zf
Then for all z € X we have
Yy = f($) Zfe — f(zf,a) r € Ker (f)a

which implies:

[f (@) 2pe = (zre) @26l <0 () 1f () 21 = f (210) 2
< 20 () 1A [l
< el

for all x in X.
On the other hand, we have:

[ (2 2e = F (2pe) 2] = £ @) = [0, F (ope) e
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for all z in X and denoting

Uf.e ::7f (zf,s)zf,a
the estimation ((13.3)) is obtained. §

REMARK 25. The relations (13.3)) is equivalent to:

(13.4) f (@) = [z, upel < €
for all z € B(0,1). So let f € X* with ||f|| =1 and let k > 0. Define:
K (f k) ={r e X |||zl < kf (z)},
then K (f,k) is a closed convex cone and if k > 1 then the interior of
K (f, k) is nonempty [1, p. 1].
THEOREM 87. Let X, [-,] be as above, € € (0,1) and f € X*,||f|| =
>

1. Ifue X, ||ull =1,k >14+2/c and [y,u] > 0 for ally € K (f, k),
then the following estimation holds:

(13.5) |f (z) — [z,u]] <ellz|| forallx in X

PRrOOF. Follows by Lemma 3, [1 p. 3] choosing g (z) = [z, u] for
all z in X. 1

Now, let [, -] be a given s.i.p on X which generates the norm of X.
The subset of X* given by:

R(X*[,-)={feX"|f(z)=[z,u] forallz € X and u € X},
will be called the Riesz’s class of continuous linear functional associated
with s.i.p. [-,-].

The following theorem holds (see [2]).
THEOREM 88. Let X be a normed linear space and [-,-] be a given
s.i.p. which generates its norm. If for every f € X*\ {0} and 6 > 0

there exists an element x5 in X\ {0} such that (13.2)) holds, then the
Reisz’s class R (X*;[-,+]) is dense in X*.

PrROOF. Let f € X*\ {0}. Then for any € > 0, by Theorem [36]
there exists an element uy. € X such that (13.3]) holds. Putting
fa X — K7 fe (:L') - [xuuf,e]
we obtain:
|f () — fe ()] < e||z| for all z in X.
That is, ||f — f:|| < € and the statement is proved. &
REMARK 26. By the use of Bishop-Phelps’ Theorem of density we

shall prove in the next section a similar result which works in smooth
Banach spaces.
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2. Some Classes of Functionals in Smooth Normed Spaces

Let X be a smooth normed linear space and [, -] be the (unique)
s.i.p. which generates its norm. We define the following class of con-
tinuous linear functionals on X (see [2]):

(1) James’ class: J (X*) given by:
J(X*) :={f € X" there exists u € B(0,1) such that f (u) = |/f|};
(2) Riesz’s class: R(X*) given by:
R(X") = R(X%[0])

where R (X*;[-,]) is as above;

(3) (P) —class: P(X™*) given by:
P(X™):={fe X" |Ker(f) is proximal }.
The following lemma is important in the sequel (see [2]).

LEMMA 11. Let X be a smooth normed linear space. Then we have:

(13.6) R(X*) = J(X*) = P(X*).
-

PROOF. “R(X*) C J(X*)". Let f € X*\ {0} and v € X\ {0}
such that f (z) = [z,v]. Then f (v) = ||v|| . Putting u = Ton» We obtain
fu) = |Ifl|l. If f =0 then v = 0 also gives f(v) = ||f|| and the
inclusion is proven.
“J(X*) € P(X*)". Let f € X*\{0} and u € B(0,1) such that
f(u)=|fIl. Then we have

faf <1220 _FOEN)

1/l I1£1l
for all A € K and y € Ker (f). What this means is that u L Ker (f)
(B) and, by Lemma 2.1 in [6], Ker (f) is proximinal.
“P(X*) C R(X*)”. Suppose that f € X*\ {0} and Ker (f) is prox-
iminal. Then, by Lemma 2.1 in [6], there exists a nonzero element
wo € X such that wy L Ker(f) (B). Since X is smooth, it follows
that wy L Ker (f) (G) and then, for all z € X we have:

wo L f(z)we — f(wo) x (G)

because
f(x)wo — f(wo) x € Ker (f)
for all x € X. Consequently,

[f (:E) wy — f (wo) ZL‘,wo] =0
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for all z in X, which is equivalent to

for all x in X. Putting

we have the representation f (z) = [z, v] for all  in X and the inclusion
is proven. I

REMARK 27. It is easy to see that in every normed linear space we
have, by a similar argument, the inclusions:

(13.7) ROX5 ) € J (X7 € PXT),
for all [-,-] a s.i.p. generating its norm.
By the use of the above lemma and Bishop-Phelp’s theorem (see
Theorem [82), we have the following density result (see [2]).
THEOREM 89. ([2]) Let X be a smooth Banach space. Then the set
J(X*) [P (X*) (R(X™))] is dense in X*.

PRrROOF. Consider in Bishop-Phelps’ theorem C' = B (0,1). Then
the collection of functionals that achieve their maximum on B (0, 1) is
equal to J (X*), and the statement is proved. §

COROLLARY 24. ([2]) Let X be a smooth Banach space. Then for
all continuous linear functionals f on it and for any € > 0, there exists
an element us. in X such that:

|f () — [z, use]| < ellz|| for all x in X.

The proof follows by the fact that R (X*) is dense in X*, and we
shall omit the details.

REMARK 28. If X is a Banach space, then by Remark [27 and by
Bishop-Phelps’ theorem we have that P (X™*) is dense in X* endowed
with the strong topology.

The following characterization of reflexivity in smooth normed lin-
ear spaces holds ([2]).

THEOREM 90. Let X be a smooth Banach space. Then the following
statements are equivalent:
(1) X is reflexive;
(2) J(X*)[P(X*) (R(X"))] = X~
(3) J(X*)[P(X™*)(R(X™))] is closed in X*.
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The proof follows by James’ Theorem, by Lemma |11} and by The-
orem |89 and we shall omit the details.

REMARK 29. Let X be a Banach space. Then X is reflexive iff
P(X*) = X*. This fact follows by the inclusion J(X*) C P (X*)
which holds in every normed linear space and, of course, by James’
Theorem.

Consequences: Let X be a smooth normed space and f be a nonzero
continuous linear functional on it. If

Bcer(s) == {h € Ker (f)[|Ih[| < 1}

is weakly sequentially compact in X, then there exists an element uy €
X such that:

f (@) =[z,us], ||fll = |lus] for all z in X.

If G is finite-dimensional in X, then there exists an element u; € G
such that:

f(x) = [x,uy] and [|f[l5 = [[uy]| for all x in G,

where

[fllg := sup{If ()], lz]] < 1,2 € G}

The proof of the first statement follows by Klee’s Theorem (see [4]
or [6, Corollary 3.1]) and by the fact that in smooth normed spaces
P(X*) C R(X™).

The second sentence is obvious.

2. Let X be a normed linear space and suppose that X* endowed
with the canonical norm is smooth. If ¢ € X*\ {0} satisfies the condi-
tions: Ker (¢) is o (X*, X) - closed or By is compact in o (X*, X)
or BKGT(@ is weak® sequentially compact in X*, then there exists a
functional f, € X* such that the following representation holds:

¢ (f) =1 fol" Nloll = I foll for all f e X7,

where [, -]" is the s.i.p. which generates the norm of X*(see also [?]).
The proof follows by Phelps’ Theorem [5], by Klee’s Theorem [4],
and by Lemma [II] We shall omit the details.

3. Applications for Nonlinear Operators
Let X be a normed linear space and A : X — X* be a nonlinear
operator satisfying the following conditions:
(1) A(ax) = aAx for all o in K and x in X;
(2) Ay, z)|* < (Az, x) (Ay,y) for all z,y in X.
The following proposition holds.
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PROPOSITION 40. ([2]) Let X be a normed space and A an operator
satisfying the conditions (1) — (i1) . If there exists a constant m > 0 such
that:

(i11) (Ax,z) > m||z||* for all x in X,
then for every f € X*\ {0} and € > 0, there exists an element wuy. €
X\ {0} and a positive number ry. such that:

[(f = Alupe), o) <eif [l <rpe.

PROOF. Let us consider the mapping [-, ], : X x X — K, [z,y], =
(Ay,z) . Then by the use of conditions (i) — (i7%) it follows that [-, -],
is a s.i.p. on X generating a norm ||-|| , which dominates the norm |||
of normed space X.

Since f € X*\ {0} it follows that f is continuous in (X, ||-||,) . By the
use of Theorem [85], for every € > 0 there exists a nonzero element g,
in X and a positive number g, such that:

‘f(l’) - [m7uf,e]A| S €

for all « such that ||z| , < ¢y, which implies:

. 1
(f = Aluge), o)l < e if o < —lzlly < 7.

where

Tfre =
and the proof is completed. 1

Another result is embodied in the following proposition [2].

PROPOSITION 41. Let X be a normed space, A an operator satisfy-
ing the conditions (i) — (ii1) and there ezists a positive number M such
that
(iv) M ||z||* > (Az,z) for all z in X.

If f is a nonzero continuous linear functional on X such that for every
d > 0 there exists an element xs5 in X\ {0} with the property that:

(13.8) [(A(zss),2) <Oz [|lzgs]
for all x in Ker (f), then for every e > 0 the equation:
(4; 1) Au = f

has an e—solution in X. That is, there ewists an element uy. in X
such that

[A (use) = fll < e
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PROOF. By condition (13.8)), for every n > 0, there exists an ele-
ment z7, € X\ {0} such that:

|2, 2p0la| < 0 ll2lls gl

for all z in Ker (f).
Applying Theorem [86], for every € > 0 we can find an element wuy, in
X such that:

€
| (@) = [ upe] 4| < e ]| 4
for all  in X, which gives:

[(f = Aluye), )| < e ]

for all x in X, which implies the desired inequality. Therefore the proof
is completed. §

The following result is an interesting consequence of Bishop-Phelp’s
Theorem of density [2].

THEOREM 91. Let X be a Banach space and A : X — X* be an
operator satisfying the conditions (i) — (iv). If A also has the property
(v) lim;oRe (A (y + tz),x) = Re (Ay, ) for all x in X,
then the range R (A) of operator A is dense in X*.

PRrROOF. By conditions (i) — (v) if follows that (X, ||-|| ,) is a smooth
Banach space isomorphic top-linear with (X, ||-||) . Using Corollary
of Theorem [89] then for every f € X* and ¢ > 0, there exists an
element us. in X such that:

19
1
Mz

S (@) = [, upel o] < [E4in

for all x in X, which implies

[(f = Alupe), )| < el

for all z in X, and the statement is proven. i

Next, we shall consider the following operatorial equation:
(A; f) Au= f, u € X and f is given in X*,

where A is an operator satisfying the conditions (7) — (i4i) and (v).

PROPOSITION 42. (]2]) Let X be a normed space and f € X*\ {0}
such that Ker (f) is proximal in the normed space (X, ||| ,) . Then the
equation (A; f) has at least one solution.
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PRrROOF. It is clear that (X, ||-]|,) is smooth and its norm is gener-
ated by s.i.p. [-,-],. Using Lemma , then there exists an element u
in X such that

(f,x) = (Au,z) for all z in X,
and the proof is completed. 1

~ CoRrOLLARY 25. ([2]) Let X be as above, f € X*\{0} such that
Brer(y) is weakly sequentially compact in (X, ||-|| ,) . Then the equation
(A; f) has at least one solution.

The proof follows by Proposition 42| and by Klee’s Theorem (see [4]
or [6l Corollary 3.1]).
Finally, we have the following surjectivity theorem [2].

THEOREM 92. Let X be a reflexive Banach space. If the operator
A: X — X* satisfies the conditions (i) — (v), then A is surjective.

The proof follows by Theorem [90] and we will omit the details.

4. The Case of General Real Spaces

The following approximation theorem for the continuous linear func-
tionals on a normed linear space holds [3].

THEOREM 93. Let f : X — R be a continuous linear functional
such that for any 6 € (0,1) there exists a nonzero element x5 in X
with the property:

(A) (z,255); < 0 ||x||||xss]| for all x in Ker (f).

Then for each € > 0 there exists a nonzero element uys in X such that
the following estimation:

—e[lzll + (2, upe); < f (@) < (@, upe), + el
holds, for all x in X.

PROOF. Since f is nonzero, it follows that Ker (f) is closed in X
and Ker (f) # X.

Let € > 0 and put § (¢) := - U d (¢) > 1, then there exists an
element x5 in X\ Ker (f) such that
(13.9) (v, 215)); <0 1Yll ||z 1500 for all y in Ker (f).

If 0 < § () < 1 and since the functional f has the (A))-property, then
there exists an element x5y in X\ Ker (f) (the fact that x5 is not
in Ker (f), follows from (A])) such that ([13.9) is also valid.
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_ i)
sl
f(x)-zpe — f (21:) x belongs to Ker (f) which implies, by (13.9), that

(f (@) - 2pe = F (2re) @, 2p); SO () If (2) 2 = [ (21) ]
<20 (e) [ Il < e [l

Put all cases z¢. : Then for all x in X we have y :=

for all z in X.
On the other hand, by the use of norm derivative properties, we
have:

(f(2) zpe = [ (2pe) @, 250); = [ (@) — (2, f (21) 1), s T E€X
and denoting uys. := f (24.) 2. # 0, we obtain
() < (w,upe), +e|lz|| forall ze X.
Now, if we replace x by —x in the above estimation, we have
f(z) > (z,up.), —€||z|| forall ze X,
and the proof is completed. 1

COROLLARY 26. ([3]) Let X be a smooth normed space over the
real number field and denote [x,y| = (z,y), = (x,y),, z,y € X. If
f € X* is a nonzero functional such that for all § € (0,1) there exists
an element x5 € X\ {0} with the property

(A7) [, 2yl < 0|zl lzpsll for all win Ker(f),
then for any € > 0 there is an element uss € X\ {0} such that
(13.10) \f(x) =[x, upe]| <ellz]| forallx € X.

The proof is obvious from the above theorem and by the fact that
[-,] is linear in the first variable.

5. Some Classes of Continuous Linear Functionals

Let X be a real normed space. We define the following classes of
continuous linear functionals on X (see [3]):

(1) James’ class, denoted J (X*) and given by
J(X*):={f € X*|there is v € B(0,1) so that f(v) = |/f|};
(2) (P) —class, denoted by P (X*) and given by
P(X*):={f e X*|Ker (f) is proximinal in X};
(3) (I)—class, denoted I (X*) and given by
I(X)
= {f € X"|there is u € X so that (z,u), < f(z) < (z,u), for all zin X}.
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The following theorem holds [3].
THEOREM 94. Let X be a real normed space. Then one has
I(X")=J(X")=P(X").
PRrROOF. “I (X*) C J(X*)”. Let f € X* and u € X such that
(13.11) (z,u); < f(z) < (x,u), forall z in X.
Then we have
=l lull < = @z, u), = (2, u); < f(2) < (z,u), < [lz] lu]], e X,

which implies
|f ()] < [lefHu]] for all z in X,
and then [|f]| < [u].
On the other hand, we have

ul ]

= [Jull,

which shows that || f|| > ||u|| and then || f|| = ||u]| .

