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Abstract

The aim of the present paper is to study the properties of solutions of
a new nonlinear Volterra type sum-difference equation. The finite differ-
ence inequality with explicit estimate is used to establish the results.

1 Introduction

Consider the nonlinear Volterra type sum-difference equation

x (n) = g (n) +
n−1∑
s=0

f (n, s, x (s) ,∆x (s)) , (1.1)

where x, g, f are real-valued functions. Let R denotes the set of real numbers
and R+ = [0,∞) , N0 = {0, 1, 2, ...} be the given subsets of R . Let D(A,B)
denotes the class of functions from the set A to the set B . We assume that
x, g ∈ D (N0, R) and for 0 ≤ s ≤ n; s, n ∈ N0 , f ∈ D

(
N2

0 ×R2, R
)
. For

the functions w(m), z(m,n) , m,n ∈ N0 we define the operators ∆ and ∆1 by
∆w (m) = w (m + 1)−w (m) and ∆1z (m,n) = z (m + 1, n)− z (m,n) . We use
the usual conventions that empty sums and products are taken to be 0 and 1
respectively.

In the past few years a number of papers have been devoted to the study
of equations of the form (1.1), particularly when the function f is of the form
f(t, s, x) , see [1-4,6] and the references cited therein. In [2] Kwapisz has stud-
ied the existence of solutions of certain boundary value problems for difference
equations by using the techniques employed in the theory of ordinary differential
equations. One can formulate existence and uniqueness result for the solutions
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of equation (1.1) by following the method used in [5]. The main objective of this
paper is to study the uniqueness, boundedness and continuous dependence of
solutions of equation (1.1) under some suitable conditions on the functions in-
volved therein. The special version of the finite difference inequality established
by Pachpatte (see [3, p. 21]) is used to establish the results.

2 Uniqueness and boundedness

By a solution of equation (1.1) we mean a function x(n) , n ∈ N0 which satisfies
the equation (1.1). It is easy to observe that the solution x(n) of equation (1.1)
satisfies (see [3, p. 22]) the following sum-difference equation

∆x (n) = ∆g (n) + f (n + 1, n, x (n) ,∆x (n)) +
n−1∑
s=0

∆1f (n, s, x (s) ,∆x (s)) ,

(2.1)
for n ∈ N0 . The existence and uniqueness result for the solutions of equation
(1.1) can be formulated by closely looking at the proof of Theorem 1 given in
[5] (see also [2]). However, since there is a close parallelism, here we are not
intend to discuss the details of such a result.

We need the following special version of the finite difference inequality es-
tablished by Pachpatte (see [3, Theorem 1.3.4, p.21]). We shall state it in the
following lemma for completeness.

Lemma . Let u (n) , a (n) ∈ D (N0, R+) and for 0 ≤ s ≤ n; s, n ∈ N0,
k (n, s) ,∆1k (n, s) ∈ D

(
N2

0 , R+

)
. If

u (n) ≤ a (n) +
n−1∑
s=0

k (n, s) u (s) ,

for n ∈ N0, then

u (n) ≤ a (n) +
n−1∑
s=0

B (s)
n−1∏

σ=s+1

[1 + A (σ)],

for n ∈ N0, where

A (n) = k (n + 1, n) +
n−1∑
s=0

∆1k (n, s) , (2.2)

B (n) = k (n + 1, n) a (n) +
n−1∑
s=0

∆1k (n, s) a (s) , (2.3)

for n ∈ N0 .
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First, we formulate the following theorem concerning the uniqueness of solu-
tions of equation (1.1) without existence part.

Theorem 1. Assume that

|f (n, s, u, v)− f (n, s, ū, v̄)| ≤ h1 (n, s) [|u− ū|+ |v − v̄|] , (2.4)

|∆1f (n, s, u, v)−∆1f (n, s, ū, v̄)| ≤ h2 (n, s) [|u− ū|+ |v − v̄|] , (2.5)

where hi (n, s) ,∆1hi (n, s) ∈ D
(
N2

0 , R+

)
for i = 1, 2 and 0 ≤ s ≤ n; s, n ∈ N0.

