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ABSTRACT. The logarithmically complete monotonicity of the functions z —

Tr(z+b) . (x4
(ezﬂ()%ﬂz in (—b,00) for a € R and b > 0, and = — Iffr(z))
a € R,0 < B <1 are considered and the corresponding results by M. Merkle
are generalized. As applications of these results, some inequalities for ratio of

gamma functions by J. D. Kecki¢ and P. M. Vasi¢ are extended and refined.

in (0,00) for

1. INTRODUCTION

A function f is said to be completely monotonic on an interval I, if f has
derivatives of all orders on I and satisfies

(=1)"f™(z) >0 forall z€l and n=0,1,2,.... (1)

If the inequality is strict, then f is said to be strictly completely monotonic on
I. Let C denote the set of completely monotonic functions. It is known (Bernstein’s
Theorem) that f is completely monotonic on (0, co0) if and only if

)= | et du(o),

where p is a nonnegative measure on [0, 00) such that the integral converges for all
x > 0. See [39, p.161]. A detailed collection of the most important properties of
completely monotonic functions can be found in [39, Chapter IV].

A positive function f is said to be logarithmically completely monotonic on an
interval I if its logarithm In f satisfies

(—1)"[In f(2)]™ >0 (2)

for all z € I and n = 1,2,.... If the inequality is strict for all x € I and

n=1,2,..., then f is said to be strictly logarithmically completely monotonic. Let

L on (0,00) stand for the set of logarithmically completely monotonic functions.
A function f on (0,00) is called a Stieltjes transform if it can be written in the

form
f(m):LH/o du(s)
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where a is a nonnegative number and p a nonnegative measure on [0, c0) satisfying

<1
d .
/0 s p(s) < oo

The set of Stieltjes transforms is denoted by S.

Relation £ C C between the completely monotonic functions and the logarithmi-
cally completely monotonic functions was proved in [12] [33] 34]. Motivated by the
papers [34, [35], among other things, it is proved in [9] that S\ {0} € £ C C. The
class of logarithmically completely monotonic functions can be characterized as the
infinitely divisible completely monotonic functions which are established by Horn
in [23] Theorem 4.4] and restated in [9, Theorem 1.1]. There have been a lot of
literature about the (logarithmically) completely monotonic functions, for example,
[5] (6] 8, 9, 10, 1T, T3] [14] [19] 27, BT, B3], 34}, B35, B9] and the references therein.

The classical gamma function

I(z) = /000 t*le7tdt (z>0)

is one of the most important functions in analysis and its applications. The psi
or digamma function, the logarithmic derivative of the gamma function, and the
polygamma functions can be expressed [28, p. 16] as

¥(z) = FF’((;)) - /OOO % dt, 3)
T =T (1)

for > 0 and n € N, where v = 0.57721566490153286 . . . is the Euler-Mascheroni
constant.

There exists a very extensive literature on these functions. In particular, in-
equalities, monotonicity and complete monotonicity properties for these functions
have been published. Please refer to the papers [2, B, 4] and the references therein.

The ratio of gamma functions

RGN .
P2z +y)/2)" 7

was researched in Join Gurland’s paper [22], where the inequality

T'(z)T(z + 23) 32
WZH? z>0,2+28>0

was presented. Since then, there has appeared a considerable number of papers
about Gurland’s ratio and its properties [15], [16, 25l 26, 29]. For example, the
inequality

T(z,y) y>0 (5)

x*yY
WST(%Z/) for >0,y>0 (6)

was obtained in [25], using convexity of the function z — logI'(z) — xlogx on
(0, 00); the same result was earlier obtained in [I5] by other means. The following
upper bound was also obtained in [25]:

(&~ 1) (y — 1)
(@ +y— 222

T(x,y) < for z>1,y>1, (7)
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using the fact that for z > 1 the function & — logT'(z) — (z — 1)log(x — 1) is
concave. Ratio is related to also well-investigated Gautschi’s ratio [18]
L(z+ )
= —" 0
Q(xaﬁ) F(CE) ’ T >0,
where usually 3 € [0, 1], see a survey in [30] or the bibliography in [3]. In fact, there
is the following connection between the two ratios:

Qlz+5,5)
T(z,z+20) = ——F5—.
VTN
M. Merkle [29] studied the monotonicity behaviour of the functions
eIz +b)
a = T ata’ Ra b>0
f 71,(:6) (m + b)w-‘ra ac
and
I'(z+p)
e} = T N\ R, 1.
Jo,3(T) 2T (@) aceR0O<B<

Merkle in 2005 proved that the function fi/o(z) = e*I'(z + 1)/(z + 1)*+1/2 is
logarithmically convex on (0, 00) and fo1(z) = e*I'(x+1)/(x+1)* is logarithmically
concave on (0,00), and used these results to conclude the double inequality for
x>0,y >0,

Az +1)"(y+1)Y Az + 1)™H/2 (y + 1)v+1/2
R (CE PR ) R e eum El (e Y R Ve

Moreover, the author showed that the left inequality in is sharper than @ for
x,y > 0, the right inequality in is sharper than @ for z,y > 1.

Also in [29] Merkle proved that the function z — log g1 5(z) = log Q(z, 8) —log ©
is convex on (0, 00) and x — log g g(x) = log Q(x, 3) — flog x is concave on (0, c0),
and used these results to obtain the following two double bounds for 8 € [0, 1],

(z —1+26)°(x + )" (z+B)H7
o <T(x,x+26) < ECESVA 9)
(x+ )% (x —1+28)%(x + )’
2B B) (z L ) = T2 +20) < P —1+ B)Pa-A (10)

with equality on both sides if and only if 3 =0 or 8 = 1. The left inequality in @
and the right inequality in hold for z > 1 — (3, and other two inequalities hold
for all x > 0.

In this article, as generalizations of some results of [29], we are about to con-
sider the logarithmically complete monotonicity property of the function f, ,(z) on
(=b,00) and gq g(x) on (0,00). Our main results are as follows.

Theorem 1. Let a € R and b > 0 be real numbers, define for x > —b,

_ e’ T(z+0)
fap(w) = W

Then, the function x — fq(x) is strictly logarithmically completely monotonic on
(=b,00) if and only if b—a < L. So is the function x — [fou(x)]* if and only if
b—a>1.
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Theorem 2. Let a € R,0 < 8 < 1 and define for x > 0,

Then, the function x — gq g(x) is strictly logarithmically completely monotonic on
(0,00) if and only if o > 1. So is the function x — [ga. ()]~ if and only if « < 3.

2. REMARKS

Before proving our main theorems, let us present some remarks about this topic.

Remark 1. In [7] it has been shown that the function f_ /2 (2) = eI'(z) /2~ /2 is
strictly decreasing and logarithmically convex from (0, c0) onto (\/ﬂ , oo) and the
function f_q (x) = e*I'(z)/2* ! is strictly increasing and logarithmically concave
from (0,00) onto (1,00). By the monotonicity of the functions f_;/50(x) and
f-1,0(x) we conclude the double inequality

bbil a—b F(b) bb71/2 a—b
= T(a) presyoLE b>a>0, (11)

which extends the range of a result by J. D. Kec¢kié¢ and P. M. Vasié¢ in [25], which
says that inequality holds for b > a > 1, see also [2] p. 342].

Since the function fo1(z) = €"TI'(z + 1)/(z + 1)* is strictly increasing, and
fij21(x) = e T(z + 1)/(z + 1)®+1/2 is strictly decreasing on (0, 00), we conclude
the double inequality

ab+ 1) .y _T() _alb+ 1)

a—b
i b . 12
b(a+1)ae F(CL) b(a+1)a+1/26 s >a>0 ( )

The inequality is sharper than inequality from the fact that the function
(14 1/x) is strictly increasing on (0,00), and (1 + 1/2)*+1/2 is strictly decreasing
on (0, c0).