Since f (u) = |ju|*, putting v = > We get f(v) = |If]] and then
the inclusion is proven.
“J(X*) C P(X*). Let f € X*\{0} and v € B(0,1), v # 0 so that
f (@) =1f]l- Then we have:

ol <1= 20 _LOEN)

1£1] 171

for all A € R and y € Ker (f), which means that v L Ker (f) and by
Lemma 2.1 in [6] it follows that Ker (f) is proximal.
“P(X*) C J(X*)". Let f e X*. If f =0, then holds with
u = 0. Suppose f # 0. Since Ker (f) is proximal, then by Lemma 2.1
in [6] there is an element wy € X, wy # 0 and wy L Ker(f). Since
the element y := f () wy — f (wp) = belongs to Ker (f) for all z in X,
we have, by (vi), that:
(13.12)

( (@) — f (wo) 7, w0); < 0 < (F () wo — f (wo) 7,w0), , @€ X

On the other hand, by the use of norm derivatives properties, we get
(f (@)wo — f (wo)%wo)p = f(x) Hw0H2 — (z, f (wo) wo)q> reX,

where p,q € {i,s} and p # q.
Consequently, (13.12) yields that:

(n£0920) <y (nF0) e

2 2
[[woll [[woll
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S (wo)wo
l[woll*

The proof of the theorem is completed.

and putting u := we obtain the desired estimation.

REMARK 30. If X is smooth, then the (I) —class can be written as:
I(X™):={f € X" there isu € X so that f (x) = [z,u] for all z in X}

and will be called the Riesz’s class associated to the smooth normed
linear space X. We denote this by R (X™*) (see Section@ of the present
chapter).

COROLLARY 27. ([3]) Let X be a smooth normed space over the
real number field and f : X — R be a continuous linear functional on
it. Then the following statements are equivalent:

(i) f is Riesz representable, i.e., f belongs to R (X™*);
(ii) f achieves its norm on unit closed ball;
(iii) Ker (f) is prozimal in X.
The proof is obvious from the above theorem and we shall omit the
details.
By the use of the previous result and Bishop-Phelp’s theorem we
can formulate the following density result ([3]):

THEOREM 95. Let X be a real Banach space. Then the class
J(X*)[I(X*) (P (X"))] is dense in X*.

ProOF. Consider in Bishop-Phelp’s theorem C' = B(0,1). Then
the collection of functionals that achieve their maximum on B (0,1) is
equal to J (X*) [I (X*) (P (X™))] (see Theorem and the statement
is proven. i

The following corollary is important because it gives a way to ap-
proximate the continuous linear functionals on an arbitrary real Banach
space in terms of norm derivatives.

COROLLARY 28. ([3]) Let X be a real Banach space and f : X — R
a continuous linear functional on it. Then for every e > 0 there exists
an element u. € X such that the following estimation

(13.13) =€ [lz]l + (z,ue); < f(2) < (2,ue), + 2 ||z
holds, for all x in X.

PROOF. Let € > 0. Then, by Theorem [95 there is a continuous
linear functional f. € I (X*) such that

(13.14) |f (x) — fo ()] < ez for all z in X.
However, f, satisfies the inequalities:

(13.15) (x,u.); < fe(x) < (x,u.), forall zin X
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with an element u, in X.

Consequently, the relations (13.14) and ([13.15)) easily give the de-
sired estimation ((13.13). &

COROLLARY 29. ([3]) Let X be a smooth Banach space and f :
X — R be as above. Then for every e > 0 there is an element ugs in X
such that:

f (@) = [z, ue]| < el
for all x in X.
The following characterisation of reflexivity in real normed spaces
also holds (see [3]).
THEOREM 96. Let X be a real Banach space. Then the following
statements are equivalent:
(i) X is reflexive;
(i) J (X*) [1 (X7) (P (X7))] = X7
(i) The set J (X*) [ (X*) (P (X*))] is closed in X* endowed with

the usual norm topology.

PRroOOF. It is known, by James’ theorem, that X is a reflexive Ba-
nach space iff J(X*) = X* which is equivalent, by Theorem , with
J (X*) is closed in X*.

The second part follows by Theorem (94] and we omit the details. B

COROLLARY 30. Let X be a real Banach space. Then the following
statements are equivalent:

(i) X is reflexive;
(ii) for every f € X* there is an element u, € X such that the
following “interpolation”
(w,up), < f(x) < (w,up), for all x in X
holds.

REMARK 31. If X is smooth, from the above corollary we recapture
the result of R.A. Tapia [T].

6. Some Applications
The following results are based on the inclusion “P (X*) C [ (X*)”
which was proved in Theorem [94] We will list these consequences.

(1) Let X be a (smooth) real normed space and f be a nonzero
continuous linear functional on it. If

Brer(sy == {k € Ker (f) |||k]| <1}
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is weakly sequentially compact in X, then there exists an ele-
ment uy € I such that:

(xvuf)i < f(:I)) < (xvuf>s (f (ZE) = [x7uf])

for all z in X and

LI = gl -

If G is finite-dimensional in X, then there exists an element
ug € G such that:

(z,ug); < [(2) < (z,uq),  (f(z)=[r,uc])

for all z in G and

1l = llual,
where [|f ]l := sup {If ()], llz <1, = € G}
The proof of the first statement follows by Klee’s theorem (see
[4] or [6, Corollary 3.1]) and by the above inclusion.
Let X be a real normed space and X* its normed dual (and
a smooth space). If & € X**\ {0} satisfies the conditions:
Ker (®)is o (X*, X) —closed or Bg,() is compact in o (X*, X)
or BK”(@ is weak® sequentially compact in X*, then there
exists a functional fg € X* such that the following “interpo-
lation” (representation) holds:

for all f € X* and

1] =l fall,

where (-,-)] (p = s or p = i) are the norm derivatives of the
dual norm.

The proof follows by Phelps’ theorem [5], by Klee’s theorem [4] and

by the inclusion “P (X**) C I (X*™)”. We omit the details.
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CHAPTER 14

Smooth Normed Spaces of (BD) —Type

1. Introduction

In what follows, X will be a normed linear space over the real
number field R. Consider the mapping

(lly + =) — [[yll)
). X XX —>R =i
() XXX =R (@), =l
which is well defined for all z,y in X. This semi-inner product on X
is called the superior semi-inner product (see [1], [2] and [6]). For the
sake of completeness, we list some usual properties of this semi-inner-
product that will be used in the sequel:

(i) (z,2), = ||lz|* for all z in X;

(ii) (ax,Py), = af(z,y), if af >0 and z,y € X;
(iti) (az +y,z), = a|z|* + (y,2), for all @ € R and z,y € X;
(iv) (—z,y), = (z, —y), for z,y € X;
V) (o4 9,2), < all 2] + (0, 2), for all 2,2 € X,
(vi) [(z, y),| < |z lyll if 2,y € X;
(vii) (-,-), is continuous subadditive in the first variable;
(vili) X is smooth iff (-,-), is linear in the first variable or iff (-,-),

is homogeneous in the second.

We also recall Tapia’s theorem of representation for the continuous
linear functional on smooth normed spaces (see [1] and [6]):

THEOREM 97. Let X be a Banach space. Then the following state-
ments are equivalent:

(i) X is reflexive and smooth;
(ii) for all f € X* there exists an element uy € X such that

[ (@) = (z,uf), forallzecX and | f|| = ||us].
For other properties of the superior semi-inner-product, see [1], [2]
and [6], [5].
2. Smooth Normed Spaces of (D) —Type

Following [3], start with the following definition:
197
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DEFINITION 29. The superior semi-inner-product (-,-), is said to
be continuous on X if:

(41)  lim(o i), = (y.2), forall e,y in X.

The following proposition holds [3].

PROPOSITION 43. Let X be a real normed space. Then X is smooth
if and only if the superior semi-inner-product is continuous.

PROOF. “(<=)”. By the superior semi-inner-product properties, we
have:

(1,2), _ o+ toll = Nzl _ (v, + ),

14.2 < <
(14.2) El : e
and

Y,z + sy), (y, ),
(14.3) W2 E Y (12 4 sy = |Je]) <

[l + syll ]

for all z,y in X, x 20 and t > 0, s < 0 such that x + ty, x + sy # 0.
Since (-, -), is continuous, we have:

N [ 2 R0

10 t ||
and

S e e )

510 $ ]l

for all z,y € X, x # 0, i.e., the space X is smooth.

“(=)”. By relations ([14.2) and ([14.3]) we have:

, ) |lx+ 1t

iy BRI <),

< Uz +2ty[| — [z + tyl) [« + tyl]

- t
and

2 _
Gy ool ol
- o) o+ syl

forall z,y € X,z #0and t >0, s < 0.

Since X is smooth, the inequalities (14.4) and (14.5) yield that
PH& (y,x +ty), = (y,x), and the proof is completed. We omit the

details. &
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Now, let X be a smooth real normed space and [-, -] be the semi-
inner-product generating its norm ||-||. Then [-, -] is said to be derivable
on X if the following limit exists

[y, JZ], = lll% [ya T+ t:li] — [y’ LL']

for all z,y in X.

DEFINITION 30. A smooth normed space (X;||-||) is said to be of
(D) —type if its semi-inner-product is derivable on X.

EXAMPLE 3. Every inner-product space (X; [, ]) is a smooth normed
space of (D) —type.
Indeed, for every x,y € X we have:

t —

= |lylI*-

EXAMPLE 4. Let (X;[-,-]) be an inner-product space over the real
number field and A : D (A) C X — X be an operator on linear subspace
D (A) with the properties:

(a) A(ax) =aA(X) fora € R andz € D(A);
(aa) [z, Ax] > 0 for x € D(A) and [z, Az] = 0 implies x = 0;
(aaa) |[z, Ay]|* < [z, Az] [y, Ay] for all z,y € D (A);
(av)

av) the Gateaux differential

(VA) (2) -y = i AE W) = A(@)]

t—0 t
exists for all x,y € D (A);
Then (D (A);||-]|,) where ||z||, = [.T,AIE]% for © € D(A) is a
smooth normed linear space of (D) —type.
Indeed, simple calculus gives:

o eyl = el
-, ] 4 is continuous on X and:

ly, 2]y = ly. (VA) (x) -y] for allz,y € D(A).

EXAMPLE 5. Let (€2, A, p) be a measure space consisting of a set
Q, a o—algebra A of subsets of Q2 and a countably additive and positive
measure (1 on A with values R U {oo}. If LP (Q) is the real Banach
space of p—integrable functions on 0 with p > 1, then it is well-known
that (see for example [7]):

T+t — ||l
et tyll, = llal,
t—0 t

= |y, Az] for x € D(A),

||S€||§,_”/Q @ ()" (sgna (s)) y (s) du (s)
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forall x,y € L (), x # 0.
Suppose p > 2 and put p =2k + 2, k > 0. Then
||f€+1ty||2 — ||z -
— g R a2 (9 (5)da ()
Q

forallz,y € L (Q), x # 0 and [y,0], =0 if y € LY ().
Simple calculus gives:

ly, Az, = ||z / 2 ()2 (s) dp (s)

— 2kl ( | 6y d <s>)2

forall x,y € L2 (Q), x # 0 and [y,0], =0 ify € LY ().
Consequently, the real Banach space LP(Q), p > 2 is a smooth
Banach space of (D) —type.

ly, Az], :

Now we give some fundamental properties of the semi-inner-product
derivative on a smooth normed space of (D) —type (see [3]).

PROPOSITION 44. If X is as above, then the following statements
are valid:

()[J—Hy\l for ally € X;

(ii) [y,0]' = ||y|| for ally € X;

(iii) [ay, 2] = a? [y, x| for alla € R and z,y € X;
(1)[y,ax]:[ ]forallaeR\{O} and z,y € X;
V) Nl [y, 2] = [y, 2]” for all z,y € X.

PROOF. We only prove the statement (v). The other sentences are
obvious from the definition of semi-inner-product derivatives.
(v) By the properties of semi-inner-products, we have:

ly, x +ty] — [y, 2] > [y, 2]

for all z,y € X, x # 0 and ¢ > 0; which implies for ¢ > 0 :

vz 4ty — [y, 1y, 3] [l + tyll — ll=]
t tl]

Taking the limit as ¢ — 0, t > 0, we derive:

[y, x];

[?J,I]/> for all z,y € X, x #£ 0,

iEd
and the statement is proven. &

Another result is embodied in the next proposition [3].
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PROPOSITION 45. Let X be a smooth normed space of (D) —type
and x,y be two elements in X. Then the mapping:

Poy  R=R, 0 (1) = ||z + ty||”,
1s derivable of two orders on R, the second derivative is nonnegative on
R and
Py (t) =2[y, 2 +ty], &, (8) = 2[y, = + ty]
for allt € R.
The proof is obvious and we omit the details.

In what follows, we shall give a characterisation of inner-product
spaces in the class of smooth normed linear spaces of (D) —type [3].

PROPOSITION 46. Let X be as above. Then the following statements
are equivalent:

(i) X is an inner product space;
(i) the mapping ¥, , : R — Ry, v, , (t) = [y, tz] is continuous at
0 for all x,y in X,
(iii) for every x,y € X there exists a sequence o, € R\ {0}, o, —
0 such that lim [y, a,z] = [y,0]';

?

(iv) for every z,y € X we have: [y, z]' = |jy||*.

PrOOF. “(i) = (ii) = (ili) == (iv)”. It is obvious.
“(iv) = (i)”. By Taylor’s formula for the mapping ¢, , (z,y € X)
we have:

o+ tyl> = llall? + 2 [y, 2] ¢ + |y]> ¢ for all ¢ € R,
which implies the parallelogram identity:
lz + tyl|* + |z = tyl* = 2 (||* + lly]|*) for all 2,y € X,

i.e., X is an inner-product space. §

3. Smooth Normed Spaces of (BD) —Type

Let X be a smooth normed linear space of (D) —type. The semi-
inner-product has a bounded derivative if there exists a real number
k > 1 such that:

(14.6) ly,z] < k*|y|® for all z,y € X.

The least number %k such that (14.6)) is valid will be called the
boundedness modulus of the derivative [-,-]" and we shall denote this
number with k.

DEFINITION 31. ([3]) A smooth normed space of (D) —type is said
to be of (BD) —type if its semi-inner-product has a bounded derivative.
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EXAMPLE 6. Fvery inner-product space is a smooth normed space
of the (BD) —type.

EXAMPLE 7. Let (X (+,-)) be an inner-product space and A : D (A) C
X — X be an operator satisfying conditions (a) — (av) from Ezample
. Suppose, in addition, that A is M — Lipschitzian (M > 1), i.e.,

(aM) Az — Ay[| < M ||l —y|| for all z,y € D (A).