Let h (n, s) = h1 (n, s)+h2 (n, s) and assume that h1 (n + 1, n) ≤ c, where c < 1
is a constant. Then the equation (1.1) has at most one solution on N0

Proof. Let x(n) and y(n) be two solutions of equation (1.1) on N0 . Using
the facts that x(n), y(n) are the solutions of equation (1.1) and the hypotheses
(2.4), (2.5) we have

|x (n)− y (n)|+ |∆x (n)−∆y (n)|

≤
n−1∑
s=0

|f (n, s, x (s) ,∆x (s))− f (n, s, y (s) ,∆y (s))|

+ |f (n + 1, n, x (n) ,∆x (n))− f (n + 1, s, y (n) ,∆y (n))|

+
n−1∑
s=0

|∆1f (n, s, x (s) ,∆x (s))−∆1f (n, s, y (s) ,∆y (s))|

≤
n−1∑
s=0

h1 (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]

+h1 (n + 1, n) [|x (n)− y (n)|+ |∆x (n)−∆y (n)|]

+
n−1∑
s=0

h2 (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]. (2.6)

From (2.6) and using the assumption h1 (n + 1, n) ≤ c, we observe that

|x (n)− y (n)|+ |∆x (n)−∆y (n)|

≤ 1
1− c

n−1∑
s=0

h (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]. (2.7)

Now an application of Lemma (with a(n) = 0) to (2.7) yields

|x (n)− y (n)|+ |∆x (n)−∆y (n)| ≤ 0,

which implies x(n) = y(n) for n ∈ N0. Thus there is at most one solution to
equation (1.1) on N0 .
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The following theorem concerning the estimate on the solution of equation
(1.1) holds.

Theorem 2. Assume that

|g (n)|+ |∆g (n)| ≤ p (n) , (2.8)

|f (n, s, u, v)| ≤ r1 (n, s) [|u|+ |v|] , (2.9)

|∆1f (n, s, u, v)| ≤ r2 (n, s) [|u|+ |v|] , (2.10)

where p (n) ∈ D (N0, R+) , ri (n, s) ,∆1ri (n, s) ∈ D
(
N2

0 , R+

)
for i = 1, 2 and

0 ≤ s ≤ n; s, n ∈ N0. Let r (n, s) = r1 (n, s) + r2 (n, s) and assume that
r1 (n + 1, n) ≤ d, where d < 1 is a constant. If x(n) , n ∈ N0 is any solu-
tion of equation (1.1), then

|x (n)|+ |∆x (n)| ≤ p (n)
1− d

+
n−1∑
s=0

B1 (s)
n−1∏

σ=s+1

[1 + A1 (σ)], (2.11)

for n ∈ N0 , where A1 (n) and B1 (n) are defined respectively by the right hand
sides of (2.2) and (2.3), replacing k(n, s) by r(n,s)

1−d and a(n) by p(n)
1−d .

Proof. Using the fact that x(n) , n ∈ N0 is a solution of equation (1.1) and
the hypotheses (2.8)-(2.10) we have

|x (n)|+ |∆x (n)| ≤ |g (n)|+ |∆g (n)|+
n−1∑
s=0

|f (n, s, x (s) ,∆x (s))|

+ |f (n + 1, n, x (n) ,∆x (n))|+
n−1∑
s=0

|∆1f (n, s, x (s) ,∆x (s))|

≤ p (n) +
n−1∑
s=0

r1 (n, s) [|x (s)|+ |∆x (s)|]

+r1 (n + 1, n) [|x (n)|+ |∆x (n)|] +
n−1∑
s=0

r2 (n, s) [|x (s)|+ |∆x (s)|] . (2.12)

From (2.12) and using the assumption r1 (n + 1, n) ≤ d, we observe that

|x (n)|+ |∆x (n)| ≤ p (n)
1− d

+
1

1− d

n−1∑
s=0

r (n, s) [|x (s)|+ |∆x (s)|]. (2.13)

Now an application of Lemma to (2.13) yields (2.11).

