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Abstract

This dissertation is an examination of the application of the boundary integral equation method

to describe axi-symmetric particle motion in Stokes flow. In integral form, the Stokes flow equa-

tions describe the flow at any point using a surface distribution of singularities over given bound-

aries. For rigid particles, the strength of the singularity distribution is unknown resulting in a

Fredholm integral equation of the first kind. For free surfaces, it is the surface velocity which is

unknown and this results in an equation of the second kind. The axi-symmetric integral equations

are two-dimensional, linear and exhibit a logarithmic singularity via the presence of complete el-

liptic integrals of the first and second kind.

The work in this dissertation can be divided into two parts. The first is a theoretical investigation

of Fredholm integral equations of the first kind and the second part is a study of numerical

techniques to simulate axi-symmetric particle (rigid and drop) dynamics in Stokes flow.

The theoretical investigation is undertaken to identify and examine the major issues involved

in the numerical inversion of first kind equations. Two solution techniques are compared in

terms of their stability and accuracy. One is an expansion-collocation method, the other is based

on interpolation-collocation. We show that first kind equations are ill-conditioned and that this

manifests in instability with high frequency unknowns. It is shown that the expansion approach

can fail for this precise reason and a Shanks transformation (Shanks 1955) is employed to avoid

higher order terms as well as increase convergence rate.

The interpolation method uses Hermite interpolation polynomials to allow the nodal behaviour

of the unknown to be furnished. We show that this method is sensitive to collocation and present

a method to find an optimal collocation strategy. This is done by employing the Peano kernel

theory to develop a weighted trapezoid-like integral inequality. Analysis of the inequality bound

reveals an optimal gridding scheme, as well as an indication of favourable collocation points. The

Peano kernel theory is expanded to account for more general functions and we describe a method

to obtain weighted (or product) composite quadrature rules that share the same abundance of
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error bounds as Newton-Cotes type rules but have the advantage of being more accurate. We

report that, in this case, interpolation-collocation is more accurate and stable than expansion-

collocation.

The main results of this work are the presentation and analysis of a highly accurate and effi-

cient algorithm to study axi-symmetric particle interactions in Stokes flow. For rigid particles, a

Hermite polynomial method is used to calculate the particle traction. The numerical integration

is performed using a combination of Gauss-Legendre and Gauss-Log quadrature in conjunction

with a highly accurate polynomial approximation of the complete elliptic integrals. We show

that the method is stable and performs well for simple spheroidal geometries, but due to the ill-

conditioned nature of the integral representation, is subject to instability for more complicated

particle shapes. Two methods, based on particle curvature, are presented that increase stability

and, not least, increase accuracy.

Buoyant liquid drop deformation is studied via inversion of the second kind integral equation.

This representation is not subject to the ill-conditioning of the first kind equation and we focus

on other aspects of the numerical implementation. They are the representation of deformable

surfaces, integration and time-stepping of the dynamic simulation. Results for one, two and three

drop interactions are given as well as for a toroidal drop simulation. The algorithm is compared

to those given in other studies. Three drop and toroidal drop simulations have not been reported

previously (to the author’s knowledge) and these are compared to the earlier results as well as

experimental results reported elsewhere.
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Chapter 1

Introduction

1.1 Stokes flow and its application

Many biological and industrial processes involve fluid flows in which viscosity is large and/or

particle lengths are small. An important indicator of flows of this type is the Reynolds number.

The Reynolds number, Re, is defined as

Re =
ρUL

µ
, (1.1)

where U is a characteristic velocity scale, L a characteristic length scale and, ρ and µ are the den-

sity and viscosity of the fluid respectively. This non-dimensional parameter, whose importance

was first recognised by Stokes (1851), is a ratio of the inertial to viscous forces. Thus fluids of

sufficient viscosity, slow motion or comprised of small particles will result in a small Reynolds

number. In reality the Reynolds number can never vanish, or equivalently inertial forces are never

zero, but it has been shown that the zero Reynolds number approximation produces an accurate

representation of the flow field in the vicinity of small particles (Batchelor 1967; Stokes 1851).

These flow regimes, called Stokes or creeping flows have a number of distinguishing features.

They form the basis of the assumptions made in this dissertation, over and above those of normal

Newtonian fluids. We list them below:

• For steady flows, pressure and frictional forces are in equilibrium at each instant. Thus

the motion of the fluid is not dependent on its temporal history but rather induced and

sustained through conditions on boundaries. That is, the motion of a particle depends

wholly on the forces subjected to it at each instant; in the absence of these forces the motion

4
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will cease almost immediately (Purcell 1977; Meiners and Quake 1999). This absence of

inertia causes the flow to be laminar, and rich complex features such as turbulence and

secondary flows do not occur. Lack of inertia also dictates that fluids equilibrate through

diffusion and mixing, though the action of stirring is ineffective.

• Stokes flows are completely reversible and this can lead to identification of symmetries in

the flow. For example, a simple consideration of a spherical particle falling parallel to a ver-

tical wall dictates that the particle must maintain its horizontal distance from the wall. This

argument can be extended to more general symmetric shapes as long as the symmetry axis

is parallel to the plane wall. In this case no overall horizontal translation will occur, but

depending on orientation, particle rotation can be induced (de Mestre and Russel 1975).

Recent experiments (Lecoq et al. 1993) have shown that flow field symmetry plays a ma-

jor role in low (non-zero) Reynolds number motion. Reversibility is further discussed in

chapter 5 where the deformation of a liquid toroidal drop is described.

• Since frictional forces dominate, we would expect any disturbances to have long range

effects. The magnitude of a disturbance due to a particle at distance r is O(1/r)1. Thus

unlike potential flow, which is inertia driven, the creeping flow field is influenced by par-

ticle interactions over large regions. Any numerical implementation must account for this

effect. This important factor will be discussed in section 1.3.

An excellent account of the features of low Reynolds number flows is given in Purcell (1977).

Leal (1980) provides a comprehensive review of how to include weak inertial and non-Newtonian

deviations on particle and drop motion. Most of the techniques, which are analytic in na-

ture, have mainly been used to describe drop and particle evolution under idealised conditions.

That is, for spherical or slightly deformed shapes, simple flows etc. Nevertheless, studies have

shown that these small effects can accumulate to describe motion that can never be exhibited

by the Stokes class of flows (see for example the experiments of Meiners and Quake (1999) and

Steinberger et al. (1968) and observations regarding toroidal drops from the theoretical work of

Kojima et al. (1984)). In spite of this, the Stokes flow equations have been used with great suc-

cess to predict flow characteristics in many physical problems. Almost any application which

involves flow in small regions (such as capillary flow, lubrication) or small particles can be mod-

elled using the Stokes flow equations. Many of these involve industrial and biological processes.

Examples involving rigid particles or droplets include filtering (air conditioning, hemodialysis,

1See for example the definition of the Stokeslet in equation (2.11).
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Figure 1.1: (a) Taken from Cummins et al. (1988) showing sperm from the Flying Fox (Pteropus poliocephalus).

The scale bar is 50nm. (b) A recently described ectosymbiont Craspedella pedum from the branchial chamber of the

redclaw crayfish Cherax quadricarinatus. See Cannon and Sewwll (1995) for details.

virus removal, feeding), sedimentation, micro-organism propulsion and transport (both flagellum

and cilia induced), blood flow, ink-jet printing, micro-dispensing of drugs and spray coating. A

good account of the state of the art prior to 1965 can be found in Happel and Brenner (1965).

Below we expand on a few recent applications.

There has been much interest in the study of the dynamics of small organisms (see Figures 1.1 and

1.2). At this length scale the Reynolds number is quite small (≤ 10−3) and thus inertial effects are

negligible. Many of the organisms propel themselves by planar and helical movement of a long

slender tail. This geometric feature was first exploited in the foundation work of Hancock (1953).

Hancock and later Gray and Hancock (1955) considered the propulsion of micro-organisms by

the oscillation of their tails. To simulate the force on the surrounding fluid due to tail motion a

distribution of point forces was placed along the centreline. The strength of the distribution was

then obtained by considering the conditions on the tail surface. This work was later refined to

include the presence of a head (for example in sperm flow) and account for the torque and pitch

via the helical, as well as planar, tail movement (Chwang and Wu 1971). The ideas of Hancock

and Gray were later adapted to model cilia (Blake 1972; Blake et al. 1982). There is now a con-

siderable understanding of cilia motion and their role in micro-fluid transport which include: par-

ticle concentration, as in filter feeding (Blake and Fulford 1995); particle elimination, as in mu-

cus transport in the lung and nasal passages (Blake and Fulford 1984; Fulford and Blake 1986b)

and organism transport/propulsion (Blake 1971b; Liron and Mochon 1976a; Blake et al. 1983).

An excellent review which includes both experimental and theoretical investigations is given in

Sleigh et al. (1988).
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(a)

(b)

Figure 1.2: Reproduced, with permission, from Kils (1982). (a) Photograph of the Antarctic krill, Euphausia

superba, taken during the Antarctic expedition on board the WALTER HERWIG in the austral summer of 1977/78.

The krill is a filter feeder and the dynamics of the operation of its filtering basket can be modelled using the Stokes

approximation. (b) Beat profile of the krill pleopod for soft, medium and intense beats. Even though the Reynolds

number is not small, for intense beats the shape of the pleopod, especially the exo- and endopodite, are reminiscent

of cilia bending (Sleigh et al. 1988) and (Fulford and Blake 1986b, cf. their Figure 2).
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particulate

fluid in

particles +

reagent out

to waste

reagent +

analyte out

to sensor

reagent in

Figure 1.3: H-filter adapted from Brody and Yager (1997). The systems acts as an equilibrator for small molecules

(analytes) as they diffuse, larger particles are left in the lower half and are transported away. On the right is a

scanning electron micrograph of a Si fabricated H-filter.

Other applications of Stokes flow involve industrial processes such as particle concentration or

filtration. For example, micro-biological separation is mainly used to either filter out unwanted

particles (as in dialysis and blood virus removal) or concentrate them (as in plasma collection and

biological agent detection systems). One way of achieving this is to use a synthetic membrane

filter, a standard technique used in the biopharmaceutical industry. For instance, all products de-

rived from a human source require treatment to eliminate pathogens (for example AIDS, CJD).

Membranes filter out selected products by distinguishing size and/or shape and improving mem-

brane production and operation would be of great value.

Other ways to concentrate and extract particles have been developed to exploit the characteristics

of creeping flow (Brody et al. 1996; Brody and Yager 1997). As previously stated, these flows

are distinguished by their natural diffusion properties and absence of inertia. Filters have been

designed that allow separation based on this diffusion property (see Figure 1.3). The diffusion

coefficient is particle dependent and this is used to separate agents in a particulate flow. These

designs are quite unique to the micro-scale and will fail to operate efficiently if the scale (and

hence Reynolds number) is increased. The H-filter is merely one example of the new devices

being manufactured using micro-fabrication techniques. Another is the no-moving-parts valve

(Forster et al. 1995) (see Figure 1.4) which forms an integral part of any pump in a micro-fluidic

system. Using fixed geometry to control flow direction was first proposed by Tesla (1920) (see

Figure 1.5). This is highly suited to the micro-scale where simplicity in manufacture and control

are a requirement for robust operation.

To summarise, we state that insight into the nature of micro-organism behaviour or the mastery

of micro-fluidic devices requires a complete theoretical understanding of particle behaviour in
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Figure 1.4: No-moving-parts valve taken from Forster et al. (1995). At left is a side schematic of the pump. At right

is a scanning electron micrograph of the valve.

Figure 1.5: Part of the patent of Tesla (1920) showing the design of the fixed geometry valve. Compare with Fig-

ure 1.4.
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the Stokes flow universe. Work in this field started in 1851 when Stokes considered the viscous

forces on a moving sphere and has today evolved into many diverse areas. In the next section we

outline some of the methods used to study particle movement and interaction in Stokes flow.

1.2 Rigid particle and drop interactions

The Stokes flow equations, which are discussed in more detail in chapter 2, are

∇p = µ∇2u , ∇ · u = 0, (1.2)

where u is the velocity field and p the pressure field. The most striking feature of these equations

are their linearity and it is this that has been exploited over the years to develop analytic solutions

to many problems. Special coordinate systems which render (1.2) separable have been used to

find the flow field of a translating sphere (Stokes 1851), translating ellipsoid (Oberbeck 1876),

rotating ellipsoid (Edwardes 1892), two spheres rotating about their line of centres (Jeffery 1912)

and two spheres falling along their line of centres (Stimson and Jeffery 1926). Difficulties arise

when attempting to solve for systems of more than one particle and they are attributable to

the impracticality of expressing all boundaries as a constant surface in an orthogonal system.

Jeffery (1912) and Stimson and Jeffery (1926) managed to use bipolar coordinates to account

exactly for two spheres. This method has been employed by others to deal with two ide-

alised boundaries. Brenner (1961) for a sphere translating perpendicular to a plane rigid wall,

Haber et al. (1973) for two interacting spherical drops, Lee and Leal (1980) for a sphere inter-

acting with an interface, Ganatos et al. (1980) for the transverse motion of a sphere between two

parallel walls, Kojima et al. (1984) for their investigation of spheroidal and toroidal drop defor-

mation and Kim (1987) for flow past three spheres. The last reference is of particular merit since

three boundaries are accounted for. They made use of particular addition theorems that transform

vector harmonics between different coordinate systems.

As an investigative tool to study particle interactions, the use of special coordinate systems alone

is rather limited. The boundaries (at most two or three) must have idealised shapes and be fixed.

For example the solution derived by Haber et al. (1973) is accurate only for large drop separa-

tions and/or small deformations and that of Lee and Leal (1980) for a flat interface. Neverthe-

less, these techniques have led to the development of new areas including the Oseen correction

and an excellent understanding of particle inertia (Oseen 1927; Stewartson and Howarth 1960;

Steinberger et al. 1968; Lovalenti and Brady 1993). A number of exact solutions are listed in
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Lamb (1932) and Happel and Brenner (1965).

To overcome the difficulty of treating only two boundaries, Brenner and Happel (1958) popu-

larised the method of reflections. Since (1.2) are linear, the velocity and pressure fields can be

written as a sum with each component representing the disturbance of a particular boundary. For

example, for n particles with surfaces S1, S2, . . . , Sn, we may write

u = u1 + u2 + · · ·+ un,

with boundary conditions

ui =




0, x ∈ S1

...
...

Ui, x ∈ Si
...

...

0, x ∈ Sn

for i = 1, . . . , n.

Solving for ui will generate a flow field at all other boundaries. Hence, each subsequent veloc-

ity is itself written as a sum with the boundary condition chosen in such a way as to cancel the

reflection caused by the previous term. Thus, a series is generated which accounts for particle

interactions after successive iterates. This solution converges slowly for large interactions but has

been shown to be accurate when compared to the known solution of Stimson and Jeffery (1926).

The technique has been used successfully to investigate, for example, the interaction of: a sphere

moving parallel to a cylindrical wall (Brenner and Happel 1958); three spheres (Kynch 1959);

walls on an arbitrary particle (Brenner 1962); a number of particles along the axis of a cylinder

(Sonshine and Brenner 1966); two plane walls on the motion of a sphere (Sano and Hasimoto 1978);

a particle and a surface contaminated by a surfactant (Shail 1983); particle motion near a fluid in-

terface (Yang and Leal 1984) and the flow past a pair of stagnant cap bubbles (Lerner and Harper 1991).

The method of reflections, although quite general for particle interactions, is cumbersome and

again restricted to ideal geometries. A much more powerful approach is the use of singularities

to describe types of flow. This is particularly suited to the Stokes equations since their linearity

allows construction of singularity distributions that represent very general flows.

The fundamental singularity of Stokes flow, called the Stokeslet2, is given by

Gij(x ) =
1

8πµ

(
δij
|x | +

xixj
|x |3

)
, x ∈ R

3 (1.3)

2Termed by Hancock (1953).
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and represents the disturbance at x due to a point force. For any rigid body, S translating with

velocity u , we can show that (Lorentz 1897) (see chapter 2)

uj(x ) = −
∫
S

Gij(x − y)fi(y) dS(y), x ∈ S. (1.4)

That is, the disturbance in the flow is represented by point forces distributed with density f over

the surface. Naturally, if there are many bodies then S becomes the collection of surfaces.

The elegance and power of equation (1.4) may be appreciated when one considers different flow

regimes. If the problem of interest is in a half-space instead of an infinite medium, or particles

exhibit rotation instead of translation then one only needs to find the appropriate fundamental

singularity which would be substituted for G in (1.4).

This approach led to a flurry of activity in finding Green’s functions for different prescribed flows.

The fundamental singularity for rotation, called the rotlet, was identified by Batchelor (1970b)

and that for a half-space by Blake (1971a). Blake and Chwang (1974) later established a number

of fundamental and higher order singularities for the half-space including the 1/2-space rotlet.

The fundamental singularity in the presence of an interface was found by Aderogba and Blake

(1978a, 1978b) and recently a blinking Stokeslet, where the point force periodically changes its

point of application, was evaluated by Blake et al. (1998). Chwang and Wu (1975) are worthy

of mention for their work in exploring and tabulating a number of fundamental and higher singu-

larities for many prescribed flows. There are of course other fundamental solutions, for example

for periodic motion or flow in a region with periodic boundaries or two dimensional flow. Details

may be found in Hasimoto and Sano (1980) and Pozrikidis (1992).

A major use of these singularities is in the so-called singularity method. The integral (1.4) is

quite difficult to evaluate analytically and this method involves moving the singularity distribu-

tion from the surface to some chosen space-curve, often the centreline. Gray and Hancock (1955)

first used this technique, using the Stokeslet, to study the movement of spermatozoa. The

Stokeslets were distributed along the centreline of the organisms to approximate the flow in-

duced by their propulsion. If the body is slender, as in spermatozoa, then a natural perturbation

scheme in the slenderness ratio arises. The singularity method coupled with slender bodies is

known as slender body theory (see Blake (1974)). There are countless examples, a few of which

we give here, where slender body theory, or the more general singularity method, have been

used to study flows in infinite domains (Tuck 1964; Taylor 1969; Tillett 1970; Batchelor 1970a;

Keller and Rubinov 1976) or with plane boundaries (de Mestre and Russel 1975; Katz et al. 1975;

Russel et al. 1977; Liron and Blake 1981; Barta and Liron 1988) or with free surfaces (Blake and Fulford 19
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Fulford and Blake 1983; Yang and Leal 1983; Yang and Leal 1984; Fulford and Blake 1986a).

Finally we note that although the singularity method is essentially an approximation from a sur-

face distribution to a line distribution of singularities, it has been used to produce exact solutions.

The most well known being the application of slender body theory to obtain the exact solution for

a spheroid. Chwang and Wu (1975) construct a number of exact solutions using the singularity

method.

For more details regarding the singularity method we refer the reader to de Mestre (1974), Fulford (1984),

Kim and Karrila (1991) and Pozrikidis (1992).

1.3 The boundary integral method

The methods of the previous section have proven to be invaluable tools that lend insight into

a great variety of problems. Their limitation is that analytic approximations are incapable of

reproducing the rich complex behaviour inherent in many physical problems of interest. For

example, for large deformations in drop-drop or particle-drop interactions, or mobility problems

involving complex rigid surface shapes. Experiments of complex drop deformations are shown

in Kojima et al. (1984) and Manga and Stone (1993). A numerical solution is, most likely, the

only option available if one wishes to capture behaviour of this type.

The two most common approaches are the finite element method and the boundary integral equa-

tion method. The finite element method involves approximating the governing equations (1.2)

by a linear system that spans the entire domain. The linear system thus formed is solved via

inversion. The resulting matrix is often sparse and this can be exploited by specialised solvers.

For exterior problems in higher dimensions, this method would require a very large grid. An in-

finite grid is out of the question, so the finite region needs to be large enough to cater for the long

range effects of creeping flow. This method can also be difficult to implement for complicated

geometries. Tracking large time dependent drop deformations, for example, would be extremely

difficult. Another problem with the finite element method is the evaluation of quantities that may

not necessarily be required. For example, the pressure field is often not needed in studies where

the hydrodynamic force is of interest. Additionally, the velocity may only be required at a few

prescribed locations and not at all points in the domain. The problem of infinite domains can be

circumvented by employing the infinite element method. This has been done to solve Laplace’s

equation (Bettess 1977) and has been extended to other governing equations, see Bettess (1992)
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and Gerdes (2000). This method still retains the other deficiencies of the finite element method

(difficulties with temporal dependence and evaluating terms that may not necessarily be of inter-

est) and has the additional complication of finding appropriate infinite element shape functions to

suit the governing equation, see Gerdes (2000) for details. Even so, it would be a useful exercise

to compare the boundary integral method and the infinite element method for rigid body creeping

flow problems.

Another method which is gaining popularity for use with free surfaces is the finite volume

method. We briefly mention that this method too relies on discretizing space (into small vol-

umes) and so has the obvious drawback for exterior creeping flow problems.

The boundary integral method is the method of choice when solving external problems and those

involving complex regions. The dimension of the problem is reduced and integration along

complicated curves, if done with care, can be accurately evaluated. To evaluate the unknown, we

require some functional approximation. The two methods we will consider are interpolation and

spectral expansion.

The spectral approach consists of assuming that the unknown belongs to some inner product

space and hence, can be represented as a linear combination of orthogonal basis functions. The

coefficients of the expansion, and thus the solution, are obtained via application of the inner

product. This method is often simple to formulate, but care needs to be taken with the the

size of the expansion and the inner product, which can involve singular and highly oscillatory

integrands. Higher order coefficients are notoriously difficult to obtain and an error here will

disrupt the entire series (see chapter 3).

The interpolation method involves choosing some grid and approximating the unknown via a

piecewise function. The order of the interpolation, distribution of the grid points and integration

method are all important points that need consideration. To clarify the issues presented here, the

spectral method is compared to the interpolation approach in chapter 3.

We will briefly outline the history of the application of the boundary integral equation to the

solution of axi-symmetric Stokes flow problems. To assist in our discussion we present the

integral representation of the Stokes equations (derived in appendix A)

c(x )uk(x ) = −
∫
S

Gik(x − y)fi(y) dS(y)−
∫
S

Σijk(x − y)ui(y)nj(y) dS(y), (1.5)
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where

c(x ) =




1, x ∈ Ω,

1
2
, x ∈ S,

(1.6)

and Ω is the domain of the problem with boundary S. The Green’s function G is given in (1.3)

and Σ is the Stokes-stresslet given by

Σijk(x ) = − 3

4π

xixjxk
|x |5 .

The first integral in (1.5) is known as the single-layer potential, and the second integral is the

double-layer potential.

For rigid body problems the integral equation (1.5) simplifies to (1.4), an equation of the first

kind in the surface traction f (shown in appendix A). Youngren and Acrivos (1975) solved the

first kind equation for a single spheroid. They were able to obtain reasonably accurate solutions,

as long as the curvature of the spheroid was not too large. They reported no ill-conditioning with

the equation, even though their solution method, as explained in chapter 4 and appendix D, was

somewhat imperfect. The instability of the first kind equation, which we show in chapter 4, led

to the development of a second kind equation for rigid particles (Power and Miranda 1987). The

Stokes-stresslet is itself a solution to the governing equation and in the case of a rigid surface, it

is a simple matter to show that the double layer potential satisfies (see appendix A)∫
S

Σijk(x − y)ui(y)nj(y) dS(y) = −(1− c(x ))uk(x ), (1.7)

an equation of the second kind. The problem with this equation is that Σ cannot describe flows

made up of rigid body motions. Indeed, equation (1.7) should be substituted into (1.5) to pro-

duce the single-layer, first kind equation (1.4), and is not in itself sufficient to allow solution

by any numerical method. The remedy is to complete the system by stipulating conditions that

are equivalent to the six rigid body motions (Power and Miranda 1987; Kim and Karrila 1991).

Liron and Barta (1992) demonstrate the applicability of the equations by numerically solving

several rigid particle problems. Also, Power and de Power (1993) use this formulation to in-

vestigate the problem of particle motion near a plane wall. Another second kind equation for

rigid particles, based on the traction, has been presented by Ingber and Mondy (1993). They

demonstrate its use, but there is a requirement to evaluate three normal derivatives of Cauchy

principal value integrals. Details regarding the second kind equation formulations can be found

in Karrila and Kim (1989) and Kim and Karrila (1991).

It would seem that the price paid to stave off ill-conditioning in first kind equations is the much

higher workload in solving those of the second kind. Recently, Ingber and Mammoli (1999)
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compared all three formulations on a set of test problems and showed that even though the con-

dition number of the first kind system was large, it did not seem to influence the accuracy. In

fact, the first kind equation performed slightly better than the other two and other work suggests

that first kind equations are not necessarily worse than second kind (Niessner and Ribaut 1985).

In chapter 4 the first kind equation is used, but modifications to the grid and kernel are made in

an attempt to prevent ill-conditioning and not least, to increase accuracy.

Free surface and liquid drop problems have received much more widespread attention. This

could be due to the fact that the boundary integral equation is of the second kind involving both

the single and double layer potential, and hence simpler to solve. Inspection of (1.5) reveals that

the double layer term exists in a Cauchy principal value sense which requires careful treatment.

Rallison and Acrivos (1978), Chi and Leal (1989), Stone and Leal (1989), Pozrikidis (1990a) and

Manga and Stone (1993) all investigated drop deformation. Their numerical methods have steadily

increased in sophistication, for example where Rallison and Acrivos used the trapezoidal rule

and constant approximations for the surface and unknown velocity, Pozrikidis and Stone now

employ Gauss-Legendre quadrature and higher order approximations for the surface. Both

assume a piecewise-linear profile for the velocity. One curious feature that is present in all

the work (Rallison and Acrivos 1978; Leal and Lee 1982; Geller et al. 1986; Chi and Leal 1989;

Stone and Leal 1989; Pozrikidis 1990a; Tjahjadi et al. 1992; Manga and Stone 1993; Pozrikidis 1997)

is the methodology for evaluating the singular integrals in (1.5). The singular nature of the inte-

grand is almost totally disregarded and only accounted for via a small series expansion. We argue

in chapter 4 and appendix D that higher interpolation and better use of Gaussian quadrature will

decrease the errors they report. Our results in chapter 5 seem to confirm this.

1.4 Outline of this thesis

The basic equations of Stokes flow that will be used in this dissertation are given in chapter 2.

We present the general field equations, fundamental singularities and boundary conditions for

both rigid particles and free surfaces. The axi-symmetric integral equation for the rigid particle

is also given in this chapter.

In chapter 3 we study and compare two methods for solving a one dimensional integral equation

of the first kind. The first method implements a Fourier series expansion, where the coefficients

are evaluated via collocation. We investigate the effect of expansion size as well as truncation
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on the error. A scheme to accelerate the convergence of the series, Shanks’ transformation, is

also implemented and examined. In the second method we solve the integral equation via a cubic

Hermite interpolant and investigate the effect of collocation on the solution. A Peano kernel

inspired method is developed and used to theoretically predict an optimal collocation strategy.

Numerical results for both methods are presented and compared.

In chapter 4, the rigid body, axi-symmetric, first kind integral equations are solved. Inspired by

the results of chapter 3 we present, in detail, a method based on arbitrary interpolation order, grid

distribution and polynomial approximation of the complete elliptic integrals, to find the traction

of a translating prolate spheroid. Results for various eccentricities, grid sizes and interpolation

order are given. These are then compared with a new, curvature based discretization scheme.

The method, coupled with the new gridding procedure is trialled on a purposely chosen difficult

particle. This particle, which possesses a large curvature and was deliberately chosen to tax

the solution scheme, reveals the ill-conditioning of the first kind equation. Finally, we present

another method to increase the accuracy of the solution. This involves introducing a weighted,

curvature based, kernel into the integral equation.

In chapter 5, we outline an algorithm, using the second kind equation, to solve liquid drop inter-

actions problems. The numerical method involves detailed consideration of the representation,

integration and time-stepping. Results, including accuracy checks, are given for various two

drop and three drops interactions. Finally, a toroidal drop deformation is presented. To the au-

thor’s knowledge, there are no published results on the numerical simulation of toroidal drops

and hence we compare the deformation to experimental data as well as to those given earlier.

In appendix A, the boundary integral equations for a surface in an unbounded, quiescent medium

are derived.

In appendix B, the Hermite interpolation polynomials are defined, and a Maple procedure to

calculate them is presented.

In appendix C, the Peano kernel theory used chapter 3 is justified and expanded. This is done by

proving a series of bounds between a function value and its average in a weighted integral. The

weight itself is quite general, thus providing a method of developing general product integration

rules. A specific rule and weight, with the methods developed here, is employed in chapter 3.