Denote by

1 bb 1/(b—a)

I(a7b):(a> , a>0,b>0,a#b,
e a

the so-called identric mean, then inequality yields the following bounds for the

(b — a)th power of I(a,b):

b \'% I (b) S N ()
(a> T(a) < I(a,b) <am, b>a>0. (13)

H.Alzer proved in [2] that the inequality

b\" T'(b) b b\’ T'(b)
- < I(a,b)]"" % < | = 14
(2) Hg <teor=< (1) 12 (1)
is valid for all real numbers b > a > 1 if and only if » < 1/2 and s > ~, where
v =0.577... stands for the Euler-Mascheroni constant.




TWO CLASSES OF LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS 5

H.Alzer [3] proved that the functions

2n
1 1 Bs;
2n+1
1 1 By,
G(z) = —logT ) —a S log(2 S
()= —logT@) + (2= 3 ) ~o+ glostzn) + 3. gy

are strictly completely monotonic on (0,00), where n > 0 is an integer, B;(i =
1,2,...) are Bernoulli numbers, defined by

t =
=S B;—.
et —1 ; 4

The monotonicity of the functions F' and G implies the following inequality:

(b>/ o) ™ [Z o (e - b%‘ll)] < Ha B

i=1

< (Z)l/z II:EZ))eXp ril 21'(52i 1) (a%‘l—l N b?il—l)]

(15)

i=1
for all integers n > 0 and all real numbers b > a > 0.

Remark 2. Inspired by Stirling’s formula, Muldoon [32] studied the monotonicity
behaviour of the function

H,p(z) = [2%(e/2)°T(x)]®, a,b€R; b#0. (16)

He proved in 1978: if ¢ < 1/2 and b > 0, then H, ; is completely monotonic. More-
over, he used this result to present an interesting characterization of the gamma
function via the notation of complete monotonicity. In 1986, Ismail, Lorch and
Muldoon [24] showed: if a > 1 and b = —1, then H,; is completely monotonic. In
2006 Alzer complemented these results: H,; is completely monotonic if and only
if either a <1/2and b>0o0ra > 1 and b < 0.

Remark 3. Let o € R and 3 > 0 be real numbers, define

Tz
Fop(z) = %
in (0,00). It was shown in [I3] that the function F, g is logarithmically completely
monotonic in (0,00) if 2a < 1 < . The function F, 1(x) is logarithmically com-
pletely monotonic in (0,00) if and only if 2 < 1. So is the function [F, 1 (z)]~*
if and only if & > 1. Guo et.al [20] presented some supplements to these results:
Let « e Rand 8> 0. If 3> 0 and a < 0, then F}, g is logarithmically completely
monotonic in (0,00); If F, 5 is logarithmically completely monotonic in (0, c0),
then o < min{g, %}, If 6 > 1, then F, g is logarithmically completely monotonic

(17)

in (0,00) if and only if a < 1.
Remark 4. For § € R, let
e’ T'(z+ 1)
gp(x) = (z + B8

in the Iy £ (max{0,—(},00). Guo et al. [2I] showed that the function gs(z) is
logarithmically completely monotonic if and only if 3 > 1 and the function [gg(z)]~*
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is logarithmically completely monotonic if and only if 3 < % The monotonicity of
the function g;(z) and gy /2(x) implies the following inequality:
ab+ 1/ T a1,
bla +1/2)at1/2 I'(a) =~ bla+1)at! ’

It is easy to see that the right inequality in is sharper than the right inequality
in , while the left inequality in is sharper than the left inequality in .

b>a>0. (18)

Remark 5. Let a > 0 be given real number, define for x > 0,

_I'(z+a)
fa(z) = T (2)
In [37] S.-L.Qiu and M.Vuorinen proved that the function f/o(z) = 1:/(;_(9%)) is

strictly increasing and log-concave from (0,00) onto (0,1). Qi et al. [36] proved
the following results: lim, o fo(2) =1 for any a € (0,00); For a > 1, the function
fa(z) is logarithmically completely monotonic on (0,00) and lim, o4 fa(z) = oo;
For 0 < a < 1, the function [f,(z)]~! is logarithmically completely monotonic on
(0,00) and lim,_,o4 fo(x) = 0.

