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Abstract. In the paper, a new and elegant lower bound in the second Ker-
shaw’s double inequality is established, some alternative simple and polished
proofs are given, several deduced functions involving the gamma and psi func-
tions are proved to be decreasingly monotonic and logarithmically completely
monotonic, and some remarks and comparisons are stated.

1. Introduction

In [6], the following double inequalities were established:
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< exp
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(
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2

)]
, (2)

where 0 < s < 1, x ≥ 1, Γ is the classical Euler’s gamma function, and ψ is the
logarithmic derivative of Γ. They are called the first and second Kershaw’s double
inequality respectively. There have been a lot of literature about these two double
inequalities and their history, background, refinements, extensions, generalizations
and applications. For more detailed information, please refer to [7, 8, 13, 15] and
the references therein.

The first main result of this paper is the following extension and refinement of
the second Kershaw’s double inequality (2), which establishes a new and elegant
lower bound of inequality (2).

Theorem 1. For positive numbers s and t with s 6= t,

eψ(L(s,t)) <

[
Γ(s)
Γ(t)

](s−t)

< eψ(A(s,t)), (3)

where
L(s, t) =

s− t

ln s− ln t
and A(s, t) =

s + t

2
(4)

are respectively the logarithmic mean and arithmetic mean of two positive numbers
s and t with s 6= t. Equivalently, for s, t ∈ R and x > −min{s, t} with s 6= t,

eψ(L(s,t;x)) <

[
Γ(x + s)
Γ(x + t)

]1/(s−t)

< eψ(A(s,t;x)), (5)
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2 F. QI

where L(s, t;x) = L(x + s, x + t) and A(s, t;x) = A(x + s, x + t) for s, t ∈ R and
x > −min{s, t} with s 6= t.

Recall [12, 14, 16] that a function f is said to be logarithmically completely
monotonic on an interval I if its logarithm ln f satisfies (−1)k[ln f(x)](k) ≥ 0 for
k ∈ N on I. It has been proved in [4, 9, 12, 14] that a logarithmically completely
monotonic function on an interval I must be completely monotonic on I. The log-
arithmically completely monotonic functions have close relationships with both the
completely monotonic functions and Stieltjes transforms. For detailed information,
please refer to [4, 9, 10, 17, 21] and the references therein.

The second main result of this paper is to prove the monotonicity of the following
two functions, which is a generalization of Theorem 1.

Theorem 2. For s, t ∈ R with s 6= t, the function
[
Γ(x + s)
Γ(x + t)

]1/(s−t) 1
eψ(L(s,t;x))

(6)

is decreasing and [
Γ(x + s)
Γ(x + t)

]1/(t−s)

eψ(A(s,t;x)) (7)

is logarithmically completely monotonic in x > −min{s, t}.
By the way, a stronger conclusion than [2, Theorem 2.1] is obtained below.

Theorem 3. Let

f(x) =
Γ(x)

exp{[ψ(x)− 1] exp[ψ(x)]} (8)

for x ∈ (0,∞) and c = 1.462632 · · · stand for the unique positive zero of the psi
function ψ. Then the function f(x) is decreasing in (0, c) and increasing in (c,∞)
with

lim
x→0+

f(x) = ∞ and lim
x→∞

=
√

2π . (9)

Consequently, for x ∈ (0,∞),

Γ(x) ≥ Γ(c) exp{[ψ(x)− 1] exp[ψ(x)] + 1}. (10)

In next section, we shall employ simple methods and polished techniques to
verify these theorems.

In the third section, we shall give some remarks on these theorems and compare
these theorems with some known results.

2. Proofs of theorems

Now we are in a position to prove our theorems by utilizing simple methods and
polished techniques.