Calculations involving the axi-symmetric form of the integral equations and complete elliptic
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integrals are tabulated in appendix D. In this appendix, we also introduce the polynomial ap-

proximation to the complete elliptic integrals and show how their use is superior to the canonical

evaluation via the arithmetic-geometric mean.

Finally, in appendix E, we complete the discussion of spectral methods given in chapter 3 by

presenting a Maple routine that will produce a sequence of orthonormal polynomials given any

integrable positive weight.



Chapter 2

Equations for Stokes Flow

In this dissertation we will consider the slow motion of a body (S) immersed in an otherwise un-

bounded, stationary and incompressible fluid (Ω). Inertial forces are neglected and the Reynolds

number is assumed to be negligible. Such flows are of interest when the fluid viscosity is large

and/or length scales1 are small (Happel and Brenner 1965). We further assume that the fluid is

initially quiescent and that disturbances in the flow are induced by particle action – either directly

due to prescribed motion or implicit through the action of buoyancy.

The body will be either a rigid particle or a deformable liquid drop. The distinction will be made

by application of conditions on the surface S. In the case of a rigid inflexible surface, the velocity

is known and the governing equations can be re-cast into a set of coupled linear Fredholm integral

equations of the first kind in the unknown traction, f . This quantity is the stress experienced by

the particle at each point on its surface. Integrating f over S furnishes the drag

D =

∫
S

f · n dS, (2.1)

where n is the surface normal. The traction and the drag are known explicitly for simple geome-

tries, see section 1.2, and it is these that will be used to test the accuracy of the numerical method

developed in this thesis.

By contrast, the traction for a free surface is a known quantity and it is the velocity that is

unknown. In this case the integral equation is of the second kind whose solution yields the

surface deformation.
1Typically taken as the size of a particle or the interaction distance between particles.

19
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2.1 Stokes flow equations

The Navier-Stokes equations describe the flow field of a fluid at any point x ∈ Ω in terms of

u∗and p∗, the velocity and pressure of the fluid respectively. They are given by

ρ
∂u∗

∂t∗
+ ρ (u∗ · ∇∗)u∗ = −∇∗p∗ + µ∇∗2

u∗, (2.2)

where ρ is the density of the fluid and µ the viscosity. Here, we have adopted a starred notation to

denote dimensional quantities. The equation, as written in (2.2), separates the inertia terms (left

hand side) from the viscous terms (right hand side). If the flow field has a given characteristic

velocity U , length L and frequency ω, we can define the following non-dimensional quantities

u =
u∗

U
, x =

x ∗

L
, p =

p∗L
Uµ

and t = ωt∗. (2.3)

Thus the non-dimensional form of (2.2) is

α2∂u

∂t
+ Re (u · ∇)u = −∇p +∇2u , (2.4)

where α =
√

ρωL2/µ is known as the Womersely parameter and is a measure of inertial distur-

bance. The quantity Re is the Reynolds number as defined in (1.1).

For creeping flow, it is assumed that Re � 1. If the temporal disturbances are large enough then

we may have α2 ∼ O(1) and (2.4) simplifies to

α2∂u

∂t
= −∇p +∇2u , (2.5)

the unsteady Stokes equations; see Pozrikidis (1992, p. 1) and Kim and Karrila (1991, p. 147).

The validity of this equation lies in the assumption of a high characteristic frequency. If we let,

w = U/L, which would be the appropriate relation for the problem of a particle in an infinite

fluid, then from the definition of α we can show that α =
√

Re. For flows that exhibit large tem-

poral disturbances of order O(R
1/2
e ), for example particles that begin their motion impulsively,

or flows that are highly oscillatory, the use of the unsteady Stokes equation is required. These

flows will not be considered here and we refer to Pozrikidis (1992) for their treatment.

Neglecting both the Womersely parameter and the Reynolds number in (2.4) produces the Stokes

equations

∇p = ∇2u . (2.6)

In addition, for incompressible fluids we also have the continuity equation

∇ · u = 0. (2.7)
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Vp

Ω
O

y

x

n

S

Figure 2.1: Schematic of a particle in an infinite fluid showing geometry and notation used.

In such flows the pressure and viscous forces are in equilibrium throughout the fluid at each

instant. Thus, even though the flow may be time dependent, the temporal variable does not

appear in the governing equations.

Since we assume that the fluid is initially at rest we impose the far-field condition

|u(x )| → 0 and p(x ) → 0 as |x | → ∞. (2.8)

A schematic of the geometry is shown in figure 2.1, where S is the surface of a particle, Vp its

interior and n the unit outward normal to S.

The integral representation of equations (2.6)–(2.8), with a view to establishing a boundary inte-

gral equation, is explored in the next section.

2.2 Integral representation

The integral form of the Stokes equations has been known for over a century (Lorentz 1897).

From that time their main use came in areas of mathematical analysis where studies of existence,

uniqueness and later singularity distributions were the primary focus (Odqvist 1930; Oseen 1927;

Ladyzhenskaya 1963).

It was not until much later when Youngren and Acrivos (1975) applied the boundary integral
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equation to the resistance problem of finding the traction for a spheroid and cylinder. By modern

standards their methods were crude, but the application was original and innovative. Reports that

the first kind equation did not exhibit the ill-conditioning often associated with weakly singu-

lar kernels instigated much activity in applying the boundary integral equation to a plethora of

axisymmetric problems that held current interest.

The integral equations for the Green’s function in an unbounded domain are presented. The

corresponding equations for other singularity representations (for example flows with induced

periodic motion or rotation, for flows in regions with periodic structures or in half-spaces or

bounded by cylinders or parallel planes, for two dimensional regions and many other flow en-

vironments) we refer to Hasimoto (1959), Blake and Chwang (1974), Chwang and Wu (1974),

Chwang and Wu (1975), Chwang (1975), Liron and Mochon (1976b), Liron and Shahar (1978),

Dorrepaal et al. (1984), Huang and Chwang (1986), Pozrikidis (1988), Gavze (1990) and Loewenberg (1994

An excellent account is given in the book by Pozrikidis (1992).

The linearity of the governing equations (2.6)-(2.7) suggests a super-positioning approach which

results in an integral over the surface S. This representation states that the velocity field may

be represented by a distribution of singularities over the surface of each body. For the exterior

problem we have

c(x )uk(x ) = −
∫
S

Gik(x − y)fi(y) dS(y)−
∫
S

Σijk(x − y)ui(y)nj(y) dS(y), (2.9)

where

c(x ) =




1, x ∈ Ω,

1
2
, x ∈ S,

0, x ∈ Vp,

(2.10)

and the usual summation convention has been adopted. The singularities are the Stokeslet

Gik(x ) =
1

8π

(
δik
|x | +

xixk
|x |3

)
, (2.11)

and the Stokes-stresslet

Σijk(x ) = − 3

4π

xixjxk
|x |5 . (2.12)

The Stokeslet represents the velocity of the fluid at x in the ith direction due to a unit point force

at the origin in the direction k. The stresslet is the analogous singularity for the stress tensor.

For completeness the derivation of (2.9) is included in appendix A.
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A key advantage of using (2.9) over the finite element approach is the reduction in the dimension

of the problem and its efficacy in dealing with unbounded domains. The price paid is reflected

in the singularity of the integrands. In many previous studies, the singular nature of the integrals

were either ignored or crudely dealt with. We expand on this point in the next section and in ap-

pendix D. More sophisticated methods to evaluate the integrals are developed and implemented

in chapters 4 and 5.

2.2.1 Rigid body

If the surface S is rigid, then the usual no-slip condition applies

u(x ) = −V on x ∈ S. (2.13)

Evaluating (2.9) at the surface, substituting (2.13) and applying the divergence theorem on the

second integral will result in a first kind integral equation

V =

∫
S

G(x − y) · f (y) dS(y) for x ∈ S, (2.14)

in the unknown traction f . Again, see appendix A for its derivation.

Axisymmetric integral representation

If one assumes that the particle is axially symmetric and is translating in the direction of its

symmetry axis, then the flow field is also axi-symmetric, and with the traction, is independent of

the azimuthal angle in a cylindrical polar coordinate system. That is, we have

f = (f2 cos θ, f2 sin θ, f1), for θ ∈ [0, 2π], (2.15)

where f1 and f2 are the components of the traction in the axial and radial directions respectively.

Assuming, without loss of generality, that S has the parametric representation

x = r(t) cos θ, y = r(t) sin θ, z = z(t), for a ≤ t ≤ b, 0 ≤ θ ≤ 2π,

and choosing x to lie on the θ = 0 plane results in the following form for x and y

y(t) = (r(t) cos θ, r(t) sin θ, z(t)), and x (t0) = (r(t0), 0, z(t0)) = (r0, 0, z0). (2.16)
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Hence

|x−y |2(t) =
4r(t)r0

k(t)

(
1−k(t) cos2(θ/2)

)
, where k(t) =

4r(t)r0

(r0 + r(t))2 + (z0 − z(t))2
.

(2.17)

Substituting (2.15), (2.16) and (2.17) into (2.14) and integrating analytically in the θ parameter

produces a linearly coupled set of one-dimensional integral equations. The azimuthal integration

gives rise to complete elliptic integrals of the first and second kind and we refer to appendix D,

section D.1 for the details. The equations are

V =
1

8π
√

r0

b∫
a

{
2
√

rk

(r0 − r)2 + (z0 − z)2

[(
(r0 − r)2 + (z0 − z)2

)
F (k) + (z0 − z)2E(k)

]
f1

+
z0 − z

(r0 − r)2 + (z0 − z)2

√
k

r

[(
r2
0 − r2 + (z0 − z)2

)
E(k)−

(
(r0 − r)2 + (z0 − z)2

)
F (k)

]
f2

}√
r′2 + z′2 dt (2.18)

and

0 =

b∫
a

{ √
rk(z0 − z)

(r0 − r)2 + (z0 − z)2

[(
r2 − r2

0 + (z0 − z)2
)
E(k)− ((r0 − r)2 + (z0 − z)2

)
F (k)

]
f1

+

√
k

r

1

(r0 − r)2 + (z0 − z)2

[(
2(z0 − z)4 + 3(z0 − z)2(r2

0 + r2) + (r2
0 − r2)2

)
E(k)

− ((r0 − r)2 + (z0 − z)2
)(

r2
0 + r2 + 2(z0 − z)2

)
F (k)

]
f2

}√
r′2 + z′2 dt, (2.19)

where F (k) and E(k) are the complete elliptic integrals of the first and second kind, respectively.

As k → 1, that is, as y → x the integrals exhibit a logarithmic singularity. This is because

F (k) =
1

2
ln

(
16

1− k

)
+

(
1

2
ln

(
16

1− k

)
− 1

)
1− k

4
+ O

(
(1− k)2

)
(2.20)

and

E(k) = 1 +

(
ln

(
16

1− k

)
− 1

)
1− k

4
+ O

(
(1− k)2

)
. (2.21)

Approaching the singular point, it is easy to see that E remains bounded while F becomes

unbounded. Hence, the coefficient of f1 in (2.18) and the coefficient of f2 in (2.19) become

unbounded while the other two coefficients are always bounded.

Accurate evaluation of the logarithmic singularity is crucial to the success of any numerical

method. A technique in wide spread use to evaluate the unbounded integrals is to define a small
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region about the singularity and, using a low order expansion, integrate analytically. All other in-

tegrals are then computed via Simpson’s rule or a low order Gauss-Legendre rule (Youngren and Acrivos 197

Lee and Leal 1982; Leal and Lee 1982; Koh and Leal 1989; Stone and Leal 1989; Pozrikidis 1990b;

Tjahjadi et al. 1992; Pozrikidis 1997). In appendix D, section D.2 we argue that proper use of

weighted Gaussian quadrature is much more accurate than series expansions. To facilitate their

use, we develop a polynomial approximation to the complete elliptic integrals and illustrate their

application.

2.2.2 Free surface

If S is a liquid drop then we need to consider the interior as well as the exterior flow. If we

assume that the viscosity of the interior fluid is λµ and the viscosity of the exterior fluid is µ then

the governing equations are

∇p = ∇2u , ∇ · u = 0, (2.22)

∇p̂ = λ∇2û , ∇ · û = 0, (2.23)

where (u , p) are the velocity and pressure fields in the exterior fluid (Ω), and (û , p̂) are the

velocity and pressure fields in the interior fluid (Vp).

The boundary conditions are that the velocity and tangential stress are continuous across the

interface, and the normal stress at the interface is balanced by a surface tension force. The first

condition gives

u = û , x ∈ S. (2.24)

In dimensional variables, we can write the remaining conditions as

∆f ∗ =
(
τ ∗

(outside) − τ ∗
(inside)

) · n , (2.25)

where ∆f ∗ is the jump in stress across the interface, n the unit normal vector to the drop surface,

pointing from the interior fluid to the exterior fluid and τ ∗ the modified stress tensor defined as

τ ∗ = −p∗δij +
∂u∗

i

∂x∗
j

+
∂u∗

j

∂x∗
i

.

We note that p∗ here is the modified pressure since it has the term ρgz∗ added to account for the

effect of gravity. Applying the stress condition to (2.25) gives

∆f ∗ =
(
∆ρgz∗ + γ∇∗ · n)n , (2.26)
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where ∆ρgz∗ is the buoyancy term subtracted from the modified pressure and γ the uniform

surface tension. Letting a be a characteristic length scale and using the scaling

z =
z∗

a
and f =

f ∗

ga∆ρ
,

produces the non-dimensional stress condition

∆f = zn + Γ(∇ · n)n , x ∈ S (2.27)

where

Γ =
γ

ga2∆ρ
,

is the inverse Bond number. Details may be readily found in Manga and Stone (1993) and

Pozrikidis (1992, p. 147)

Using an approach similar to that in appendix A, the integral equation for the interior flow is

c∗(x )ûk(x ) =
1

λ

∫
S

Gik(x − y)fi(y) dS(y) +

∫
S

Σijk(x − y)ûi(y)nj(y) dS(y), (2.28)

where

c∗(x ) =




0, x ∈ Ω,

1
2
. x ∈ S,

1, x ∈ Vp.

(2.29)

Adding (2.9) and (2.28), evaluating at the surface and using the boundary conditions (2.24) and

(2.27) results in an integral equation of the second kind

uk(x ) =
2

1 + λ

∫
S

Gik(x − y)∆fi(y) dS(y)

− 2

(
1− λ

1 + λ

)∫
S

Σijk(x − y)ui(y)nj(y) dS(y) (2.30)

in the unknown velocity u .

Inspection of (2.12) reveals that the double layer term has an O(1/r2) type singularity where

r = x − y . In an axisymmetric regime, this singularity reduces to a log r/r type. The integral

exists in a Cauchy principal value sense and integration of this term, as well as the numerical

method used to solve (2.30) are given in chapter 5.

In the next chapter, two potential solution techniques for solving the axisymmetric boundary

integral equations are investigated. In order to reduce the complexity of the analysis and to
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simplify the identification of key numerical effects, we substitute Symm’s integral equation in-

stead of equations (2.18)-(2.19). Symm’s equation still exhibits some of the main features of the

equations described here - it is a Fredholm integral equation of the first kind with a logarithmic

kernel.



Chapter 3

Numerical Investigation of Symm’s

Integral Equation

3.1 Introduction

A great many problems in the fields of engineering and science can be modelled with partial

differential equations. If these problems involve some well defined region, Ω, with known condi-

tions on the boundary Γ, then the equations can be transformed into a Fredholm integral equation

of the first or second kind. In this chapter we will consider equations of the first kind

g(y) =

∫
Γ

K(x − y)f(x ) dΓ(x ), (3.1)

where g represents some known data at the point y ∈ Γ and K is a distribution of source (or

sink) terms over the boundary. We seek to find the density of this distribution, f .

The integral equation (3.1) is inherently ill-posed. That is, it can be shown that a small perturba-

tion on g can give rise to an arbitrarily large perturbation in f . To substantiate this point, consider

the singular integral
1∫

0

ln |x− y|einx dx =
i

n

(
ln y − ein ln(1− y)

)− π

n
einy + O

(
1

n2

)
. (3.2)

For large n, infinitesimal changes for the integral (right hand side) correspond to finite changes

in the integrand. The problem is compounded if instead we consider
1∫

0

ln |x− y|nαeinx dx = inα−1
(
ln y − ein ln(1− y)

)− πnα−1einy + O
(
nα−2

)
. (3.3)

28
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For 0 < α < 1 and n large, then infinitely small changes for the integral correspond to infinitely

large changes in the integrand. Even though (3.2) is within a constant multiple of (3.3), as n

becomes large we can see that small errors in g may lead to finite or infinite errors in f .

For this reason, numerical methods for solving such equations are often ill-fated. The simple

illustration here shows this is often manifested in high frequency terms for the unknown.

Numerical errors are introduced in one of four ways: (i) errors in approximating the surface Γ, (ii)

errors in the approximation scheme for the unknown f , (iii) errors in the numerical integration

of the kernel and (iv) round off errors. Errors that originate from (i) and (iii) are due to the nature

of the model (K) and specific problem (Γ). That of (iv) results from finite machine precision and

is a concern when the surface is over discretized or the unknown is expanded beyond machine

limit. Thus, in an attempt to compare different methods to solve (3.1), we limit the boundary

to the unit interval and specify a logarithmic kernel. In addition, we impose the condition that

f has zero derivative at the endpoints. The kernel and condition on f were chosen since these

characteristics are present in most problems which exhibit axial symmetry.

We implement and compare two numerical methods to solve Symm’s integral equation

g(y) =

1∫
0

ln |x− y|f(x) dx, 0 ≤ y ≤ 1, (3.4)

on the unit interval. In the specific example used here we have

g(y) =
1

15
y3
(
3 y2 − 15 y + 20

)
ln(y) +

1

15
(1− y)

(
3 y4 − 12 y3 + 8 y2 + 8 y + 8

)
ln(1− y)

+
9

10
y3 − 1

5
y4 − 9

10
y2 − 23

60
y − 211

900
.

The exact solution is

f(x) = x2(x− 2)2, 0 ≤ x ≤ 1. (3.5)

The first method, in section 3.2, uses a spectral approach where the unknown is represented as a

finite sum of orthogonal functions. That is,

f(x) =
N∑
n=0

αnϕn(x), 0 ≤ x ≤ 1, (3.6)

where {ϕn} is the orthogonal basis of some inner product space, in which f is a member, and

αn =
〈f, ϕn〉
〈ϕn, ϕn〉 , n = 0, 1, . . . (3.7)
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are the Euler equations that define the coefficients of the expansion. The method calculates these

coefficients and the resulting approximation is thus furnished. There are a few advantages and

disadvantages with this approach:

• the approximation is valid for the entire domain as no discretization is employed.

• the properties of the solution are derived from those of the basis functions {ϕn}. For

orthogonal polynomials, and in particular trigonometric polynomials, this would mean

that the solution is everywhere analytic. This may not be expedient if one knows that the

solution should exhibit some non-analytic behaviour. Usually, this property is desirable

and non-analytic functions can be catered for by expanding in a weighted series

f(x) = w(x)
N∑
n=0

αnϕn(x).

In this case the basis, {ϕn}, would be orthogonal with respect to the weight w. A Maple

routine to calculate the orthonormal polynomials, up to any order, given any integrable

positive weight, on any domain is given in Appendix E.

• as shown earlier, the higher order coefficients are usually difficult to obtain. It is a well

known property of orthogonal polynomials that they possess linear roots (Atkinson 1989,

p. 213) and (Abramowitz and Stegun 1965, p. 787). Hence, for large n, these functions are

highly oscillatory and so inverting first kind equations can become difficult. In addition,

there are complications in the numerical integration of integrands that are highly oscillatory

and singular. For this reason the use of Shanks’ transform to increase the accuracy of low

order approximations is explored in sub-section 3.2.2.

We remark that the Galerkin method (Delves and Mohamed 1985) is another expansion ap-

proach. It involves expanding the unknown in an orthogonal series, as in (3.6) and substituting

into the integral equation. A linear system is formed by applying the inner product of each basis

function with the resulting equation. It has been used with much success in solving integral equa-

tions of the second kind with regular kernels. The method will not be considered here since (3.4)

is an equation of the first kind with a singular kernel. The Galerkin method has been augmented

to account for these features, but as a result is much more difficult to implement and requires two

dimensional weighted cubature formulae. It will not be pursued further here.

In section 3.3 the second method explored involves discretizing the boundary into n elements

0 = x0 < x1 < · · · < xn−1 < xn = 1
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and approximating f using some interpolatory function in each interval. Previous methods for

Stokes flow have used constant and linear approximations (Youngren and Acrivos 1975; Leal and Lee 1982;

Lee and Leal 1982; Geller et al. 1986; Chi and Leal 1989; Pozrikidis 1989; Tjahjadi et al. 1992;

Pozrikidis 1997). Pozrikidis (1990b, 1990a) uses quadratic elements. This contrasts with the

methods in chapters 4 and 5 where, for rigid body problems, Hermite polynomials of arbitrary

order are used and for free surfaces both the surface and the unknown velocity are approximated

using cubic splines.

To gauge the effect of a cubic approximation, section 3.3 investigates the use of the Hermite

cubic interpolation polynomials. That is,

f(x) ≈ f(xi−1)H1

(
x− xi−1

xi − xi−1

)
+ (xi − xi−1)f

′(xi−1)H2

(
x− xi−1

xi − xi−1

)

+ f(xi)H3

(
x− xi−1

xi − xi−1

)
+ (xi − xi−1)f

′(xi)H4

(
x− xi−1

xi − xi−1

)
, (3.8)

for xi−1 ≤ x ≤ xi, i = 1, 2, . . . , n. The properties of Hermite interpolation polynomials, as well

as the notation used, is outlined in Appendix B. These interpolation polynomials have compact

support and thus the behaviour of f in any one region has little effect on the solution in other

regions. The solution thus obtained is continuous and differentiable.

Unlike the spectral approach, where analyticity is guaranteed for any order approximation, we

would require higher order Hermite polynomials for more smoothness. It is interesting to note

that although cubic polynomials are employed, second derivative continuity is not guaranteed.

This would only be the case with the cubic spline, which has global support. Unfortunately, a

cubic spline method is difficult to implement since the nodal behaviour of f would be required a

priori. Such a method would be attractive since half the storage and number of integrations would

be needed when compared to the Hermite approximation. A method, based on a conjunction of

Fortran and Maple, has been developed by the author (Roumeliotis 1991), but currently only

works for small n and has the drawback of not being adaptable to dynamic grids.

Examination of (3.8) reveals that for large n, the approximation breaks down. We investigate how

large n can be as well as explore the role of the collocation points in determining the accuracy of

the solution.

For a detailed exposition of boundary integral equation methods we refer to the work of Lucas (1993).
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3.2 Spectral Method

Boundary integral problems that involve closed boundaries must have periodic solutions. This

inherent periodicity has been previously exploited to construct a solution scheme that employs

the trapezoidal rule (Fenton 1994) which is extremely accurate for periodic functions. Here we

choose to exploit the periodicity only to the extent that the unknown is expanded in a Fourier

series.

Thus, we present a numerical method for solving a linear Fredholm integral equation of the first

kind of the form

g(y) =

L∫
0

K(x, y)f(x) dx, 0 ≤ y ≤ L, (3.9)

where it will be assumed that the function f is even and periodic

f(x) = f(−x), −L ≤ x ≤ L. (3.10)

This condition enables f to be expanded into a Fourier cosine series

f(x) =
a0

2
+

∞∑
n=1

an cos
nπx

L
, (3.11)

where

an =
2

L

L∫
0

f(x) cos
nπx

L
dx. (3.12)

Equation (3.10) is imposed merely as a matter of convenience. Without it, equation (3.11) would

be changed so that f(x) is expanded into its full Fourier series. We make the obvious assumption

that (3.11) converges almost everywhere to f(x). In order to evaluate the Fourier coefficients

(3.12), the function must be integrable. This condition can be relaxed somewhat and other Euler

equations have been defined for more general classes of functions. We refer to Kubota (1973)

and the references therein for the specific details.

In what follows we will refer to the Fourier cosine series (3.11) as the Fourier series.

Substituting equation (3.11) into equation (3.9) gives

g(y) =
a0

2
B0(y) +

∞∑
n=1

anBn(y), (3.13)
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where

Bn(y) =

L∫
0

K(x, y) cos
nπx

L
dx. (3.14)

According to the well known Riemann-Lebesgue theorem, if K(·, y) and f are absolutely inte-

grable, then

Bn(y) → 0 and an → 0 as n →∞. (3.15)

Thus the high frequency terms may be neglected from (3.11), and we can approximate f(x) by

f ∗
N(x) =

a∗0
2

+
N∑
n=1

a∗n cos
nπx

L
, (3.16)

for some a∗0, a
∗
1, . . . , a

∗
N , N > 0. Substituting (3.16) into (3.9), we obtain

g(y) =
a∗0
2
B0(y) +

N∑
n=1

a∗nBn(y). (3.17)

To obtain the Fourier coefficients, N + 1 collocation points

0 ≤ y0 < y1 < · · · < yN−1 < yN ≤ L, (3.18)

are used to produce the N + 1 equations

g(yj) =
a∗0
2
A0,j +

N∑
n=1

a∗nAn,j, where An,j = Bn(yj), j = 0, 1, . . . , N. (3.19)

The corresponding matrix equation is

Aa = g, (3.20)

where

A =




A0,0

2
A1,0 A2,0 . . . AN,0

A0,1

2
A1,1 A2,1 . . . AN,1

...
A0,N

2
A1,N A2,N . . . AN,N




, a =




a∗0

a∗1
...

a∗N


 and g =




g(y0)

g(y1)
...

g(yN)


 .

(3.21)

Solving (3.20) provides a∗0, a
∗
1, . . . , a

∗
N , which on substitution into (3.16) yields an approximation

to f(x).

We mention briefly that the integrals in An,j were performed by first subdividing at the zeros of

the integrand and then using a combination of Gauss-Legendre and Gauss-Log quadrature. That
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is

An,j =

L∫
0

K(x, yj) cos
nπx

L
dx

=

1∫
0

log |x− yj| cosnπx dx

=

yj−1∫
0

log(yj − x) cosnπx dx +

yj∫
yj−1

log(yj − x) cosnπx dx

+

yj+1∫
yj

log(x− yj) cosnπx dx +

1∫
yj+1

log(x− yj) cosnπx dx. (3.22)

The first and last integrands in (3.22) are not singular and the integrals are evaluated using a

Gauss-Legendre rule over each zero of the integrand, the middle two integrals exhibit a loga-

rithmic singularity and they are evaluated by a combination of Gauss-Log and Gauss-Legendre

rules over the zero’s of the respective integrands. In this way, the logarithmic singularity and

the high frequency nature of the integrands are both accounted for. Another approach would

be to employ the automatic quadrature routines in QUADPACK (Piessens et al. 1983). QUAD-

PACK is a collection of state-of-the-art integration routines written in Fortran. They are ex-

tremely robust and are capable of evaluating quite complicated integrals to high precision. One

possible drawback in their use is that the suite necessarily compromises speed for reliabil-

ity and so may not be highly suited to algorithms which call integration routines repeatedly.

For example, boundary element methods which assemble matrices whose individual elements

are themselves integrals. In this case, as in this dissertation, it would be more appropriate to

construct tailor-made quadrature rules. QUADPACK may be obtained from the internet site

http://www.netlib.org/quadpack/.

3.2.1 Results

The Fourier series approximation performs reasonably for small N . Figure 3.1 compares the

exact solution with the approximation for N = 2. The error is around 2%, which is quite

acceptable for this low order expansion. As expected most of the error occurs at the boundary

points x = 0 and x = 1. This is typical of spectral expansions in that the endpoints have

the slowest convergence rate and is due to the fact that at these points the coefficients, a∗n, are

summed with the greatest magnitude.
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Figure 3.1: Plot of f(x) = x2(x− 2)2 — and the numerical approximation f∗
2 (x) (3.16) - - -.

In Figures 3.2 and 3.3 we show the error in the Fourier approximation for N = 4, 8, 16, 32, 64

and 128. The most obvious characteristic of each graph is the increasing frequency; and in fact

the number of peaks and troughs in each graph in Figure 3.2 corresponds exactly with N + 1.

This suggests that for each N , the dominant component of the error is the last few terms of the

sum.

As N doubles from N = 4 to N = 32, the error decreases by an order of magnitude (Figure 3.2).

The error then begins to increase, and this is shown in Figure 3.3 for N = 64 and 128. Fig-

ure 3.3(b) shows that the error is largest at x = 1, and this coupled with the high frequency of

the graph indicates a breakdown in the evaluation of the last few coefficients.