3. PROOFS OF THEOREMS

Proof of Theorem[]l Using the representations [38, p. 153] (also see [17), p. 824])

1 o 1 1 1
=——+Inz— — 4 - )e "t
P(zx) 2x+nx /0 (et—l t+2>e , x>0,

1
xr+s

we conclude that

(In fop(2)) = (x4 b) — log(x + b) + Z;_(Z

(oo}
= / e~ @t qt >0, >0,
0

— /DO [6(t)— (b—a—1)] gn—1,—(z+b)t dt,
0

where ) )
5(t) = -t
®) a-1 1 7 0
and then, for n > 1
o0
(=)0 fuy(@)]™ = / 6(8) — (b—a— D] Le=@Dige.  (19)
0
Differentation gives
t2(e! —1)%0'(t) = —t%' + ¥ —2e' + 1= 2P —2— k(k - Dl >0,
k=4
this yields
1
5= tlin(l) I(t) <d(t) < tlim o(t) =0. (20)

Combining with implies that for x > —b,n > 1, if b —a < %, then

()
(=1)"(In fa5(2))™ > 0; if b—a > 1, then (—1)" (ln %@)) >0
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Conversely, if the function x +— f,(z) is strictly logarithmically completely
monotonic on (—b, 00), then

(In fop(2)) = (x4 b) — log(x + b) + b-a

<0,
r+b

which is equivalent to

b—a < (z+b)[log(x +b) —(x + b)]. (21)
It was proved [7] that the function f(x) = z[logx — ¥ (x)] is strictly decreasing
(0,00). Moreover, lim,_o f(z) = 1 and lim, . f(z) = 3. In let = tend to oo,
then we conclude from the asymptotic formulas of ¢ [Il pp. 259-260] that b—a < %

If the function z — [f,,(z)] 7! is strictly logarithmically completely monotonic
on (—b,0), then

/
(ln fabl(l”)> = —Y(x +b) +log(x +b) — Z;Z <0,

which is equivalent to

(x +b)[log(z +b) —(z+b)] <b—a. (22)
In let « tend to —b, then we obtain 1 < b — a. The proof of Theorem [1| is
complete. (]
Proof of Theorem[3 Using the representations , and

(n—1)!

o0
— :/ t"leTmtdt, x>0,n=1,2,...,
€ 0

we obtain that for n > 1,

al— n—1 n—1)!
(=1)"(Inga,5(2)™) = (-1)" [w<"-1><x+ﬂ>—w<"-l><x>— oy At

xn
= [Tl -a-aeear
0
where _y
el Tt —1
Differentation yields
(¢" = 1)?/(t) = =Fel® P — (1= p)e=D" + !
S ket (23)
= kZ:gW B + (1= B 1)
Set p=1— 3, then for k > 2,
B2 =B+ (1= -1
=(1-p+p*+p* -1
LA k
~a-pY (N e-ny s (24)
=0 =0
k-1
a8 () oo
i=1
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Combining with implies ¢'(t) < 0 for t > 0. Moreover
0= lim o(t) < p(t) < lim () =1-6.
It is easy to see that for 2 > 0,n > 1, if a > 1, then (—1)"(In g, s(x))™ > 0, if

1 (n)
Conversely, if the function = +— g, g(x) is strictly logarithmically completely
monotonic on (0, 00), then

(Inga,s5(a))’ = v(a +B) = v(x) - = <. (25)
Note that 1 (z + 1) = () + 1, can be written as

a>zh(r+8)—Y(x) =z [w(x+g) —(z) — 5} +8

x
=z[(z+06) — Pz + 1)+ 1.
It was proved [I4, Theorem 1] that the function

(26)

xwx@u+m—wm—ﬂ

T

is strictly decreasing (0, 00). In let z — 0, we get o > 1.
If the function z +— [g g(z)] 7! is strictly logarithmically completely monotonic
on (0,00), then

1 ! «
<1n ga,b(ﬂﬁ)) ==Yz +6) +¢¥(x) + p <0,

which is equivalent to

a<zlp(z+B) — ()] (27)

In let x tend to oo, then we conclude from the asymptotic formulas of ¢ [I,

pp. 259-260] that o < 8. The proof of Theorem [2]is complete. [l
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