The first proof of Theorem 1. It is well known [1, p. 259, 6.3.16] that the psi func-
tion ψ can be expressed as

ψ(1 + z) = −γ +
∞∑

i=1

z

i(i + z)
= −γ +

∞∑

i=1

(
1
i
− 1

i + z

)
(11)
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for z 6= −k and k ∈ N, where γ = 0.5772156 · · · is Euler-Mascheroni’s constant.
Integrating on both sides of (11) from 0 to x yields

ln Γ(x + 1) = −γx +
∞∑

i=1

{
x

i
− [ln(i + x)− ln i]

}
. (12)

Utilizing (12) and subtracting ln Γ(y + 1) from ln Γ(x + 1) gives

ln Γ(x + 1)− ln Γ(y + 1) = −γ(x− y) +
∞∑

i=1

{
x− y

i
− [ln(i + x)− ln(i + y)]

}
. (13)

Since, by Lagrange’s mean value theorem,

ln(i + x)− ln(i + y) =
x− y

i + θ(i)
, (14)

where θ(i) is between x and y, which is equivalent to θ(i) = L(x, y; i) − i with
θ′(u) = L(x,y;u)

(u+x)(u+y) − 1 ≥ 0 which follows from the well known inequalities among
the arithmetic mean, logarithmic mean and geometric mean

A(p, q) =
p + q

2
>

p− q

ln p− ln q
= L(p, q) >

√
pq = G(p, q) (15)

for positive numbers p and q with p 6= q. See [11] and the references therein.
Thus, the function θ(i) is increasing with i ∈ N for fixed x and y. Furthermore, by
L’Hôspital’s rule, it is easy to obtain

lim
i→∞

θ(i) =
x + y

2
. (16)

Substituting (14) into (13) and simplifying leads to

ln Γ(x + 1)− ln Γ(y + 1)
x− y

= −γ +
∞∑

i=1

{
1
i
− 1

i + θ(i)

}
. (17)

Employing the increasingly monotonicity of θ(i) and (16) in (17) reveals

ψ(L(x, y; 1)) = ψ(1 + θ(1))

= −γ +
∞∑

i=1

{
1
i
− 1

i + θ(1)

}
<

ln Γ(x + 1)− ln Γ(y + 1)
x− y

< −γ +
∞∑

i=1

{
1
i
− 1

i + (x + y)/2

}
= ψ(A(x, y; 1)). (18)

Replacing x + 1 and y + 1 by s and t in (18) and rearranging leads to (3).
Replacing s and t by x + s and x + t in (3) gives (5). Similarly, replacing x + s

and x + t by s and t in (5) gives (3). The first proof of Theorem 1 is complete. ¤

The second proof of Theorem 1. Let fs,t(x) be the function defined by (6). Taking
logarithm of fs,t(x) and using mean value theorem shows

ln fs,t(x) =
lnΓ(x + s)− ln Γ(x + t)

s− t
− ψ(L(s, t; x))

=
1

s− t

∫ s

t

ψ(x + u) du− ψ(L(s, t;x)).
(19)
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In [13, Proposition 1], it was showed that inequality

ψ(i)(L(s, t)) <
1

t− s

∫ t

s

ψ(i)(u) du , A
(
s, t; ψ(i)

)
(20)

is valid for i being positive odd number or zero and reversed for i being nonnegative
even number. This implies ln fs,t(x) > 0 and then fs,t(x) > 1. The left hand side
inequality in (5) follows.

Let gs,t(x) be the function defined by (7). Taking logarithm of gs,t(x) and using
mean value theorem as above, and considering the concavity of the psi function ψ
and utilizing Hermite-Hadamard’s integral inequality [19] reveals

ln gs,t(x) = ψ(A(s, t; x))−A(x + s, x + t; ψ) > 0. (21)

The second proof of Theorem 1 is complete. ¤

Proof of Theorem 2. Differentiating (21) leads to

[ln gs,t(x)](k) = ψ(k)(A(s, t;x))−A
(
x + s, x + t; ψ(k)

)
(22)

for k ∈ N. Since ψ(2k−1)(x) is convex and ψ(2k)(x) is concave, then by employing
Hermite-Hadamard’s integral inequality [19], it follows that (−1)k[ln gs,t(x)](k) ≥ 0
for k ∈ N. As a result, the function (7) is logarithmically completely monotonic in
x > −min{s, t}.