Inspection of the last few terms in each Fourier expansion reveals this breakdown. Table 3.1

shows the relative error in each Fourier coefficient for N = 4, 8 and 16. The error increases with

n except for the last coefficient. The breakdown in the last few terms is quite large where the

relative error is 28% for N = 8 and 53% for N = 16. It is clear that these terms are the cause

of the large deviations shown in Figure 3.3 near x = 1. Figure 3.4 shows the relative error in

the Fourier coefficients for N = 4 up to N = 128. The large increase in errors near n = N for

N = 64 and N = 128 prevent the series from realizing its previous convergence rate.

Another feature revealed in Figure 3.4 is that doubling N up to 32 increases the accuracy of
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Figure 3.2: f(x)− f∗
N (x) for (a) N = 4, (b) N = 8, (c) N = 16 and (d) N = 32.
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n an

∣∣∣∣an − a∗n
an

∣∣∣∣
N = 4 N = 8 N = 16

0 1.0666666666666667 0.2396E-04 0.1126E-05 0.5179E-07

1 -0.4927671482248482 0.7770E-04 0.2725E-05 0.1090E-06

2 -0.0307979467640530 0.4306E-02 0.8200E-04 0.3437E-05

3 -0.0060835450398129 0.7569E-01 0.6883E-03 0.1582E-04

4 -0.0019248716727533 0.1443E-02 0.4154E-02 0.8204E-04

5 -0.0007884274371598 0.1882E-01 0.2402E-03

6 -0.0003802215649883 0.7640E-01 0.6903E-03

7 -0.0002052341308725 0.2796E+00 0.1753E-02

8 -0.0001203044795471 0.3760E-02 0.3973E-02

9 -0.0000751054943187 0.9088E-02

10 -0.0000492767148225 0.1846E-01

11 -0.0000336566592599 0.3886E-01

12 -0.0000237638478118 0.7467E-01

13 -0.0000172531475867 0.1482E+00

14 -0.0000128271331795 0.2771E+00

15 -0.0000097336720637 0.5308E+00

16 -0.0000075190299717 0.7605E-02

Table 3.1: Error in the coefficients of the Fourier series for N = 4, N = 8 and N = 16.
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Figure 3.4: Relative error in Fourier coefficients for N = 4, 8, 16, 32, 64, 128.

the coefficients by an order of magnitude, but thereafter the error remains relatively static (N =

64, 128). In other words, with this method the uppermost accuracy is attained at approximately

N = 32 and increasing N beyond this will not dramatically decrease the error and may even

increase it. This is consistent with Figures 3.2 and 3.3.

An obvious course of action would be to calculate a large number, N , of coefficients but employ

a limited number of them, M ≤ N , in the expansion

f ∗
N,M =

a∗0
2

+
M∑
n=1

a∗n cos(nπx). (3.23)

This would ensure that the first coefficients are obtained with high accuracy, but the last (inaccu-

rate) few do not corrupt the series. The results are presented in Figure 3.5 where the coefficients

have been calculated for N = 64. Excluding the last 8 coefficients (Figure 3.5(b)) slightly de-

creases the maximum error by a factor of 1.35. Excluding the last 16 coefficients (Figure 3.5(c))

decreases the maximum error by roughly the same amount, while omitting half the coefficients

(M = 32, Figure 3.5(d)) more than doubles the error. It can be seen that decreasing M changes
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the location of the maximum error from x = 1 to x = 0.

The calculation is repeated for N = 128 and the results are shown in Figure 3.6. The behaviour

is qualitatively similar to N = 64. Excluding the last 48 coefficients (Figure 3.6(b)) increases the

accuracy by more than a factor of 3, excluding the last 72 coefficients (Figure 3.6(c)) produces a

result that is over 5.5 times more accurate, while omitting the last 80 coefficients (Figure 3.6(d))

is roughly 2.7 times more accurate. We note that in Figure 3.5(d) the error has increased while

in Figure 3.6(d) the error still decreases. It would seem that with N = 64,M = 32 we have

reached the obvious limit of leaving too few terms in the expansion.

To improve the expansion method, the Shanks transform is explored in the next section. This

non-linear transformation has been shown to improve convergence rates for many sequences and

it will be used here in an attempt to improve accuracy and avoid the high frequency terms.

3.2.2 Shanks’ transform

The Fourier series (3.11) can be considered as a sequence of partial sums for each x

{An} =
{a0

2
,
a0

2
+ a1 cosπx,

a0

2
+ a1 cos πx + a2 cos 2πx, . . .

}
. (3.24)

We attempt to speed the converge of (3.24) for each x via application of Shanks’ transform.

Shanks’ transform (Shanks 1955) is a set of non-linear transformations that maps one sequence to

another. Given a sequence {An}, n = 0, 1, 2, . . . and the forward difference ∆An = An+1−An,

then the kth transform of {An} defines a new sequence {Bk,n}, n = k, k + 1, . . . given by

Bk,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

An−k · · · An−1 An

∆An−k · · · ∆An−1 ∆An

∆An−k+1 · · · ∆An ∆An+1

...
...

...

∆An−1 · · · ∆An+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1

∆An−k · · · ∆An−1 ∆An

∆An−k+1 · · · ∆An ∆An+1

...
...

...

∆An−1 · · · ∆An+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.25)



CHAPTER 3. SYMM’S INTEGRAL EQUATION 41

-1
.5

e-
00

6

-1
e-

00
6

-5
e-

00
70

5e
-0

07

1e
-0

06

1.
5e

-0
06

0
0.

2
0.

4
0.

6
0.

8
1

f(x) - f
*
(x)

x

-5
e-

00
6

-4
e-

00
6

-3
e-

00
6

-2
e-

00
6

-1
e-

00
60

1e
-0

06

2e
-0

06

3e
-0

06

4e
-0

06

0
0.

2
0.

4
0.

6
0.

8
1

f(x) - f
*
(x)

x

(b
)

(d
)

-2
e-

00
6

-1
.5

e-
00

6

-1
e-

00
6

-5
e-

00
70

5e
-0

07

1e
-0

06

1.
5e

-0
06

2e
-0

06

0
0.

2
0.

4
0.

6
0.

8
1

f(x) - f
*
(x)

x

-1
.5

e-
00

6

-1
e-

00
6

-5
e-

00
70

5e
-0

07

1e
-0

06

0
0.

2
0.

4
0.

6
0.

8
1

f(x) - f
*
(x)

x

(a
)

(c
)

Figure 3.5: f(x)− f∗
64,M (x) for (a) M = 64, (b) M = 56, (c) M = 48 and (d) M = 32.
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whenever the denominator does not vanish. Shanks (1955) has shown that (3.25) can dramati-

cally speed up slowly convergent sequences and even evaluate, in an analytic continuation sense,

divergent sequences. The motivation behind the general transform is in many ways similar to

the derivation of Aitken’s formula. Here an estimate is made on the rate of convergence of the

original sequence, and hence the error, thus providing an opportunity to enhance convergence.

The sequence itself is considered a function that can be approximated by a few dominant terms

of its spectrum (called transients by Shanks)

An ≈ B +
k∑
i=1

aiq
n
i . (3.26)

Identifying q in terms of A and k leads to the Shanks transform (3.25) with the ultimate goal being

the faster evaluation of the limit B. Inspection of (3.26) reveals that if the sequence is nearly

geometric then k = 1 is the appropriate transformation. More complicated transformations will

apply depending on how many geometric progressions are required to approximate the original

sequence. We note that the form of (3.26) is quite general as most convergent (and divergent)

sequences can be expressed in this way using simple techniques like decomposition into partial

fractions.

Since the Shanks transform of a sequence is itself a sequence, it is of course possible to generate

families of sequences. Taking this into consideration, the transform can be defined as an operator

Bk,n = ek(An). (3.27)

The strength of the transform comes from this very idea of embedding sequences to greatly

enhance convergence rate. We explore two such possibilities, the iterated 1st order transform

and the iterated diagonal transform. We refer to the original paper of Shanks (1955) for the

theoretical details behind (3.25) and the exploration of more elaborate transformations.

The 1st order transform has a simple form and is readily recognisable as Aitken’s extrapolation

formula (Atkinson 1989, p. 85). Substituting k = 1 into (3.25) gives

e1(An) =
An+1An−1 − A2

n

An+1 + An−1 − 2An

, n = 1, 2, . . . .

Using (3.27) allows us to write the iterated 1st order transform. The first sequence is Bn =

e1(An), which can itself be transformed producing a repeated set of sequences viz. Cn =
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e1(Bn), Dn = e1(Cn), . . . . In tabular form we have

A0

A1 B1

A2 B2 C2

A3 B3 C3 D3

A4 B4 C4
...

. . .

A5 B5
...

A6
...

...

(3.28)

The first term of the kth iterated sequence would require 2k+1 elements of the original sequence.

It has been shown for many sequences that the top diagonal in (3.28) can converge much faster

than the first column.

To include the possibility that (3.24) has other than geometric convergence we also define the

diagonal transform Bn,n = en(An)

A0

A1 B1,1

A2

A0

A1

A2 B2,2

A3

A4

A0

A1

A2

A3 B3,3

A4

A5

A6

· · · (3.29)

To evaluate {Bn,n} would require 2n + 1 terms of the original sequence. Clearly, this itself can

be iterated using (3.29). The first iterate would appear as

A0

B1,1 C1,1

B2,2

A0

B1,1

B2,2 C2,2

B3,3

B4,4

A0

B1,1

B2,2

B3,3 C3,3

B4,4

B5,5

B6,6

· · ·

Results are shown in Tables 3.2 and 3.3 where f(0) and f(1) are evaluated using the Fourier

series for various N . The partial sums (3.24) are transformed using (3.28) and (3.29). As we’ve
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Absolute Error in f(0)

N Fourier Series Diag. Diag. (1) Diag. (2) Diag. (3) 1st Shanks

4 0.176E-02 0.778E-03 0.456E-03

8 0.266E-03 0.431E-04 0.196E-04 0.302E-05

12 0.838E-04 0.627E-05 0.133E-05 0.253E-06

16 0.365E-04 0.147E-05 0.153E-06 0.715E-07 0.619E-06

20 0.190E-04 0.280E-06 0.163E-06 0.163E-06 0.126E-05

24 0.112E-04 0.172E-06 0.778E-07 0.968E-07 0.188E-06

28 0.709E-05 0.192E-06 0.177E-06 0.342E-07 0.805E-07

32 0.478E-05 0.186E-06 0.180E-06 0.715E-07 0.842E-07 0.619E-07

Table 3.2: Error in f(0) for number of terms in Fourier series and different extrapolation schemes.

seen, the Fourier series is slowest to converge at these end-points and they have been chosen to

gauge the effect of Shanks’ transform.

For each row in Table 3.2, we present the errors in evaluating f(0) using the Fourier series

(column 2), the diagonal transform (3.29) (column 3) and the iterated first order transform (3.28)

(column 7). In columns 4 to 6, successive diagonal transforms are applied using the previous

column as the starting sequence. We see that the transforms perform extremely well and are

orders of magnitude more accurate than the Fourier series. In fact the 1st order iterated transform

for N = 8 is more accurate than the Fourier series for N = 32.

These results are repeated in Table 3.3 where f(1) is being approximated. The results here are

even more accurate than in Table 3.2 and may be due to the fact that the sequence is alternating

and not monotonic. In this case the iterated first order transform is three orders of magnitude

more accurate for N = 8 than the Fourier series for N = 32. The diagonal transform seems to

perform well after repeated use (columns 4-6) as in the iterated 1st order transform.

When applying the transforms for each x ∈ [0, 1] the results are quite different. Figures 3.7,

3.8, 3.9 and 3.10 show the performance of the Fourier series and the Shanks transforms for

N = 4, 8, 16 and 32 respectively. The iterated 1st order transform performs rather poorly (Fig-

ures 3.7(a), 3.8(a), 3.9(a)). For most values of x the Fourier series is more accurate and the

error considerably more regular. There are a number of sharp peaks with the transform error

and they increase in frequency as N increases. The results are better for the diagonal transform

(Figures 3.7(c), 3.8(c), 3.9(d), 3.10(d)). For most of the domain the diagonal transform is orders
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Absolute Error in f(1)

N Fourier Series Diag. Diag. (1) Diag. (2) Diag. (3) 1st Shanks

4 0.539E-03 0.543E-04 0.197E-04

8 0.457E-04 0.327E-07 0.290E-08 0.527E-09

12 0.993E-05 0.294E-10 0.575E-11 0.000E+00

16 0.329E-05 0.261E-08 0.634E-11 0.000E+00 0.000E+00

20 0.139E-05 0.207E-05 0.222E-11 0.000E+00 0.000E+00

24 0.681E-06 0.870E-04 0.131E-11 0.225E-10 0.000E+00

28 0.372E-06 0.156E-03 0.832E-12 0.181E-11 0.000E+00

32 0.220E-06 0.122E-03 0.374E-08 0.227E-10 0.000E+00 0.000E+00

Table 3.3: Error in f(1) for number of terms in Fourier series and different extrapolation schemes.

of magnitude more accurate, but some of the sharp spikes are orders of magnitude worse. The

exception is for N = 32 (Figure 3.10(d)) where the diagonal transform has greatly deteriorated

the original sequence. The peaks increase in frequency as N increases.

The other plots show the performance of the iterated diagonal transform. At times they do

not enhance the diagonal result (Figures 3.7(b), 3.8(b), 3.9(b), 3.9(c)), at others performance

is markedly better (Figures 3.10(b), 3.10(c)). Overall, the irregularity of the Shanks errors leads

one to conclude that the transform is not a reliable method for improving performance. For much

of the domain of f the performance can be quite spectacular, but at others it is disastrous. Ta-

ble 3.4 shows the maximum and average relative errors for the transforms and original Fourier

series. In every case the maximum error is worse than the Fourier series and is due to the sharp

peaks discussed previously. As expected, the average errors are somewhat better. For moderate

values of N , the diagonal transform increases convergence of the Fourier series. Iterating does

not improve performance. The iterated 1st order transform degrades performance. These re-

sults can be partly explained by simple analysis of (3.25). Substituting the sequence of partial

Fourier sums (3.24) into (3.25) for k = 1 gives

B1,n =

∣∣∣∣∣∣
An−1 An

∆An−1 ∆An

∣∣∣∣∣∣∣∣∣∣∣∣
1 1

∆An−1 ∆An

∣∣∣∣∣∣
=

An−1∆An − An∆An−1

∆An −∆An−1

=
An−1∆An − An∆An−1

an cosnπx− an−1 cos(n− 1)πx
.

(3.30)
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Figure 3.7: Comparison of the error of the Fourier series f∗
4 (x) with the (a) Shanks transform of degree 1, (b) first

iteration of the diagonal Shanks transform and (c) diagonal Shanks transform.
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Figure 3.8: Comparison of the error of the Fourier series f∗
8 (x) with the (a) Shanks transform of degree 1, (b) first

iteration of the diagonal Shanks transform and (c) diagonal Shanks transform.



CHAPTER 3. SYMM’S INTEGRAL EQUATION 49

1e
-0

14

1e
-0

12

1e
-0

10

1e
-0

08

1e
-0

06

0.
00

01

0.
011

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

ri
er

 S
er

ie
s

D
ia

go
n

al
 S

h
an

k 
It

er
=1

(b
)

1e
-0

15

1e
-0

14

1e
-0

13

1e
-0

12

1e
-0

11

1e
-0

10

1e
-0

09

1e
-0

08

1e
-0

07

1e
-0

06

1e
-0

05

0.
00

01

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

ri
er

 S
er

ie
s

D
ia

go
n

al
 S

h
an

k

(d
)

1e
-0

10

1e
-0

09

1e
-0

08

1e
-0

07

1e
-0

06

1e
-0

05

0.
00

01

0.
00

1

0.
01

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

ri
er

 S
er

ie
s

S
h

an
k 

1

(a
)

1e
-0

13

1e
-0

12

1e
-0

11

1e
-0

10

1e
-0

09

1e
-0

08

1e
-0

07

1e
-0

06

1e
-0

05

0.
00

01

0.
00

1

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

ri
er

 S
er

ie
s

D
ia

go
n

al
 S

h
an

k 
It

er
=2

(c
)

Figure 3.9: Comparison of the error of the Fourier series f∗
16(x) with the (a) Shanks transform of degree 1, (b) first

iteration of the diagonal Shanks transform, (c) second iteration of the diagonal Shanks transform and (d) diagonal

Shanks transform.
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Figure 3.10: Comparison of the error of the Fourier series f∗
32(x) with the (a) first iteration of the diagonal Shanks

transform, (b) second iteration of the diagonal Shanks transform, (c) third iteration of the diagonal Shanks transform

and (d) diagonal Shanks transform.
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Maximum Error

N Diag. Diag. (1) Diag. (2) Diag. (3) 1st Shanks Fourier Series

4 0.185E-01 0.185E-01 0.208E+00 0.176E-02

8 0.170E-02 0.629E-02 0.936E-02 0.266E-03

12 0.677E-04 0.504E-03 0.504E-03 0.222E-02 0.838E-04

16 0.223E-04 0.119E-01 0.508E-03 0.345E-02 0.365E-04

20 0.356E-04 0.386E-04 0.605E-02 0.179E-02 0.190E-04

24 0.159E-03 0.716E-04 0.411E-02 0.411E-02 0.525E-03 0.112E-04

28 0.414E-03 0.431E-04 0.290E-04 0.290E-04 0.587E-03 0.709E-05

32 0.440E-03 0.404E-04 0.278E-04 0.219E-02 0.729E-03 0.478E-05

Average Error

4 0.897E-03 0.897E-03 0.460E-02 0.544E-03

8 0.502E-04 0.125E-03 0.642E-03 0.562E-04

12 0.501E-05 0.190E-04 0.190E-04 0.199E-03 0.138E-04

16 0.117E-05 0.133E-03 0.163E-04 0.101E-03 0.494E-05

20 0.776E-06 0.146E-05 0.695E-04 0.565E-04 0.225E-05

24 0.769E-05 0.119E-05 0.468E-04 0.468E-04 0.193E-04 0.116E-05

28 0.160E-04 0.931E-06 0.983E-06 0.983E-06 0.143E-04 0.647E-06

32 0.223E-04 0.102E-05 0.130E-05 0.258E-04 0.132E-04 0.395E-06

Table 3.4: Maximum error and the average error in approximating f(x) using the Fourier series and different

extrapolation schemes.
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The denominator of equation (3.30) will have approximately n zeros. Let us assume that the

denominator is zero. Then the numerator of (3.30) becomes

An−1∆An − An∆An−1 = ∆An(An−1 − An) = − (∆An)2 = −a2
n cos2 nπx �= 0.

Thus the numerator does not vanish and the poles of the transformation are not removable. That

is, as N increases the transformation becomes unbounded at a linearly increasing number of x

values. This explains the peaks and their increasing number in Figures 3.7-3.10. Inspection of

the denominator in (3.30) shows that this singular behaviour does not occur at the endpoints,

x = 0 and x = 1, explaining the spectacular success of Shanks’ transform at these points.

In general, since analytic orthogonal expansions are highly oscillatory, more analysis is required

to identify a mechanism that would allow a robust application of the Shanks transform. One

natural approach would be to transform only those x values that are not singular. Identification

of the poles of (3.30) should not be too difficult for a Fourier expansion. The entire function

can then be recaptured via some interpolation. Of course, roots of some orthogonal polynomials

(other than trigonometric or Chebyshev) may be difficult to find.

3.3 Hermite polynomial interpolant

In the last section, we solved the integral equation by approximating the unknown using a

trigonometric series and then determined the coefficients. Here, we discretize the region and

interpolate in each interval. To this end, we consider the integral equation

g(y) =

b∫
a

K(x, y)f(x) dx, a ≤ y ≤ b, (3.31)

and define a grid

a = x0 < x1 < · · · < xn−1 < xn = b. (3.32)

Thus, we may write (3.31) as

g(y) =
n∑
j=1

Sj

1∫
0

K(Sjt + xj−1, y)Fj(t) dt, (3.33)

where we have mapped the integral over each sub-division to the unit interval and Fj(t) =

f(Sjt + xj−1). The length of each interval is Sj = xj − xj−1, for j = 1, 2, . . . , n. Using cubic

Hermite interpolation polynomials, we can write

Fj(t) = Fj(0)H1(t) + Ḟj(0)H2(t) + Fj(1)H3(t) + Ḟj(1)H4(t) for j = 1, 2, . . . n. (3.34)
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In Appendix B we outline the theory of Hermite interpolation polynomials as well as provide a

Maple routine to calculate them for any order.

If the nodal behaviour of F is known, then substitution into (3.34) will provide the interpolant as

an approximate solution. We first proceed by appealing to the continuity and differentiability of

f to identify a few conditions at each internal node

f(xj) = Fj(1) = Fj+1(0), f ′(xj) =
1

Sj
Ḟj(1) =

1

Sj+1

Ḟj+1(0), for j = 1, 2, . . . , n− 1.

(3.35)

Using (3.35) to substitute for each Fj(1) and Ḟj(1) in (3.34) and re-arranging gives

g(y) = F1B1,1(y) + Ḟ1B1,2(y) +
n∑
j=2

Fj

(
Bj,1(y) + Bj−1,3(y)

)
+ Ḟj

(
Bj,2(y) +

Sj−1

Sj
Bj−1,4(y)

)
+ Fn+1Bn,3(y) + Ḟn+1Bn,4(y), (3.36)

where we have used the notation

Fj = Fj(0), Ḟj = Ḟj(0), Fn+1 = Fn(1), Ḟn+1 = Ḟn(1),

and

Bj,k(y) = Sj

1∫
0

K(sjt + xj−1, y)Hk(t) dt,

for j = 1, . . . , n and k = 1, 2, 3, 4.

Since Ḟ1 = Ḟn+1 = 0, we have the 2n unknowns

F1, F2, Ḟ2, . . . , Fn, Ḟn, Fn+1. (3.37)

To formulate a linear system we evaluate (3.36) at 2n collocation points

a ≤ y1 < y2 < · · · < y2n−1 < y2n ≤ b, (3.38)

thus obtaining the linear equations

g(yI) = F1A1,1,I +
n∑
j=2

Fj

(
Aj,1,I + Aj−1,3,I

)
+ Ḟj

(
Aj,2,I +

Sj−1

Sj
Aj−1,4,I

)
+ Fn+1An,3,I , for I = 1, 2, . . . , 2n (3.39)

where Aj,k,I = Bj,k(yI). Inverting (3.39) to obtain (3.37) will provide, on substitution into

(3.34), a cubic approximation that is continuous and differentiable.
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3.3.1 Collocation

It might first appear that the collocation points (3.38) can be selected without regard to the distri-

bution of the grid (3.32). This being the case, one might choose to distribute the 2n collocation

points uniformly over [a, b], therefore ensuring that the points are as far away from each other as

possible. The expected result being that the collocation equations are the most linearly indepen-

dent (i.e. the system is assured of being well-conditioned). This is certainly not the case. We

require an approximation to be provided for each interval j, thus evaluation should be performed

in all intervals. In addition, if the linear system in (3.39) is assembled in the order depicted in

(3.37) and we collocate in every interval then the singular integrals will lie on the diagonal, thus

producing a matrix that is diagonally dominant. Collocating arbitrarily will certainly not produce

a diagonally dominant matrix. On this basis, the collocation points should be distributed equally

across the grid. That is, for cubic Hermite interpolation we should have two collocation points

in each subdivision.

The question then arises: How should the collocation points be chosen for each interval? Clearly,

collocation points should be unique, thus the node points are not candidates. Scaling each interval

to (0,1), we collocate twice, 0 < y1, y2 < 1. Figure 3.11 shows a surface and contour plot of the

reciprocal condition number of (3.39) as a function of scaled collocation points for n = 64. It is

clear from Figure 3.11 that the condition number of the linear system is highly dependent on the

position of the collocation points. The contour plot shows that the surface is symmetric about

the line y1 = y2 and two distinct shallow regions are clearly identifiable. Region A occupies the

areas y1 ∈ (0, 1/2), y2 ∈ (0, 1/2 − y1) and y1 ∈ (1/2, 1), y2 ∈ (3/2 − y1, 1). In these regions

the collocation points are on the same side of the midpoint and the reciprocal condition number

is of the order of 10−7. The middle strip, region B, places the collocation points on opposite

sides of the midpoint. The reciprocal condition number here is of order 10−4. Clearly, it would

be disastrous to place the points near y2 = y1 and a good strategy for collocation would be to

place the points almost anywhere on the line y2 = 1−y1. According to this measure, the optimal

points lie near 0.3 and 0.7.

To obtain a stable system, the distribution of collocation points must be considered as a function

of both polynomial interpolation order and kernel singularity. Much work has been done in the

1980’s in this direction where a convergence theory for piecewise constant and linear interpolants

was developed (Voronin and Cecoho 1974; Prössdorf and Schmidt 1981; Wendland 1981; Schmidt 1983;

Prößdorf and Rathsfeld 1984; Schmidt 1984; Arnold and Wendland 1985; Niessner and Ribaut 1985;
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A

B

A

Figure 3.11: Reciprocal condition number of the linear system in (3.39) for n = 64 as a function of the collocation

points scaled to (0,1).
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Saranen and Wendland 1985; Schmidt 1985; Schmidt 1986; Niessner 1987; Prössdorf and Rathsfeld 1987).

For an excellent review see Arnold and Wendland (1983). Convergence of the numerical solu-

tion is guaranteed if one collocates evenly between the node points (Arnold and Wendland 1983;

Arnold and Wendland 1985; Niessner and Ribaut 1985; Saranen and Wendland 1985; Schmidt 1985),

though not necessarily to the solution (Arnold and Wendland 1983; Collatz 1966, pp. 260-262).

Recently, McLean and Prößdorf (1996) extended this theory to include Hermite cubics. They

show that with a logarithmic kernel, collocating symmetrically in each interval gives a theoretical

convergence rate of O(h5) and collocating at the special points 0.2451188417393386, .754881158261

induces a super-convergence of O(h7). These rates have been measured using the norm of some

special Sobolev space. They do, however, identify that an optimal collocation regime does exist.

Unfortunately, their results apply for a closed boundary with smooth data.

In an effort to identify optimal collocation points, we develop a theory that writes down an ex-

plicit expression for the approximate solution of first kind integral equations. The only assump-

tions made are that the kernel is positive and integrable and the unknown possesses a derivative

that is bounded. The method is based on the Peano kernel approach that is outlined in ap-

pendix C. Many of the formal details of the method are presented in that appendix and we will

only reproduce the required particulars here. In that appendix a kernel, equation (C.8), was care-

fully developed and employed to derive an interior point rule to approximate weighted integrals

whose functions have bounded second derivatives.

In equation (3.31) we will assume K(·, y) : [a, b] → (0,∞) to be integrable and positive, that

is K(·, y) ∈ L1(a, b) and K(x, y) ≥ 0, ∀(x, y) ∈ [a, b] × [a, b]. In addition, we assume that

f : [a, b] → R has bounded first derivative and we approximate it using the constant functional

f(x) ≈




f(a), a ≤ x ≤ ξ,

f(b), ξ < x ≤ b.
(3.40)

We seek to write down an explicit formula for f(a) and f(b) in terms of g and K. Hence the

kernel (C.8) requires modification to produce a trapezoidal-like quadrature rule for functions

with bounded derivatives. The Peano kernel is

p(x, y, ξ) =

x∫
ξ

K(z, y) dz, a ≤ x, ξ ≤ b. (3.41)
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Substituting (3.41) into
∫ b
a
p(x, y, ξ)f ′(x) dx and integrating by parts gives, upon using (3.31),

b∫
a

p(x, y, ξ)f ′(x) dx =


 ξ∫

a

K(z, y) dz


 f(a) +


 b∫

ξ

K(z, y) dz


 f(b)− g(y). (3.42)

Taking the modulus of both sides of (3.42) and applying a Hölder type inequality (similar to the

Cauchy-Schwartz-Buniakowsky inequality) provides the result∣∣∣∣∣∣g(y)− f(a)

ξ∫
a

K(z, y) dz − f(b)

b∫
ξ

K(z, y) dz

∣∣∣∣∣∣ ≤ ‖f ′‖∞I(ξ, y), (3.43)

≤ ‖f ′‖∞‖K(·, y)‖1

(
b− a

2
+

∣∣∣∣ξ − a + b

2

∣∣∣∣
)

(3.44)

where the bound I(ξ, y) has been simplified by reversing the order of integration to

I(ξ, y) =

ξ∫
a

(z − a)K(z, y) dz +

b∫
ξ

(b− z)K(z, y) dz. (3.45)

Equation (3.44) was obtained by taking an upper bound in (3.45) and using the well known result

max{a, b} =
1

2

(
a + b + |a− b|).