Then (D (A); ||l 1) is a smooth normed space of (BD) —type.
Indeed, from @ we derive:

I(VA) (@) - yll < M|lyll for all z,y € D(A),
which implies that:
[y 2]y < Mlyll* for all z,y € D (4),

and the assertion is proven.

EXAMPLE 8. The real Banach spaces L () for p > 2 are smooth
normed linear spaces of (BD) —type.
Indeed, by Holder’s inequality for integrals, we have:

and

([ ) dn <s>)2

< ( /Q 2242 (s) dp (s)) o ( /Q y* 2 (s) dp (S))M,

where p =2k + 2, k£ > 0.
Then we obtain the evaluation:

v, =], < (4k + 1) [yl for all z,y € L2 (Q), x # 0,

and the statement is proven.

The following result gives a characterisation of inner-product spaces
in the class of smooth normed linear spaces of (BD) —type [3].

PROPOSITION 47. Let X be as above. Then the following statements
are equivalent:

(i) X is an inner-product space;
(ii) we have ko = 1.
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Proor. “(i) = (ii)”. It is obvious.
“(ii) = (i)”. By Taylor’s formula for ¢, , (z,y € X) we obtain:
lz +yl* < lle|® + 2 [y, ] + [lyl|* for all 2,y € X,
which implies
lz +ylI” < ll=]* + 2 [, 9] + [ly|* for all 2,y € X.
Since X is smooth, we have:
lz 4+ tyll* < lle|® +2 [z, y] ¢ + [lyl* £,
for all z;y € X and t € R. If we assume that ¢t > 0, we have:

2 2 2
|l +tyll” — ll«]” _ tyl

2t — I:x7y:|+T7

hence:
[y, 2] < [z,y] forallz,ye X
and by symmetry, [y, z] > [z,y] for all x,y € X, i.e., X is an inner-

product space, see [6]. I

In what follows, we shall introduce two concepts of e—orthogonality
and we shall establish a result of e—decomposition for smooth normed
spaces of (BD) —type.

DEFINITION 32. ([3]) Let X be as above and ko be the boundedness
modulus of semi-inner-product derivative. Ife € [0,1), then the element
x € X 1s said to be € — kg—orthogonal over y € X if

(14.7) |y, =]| < eko [l lyll

and we denote v L i, y.

REMARK 32. If X is an inner-product space, then in we can
put kg = 1. We denote x 1. y.

If in the previous definition we choose € = 0, we recapture the usual
orthogonality in the semi-inner-product sense or the usual orthogonal-
ity in prehilbertian spaces, respectively.

We now present the following generalisation of Birkhoft’s orthogo-
nality which works in general normed spaces (see also [3]).

DEFINITION 33. Let X be a normed linear space, ¢ € [0,1) and
x,y € X. The element x is said to be e— Birkhoff orthogonal over y and
we denote x L.gy if:

|lz+tyl| > (1 —¢)llz|| forallteR.

The following proposition establishes a connection between & —
ko—orthogonality and e—Birkhoff orthogonality in smooth normed lin-
ear spaces of (BD) —type [3].
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PROPOSITION 48. Let X, ko be as above and z,y € X, ¢ € [0,1).
Then the following statements are valid:

[N

(1) @ Lop y implies © Ly, y with § () == [e (2 — ¢)]
(ii) @ Lyeyp y implies v Loy y withn(e) :=1— (1 —¢?)7 .

I

D=

Proor. We shall start with Taylor’s formula:

o+ tyl* = ll2l* + 2 [y 2]t + (v 2 + &) #?, for t € R,
where &, is between 0 and ¢.
(i) If x L.p y, then:

(1—¢e) ||zl < |jo + ty|* for all t € R,
which implies:
(e — 2¢) lz))* < 2y, x|t + k2 ||z||* ¢ for all t € R,
from where we get:
[y, 2]” < kge (2 =) |y

i.e. & Ly, y with d (e) is as above.
(ii) Tt follows from (i) substituting ¢ by 7 (¢) € [0, 1).

REMARK 33. In the case of inner-product spaces we have:

(i) z Lepy iff v Loy ys
(ii) xr J—n(s)B y Zﬁl‘ J_a Y;
where § (€) and n () are as above.

The proof is obvious and we omit the details.
Now, let X be a normed linear space and A be its nonempty subset.
By At we shall denote the set:

{y € X|y L.px forall z € A},

where € is a given real number in [0,1). This set will be called the
Birkhoff orthogonal complement of A. It is easy to see that 0 € At<s
and AN A+t<s C {0} and for all € € [0, 1).

The following lemma ([3]) is a variant of F. Riesz result (see for
example [8, p. 84]):

LEMMA 12. Let X be a normed space and E be its closed linear

subspace. Suppose E # X. Then for every € € (0,1), the e— Birkhoff
orthogonal complement of E is nonzero.
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PROOF. Let y € X\ E. Since E is closed, we have d (y, E) = d > 0.
Then there exists y. € E such that: 0 < [|7 — .|| < 1%. Putting

Te =1y — Y, we have x. # 0 and for every y € F and A € R:
lze + Ayl =117 — v + Myl = 17 = (ye = M)l = d = (1 —¢) [|e]]

which means that z. € £+ and the lemma is proven. &

The following decomposition theorem holds [3].

THEOREM 98. Let X be a normed linear space and E be its closed
linear subspace. Then for any ¢ € (0,1) the following decomposition

(14.8) X =E+ Etes,
15 valid.

PROOF. Suppose F # X and x € X.

If € E, thenz =240 with 2 € E and 0 € E+<5.

If ¢ E, then there exists y. € F such that 0 < d = d(z, F) =
|z — y|| < <& Since z. := x — y. € E*<F (see the proof of the above
lemma) we obtain x = y. + x. and the relation ((14.8) is valid. §

In what follows, we apply the above results for the particular case
of smooth normed spaces of (BD) —type.

Let X be as above and A be a nonempty subset of X. Then by
Ateko we shall denote the set:

{y € Xy Leg, ¢ forall z € A}, £€]0,1),

which will be called the € — kg—orthogonal complement of A in X.

LEMMA 13. ([2]) Let X be a smooth normed linear space of (BD) —type,
E be its closed linear subspace and € € (0,1). Assume E # X. Then
the ¢ — ko—orthogonal complement of E is nonzero.

PROOF. Lete € (0,1) andn(e) :=1—(1 — 52)% . Then 7 (¢) belongs
o (0,1). Applying Lemma |12 for 7 (¢), then there exists an element
1. # 0 and z. € B8, Since ELn@n C ok (see Proposition
the lemma is thus proven. g

Finally, we have [3]:

THEOREM 99. Let X be a smooth normed space of (BD) —type, E
its closed linear subspace and ¢ € (0,1). Then the following decompo-
sition holds:

X = E + Eteko

The proof is obvious from Theorem [98 and Proposition 8] and we

omit the details.
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4. Riesz Class of X*

Let X be a smooth normed linear space over the real number field
R. The following subset of dual space X™* :

R(X*) ={f, e X"|fy () =[z,y]; z,y € X}

will be called Riesz’s class of X*. We remark that, in general, R (X*) is
not a linear subspace of X* and by Tapia’s theorem or representation,
a smooth Banach space X is reflexive iff R (X*) = X*.

REMARK 34. If (X;(-,-)) is an inner-product space, then R (X*)
15 a linear subspace in X* which will be called Riesz’s subspace of X*
and will be denoted by R(X*). The mapping A : X — X* given by
A (y) == f, is a linear isometric operator to X onto R(X™*). Putting
() R(X*)XR(X*) =R, (fo, f,)" := (z,y), then (-, )" is an inner-
product on R (X*) which generates the norm induced by dual space
X* in R(X™) and by these considerations, R (X*) is isomorphic and
1sometric to X as inner-product spaces.

The following proposition holds [3].

PROPOSITION 49. Let X be a smooth normed space of (BD) —type,
E be its closed linear subspace and E # X. Then for any € > 0, there
exists a functional f. € R(X™) such that

(14.9) Il <1 and [[fllgp <e,
where || f[| g == sup{|f (x)], [l=]| =1, = € E}.

ProOOF. If ¢ > 1, the statement is clear.
Let us assume that ¢ € (0,1). By Lemma there exists a nonzero
element y. in Ete*o, i.e.,

[z, ve]| < eko ||| ||ye]| for all x in X.

Putting z. := m we have ||z.|| = é < 1 and the functional f. :

X — R, f. (x) := [z, z.] satisfies the relation (14.9). The proof is thus
completed. §

The next theorem will play an important role in that to follow.

THEOREM 100. Let X be a smooth normed space of (BD) —type
and f be a nonzero continuous linear functional on it. Then for any
e > 0 there exists a nonzero element x. in X such that:

(14.10) lf () — [z, 2]| < ellz]| for all x in X.

PROOF. Since f # 0, the linear subspace E := Ker (f) is closed in
X and F # X.
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Let e > 0 and put 6 (¢) := ¢/ (2||f|| ko) > 0, where k¢ is the bound-
edness modulus of (-, ).
If § (¢) > 1, then there exists an element y. € X'\ E such that

(14.11) [y, yell < 0(e) lyll l[gell < 0 () ko llyll Nlyell -

If 0 < d(e) <1, then by Lemma [13| there exists an element y. € X\ F
such that (14.11)) is also valid.

Let us put z, := sz/_an The for all x € X we have:

y:=f(x)z.— f(2)z € Ker (f),
and then:

|[f () ze = f () @, 2]| koo () IS () 22 — f (z¢) ]

2kod () [ Il < e fl]l

for all z € X.
On the other hand, we have;

[f (@) ze = flze) v, 2] = f (2) = [, f (2) 2]

for all x € X and putting x. := f (z.) 2., the relation (14.10) is ob-
tained. &

Now, we shall give the main result of this section.

THEOREM 101. Let X be a smooth normed space of (BD) —type.
Then Riesz’s subset R(X*) of X* is dense in X* endowed with the
strong topology.

PRrROOF. Let f € X* and € > 0. Then by Theorem there exists
an element x. € X such that:

|f () — fe ()] < e||z| for all z in X,

where f. (z) := [z,z.], * € X. Consequently, ||f — f:|| < ¢ and the
assertion is proved. 1

REMARK 35. Let [,-] : X x X — K (K =R,C) be a semi-inner
product on normed linear space X (see for example [4]) which generates
its norm. In paper [3] we introduced the concept of normed linear spaces
of (APP) —type relative to [-, -], i.e., a normed space such that for every
nonzero continuous linear functional f on it and for any e € (0,1) there
exists a nonzero element y. in X such that:

v, yell < ellyll lyll for ally € Ker (f).
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We also proved that if such a space, then the Lumer subset L (X*) :=
{fy, € X*|fy (x) == [z,y] for z,y € X}, of dual space X* associated to
semi-inner-product [-, -] is dense in X* endowed with the strong topol-
ogy.

If X is a smooth real normed space, it is well-known that there
exists a unique semi-inner-product which generates the norm and co-
incides with the superior semi-inner-product (see [1] or [5]) and then
L(X*)= R(X*). We also remark that every smooth normed space of
(BD) —type is a normed linear space of (AP P) —type relative with the
superior semi-inner-product.

Now, we shall give a corollary of Theorem [101]

COROLLARY 31. Let X be a smooth Banach space of (BD) —type.
Then the following statements are equivalent:
(i) X is reflexive;
(ii) R(X™) is closed in X*;
(i) R(X*) = X"

PROOF. The equivalence “(i) < (iii)” follows by Tapia’s theorem

of representation and the equivalence “(ii) < (iii)” is obvious by the
above theorem. g

The case of prehilbertian spaces is embodied in the next proposi-
tion.

PrRoPOSITION 50. Let X be an inner-product-space. Then the fol-
lowing statements are equivalent:

(1) X is a Hilbert space;
(ii) R(X™) is closed in X*,
(iii) R(X*) = X*.
The proof follows by Remark[34/and Theorem [L0]1]for inner-product-
spaces.

5. Applications to Operator Equations

In this section we shall use Theorem [100 to establish some existence
results for e—solutions of the operator equation:

(A;y) Ar =y, v €D(A), ye X,

where A : D(A) C X — X is an operator defined on dense linear
subspace D (A) of Hilbert space X and having the properties (a) —
(av) and (aM) from Example



5. APPLICATIONS TO OPERATOR EQUATIONS 209

REMARK 36. Some examples of operators which verify the above
conditions are the symmetric strictly positive operators which are densely
defined on a real Hilbert space and satisfy condition:

|Az|| < M ||z||, M >1 forallz € D(A).
Now, let € > 0. The element x. € D (A) is called an e—solution for
the equation (A4;y)) if [|[Az. —y| < e. It is known that (see Example

the mapping D (A) > x g (x, Ax)% € R* is a norm on D (A) and
(D(A), ]| ) is @ smooth normed space of (BD) —type. Then we can
also introduce the following concept of approximative solutions.

DEFINITION 34. Let ¢ > 0. The element x. € D (A) is called an
A — e—solution for the equation if:

sup |(z,y — Az.)| <e.
ol 4 <1

The next existence result for A — e—solutions of the operatorial
equation (|A;y|) holds.

PROPOSITION 51. Let X, A be as above and y be a nonzero element
mn X satisfying the assumption:

(1412)  |(0,y)| S ple,A2): for allx € D(A) (1> 0);
then for every e > 0 the equation has an A — e—solution.

PRrROOF. Let f,: D(A) — R, f, (z) :== (x,y). By condition (|14.12))
it follows that f, is continuous in (D (A),||:||4) and by Theorem (100
there exists an element x. € D (A) \ {0} such that:

fy (@) = ez, < ellel, forallz e D(4),

which is equivalent to the existence of an A — e—solution for the equa-

tion (A; ). B

COROLLARY 32. Let X, A be as above and, in addition, there exists
a constant n > 0 such that:

(14.13) nllz|l® < (z, Az) for all x € D (A).
Then for every y € X\ {0} and for any € > 0 the equation has

an A — e—solution.

The proof is obvious by Proposition observing that condition

(14.13) implies condition (14.12) for all y € X\ {0}.

Finally, we have:
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PROPOSITION 52. Let X, A be as in Proposition[51) and, in addition,

there exists a constant v > 0 such that:

(14.14) (z, Az) < ~||z||* for all z € D(A).

If y € X\ {0} wverifies the assumption , then for any € > 0 the
equation has an e—solution.

PROOF. By condition (14.14) we have: |z||, < 72 ||z|| for all z €
D (A) . Since the linear functional f, is continuous in (D (A); ||-|| ,) then
by Theorem [L00} for any & > 0 there exists an element z. € D (A) \ {0}
such that:

(@) — (w,2),| < (—) lall 4 for all = € D (A).
’y?

from which results:
|(x,y — Az.)| < ||z|| for allz € D(A).