Remark 1 We note that the estimate obtained in (2.11) yields not only the
bound on the solution x(n) of equation (1.1) but also the bound on ∆x (n) . If
the estimate on the right hand side in (2.11) is bounded, then the solution x(n)
and also ∆x (n) are bounded for n ∈ N0.
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Now, we shall obtain the estimate on the solution of equation (1.1), assuming
that f and ∆1f satisfy Lipschitz type conditions.

Theorem 3. Assume that the hypotheses of Theorem 1 hold and

q (n) = |f (n + 1, n, g (n) ,∆g (n))|+
n−1∑
s=0

|f (n, s, g (s) ,∆g (s))|

+
n−1∑
s=0

|∆1f (n, s, g (s) ,∆g (s))|, (2.14)

for n ∈ N0 . If x(n) ,n ∈ N0 is any solution of equation (1.1), then

|x (n)− g (n)|+ |∆x (n)−∆g (n)|

≤ q (n)
1− c

+
n−1∑
s=0

B2 (s)
n−1∏

σ=s+1

[1 + A2 (σ)], (2.15)

for n ∈ N0 , where A2 (n) and B2 (n) are defined respectively by the right hand
sides of (2.2) and (2.3), replacing k(n, s) by h(n,s)

1−c and a(n) by q(n)
1−c .

Proof. Using the fact that x(n) , n ∈ N0 is a solution of equation (1.1) and
the hypotheses (2.4),(2.5) we have

|x (n)− g (n)|+ |∆x (n)−∆g (n)|

≤
n−1∑
s=0

|f (n, s, x (s) ,∆x (s))− f (n, s, g (s) ,∆g (s))|

+
n−1∑
s=0

|f (n, s, g (s) ,∆g (s))|

+ |f (n + 1, n, x (n) ,∆x (n))− f (n + 1, n, g (n) ,∆g (n))|

+ |f (n + 1, n, g (n) ,∆g (n))|

+
n−1∑
s=0

|∆1f (n, s, x (s) ,∆x (s))−∆1f (n, s, g (s) ,∆g (s))|

+
n−1∑
s=0

|∆1f (n, s, g (s) ,∆g (s))|

≤ q (n) +
n−1∑
s=0

h1 (n, s) [|x (s)− g (s)|+ |∆x (s)−∆g (s)|]

+h1 (n + 1, n) [|x (n)− g (n)|+ |∆x (n)−∆g (n)|]
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+
n−1∑
s=0

h2 (n, s) [|x (s)− g (s)|+ |∆x (s)−∆g (s)|]. (2.16)

From (2.16) and using the assumption h1 (n + 1, n) ≤ c, we observe that

|x (n)− g (n)|+ |∆x (n)−∆g (n)|

≤ q (n)
1− c

+
1

1− c

n−1∑
s=0

h (n, s) [|x (s)− g (s)|+ |∆x (s)−∆g (s)|]. (2.17)

Now an application of Lemma to (2.17) yields (2.15).

3 Continuous dependence

In this section we shall deal with the continuous dependence of solutions of equa-
tion (1.1) on the functions involved therein and also the continuous dependence
of solutions of equations of the form (1.1) on parameters.

Consider the equation (1.1) and the corresponding Volterra type sum-difference
equation

y (n) = G (n) +
n−1∑
s=0

F (n, s, y (s) ,∆y (s)) , (3.1)

for n ∈ N0, where y, G ∈ D (N0, R) , and for 0 ≤ s ≤ n; s, n ∈ N0, F ∈
D

(
N2

0 ×R2, R
)
.

The following theorem deals with the continuous dependence of solutions of
equation (1.1) on the functions involved therein.