By differentiating and appealing to the properties of convex functions, it is a simple matter to

show that I is minimised at the midpoint of the interval ξ = a+b
2

(see appendix C for the details).

The result is independent of the kernel, K, and is due to the rule sampling at both end-points.

Thus, with this class of function, the optimal approximation to g is

g(y) ≈ f(a)

a+b
2∫

a

K(z, y) dz + f(b)

b∫
a+b
2

K(z, y) dz. (3.46)

We note that we are justified in asserting the approximation (3.46) since the error is bounded by

(3.44). This equation clearly shows that the approximation is valid if the interval size b − a is

small.

Evaluating (3.46) at two distinct (collocation) points will produce two linear equations in f(a)
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and f(b) that can be solved to provide an approximation for f . The result is

f(a) =
1

D(y1, y2)


g(y1)

b∫
a+b
2

K(z, y2) dz − g(y2)

b∫
a+b
2

K(z, y1) dz


 , (3.47)

f(b) =
1

D(y1, y2)


g(y2)

a+b
2∫

a

K(z, y1) dz − g(y1)

a+b
2∫

a

K(z, y2) dz


 , (3.48)

where the determinant D is

D(y1, y2) =

a+b
2∫

a

K(z, y1) dz

b∫
a+b
2

K(z, y2) dz −
b∫

a+b
2

K(z, y1) dz

a+b
2∫

a

K(z, y2) dz. (3.49)

Thus equation (3.40) with (3.47) and (3.48) gives us an explicit approximation to the integral

equation. We make the point that the method is quite general and is applicable to a wide class

of functions in that differentiability is the only assumption made on f . Even this condition may

be relaxed and a similar result, for example, may be obtained for functions with bounded varia-

tion (Cerone and Dragomir 1999) or mappings that are merely integrable (Cerone et al. 1999a).

Other norms have been explored (Cerone et al. 1999b; Cerone et al. 1999c; Cerone et al. 1998;

Cerone et al. 1999d; Dragomir et al. 2000), and in combination with weighted mappings (Roumeliotis et al.

Dragomir et al. 1999; Cerone et al. 1999).

We do not make the assertion that (3.40) is an accurate approximation to the unknown; indeed

one would expect poor results since the entire integral in (3.31) has been approximated by a single

weighted trapezoidal-like rule. A composite rule, like that developed in appendix C, would be

the natural next step, as well as a formal proof of the convergence of the resulting expansion.

It is important to note that the method outlined in (3.40) to (3.49) is Nyström like in that the

integral equation is evaluated via a quadrature rule. The drawback of the traditional Nyström

method is its reliance on Gauss quadrature to perform the integration. While Gauss rules are

computationally extremely efficient, their lack of error bounds makes theoretical work difficult.

Newton-Cotes rules have an abundance of error results, but their poor performance, especially

for singular integrands, makes their use prohibitive. The theory outlined here and in appendix

C provides a basis for the formulation of weighted Newton-Cotes type rules. They have the

advantage of the availability of error bounds in a variety of norms, whilst being computationally

more efficient than the traditional trapezoidal, Simpson’s, etc. rules. We do not proceed with

developing a composite interpolation expansion, since the purpose of this section is to identify

general collocation points.
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Inspection of (3.49) shows that D is anti-symmetric in y1 and y2. That is,

D(y1, y2) = −D(y2, y1).

This suggests that the collocation points should be chosen symmetrically about the line y2 = y1

y2 = C − y1, for some 0 < C < 1. (3.50)

One way of identifying good collocation points is to ensure that (3.47) and (3.48) are well-

defined. Thus we seek the points y1, y2 that maximises D. We note that the choice of y1, y2 is

dependent on K and not g. This is a desirable property since the collocation points should be

distributed according to the kernel and the shape of the boundary, not the data.

For Symm’s equation, we have K(x, y) = ln |x − y|, a = 0, b = 1. With the aid of Maple, the

determinant is simple to evaluate (but cumbersome to write down) and D becomes

D(y1, y2) =




D11(y1, y2), 0 < y1, y2 < 1/2,

D12(y1, y2), 0 < y1, 1− y2 < 1/2,

D21(y1, y2), 0 < 1− y1, y2 < 1/2,

D22(y1, y2), 1/2 < y1, y2 < 1,

(3.51)

where D11, D12, D21 and D22 are defined respectively as

D11(y1, y2) =
(

ln(y1)y1 − 1/2 ln(2) + ln(2)y1 + 1/2 ln(1− 2 y1)− ln(1− 2 y1)y1 − 1/2
)

(
ln(1− y2)− ln(1− y2)y2 − 1/2 + 1/2 ln(2)− ln(2)y2 − 1/2 ln(1− 2 y2)

+ ln(1− 2 y2)y2

)
−
(

ln(1− y1)− ln(1− y1)y1 − 1/2 + 1/2 ln(2)− ln(2)y1

− 1/2 ln(1− 2 y1) + ln(1− 2 y1)y1

)(
ln(y2)y2 − 1/2 ln(2) + ln(2)y2

+ 1/2 ln(1− 2 y2)− ln(1− 2 y2)y2 − 1/2
)
, (3.52)

D12(y1, y2) =
(

ln(y1)y1 − 1/2 ln(2) + ln(2)y1 + 1/2 ln(1− 2 y1)− ln(1− 2 y1)y1 − 1/2
)

(
− ln(2)y2 + 1/2 ln(2) + ln(2 y2 − 1)y2 − 1/2 ln(2 y2 − 1)− 1/2 + ln(1− y2)

− ln(1− y2)y2

)
−
(

ln(1− y1)− ln(1− y1)y1 − 1/2 + 1/2 ln(2)− ln(2)y1

− 1/2 ln(1− 2 y1) + ln(1− 2 y1)y1

)(
ln(2)y2 − 1/2 ln(2)− ln(2 y2 − 1)y2

+ 1/2 ln(2 y2 − 1)− 1/2 + ln(y2)y2

)
, (3.53)
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D21(y1, y2) =
(

ln(2)y1 − 1/2 ln(2)− ln(2 y1 − 1)y1 + 1/2 ln(2 y1 − 1)− 1/2 + ln(y1)y1

)
(
− ln(2)y2 + 1/2 ln(2) + ln(2 y2 − 1)y2 − 1/2 ln(2 y2 − 1)− 1/2 + ln(1− y2)

− ln(1− y2)y2

)
−
(
− ln(2)y1 + 1/2 ln(2) + ln(2 y1 − 1)y1 − 1/2 ln(2 y1 − 1)

− 1/2 + ln(1− y1)− ln(1− y1)y1

)(
ln(2)y2 − 1/2 ln(2)− ln(2 y2 − 1)y2

+ 1/2 ln(2 y2 − 1)− 1/2 + ln(y2)y2

)
, (3.54)

D22(y1, y2) =
(

ln(2)y1 − 1/2 ln(2)− ln(2 y1 − 1)y1 + 1/2 ln(2 y1 − 1)− 1/2 + ln(y1)y1

)
(
− ln(2)y2 + 1/2 ln(2) + ln(2 y2 − 1)y2 − 1/2 ln(2 y2 − 1)− 1/2 + ln(1− y2)

− ln(1− y2)y2

)
−
(
− ln(2)y1 + 1/2 ln(2) + ln(2 y1 − 1)y1 − 1/2 ln(2 y1 − 1)

− 1/2 + ln(1− y1)− ln(1− y1)y1

)(
ln(2)y2 − 1/2 ln(2)− ln(2 y2 − 1)y2

+ 1/2 ln(2 y2 − 1)− 1/2 + ln(y2)y2

)
. (3.55)

Figure 3.12 shows a surface and contour plot of (3.51). The optimal location of the collocation

points are

.2148458281482123 and .7851541718517877, (3.56)

at which D from (3.51) is minimal. The results are in general agreement with the work of

McLean and Prößdorf (1996). They showed that with cubic Hermite interpolation, the (scaled)

collocation are symmetric about 0.5. It is of some comfort that the optimal points given in their

work are close to those identified here. However, McLean and Prößdorf assumed a closed 2D

curve with smooth data; features absent in the integral equation solved here. In addition, our

work is only valid for small b− a.

In Figure 3.13, we compare the theoretical analysis here, with the numerical inversion of (3.39).

In this figure, (a) is the contour plot of Figure 3.12, (b) the reciprocal condition number of the

system in (3.39) for n = 2 and (c) for n = 64. We can see that all three surfaces share the

same general features: the plots are symmetric about y1 = y2 and two maxima appear near the

collocation points 0.25, 0.75. When n increases from 2 to 64 the surface evolves and forms two

shallow regions, previously labelled A in Figure 3.11.

This a posteriori check confirms the validity of the theory presented here.
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Figure 3.12: (a) Surface and (b) contour plots of absolute value of the determinant (3.51) showing optimal location

of collocation points y1 and y2.
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Figure 3.13: Comparison of the contour plots of (a) the determinant (3.51) (b) the reciprocal condition number

of the system (3.39) when n = 2 and (c) the reciprocal condition number of the system (3.39) when n = 64 as a

function of scaled collocation points.

3.3.2 Numerical results

Results for different grid sizes are presented in Table 3.5. The maximum error in the function

and derivative are tabulated for each node point. In all cases, the scaled collocation points were

chosen to be 0.25 and 0.75.

The data in Table 3.5 clearly shows that the interpolation-collocation method performs extremely

well. The numerical solution converges to the exact solution as the number of grid points in-

creases. A curious feature is that the error in the derivative is smaller than in the function value.

This may be due to the fact that the exact solution (3.5) is a polynomial.

Various norms for the absolute error in the function are shown in Table 3.6. We can see that the

maximum error (column 3) decreases approximately 11
2

orders whenever the number of segments
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n = 4 n = 8 n = 16

Error in Error in Error in Error in Error in Error in

i xi Function Derivative Function Derivative Function Derivative

0 0.0000 0.147E-03 0.000E+00 0.896E-05 0.000E+00 0.551E-06 0.000E+00

1 0.0625 0.511E-06 0.421E-06

2 0.1250 0.823E-05 0.359E-05 0.513E-06 0.514E-07

3 0.1875 0.513E-06 0.242E-08

4 0.2500 0.133E-03 0.312E-04 0.825E-05 0.423E-06 0.512E-06 0.265E-08

5 0.3125 0.512E-06 0.226E-08

6 0.3750 0.825E-05 0.264E-07 0.512E-06 0.143E-08

7 0.4375 0.512E-06 0.680E-09

8 0.5000 0.133E-03 0.198E-13 0.825E-05 0.235E-13 0.512E-06 0.110E-12

9 0.5625 0.512E-06 0.680E-09

10 0.6250 0.825E-05 0.264E-07 0.512E-06 0.143E-08

11 0.6875 0.512E-06 0.226E-08

12 0.7500 0.133E-03 0.312E-04 0.825E-05 0.423E-06 0.512E-06 0.265E-08

13 0.8125 0.513E-06 0.242E-08

14 0.8750 0.823E-05 0.359E-05 0.513E-06 0.514E-07

15 0.9375 0.511E-06 0.421E-06

16 1.0000 0.147E-03 0.000E+00 0.896E-05 0.000E+00 0.551E-06 0.000E+00

Table 3.5: Absolute error in function and derivative values at the node points for n = 4, 8 and 16.

doubles. There is little difference in the L1 and L2 norms and this indicates that the error is

distributed in a reasonably uniform manner across the entire domain.

A fair comparison of the expansion and interpolation methods can be made on the basis of size of

their respective linear systems. A Fourier expansion up to N results in an (N+1)×(N+1) system

(3.21). This contrasts with the Hermite interpolation, where a grid with n intervals produces a

2n × 2n linear system. Hence we will compare the values in the last column in Table 3.6 for a

given n with those in the last column of Table 3.4 for N = 2n.

It is obvious that the Hermite interpolation far outperforms the Fourier series at all values of

n. The convergence rate is greater and, unlike the Fourier series, does not stop when n =
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n ‖f − f ∗‖1 ‖f − f ∗‖2 ‖f − f ∗‖∞

4 0.76532E-04 0.85599E-04 0.14682E-03

8 0.48003E-05 0.53344E-05 0.89576E-05

16 0.30053E-06 0.33311E-06 0.55057E-06

32 0.18799E-07 0.20814E-07 0.34012E-07

64 0.11754E-08 0.13007E-08 0.21086E-08

128 0.73477E-10 0.81294E-10 0.13103E-09

Table 3.6: Interpolation errors measured via various norms for different values of n.

32, 64, 128. Even with the method of reducing the number of coefficients in the Fourier expan-

sion, the Hermite interpolation is superior.

3.4 Conclusion

The Fourier series method successfully solved the integral equation, but the results were dis-

appointing. The error deteriorated after an expansion of 32 terms and this is due to the great

difficulty of finding high frequency contributions to the unknown in first kind equations. Mea-

sures taken to address this point were somewhat successful and a more detailed investigation of

the expansion method is warranted. This is especially true if one notes that the traction of an

axisymmetric particle is inherently periodic. The expansion, coupled with a robust Shanks-type

transform, may prove fruitful.

However, it is clear in this case that interpolation-collocation outperforms expansion-collocation.

To reinforce this notion we compare the linear system produced by the Fourier series (3.21) with

that of the Hermite interpolation scheme. Figure 3.14 shows a grey-scale map of the matrix

entries of (a) equation (3.21) and (b) equation (3.39). Darker areas represent numbers that are

larger in magnitude.

As expected, the interpolation method produces a diagonally dominant system. In contrast, the

expansion method does not. This is because the frequency of the integrand (3.14) increases in

accordance with the column. Thus higher relative values will appear in column 1 and they will
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tend to decrease in magnitude with each successive column.

Based on the results of this chapter, the Hermite-collocation method will be used to solve the

coupled integral equations (2.18) and (2.19) in the following chapter.

In appendix C, we outline the method of obtaining weighted integral inequalities. The method is

able to deal with quite general weight functions and may be extended to bounds involving higher

derivatives or other norms. Applications in the areas of numerical integration (Cerone et al. 1999;

Dragomir et al. 1999; Roumeliotis et al. 1999), and probability theory (Barnett et al. 2000a; Barnett et al. 2

have benefited from their attention. It is hoped that the work in this chapter will instigate some

activity in approximation theory relating to integral equations.
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Figure 3.14: Grey-scale map showing the relative magnitude of the matrix entries for (a) equation (3.21) and (b)

equation ( 3.39). Darker areas indicate larger values



Chapter 4

Numerical Solution of Rigid Body

Problems

4.1 Introduction

In this chapter we present a method inspired by the results of the previous chapter to solve

the axisymmetric rigid body resistance problem via numerical inversion of the coupled integral

equations (2.18) and (2.19).

We are by no means the first to attempt a boundary integral solution to the Stokes equations.

Beginning with the ground-breaking work of Youngren and Acrivos (1975), there have been a

myriad of excellent papers dealing with rigid body motion, free surfaces, drops, interaction be-

tween drops and rigid bodies and others. See Kim and Karrila (1991) and Pozrikidis (1992). The

distinction with the work presented here will be on insight into the numerical implementation,

with a view to increased stability and accuracy, rather than insight into physical problems of

interest.

The Stokes equations are linear and the boundary conditions simple, however, we will show that

the traction is highly dependent on surface curvature. This is not unexpected, since the the stress

of a free surface is directly proportional to its mean curvature, see equation (2.27). We will also

investigate the effect of interpolation order and grid distribution on the error of the numerical

solution. It will be shown that constant and linear representation, the method of choice even in

recent publications, is insufficient for highly deformed surfaces, as is a large mesh size.

67
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Methods to find an efficient grid and reducing the curvature dependence of the traction will be

presented.

In summary, we aim to show that the traditional methods of increasing grid resolution or in-

terpolation are prescriptions for failure. The remedies we propose involve curvature dependent

methods that reduce the requirement for large grids and high interpolation orders. This will lead

to the possibility of multi-complex particle interactions being investigated. In the micro-fluidic

domain, these are the physical problems of interest.

The algorithm will be presented for a one particle configuration and the generalisation to multi-

particles is trivial. The algorithm has been coded to deal with an arbitrary number of particles.

4.2 Numerical method

We can see from equation (2.18)–(2.19) that for a solid particle in an infinite fluid the boundary

integral equation can be written as

Vp(ξ
∗) =

2∑
q=1

Ξ∫
0

Kp,q(ξ, ξ
∗)fq(ξ) dξ, for 0 ≤ ξ∗ ≤ Ξ, p = 1, 2, (4.1)

where ξ is the arclength parameter describing the meridional curve C of S and Ξ is the total

length of this curve. The numerical solution of equation (4.1) rests broadly on two features.

One is the construction of arbitrary degree piecewise-polynomials over a non-uniform grid as an

approximation to the unknown functions fq. The other consists of introducing these approxima-

tions into equation (4.1) and by collocation at a sufficient number of points, set up a system of

equations to determine the nodal behaviour of fq. There are two main advantages to this design.

The first is that the grid can be easily adapted to suit irregular particles (where discretization

would depend on the particle geometry) or bubbles (where the grid may be recalculated at each

time step). Secondly, with a high enough degree polynomial interpolant we can estimate any

order derivative of the unknown functions fq.
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4.2.1 Discretization

First, we subdivide the surface (range of integration) into n segments

Vp(ξ
∗) =

2∑
q=1

n∑
j=1

ξj∫
ξj−1

Kp,q(ξ, ξ
∗)fq(ξ) dξ. (4.2)

Note that the node points have an arbitrary distribution, except for the ordering

0 = ξ0 < ξ1 < · · · < ξi < · · · < ξn−1 < ξn = Ξ, (4.3)

for i = 0, 1, . . . , n. Next, in order to simplify the integrals in (4.2), we employ the following

linear transformations

t =
ξ − ξj−1

ξj − ξj−1

with 0 ≤ t ≤ 1, for j = 1, . . . , n, (4.4)

which maps each integral onto the unit interval. This enables equation (4.2) to be re-written as

Vp(ξ
∗) =

2∑
q=1

n∑
j=1

Sj

1∫
0

Kp,q (Sjt + ξj−1, ξ
∗) F̄q,j(t) dt, (4.5)

where

Sj = ξj − ξj−1 (4.6)

and

F̄q,j(t) = fq (Sjt + ξj−1) . (4.7)

Physically, the constants Sj denote the individual segment lengths of the discretization (4.3). The

discretization of the particle surface is shown in Figure 4.1.

4.2.2 Interpolation

We employ Hermite interpolation polynomials of order N to interpolate the first N−1 derivatives

of each F̄q,j . The Hermite polynomials, Hk(N ; t), (Davis 1963; Gontscharoff 1954; Atkinson 1989)

are of degree 2N − 1 with the defining properties

H
(m)
k (N ; 0) = δm+1,k and H

(m)
k (N ; 1) = δm+N+1,k, (4.8)
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Figure 4.1: Discretization, arclength and segment arclengths of an axially symmetric particle surface.

for m = 0, 1, . . . , N − 1 and k = 1, 2, . . . , 2N . The bracketed super-scripts denote the order of

the derivative with respect to the scaled parameter t. It is a simple matter to calculate these poly-

nomials using a computer algebra package such as Maple (Char et al. 1991). For convenience

we have tabulated the polynomials for N = 2, 4, 6 (Table B.1) and attached a Maple program

(Algorithm B.1) to generate them for higher values of N in appendix B.

If we let F̄ ∗
q,j(t) be the polynomial approximation to F̄q,j(t), then equation (4.8) furnishes the

proper form of the interpolant

F̄ ∗
q,j(t) =

N−1∑
m=0

F̄
(m)
q,j (0)Hm+1(N ; t) + F̄

(m)
q,j (1)Hm+N+1(N ; t), (4.9)

yielding the desired result at the node points

F̄
(m)
q,j (0) = F̄ ∗(m)

q,j (0) and F̄
(m)
q,j (1) = F̄ ∗(m)

q,j (1). (4.10)

If one assumes that the traction is analytic at the internal node points (i = 1, 2, . . . , n − 1) then

equation (4.9) can be simplified as follows. From equation (4.7)

F̄
(m)
q,j (0) = (Sj)

m dmf

dξm
(ξj−1) (4.11)

and

F̄
(m)
q,j (1) = (Sj)

m dmf

dξm
(ξj) . (4.12)

Substituting j for j − 1 in equation (4.11) and equating with (4.12) leads us to the following
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relations

F̄
(m)
q,j (1) =

(
Sj

Sj+1

)m

F̄
(m)
q,j+1(0) if j = 1, 2, . . . , n− 1. (4.13)

Since we are only concerned with the traction at the nodes, we define

F
(m)
q,i =




F̄
(m)
q,i+1(0) if i = 0, 1, . . . , n− 1,

F̄
(m)
q,n (1) if i = n.

(4.14)

Making use of (4.13) and (4.14), the interpolant has the following form

F̄ ∗
q,j(t) =




N−1∑
m=0

F
(m)
q,j−1Hm+1(N ; t) +

(
Sj

Sj+1

)m

F
(m)
q,j Hm+N+1(N ; t) if j = 1, 2, . . . , n− 1,

N−1∑
m=0

F
(m)
q,n−1Hm+1(N ; t) + F (m)

q,n Hm+N+1(N ; t) if j = n.

(4.15)

Substituting the approximation (4.15) for the scaled traction into the integral equation (4.5) and

collecting in terms of F
(m)
q,i produces

Vp(ξ
∗) =

2∑
q=1

N−1∑
m=0

{
F

(m)
q,0 Bp,q,1,m+1(ξ

∗) +
n−1∑
i=1

F
(m)
q,i Dp,q,i,m(ξ∗) + F (m)

q,n Bp,q,n,m+N+1(ξ
∗)

}
,

(4.16)

where

Bp,q,j,k(ξ
∗) = Sj

1∫
0

Kp,q(Sjt + ξj−1, ξ
∗)Hk(N ; t) dt (4.17)

and

Dp,q,j,m(ξ∗) = Bp,q,j+1,m+1(ξ
∗) +

(
Sj

Sj+1

)m

Bp,q,j,m+N+1(ξ
∗) if j = 1, 2, . . . , n− 1.

(4.18)

We can further reduce the number of unknowns by exploiting symmetries at the end nodes.
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4.2.3 End node considerations

Assuming that the region is simply connected leads to the required set of boundary conditions

for the tractions.

If we extend the domain of the arclength to outside (0,Ξ) then symmetry requires the axial

component of traction f1 to be an even function and the radial component f2 to be an odd function

of ξ about ξ = 0 and ξ = Ξ.

Choosing N to be even gives the following boundary conditions for the scaled traction

F
(1)
1,0 = F

(3)
1,0 = · · · = F

(N−1)
1,0 = 0, F2,0 = F

(2)
2,0 = · · · = F

(N−2)
2,0 = 0,

and

F
(1)
1,n = F

(3)
1,n = · · · = F

(N−1)
1,n = 0, F2,n = F

(2)
2,n = · · · = F

(N−2)
2,n = 0.


 (4.19)

Thus the problem is transformed into finding the 2nN unknowns

z component︷ ︸︸ ︷
bottom of particle

F1,0, F
(2)
1,0 , F

(4)
1,0 , . . . , F

(N−2)
1,0 ,

internal node points

F1,1, F
(1)
1,1 , F

(2)
1,1 , . . . , F

(N−1)
1,1 ,

F1,2, F
(1)
1,2 , F

(2)
1,2 , . . . , F

(N−1)
1,2 ,

...

F1,n−1, F
(1)
1,n−1, F

(2)
1,n−1, . . . , F

(N−1)
1,n−1 ,

top of particle

F1,n, F
(2)
1,n , F

(4)
1,n , . . . , F

(N−2)
1,n ,

r component︷ ︸︸ ︷
bottom of particle

F
(1)
2,0 , F

(3)
2,0 , F

(5)
2,0 , . . . , F

(N−1)
2,0 ,

internal node points

F2,1, F
(1)
2,1 , F

(2)
2,1 , . . . , F

(N−1)
2,1 ,

F2,2, F
(1)
2,2 , F

(2)
2,2 , . . . , F

(N−1)
2,2 ,

...

F2,n−1, F
(1)
2,n−1, F

(2)
2,n−1, . . . , F

(N−1)
2,n−1 ,

top of particle

F
(1)
2,n , F

(3)
2,n , F

(5)
2,n , . . . , F

(N−1)
2,n .

(4.20)

from the 2 equations (4.16).

For completeness, we will also consider multiply connected regions. Surfaces that are embedded

in a multiply connected region, for example a torus, require continuity conditions on the end

nodes rather than the above symmetry conditions.

These requirements lead to the following end node conditions

Fq,0 = Fq,n, F
(1)
q,0 = F (1)

q,n , . . . , F
(N−1)
q,0 = F (N−1)

q,n , for q = 1, 2. (4.21)
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C=1 C=2 C=N... C=1 C=2 C=N... C=1 C=2 C=N...

J =1 J =2 J =n

0 Ξ

...

ξ1 ξ2 ξn−1

Figure 4.2: The collocation scheme used in the numerical solution of the integral equation (4.1).

4.2.4 Collocation

To form a linear system, we evaluate (4.16) at 2nN collocation points. As shown in chapter 3,

collocating evenly in all intervals is crucial. The results of that chapter also showed that one

should collocate symmetrically about the midpoint of the interval. With N = 2, anywhere in the

regions (0.2, 0.3) and (0.7, 0.8) were acceptable. Here, the points, ξJ,C , follow the ordering

ξJ−1 < ξJ,1 < ξJ,2 < · · · < ξJ,N < ξJ , J = 1, 2, . . . n, (4.22)

and are given by

ξJ,C = SJ

(
1

2N
+

C − 1

N

)
+ ξJ−1, J = 1, . . . , n, C = 1, . . . , N.

see Figure 4.2 for a diagrammatic representation of the collocation scheme.

With equation (4.20), the discrete form of equation (4.1) can be written as

Vp,J,C =
N−1∑
m=0

{
F

(m)

q†,0Ap,q†,1,m+1,J,C +
2∑

q=1

n−1∑
i=1

F
(m)
q,i Ep,q,i,m,J,C + F

(m)

q†,nAp,q†,n,m+N+1,J,C

}
,

(4.23)

where

Ap,q,j,k,J,C = Bp,q,j,k(ξ
∗
J,C), Ep,q,j,m,J,C = Dp,q,j,m(ξ∗J,C), Vp,J,C = Vp(ξ

∗
J,C), (4.24)

and q† = 1
2

(3− (−1)m).

Equations (4.23) can be recast in matrix form as

A×F = V . (4.25)

The layout of the solution array F and the velocity array V are shown in Figures 4.3 and 4.4

respectively. Thus, for given values of p, q, J, C the matrix of coefficients has the form given in

Figure 4.5.
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F =




F1,0

F
(2)
1,0

F
(4)
1,0

...

F
(N−2)
1,0




q = 1

F
(1)
2,0

F
(3)
2,0

...

F
(N−1)
2,0




q = 2




i = 0

F1,1

F
(1)
1,1

F
(2)
1,1

...

F
(N−1)
1,1




q = 1

F2,1

F
(1)
2,1

F
(2)
2,1

...

F
(N−1)
2,1




q = 2




i = 1

...

F1,n−1

F
(1)
1,n−1

F
(2)
1,n−1

...

F
(N−1)
1,n−1




q = 1

F2,n−1

F
(1)
2,n−1

F
(2)
2,n−1

...

F
(N−1)
2,n−1




q = 2




i = n − 1

F1,n

F
(2)
1,n

F
(4)
1,n

...

F
(N−2)
1,n




q = 1

F
(1)
2,n

F
(3)
2,n

...

F
(N−1)
2,n




q = 2




i = n




Figure 4.3: The form of the solution array (traction at the node points) of the matrix equation (4.25).
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V =




V1,1,1

V2,1,1

p = 1

p = 2


 C = 1

V1,1,2

V2,1,2

p = 1

p = 2


 C = 2

...

V1,1,N

V2,1,N

p = 1

p = 2


 C = N




J = 1

V1,2,1

V2,2,1

p = 1

p = 2


 C = 1

V1,2,2

V2,2,2

p = 1

p = 2


 C = 2

...

V1,2,N

V2,2,N

p = 1

p = 2


 C = N




J = 2

...

V1,n,1

V2,n,1

p = 1

p = 2


 C = 1

V1,n,2

V2,n,2

p = 1

p = 2


 C = 2

...

V1,n,N

V2,n,N

p = 1

p = 2


 C = N




J = n




Figure 4.4: The form of the velocity array (velocity at the collocation points) of the matrix equation (4.25).