Since D (A) is dense in X, the proposition is proven. §
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CHAPTER 15

Continuous Sublinear Functionals

1. Introduction

In paper [I] the author proved the following “interpolation” theo-
rem for the continuous linear functionals.
THEOREM 102. Let (X, ||-]|) be a real reflexive Banach space and f

be a continuous linear functional on it. Then there exists an element
u € X such that

(r,u); < f () <(z,u), forallze X and |f| = [lull.

Note that the next decomposition theorem is also valid.

THEOREM 103. Let (X, [|-]|) be as above and G be its closed linear
subspace. If G+ denotes the orthogonal complement of G in the sense
of Birkhoff, then

X=G+G"

For the proof of this fact see for example [I] where further conse-
quences and applications are given.

The main aim of this chapter is to extend the above results for con-
tinuous sublinear functionals and closed clins in real reflexive Banach
spaces. Applications for inequalities as in [2] are also given.

2. Semi-orthogonality in Reflexive Banach Spaces

A nonempty subset K of a real linear space X is said to be clin in
X if the following conditions are satisfied:
(i) z,y € Kimply x +y € K
(i) z € K, « > 0 imply ax € K.
A real functional p defined on a clin K is said to be sublinear on K
if
(s) p(z+y) <p(x)+p(y) forall z,y € K
(ss) p(az) = ap(x) for all z € K and a > 0.

DEFINITION 35. ([3]) The element = in real normed space (X, ||-]|)
will be called semi-orthogonal in the sense of Birkhoff over y € X if
(y,x);, < 0. We denote x Lgy.

213
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It is clear that 0 Lg y; x 1g 0; x Lg x impliesx =0 and x Lg vy
implies ax L g By if af > 0. For a nonempty subset A of X we put

Ats ={ye Xy Lgz forall z € A}.

We also remark that 0 € A+s, AN A+s C {0} and 2 € A's, a > 0
imply az € Ats.

The following theorem is a natural generalisation of Theorem [103
[4].
THEOREM 104. Let (X, ||-||) be a real reflexive Banach space and
K be a closed clin in X. Then the following decomposition holds

(15.1) X=K+K".

ProOOF. Let x € X. if z € X then x = 4+ 0 with z € K and
0e€ K+s. If ¢ K, since K is a closed convex set in reflexive Banach
space X, then there exists a best approximation element in K referring
to x, i.e., there exists an 2’ € K such that d (z, K) = ||l — 2'|| .

Let us put z” := x — 2/ and consider &« > 0 and y € K. Then we
have

2" = ay| = [lv — 2" — oy = [lz — (2" + ay)l| = [|l2"],
because 2/, ay € K and K is a clin in X. Hence
2" — ay|® > ||2”||* for all @ >0

which implies that
=" — ay|* = [|="|"
2a
Taking the limit as s — 0 (s > 0) we obtain (—y,z), > 0, i.e., (y,z), <
0 for all y € K which means that z” € K*s and the theorem is
proved. &

The following result holds [3].

COROLLARY 33. If K is a closed linear subspace in X, then K+s =

K+ where K+ denotes the orthogonal complement of K in the sense of
Birkhoff.

PROOF. It is clear that K+ C K1ts.

Now, let € K+s. Then (y,x); < 0 for all y € K and since K is
a linear subspace, then it follows (y,z), < 0, i.e., (y,z), > 0, which
implies that x € K+ and the statement is proved. i

>0 forall o > 0.

REMARK 37. If X is a Hilbert space, we recapture Theorem 2.1
from [2].

The following lemma will be used in the sequel [3].
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LEMMA 14. Let (X, ||-]|) be a Banach space andp : X — R be a con-
tinuous sublinear functional on it. Then the set K (p) :=={z € X,p(z) < 0}
s a closed clin in X. In addition, if we assume that there exists xo € X
such that p (xo) < 0 then K (p) is properin X, i.e., K (p) is not a linear
subspace.

The argument is similar to that in the proof of the Lemma 3.1 from
[2] and we omit the details.

THEOREM 105. ([3]) Let (X, ||-||) be a real reflexive Banach space
and p : X — R be a continuous sublinear functional on it such that
K (p) # X. Then there exists u € X, ||u|| = 1 such that

(15.2) p(z) > p(u) (z,u), forallze K (p).

PROOF. Since K (p) is closed and K (p) # X, then there exists an
element w € K*5(p) such that w # 0. Since w ¢ K (p), we have
p(w) > 0. On the other hand, for all z € K (p), we have

p(p(w)z—p(x)w) <p(p(w)r)+p(-pr)w)
=p(w)p(@)—p(x)p(w) =0
and then
pw)z —p(x)w e K(p) forallze K (p).
Since w € K5 (p) we get
(p(w)x —p(x)w,w), <0 forallze K (p).
Using the properties of semi-inner product (-, -), , we deduce p (w) (z, w),—
p(z) |w||> <0 for all # € K (p) which implies that
p(x)ZM<x,Hi> for all z € K (p)

]l wll
from where results ((15.2)).

REMARK 38. If X is a Hilbert space we obtain the first part of
Theorem 3.2 from [2].

The following two corollaries hold [3].

COROLLARY 34. Let p : X — R be a continuous sublinear func-
tional on reflexive Banach space X such that K (p) # X. Then there
exists an element u € X, ||u|| = 1 with the property

p(z)

inf ——= > —p(u).



216 15. CONTINUOUS SUBLINEAR FUNCTIONALS

PROOF. It is clear that

o 22) —mf{@‘xemm\{o}}.

w0 ||zl ]l

By the above theorem there exists an element x € X, ||u|| = 1 such that:
p (&) > p(u) (z,u); for all = € K (p). However, (z,u); > — [lz] lul] =
— ||#|| which implies that p(x) > —p(u) ||z| for all x € K (p), from
where results the desired inequality. B

REMARK 39. The above corollary contains Theorem 3.10 from [2]
which works in the case of Hilbert spaces.

COROLLARY 35. Let p be as above. Then there exists an element
u € X, ||ul] =1 such that the mappings p, : X — R, p, () = p(x) +
p(u)||z|| is a positive continuous sublinear functional on X.

3. Clins with the (H) —Property in Reflexive Spaces

We start with the following definition [3].

DEFINITION 36. Let (X, ||-||) be a real normed linear space and K
be a clin in it. K is said to be with the H—property if the set H (K) :=
K*s N (=K) also contains nonzero elements.

REMARK 40. If the clin K has the (H) —property, then K is proper
i X, i.e., K 1s not a linear subspace in X.

Indeed, if we suppose that K is a linear subspace and w € K5 N
(=K)\ {0} then w € —K = K and since K+s N K = {0}, we obtain
a contradiction.

The following lemma of characterisation holds [3].

LEMMA 15. The clin K has the (H) —property if and only if there
ezists a nonzero element w € K such that (z,w), > 0 for all v € K.

PROOF. Let —w € K+sN(—K) then w € K and since —w € K5,
we have (z, —w), <0 for all z € K i.e., (z,w), > 0.

Conversely, if (z,w), > 0 for all z € K then (z, —w), < 0, i.e.,
—w € K*s and since —w € —K we deduce that K has the (H) —property. &

EXAMPLE 9. Let f : X — R be a nonzero continuous linear func-
tional on reflexive Banach space X and put K (f) := {x € X|f (x) > 0},
K_(f)={x e X|f(x) <0}. Then K (f) and K_(f) are clins with
the (H) —property.

Indeed, by Theorem[I03, there exists a nonzero element u € X such
that: (z,u), < f(z) < (z,u), for all z € X.
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Let v € K, (f), then (z,u), > 0 and since f (u) = [Jul|* > 0 we
obtain that uw € Ky (f), u # 0 and (x,u), > 0, i.e., Ky (f) has the
(H) —property.

The proof of the fact that K_ (f) is also a clin with the (H ) —property
1s stmilar and we omit the details.

Note that the following theorem is valid [3].

THEOREM 106. Let (X, ||-||) be a reflexive and strictly conver Ba-
nach space and K be a closed clin in X such that K+ is also a clin.
Then the following statements are equivalent:

(i) K, K*+s are linear subspaces.
(ii) The following decomposition holds

X=KoK*s.

PROOF. (i) = (ii). If K is a linear subspace, the K+ = K1 (see
Corollary[33). Since (X, ||||) is reflexive and strictly convex, it is known
that X = K @ K.

(i) = (i). Let u € K, v € K*s and put * = u + v. Then by
Theorem there exists m € K, n € K*s such that —o = m + n.
Hence 0 = (u+m) + (v +n) with u +m € K, v +n € K5 and since
the null element has a unique decomposition we obtain —u =m € K,
—v=n€ K5, ie., K and K5 are linear subspaces. 1

REMARK 41. The above theorem contains Theorem 2.1 from [2]

which is valid in Hilbert spaces.

THEOREM 107. ([3]) Let (X, ||-]|) be a reflexive and strictly convex
Banach space and K be a proper closed clin in X such that K5 is also
a clin. Then K has the (H) —property.

PROOF. Since K is a proper closed clin in X, then by the above
theorem there exists at least one element x such that

x=ua +x" e K e Kts

r=x14+2y 11K x9€K?tS

and

x # 1 2" # 1.
By Theorem [104] there exists ¢/ € K and 3" € K5 such that —z =
y' +v” and then

0= (1:’—|—y’)—|—(:c”—|—y”) x’+y’ c K x//_i_y// c KLS

= (1 +Y)+(2+y") mHyeK a+y €K's
with 2’ + 3 # xy +v and 2" + " # z2 + 7.
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Consequently, there exists m € K, n € K+s with m # 0 and n # 0
such that 0 = m 4+ n which implies that n = —m and then the set
K*s N (—K) also contains nonzero elements. §

COROLLARY 36. ([3]) Let (X; (-,-)) be a Hilbert space. Then every
proper closed clin in X has the (H) —property.

PRroOF. Follows from the above theorem and by the fact that for
all clin K in X, K*5 is also a clin in X. §

We can now improve Theorem [L05]

THEOREM 108. Let (X, ||-||) be a real reflexive Banach space and
p: X — R be a continuous sublinear functional on it such that K (p)
has the (H) —property. Then there exists an element u € X, |lu| =1
such that
@) (), forall z€K(p)
(15.3) p(r) =
—p(—u) (x,u);, forall xe X\K(p).

PROOF. Because K (p) has the (H) —property, there exists w # 0,

w e K+s (p)N (=K (p)). Since w € K5 (p), we have p (w) > 0. Then
by a similar argument to that in the proof of Theorem [I05] we have

p(z) > p(w) <a; i> for all = € K (p)

— Ml N ]

and putting u := ”;‘U’—”, we obtain the first part of 1}

Now, let z € X\K (p), then p(x) > 0 and since —w € K (p), it
follows that —p(—w) > 0. We obtain: p(p(z)(—w) —p(—w)z) <
p(x)p(—w) + (—=p(—w)) p(zr) = 0 which implies that —p (z)w —
p(—w)x € K (p). Since w € K*s (p), we derive:

(—p(x)w —p(—w)z,w), <0 forall z € X\K (p),
which implies —p (z) |w||* — p (—w) (z,w), < 0 for all z € X\K (p),

from where results

p(x) > —p(w) <x, ||1wu|| > for all x € X\ K (p)

]l

and the second part of relation ([15.3)) is also valid. &

REMARK 42. If X is a Hilbert space we obtain the main result from
[2] (see Theorem 3.2).

REMARK 43. If f is a continuous linear functional on X and since

K(f) = K_(f), then by we have: f(x) > f(u)(x,u), for all
r € X.
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On the other hand, substituting x by —x we derive that —f (x) >
fw) (—z,u), = —f (u) (x,u), for all x €, which implies

f(z) < f(u)({z,u), foralxelX.

Consequently, Theorem gives a natural generalisation of Theorem
for the case of sublinear and continuous functionals which has the
(H) —property.

Now, let us consider the set

L(p) :=A{z e Xlp(z) +p(-x) =0}

where p is a continuous sublinear functional on Banach space X. Then
L (p) is a closed linear subspace in X. The proof is similar to that of
Lemma 3.4 from [2] and we shall omit the details.

DEFINITION 37. ([3]) A continuous sublinear functional p is said
to be of (C) —type (see also [2]) if the set N (p) := H (p) N L (p) also
contains nonzero elements.

It is easy to see that if p is a continuous linear functional then p is
on (C) —type.

The following result is an extension of Theorem 3.4 in [2] which
works in Hilbert spaces [3].

THEOREM 109. Let p be a continuous sublinear functional of (C') —type
on reflexive Banach space X. Then there exists an element v € X such
that

p(z) > (x,v), foralxeX.

)
PROOF. Let w € N (p), w # 0. Then, as in Theorem [108] we have
)

p(x) > p(w2 (x,w), forallze K (p),
Il
p(x) > % (r,w), forallze X\K (p).
w
Since p (—w) = —p (w) , we obtain
p(x) > p(wg (r,w), forallzeX
[[w]]
and putting v := Mw, we obtain the desired inequality. §

el

REMARK 44. If p is linear, then the above theorems also give The-
orem 104
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4. Applications

Let (X, |-]]) be a real reflexive Banach space and (e;),_1; be a
linearly independent family of vectors in X. Consider the followmg
system of inequations (z € X)

(S) (er, ), >0 (eg,x), >0 ... (en,x),>0
and put K (eq,...,e,) :={z|Jx = > a'e;, o > 0} which is a proper
closed clin in X generated by (e;),_15; - The next result holds [3].
PROPOSITION 53. The following statements are equivalent.
(i) K (eq,...,ey,) has the (H) —property in X.

(ii) The system (9) has a nonzero solution in K (e1, ..., e,).

Proor. If K (ey,...,e,) has the (H) —property, then there exists
xy € K(eq,... en)\{O} (see Lemma [15) such that (z,zo), > 0 for
all z € K (eq,...,e,) which implies that ([S) has a nonzero solution in
K (ey,...,en).

Conversely, if we suppose that has a nonzero solution z, in
K (e1,...,e,), then for all z := Y1 | a'e;, o >0 (i = 1,n) we get

n
(z,20), <Za Gz,$0> = ZO/ (ei,zo)y > 0
s =l

and by Lemmal[L5] it follows that K (ey, ..., e,) has the (H) —property. &

REMARK 45. If (X;(-,-)) is a Hilbert space, then for all (€;);_15
a linearly independent family of vectors, the system (@ has a nonzero
solution in K (eq,...,e,) (see [2]).

The following results are valid in Hilbert spaces (see [2]).

PROPOSITION 54. Let (e;);_1;; be a linearly independent family of

vectors in X and G (eq,...,e,) be the Gram’s matriz associated to it.
Then the system of linear inequations

Ger,...,en)T >0, TR
has nonzero solutions.

PROPOSITION 55. If (e;);_15 is as above and F : R" x R" — R,
F(z,9) :==7G (e1,...,e,) "', then there exists o > 0 in R™ and 5o # 0
such that

F(z,90) >0 forall z>0.
The following result is in connection to well-known theorems of J.

von Neuman which are important in Game Theory (see [4] or [5l p.
107)).
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i

PROPOSITION 56. Let A = (a;);llzj be a matriz with real elements

and rang (A) = m < n. Then there exists Ty € R, such that Az} >0
i R™.