Theorem 4. Assume that the hypotheses of Theorem 1 hold. Suppose that

|g (n)−G (n)|+ |∆g (n)−∆G (n)|

+ |f (n + 1, n, y (n) ,∆y (n))− F (n + 1, n, y (n) ,∆y (n))|

+
n−1∑
s=0

|f (n, s, y (s) ,∆y (s))− F (n, s, y (s) ,∆y (s))|

+
n−1∑
s=0

|∆1f (n, s, y (s) ,∆y (s))−∆1F (n, s, y (s) ,∆y (s))| ≤ β (n) , (3.2)

where g, f and G, F are the functions involved in (1.1) and (3.1) and β (n) ∈
D (N0, R) . Let x(n) and y(n) , n ∈ N0 be the solutions of equations (1.1) and
(3.1) respectively. Then the solution x(n) of equation (1.1) depends continuously
on the functions involved on the right hand side of equation (1.1).
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Proof. Using the facts that x(n) and y(n) are the solutions of equations (1.1)
and (3.1) and hypotheses (2.4),(2.5),(3.2) we have

|x (n)− y (n)|+ |∆x (n)−∆y (n)|

≤ |g (n)−G (n)|+ |∆g (n)−∆G (n)|

+
n−1∑
s=0

|f (n, s, x (s) ,∆x (s))− f (n, s, y (s) ,∆y (s))|

+
n−1∑
s=0

|f (n, s, y (s) ,∆y (s))− F (n, s, y (s) ,∆y (s))|

+ |f (n + 1, n, x (n) ,∆x (n))− f (n + 1, n, y (n) ,∆y (n))|

+ |f (n + 1, n, y (n) ,∆y (n))− F (n + 1, n, y (n) ,∆y (n))|

+
n−1∑
s=0

|∆1f (n, s, x (s) ,∆x (s))−∆1f (n, s, y (s) ,∆y (s))|

+
n−1∑
s=0

|∆1f (n, s, y (s) ,∆y (s))−∆1F (n, s, y (s) ,∆y (s))|

≤ β (n) +
n−1∑
s=0

h1 (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]

+h1 (n + 1, n) [|x (n)− y (n)|+ |∆x (n)−∆y (n)|]

+
n−1∑
s=0

h2 (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]. (3.3)

From (3.3) and using the assumption h1 (n + 1, n) ≤ c, we observe that

|x (n)− y (n)|+ |∆x (n)−∆y (n)|

≤ β (n)
1− c

+
1

1− c

n−1∑
s=0

h (n, s) [|x (s)− y (s)|+ |∆x (s)−∆y (s)|]. (3.4)

Now an application of Lemma to (3.4) yields

|x (n)− y (n)|+ |∆x (n)−∆y (n)|

≤ β (n)
1− c

+
n−1∑
s=0

B3 (s)
n−1∏

σ=s+1

[1 + A3 (σ)], (3.5)

for n ∈ N0 ,where A3 (n) and B3 (n) are defined respectively by (2.2) and (2.3),
replacing k(n, s) by h(n,s)

1−c and a(n) by β(n)
1−c . From (3.5) it follows that the

solutions of equation (1.1) depends continuously on the functions involved on
the right hand side of equation (1.1).
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Next, we consider the following Volterra type sum-difference equations

z (n) = g (n) +
n−1∑
s=0

f (n, s, z (s) ,∆z (s) , µ) , (3.6)

and

z (n) = g (n) +
n−1∑
s=0

f (n, s, z (s) ,∆z (s) , µ0) , (3.7)

for n ∈ N0 , where z, g ∈ D (N0, R) and for 0 ≤ s ≤ n; s, n ∈ N0, f ∈
D

(
N2

0 ×R2 ×R,R
)
.

Finally, we present the following theorem which deals with the continuous
dependency of solutions of equations (3.6) and (3.7) on parameters.