The most crucial part of the algorithm is the efficient and accurate calculation of the elements in

A. When the collocation point does not lie on the line segment being integrated, the integrand

is analytic and the integral can be evaluated using a 16 point Gauss-Legendre quadrature rule.

However, when the collocation point does lie on the line segment being integrated, the integrand

has a logarithmic singularity and therefore must be evaluated using the appropriate combination

of Gauss-Legendre and Gauss-Log quadrature rules (Stroud and Secrest 1966). The reader is

referred to Taib (1985) for a detailed description of the numerical integration.

Equation (4.25) can now be solved using readily available software.
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i = 0

(A)α,β = Ap,q,1,q,J,C

(A)α,β+1 = Ap,q,1,q+2,J,C

(A)α,β+2 = Ap,q,1,q+4,J,C

...
...

(A)α,β+N/2+1 = Ap,q,1,q+N−2,J,C




α = 2N(J − 1) + 2(C − 1) + p

β = N
2

(q − 1) + 1

1 ≤ i ≤ N − 1

(A)α,β = Ep,q,i,0,J,C

(A)α,β+1 = Ep,q,i,1,J,C

(A)α,β+2 = Ep,q,i,2,J,C

...
...

(A)α,β+N−1 = Ep,q,i,N−1,J,C




α = 2N(J − 1) + 2(C − 1) + p

β = 2N(i− 1) + qN + 1

i = N

(A)α,β = Ap,q,N,N+q,J,C

(A)α,β+1 = Ap,q,N,N+q+2,J,C

(A)α,β+2 = Ap,q,N,N+q+4,J,C

...
...

(A)α,β+N/2+1 = Ap,q,N,2N+q−2,J,C




α = 2N(J − 1) + 2(C − 1) + p

β = 2Nn−N + N
2

(q − 1) + 1

Figure 4.5: The form of the matrix of coefficients (A)α,β of the matrix equation (4.25).

4.3 Translating spheroid

In this section the algorithm, represented by the formation and inversion of (4.25), is tested

by calculating the traction of a single spheroid translating uniformly in a Stokes fluid field. The

spheroid is parameterised with respect to arclength and different discretization schemes (4.3) and

interpolation orders, N , are investigated. Improvements in the discretization, based on curvature,

are also presented and examined.

Youngren and Acrivos (1975) were the first to solve this problem. They used constant elements

for the traction and Simpson’s rule to evaluate the integrals over each interval. The singular

nature of the integrands were only accounted for when they became unbounded. In this case,

the integrand was expanded in a small series about the singular point and the integral evaluated

analytically for a small region. Their results were acceptable for moderate eccentricities and they

reported no ill-conditioning in the first kind equation. It is envisaged that higher eccentricities,
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or more general particle shapes would have severely challenged their method.

In more recent studies, Gauss-Legendre quadrature and linear interpolation have been employed.

Curiously, the scheme of analytic evaluation about a small cut has been retained. This not only

adds to the complexity of the method, but discounts the possibility of using the correct Gaussian

quadrature rules; that is, a linear combination of Gauss-Legendre and Gauss-Log, to handle the

singular integral. We refer to section D.2 of appendix D for a more detailed discussion of this

point.

We choose to parameterise with respect to arclength as this becomes more important for compli-

cated geometries and especially for deformable surfaces such as the drop interactions considered

in chapter 5. The advantages of arclength parameterisation are outlined below and on page 105.

Hermite interpolation order will be investigated as will node point distribution. Both are effected

by the eccentricity of the spheroid, or more generally the curvature of the particle. To counter

these effects two curvature based methods are presented. The first aims to reduce the number of

node points by placing them to uniformly approximate the unknown. The second, introduced in

section 4.4, is designed to reduce the large gradients in the unknown.

The spheroid is a suitable test surface, since it’s traction has a simple analytic expression (see

equations (4.38) and (4.39)). In addition, the surface itself can possess high curvatures given

large or small aspect ratios. Figure 4.6 shows a schematic of a spheroidal body. In cylindrical

coordinates, the surface is parameterised by

z = a sin θ, r = b cos θ, for − π

2
≤ θ ≤ π

2
. (4.26)

We define the aspect ratio λ and eccentricity e to be respectively

λ =
b

a
, e =



√

a2 − b2

a
=
√

1− λ2, λ ≤ 1,

√
b2 − a2

b
=

√
λ2 − 1

λ
, λ > 1.

(4.27)
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z

r

a

b

Figure 4.6: Geometry of a spheroidal body using a cylindrical coordinate system. The surface is parameterised by

z = a sin θ, r = b cos θ, −π/2 ≤ θ ≤ π/2.

The arclength ξ is given by

ξ =

t1∫
t0

√(
dr

dt

)2

+

(
dz

dt

)2

dt (4.28)

=

θ∫
−π/2

√
a2 cos2 t + b2 sin2 t dt =




bE
(
θ +

π

2
; e
)
, θ ≤ 0, λ > 1,

aE(e)− E(−θ; e), θ ≤ 0, λ ≤ 1,

b
[
2E(e)− E

(π
2
− θ; e

)]
, θ > 0, λ > 1,

a [E(e) + E(θ; e)] , θ > 0, λ ≤ 1,

(4.29)

where E(·) and E(·; ·) are respectively the complete and incomplete elliptic integrals of the

second kind (Abramowitz and Stegun 1965, p. 589). We note that there are some advantages to

parameterising with respect to arclength, for example the parameterisation is unique in that the

mapping is bijective, the Jacobian is of unit size and the normal vector is defined in a consistent

manner. It is a relatively simple matter to evaluate (4.28) for a given general curve. For a

curve defined via piecewise functions, as in a spline, then a method devised by Kucera (1992)

can be used. This is further described in chapter 5 where drop deformation and interaction is

investigated.
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The volume of the particle is constrained to that of a unit sphere. Thus, we have

a =
1

(1− e2)1/3
, b =

(
1− e2

)1/6
, λ ≤ 1, (4.30)

a =
(
1− e2

)1/3
, b =

1

(1− e2)1/6
, λ > 1. (4.31)

4.3.1 Discretization

In sub-sections 4.2.1 and 4.2.2 we use some discretization (4.3) and Hermite interpolation (4.15)

to evaluate the unknown traction. This involves choosing node points so that the traction is

reasonably well approximated in each sub-domain. In practice, for polynomial interpolation,

this means using enough node points so that the function is almost linear in the relevant domain.

This will always be true if the unknown is analytic and the domain is small. Another strategy

commonly used is to increase the order of the interpolating functions, so that less node points are

required.

Given a fixed number of node points, it is desirable that they are positioned so that they cluster

around large rates of change. In this way, the function is almost linear in the sub-domain and

the interpolation will generally be improved. Since the traction is unknown, we will use the

particle shape to guide our clustering regime. The justification for this is that the traction, by its

very nature, is highly shape dependent (force per unit length on the surface). Large values of

the surface curvature correspond to large tractions. In fact for a spheroid, the traction is directly

proportional to the cube root of its curvature.

Let (r(t), z(t)) be a space-curve, C, that represents the projection of a body in the polar plane.

We will investigate the effect of discretizing C uniformly with respect to an arbitrary parameter

t. To this end, define

ζ(t, h) =

√(
r(t + h)− r(t)

)2
+
(
z(t + h)− z(t)

)2
to be the Euclidean distance between node points. A diagram is shown in Figure 4.7.

For small h, ζ will approximate the arclength. We now define the density ρ to be the reciprocal

of ζ

ρ(t, h) :=
1

ζ(t, h)

∼ 1

h
√(

dr
dt

)2
+
(
dz
dt

)2 + O(1), h → 0. (4.32)
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( )0 0( ), ( )r t h z t h+ +
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0( 2 , )t h hς +

Figure 4.7: Discretizing a space-curve uniformly with respect to the parameter t. ζ is the Euclidean distance.

The density (4.32) provides a quantitative description of the clustering for any general parameter

t. Relatively large values of ρ represents high clustering measured via the arclength. Low values

of ρ signifies node points spaced further apart. Four simple methods for discretizing the spheroid

(4.26) are investigated. They are, uniformly with respect to

1. the axial (z) coordinate,

2. the radial (r) coordinate,

3. θ as defined in (4.26),

4. the arclength ξ (4.29).

Uniform z discretization

The parametric equations are

z = z, r = λ
√

a2 − z2, −a ≤ z ≤ a.

With (4.32) the density for uniform z discretization is

ρ(z, h) ∼ 1

h

√
a2 − z2(

λ2 − 1
)
z2 + a2

+ O(1), −a ≤ z ≤ a. (4.33)

In order to compare each different scheme, we make use of (4.26) to write the density in terms

of θ. Thus (4.33) becomes

ρ(z(θ), h) =
cos θ

h
√

1− (1− λ2) sin2 θ
, −π

2
≤ θ ≤ π

2
. (4.34)
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Figure 4.8: Plots of density (equation (4.34)) for various values of the aspect ratio λ.

Plots of the density ( equation (4.34) ) are shown in Figure 4.8. For all values of λ, the graph

increases monotonically for −π/2 ≤ θ ≤ 0 and decreases for 0 ≤ θ ≤ π/2. For very prolate

spheroids, the density is almost uniformly 1, for very oblate spheroids the density tends to zero

everywhere except for a strong peak at θ = 0. This is as expected since as λ → 0, the spheroid

tends to the z axis, and as λ →∞ the spheroid tends to the r axis. The peak near θ = 0 indicates

strong clustering near the radial axis and node points are sparse near the z axis. This would be a

desirable feature for oblate spheroids (λ > 1) but not prolate (0 < λ < 1).

Uniform r discretization

The parametric equations are

z = ±1

λ

√
b2 − r2, r = r, 0 ≤ r ≤ b,

and the density for uniform r discretization is

ρ(r, h) ∼ λ

h

√
b2 − r2(

1− λ2
)
r2 + λ2b2

+ O(1), 0 ≤ r ≤ b. (4.35)

In terms of θ, using (4.26), we have

ρ(r(θ), h) =
λ| sin θ|

h
√

1− (1− λ2) sin2 θ
, −π

2
≤ θ ≤ π

2
. (4.36)
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Figure 4.9: Plots of the density (equation (4.36)) for various values of the aspect ratio λ.

Plots of the density (equation (4.36)) are shown in Figure 4.9 for various values of λ. Figure 4.9

appears as an inverted version of Figure 4.8. That is, this scheme features clustering near the z

axis; a desirable property for prolate spheroids but not oblate.

Uniform θ discretization

The parametric equations are given in (4.26). The density function is

ρ(θ, h) =
1

ah
√

1− (1− λ2) sin2 θ
, −π

2
≤ θ ≤ π

2
, (4.37)

and is shown in Figure 4.10. This discretization scheme exhibits the desirable features of the

previous two. That is, for prolate spheroids clustering occurs near the symmetry axis (z), and

for oblate spheroids the clustering is near the radial axis. We note that for λ = 1, the density is

uniform. This is because at this aspect ratio the particle is a sphere and θ acts as the arclength.
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Figure 4.10: Plot of the density (equation (4.37))f for various values of the aspect ratio λ.

Uniform arclength ξ discretization

If the space-curve C is parameterised with respect to arclength then(
dr

dξ

)2

+

(
dz

dξ

)2

= 1, for all ξ.

Thus ρ(ξ, h) = 1/h regardless of λ. Obviously, this is also true for any general particle and no

obvious clustering would occur. In this sense, this would be the worst discretization scheme of

the four.

The obvious scheme to employ is θ discretization. It has the advantage of being trivial to imple-

ment while exhibiting the beneficial clustering for prolate and oblate shapes. In sub-section 4.3.3,

we will introduce a more general discretization scheme to cater for arbitrary shapes based on an

arclength parameterisation and a curvature dependent rule. This method far outperforms all those

listed here but has the disadvantage of requiring a much longer compute time to pre-process the

node point distribution.
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4.3.2 Error in the traction of a prolate spheroid

The errors in calculating the z component of traction for a spheroid with unit volume translating

at a constant speed V = 1 are presented. The exact solution for the spheroid with unit volume is

(Oberbeck 1876)

f1 = 2V
e3

(1− e2)1/6 (1+e2

2
ln(1+e

1−e)− e
) 1√

1− e2 sin2 θ
, f2 = 0, −π

2
≤ θ ≤ π

2
, (4.38)

for λ ≤ 1 and

f1 = −2V
e1/3δ4/3

((1− δ2) tan−1(δ)− δ)
√

1 + δ2 sin2 θ
, f2 = 0, −π

2
≤ θ ≤ π

2
, (4.39)

for λ > 1; where f1 is axial (z) component of traction, f2 the radial (r) component of traction

and δ =
√

e2/(1− e2).

Plots of the traction for a prolate spheroid are shown in Figure 4.11. Each plot possesses a

large gradient near θ = ±π/2 that correspond to points of high curvature. The gradient of the

traction increases as the eccentricity. Figure 4.12 shows the first two derivatives of the traction

for e = 0.9. Inspection of equation (4.38), as well as Figure 4.12, indicates that each successive

derivative increases in magnitude near θ = ±π/2. The traction is everywhere analytic for 0 ≤
e < 1, but the observations above suggest that interpolation schemes that attempt to calculate the

higher order derivatives may not succeed.

2

4

6

8

10

12

14

16

18

–1.5 –1 –0.5 0 0.5 1 1.5θ

Figure 4.11: Plot of the traction for a prolate spheroid of unit volume with V = 1. — (e = 0.5), — (e = 0.9),

— (e = 0.99), — (e = 0.999).
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Figure 4.12: Plot of the derivatives of the traction, df1/dξ as a function of θ for a prolate spheroid of unit volume

with V = 1 and e = 0.9. — (function value), — (first derivative), — (second derivative).

Figure 4.13 shows the maximum and average relative error in computing f1 with cubic Hermite

interpolation (N = 2) for different grid sizes (n). Numerical values of the error are tabulated in

Table 4.1. Unless otherwise stated, the grid is chosen uniformly with respect to θ. It is clear that

the algorithm performs quite well for almost all values of n. Up to n = 64 both errors decrease

by approximately an order of magnitude as the step size n doubles. From n = 128 onward, the

error begins to oscillate but the algorithm does not breakdown.

As shown, first kind equations are intrinsically ill-conditioned. Collocation-interpolation meth-

ods manifest this ill-conditioning in one of two ways; they both involve reducing grid size. As

n becomes large, the segment lengths Sj (equation (4.6)) become small. Hence every element

in the coefficient matrix A tends to zero. This is easily seen by inspection of equations (4.17),

(4.18), (4.24) and Figure 4.5. Thus, with finite precision there exists an upper limit for n in

which A (see Figure 4.5) can be represented with sufficient accuracy. It would be unreasonable,

though, to suggest this as the cause of the erratic error behaviour for n = 128–1024 since all

calculations have been performed with double precision (16 digit) accuracy. Another reason for

the breakdown involves the numerical inversion of A. As each interval becomes small the collo-

cation points ξJ,C will tend to cluster. Recall that each row of A is simply the discrete boundary

integral equation (4.23) evaluated at a collocation point. Hence, successive rows will tend to be

similar, leading to an ill-conditioned linear system.

Figure 4.14 shows the maximum relative error for different interpolation orders and number of

grid points. For both N = 4 and N = 6, the error begins to oscillate after n = 8. This could
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Figure 4.13: Relative error versus number of elements in calculating the axial component of traction of a spheroid,

e = 0.9, N = 2. Maximum error (�), average error (�).
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Figure 4.14: Maximum relative error versus number of elements in calculating the axial component of traction of a

spheroid (e = 0.9) for different interpolation orders. N = 2 ( ), N = 4 ( ), N = 6 ( ).

be due to the difficulty in approximating the higher derivative of the traction for this spheroid.

When N = 4, the first three derivatives are calculated, for N = 6, the first five derivatives are

calculated.

An indicator of numerical difficulties for linear systems is the condition number. Inspecting
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Hermite interpolation order N

n 2 4 6

Max err. Avg. err. Max err. Avg. err. Max err. Avg. err.

4 5.88E-02 3.38E-02 3.25E-03 2.27E-03 1.55E-04 1.26E-04

8 1.97E-03 9.11E-04 5.58E-05 1.83E-05 1.34E-06 6.87E-07

16 2.69E-04 7.87E-05 3.10E-04 2.03E-04 1.77E-06 1.16E-06

32 3.38E-05 6.60E-06 1.17E-04 7.55E-05 1.43E-06 9.22E-07

64 2.86E-06 4.29E-07 4.91E-04 3.15E-04 9.35E-06 6.00E-06

128 1.67E-05 1.05E-05 5.97E-05 3.82E-05 1.74E-06 1.11E-06

256 9.36E-06 5.96E-06 2.06E-04 1.31E-04 2.59E-05 1.65E-05

512 1.71E-05 1.09E-05 4.72E-05 3.01E-05

1024 9.91E-05 6.31E-05

Table 4.1: Maximum and average relative error in calculating f1 for a prolate spheroid (e = 0.9) for various values

of n and N .

the reciprocal condition number versus number of segments, Figure 4.15, shows that the linear

system can become ill-conditioned for large n and large N . The reciprocal condition number is a

parameter returned from the LINPACK (Dongarra et al. 1979) sub-routine DGECO. This popular

Fortran suite is highly regarded for its robust and efficient matrix manipulation routines.

We can see that with N = 2, the reciprocal condition number falls to and then below 10−13

after n = 64. At this value, it would be expected that a double precision inversion (or Gauss

elimination) algorithm would be subject to significant round off. As seen in Figure 4.13, after

n = 64 the error no longer converges, but begins to oscillate.

This phenomenon occurs earlier with N = 4. Inspection of Figure 4.14 reveals this oscillating

behaviour from n = 16. Figure 4.15 shows that at this value the reciprocal condition number is

near 10−14.

The most accurate result is obtained with n = 8, N = 6 - a mere 96× 96 linear system. Despite

this, it seems as if this level of interpolation induces an ill-conditioning in the linear system for

all values of n. From Figure 4.15 the reciprocal condition number is of order 10−13 or smaller.

This is not unexpected since the problem of higher interpolation orders can be explained by

considering the exact solution for the traction.
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Figure 4.15: Reciprocal condition number of the matrix (4.25) for a prolate spheroid (e = 0.9) for different grid

sizes (n) and interpolation orders (N ). N = 2 ( ), N = 4 ( ), N = 6 ( ).

In the prolate case we have

f1 =
k√

a2 − e2z2
, −a ≤ z ≤ a,

for some constant k and 0 ≤ e < 1. Each successive derivative of f1 increases in magnitude.

It has been shown in classical numerical analysis texts that high order interpolation rules fail

to converge when used with such functions (see for example (Atkinson 1989, p. 158)). This

argument extends to general surfaces. The curvature for a general curve parameterised by r(t) is

κ(t) =
|r ′ × r ′′|
|r ′|3 . (4.40)

For many curves, each successive derivative of κ will increase. If one has any confidence in

the claim that traction is highly dependent on curvature, then the answer to interpolation lies in

employing low order polynomials on a denser grid.

The difference between the average error and maximum error in Figure 4.13 and Table 4.1 is

due to the steep gradient of the traction at the endpoints ξ = 0,Ξ. In Figure 4.16 we plot the

relative error of the traction at each node point for n = 32 and n = 128. For n = 32, we can see

that the error at the endpoints (regions of high curvature) are an order of magnitude larger than

those elsewhere. This difference is even more pronounced for n = 128 where the variation is

approximately two orders of magnitude. Figure 4.17 shows that the difference between average
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Figure 4.16: Comparison of relative error at each node point in the axial component of the traction for a spheroid

(e = 0.9), n = 32 (�), n = 128 (�). Interpolation order N = 2.

and maximum error generally increases in line with eccentricity. It is obvious that some clus-

tering needs to occur in regions of high curvature in order to make the most efficient use of the

node points available. The overriding principle in choosing an a priori grid is that the unknown

is represented equally as well in all intervals. We attempt to address this point in the following

sub-section.

4.3.3 Curvature discretization

The difference in the average and maximum error in Figure 4.17 and the relatively large variation

in the error curves of Figure 4.16 suggests that improvements can be made in the distribution of

the node points {ξi}.

We do not seek to improve the error at every node. Rather, the basis for an optimal node point

distribution is that the unknown should be approximated uniformly across the entire grid. That

is, error curves like that shown in Figure 4.16 should be relatively constant.

Recall the one dimensional integral equation (3.31), reproduced here with different parameters

g(ξ∗) =

Ξ∫
0

K(ξ, ξ∗)f(ξ) dξ, 0 ≤ ξ∗ ≤ Ξ. (4.41)
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Figure 4.17: Relative error versus eccentricity in calculating the axial component of traction of a spheroid, n =

32, N = 2. Maximum error (�), average error (�).

Equation (4.41) may be considered as a parameterisation of the general boundary integral equa-

tion (3.1) along a curve Γ(ξ) : R → R
2. Given ξ0, f and f ∗, we seek to find ξ1 according to

ξ1∫
ξ0

K(ξ, ξ∗) |f(ξ)− f ∗(ξ)| dξ = ε. (4.42)

The function f ∗ is an approximation of f using some interpolation scheme and ε is the prescribed

error in the interpolation. Once ξ1 is found, (4.42) can be iterated by replacing ξ1 with ξ2 and ξ0

with ξ1. Since f is unknown, we surmise that κ is similar to f and hence can be used in its place.

Thus, given a node point ξi−1, the next node ξi is the root of

F (ξi; ξ
∗) =

ξi∫
ξi−1

K(ξ, ξ∗) |κ(ξ)− κ∗(ξ)| dξ − ε = 0, i = 1, 2, . . . , (4.43)

where ε is some small number, κ is the curvature of the curve Γ and κ∗ the Hermite interpolant

of κ. The number of nodes n is not given but is returned as part of the solution. The parameter

ξ∗ is free to be chosen in the domain [0,Ξ].

We solve F using the modified Muller method (Blatt 1975). As in the bisection method, this

algorithm is stable and requires a region in which the root lies, an obvious interval is ξi−1 < ξi <

Ξ. This root finding algorithm is employed since it has a faster rate of convergence than that of

the bisection method.
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Figure 4.18: Spheroid (e = 0.99) showing uniform (•) and curvature (�) discretization. n = 32.

Figure 4.18 compares a uniform-θ discretization with the curvature method described here for a

prolate spheroid with e = 0.99. The node points are chosen so that the error in approximating the

curvature with Hermite interpolation is uniform with ε = 10−5 in each interval. The clustering

of nodes near high curvature is obvious.

In Figure 4.19 we compare the effect of using the two discretization schemes in solving the

integral equation for an ε = 0.99 prolate spheroid. With a uniform θ grid, the relative error

in the traction spans approximately three orders of magnitude. In contrast, using the curvature

grid results in an error distribution that spans 11
2

orders of magnitude and, more importantly, a

maximum error that is reduced by over a half.

It should be noted that the evaluation of the grid (4.43) is considerably more time consuming

than that for the θ parameter, but the distribution thus furnished may be stored and used, when

required, without any extra effort.
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Figure 4.19: Relative error at each node point in the axial component of the traction for a spheroid (e = 0.99, n =

32) using different discretization schemes. Uniform (�), curvature (�).

In the previous section we showed that increasing the number of intervals is preferable to in-

creasing interpolation order. The difficulty here is that the linear systemA has size 2nN . Storing

4n2N2 double precision digits is very memory intensive. The ubiquitous virtual memory that is a

feature of practically all 32-bit operating systems is of little help. For matrix inversion to succeed,

the entire matrix must be stored in RAM. Hence this curvature based discretization scheme can

be used to increase grid size (i.e. reduce the number of grid points) without adversely affecting

the accuracy of the solution.

The ideas presented thus far are put to the test in the following section where a more complex

surface is considered.

4.4 Difficult geometries

We consider the surface parameterised by

z = a sin θ − c cos 2θ, r = b cos θ, −π/2 ≤ θ ≤ π/2. (4.44)

For lack of a better name, the surface (4.44) will be called surface A and a schematic is shown in

Figure 4.20. In addition, its curvature is plotted in Figure 4.21. The diagrams clearly show that

the curvature exhibits a very large peak and we expect its traction to preserve this property.
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Figure 4.20: Schematic of test surface A. Parametric equations are z = a sin θ− c cos 2θ, r = b cos θ,−π/2 ≤ θ ≤
π/2.
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Figure 4.21: Curvature of surface A with a = 1, b = 4, c = 2.

As mentioned, we will employ the ideas of the previous section in an attempt to accurately

calculate the traction of surface A. We know of no analytic solution, thus to begin Figure 4.22

shows the calculated traction for increasing number of node points. The points have been chosen

uniformly with respect to the parameter θ in (4.44), the velocity is 1.

In Figure 4.22, we show the calculated axial component of traction, f1 as a function of arclength

for n = 32, 128, 256. In all the plots, f1 exhibits a large peak that corresponds in location to that

in Figure 4.21. A disconcerting feature in the first two plots (n = 32, 128) is that the traction is

negative for a portion of the domain. Clearly, this should be rejected on physical grounds. For

n = 256, the traction takes on more realistic features. Another feature is the size of the peak. For

n = 32, the peak is 56% smaller when compared with n = 256 and for n = 128 the peak is 24%

smaller.

To obtain some estimate of the error, the traction can be re-substituted into equation (4.23) to

produce an approximation to the velocity at each node point. This global error may indicate

some breakdown in the algorithm. Upon performing this error check, we report that for n = 32

the error in the velocity is of order 10−3 at all node points with variation in the third digit. For

n = 128 the error is of order 10−4 with variation in the fourth digit. Finally, for n = 256 the error

is of order 10−5 with variation in the fourth or fifth digits. These results are a clear indication of

the instability of first kind equations and suggest that techniques that improve results for small

n are of great value. This is further clarified in section 4.5. We shall use the traction shown for
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Figure 4.22: Calculated traction for surface A as a function of arclength. Node points are chosen uniformly with

respect to θ as defined in (4.44). (a) n = 32 (node points are shown), (b) n = 128, (c) n = 256.

n = 256 in Figure 4.22 as the benchmark to measure the success or failure of the results to be

presented.

The reduced height in the peak of Figure 4.22(a) and its node point distribution shows that there

is a lack of nodes near the peak. That is, in this region the traction is not adequately represented.
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Figure 4.23: Calculated traction versus arclength for surface A when the node points are calculated using the

curvature method of section 4.3.3. n=32.
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Figure 4.24: Comparison of different discretization schemes for calculating the traction of surface A. (uniform

θ, n = 32), (curvature, n = 32), (uniform θ, n = 256.)

In Figure 4.23, the traction has been calculated using the curvature discretization scheme of sub-

section 4.3.3; 33 node points (i.e. n = 32 segments) have been used. It is clear that this method,

which chooses points according to adequate representation of the curvature, has clustered nodes

about the peak. The height of the peak here is only 6% smaller than in Figure 4.22(c). In

addition, the traction is not negative. A comparison of Figures 4.22(a), 4.22(c) and 4.23 is shown

in Figure 4.24.

Results are also presented when the number of segments is increased to n = 128. Even at this
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Figure 4.25: Comparison of different discretization schemes for calculating the traction of surface A. (uniform

θ, n = 128), (curvature, n = 128), (uniform θ, n = 256.)

higher resolution, Figure 4.22(b) shows that there is little change in the traction from n = 32. In

Figure 4.25 we compare the resultant traction using θ and curvature grids with Figure 4.22(c).

The increase in accuracy using the curvature grid is obvious. The traction is never negative and

closely resembles Figure 4.22(c), also the peak is 4% higher and may indicate a more accurate

solution. Figures 4.24 and 4.25 show the clear improvement of the curvature discretization over

uniform θ. The drawback of the curvature method is the need to calculate the distribution via a

robust root finding scheme. This involves evaluating the non-singular1 integral (4.43) many times

over. In fact orders of magnitude more than the resulting size of the grid. Indeed this process

may, on occasion, take longer than solving the integral equation. In the next section we introduce

another method that can be used with any grid distribution and also improves calculation of the

traction at large grid sizes (small n).

4.4.1 Weighted kernel

The notion that the curvature is analogous to the traction can be further exploited. Recall the

integral equation (4.41)

g(ξ∗) =

Ξ∫
0

K(ξ, ξ∗)f(ξ) dξ, 0 ≤ ξ∗ ≤ Ξ.

1Judicious choice of ξ∗ will always avoid the singularity in K.
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If f is known and appended to the kernel K then the integral equation becomes

g(ξ∗) =

Ξ∫
0

(
K(ξ, ξ∗)f(ξ)

)
1 dξ, 0 ≤ ξ∗ ≤ Ξ,

and solving will produce the constant solution 1. Since f is unknown, we use the curvature in its

stead. Specifically, the following weighted integral equation will be solved

g(ξ∗) =

Ξ∫
0

K(ξ, ξ∗)w(ξ)fw(ξ) dξ, (4.45)

where w = κ1/3. This form of the weight was chosen since f1 ∝ κ1/3 for a spheroid.