Finally, we shall give another result in connection to Ville’s theorem
(see [4] or |5, p. 130]), which is also important in Game Theory.

PROPOSITION 57. Let A be a symmetric positive definite matriz
and g : R x R" — R, ¢(z,7) := TAy". Then there exists gy € R},
Uo # 0 such that: g (z,go) > 0 for all T > 0.

For the proof of these results see [2], where further details and
consequences are given.
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CHAPTER 16

Convex Functions in Linear Spaces

1. Introduction

In [4], the author introduced the following definition which gener-
alizes the concepts of inner product, semi-inner product in the sense of
Lumer-Giles [6], [7] (s.i.p.) and R—semi-inner product [1].

DEFINITION 38. Let E be a linear space over the real or complex
number field K. A mapping (-,-)g of E x E into K will be called a
subinner product on E if the following conditions (P1 — P3) are satis-

fied:
(P2) (A\z,y)s = AN, y)g and (x,\y)g = A (x,y)g for all X € K and
r,y i E;
(P3) (x+y,2)g = (x,2)g + (y,2)g for all z,y, 2 in E.

In paper [4], the author also considered the following concept of or-
thogonality which generalizes the classical orthogonality in inner prod-
uct spaces, the orthogonality in the sense of Giles [6] and the R—
orthogonality which was considered in [1].

DEFINITION 39. Let E be a linear space endowed with a subinner
product. The element x € E is said to be orthogonal to y € E with
respect to the subinner product or S—orthogonal, for short, if (y,x)g =
0. We denote this by x Lg, y.

The following properties of S—orthogonality are obvious from the
above definition (see also [4]):

(i) © Lgy x implies x = 0;
(i) * Loy, ¢ Lgy z imply z Lg, (y + 2);

(i) z Lg, y, A € K imply = Lg, (A\y) and (Az) Lg, v.

Now, let G be a nonempty subset of the linear space E. The set
given by: Gtse := {y € Ely Lg, v for all z € G} will be called the
orthogonal complement of G in the sense of subinner product (-,-)q or
the S—orthogonal complement of G, for short.

The following properties of the S—orthogonal complement are ob-
vious by the above definition:
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226 16. CONVEX FUNCTIONS IN LINEAR SPACES

(i) 0 € Gtse;
(i) GNGHse = {0} ;
(iii) aGtse C GLse for all a € K.
We will now introduce another concept connected with the subinner
product (-, -)g.
DEFINITION 40. ([5]) Let (E;(-,-)g) be a subinner product space.
The element x € E will be called sub-S—orthogonal over the elementary

y e FEif
We will denote this by x.Sy. It is clear that

i) if x Lg, y then x.Sy.
i) xSy, xSz imply 25 (y+ 2);
(iii) 0 Sz and z SO for all z € F;

(iv) Sy implies (ax) S (By) for all a, 8 € R with a, 8 > 0 and

x,y € C.
As above, if G is a nonempty subset in the linear space F, then by
G*° we will mean the sub-S—orthogonal complement of G in E, i.e.,
G%:={yc ElySx forall z € G}.

We have:
(i) Gtse C G¥
(ii) oGS C G¥ for all a > 0.

2. The Estimation of Convex Functions

Suppose that (£; (-, -)q) is a subinner product space and F': E — R
is a convex mapping, i.e., a mapping satisfying the condition:
(C) Fltz+(1-t)y) <tF(z) +(1-t) F(y)

forall t € [0,1] and z,y € E.
Define the set F'< (r) for a real number r € R, i.e.,

F=(r):={rv € E|F (z) <r}.

It is known that the set F=(r) is a convex subset (or the empty set)
in the linear space F.

The following theorem of estimation for the mapping F' in terms of
subinner products, holds ([5]).

THEOREM 110. Let F' : E — R be a convex function on E, r a
real number such that F= (r) # 0 and w € E\F= (r) such that (w)% :=
(w,w)g > 0. Then the following statements are equivalent:

(i) we (F<(r)”;
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(ii) One has the estimation:

(16.1) F(z)>r+ Flw) —r)

> 5 (z,w)g forall x € F=(r)
(w)s

or, equivalently, the estimation:

F(w) —
(16.2) F(x)> F(w)+ % (z —w,w)g forall € F=(r).
Ws
PROOF. “(i) = (ii)". Let z € F=(r), i.e.,, r > F(x), and put
B:=r—F(z) > 0. Since w € F=(r), we get that o := F (w) —r > 0.
By the convexity of I’ we have:

F(am—i—ﬁw) < aF () + BF (w)
a+p )~ a+

_(F(w) =) F(a) ~ (r = F (x)) F (w)
F(w) — F (1)
() -F()
F(w) — F (1)

as o+ 3 = F (w) — F (x) > 0. Thus the element

_ax+ fw
a4+ p

belongs to F< (r). Now, as w € (F= (r))s, and v € F=(r), we have
the inequality (u,w)q <0, i.e.,

(16.3) ((F(w)—r)x+(r—F(z)w,w)g <0 forall € F=(r).

A simple calculation shows that

(F(w) =r)z+ (r = F(2))w,w)g

By the inequality (16.3]), we get
F (2) (w)g > 7 (w)g + (F (w) =) (¢,w)g, x€F=(r).

Since (w)?g > 0, by the above inequality we deduce the desired estima-
tion (|16.1)).
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Now, a simple calculation shows that

pEw ) ) ) [ wa) ()]
(w)s (w)s
B Gl CO R T T PP
w)s
_ F(w) + (F(w) _T) (f —’LU,’LU)S7
w)g

which proves the estimation (|16.2]).
“(ii) = (1)”. Now, suppose that the estimation ((16.1]) holds. Thus,

for all z € F'< (r) we have:

OZF(x)—r—i—Z?(w—)Q_T(x,w)S.
(w)g

Since F (w) —r > 0 because w ¢ F=< (r) and (w)?g > 0, we get that
(z,w)g <0 forall z€ F=(r).
ie,we (F=< (’I“))S and the theorem is thus proved. 1

The above theorem had a corollary for the sublinear functional de-
fined on F.

Recall that the functional P : E — R is said to be sublinear on E
if

(a) P(x+y) < P(z)+ P(y) for all x,y € E;

(aa) P(a,x) =P (x) for all z € E and o > 0.

COROLLARY 37. ([5]) Let P : E — R be a sublinear functional on E
and w € F\K (P) with (w)5 > 0, where K (P) := {x € E|P () < 0}
and K (P) # {0} . The following statements are equivalent:

(ig w € (K (P)*;

(ii) One has the estimation:

P(z) > ](D@Z) (x,w)g forall x € K(P).
W)s

PROOF. Since the mapping P is convex, then we can apply Theo-
rem [I[10/for F = P and r = 0. §

The case of linear functionals is embodied in the following proposi-
tion ( [5]).
PROPOSITION 58. Let f: E — R be a linear functional on E and
w € E\Ker (f). Then the following statements are equivalent:
(i) w Ls Ker(f);
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(ii) One has the representation:

[ (w)
(w)s

PROOF. “(i) = (ii)”. Let us assume that w Lg Ker (f). For all
x € E wehave that f (v) w—f (w)x € Ker (f)as f(f (z)w — f(w)zx) =
f

0. Thus we have (f (z)w — f (w)z,w)g =0 for all z € E.
Since

(f (2)w— f (w) z.w)s = f () (W) — f (w) (r,w)g forall z€E

and (w) # 0 because w # 0, we derive the desired representation

(16.4).
“(ii) L (i)”. Since w ¢ Ker (f), we have that f (w) # 0. Thus, by

the representation (16.4)), we have
[ (w)

2
(w)s

which gives that w L Ker (f) and the proposition is proved. §

(16.4) f(z) = (z,w)g forall v € L.

0= (z,w)g forall xze Ker(f),

If we wish to obtain a lower bound for the convex mapping F' for
all z in £ we have to assume more on the element w as in the above
theorem.

THEOREM 111. ([5]) Let F : E — R be a conver mapping and there
be a w € E\F=(r) for a real number r € R such that (—w) € F=(r).

Ifwe (F< (r))s, then we have the estimation:

,ra_‘_F(w—)2_T($’w)S foralla:EFS(T),
(w)s
(16.5) F(z) >
r-Flw

()3

PROOF. As w € (F=(r))” and (—w) € F= (r) then (w, —w)4 < 0,
i.e., (w)% > 0. Now, by the implication (i) = (i ) of Theorem [110| we
get the first of the estimation (16.5) for all z € F=(r).

Now, let z € E\F=(r). Then F (x) > r and thus a := F (z) —r >
0. Since (—w) € F=(r) we get that 5 :=r — F (—w) > 0. Let us put:

a(-w)+pr _ (Fz)—r)(-w) - (r - F(-w)z

U= =

)
a+ 5 F(2) ~ F (~w)

r+ (z,w)g forall x € E\F=(r).
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By the convexity of I’ we get that
(F(z) —r) F(-w) — (r — F (-w)) F (z)
F(z)—F(—w)

F(u) <

:T,

ie., u € F=(r). Since w € (F< (r))s we obtain that
(16.6) ((r=F(-w))z+ (F(z) —r)(-w),w)g <0
for all z € E\F=(r).
However,
((r=F(-w))z— (F(z) —r)w,w)g
= (r = F (-w)) (z,w)g = (F (2) =) ().
Then from ((16.6) we get the second part of the inequality (16.5). 1

The following corollary holds ([5]).

COROLLARY 38. Let P : E — R be a sublinear mapping on FE
and w € E\K (P), with K (P) # {0} such that (—w) € K (P). If
w e (K (P))®, then we have the estimation:

lu;)(x?w)s forall z € K (P),
(w)g
P(x)>
_P_(_Qw) (x,w)g forall v € X\K (P).
(w)s

The proof is obvious by the above theorem and we shall omit the
details.

By the above results we can also state the following consequence
(I51).
CONSEQUENCE 1. Let F' : E — R be a convex mapping on E, xq,w €

E such that F (w) > F (o) and (w)% > 0. Then the following state-
ments are equivalent:

(i) w € (L (F.20))";

(ii) The following estimation holds:
F(w) — F ()
()3
where L (F;xg) :={x € E|F () < F (x0)}.

Now, let F' be a convex mapping on E and xg,w € E such that
F(w) > F(x9) > F (—w).

F(x) > F(x0) + (z,w)g for all v € L(F,x),
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Ifwe (L(F,x0))°, then we have the estimation:

F (x0) + r (w)(u_))f (z0) (z,w)g for all x € L(F,x),
F(x) > ’
F(x) + F <x0)(;)}; (=) (z,w)g for all x € E\L(F,x).
s

The proofs are obvious by Theorems and by choosing r =
F (z9) . We shall omit the details.

In what follows, we will apply the above results in the case of
smooth normed spaces which obviously contains the case of inner prod-
uct spaces.

3. Applications to Real Normed Linear Spaces

We give the following definition ([5]).

DEFINITION 41. Let E be a real normed space and [-,-] a s.i.p.
which generates its norm. The element x € E s said to be G—suborthogonal
over the element y € E (relative to the s.i.p. [-,-]) if [y,z] < 0. We
denote by A5 ={y € E:[x,y] <0 for allz € A}, where AC E.

By the use of the results established in the previous section, we can
state the following lemmas and corollaries.

THEOREM 112. ([5]) Let F' : E — R be a convex mapping on the
real normed space E [-,-] a s.i.p. which generates the norm of E, r a

real number such that F= (r) # (0 and w € E\F= (r) with w # 0. Then
the following statements are equivalent:

() we (F= ()™

(ii) One has the estimation
F(w)—r

(16.7) F(z)>r+ R

[z, w] forall x € F=(r).

The case of sublinear functionals is embodied in the following corol-

lary ([5]).

COROLLARY 39. Suppose E, |-,-] are as above and p: E — R is a
sublinear functional on E. If w € E\K (p) and K (p) # {0}, then the
following statements are equivalent:

(i) w e (K (p)*;
(ii) One has the estimation:

p(z) 2p<”‘w”—”) {x!l@wu_l\] for all = € K (p).
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If we want to obtain as estimation for all elements =z in E we have
to assume more about the element w.

THEOREM 113. ([5]) Let E, [+, -] be as above andw € E\F= (r) such
that (—w) € F=<(r). If w € (F< (r))S(G), then we have the estimation.:

F(w) —
r+ (w) =7 {a:, d } for all x € F=(r),
] [Jw]|

r— F(—w)
[l

r+ {x, ||Z|J for all x € E\F=(r).

Finally, the following corollary also holds ([5]).

COROLLARY 40. Let p: E — R be a sublinear mapping on E, w €
E\K (p) (K (p) # {0}) such that (—w) € K (p). If w € (K (p))*“,

then we have the estimation:

p(nm {‘T W for all =€ K(p),

—p (ﬁ) {x me} for all © € E\K (p).

p(z) >

4. Applications in Hilbert Spaces

The following theorem of estimation holds (]5]).

THEOREM 114. Let (H;(-,-)) be a real Hilbert space, F : H — R
a continuous convex mapping on H,r € R such that 0 ¢ F=(r). Then
there exists an element w € H such that w ¢ F=(r), —w € F=(r) and
the following estimation holds:

(16.8)
F(w)—r w <(r
S e ) et e FE )
o= F(~w)
o) ol 2 €I

PROOF. As F' is a continuous function, F'<(r) is a closed convex
set in H. Since 0 ¢ F=(r), there exists a unique element gy € F= (r)
such that d (0, F'=< (r)) = d (0, go) , i.e.,

= inf .
lgoll = inf {llgll}

On the other hand, because F'= (r) is convex, we have that

llgoll < ||(1 —1t) go + tg|| for all g€ F< (r) and t € [0,1]
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which gives us

lgoll* < llgo +t (9 — go)lI* = llgoll® +2 (g0, 9 — go) t + £* llg — golI”
for all g € F=(r) and t € [0,1], which implies that

2
|

tlg = goll* +2 (g0, 9 — g0) > 0 for all ¢ € [0,1].

Lettlng t— 07 > 07 we get <g()7g - gO> > 07 i‘e" <g()7g> > ||90H2 and
thus (—go,g) < 0forall g € F=(r), i.e., the element w := —gq satisfies
the conditions

—w € F=(r) and w € (FS (r))s

If we assume that w € F=<(r), then (w,w) = ||Jw||* < 0 which implies
that w = 0, i.e., yo = 0, which produces a contradiction. Thus w ¢
F=(r).

Applying Theorem for w as above, we get the equation ((16.8)).
The theorem is thus proved. §

COROLLARY 41. ([5]) Let H, F be as above and xo € H such that
0) > F (xg). Then there exists w € H such that F (w) > F (xg) >

F(
F (—w) and the following estimation
6.9)

(16.9
F (o) + d <w)||1_u|f (%) <x, ||Z||> for all x € L(F,x),
F(z
X r <x0) — (_w) T o or att T i
P (o) + R (o ) ol 2 € VL (F )
holds.