Theorem 5. Assume that the function f in (3.6) and (3.7) satisfy the condi-
tions

|f (n, s, u, v, µ)− f (n, s, ū, v̄, µ)| ≤ γ1 (n, s) [|u− ū|+ |v − v̄|] , (3.8)

|f (n, s, u, v, µ)− f (n, s, u, v, µ0)| ≤ e1 (n, s) |µ− µ0| , (3.9)

|∆1f (n, s, u, v, µ)−∆1f (n, s, ū, v̄, µ)| ≤ γ2 (n, s) [|u− ū|+ |v − v̄|] , (3.10)

|∆1f (n, s, u, v, µ)−∆1f (n, s, u, v, µ0)| ≤ e2 (n, s) |µ− µ0| , (3.11)

where γi (n, s) ,∆1γi (n, s) , ei (n, s) ∈ D
(
N2

0 , R+

)
for i = 1, 2 and 0 ≤ s ≤

n; s, n ∈ N0. Let γ (n, s) = γ1 (n, s) + γ2 (n, s) , e (n, s) = e1 (n, s) + e2 (n, s) ,

δ (n) = e1 (n + 1, n) +
n−1∑
s=0

e (n, s) and assume that γ1 (n + 1, n) ≤ m, where

m < 1 is a constant. Let z1 (n) and z2 (n) be the solutions of equations (3.6)
and (3.7) respectively. Then

|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)|

≤ |µ− µ0|
1−m

δ (n) +
n−1∑
s=0

B4 (s)
n−1∏

σ=s+1

[1 + A4 (σ)], (3.12)

where A4 (n) and B4 (n) are defined respectivey by the right hand sides of (2.2)
and (2.3), replacing k(n, s) by γ(n,s)

1−m and a(n) by |µ−µ0|
1−m δ (n).

Proof. Using the facts that z1 (n) and z2 (n) are the solutions of equations
(3.6) and (3.7) and the hypotheses (3.9)-(3.11) we have

|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)|

≤
n−1∑
s=0

|f (n, s, z1 (s) ,∆z1 (s) , µ)− f (n, s, z2 (s) ,∆z2 (s) , µ)|
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+
n−1∑
s=0

|f (n, s, z2 (s) ,∆z2 (s) , µ)− f (n, s, z2 (s) ,∆z2 (s) , µ0)|

+ |f (n + 1, n, z1 (n) ,∆z1 (n) , µ)− f (n + 1, n, z2 (n) ,∆z2 (n) , µ)|

+ |f (n + 1, n, z2 (n) ,∆z2 (n) , µ)− f (n + 1, n, z2 (n) ,∆z2 (n) , µ0)|

+
n−1∑
s=0

|∆1f (n, s, z1 (s) ,∆z1 (s) , µ)−∆1f (n, s, z2 (s) ,∆z2 (s) , µ)|

+
n−1∑
s=0

|∆1f (n, s, z2 (s) ,∆z2 (s) , µ)−∆1f (n, s, z2 (s) ,∆z2 (s) , µ0)|

≤
n−1∑
s=0

γ1 (n, s) [|z1 (s)− z2 (s)|+ |∆z1 (s)−∆z2 (s)|]

+
n−1∑
s=0

e1 (n, s) |µ− µ0|

+γ1 (n + 1, n) [|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)|]

+e1 (n + 1, n) |µ− µ0|

+
n−1∑
s=0

γ2 (n, s) [|z1 (s)− z2 (s)|+ |∆z1 (s)−∆z2 (s)|]

+
n−1∑
s=0

e2 (n, s) |µ− µ0|. (2.13)

From (2.13) and using the assumption γ1 (n + 1, n) ≤ m, we observe that

|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)|

≤ |µ− µ0|
1−m

δ (n) +
1

1−m

n−1∑
s=0

γ (n, s) [|z1 (s)− z2 (s)|+ |∆z1 (s)−∆z2 (s)|].

(3.14)
Now an application of Lemma to (3.14) yields (3.12), which shows the depen-
dency of solutions of equations (3.6) and (3.7) on parameters.

Remark 2. We note that in [3, p.269] (see also [1, p.221] and [4, p.237])
the explicit bounds on the solutions of equation (1.1) when f is of the form
f(n, s, x(s)) are given. Here our approach to the study of equation (1.1) is
somewhat different and we believe that the results obtained here are of inde-
pendent interest.
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