The idea in (4.45) being that fw is a simpler function than f and hence an algorithm will produce

a more accurate solution. Once fw is found, the traction is easily furnished via

f = wfw. (4.46)

Figure 4.26 shows the weighted traction fw as well as the traction f1 for an n = 32 uniform θ

grid. The weighted traction is monotonic and uniform almost everywhere and the sharp peaks

of the traction have been eliminated. There is a slight kink in the curve near ξ = 4.5 and this is

due to change in concavity of surface A. At this point the curvature is zero, thus affecting the

weighted integral equation and hence the weighted solution. The traction seems to be unaffected

by this flaw, but is still negative for much of its domain. This said, fw has a much simpler

structure than f1 and there is an obvious improvement in the traction over the solution presented

in Figure 4.22(b). The peak in the traction here is only 12% smaller and is consequently an

improvement over n = 32 or n = 128 using the un-weighted integral equation.

In Figure 4.27 we compare three different schemes with Figure 4.22(c). They are, choosing 33

node points (i.e. n = 32 segments): (i) using the curvature (ii) according to θ with the weighted

integral and (iii) using the curvature with the weighted integral. Method (i) is clearly superior

to (ii) and (iii). There is little difference in (ii) and (iii) since discretization now plays a smaller

role. That is, there is no requirement to cluster around the peak of f1 since the solution obtained

is fw.

The results with n = 128 are similar to those reported above. Figure 4.28 shows the weighted

solution fw as well as the traction f1 for a uniform θ grid. The kink in the weighted solution is

now much more pronounced and this has started to affect the traction. The solution is improved

when compared to that in Figure 4.22(b) but is clearly inferior to the solution using the curvature

grid.
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Figure 4.26: Results using the weighted integral equation. The traction f1 (—) and the weighted traction fw (- - -).

Nodes are distributed according to θ. n = 32.
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Figure 4.27: Comparison of different methods for calculating the traction of surface A. (curvature, n = 32),

(weight with uniform θ, n = 32), (weight with curvature grid, n = 32), (uniform θ, n = 256.)
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Figure 4.28: Calculated traction when using the weighted integral (—) and the weighted traction (- - -). Nodes are

distributed according to θ. n = 128.

4.5 Conclusion

The algorithm performs reasonably well and produces quite acceptable results for simple geome-

tries. Low order interpolation seems to be preferable to higher order schemes.

The instability of first kind equations revealed in section 4.4 show that the techniques developed

here not only have a role in reducing error for large grid sizes (small n), but may indeed prevent

the production of spurious results. To further clarify this point, we have shown that a small

number of intervals can produce large errors and/or invalid results. We have also shown that

a large number of intervals can lead to breakdown due to finite machine precision and/or finite

computer memory2. Thus we have presented a scheme that may be able to be used as a tool to

study the interaction of multi-complex particle systems using a small number of segments and

efficient use of computer resources.

Finally, we note that the methods presented in this chapter are quite general and apply to any first

kind boundary integral equation whose boundary has a known expression.

2A linear system with n = 1024, N = 2 involves over 16,777,216 double precision digits or approximately
128Mb of storage.



Chapter 5

Free Surface Problems

5.1 Introduction

The motion and interaction of liquid drops in fluids arises in many applications, in particular, the

chemical engineering and the petroleum industries. Many of these areas involve low Reynolds’

number flows where the drops or bubbles are small or the fluids are highly viscous. In such flows

the fluid inertia may be neglected. The development of an understanding of how drops break up

and coalesce is of primary importance in these areas.

Although real processes rarely involve axisymmetric motion of drops, experimental studies some-

times constrain the motion in this way. Numerical computation is also a powerful tool for such

investigations. The Boundary Integral Method is particularly effective for droplet or bubble

problems in an infinite domain, since it only requires discretization of the drop surfaces, and for

axisymmetric problems, this reduces to calculating line integrals.

The Boundary Integral Method has been usefully applied to a number of problems involving the

motion of single bubbles, bubble interactions with solid boundaries, free surfaces and interfaces,

and interactions between two drops. Previous studies, using the Boundary Integral Method, in-

clude Rallison and Acrivos (1978), who investigated the stability of a drop in an extensional flow

and Geller et al. (1986), who developed code for a bubble or drop moving through an interface.

Both these studies used a crude approach for approximating the boundary integrals by represent-

ing the boundary elements and approximating the unknowns by piecewise constants which results

in a matrix equation. Later studies include that of Pozrikidis (1990b), Manga and Stone (1993)

and Zinchenko et al. (1997), who focused on drop-drop interactions, (a comprehensive review is

101
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given in Stone (1994)) and solved the resulting integral equations using an iterative technique,

which is much faster and uses less storage than solving a matrix equation (Pozrikidis 1990b).

Problems sometimes arise which can restrict the accuracy of such calculations, for instance nu-

merical difficulties arise when two drops begin to coalesce or when the curvature is large. The

challenge is to develop an algorithm which can handle these situations. One main difficulty is in

calculating the surface tension forces with sufficient accuracy since this relies on the precise cal-

culation of the curvature of the drop surface. Zinchenko et al. (1997) dealt with the troublesome

mean curvature term by eliminating it from the Boundary Integral equations. The price paid for

this was that the kernels of the integral equations became more singular.

In this chapter we propose a relatively simple, but effective, technique for parameterising the

drop surfaces with respect to arclength using cubic splines. This enables a piecewise linear

representation for the surface tension force. We also improve on previously developed codes by

evaluating the singular integrals using appropriate Gaussian quadrature formulae. In general, for

a given number of function evaluations, this is more accurate than evaluating the integrand about

a singular point using some series expansion (Atkinson 1989, p. 270). It is also more elegant

than the standard approach of subtracting the non-analytic part since the nature of the singularity

is incorporated in the Gauss quadrature rule (see appendix D, section D.2).

The procedure outlined below is capable of simulating multi-drop buoyancy driven interactions.

We shall focus firstly on single drop problems, using the code to investigate the stability of a

rising drop. We then look at a two drop interaction problem and investigate how close to coales-

cence of the drops we can get and subsequently examine a three drop simulation and investigate

how initial separation can effect drop deformation. Finally, we examine a single toroidal drop

deformation and compare with the experimental results reported in Kojima et al. (1984).
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Figure 5.1: Schematic of two liquid drops showing geometry and notation.

5.2 Equations

The integral representation of the governing equations for drops in Stokes flow is described in

chapter 2. The second kind equation is of Fredholm type, the unknown being the surface velocity

uk(x ) =
2

1 + λ

∫
S

Gik(x − y)∆fi(y) dS(y)

− 2

(
1− λ

1 + λ

)∫
S

Σijk(x − y)ui(y)nj(y) dS(y) (5.1)

where S = S1 ∪ S2 ∪ . . . is the collection of drop surfaces and x ,y ∈ S. (see Figure 5.1).

The integrals in (5.1) are known as the single-layer and double-layer potentials (Odqvist 1930).

The single layer term has a 1/r type singularity which reduces to an integrable log type in an

axisymmetric regime. We are not so fortunate with the double-layer term, the Greens function

Σijk exhibits a singularity of strength 1/r2 and reduces to a log(r)/r singularity for an axisym-

metric problem. This singularity is obviously non-integrable and the double-layer term exists in

a Cauchy principal value sense. To circumvent the need to calculate special quadrature rules, we

can use the divergence theorem to re-write the double-layer term as (see equation A.13)∫
S

Σijk(x − y)ui(y)nj(y) dS(y)

= −
∫
S

Σijk(x − y)
(
ui(x )− ui(y)

)
nj(y) dS(y) +

1

2
uk(x ). (5.2)

Hence, a regularized form of the boundary integral equation is

uk(x ) =

∫
S

Gik(x − y)∆fi(y) dS(y)

+ (1− λ)

∫
S

Σijk(x − y)
(
ui(x )− ui(y)

)
nj(y) dS(y). (5.3)
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The first step in solving (5.3) is to exploit the axial symmetry and analytically integrate the

azimuthal component. This results in line integrals whose kernels can be expressed as linear

combinations of elliptic integrals of the first and second kind

uβ(ξ0) =

∫
C

G̃αβ(ξ, ξ0)∆fα(ξ) dl(ξ) + (1− λ)

∫
C

Σ̃αβ(ξ, ξ0)
(
uα(ξ0)− uα(ξ)

)
dl(ξ), (5.4)

where C = C1 ∪ C2 ∪ . . . is the collection of meridional curves parameterised with ξ and

the subscripts α, β take on the values 1 and 2 to denote the axial (z) or radial (r) component

respectively. Also, G̃αβ and Σ̃αβ are Gik and Σijknj integrated around the axis of symmetry.

A detailed explanation of this may be found in Taib (1985) whilst the axisymmetric kernels are

documented in Pozrikidis (1992).

5.3 Numerical method

Given a description of the drop shapes equation (5.4) is a set of 2m Fredholm integral equations

of the second kind, where m is the number of drops. These are solved iteratively to furnish the

velocity distribution of each drop. The surfaces can then be deformed by using the kinematic

condition that states that a fluid element on the drop surface will stay on the surface

dx

dt
= u . (5.5)

The numerical implementation of this procedure hinges on three factors: (i) accurate represen-

tation of the curves in the meridional plane, (ii) accurate integration of the singular kernels and

(iii) choice of time step and method to solve (5.5).

5.3.1 Representation and discretization

The calculation of the dynamic condition (2.27) involves second order derivatives, for this reason

we employ cubic splines to represent the curves, C. To this end, we divide each drop surface into

n intervals. The subscript i will be used to designate marker points with i = 0 and i = n being

nodes on the axis of symmetry, while j will denote the line segment (i.e. j = 1, . . . , n), and

H = 1, . . . ,m the particular drop. The clamped spline interpolant can be written parametrically

as

r(ξ) = arj,	
+ brj,	

(ξj,� − ξ) + crj,	
(ξj,� − ξ)2 + drj,	

(ξj,� − ξ)3

z(ξ) = azj,	
+ bzj,	

(ξj,� − ξ) + czj,	
(ξj,� − ξ)2 + dzj,	

(ξj,� − ξ)3 (5.6)
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Figure 5.2: Discretization of a single drop surface.

for ξj−1,� ≤ ξ ≤ ξj,�, with the clamped conditions

dr

dξ
= +1, and

dz

dξ
= 0, on ξ = ξ0,�, (5.7)

dr

dξ
= −1, and

dz

dξ
= 0, on ξ = ξn,�, (5.8)

where the ξj,�’s are the progressive arclengths and ξ is the arclength parameter (see Figure 5.2).

The constants arj,	
, brj,	

, crj,	
, drj,	

and azj,	
, bzj,	

, czj,	
, dzj,	

are the usual spline coefficients (DeBoor 1979).

The arclength parameterisation is used to overcome difficulties reported by earlier investigators

(Rallison and Acrivos 1978; Geller et al. 1986; Pozrikidis 1990b). With arclength as a parame-

ter the normal vector is defined in a consistent manner regardless of curve shape and the para-

metric derivatives are never large. In fact they are always bounded by unity since for any space

curve |r ′(ξ)| = 1. Other advantages of using arclength are that the end-derivative conditions

(5.7)-(5.8) become simple to implement and that the interpolant is guaranteed to be a bijective

function of the parameter. In order to calculate the parametric splines, accurate approximations

to the individual segment lengths are required. This can be achieved by starting off with the Eu-

clidean distance between the marker points as the initial approximation to the segment lengths,

using (5.6) and (5.7) and performing the segment length integrations

Tj,� =

ξj,	∫
ξj−1,	

√(
dr

dξ

)2

+

(
dz

dξ

)2

dξ, for
j = 1, . . . , n and

H = 1, . . . ,m,
(5.9)

numerically using a Gauss-Legendre rule. Updating the progressive arclengths is then accom-

plished by the following relation

ξ0,� = 0, and ξj,� = ξj−1,� + Tj,�. (5.10)

Repeating the process defined by (5.6) to (5.10) should, in principle, yield accurate approxima-

tions to the ξj,�’s.
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When the above procedure is used to calculate arclengths on a unit sphere which has been sub-

divided into sixteen equal intervals, the relative error in the interval arclengths is 4.1 × 10−7

uniformly after three iterations using a three-point Gauss-Legendre rule.

With the arclengths calculated we can construct cubic spline interpolants for the unknown veloc-

ities

ur(ξ) = aurj,	
+ burj,	

(ξj,� − ξ) + curj,	
(ξj,� − ξ)2 + durj,	

(ξj,� − ξ)3

uz(ξ) = auzj,	
+ buzj,	

(ξj,� − ξ) + cuzj,	
(ξj,� − ξ)2 + duzj,	

(ξj,� − ξ)3 (5.11)

with ξj−1,� ≤ ξ ≤ ξj,�. By considering the behaviour of these functions on the symmetry axis, it

is clear that the radial velocity must be an odd function and the axial velocity an even function

of the arclength parameter. Hence the end conditions for the splines (5.11) are

d2ur
dξ2

= 0, and
duz
dξ

= 0, on ξ = ξ0,�,

d2ur
dξ2

= 0, and
duz
dξ

= 0, on ξ = ξn,�.

(5.12)

5.3.2 Integration

Now that we have defined a grid, we can evaluate the integral equation (5.4) at the marker points

uβ(ξI,L) =
m∑
�=1

n∑
j=1




ξj,	∫
ξj−1,	

G̃αβ(ξ, ξI,L)∆fα(ξ) dξ

+(1− λ�)

ξj,	∫
ξj−1,	

Σ̃αβ(ξ, ξI,L)
(
uα(ξI,L)− uα(ξ)

)
dξ


 , (5.13)

for I = 0, . . . , n and L = 1, . . . ,m. When j = I, I +1 and H = L the integrals in (5.13) exhibit a

log strength singularity. We note that at the singular point the first integrand is unbounded whilst

the second is bounded but non-analytic. Usually, the numerical calculation of (5.13) is completed

in three steps: (i) define a small region around the singular point in the first integral and evaluate

analytically using some series expansion of the integrand (ii) evaluate the remainder of the first

integral — which should now be regular — using a standard Gauss-Legendre rule (iii) calcu-

late the second integral using Gauss-Legendre quadrature (Geller et al. 1986; Pozrikidis 1990b;

Stone and Leal 1989). This is cumbersome and can lead to inaccuracies. The integrals in (5.13)

can each be decomposed into a regular and a singular part. In this form, they are easily and
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accurately evaluated using Gauss-Legendre and Gauss-Log rules (Stroud and Secrest 1966) on

each of these respective parts. Details regarding these aspects may be found in Taib (1985).

5.3.3 Time step

The integral equation is now easily solved by guessing an initial velocity at the marker points,

splining using (5.11) and (5.12) to obtain a velocity distribution and evaluating the right hand

side of (5.13). In this way a new velocity distribution is calculated and we continue this until

the velocity has converged at all the marker points. Equation (5.5) is then solved via an explicit

fourth order Runge-Kutta scheme to evolve each surface. We employ a variable time step of the

form

∆t =
∆xmax

maxi |u(ξi)| (5.14)

where ∆xmax is some constant and maxi denotes the maximum value over all node points. This

has the effect of constraining the maximum deformation of each surface to the chosen constant

∆xmax.

5.4 Numerical accuracy

To test the accuracy of the quadrature and spline routines we calculate∫
unit sphere

G11(x − y) dS(y) = −16

3
π. (5.15)

This result is easily obtained by considering the uniform translation of a solid unit sphere in an

infinite medium. Table 5.1 shows the relative error in calculating (5.15) for various values of

quadrature points and number of intervals (n). We can see that doubling the number of intervals

increases the accuracy by approximately an order of magnitude, while increasing the number

of Gauss points has little effect. With the simulations shown in the next section we found that

using an 8 point Gauss-Legendre rule for the regular integrals, an 8 point Gauss-Log rule for the

singular integrals and an initial distribution of 33 marker points (n = 32) gave good results.

The evolution of the drop surface is calculated by following the trajectories of the marker points

in time. These points tend to migrate strongly to regions of high curvature. Thus we introduce

a re-distribution mechanism, whereby a marker point is introduced at the bisector of a segment
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No. of Gauss quadrature points

n 4 8 12 16

8 5.60E-5 5.60E-5 5.60E-5 5.60E-5

16 3.54E-6 3.53E-6 3.53E-6 3.53E-6

32 2.26E-7 2.23E-7 2.23E-7 2.23E-7

64 1.56E-8 1.40E-8 1.40E-8 1.40E-8

128 1.69E-9 8.79E-10 8.79E-10 8.79E-10

Table 5.1: Relative error in computing (5.15) given the number of Gauss quadrature points and the number of

subintervals n to discretize the unit sphere.

whose length exceeds some maximum and a marker point is removed if a segment length is less

than some minimum.

The numerical method can be tested by comparing with the Hadamard-Rybczynski solution for

a spherical drop in an unbounded fluid (Batchelor 1967). In dimensionless form, the terminal

velocity of the spherical drop is

u =
2

3

1 + λ

2 + 3λ
. (5.16)

In Figure 5.3 we show the relative deviation of the numerical method from (5.16) for different

values of the time-step parameter ∆xmax. All of the iso-curves follow the same general pattern.

Considering ∆xmax=0.05 we can see that the numerical solution gradually loses accuracy as it

progresses in time, this behaviour is well understood in the context of Euler and Runge-Kutta

schemes. At t = t∗ ≈ 24, the simulation breaks down and this is reflected in the steep gradient

of the curve at this point. By inspecting the drop surfaces near the trailing edge the formation

of a numerical instability develops where the drop surface takes on a wave-like pattern with

wavelength equal to the distance between two successive marker points. The end point of each

iso-curve indicates the time at which the numerical algorithm (as opposed to the accuracy of the

simulation) breaks down. At this time the relative error increased by several orders of magni-

tude. We can see from the other curves in Figure 5.3 that this instability can be significantly

delayed by taking smaller time steps. Similar phenomenon were observed with non-zero inverse

Bond number where decreasing Γ increased the value of t∗, the point at which the simulation

breaks down (see Figure 5.4). On physical grounds, we might have expected that increasing Γ

(increasing surface tension) would enhance stability. However, this refers to hydrodynamic sta-

bility whereas Figure 5.4 refers to numerical stability. That numerical stability increases with

decreasing Γ could be explained by recognising that decreasing Γ diminishes the contribution of
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Figure 5.3: Relative error of the numerical method from the Hadamard-Rybczynski result for various values of the

time-step parameter ∆xmax with n = 32, λ = 1 and Γ = 0.5.

the curvature term in the boundary condition (2.27). We anticipate that using higher order splines

would result in a more accurate calculation of this curvature term.

Finally, we can compare these results with those of Koh and Leal (1989). They report accuracies

of 0.05% with the Hadamard-Rybczynski solution for n = 50. Manga and Stone (1993) report

deviation of less than 1% . The results given here are more accurate when t < t∗.

5.5 Results for two-drop simulations

Results are shown for two different two-drop simulations that contrast in terms of their parameter

space. In the first simulation (called S-I) the parameters are chosen to test the robustness of the

numerical method, while the second simulation (S-II) is motivated by photographs taken of an

experiment reported in Manga and Stone (1993). The results in Figure 5.5 show the deformation

of the drops in a reference frame relative to the front of the leading drop. As an indicator of

cumulative error (in time) we monitor the volume of each drop. In S-I the relative change in

volume is less than 1% for t < 16 and near 10% for t > 16. In S-II the relative volume

change is less than 10−6 for the span of the simulation. This compares favourably with other

recent work. For example, for a one drop simulation (Pozrikidis 1990b) reports volume changes

of less than 0.2% for λ = 1 and less than 1% for λ �= 1. With their two drop simulations,
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Γ

Figure 5.4: Relative error of the numerical method from the Hadamard-Rybczynski result for various values of Γ

with n = 32, λ = 1 and ∆xmax = 0.05.
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Figure 5.5: Two-drop simulations. (a) For the lower drop λ = 1.1, Γ = 0.0 and volume ratio=5, for the upper drop

λ = 1.1, Γ = 0.05 and volume ratio=1. Initial drop separation is 3. (b) For the lower drop λ = 1.1, Γ = 0.01 and

volume ratio=1, for the upper drop λ = 1.1, Γ = 0.003 and volume ratio=0.125. Initial drop separation is 5.

Manga and Stone (1993) report volume changes of less than 10%. In S-I we choose Γ = 0 for the

lower drop and Γ = 0.05 for the upper drop since small Bond numbers lead to highly deformable

surfaces. To test the algorithm in the absence of a dynamic time step we specify a static ∆t = 0.1

and ensure that deformation proceeds quickly by giving the lower drop a volume five times larger

than the upper drop (volumes quoted are relative to the unit sphere). To exaggerate the already

strong interaction the initial separation between drop centres is small (3 units). The simulation is

shown in Figure 5.5(a). At time t = 8 a region of rapid drainage has formed along the centreline

between the two drops. This is indicative of interactions with small initial separations. As a

result the upper drop quickly moulds to the surface of the lower drop (t = 16). The lower drop

deformation is comparable to that of a single prolate drop (Pozrikidis 1990b). The drop takes on

an initial prolate shape (t = 4.0 and t = 8.0) but as it rises most of the mass begins to collect

near the front forming a spherical head leaving a long elongated tail (t = 24, 28, 32). At time



CHAPTER 5. FREE SURFACE PROBLEMS 112

t = 28 ambient fluid near the base of the tail induces an internal spike in the lower drop (t = 32).

Numerical instabilities appear near the front of the drops when t = t∗ ≈ 20. Careful examination

of this region reveals that the marker points of the trailing drop are moving into the interior of

the leading drop. Figure 5.6 shows a magnified view of this region for t = 28. It is immedi-

ately clear that the drop surfaces are merging as the leading drop coats the surface of the trailing

drop. In reality the two drops will coalesce and the leading drop will evolve into a multiply

connected toroidal surface. This phenomenon has been reported in other numerical solutions

(Pozrikidis 1990b) and validated experimentally (Kojima et al. 1984). After this time the degra-

dation of the simulation is clearly evident. A dynamic time-step (with an appropriately chosen

∆xmax) would have been required to examine the interaction of the later stages in any detail.

This simulation took approximately 9 minutes on a Pentium-90 personal computer. With such

a large time step the algorithm performs well and clearly shows the general trend of the drop

interaction. In S-II, shown in Figure 5.5(b), the parameters are chosen to match the experiment

Figure 5.6: Two-drop simulation. A magnified view of the top surface showing the migration of the marker points

into the drop interior.

in Manga and Stone (1993) (their Figure 1) where two air bubbles are observed to interact in an

ambient fluid of corn syrup. In order to ensure that the numerical simulation is stable (t∗ is large)

we choose ∆xmax = 0.01. The separation between the drop centres is 5 units. This is a key

difference between S-I and S-II. In this simulation as the trailing drop approaches the leading

drop a region of uniform drainage occurs t = 28.0. In the presence of the lower larger drop,

the upper drop forms a spherical cap and begins to encapsulate it (t = 34.6). The overall drop

dynamics appear to be in good agreement with experimental results. This simulation was run

on a DEC Alpha and took 45 hours to execute. The very small time step and the node point

re-distribution mechanism have both contributed to this larger execution time. The number of
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t = 0.00 9.34 18.68 27.99 37.21 46.43 55.65 64.88 72.25

Figure 5.7: Three-drop simulation. For each drop λ = 1, Γ = 0 and volume ratio=1. Initial drop separation is 2.5

for the lower drops and 4 for the upper drops.

segments increased from an initial n = 32 at t = 0 to n = 195 for the leading drop and n = 200

for the trailing drop.

5.6 Results for three-drop simulations

Results for three drop simulations are presented. In each case the surfaces are initially spherical

of unit radius and we set Γ = 0.05, λ = 1 and investigate the effect of different initial separations

of the drops on the type of drop deformation. We define ∆r1 as the initial separation of the lower

drop from the middle drop, and ∆r2 as the initial separation of the upper drop from the middle

drop. We investigate three cases: (i) ∆r1 = 2.5, ∆r2 = 4.0, see Figure 5.7, (ii) ∆r1 = 4.0,

∆r2 = 2.5, see Figure 5.8, and (iii) ∆r1 = 4.0, ∆r2 = 4.0, see Figure 5.9.

In each of the three cases the top drop becomes oblate and the bottom drop becomes prolate. In

Figure 5.7, where initially the bottom two drops are closer together, the middle drop becomes

oblate. Both upper drops appear to wrap themselves around the bottom drop as the drops move

closer together under buoyancy. In Figure 5.8, where initially the upper two drops are closer

together, the middle drop becomes prolate. The two upper drops appear to eventually coalesce

and form a toroidal surface as the separation of these and the bottom drop becomes greater. In

Figure 5.9, where the drops are initially equally spaced, the behaviour has characteristics similar

to both Figure 5.7 and Figure 5.8. It firstly becomes oblate and forms an inverted spike but unlike
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t = 0 9.34 18.68 28.02 37.36 46.71 56.05 65.39

Figure 5.8: Three drop simulation. For each drop λ = 1, Γ = 0 and volume ratio=1. Initial drop separation is 4

for the lower drops and 2.5 for the upper drops.

t = 0 11.25 22.10 32.02 41.33 50.54 59.75 68.96 78.17

Figure 5.9: Three drop simulation. For each drop λ = 1, Γ = 0 and volume ratio=1. Initial drop separation is 4

for the lower drops and 4 for the upper drops.
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Figure 5.10: Three-drop simulations — an accuracy check. Relative deviation from initial volume of each drop.

Trailing drop ( ), middle drop ( ), leading drop ( ).

the previous oblate deformation the spike becomes elongated, producing an overall prolate shape.

As an indicator of the global error in these computations we can calculate the relative change in

volume of each of the drops. In Figure 5.10 we show the relative changes for each of the three

drops corresponding to Figure 5.7. This shows global errors are well within acceptable bounds

except right at the very final stages of the simulation t ! 70 seconds. An interesting point about

Figure 5.7 is the deformation of the bottom trailing drop, which becomes prolate but doesn’t

form a spherical head (as it would in a two-drop simulation). In order to investigate the effect of

the presence of the leading drop on the trailing drop, in Figure 5.11 we compare the later stages

of the simulation with a similar simulation where the leading drop is absent. The bottom two

drops in Figure 5.11(a) act together to have a similar effect on the top drop as the single bottom

drop in Figure 5.11(b).

5.7 Toroidal drops

Results for a single toroidal drop deformation are briefly presented. The parameters used to

define each simulation are dependent on the geometry: α, λ1, λ2, and fluid properties: λ, Γ.

Here α is the volume ratio of the drop with a unit sphere, λ1 is the aspect ratio that includes the

inner radius and λ2 is the aspect ratio of the drop cross-section, see Figure 5.12. The parameter

α is an important control variable since drop volume has a direct influence on the time scale
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(a)

(b)

t = 37.21 46.43 55.65 64.88 72.25

t = 21.32 31.97 42.63 53.29 63.95

Figure 5.11: Comparison of (a) the later stages of the simulation in Fig. 5.7 with (b) two-drop simulation when the

leading drop is absent.

of a simulation. That is, the larger the volume, the greater the buoyancy force and hence the

shorter the simulation time span. Different simulations can be compared at similar times of

drop evolution by restricting α to be the same for all experiments. The parameters λ1 and λ2

are varied to produce different initial spheroidal torus configurations as these will induce quite

different deformations.

To prescribe the volume, we equate the toroidal volume to given multiples, α, of a unit sphere

abc =
2α

3π
. (5.17)

The equations for the aspect ratios are

λ1 =
c

a
and λ2 =

b

a
. (5.18)

Solving (5.17) and (5.18) simultaneously produces

a = 3

√(
2α

3πλ1λ2)

)
, b = aλ2, and c = aλ1 (5.19)

The conditions that a, b, c be real and positive and that c > b produces the constraint

λ1 > λ2. (5.20)

In Figure 5.13 we show the evolution of a buoyant toroidal drop. The initial configuration is

λ1 = 4 and λ2 = 1. That is, the cross-section is circular and the inner radius is large producing a

slender torus.
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b

a

z

r

c

Figure 5.12: Geometry of a toroidal surface. Parametric equations are r = b cos θ + c, z = a sin θ, 0 ≤ θ ≤ 2π.

Aspect ratios are λ1 = c/a and λ2 = b/a.



CHAPTER 5. FREE SURFACE PROBLEMS 118

t = 0.00 17.25 33.77

49.82 65.68 81.44

Figure 5.13: Deformation of a single toroidal drop. Volume 1, Γ = 0.02, λ = 1, λ1 = 4 and λ2 = 1.
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Figure 5.14: Deviation in volume for simulation shown in Figure 5.13.