The case of sublinear functionals is embodied in the following.

THEOREM 115. ([5]) Let p : H — R be a continuous sublinear
functional such that K (p) is not a linear subspace. Then there ezists
an element u € H, ||ul| = 1 such that

p(u) (z,u) for all x € K (p),
(1610)  p() >
—p(—u) (z,u) forall x € H\K (p).

PROOF. As K (p) is not a linear subspace there exists an element
xo € K (p) such that —zo ¢ K (p).

Indeed, if we assume that for all z € K (p) we have that —z € K (p)
we would deduce that K (p) = —K (p), i.e., K (p) is a linear subspace
of H, which produces a contradiction. Put yo := —z¢ with x( as above.
Since K (p) is a closed subset of H and H is a Hilbert space, there
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exists a unique element gy € K (p) such that d (yo, K (p)) = d (yo, 90) ,
ie.,

(16.11) 190 = goll < llyo — gl forall g€ K (p).

Since go € K (p), then for all & > 0 we have that gy + ag; € K (p) for
all g1 € K (p). Thus, by the inequality ((16.11]) we get that

o — goll < llyo — go — cvgn||® for all o> 0 and ¢, € K (p)
and thus
lyo — 9oll* < llgo — 9o — aqll® = llvo — goll — 2 (w0 — g0, 91) + @ | gn|?
from which we get
2a (1o — go, 91) < a? ||gl||2 forall @ >0 and ¢; € K (p)
which implies that
2(yo — g0, 1) < 2||g1|| for all >0 and g; € K (p).

Letting o — 0, @ > 0 we deduce that (yo — go,91) <0, i.e., yo — go €
K (p)® . Denote by w := yo—go. Thus w € (K (p))® and —w = go—1yo =
go+xo € K (p) as go and xy € K (p). Now, if we apply Corollary
for the element w in the Hilbert space H, we derive

p(w><x,w> for all z € K (p),
Jw]| [Jw]|

_p (”—%ﬁ) <m ﬁ> for all € H\K (p).

Clhoosing u = ”Z’)—”, we get the equation (16.10). The proof is com-
pleted. B

REMARK 46. The above theorem was first proved in the paper [3]
using a different argument.

REMARK 47. If p = f # 0 is a continuous linear functional, then

by we get that f (z) = f (u) (x,u) for all x € H, i.e., the well

known Riesz’s representation theorem in Hilbert spaces.
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CHAPTER 17

Representation of Linear Forms

1. Introduction

Let I be a unitary associative ring and M a left module over I. The
following concept is a natural generalization of inner product, semi-
inner product in the sense of Lumer-Giles [3] and Tapia [4], or R—semi-
inner product introduced in [1].

DEFINITION 42. A mapping (+,-)g : M x M — I is called a semi-
subinner product on M, if the following conditions hold:

(S1) (T +y,2)g=(2,2)g+ (W, 2)g, T,y,2€M;
(S2) (az,y)g = a(z,y)g, €1, x,y € M.
In addition, if the relation 15 valid too:

(33) (2,2) # 0 if 7 £ 0;

then (-,-)g is called a subinner product on M.

We remark that the above definition can be reformulated for a right
or bilateral module over a unitary associative ring. We omit the details.

In what follows, by an involution on I, we understand a mapping
I 5 r+— r* € I satisfying the conditions:

(1) (r+t)" =r"+t*, rtel
(12) (rt)" =t*r*, rtel

(I3) (r*) =r, rel;

(14) 1" =1, where 1 is the unit of I.
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DEFINITION 43. ([2]) A semi-subinner product or a subinner prod-
uct on M is said to be x— homogeneous on I, if the following condition
15 valid
(54) (z,ay)g =a" (z,y)g, a€l, z,ye M.

If [ is a commutative and unitary ring and % : [ — I, r* = r for all
r € 1, then (-,-)4 is said to be homogeneous on I.

Further, we shall give some examples of semi-subinner products or
subinner products on left /—modules.

2. Examples of Semi-Subinner Products

Let I be a unitary associative ring, * : I — [ an involution on
I and n a natural number, n > 1. Then I™ endowed with the usual
operations is a left /—module. Then the mapping is given by:

(17.1) (), I"xI"—= 1, (x,9), szyz,

respectively

(17.2) (L) I I =T, (z,y): leyz,

where x = (z1,...,2,), y = (y1,...,Yn) € I", are semi-subinner prod-
ucts on I™.

If we suppose that the ring I is commutative, then (-, ), is homo-
geneous and (+,-)" is x—homogeneous on I.

Let M be a free I—module of the finite type and F = {e¢;}
base in M. If the elements z,y € M are given by:

i=Tmn &

(17.3) z = Zaiei, Y= Zﬁzei; a, B €1, i=1n,
i=1 i=1

then we can define the mappings:

(17.4) M x M >3 (z,y) — Zazﬁ el
and
(17.5) Mx M3 (z,y) = (z,y) = Zozzﬂf el

It is clear that the mappings (-,-), and (-,-)} are semi-subinner
products on M and if I is commutative, then (-, ) is homogeneous on
I and (-, ")} is *—homogeneous on I.
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Let M be a left I—module, 1 a nonzero linear form on M and
X : M — M. Then the mappings:

(176) ('7')¢X:M><M_>I? (I7y)qj;x :¢($)X(y), x,yEM;
and
(177) ('7');X:M><M_>Iv (:Cay>;k/;x :w(l')X* <y>7 .T,yEM;

are semi-subinner products in M.

If I is commutative and y is homogeneous on M, i.e., x (ax) =
ax(z), a € I, x € M, then (-,-),, will be a homogeneous semi-
subinner product on M and (-, -),, will be *—homogeneous on M.

Let us consider a semi-subinner product on M, (+,-)g: M x M — I,
L : M — M a linear transformation of M into M and x : M — M.
Then

(7.8) () M xM —1, (z,y), = (L(x),x(y))g, v,y €M,

X (
is a semi-subinner product on M. If we assume that (-, -) s is *—homogeneous
on / and y is a homogeneous mapping on M, then (-, -); is *—homogeneous
as well.

Let I be an (unitary) integrity ring. Then I is a left I—module and
the mapping given by

(179) ('7')[ I X T — [7 ($,y>[ =Y,

is a subinner product on I.

In addition, if we suppose that I is commutative, then (-,-), is a
homogeneous subinner product on 1.

Every inner product or semi-inner product in the sense of Lumer,
are homogeneous or antihomogeneous subinner products on real or
complex linear spaces.

The following section of the present chapter is devoted to the study
of some theorems of representation for the linear forms defined on left
I—modules in terms of semi-subinner products.

3. Representation of Linear Forms

In this section, we point out the following concept which general-
izes the orthogonality in the sense of Lumer-Giles or R—orthogonality
introduced in [1].

DEFINITION 44. ([2]) Let M be a left I—module and (-,-)g : M x
M — I a semi-subinner product on M. The element x € M 1is said to
be orthogonal over y € M in the sense of semi-subinner product or, for
short, S—orthogonal overy, iff (y,z)g = 0. We note that x Lg, y.
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The following properties of S—orthogonality are evident by the
above definition:

(i) z Llssy, o Lgs 2= Lg, (y+2);
(i) 2 Lsyy, a € I = x Lg, ay;
and if (-,-)g is *—homogeneous, then
(i) z Llgo y, a € [ = ax Lg, y.

If F is a non-empty set, then
Etse ={yec M|y Ls, x, x € E},

is called the orthogonal complement of E in the semi-subinner product
sense or, for short, S—orthogonal complement of £.

If (-,+)g is homogeneous, then 0 € E*se and if (-, )¢ is a subinner
product on M, then E N E+se C {0}.

Now, we can give the first result of representation for the linear
form on a left I—module endowed with a semi-subinner product [2].

THEOREM 116. Let M be a left I—module, (-,-)g: M x M — I a
semi-subinner product on M, f € M* a nonzero linear form on M and
w e M\ {0}.

If the following conditions hold:

(i) f(z) f(w) = f(w) f(z), z€M;

(ii) (w,w)q is invertible in I;
(i) w e Ker (f)™5 ;
then we have the representation:
(17.10) f (@) = f(w) (z,w)g (w,w)g
for all z € M.

PROOF. Let x € M. Then we have
f(f@)w—=fw)x) =f(z) f(w) = f(w)f(),

and by condition (i), one obtains

f@)w— f(w)x € Ker(f).
On the other hand, since w Lg Ker (f), we have

(f(x)w— f(w)z,w)g =0, €M,
and by linearity of (-, ) it results that:
f(2)(w,w)g = f(w)(z,w)g, v€ M.

Since (w,w)q is invertible on I, by multiplying with (w,w)g", we de-

duce ((17.10)).

The theorem is thus proved. &
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REMARK 48. If the scalar ring I is commutative, then condition (i)
is satisfied and relation (i) and (iii) implies representation (17.10).

COROLLARY 42. ([2]) Let M be a left [—module on a commutative
ring, (-,-)g a *—homogeneous semi-subinner product on M, f € M* a
nonzero linear form and w € M\ {0} . If conditions (ii) and (iii) of the
above theorem are satisfied, then there exists uy (w) € M such that:

(17.11) f(z) = (z,up (w))g, ©€ M.
In addition, the representation element uy (w) is given by
(17.12) up (w) = (f (w) (w,w);lyk w.

PROOF. By the above theorem, we have f (z) = f (w) (w,w)g" (z,w)g,
x € M. Putting uy (w) = (f (w) (w,w)gl)*w and since (+,-)g is *—

homogeneous, then representation (17.11]) holds. &

The following theorem gives a sufficient and necessary condition of
representation for the linear forms defined on I—modules.

THEOREM 117. ([2]) Let M be a left module on integrity ring I,
(-,-)g a semi-subinner product on M, f € M* a nonzero linear form,
w e M\ {0}.

If the following conditions hold:

(1) f(z) f(w) = f(w) f(z), zeM;
(ii) (w,w)gq is invertible in I;

then the following sentences are equivalent:

(i) w e Ker (f)™5 ;

(iv) f(z) = f(w) (z,w)g (w,w)g" for allx € M.

PROOF. The implication “(iii) = (iv)” follows by Theorem |116]
“(iv) = (iii)”. By relation (iv) we have

(17.13) 0=f(z)=f(w)(r,w)g (w,w)gl, x € Ker (f).

Firstly, we remark that f (w) # 0, since if we suppose that f (w) = 0,
we have f (x) =0 for all x € M, which produces a contradiction.
By multiplying with (w,w)q # 0, we obtain from ((17.13))

f(w)(z,w)g =0 forall € Ker(f).

Since f(w) # 0 and [ is an integrity ring, we deduce (z,w)g = 0
for all z € Ker (f) which implies w € Ker (f)™5 .
The theorem is thus proved. &

REMARK 49. If the ring I is commutative and condition (ii) holds,
then relations (iii) and (iv) are equivalent.



242 17. REPRESENTATION OF LINEAR FORMS

COROLLARY 43. ([2]) Let M be a left I—module over an integrity
and commutative ring, (-,-)g a *—homogeneous semi-subinner product
on M, f € M*\ {0} and w € M\ {0}. If condition (ii) holds, then the
following assertions are equivalent:

(i) w € Ker (f)™5 ;

(iv) f(x) = (z,uy (w))g for all x € M

where uy (w) is given by

(17.14) up (w) = (f (w) (w,w)g") w.
The proof follows by Remark (49 and Corollary We omit the
details.

4. Applications

Let I be an associative unitary ring, f € End(I), f # 0, and
w € I\ {0}. If the following conditions hold:
(i) f(z) f(w) =f(w)f(z), zel
(ii) w? is invertible in I;
(iii) zw =0 for all z € Ker (f);

then we have the representation

(17.15) f@) = fwaw @)™, zel
If I is commutative, then relations (ii) and (ii) imply
(17.16) f(x)=f(w)w (wZ)*1 x, vel.

The proof follows by Theorem for the /—module I endowed

with semi-subinner product given by:
() IxT—1I, (z,y)g:=2y.

If 7 is commutative and * : I — [ is an involution on I and the
following conditions hold:

(il) ww* is invertible in I;

(iii) zw* =0 for all x € Ker (f);

then there exists uy (w) € I such that:

(17.17) f(z) =zup(w)", z €I
and us (w) is given by
(17.18) ug (w) == (f (w) (ww*)fl) w*.

The proof follows by Corollary 42 We omit the details.
Let I be an associative unitary ring ¢, f € End(I)\ {0}, and w €
I\ {0} . If the following conditions hold:
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(i) f(z) f(w) = f(w)f(z), z€L
(ii) ¢ (w)w is invertible in I;
(iii) p(x) =0,z € Ker (f);
then we have the representation
(17.19) f@)=fw) @) w(ew) w) ™" foralzecl.

If the ring is commutative, then relation (ii) and (iii) imply:
1

(17.20) f(x) = f(w)w(e(w)w)
The proof follows by Theorem for the I—module I endowed
with semi-subinner product (-, ~)<p I x I —1, (:c,y)(p =@ (z)y.
If I is commutative and % : I — [ is an involution on I and the
following conditions hold:

p(x) forall x €.

(i) ¢ (w)w* is invertible in I;
(iii) ¢ (z)w* =0, z € Ker (f);

then we have the representation
(17.21) f(x)=p(x)u} (w) forall ze€l,
where u; (w) is given by

up (w) = £ (w) (p (w)w™) " w',

The proof follows by Corollary d2] We omit the details.

Finally, if we suppose that I is an integrity ring and the following
conditions:

(i) f(z) f(w)=f(w)f(z), zel
(ii) ¢ (w)w is invertible in I;

are true, then the following assertions are equivalent:

(iii) p () =0, z € Ker (f);

(iv) f(z) = f (w) o (@) w(p (w)w)".

Let I be an associative unitary ring, I" (n > 1), the left /—module
and w € I", w # 0. If f € (I")" is a nonzero linear form and the
following conditions hold:

(i) f(x) f(w)=f(w)f(z), z el

(ii) Y7, w? is invertible in I, where w = (wy, ..., wy);
(i) Yo zw; =0,z = (21,...,2,) € Ker (f);
then we have the representation:

(17.22) f(x)=f(w) (Z xiwi> (Z wf) ,xel
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If the ring is commutative, then condition (i) is fulfilled and (ii) and
(iii) imply the existence of an element us (w) = (uf (w), ... u; (w)) €
I™ with the property:

(17.23) qu , o= (21,...,2,) €17,

and, in addition, u =1,n) are given by

(17.24) ul ( ) i (i=1,n).

The proof follows by Theorem [116] and by Corollary [42] for the
semi-subinner product (-,-), : I"™ x ]” — I, (x,y), =D i Tw;.