From Γ(x + 1) = xΓ(x), it follows that ψ(x + 1) = 1
x + ψ(x). Substituting this

into (11) gives

ψ(x) = −γ − 1
x

+
∞∑

i=1

(
1
i
− 1

i + x

)
(23)

for x > 0. Then equation (19) becomes

ln fs,t(x) =
1

s− t

∫ s

t

[
− 1

x + u
+

∞∑

i=1

(
1
i
− 1

i + x + u

)]
du

+
1

L(s, t; x)
−

∞∑

i=1

[
1
i
− 1

i + L(s, t; x)

]

=
∞∑

i=1

[
1

i + L(s, t;x)
− 1

s− t

∫ s

t

1
i + x + u

du

]
,

and then

[ln fs,t(x)]′ =
∞∑

i=1

{
1

s− t

∫ s

t

1
(i + x + u)2

du− [L(s, t;x)]2

(x + s)(x + t)
1

[i + L(s, t; x)]2

}

=
1

(x + s)(x + t)

∞∑

i=1

{
(x + s)(x + t)

(i + x + s)(i + x + t)
−

[
L(s, t;x)

i + L(s, t;x)

]2}
. (24)

In order to prove the decreasingly monotonic property of the function (6), now it
is sufficient to show that

i
√

(x + s)(x + t)√
(i + x + s)(i + x + t) −

√
(x + s)(x + t)

< L(s, t;x) (25)

for s, t ∈ R and x > −min{s, t} with s 6= t. This follows clearly from inequality
√

(i + x + s)(i + x + t) −
√

(x + s)(x + t) > i (26)



A NEW LOWER BOUND IN THE SECOND KERSHAW’S DOUBLE INEQUALITY 5

which can be obtained easily by standard argument. The proof of Theorem 2 is
complete. ¤

Proof of Theorem 3. Straightforward computation gives

ln f(x) = ln Γ(x)− [ψ(x)− 1]eψ(x),

[ln f(x)]′ = ψ(x)
[
1− eψ(x)ψ′(x)

]
.

In [3, Lemma 1.2] and [5, p. 241], it was proved that eψ(x)ψ′(x) < 1 for x > 0.
Thus, the function [ln f(x)]′ has a unique zero c, which means that the functions
ln f(x) and f(x) have a unique minimum point c in (0,∞). The monotonicity of
f(x) and inequality (10) are proved.

It is well known that limx→0+ Γ(x) = ∞ and limx→0+ ψ(x) = −∞, hence it is
easy to see that limx→0+ f(x) = ∞.

In [2, Lemma 1.1], it has been proved that limx→∞ f(x) =
√

2π . The proof of
Theorem 3 is complete. ¤

3. Remarks

After proving our theorems, now we would like to compare them with some
recent known results and to state several remarks.

3.1. For t = 1, 0 < s < 1 and x ≥ 1, the lower bound in (5) is better than that in
(2), since L(1, s; x) > x+

√
s by utilizing the logarithmic-geometric mean inequality

(15) and simplifying. This means that the left hand side inequalities in (3) and (5)
improve and extend the left hand side inequality in (2).

3.2. It was proved in [5, p. 248] that

exp
(
ψ

(
x + ψ−1(A(s, t; ψ))

)) ≤
[

Γ(x + t)
Γ(x + s)

]1/(t−s)

, (27)

where x ≥ 0, s > 0, t > 0, and ψ−1 denotes the inverse function of ψ.
Since the exponential function ex and the psi function ψ(x) are increasing, in

order that the left hand side inequality in (5) is better than (27) for x ≥ 0, s > 0
and t > 0, it suffices that L(s, t;x) > x + ψ−1(A(s, t; ψ)) which can be rearranged
as ψ(L(s, t; x) − x) > A(s, t;ψ). However, by L’Hôspital’s rule and using the well
known Hermite-Hadamard’s integral inequality (see [1, 19]) and inequality (20) in
[13, Proposition 1], we have limx→∞ ψ(L(s, t; x)− x) = ψ(A(s, t)) > A(s, t; ψ) and
limx→0+ ψ(L(s, t; x)−x) = ψ(L(s, t)) < A(s, t; ψ). Consequently, the left hand side
inequality in (5) and inequality (27) for x ≥ 0, s > 0 and t > 0 do not include each
other.