As the simulation progresses, the outer surface remains circular while the inner region deforms

and filamentation is evident near the top of the inner region. In addition, the inner radius does

not change significantly. This is in accord with the linear analysis of Kojima et al. (1984) where

they show that for a slender circular torus, the inner radius should not expand.

The deviation from initial volume is shown in Figure 5.14. This error increases with time, but

remains at acceptable levels throughout the simulation.
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Figure 5.15: Deformation of a single toroidal drop. Volume=4, Γ = 0.02, λ = 1, λ1 = 1.2, λ2 = 0.2

In Figure 5.15, the initial parameters are changed so that the cross section takes on a distinct

prolate shape. The overall torus is no longer slender and the parameters are λ1 = 1.2, λ2 = 0.2.

The evolution here is similar to that of a single prolate spheroid (Pozrikidis 1990b, Figure 2(a−
i)). At the leading edge, a circular region is formed, as does a long tail filament. Also, an

internal spike is present near the trailing edge of the circular head. We report that the inner

radius increases in size in contrast to the prediction of Kojima et al. (1984). However, their

analysis was restricted to slender toroidal drops with a circular cross-section.

As a final remark, we point out that the deformation in Figure 5.15 proceeds at a much faster

pace that in Figure 5.13. The obvious reason being that the drop volume in Figure 5.15 is 4 times

larger than in Figure 5.13.

5.8 Conclusions

The behaviour of the three-drop interactions can be explained, in part, from the results for two-

drop interactions. The drops which are closer together can act like a single drop in their effect
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on the other drop. In two-drop dynamics, the leading drop usually takes on an oblate shape and

coats the trailing drop (if surface tension is low enough). The trailing drop takes on an initial

prolate shape, then forms an external spike (protrusion) as most of its mass is concentrated into

a spherical head, as in Figure 5.5. This is pointed out in Manga and Stone (1993) and explained

using a simple point force analogy. In the three cases considered in Figures 5.7, 5.8 and 5.9, the

first and last drops broadly exhibit this behaviour. The major effect of separation is the resulting

deformation of the middle drop. It feels the presence of the flow field disturbance both ahead and

behind.

We have developed a boundary integral algorithm that can simulate the axisymmetric interac-

tion of many viscous drops under a constant buoyancy force. The main strengths of this method

are the accurate representation of drop surfaces, modification of the singular kernels to enable

accurate evaluation of the integrals using appropriate Gauss quadrature rules and a simple adap-

tive time-step to constrain the amount of surface deformation. These numerical investigations

suggest we are able to carry out drop simulations with greater accuracy and efficiency.



Chapter 6

Concluding Remarks and Future

Directions

The main aim of this work was to present highly accurate and reliable algorithms to study particle

interactions in Stokes flow. Below, we briefly summarise the significant results and indicate

directions for possible future work.

The boundary integral equations are the most appropriate form of the governing equations when

considering creeping flows in external domains with boundaries that may have complicated

and/or dynamic shapes. To obtain meaningful results for complex multi-particle systems one

needs to carefully consider the solution method which will involve, at least, some representation

for the unknown and an algorithm to perform the singular quadrature. This can be further com-

plicated by the dimension of the solution (two for axi-symmetric problems) and the nature of the

boundaries.

In order to isolate the main issues involved with the numerical inversion of boundary integral

equations we considered the ideal case of solving Symm’s integral equation in chapter 3. We

showed that an interpolation-collocation scheme performed extremely well and an optimal grid

as well as optimal collocation points were identified. We should, of course, provide a caveat for

the use of the word optimal. The results identified in this chapter are optimal in the sense that

the unknown was approximated by a constant functional over one interval. Even so, we showed

that this crude approximation can provide meaningful insights into how one should discretize

and collocate. The method was expanded and generalised somewhat in appendix C to show how

one can construct an n point composite quadrature rule to account for general singular integrands

121
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where only limited knowledge of the singularity is required (first two moments), whilst identify-

ing an accurate grid. This contrasts with Newton-Cotes rules where no provision is made for the

singular integrand and with Gauss quadrature where an n point rule requires knowledge of the

first 2n weighted moments and no sense of composite grid exists. We hasten to add that Gauss

rules are of course more accurate than the ones developed here, they are used in the simulations

of chapters 4 and 5, but we propose the use of these Newton-Cotes like rules for theoretical anal-

ysis of integral equations because of their ease of use in obtaining an abundance of error results

in a variety of norms and still accounting for the singular nature of the integrands.

Two obvious improvements can be made with the Peano kernel approximation (3.41). One is

to increase the number of intervals, thus adapting the calculus to a piecewise functional defined

over some arbitrary grid. This was done in section C.6 of appendix C, but the main difficulty

would be in obtaining, and subsequently manipulating, the expression for the determinant of the

composite system. We refer to the cumbersome expression (3.51) as evidence of this. Another

approach would be to increase the order of the approximation. For example, one could use the

Peano kernel

pn(t, x) :=
1

(n− 1)!

x∫
t

(t− u)n−1w(u) du, a ≤ t, x ≤ b, n ≥ 1,

to obtain an integral inequality in norms of f (n). Integrating by parts once, solving the resulting

recurrence relation and taking bounds gives∣∣∣∣∣∣
b∫

a

f(t)w(t) dt−
n−1∑
k=0

(−1)n−k
(
f (k)(a)pk+1(a, x)− f (k)(b)pk+1(b, x)

)∣∣∣∣∣∣ ≤ ‖f (n)‖∞
b∫

a

|pn(t, x)| dt,

(6.1)

an approximation to the weighted integral in terms of the first n − 1 derivatives of f at the

endpoints t = a, b. This is ideally suited to Hermite interpolation since, as in equation (4.9),

f(t) ≈
n−1∑
k=0

f (k)(a)Hk+1(t) + f (k)(b)Hk+1+n(t). (6.2)

Making use of (6.1) and (6.2) should, in principle, lead to error results for arbitrary order Hermite

interpolation. The main idea in chapter 3 and appendix C is that such simple analytic techniques

may be employed to provide insight into how numerical schemes will impact the resulting solu-

tion. Future work, as identified here, is being actively pursued.

The results of chapter 3 inspired the algorithm presented in chapter 4. An arbitrary order Hermite

interpolant over a general grid was employed to construct a linear system which, when solved,
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returned the behaviour of the particle traction at the grid points. The complete elliptic integrals

were approximated with a polynomial-logarithmic expansion developed in appendix D. As a

result, a combination of Gauss-Legendre and Gauss-Log quadrature rules were employed to

evaluate the integrals. We showed that this method worked well for simple spheroidal geometries,

but became unstable for more complicated particle shapes (surface A). In an effort to increase

stability, as well as accuracy, two curvature based methods were presented.

The first method was based on choosing an a priori grid so that the curvature was represented

uniformly across the entire domain. This scheme produced a five-fold increase in accuracy for

the calculated traction of a highly prolate spheroid and prevented the instability reported earlier

with the surface A. The second method involved modification of the integrand. The idea being

that the traction f1 may be decomposed as

f1 = F (κ)fw, (6.3)

where F is some function of the curvature chosen so that fw is independent of the curvature. In

this way, almost any trivial grid can be used. We chose F (κ) = κ1/3 since this would return a

constant solution fw = c for the spheroid. With surface A, the returned solution fw lacked the

very large derivatives of the traction f1, giving an a posteriori confirmation to the validity of

the decomposition (6.3). In addition, it was clear that the traction, f1 = κ1/3fw was much more

accurate when compared with the un-weighted solution f1. Unfortunately, this method was not

as accurate as the curvature grid scheme and it produced spurious results at inflection points of

the particle.

Properly implemented, the weighted kernel approach should produce stable and accurate results

without requiring the calculation of special grids. For this reason, it warrants further investigation

in an effort to improve the performance and eliminate the current flaw at inflection points.

The results presented in chapter 4 provide the basis for the numerical investigation of multi-

particle interactions. For example, a simple three sphere buoyant interaction is shown in Fig-

ures 6.1 and 6.2. We can see that if the middle sphere begins it’s motion closer to the trailing

sphere then it will move, in a relative sense, from the trailing sphere to the leading sphere. This

behaviour was first predicted by Happel and Brenner (1965). In contrast, attempting to solve a

similar problem with three surface A’s, instead of three spheres, will almost certainly fail unless

care is taken with the interpolation, integration and grid distribution. It is clear that the methods

presented here can be used to study similar phenomena for a larger number of particles involving

complex geometries.



CHAPTER 6. CONCLUDING REMARKS AND FUTURE DIRECTIONS 124

0.00 10.00 20.00 30.00 40.00
Time

−40.00

0.00

40.00

80.00

120.00

Po
si

tio
n

Figure 6.1: Buoyant three sphere simulation (trailing sphere) —, (middle sphere) —, (leading sphere) —. Position

versus time
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Figure 6.2: Buoyant three sphere simulation (trailing sphere) —, (middle sphere) —, (leading sphere) —. Velocity

versus time
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In chapter 5, studies of liquid drop interactions were presented. The numerical integration, in-

cluding the polynomial approximation to the complete elliptic integrals, followed that of chap-

ter 4. The unknown surfaces and velocities were represented using clamped cubic splines pa-

rameterised with arc-length. One and two drop simulations were presented and compared with

previously reported results and we showed that the numerical method is more accurate in terms

of volume changes.

Numerical simulations were also presented for three drop interactions and a single toroidal drop

deformation. We reported that a three drop interaction can be explained, in part, in terms of two

drop dynamics. The evolution of the toroidal drop was compared with the experimental results of

Kojima et al. (1984). They report that slender, circular toroidal drops increase their inner radius

under buoyant motion. Their linear analysis suggests that the creeping flow approximation is

deficient in this regard and that small inertia terms are required to reproduce their experimental

results. We confirmed this and reported that the numerical simulation for a slender circular torus

admits no solution involving increase in the inner radius (Figure 5.13). In addition, we also

reported that changing the initial toroidal configuration to a prolate cross-section with no overall

slenderness did lead to a drop evolution whose inner radius increased (Figure 5.15).

It is clear that the algorithms of chapters 4 and 5 are capable of simulating complex particle

behaviour in Stokes flow. Even though most physical systems rarely exhibit axial symmetry,

some insight may be gained by restricting the flow in this way. One example is the brief report

on the observation of two interacting toroidal drops. Kojima et al. (1984) report that toroidal

drops seem to interact via a leap frog mechanism. That is, their leading drop expands allowing

the contracting trailing drop to pass through its inner radius . We report that this behaviour has

been reproduced numerically, see Figure 6.3, confirming the validity of the Stokes approximation

as well as the numerical method given here.

In conclusion, the analysis undertaken in this dissertation provides a sound basis for the theoret-

ical investigation of Fredholm integral equations, for implementing general numerical methods

based on boundary integral equations where a high degree of accuracy is required and, not least,

the study of complex particle motion in Stokes flows.
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Figure 6.3: Interaction of two toroidal drops. Γ = 0.1, λ = 1.1



Appendix A

Boundary Integral Formulation

For completeness we present here the derivation of the boundary integral equations (2.9) for

a particle immersed in an unbounded and otherwise stationary fluid in creeping flow. For the

derivation of the boundary integral equation for particles in an unbounded fluid with an external

flow see Kim and Karrila (1991, p. 25).

The Green’s function for Stokes flow in an infinite medium is given by the solution to

∂Qk

∂xi
(x )− ∂2Gik

∂xj∂xj
= δikδ(x ) (A.1)

and

∂Gik

∂xi
(x ) = 0, (A.2)

with the boundary conditions

|G| → 0 and |Q | → 0 as |x | → ∞, (A.3)

where the usual summation convention has been adopted.

Physically, Gik(x ) represents the velocity of the fluid at x in the i direction due to a Stokeslet

(point force) in the k direction located at the origin. The associated pressure field is Qk(x ). We

will denote the stress tensor of this system by Σ, it is given by

Σijk = −Qkδij +
∂Gik

∂xj
+

∂Gjk

∂xi
, (A.4)

and the stress tensor for the system (2.6)-(2.7) by τ , where

τij = −pδij +
∂ui
∂xj

+
∂uj
∂xi

. (A.5)
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Taking the divergence of the products Gik(y − x )τij(y) and ui(y)Σijk(y − x ) gives

Gik(y − x )
∂τij
∂yj

(y) =
∂

∂yj

(
Gik(y − x )τij(y)

)
− ∂Gik

∂yj
(y − x )τij(y), (A.6)

and

ui(y)
∂Σijk

∂yj
(y − x ) =

∂

∂yj

(
ui(y)Σijk(y − x )

)
− ∂ui

∂yj
(y)Σijk(y − x ), (A.7)

respectively.

Subtracting (A.7) from (A.6), integrating over the whole fluid domain (Ω) and applying the

divergence theorem gives∫
Ω

{
Gik(y − x )

∂τij
∂yj

(y)− ui(y)
∂Σijk

∂yj
(y − x )

}
dV (y) =

−
∫
S

{
Gik(y − x )τij(y)− ui(y)Σijk(y − x )

}
nj(y) dS(y)−

∫
Ω

{
∂Gik

∂yj
(y − x )τij(y)− ∂ui

∂yj
(y)Σijk(y − x )

}
dV (y). (A.8)

The parameter S represents the particle surface and n the unit outward normal to S. We note

that there are no integrals over the surface of the infinite fluid domain since the Stokeslet is

O(1/|y − x |) and its associated stress tensor decays like O(1/|y − x |2).

The incompressibility condition (2.7) and (A.2) with the stress tensors (A.5) and (A.4) causes the

integrand of the last term in equation (A.8) to vanish. Furthermore, we know that the governing

equations (2.6) and (A.1) can be reformulated as

∂τij
∂yj

(y) = 0 and
∂Σijk

∂yj
(y − x ) = −δikδ(y − x ), (A.9)

respectively, which upon substitution into (A.8) yields

c(x )uk(x ) = −
∫
S

Gik(y −x )τij(y)nj(y) dS(y) +

∫
S

Σijk(y −x )ui(y)nj(y) dS(y), (A.10)

where

c(x ) =




1, x ∈ Ω,

1
2
, x ∈ S.

(A.11)

Since G is even and Σ is odd, we may re-write (A.10) as

c(x )uk(x ) = −
∫
S

Gik(x − y)fi(y) dS(y)−
∫
S

Σijk(x − y)ui(y)nj(y) dS(y), (A.12)
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where f = τ · n is the traction.

The surface S is assumed to be everywhere smooth (to be precise S is assumed to be a Lyapunov

surface). At any non-analytic point1 of S, c can be calculated from the solid-angle at that point

(Seybert et al. 1985).

If the particle is rigid then the double-layer term may be simplified. In this case, the velocity is

constant over the surface and so may be taken out of the integral, then re-applying the divergence

theorem so that the region of interest is in the particle interior gives∫
S

Σijk(x − y)ui(y)nj(y) dS(y) = −(1− c(x ))uk(x ). (A.13)

Substituting (A.13) into (A.12) we arrive at the equation

uk(x ) = −
∫
S

Gik(x − y)fi(y) dS(y), (A.14)

where f = τ · n .

If x ∈ S then (A.14) is a three-dimensional Fredholm integral equation of the first kind in the

surface traction f .

1By non-analytic point, P ∈ S, we mean that any parameterisation of a space-curve embedded in S that contains
P has no Taylor expansion about P .



Appendix B

Hermite Interpolation Polynomials

We seek a polynomial F ∗(t) that interpolates a function F (t) on the unit interval. In addition,

we require the first N − 1 derivatives of F ∗(t) to interpolate the first N − 1 derivatives of F (t).

Therefore we impose the conditions

F ∗(m)

(0) = F (m)(0) and F ∗(m)

(1) = F (m)(1), for m = 0, 1, . . . , N − 1, (B.1)

and write the interpolant in the form

F ∗(t) =
N−1∑
m=0

F (m)(0)Hm+1(N ; t) + F (m)(1)Hm+N+1(N ; t), (B.2)

where Hk(N ; t), k = 1, 2, . . . , 2N are the Hermite interpolation polynomials to be calculated.

By substituting (B.2) into (B.1) it is easy to see that these polynomials satisfy

H
(m)
k (N ; 0) = δm+1,k and H

(m)
k (N ; 1) = δm+N+1,k. (B.3)

It is now a simple matter of utilising these 2N conditions to calculate the coefficients of each

polynomial Hk(N ; t). Algorithm B.1 lists a Maple (Char et al. 1991) program that generates

the Hermite interpolation polynomials for any given order and Figure B.1 shows some sample

output. Table B.1 tabulates the polynomials for N = 2, 4 and 6.
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herm := proc( x , n )
#

local i , j , eq , oldeq , poly , c , H , soln:
#
# Written by: John Roumeliotis and Adam Kucera
#
# Written on: 10 / 04 / 1992.
# Last update: 02 / 03 / 2000.
#
# Given parameters x and n, this routine returns the
# Hermite interpolation polynomials of order n in the
# parameter x.
#
# Parameter Checking

if not( type( x , symbol ) and type( n , integer ) ) then
ERROR( ‘Arguments of wrong type‘ )

elif n <= 0 then
ERROR( ‘The order (n) must be positive‘ )

fi:
# Set up Hermite polynomial, derivatives and set each
# condition to zero (eqn B3)

poly[0] := sum( c[i]*x^i , i=0..2*n-1 ):
eq[1] := subs( x=0 , poly[0] ) =0:
eq[n+1] := subs( x=1 , poly[0] ) =0:
for i from 1 to n-1 do

poly[ i ] := diff( poly[ i-1 ] , x ):
eq[i+1] := subs( x=0 , poly[i] ) =0:
eq[i+1+n] := subs( x=1 , poly[i] ) =0

od: i := ’i’:
# Evaluate each Hermite

for i from 1 to 2*n do
# Implement the proper condition (eqn B3)

oldeq := eq[i]:
if i > n then

eq[i] := subs( x=1 , poly[i-n-1] ) = 1
else

eq[i] := subs( x=0 , poly[i-1] ) = 1
fi:

# Solve equations for coefficients (c[i])
soln := solve( {eq[j]$j=1..2*n} , {c[j]$j=0..2*n-1} ):
H[i] := factor( subs( soln , poly[0] ) ):
eq[i] := oldeq

od: i := ’i’:
[ H[i]$ i=1..2*n ]

end;

Algorithm B.1: Maple program to calculate Hermite interpolation polynomials of any order.
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N k Hermite interpolation polynomials Hk(N ; t)

2 1, 2 (2 t + 1) (1− t)2 t (1− t)2

3, 4 −t2 (−3 + 2 t) −t2 (1− t)

1, 2 (20 t3 + 10 t2 + 4 t + 1) (1− t)4 t (10 t2 + 4 t + 1) (1− t)4

4 3, 4 1
2
t2 (4 t + 1) (1− t)4 1

6
t3 (1− t)4

5, 6 −t4 (−35 + 84 t− 70 t2 + 20 t3) −t4 (1− t) (10 t2 − 24 t + 15)

7, 8 −1
2
t4 (4 t− 5) (1− t)2 −1

6
t4 (1− t)3

1 (252 t5 + 126 t4 + 56 t3 + 21 t2 + 6 t + 1) (1− t)6

2 t (126 t4 + 56 t3 + 21 t2 + 6 t + 1) (1− t)6

3 1
2
t2 (56 t3 + 21 t2 + 6 t + 1) (1− t)6

4 1
6
t3 (21 t2 + 6 t + 1) (1− t)6

5 1
24
t4 (6 t + 1) (1− t)6

6 6 1
120

t5 (1− t)6

7 −t6 (−462 + 1980 t− 3465 t2 + 3080 t3 − 1386 t4 + 252 t5)

8 −t6 (1− t) (126 t4 − 560 t3 + 945 t2 − 720 t + 210)

9 −1
2
t6 (56 t3 − 189 t2 + 216 t− 84) (1− t)2

10 −1
6
t6 (21 t2 − 48 t + 28) (1− t)3

11 − 1
24
t6 (6 t− 7) (1− t)4

12 − 1
120

t6 (1− t)5

Table B.1: Hermite interpolation polynomials, Hk(N ; t), for k = 1, . . . , 2N , N = 2, 4, 6.

|\^/| Maple V Release 5.1 (Single User)
._|\| |/|_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> read ‘herm1.mpl‘;
> herm(t,2);

2 2 2 2
[(2 t + 1) (-1 + t) , t (-1 + t) , -t (-3 + 2 t), t (-1 + t)]

> done

Figure B.1: Sample Maple output from algorithm B.1



Appendix C

Some Integral Inequalities

C.1 Introduction

In this appendix a weighted (or product) quadrature rule is developed and an a priori error

bound is obtained for functions with bounded second derivative. The method is based on Os-

trowski’s integral inequality, and as such is amenable to the production of error bounds for a va-

riety of norms. This has been done for the usual Newton-Cotes type rules (Cerone et al. 1999b;

Cerone et al. 1999a; Cerone et al. 1999c; Cerone et al. 1999d) and two-dimensional (cubature)

rules (Dragomir et al. 1999; Hanna et al. 1999). In addition, weighted rules for differentiable

functions using a number of norms have recently been established (Cerone et al. 1999) as well

as for functions of Hölder type (Dragomir et al. 1999).

As well as developing a weighted integral inequality, an application in numerical integration is

presented. However, the method may be employed in other areas such as approximation theory

(integral equations being but one example) and probability distributions. In this particular case,

the weight function w can be considered as some probability density function (pdf).

C.2 Ostrowski’s inequality

In 1938, Ostrowski (see for example Mitrinović et al. (1994, p. 468)) proved the following bound

between a function and its average:

THEOREM C.1. Let f : I ⊆ R → R be a differentiable mapping in Io (Io is the interior of I),
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and let a, b ∈ Io with a < b. If f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ := sup
t∈(a,b)

|f ′(t)| <
∞, then we have the inequality:∣∣∣∣∣∣ 1

b− a

b∫
a

f(t) dt− f(x)

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)‖f ′‖∞ (C.1)

for all x ∈ (a, b).

The constant 1
4

is sharp in the sense that it cannot be replaced by a smaller one.

Recently, a similar result for twice differentiable mappings (Cerone et al. 1999b) was proved.

THEOREM C.2. Let f : [a, b] → R be a twice differentiable mapping such that f ′′ : (a, b) → R

is bounded on (a,b), i.e. ‖f ′′‖∞ := sup
t∈(a,b)

|f ′′(t)| < ∞. Then we have the inequality

∣∣∣∣∣∣ 1

b− a

b∫
a

f(t) dt− f(x) +

(
x− a + b

2

)
f ′(x)

∣∣∣∣∣∣ ≤
[

1

24
+

(
x− a+b

2

)2
2(b− a)2

]
(b− a)2‖f ′′‖∞ (C.2)

for all x ∈ [a, b].

In this appendix, this result is extended by developing an Ostrowski-type inequality for weighted

integrals. Applications to special weight functions and numerical integration are investigated.

C.3 Preliminaries

In the next section we will construct weighted (or product) integral inequalities. The weight

function (or density) is assumed to be non-negative and integrable over its entire domain. We

begin by defining a few generic quantitative measures of the weight.

Definition C.3. Let w : (a, b) → [0,∞) be an integrable function, i.e.
∫ b
a
w(t) dt < ∞, then we

define

mi(a, b) =

b∫
a

tiw(t) dt, i = 0, 1, . . . (C.3)

as the ith moment of w.
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Definition C.4. We define the mean of the interval [a, b] with respect to the density w as

µ(a, b) =
m1(a, b)

m0(a, b)
(C.4)

and the variance by

σ2(a, b) =
m2(a, b)

m0(a, b)
− µ2(a, b). (C.5)

C.4 The results

C.4.1 1-point inequality

THEOREM C.5. Let f, w : (a, b) → R be two mappings on (a, b) with the following properties:

1. sup
t∈(a,b)

|f ′′(t)| < ∞,

2. w(t) ≥ 0, ∀t ∈ (a, b),

3.
∫ b
a
w(t) dt < ∞,

then the following inequalities hold

∣∣∣∣ 1

m0(a, b)

b∫
a

w(t)f(t) dt−f(x) +
(
x− µ(a, b)

)
f ′(x)

∣∣∣∣
≤ ‖f ′′‖∞

2

[(
x− µ(a, b)

)2
+ σ2(a, b)

]
(C.6)

≤ ‖f ′′‖∞
2

(∣∣∣∣x− a + b

2

∣∣∣∣+ b− a

2

)2

(C.7)

for all x ∈ [a, b].

Proof. Define the mapping K(·, ·) : [a, b]2 → R by

K(x, t) :=



∫ t
a
(t− u)w(u) du a ≤ t ≤ x,∫ t

b
(t− u)w(u) du x < t ≤ b.

(C.8)
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Integrating by parts gives

b∫
a

K(x, t)f ′′(t) dt =

x∫
a

t∫
a

(t− u)w(u)f ′′(t) dudt +

b∫
x

t∫
b

(t− u)w(u)f ′′(t) dudt

= f ′(x)

b∫
a

(x− u)w(u) du−

x∫
a

t∫
a

(t− u)w(u)f ′(t) dudt−
b∫

x

t∫
b

(t− u)w(u)f ′(t) dudt

=

b∫
a

w(t)f(t) dt + f ′(x)

b∫
a

(x− u)w(u) du− f(x)

b∫
a

w(u) du

providing the identity

b∫
a

K(x, t)f ′′(t) dt =

b∫
a

w(t)f(t) dt−m0(a, b)f(x) + m0(a, b)
(
x− µ(a, b)

)
f ′(x) (C.9)

that is valid for all x ∈ [a, b].

Now taking the modulus of (C.9) and using the well established properties of definite integrals

we have∣∣∣∣
b∫

a

w(t)f(t) dt−m0(a, b)f(x) + m0(a, b)
(
x− µ(a, b)

)
f ′(x)

∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

K(x, t)f ′′(t) dt

∣∣∣∣∣∣
≤ ‖f ′′‖∞

b∫
a

|K(x, t)| dt

= ‖f ′′‖∞

 x∫
a

t∫
a

(t− u)w(u) dudt +

b∫
x

t∫
b

(t− u)w(u) dudt




=
‖f ′′‖∞

2

b∫
a

(x− t)2w(t) dt.

(C.10)

The last line was computed by reversing the order of integration and evaluating the inner inte-

grals. To obtain the desired result (C.6) we expand the quadratic and complete the square

b∫
a

(x− t)2w(t) dt = m0(a, b)
[(

x− µ(a, b)
)2

+ σ2(a, b)
]
. (C.11)
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To obtain (C.7) note that

b∫
a

(x− t)2w(t) dt ≤ sup
t∈[a,b]

(x− t)2mo(a, b)

= max{(x− a)2, (x− b)2}m0(a, b)

=
1

2

(
(x− a)2 + (x− b)2 +

∣∣(x− a)2 − (x− b)2
∣∣)m0(a, b)

=

(∣∣∣∣x− a + b

2

∣∣∣∣+ b− a

2

)2

m0(a, b) (C.12)

which upon substitution into (C.10) furnishes the result. �

Note that the inequality (C.6) is valid even for unbounded w or interval [a, b]. This is not the case

with (C.2), hence the advantage of (C.6) is self evident.

COROLLARY C.6. The following inequality holds

(
x− µ(a, b)

)2
+ σ2(a, b) ≤

(∣∣∣∣x− a + b

2

∣∣∣∣+ b− a

2

)2

(C.13)

for all x ∈ [a, b].

Proof. The result is immediately obvious when the identity (C.11) is substituted into (C.12). �

The inequality (C.6) produces a tighter bound than that of (C.7). We note that the latter inequality

is independent of the weight w and so may be of use when comparing integrals with differing

weight functions.