Now, if we suppose that [ is an integrity ring and conditions (i)
and (ii) are satisfied, then the following sentences are equivalent:

(i) D> zaw; =0, x = (x1,...,2,) € Ker (f);
. n n -1 n
(iv) f(2) = f(w) Ty miws) QoL wi) , w €1™
In addition, if we suppose that I is commutative and condition (ii)
is verified, then (iii) is equivalent with

(17.25) f(x):Zx,u; (w), = (z1,...,2,) €I"
i=1
and u! (w) (i =1,n), are as given by (17.24).



Bibliography

[1] S.S. DRAGOMIR, Linear and continuous functionals on complete R—semi-inner
product spaces, Itin., Sem. on Funct. Eq., Approz. and Conv., (Cluj), 1987,
127-135.

[2] S.S. DRAGOMIR, Representation of linear forms on modules endowed with
semi-subinner products, Mathematica., 31(54)(2) (1989), 119-126.

[3] G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961),
25-43.

[4] R.A. TAPIA, A characterization of inner product spaces, Proc. Amer. Math.
Soc., 41 (1973), 569-574.

245



246 BIBLIOGRAPHY



A List of Papers on Semi-Inner Products

(Chronological Order)

(1) G. Lumer, Semi-inner-product spaces, Trans. Amer. Math.
Soc., 100 (1961), 29-43.

(2) G. Lumer and R.S. Phillips, Dissipative operators in a Banach
space, Pacific J. Math., 11 (1961), 679-698.

(3) K.B. Laursen, A characterization of reflexivity of Banach spaces,
Math. Scand., 16 (1965), 169-174.

(4) J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer.
Math. Soc., 129 (1967), 436-446.

(5) T. Precupanu, Espaces linéaires a semi-normes hilbertiennes,
(French), Ann. Sti. Univ. “Al. 1. Cuza” lagi Sect. I a Mat.
(N.S.), 15 (1969), 83-93.

(6) A. Leonte, Weakened semi-inner product (Romanian), An.
Univ. Bucuresti Mat.-Mec., 18 (1969), no. 1, 61-65.

(7) E. Torrance, Strictly convex spaces via semi-inner-product space
orthogonality, Proc. Amer. Math. Soc., 26 (1970), 108-110.

(8) B.D. Malviya, A note on semi-inner product algebras, Math.
Nachr., 47 (1970), 127-129.

(9) T. Husain and B.D. Malviya, On semi-inner product algebras,
Proc. Japan Acad., 46 (1970), 273-276.

(10) D.O. Koehler, A note on some operator theory in certain semi-
inner-product spaces, Proc. Amer. Math. Soc., 30 (1971),
363-366.

(11) P.M. Milici¢, Sur la transversalité dans des espaces normés,
(French) Math. Balkanica, 1 (1971), 171-176.

(12) B. Nath, On a generalization of semi-inner product spaces,
Math. J. Okayama Univ., 15 (1971/72), 1-6.

(13) P.M. Mili¢i¢, Sur le semi-produit scalaire dans quelques es-
paces vectoriels normés, (French) Mat. Vesnik, 8(23) (1971),
181-185.

(14) B. Nath, Topologies on generalized semi-inner product spaces,
Compositio Math., 23 (1971), 309-316.

247



248

A LIST OF PAPERS ON SEMI-INNER PRODUCTS

(15) R.A. Tapia , A characterization of inner product spaces, Proc.
Amer. Math. Soc., 41 (1973), 569-574.

(16) P.M. Milici¢, Sur le semi-produit scalaire généralisé, (French)
Mat. Vesnik, 10(25) (1973), 325-329.

(17) A. Torgasev, A generalization of spaces with inner and semi-
inner products, (Serbo-Croatian) Mat. Vesnik, 11(26) (1974),
301-313.

(18) S.V. Phadke and N.K. Thakare, When an s.i.p. space is a
Hilbert space, Math. Student, 42 (1974), 193-194 (1975).

(19) N.J. Kalton and G.V. Wood, Orthonormal systems in Banach
spaces and their applications, Math. Proc. Cambridge Philos.
Soc., 79 (1976), no. 3, 493-510.

(20) S. Gudder and D. Strawther, Strictly convex normed linear
spaces, Proc. Amer. Math. Soc., 59 (1976), no. 2, 263-267.

(21) G.D. Faulkner, Representation of linear functionals in a Ba-
nach space, Rocky Mountain J. Math., 7 (1977), no. 4, 789
792.

(22) T. Husain, and S.M. Khaleelulla, Topologies on generalized
semi-inner product algebras, lattices, and spaces, Kyungpook
Math. J., 17 (1977), no. 1, 7-15.

(23) P.M. Milici¢, C-complete systems in normed spaces, Publ.
Inst. Math. (Beograd) (N.S.), 21(35) (1977), 145-150.

(24) G.D. Faulkner and J.E. Huneycutt Jr., Orthogonal decompo-
sition of isometries in a Banach space, Proc. Amer. Math.
Soc., 69 (1978), no. 1, 125-128.

(25) P.V. Pethe and N.K. Thakare, Applications of Riesz represen-
tation theorem in semi-inner product spaces. Indian J. Pure
Appl. Math. 7 (1976), no. 9, 1024-1031.

(26) P.M. Milici¢, Sur le complément orthogonal du sous-espace
fermé d’un espace vectoriel normé, (French) Math. Balkanica,
6 (1976), 119-124 (1978).

(27) S.V. Phadke and N.K. Thakare, Projection operators on uni-
formly convex semi-inner product spaces. Indian J. Pure Appl.
Math., 7 (1976), no. 12, 1438-1447.

(28) S. Kasahara, Linear independency of linear space valued map-
pings and pseudo-inner-products, Math. Japon., 25 (1980),
no. 3, 321-325.

(29) J.L. Abreu and J.A. Canavati, A generalization of semi-inner
product spaces, Boll. Un. Mat. Ital. B, (5) 18 (1981), no. 1,
67-86.

(30) K.R. Unni and C. Puttamadaiah, On orthogonality in s.i.p.
spaces, Tsukuba J. Math., 5 (1981), no. 1, 15-19.



A LIST OF PAPERS ON SEMI-INNER PRODUCTS 249

(31) D.K. Sen, On Hermitian operators on Banach spaces, Indian
J. Pure Appl. Math., 12 (1981), no. 10, 1219-1223.

(32) J.-P. Antoine and K. Gustafson, Partial inner product spaces
and semi-inner product spaces, Adv. in Math., 41 (1981), no.
3, 281-300.

(33) S. Nanda, A nonlinear complementarity problem in semi-inner-
product space, Rend. Mat., (7) 2 (1982), no. 1, 167-171.

(34) P.M. Milici¢, Systemes orthonormaux dans des espaces avec
semi-produit scalaire et dans leurs complétés métriques, (French)
[Orthonormal systems in scalar semiproduct spaces and in
their complete metrics|] Mat. Vesnik, 4(17)(32) (1980), no.
2, 175-180.

(35) D.K. Sen, Characterizations of strict convexity,. Bull. Cal-
cutta Math. Soc., 73 (1981), no. 2, 93-97.

(36) D.K. Sen, Generalized p-selfadjoint operators on Banach spaces.
Math. Japon., 27 (1982), no. 1, 151-158.

(37) S. Nanda, A remark on “A nonlinear complementarity problem
in semi-inner-product space”, [Rend. Mat. (7) 2 (1982), no.
1, 167-171; MR 83j:47055]. Rend. Mat. (7) 3 (1983), no. 4,
807-8009.

(38) D.K. Sen, On semi-inner product spaces over quaternions, .J.
Austral. Math. Soc. Ser. A, 37 (1984), no. 2, 190-204.

(39) M.-D. Hur, Weak differentiability and strict convexity on gen-
eralized semi-inner-product spaces, Honam Math. J., 6 (1984),
no. 1, 85-89.

(40) D.K. Sen, A note on smooth Banach spaces, Pure Math. Man-
uscript, 3 (1984), 47-49.

(41) M.A. Abo Hadi and S.M. Khaleelulla, Topologies on general-
ized semi-inner product spaces of type (p), Bull. Fac. Sci.
King Abdul Aziz Univ., 7 (1983), 179-186.

(42) K.R. Unni and C. Puttamadaiah, Some remarks on strictly
convex semi-inner-product spaces, Bull. Calcutta Math. Soc.,
77 (1985), no. 5, 261-265.

(43) D.K. Sen, Some results on Hermitian operators on Banach
spaces, Bull. Calcutta Math. Soc., 77 (1985), no. 5, 287-290.

(44) D.K. Sen, On semi-inner product algebras, Pure Math. Man-
uscript, 4 (1985), 169-180.

(45) G.Q. Wei and Y.Q. Shen, The generalized p-normal operators
and p-hyponormal operators on Banach space, A Chinese sum-
mary appears in Chinese Ann. Math. Ser. A, 8 (1987), no.
1, 137. Chinese Ann. Math. Ser. B, 8 (1987), no. 1, 70-79.



250

A LIST OF PAPERS ON SEMI-INNER PRODUCTS

(46) R.G. Bartle, Generalizations of selfadjointness to Banach spaces,
Aspects of positivity in functional analysis (Tiibingen, 1985),
15-25, North-Holland Math. Stud., 122, North-Holland, Ams-
terdam, 1986.

(47) K. Stathkopoulos, A characterization of smooth spaces, Math.
Balkanica (N.S.), 1 (1987), no. 1, 93-95.

(48) S.S. Dragomir, Representation of continuous linear functionals
on smooth reflexive Banach spaces, Anal. Numér. Théor.
Approzx., 16 (1987), no. 1, 19-28.

(49) Y. Ho and A. White, A note on p-semi-inner product spaces,
Glas. Mat. Ser. 111, 22(42) (1987), no. 2, 365-370.

(50) S.S. Dragomir, Linear and continuous functionals on com-
plete R-semi-inner product space. 1., Itinerant Seminar on
Functional Equations, Approzimation and Convexity (Cluj-
Napoca, 1987), 127-134, Preprint, 87-6, Univ. “Babes-Bolyai”,
Cluj-Napoca, 1987.

(51) S.S. Dragomir, Linear and continuous functionals on com-
plete R-semi-inner product spaces. II., Itinerant Seminar on
Functional Equations, Approzimation and Convexity (Cluj-
Napoca, 1988), 163-168, Preprint, 88-6, Univ. “Babes-Bolyai”,
Cluj-Napoca, 1988.

(52) J.P. Wang, Characterizations of conjugate Banach spaces in
terms of duality mappings, (Chinese) J. Fast China Norm.
Uniwv. Natur. Sci. Ed., 1989, no. 1, 12-17.

(53) S.S. Dragomir, Representation of continuous linear function-
als on smooth normed linear spaces, Anal. Numér. Théor.
Approzx., 17 (1988), no. 2, 125-132.

(54) B. Nath, S.N. Lal and R.N. Mukherjee, A generalized non-
linear complementarity problem in semi-inner product space,
Indian J. Pure Appl. Math., 21 (1990), no. 2, 140-143.

(55) D.K. Sen, On generalized p-orthogonal projections on Banach
spaces, An. Stiint. Univ. Al. 1. Cuza lasi Sect. I a Mat., 34
(1988), no. 3, 227-237.

(56) C. Benitez, Orthogonality in normed linear spaces: a clas-
sification of the different concepts and some open problems,
Congress on Functional Analysis (Madrid, 1988), Rev. Mat.
Univ. Complut. Madrid, 2 (1989), suppl., 53-57.

(57) S.S. Dragomir, Some characterizations of inner product spaces
and applications, Studia Univ. Babes-Bolyai Math., 34 (1989),
no. 1, 50-55.



A LIST OF PAPERS ON SEMI-INNER PRODUCTS 251

(58) S.S. Dragomir, A class of semi-inner products and applications.
I, Anal. Numér. Théor. Approz., 18 (1989), no. 2, 111-122.

(59) F.A. Al-Thukair and M.A. Noor, Complementarity problems
in semi-inner product spaces, Appl. Math. Lett., 3 (1990), no.
3, 85-87.

(60) P.M. Mili¢i¢, Sur une inégalité complémentaire de 'inégalité
triangulaire, (French) [On a complementary inequality of the
triangle inequality| Mat. Vesnik, 41 (1989), no. 2, 83-88.

(61) S.S. Dragomir, Local representation of distance functional on
smooth normed linear spaces, Anal. Numér. Théor. Approz.,
18 (1989), no. 1, 51-59.

(62) M.A. Abo Hadi, Topologies on generalized semi-inner product
algebras of type (p), Kyungpook Math. J., 30 (1990), no. 1,
45-53.

(63) S.S. Dragomir, On continuous sublinear functionals in reflexive
Banach spaces and applications, Riv. Mat. Univ. Parma, (4)
16 (1990), no. 1-2, 239-250.

(64) G. Marino and P. Pietramala, Linear acute-angle bases in
semi-inner product spaces, Attt Sem. Mat. Fis. Univ. Mod-
ena, 38 (1990), no. 1, 11-18.

(65) S.S. Dragomir, On best approximation in modules endowed
with semi-subinner products, An. Univ. Timisoara Ser. Stiint.
Mat., 28 (1990), no. 2-3, 135-144.

(66) S.S. Dragomir, Best approximation in linear spaces endowed
with subinner products, Math. Balkanica (N.S.), 5 (1991), no.
4, 271-278 (1992).

(67) S.S. Dragomir, On some characterization of inner product spaces,
An. Stiinf. Univ. Al. 1. Cuza lagi Sect. I a Mat., 36 (1990),
no. 3, 193-197.

(68) AP Bosznay, On a problem concerning orthogonality in normed
linear spaces, Studia Sci. Math. Hungar., 26 (1991), no. 1,
63-65.

(69) S.S. Dragomir, Some theorems of surjectivity for a class of
nonlinear operators, Mathematica (Cluj), 32(55) (1990), no.
1, 9-14.

(70) S.S. Dragomir, Linear and continuous functionals on R-semi-
inner product spaces, Mathematica (Cluj), 33(56) (1991), no.
1-2, 49-57.

(71) S.S. Dragomir, Characterizations of proximinal, semi-Chebychevian
and Chebychevian subspaces in real normed spaces, Numer.
Funct. Anal. Optim., 12 (1991), no. 5-6, 487-491 (1992).



252 A LIST OF PAPERS ON SEMI-INNER PRODUCTS

(72) S.S. Dragomir, On approximation of continuous linear func-
tionals in normed linear spaces, An. Univ. Timi soara Ser.
Stiint. Mat., 29 (1991), no. 1, 51-58.

(73) M.A. Noor, On variational inequalities in semi-linear product
spaces, Tamkang J. Math., 24 (1993), no. 1, 91-99.

(74) S.S. Dragomir, A generalization of James’ and Krein's the-
orems, Anal. Numér. Théor. Approz., 19 (1990), no. 2,
129-132.

(75) S.S. Dragomir, Continuous linear functionals and norm deriva-
tives in real normed spaces, Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat., 3 (1992), 5-12.

(76) M. Muzalewski, On orthogonality relation determined by a
generalized semi-inner product, Demonstratio Math., 27 (1994),
no. 1, 53-64.

(77) P.M. Mili¢i¢, On the Gram-Schmidt projection in normed spaces,
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993),
89-96.