3.3. For real numbers a, b, c and ρ = min{a, b, c}, let Ha,b,c(x) = (x+c)b−a Γ(x+a)
Γ(x+b)

in (−ρ,∞). In order to obtain the best bounds in the first Kershaw’s double
inequality (1), the following sufficient and necessary conditions are presented in
[15]: The function Ha,b,c(x) is logarithmically completely monotonic in (−ρ,∞) if
and only if (a, b, c) ∈ {(a, b, c) : (b−a)(1−a−b+2c) ≥ 0}∩{(a, b, c) : (b−a)(|a−b|−
a−b+2c) ≥ 0}\{(a, b, c) : a = c+1 = b+1}\{(a, b, c) : b = c+1 = a+1}, and the
function Hb,a,c(x) is logarithmically completely monotonic in (−ρ,∞) if and only if
(a, b, c) ∈ {(a, b, c) : (b−a)(1−a−b+2c) ≤ 0}∩{(a, b, c) : (b−a)(|a−b|−a−b+2c) ≤
0} \ {(a, b, c) : b = c + 1 = a + 1} \ {(a, b, c) : a = c + 1 = b + 1}.
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3.4. The double inequality (3) in Theorem 1 corrects [2, Theorem 2.4].

3.5. The logarithmically complete monotonicity of the function (7) has been proved
in [18]. However, the proof of this paper is simpler and more elementary.

3.6. From the monotonicities of the functions (6) and (7), inequality (3) and (5)
can be deduced easily.

3.7. The Faá di Bruno’s formula [20] gives an explicit formula for the n-th deriv-
ative of the composition g(h(t)): If g(t) and h(t) are functions for which all the
necessary derivatives are defined, then

dn

dxn
[g(h(x))] =

∑

16i6n,ik>0Pn
k=1 ik=iPn

k=1 kik=n

n!
n∏

k=1

ik!
g(i)(h(x))

n∏

k=1

[
h(k)(x)

k!

]ik

. (28)

Applying (28) to g(x) = 1
x and h(x) = ln(x + s)− ln(x + t) leads to

∂nL(s, t;x)
∂xn

=
∑

16i6n,ik>0Pn
k=1 ik=iPn

k=1 kik=n

n!
n∏

k=1

ik!

(−1)ii!(s− t)
[ln(x + s)− ln(x + t)]i+1

×
n∏

k=1

{
(−1)k−1(k − 1)!

k!

[
1

(x + s)k
− 1

(x + t)k

]}ik

=
(−1)n

(x + s)n(x + s)n

∑

16i6n,ik>0Pn
k=1 ik=iPn

k=1 kik=n

n!
n∏

k=1

ik!

(−1)ii!(s− t)
[ln(x + s)− ln(x + t)]i+1

×
n∏

k=1

[
(x + s)k − (x + t)k

k

]ik

=
(−1)nn!

(x + s)n(x + s)n

∑

16i6n,ik>0Pn
k=1 ik=iPn

k=1 kik=n

(−1)ii!(s− t)i+1

[ln(x + s)− ln(x + t)]i+1

×
n∏

k=1

1
ik!

[
1

s− t

∫ s

t

(x + u)k−1 du

]ik

=
(−1)nn!

(x + s)n(x + s)n

∑

16i6n,ik>0Pn
k=1 ik=iPn

k=1 kik=n

(−1)ii![L(s, t;x)]i+1
n∏

k=1

[
As,t;k(x)

]ik

ik!
, (29)

where

As,t;k(x) =
1

s− t

∫ s

t

(x + u)k−1 du. (30)

In particular, direct calculation yields

∂L(s, t; x)
∂x

=
[L(s, t; x)]2

(x + s)(x + t)
> 0 (31)
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and

∂2L(s, t; x)
∂x2

=
2[L(s, t; x)]2

(x + s)2(x + t)2
[L(s, t;x)−A(s, t;x)] < 0 (32)

by the logarithmic mean inequality (15). This means that the function L(s, t;x) is
increasing and concave in x > −min{s, t} for s, t ∈ R with s 6= t.

3.8. It is conjectured that the function (6) is logarithmically completely monotonic
in x > −min{s, t} for s, t ∈ R with s 6= t.
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