Remark C.7. Substituting x = µ(a, b) and x = a+b
2

into (C.13) and adding produces the follow-

ing inequality for the variance in terms of the mean of a density

σ2(a, b) ≤ b− a

2

(
b− a

2
+

∣∣∣∣µ(a, b)− a + b

2

∣∣∣∣
)

. (C.14)

A tighter bound is obtained by using (C.13) only once. Substituting x = a+b
2

gives

σ2(a, b) ≤ (b− a)2

4
−
(

a + b

2
− µ

)2

= (µ− a)(b− µ) (C.15)

≤ (b− a)2

4
. (C.16)
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COROLLARY C.8. The inequality (C.6) is minimised at x = µ(a, b) producing the generalised

mean-point inequality∣∣∣∣∣∣ 1

m0(a, b)

b∫
a

w(t)f(t) dt− f(µ(a, b))

∣∣∣∣∣∣ ≤ ‖f ′′‖∞σ2(a, b)

2
(C.17)

≤ ‖f ′′‖∞ (µ− a)(b− µ)

2
. (C.18)

Proof. Substituting µ(a, b) for x in (C.6) produces the desired result. We remark that the mean

point x = µ(a, b) not only minimises the bound of the inequality (C.6), but also causes the

derivative term to vanish. The second bound is immediately obtained from (C.15). �

The optimal point (C.4) can be interpreted in many ways. In a physical context, µ(a, b) rep-

resents the centre of mass of a one dimensional rod with mass density w. Equivalently, this

point can be viewed as that which minimises the error variance for the probability density w

(see Barnett et al. (1995) for an application). Finally (C.4) is also the Gauss node point for a

one-point rule (Stroud and Secrest 1966). The bound in (C.17) is directly proportional to the

variance of the density w. So that the tightest bound is achieved by sampling at the mean point

of the interval (a, b), while its value is given by the variance. The bound in terms of the mean µ,

equation (C.18), may be of value if the variance is unavailable.

C.4.2 2-point inequality

We develop a two point analogy of (C.6) where the result is extended to create an inequality with

two independent parameters x1 and x2. This is mainly used in section C.6 to find an optimal grid

for composite weighted-quadrature rules.

THEOREM C.9. Let the conditions of Theorem C.5 hold, then we have the following 2-point

inequality

∣∣∣∣
b∫

a

w(t)f(t) dt−m0(a, ξ)f(x1) + m0(a, ξ)
(
x1 − µ(a, ξ)

)
f ′(x1)

−m0(ξ, b)f(x2) + m0(ξ, b)
(
x2 − µ(ξ, b)

)
f ′(x2)

∣∣∣∣
≤ ‖f ′′‖∞

2

{
m0(a, ξ)

[(
x1 − µ(a, ξ)

)2
+ σ2(a, ξ)

]
+ m0(ξ, b)

[(
x2 − µ(ξ, b)

)2
+ σ2(ξ, b)

]}
(C.19)
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for all a ≤ x1 < ξ < x2 ≤ b.

Proof. We define the mapping K(·, ·, ·, ·) : [a, b]4 → R by

K(x1, x2, ξ, t) :=




∫ t
a
(t− u)w(u) du a ≤ t ≤ x1∫ t

ξ
(t− u)w(u) du x1 < t, ξ < x2∫ t

b
(t− u)w(u) du x2 ≤ t ≤ b

With this kernel, the proof is almost identical to that of Theorem C.5.

Integrating by parts produces the integral identity

b∫
a

K(x1, x2, ξ, t)f
′′(t) dt

=

b∫
a

w(t)f(t) dt−m0(a, ξ)f(x1) + m0(a, b)
(
x− µ(a, ξ)

)
f ′(x1)

−m0(ξ, b)f(x2) + m0(ξ, b)
(
x− µ(ξ, b)

)
f ′(x2). (C.20)

Re-arranging and taking bounds produces the result (C.19). �

COROLLARY C.10. The optimal location of the points x1, x2 and ξ satisfy

x1 = µ(a, ξ), x2 = µ(ξ, b), ξ =
µ(a, ξ) + µ(ξ, b)

2
(C.21)

Proof. By inspection of the right hand side of (C.19) it is obvious that choosing

x1 = µ(a, ξ) and x2 = µ(ξ, b) (C.22)

minimises this quantity. To find the optimal value for ξ we write the expression in braces in

(C.19) as

2

b∫
a

|K(x1, x2, ξ, t)| dt = m0(a, ξ)
[(

x1 − µ(a, ξ)
)2

+ σ2(a, ξ)
]

+ m0(ξ, b)
[(

x2 − µ(ξ, b)
)2

+ σ2(ξ, b)
]

=

ξ∫
a

(x1 − t)2w(t) dt +

b∫
ξ

(x2 − t)2w(t) dt. (C.23)
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Substituting (C.22) into the right hand side of (C.23) and differentiating with respect to ξ gives

d

dξ

b∫
a

|K(µ(a, ξ), µ(ξ, b), ξ, t)| dt =
(
µ(ξ, b)− µ(ξ, a)

)(
ξ − µ(a, ξ) + µ(ξ, b)

2

)
w(ξ).

Assuming w(ξ) �= 0, then this equation possesses only one root. A minimum exists at this root

since (C.23) is convex, and so the corollary is proved. �

Equation (C.21) shows not only where we should sample within each subinterval (i.e. x1 and

x2), but how the domain should be divided to make up these subintervals (ξ).

C.5 Some weighted integral inequalities

Integration with weight functions is used in countless mathematical problems. Two main areas

are: (i) approximation theory and spectral analysis and (ii) statistical analysis and the theory of

distributions.

In this section we evaluate the inequality (C.6) for the more popular weight functions. In each

case (C.2) cannot be used since the weight w or the interval (b − a) is unbounded. The optimal

point (C.4) is easily identified.

C.5.1 Uniform (Legendre)

Substituting w(t) = 1 into (C.4) and (C.5) gives

µ(a, b) =

∫ b
a
t dt∫ b

a
dt

=
a + b

2
(C.24)

and

σ2(a, b) =

∫ b
a
t2 dt∫ b
a

dt
−
(

a + b

2

)2

=
(b− a)2

12

respectively. Substituting into (C.6) produces (C.2). We note that the interval mean is simply the

midpoint (C.24).

C.5.2 Logarithm

This weight is present in many physical problems; the main body of which exhibit some ax-

ial symmetry. Special logarithmic rules are used extensively in the Boundary Element Method
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popularised by Brebbia (see for example Brebbia and Dominguez (1989)). Some applications of

which include bubble cavitation (Blake and Gibson 1987) and viscous drop deformation (Rallison and Acriv

and more recently by Roumeliotis and Fulford (2000)).

With w(t) = ln(1/t), a = 0, b = 1, (C.4) and (C.5) become

µ(0, 1) =

∫ 1

0
t ln(1/t) dt∫ 1

0
ln(1/t) dt

=
1

4

and

σ2(0, 1) =

∫ 1

0
t2 ln(1/t) dt∫ 1

0
ln(1/t) dt

−
(

1

4

)2

=
7

144

respectively. Substituting into (C.6) gives∣∣∣∣∣∣
1∫

0

ln(1/t)f(t) dt− f(x) +

(
x− 1

4

)
f ′(x)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

(
7

144
+

(
x− 1

4

)2
)

.

The optimal point

x = µ(0, 1) =
1

4

is closer to the origin than the midpoint (C.24) reflecting the strength of the log singularity.

C.5.3 Jacobi

Substituting w(t) = 1/
√

t, a = 0, b = 1 into (C.4) and (C.5) gives

µ(0, 1) =

∫ 1

0

√
t dt∫ 1

0
1/
√

t dt
=

1

3

and

σ2(0, 1) =

∫ 1

0
t
√

t dt∫ 1

0
1/
√

t dt
−
(

1

3

)2

=
4

45

respectively. Hence, the inequality for a Jacobi weight is

∣∣∣∣∣∣12
1∫

0

f(t)√
t

dt− f(x) +

(
x− 1

3

)
f ′(x)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

(
4

45
+

(
x− 1

3

)2
)

.

The optimal point

x = µ(0, 1) =
1

3

is again shifted to the left of the mid-point due to the t−1/2 singularity at the origin.
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C.5.4 Chebyshev

The mean and variance for the Chebyshev weight w(t) = 1/
√

1− t2, a = −1, b = 1 are

µ(−1, 1) =

∫ 1

−1
t/
√

1− t2 dt∫ 1

−1
1/
√

1− t2 dt
= 0

and

σ2(−1, 1) =

∫ 1

−1
t2
√

1− t2 dt∫ 1

−1
1/
√

1− t2 dt
− 02 =

1

2

respectively. Hence, the inequality corresponding to the Chebyshev weight is

∣∣∣∣∣∣ 1π
1∫

−1

f(t)√
1− t2

dt− f(x) + xf ′(x)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

(
1

2
+ x2

)
.

The optimal point

x = µ(−1, 1) = 0

is at the mid-point of the interval reflecting the symmetry of the Chebyshev weight over its

interval.

C.5.5 Laguerre

The conditions in Theorem C.5 are not violated if the integral domain is infinite. The Laguerre

weight w(t) = e−t is defined for positive values, t ∈ [0,∞). The mean and variance of the

Laguerre weight are

µ(0,∞) =

∫∞
0

te−t dt∫∞
0

e−t dt
= 1

and

σ2(0,∞) =

∫∞
0

t2e−t dt∫∞
0

e−t dt
− 12 = 1

respectively.

The appropriate inequality is∣∣∣∣∣∣
∞∫

0

e−tf(t) dt− f(x) + (x− 1)f ′(x)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

(
1 + (x− 1)2

)
,

from which the optimal sample point of x = 1 may be deduced.
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C.5.6 Hermite

Finally, the Hermite weight is w(t) = e−t
2

defined over the entire real line. The mean and

variance for this weight are

µ(−∞,∞) =

∫∞
−∞ te−t

2
dt∫∞

−∞ e−t2 dt
= 0

and

σ2(−∞,∞) =

∫∞
−∞ t2e−t

2
dt∫∞

−∞ e−t2 dt
− 02 =

1

2

respectively.

The inequality from Theorem C.5 with the Hermite weight function is thus∣∣∣∣∣∣ 1√
π

∞∫
−∞

e−t
2

f(t) dt− f(x) + xf ′(x)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

(
1

2
+ x2

)
,

which results in an optimal sampling point of x = 0.

C.6 Application in numerical integration

We define a grid In : a = ξ0 < ξ1 < · · · < ξn−1 < ξn = b on the interval [a,b], with xi ∈ [ξi, ξi+1]

for i = 0, 1, . . . , n− 1. We have the following quadrature formula for weighted integrals:

THEOREM C.11. Let the conditions in Theorem C.5 hold, then the following weighted quadra-

ture rule holds
b∫

a

w(t)f(t) dt = A(f, ξ,x) + R(f, ξ,x) (C.25)

where

A(f, ξ,x) =
n−1∑
i=0

(
hif(xi)− hi(xi − µi)f

′(xi)
)

and

|R(f, ξ,x)| ≤ ‖f ′′‖∞
2

n−1∑
i=0

[
(xi − µi)

2 + σ2
i

]
hi. (C.26)

The parameters hi, µi and σ2
i are given by

hi = m0(ξi, ξi+1), µi = µ(ξi, ξi+1), and σ2
i = σ2(ξi, ξi+1)

respectively.
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Proof. Apply Theorem C.5 over the interval [ξi, ξi+1] with x = xi to obtain∣∣∣∣∣∣
ξi+1∫
ξi

w(t)f(t) dt− hif(xi) + hi(xi − µi)f
′(xi)

∣∣∣∣∣∣ ≤ ‖f ′′‖∞
2

hi
(
(xi − µi)

2 + σ2
i

)
.

Summing over i from 0 to n− 1 and using the triangle inequality produces the desired result. �

COROLLARY C.12. The optimal location of the points xi, i = 0, 1, 2, . . . , n − 1, and grid

distribution In satisfy

xi = µi, i = 0, 1, . . . , n− 1 and (C.27)

ξi =
µi−1 + µi

2
, i = 1, 2, . . . , n− 1, (C.28)

producing the composite generalised mid-point rule for weighted integrals

b∫
a

w(t)f(t) dt =
n−1∑
i=0

hif(xi) + R(f, ξ, n) (C.29)

where the remainder is bounded by

|R(f, ξ, n)| ≤ ‖f ′′‖∞
2

n−1∑
i=0

hiσ
2
i (C.30)

Proof. The proof follows that of Corollary C.10 where we observe that the minimum bound

(C.26) will occur at xi = µi. Differentiating the right hand side of (C.26) we find

d

dξi

n−1∑
i=0

[
(xi − µi)

2 + σ2
i

]
hi = 2w(ξi)(xi − xi−1)

(
ξi − xi−1 + xi

2

)
.

Inspection of the second derivative at the root reveals that the stationary point is a minimum and

hence the result is proved. �

C.7 Numerical results

In this section we illustrate the quadrature rule of section C.6 on the integral

1∫
0

100t ln(1/t) cos(4πt) dt = −1.972189325199166 (C.31)

The integral (C.31) is evaluated using three rules. They are:
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n Error (1) Error (2) Error (3) Error ratio (3) Bound ratio (3)

4 1.97(0) 2.38(0) 2.48(0) – –

8 3.41(-1) 2.93(-1) 2.35(-1) 10.56 3.90

16 8.63(-2) 5.68(-2) 2.62(-2) 8.97 3.95

32 2.37(-2) 1.31(-2) 4.34(-3) 6.04 3.97

64 6.58(-3) 3.20 (-3) 9.34(-4) 4.65 3.99

128 1.82(-3) 7.94(-4) 2.23(-4) 4.18 3.99

256 4.98(-4) 1.98(-4) 5.51(-5) 4.05 4.00

Table C.1: The error in evaluating (C.31) using different quadrature rules. The parameter n is the number of sample

points.

(1) the composite mid-point rule, where the grid has a uniform step-size and the node is simply

the mid-point of each sub-interval,

(2) the composite generalised mid-point rule (C.25). The grid, In, is uniform and the nodes

are the mean point of each sub-interval (C.27),

(3) Equation (C.29) where the grid is distributed according to (C.28) and the nodes are the

sub-interval means (C.27).

Table C.1 shows the numerical error of each method for increasing number of sample points.

For a uniform grid, we can see that changing the location of the sampling point from the midpoint

[method (1)] to the mean point [method (2)] roughly doubles the accuracy. Changing the grid

distribution as well as the node point [method (3)] from the composite mid-point rule [method

(1)] increases the accuracy by approximately an order of magnitude. It is important to note that

the nodes and weights for method (3) can be easily calculated numerically using an iterative

scheme. For example on a Pentium-90 personal computer, with n = 64, calculating (C.27) and

(C.28) took close to 37 seconds.

We remark that equations (C.27) and (C.28) are quite general in nature and only rely on the

weight insofar as knowledge of the first two moments is required. This contrasts with Gaussian

quadrature where for an n point rule, the first 2n moments are needed (or equivalently the 2n +

1 coefficients of the continued fraction expansion (Rutishauser 1962a; Rutishauser 1962b)) to

construct the appropriate orthogonal polynomial and then a root-finding procedure is called to

find the abscissae (Atkinson 1989). We hasten to add that this procedure can be greatly simplified
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for the more well known weight functions (Gautschi 1994).

The second last column of Table C.1 shows the ratio of the numerical errors for method (3) and

the last column the ratio of the theoretical error bound (C.29)

Bound ratio (3) =
|R(f, ξ, n/2)|
|R(f, ξ, n)| . (C.32)

As n increases the numerical ratio approaches the theoretical one. The theoretical ratio is con-

sistently close to 4. This value suggests an asymptotic form of the error bound

|R(f, ξ, n)| ∼ O

(
1

n2

)
for the log weight. This is consistent with mid-point type rules and we anticipate that developing

other product rules, for example a generalised trapezoidal or Simpson’s rule will yield more

accurate results.



Appendix D

Complete Elliptic Integrals and some

useful results

We define the complete elliptic integrals of the first, second and third kind to be

F (k) =

π/2∫
0

dθ√
1− k sin2 θ

, (D.1)

E(k) =

π/2∫
0

√
1− k sin2 θ dθ, (D.2)

Π(n, k) =

π/2∫
0

dθ

(1− n sin2 θ)
√

1− k sin2 θ
, (D.3)

respectively. The parameter k is known as the modulus and is restricted so that 0 ≤ k ≤ 1. A

useful result from (Abramowitz and Stegun 1965, equation 17.7.24) is

Π(k, k) =
E(k)

1− k
. (D.4)

D.1 Axisymmetric integration

To derive the axi-symmetric integral equations used in chapters 4 and 5 one needs to evaluate

integrals of the form
2π∫
0

cosn θ

(1− k cos2 θ)m/2
dθ,

147
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for m = 1, 3, 5 and n = 0, 1, . . . (m + 1)/2. These results are tabulated below.

With the aid of (D.1), (D.2), (D.3) and (D.4), the following results are easily proven

2π∫
0

dθ√
1− k cos2 θ/2

= 4F (k), (D.5)

2π∫
0

cos θ√
1− k cos2 θ/2

dθ =
4

k

(
(2− k)F (k)− 2E(k)

)
, (D.6)

2π∫
0

dθ
3
√

1− k cos2 θ/2
=

4

1− k
E(k), (D.7)

2π∫
0

cos θ
3
√

1− k cos2 θ/2
dθ =

4

k

(
2− k

1− k
E(k)− 2F (k)

)
, (D.8)

2π∫
0

cos2 θ
3
√

1− k cos2 θ/2
dθ =

4

k2

(
k2 − 8k + 8

1− k
E(k)− 4(2− k)F (k)

)
, (D.9)

2π∫
0

dθ
5
√

1− k cos2 θ/2
=

4

3(1− k)

(
2

1− k
(2− k)E(k)− F (k)

)
, (D.10)

2π∫
0

cos θ
5
√

1− k cos2 θ/2
dθ =

4

3k(1− k)

(
2

1− k

(
1− k + k2

)
E(k)− (2− k)F (k)

)
, (D.11)

2π∫
0

cos2 θ
5
√

1− k cos2 θ/2
dθ =

4

3k2(1− k)

((
8− 8k − k2

)
F (k)− 2

1− k
(2− k)

(
2− 2k − k2

)
E(k)

)
,

(D.12)

2π∫
0

cos3 θ
5
√

1− k cos2 θ/2
dθ =

4

3k3(1− k)

(
2

1− k

(
k4 + k3 − 33k2 + 64k − 32

)
E(k)

− (2− k)
(
k2 + 32k − 32

)
F (k)

)
. (D.13)

D.2 Polynomial interpolation

Approximations to the complete elliptic integrals are required for evaluation of the integrals

(2.18) and (2.19). There are two common methods, one is to employ the arithmetic-geometric
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mean (AGM) (Abramowitz and Stegun 1965, p. 598) which produces a convergent sequence.

The other is a polynomial approximation (Abramowitz and Stegun 1965, p. 591). Both methods

are quite accurate, but are not interchangeable in their applicability to mathematical problems.

If elliptic integrals are to be used as integrands, then the polynomial approximation is the proper

approximation to use. The reason is quite simple, a combination of the Gauss-Legendre and

Gauss-Log rules can then be used. For some reason, this point has not been appreciated and

previous methods to calculate the integrals have focused on the boundedness, and not the ana-

lytic nature of the integrands. Some earlier work report using Simpson’s rule to evaluate inte-

grals involving E(k) (since this is bounded) and cutting out a small strip in the domain when

the integrand is unbounded. This strip is then evaluated analytically using a small expansion

(Youngren and Acrivos 1975; Lee and Leal 1982). This technique may have led to numerical

difficulties reported in Lee and Leal (1982) and Leal and Lee (1982).

Even in more recent studies (Koh and Leal 1989; Stone and Leal 1989; Pozrikidis 1990b; Tjahjadi et al. 199

Pozrikidis 1997) a five or six point Gauss-Legendre rule is used with the expansion approach.

We therefore illustrate the use of the polynomial approximation below and test its efficacy when

compared to the AGM-expansion method. We will consider evaluation of the singular integral

1∫
0

F (k) dk = 2. (D.14)

AGM-Expansion

The integrand in (D.14) is unbounded at k = 1. Therefore we split the domain of integration into

two parts
1∫

0

F (k) dk =

1−ε∫
0

F (k) dk +

1∫
1−ε

F (k) dk. (D.15)

Substituting a linear series expansion for F (k) about k = 1 (2.21) into (D.15) gives

1∫
0

F (k) dk =

1−ε∫
0

F (k) dk +
1

16
ε(8 + ε) ln

(
16

ε

)
+

1

32
ε(16− 3ε) + O(ε3). (D.16)

The integrand on the right-hand side is now analytic and so the integral may be evaluated using

a Gauss-Legendre rule.

Table D.1 shows the computed right hand side of (D.16) using a 5 point Gauss-Legendre rule for

various values of ε.
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ε
∫ 1

0
F (k) dk

0.2 2.36303

0.1 2.18806

0.05 2.09581

0.01 2.01587

0.001 1.99322

0.0001 1.99002

0.00001 1.98960

Table D.1: Evaluation of (D.16) using different values of ε and a 5-point Gauss-Legendre rule

As ε → 0, the results in Table D.1 steadily converge to 2. This is because the interval (1− ε, 1)

is small, thus increasing the accuracy of the series expansion. The error starts to degenerate after

ε = 0.001, since the integral over (0, 1 − ε) is becoming more singular. This illustrates the

difficulty with series expansions, choosing the correct ε is crucial. These issues may be resolved

by using the appropriate representation for F , one that takes account of its singular behaviour.

Polynomial approximation

The polynomial approximation for complete elliptic integrals has the form

F (1− k) =
n∑
i=0

aik
i −

n∑
i=0

bik
i ln(k). (D.17)

Abramowitz and Stegun (1965) lists values of {ai, bi}, with n = 4 that make the approxima-

tion accurate to order 2 × 10−8 for all values of k. This is quite suitable for single precision

calculations.

Kucera and Briggs (1990) improved the approximation to order 10−13. This was achieved by

using a minimax technique coupled with a multiple precision Fortran package. The size of the

polynomials increased to n = 12.

Here we present a simple method for obtaining polynomial approximations to the complete el-

liptic integrals with accuracy of order 10−16. The size of the polynomials remains at n = 12.

Given an order n, there are 2n + 2 coefficients to be calculated. One way of achieving this is

to evaluate F (k) at 2n + 2 points and substituting into (D.17). The linear system thus formed

may then be inverted to produce the desired coefficients. The evaluation points are split into two
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restart;
# High precision!
Digits := 200;
n := 12;
#
# Set up the polynomial approximation
Ke := sum( a[i]*x^i ,i=0..n ) - ln(x) * sum(b[i]*x^i,i=0..n);
#
# Grid points
k1 := [i*.9/(n+1)$i=0..n];
k2 := [(1-.1^(i+1))$i=0..n];
#
# Linear System
Eqn1 := [ ( EllipticK(sqrt(k1[i+1]))=subs(x=1-k1[i+1],Ke) )$i=0..n ];
Eqn2 := [ ( EllipticK(sqrt(k2[i+1]))=subs(x=1-k2[i+1],Ke) )$i=0..n ];
#
# Solve
assign(fsolve({op(Eqn1),op(Eqn2)},{a[i]$i=0..n,b[i]$i=0..n},fulldigits));

Algorithm D.1: A Maple program to evaluate the polynomial approximation (D.17).

regions; n+ 1 distributed uniformly in [0, 0.9] and n+ 1 distributed via an exponential clustering

in [0.9, 1]. To clarify, the points ki are

ki =
9i

10(n + 1)
and ki+n+1 = 1− 10−i−1, for i = 0, 1, . . . , n.

The points were chosen in this way to ensure accuracy of the approximation near k = 1. A

Maple program is given in Algorithm D.1 and the coefficients for F (k) are listed in Table D.2.

We report that very high accuracy (≥ 120 digits) was required with the Maple routine, otherwise

the solution returned was highly erratic. This would suggest that the linear system described

above is ill-conditioned.

In Table D.3 we compare the polynomial approximation of Kucera and Briggs (1990) with that

described here. We also list results for a simple Taylor polynomial approximation. It is clear

that the polynomial approximation developed here is of sufficient accuracy for use with double

precision calculations. When employed to calculate (D.14) using a 3-point Gauss-Legendre and

3-point Gauss-Log rule, the answer returned is 1.999827. With a 5-point Gauss-Legendre and

5-point Gauss-Log rule, the integral evaluates to 1.9999999602. Obviously, a 7-point rule is the

optimal size for a polynomial of order 12, and when this is used the answer returned is 2.
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i ai bi

0 0.1386294361119891D1 0.5000000000000000D0

1 0.9657359027997265D-1 0.1250000000000000D0

2 0.3088514453248462D-1 0.7031250000000000D-1

3 0.1493760036978099D-1 0.4882812500000000D-1

4 0.8766312198628351D-2 0.3738403320299965D-1

5 0.5754899916512118D-2 0.3028106526770420D-1

6 0.4068196489162360D-2 0.2544378896278751D-1

7 0.3167134481148402D-2 0.2189639358590440D-1

8 0.3859187350434518D-2 0.1859695172048566D-1

9 0.6972489272022876D-2 0.1326644642298081D-1

10 0.7000304984236619D-2 0.5721506651298451D-2

11 0.2355355762376631D-2 0.9874948865402975D-3

12 0.1617500382458659D-3 0.3519107157048046D-4

Table D.2: The coefficients of the polynomial approximation (D.17) using the Maple algorithm D.1.
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k Kucera & Briggs Taylor expansion Table D.2

0.00000000000 0.424E-15 0.283E-15 0.000E+00

0.10000000000 0.138E-15 0.138E-15 0.551E-15

0.20000000000 0.268E-15 0.268E-15 0.268E-15

0.30000000000 0.130E-15 0.000E+00 0.259E-15

0.40000000000 0.000E+00 0.125E-15 0.375E-15

0.50000000000 0.359E-15 0.120E-15 0.120E-15

0.60000000000 0.228E-15 0.114E-15 0.114E-15

0.70000000000 0.214E-15 0.000E+00 0.214E-15

0.80000000000 0.197E-15 0.393E-15 0.000E+00

0.90000000000 0.000E+00 0.293E-13 0.172E-15

0.99000000000 0.114E-13 0.532E-10 0.000E+00

0.99900000000 0.318E-12 0.484E-09 0.183E-15

0.99990000000 0.532E-12 0.111E-08 0.000E+00

0.99999000000 0.515E-12 0.164E-08 0.124E-15

0.99999900000 0.454E-12 0.204E-08 0.214E-15

0.99999990000 0.400E-12 0.234E-08 0.000E+00

0.99999999000 0.357E-12 0.258E-08 0.000E+00

0.99999999900 0.321E-12 0.277E-08 0.151E-15

0.99999999990 0.293E-12 0.293E-08 0.000E+00

0.99999999999 0.269E-12 0.306E-08 0.126E-15

Table D.3: The relative error for three polynomials expansions of F (k). Column 2 uses the expansion in

Kucera and Briggs (1990), column 3 is a simple Taylor expansion, column 4 shows the method described above.
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Computing orthonormal polynomials using

a computer algebra package

Define the inner product

〈f, g〉w :=

b∫
a

f(t)g(t)w(t) dt, (E.1)

where w is some positive integrable function on [a,b]. That is, w : [a, b] → [0,∞) ∈ L1[a, b].

We seek the sequence of polynomials {φi}, i = 0, 1, . . . that are orthonormal with respect to

〈·, ·〉w. Since these polynomials are linearly independent and form a basis for the inner product

space, we can construct them using the well known Gram-Schmidt procedure (Atkinson 1989,

p. 209). We can use the basis {1, x, x2, . . . } as the generator.

Algorithm E.1 shows a Maple program that calculates a sequence of orthonormal polynomials

to any order n given any arbitrary integrable weight w. Sample output, using the weight w(t) =

e−t/
√

t, 0 < t < ∞ is presented in Figure E.1

Once the polynomials have been calculated, they can be used with orthogonal expansions, as in

chapter 3, or for evaluating integrals with weight w to high precision (Stroud and Secrest 1966).

154



APPENDIX E. ORTHONORMAL POLYNOMIALS 155

#
Ortho := proc( n , w , x , a , b )

#
# This routine will calculate orthogonal polynomials
# up to order n with respect to the inner product
#
# (f,g) = int( w(x)*f(x)*g(x) , x=a..b)
#
# using the Gram-Schmidt process.
#

local v , i , j;
#

v[1] := 1/sqrt( ip( 1,1,w,x,a,b ) );
for i from 2 to n+1 do

v[i] := x^(i-1) - sum( ’ip( x^(i-1),v[j],w,x,a,b )’ * v[j] ,
j=1..i-1 );

v[i] := 1 / sqrt( ip( v[i],v[i],w,x,a,b ) ) * v[i]
od; i := ’i’;

#
[ ’collect(expand(sort(v[i])),x)’$i=1..n+1 ]

end;
#
#

ip := proc( f1 , f2 , w , x , a , b )
#
# The inner product with weight function w.
# We can use ’evalf’ if Maple is unable to integrate analytically.
#

int( w * f1 * f2 , x=a..b )
end;

Algorithm E.1: A Maple program to calculate the orthonormal polynomials for any degree given an arbitrary
weight.
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Figure E.1: Sample output from the Maple program E.1 showing the generation of the first five orthonormal poly-

nomials using the weight w(t) = e−t/
√

t, 0 < t < ∞.
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