(78) S.S. Dragomir, Representation of continuous linear functionals
on complete SQ-inner-product spaces, An. Univ. Timisoara
Ser. Stiint. Mat., 30 (1992), no. 2-3, 241250

(79) E. Pap and R. Pavlovi¢, On semi-inner product spaces of type
(p), Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 23 (1993), no. 2,
147-153.

(80) F.A. Al-Thukair, Linear complementarity problems in semi-
inner product spaces, J. Natur. Geom., 8 (1995), no. 2, 133—
140.

(81) P.M. Milici¢, On orthogonalities in normed spaces, Math. Mon-
tisnigri, 3 (1994), 69-77.

(82) M.S. Khan, An existence theorem for extended mildly non-
linear complementarity problem in semi-inner product spaces,
Comment. Math. Univ. Carolin., 36 (1995), no. 1, 25-31.

(83) S.G. El-Sayyad and S.M. Khaleelulla, *-semi-inner product al-
gebras of type (p), Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 23
(1993), no. 2, 175-187.

(84) S.S. Dragomir, On best approximation in smooth normed lin-
ear spaces and characteristics of reflexivity and strict convex-
ity, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk.
Prilozi, 14 (1993), no. 2, 27-37 (1995).

(85) E. Pap and R. Pavlovi¢, Adjoint theorem on semi-inner prod-
uct spaces of type (p), Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,
25 (1995), no. 1, 39-46.



A LIST OF PAPERS ON SEMI-INNER PRODUCTS 253

(86) S.S. Dragomir and J.J. Koliha, Mappings ®” in normed lin-
ear spaces and new characterizations of Birkhoff orthogonal-
ity, smoothness and best approximants, Soochow J. Math., 23
(1997), no. 2, 227-239.

(87) 1. Rosca, Tapia like semi-inner products, An. Univ. Bucuregti
Mat., 46 (1997), 67-72.

(88) S.S. Dragomir and J.J. Koliha, The mapping vz, y} in normed
linear spaces and applications, J. Math. Anal. Appl., 210
(1997), no. 2, 549-563.

(89) S.-S. Chang, Y.-Q. Chen and B.S. Lee, On the semi-inner prod-
uct in locally convex spaces, Internat. J. Math. Math. Sci.,
20 (1997), no. 2, 219-224.

(90) L. Zhou, The Tapia semi-inner product and geometric prop-
erties of Banach spaces, (Chinese) J. Huazhong Univ. Sci.
Tech., 26 (1998), no. 9, 110-112.

(91) S.S. Dragomir and J.J. Koliha, The mapping v{z, y} in normed
linear spaces with applications to inequalities in analysis, J.
Inequal. Appl., 2 (1998), no. 1, 37-55.

(92) H. Gowda and V. Lokesha, Generalised orthogonal projections
on Banach spaces, Acta Cienc. Indica Math., 24 (1998), no.
3, 271274

(93) P.M. Milici¢, Resolvability of g-orthogonality in normed spaces,
Math. Balkanica (N.S.), 12 (1998), no. 1-2, 161-170.

(94) M.A. Noo and E.A. Al-Said, Generalized nonlinear comple-
mentarity problems in finite-dimensional semi-inner product
spaces, J. Nat. Geom., 16 (1999), no. 1-2, 109-124.

(95) P.M. Mili¢i¢, On the quasi-inner product spaces, Mat. Bilten,
No. 22 (1998), 19-30.

(96) P.M. Milici¢, A generalization of the parallelogram equality
in normed spaces, J. Math. Kyoto Univ., 38 (1998), no. 1,
71-75.

(97) S.S. Dragomir, Some characterizations of best approximants
from linear subspaces in normed linear spaces and applications,
Far East J. Math. Sci. (FJMS), 1 (1999), no. 5, 805-826.

(98) S.S. Dragomir, New characterizations of best approximants
from linear subspaces in normed linear spaces and applications,
Int. J. Math. Game Theory Algebra, 10 (2000), no. 5, 373—
390.

(99) S.S. Dragomir and Pl. Kannappan, Some estimation of convex

mappings in linear spaces endowed with subinner products,
Bull. Allahabad Math. Soc., 12/13 (1997/98), 23-35.



254 A LIST OF PAPERS ON SEMI-INNER PRODUCTS

(100) J. Deus Marques, On vectorial inner product spaces, Czechoslo-
vak Math. J., 50(125) (2000), no. 3, 539-550.

(101) S.S. Dragomir and J.J. Koliha, Two mappings related to semi-
inner products and their applications in geometry of normed
linear spaces, Appl. Math., 45 (2000), no. 5, 337-355.

(102) S.S. Dragomir, Some characterization of best approximants in
normed linear spaces, Acta Math. Vietnam., 25 (2000), no. 3,
359-366.

(103) P.M. Milici¢, On the orthogonal projection and the best ap-
proximation of a vector in a quasi-inner product space, Math.
Balkanica (N.S.), 15 (2001), no. 3-4, 297-302.

(104) P.M. Mili¢i¢, On the g-orthogonal projection and the best ap-
proximation of a vector in a quasi-inner product spaces, Sci.
Math. Jpn., 54 (2001), no. 3, 539-542.

(105) S.S. Dragomir, An inequality improving the first Hermite-
Hadamard inequality for convex functions defined on linear
spaces and applications for semi-inner products, J. Inequal.
Pure Appl. Math., 3 (2002), no. 2, Article 31, 8 pp. (elec-
tronic).

(106) M. Cragmareanu and S.S. Dragomir, 2k-inner products in real
linear spaces, Demonstratio Math., 35 (2002), no. 3, 645-656.

(107) S.S. Dragomir, An inequality improving the second Hermite-
Hadamard inequality for convex functions defined on linear
spaces and applications for semi-inner products, J. Inequal.
Pure Appl. Math., 3 (2002), no. 3, Article 35, 8 pp. (elec-
tronic).

(108) H. Gowda and V. Lokesha, A note on characterisations of strict
convexity, J. Natur. Phys. Sci., 15 (2001), no. 1-2, 39-43.



Index

type I

I)—class, [190] u-

N)—type,

P)—class, [190

(Q)-inner product spaces,
2k-inner product, [76]
2k— orthogonality,

G— orthogonality,
I—module,
Q-inner product, [71]

Q— orthogonality,

R— orthogonality,
R—semi-inner product, 225 237]
S— orthogonal,

S— orthogonal complement,
S— orthogonality, 225
S@-inner product space,
x—homogeneous, [238-241

g— orthogonality,

Banach space, [9] 126]
[L66} [L7IHT73] [L75HI77] 183
[186] 188 [189] [192} [193] [197
[200] 202} [206], [208] 213220

best approximant,

bilateral module, [237]

Birkhoff orthogonality, [71] [77], [78] [126]-
[129 [I71} [203]

Bishop-Phelps theorem,
[188] 197

bounded linear functionals, 125)]

(127} [131} [134} [137} [143) [147} [I55}

BEE

clin, 213/ 2T8]

255

commutative, 238| 239] 241}{244]

continuous linear functionals, [3] [} [0

[0 19} 24 [132 [7I{I75 [I8T-

convex functions,
convex subset, [2] [226]
countably additive, [57} [72}

dense, [[73

208, 210
duality mapping,
(36} [L40)
normalised, [T}, BB} [7HIO} [L4} 15} 20}
21 24, B4, B8} {0 {8 [140, [I57)

109
extremal point,

G-suborthogonal,

Gateaux differentiable, [4] [6Hg8] [12] [13]
22} [23} {43} A4} [71} [75}, [L147}, [T99]

Game Theory,

Giles-orthogonal,

[54, [T64)
Gram’s matrix, 220]

Hilbert space, 208
214220} 2321234

homogeneous, [43] [#4]
(239 242

hyperplane, [[26} [137,

incomplete normed linear space, 181

inferior semi-inner product,
0]

interpolation element,

involution, 237] [238] 242} 243]

isomorphism, [9]

James class, [184]



256 INDEX

James orthogonality, [125] [126] [143]
James Theorem, [0} [T71] [176] [I77], [186]

11901

Klee’s Theorem,

lateral derivatives,
linear form,
linear forms,
representation, 239
linear topological direct sum, |166
linearly independent, 01]
02, 96, [97, [100, [T0T} [07,

[TTT} [IT3} [[T7) [T18} 220
maximal element, [9] [10] 126 [T71]
V8!
measure space, [57], [64} [72]
modules
1,238, 239,

modulus of the derivative,
monotonic, 1 [0 15 65 (110, LT [T

monotonic nondecreasing, [92]

[L00} [T0T} [T04]

monotonic nonincreasing, [02]
monotonicity, [T05]

nonlinear operators, [186)

norm derivatives, o7

orthogonal decomposition, [78] [L63]

parallelogram identity, [71] [73] [74] [70]

permutation, [57], [71]

Phelps’ Theorem, [186] [194]

positive definite matrix, 221]

positive measure, [57] [72} [[99]
prehilbertian space,
projection, [79]

proximinal,

N

quadratic functional, [132] [13

reflexive, [ [0 16
[L7IHI73} [I76} 177,
208,

[[93} 197 [206,
Riesz form,

Riesz’s class, [183]
Riesz’s theorem, 173 123

(%)

-
EE

[N

06

N

Schwartz’s inequality,

(64, [66, 89 B3} P4 P7 P8
o4

semi-inner products, [14} [19] 24
37 38} A1} A3} B4
[67 [76}, [85} [89, 130} [137],
[L5T} [T55} [T56} [18T]
(207, 208} 215} 225}
semi-orthogonality, [213]
semi-subinner product, 237244
smooth, [} [§ [T0HT5} 21} 22}
(A3} @4, BT1 [62} [71} [76} [78)
(166} [[71} [I73]
186} 189} 192H194
(198, 203} 205} 209, [231]
Banach space, 193] 2
normed linear space, (164} [192] [19
normed space, 190] [199
normed spaces,
real normed space, [199
reflexive Banach space, [164]
smooth in the point, [
smoothness, [
smoothness subspace,
strictly convex, [4] [0} [79]
BT} [109} [TT0} [T16}, 128, [T53} [154)
[[57H{T59, [[64, [T66] 217
strong topology, [207] 208
sub-S— orthogonal,
subadditive, [33] [44]
subinner product,

subinner product space, [226

&
&

5
E

[BE
=]
EE
=
Elsl

EE
:

=
s

E
e

=)
o)



INDEX

superadditive, [33]

superior semi-inner product,
[62} 67} [197 [T98} [208]

surjectivity, [3] [I89]

tangent functionals, [£9]
topological direct sum, [I65]
triangle inequality,

uniformly convex space,
uniformly smooth,
unit ball, [5] [62] [67]

unit sphere, 3] @] [I51] [I5§

unitary associative ring, 237} [238] [242]
245

weak topology,
weakly sequentially compact, [I86] [I89]
o4

257



	1. Preface
	Chapter 1. The Normalized Duality Mapping
	1. Definition and Some Fundamental Properties
	2. Characterisations of Some Classes of Normed Spaces
	3. Other Properties of Normalised Duality Mappings

	Bibliography
	Chapter 2. Semi-Inner Products in the Sense of Lumer-Giles
	1. Definition and Fundamental Properties
	2. Characterisation of Some Classes of Normed Spaces
	3. Other Properties of L-G-s.i.p.s

	Bibliography
	Chapter 3. The Superior and Inferior Semi-Inner Products
	1. Definition and Some Fundamental Properties
	2. The Connection Between ( ,) s( i)  and the Duality Mapping
	3. Other Properties of ( ,) s and ( ,) i

	Bibliography
	Chapter 4. Semi-Inner Products in the Sense of Milicic
	1. Definition and the Main Properties
	2. Normed Space of ( G) -Type

	Bibliography
	Chapter 5. ( Q)  and ( SQ) -Inner Product Spaces
	1. ( Q)  -- Inner Product Spaces
	2. ( SQ) - Inner Product Spaces

	Bibliography
	Chapter 6. 2k-Inner Products on Real Linear Spaces
	1. Introduction
	2. Main Properties of 2k-Inner Products
	3. 2k-Orthogonality
	4. The Riesz Property

	Bibliography
	Chapter 7. Mappings Associated with the Norm Derivatives
	1. Introduction
	2. Some Mappings Associated with the Norm Derivatives
	3. Properties of the Mapping 0=x"010Ex,y
	4. Properties of the Mapping 0=x"010Dx,y
	5. Properties of x,yp Mappings
	6. Properties of the Mappings x,yp
	7. The Case of Inner Products

	Bibliography
	Chapter 8. Orthogonality in the Sense of Birkhoff-James
	1. Definition and Preliminary Results
	2. Characterisation of Some Classes of Normed Spaces
	3. Birkhoff's Orthogonality and the Semi-inner Products

	Bibliography
	Chapter 9. Orthogonality Associated to the Semi-Inner Product
	1. Orthogonality in the Sense of Giles
	2. Orthogonality in the Sense of Milicic
	3. The Superior and Inferior Orthogonality

	Bibliography
	Chapter 10. Characterisations of Certain Classes of Spaces
	1. The Case of Giles Orthogonality
	2. The Case of Milicic Orthogonality

	Bibliography
	Chapter 11. Orthogonal Decomposition Theorems
	1. The Case of General Normed Linear Spaces
	2. The Case of Smooth Normed Linear Spaces
	3. The Case of ( Q) -Banach and ( SQ) -Banach Spaces

	Bibliography
	Chapter 12. Approximation of Continuous Linear Functionals
	1. Introduction
	2. A Characterisation of Reflexivity
	3. Approximation of Continuous Linear Functionals
	4. A Characterization of Reflexivity in Terms of Convex Functions

	Bibliography
	Chapter 13. Some Classes of Continuous Linear Functionals
	1. The Case of Semi-Inner Products
	2. Some Classes of Functionals in Smooth Normed Spaces
	3. Applications for Nonlinear Operators
	4. The Case of General Real Spaces
	5. Some Classes of Continuous Linear Functionals
	6. Some Applications

	Bibliography
	Chapter 14. Smooth Normed Spaces of ( BD) -Type
	1. Introduction
	2. Smooth Normed Spaces of ( D) -Type
	3. Smooth Normed Spaces of ( BD) -Type
	4. Riesz Class of X
	5. Applications to Operator Equations

	Bibliography
	Chapter 15. Continuous Sublinear Functionals
	1. Introduction
	2. Semi-orthogonality in Reflexive Banach Spaces
	3. Clins with the ( H) -Property in Reflexive Spaces
	4. Applications

	Bibliography
	Chapter 16. Convex Functions in Linear Spaces
	1. Introduction
	2. The Estimation of Convex Functions
	3. Applications to Real Normed Linear Spaces
	4. Applications in Hilbert Spaces

	Bibliography
	Chapter 17. Representation of Linear Forms
	1. Introduction
	2. Examples of Semi-Subinner Products
	3. Representation of Linear Forms
	4. Applications

	Bibliography
	A List of Papers on Semi-Inner Products
	Index

