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Abstract: Suppose that [a, b] ⊆ (0,∞), f : [a, b] → (0,∞) is a func-
tion. In this paper, the following two results are proved: (1)Both
g(x) =

∫ b
x f(t)dt and h(x) =

∫ x
a f(t)dt are geometrically concave func-

tions on [a, b] if f is a geometrically concave function; (2) p(x) =∫ x
a f(t)dt + af2(a)/(f(a) + af ′(a)) is a geometrically convex function

on [a, b] if f is a twice differentiable geometrically convex function
with xf ′(x) + f(x) > 0 on [a, b].
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1 Introduction

For the convenience of the readers, we recall the main definitions as fol-
lowing.

Definition 1. Let I ⊆ R be an interval. A function f : I → R is called
a convex function on I if

f

(
x + y

2

)
≤ f(x) + f(y)
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for all x, y ∈ I. And f is called a concave function if −f is a convex function.

Definition 2. Let I ⊆ (0,∞) be an interval. A function f : I → (0,∞)
is called a geometrically convex function on I if

f(
√

xy) ≤
√

f(x)f(y)

for all x, y ∈ I. And f is called a geometrically concave function if 1/f is a
geometrically convex function.

The property of convexity or concavity of a given function is one of the
most powerful tools in establishing a wide range of analytic inequalities (see
[1-12] and the bibliographies in those papers).

From definition 1 and definition 2, the following theorem A is obvious.

Theorem A. Suppose that I is a subinterval of (0,∞) and f : I → (0,∞)
is a geometrically convex function. Then

F = log ◦f ◦ exp : log(I) → R

is a convex function. Conversely, if J is an interval(for which exp(J) is a
subinterval of (0,∞)) and F : J → R is a convex function, then

f = exp ◦F ◦ log : exp(J) → (0,∞)

is a geometrically convex function.

Equivalently, f is a geometrically convex function if and only if log f(x)
is a convex function of log x. Modulo this characterization, the class of all
geometrically convex functions was first considered by P. Montel [13], in a
beautiful paper discussing the analogues of the notion of convex function in
n variables. However, the roots of the research in this area can be traced
long before him.

In a long time, the subject of geometrical convexity seems to be even
forgotten, which is a pity because of its richness. Recently, C.P. Niculescu
[11] discussed the beautiful class of inequalities, which arise from the notion
of geometrical convexity for functions. Niculescu’s contribution is not only
to call the attention to the beautiful zoo of inequalities falling in the realm of
geometrical convexity, but also to prove that many classical inequalities can
benefit of a better understanding via the geometrically approach of convexity.

One of the focus problems on geometrically convex and concave functions
is how to distinguish the geometrical convexity or concavity of a function.
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The following two results on geometrically convex functions were obtained
by P. Montel and C.P. Niculescu, respectively.

Theorem B(see [13]). Let f : [0, a) → [0,∞) be a continuous function,
which is geometrically convex on (0, a). Then

F (x) =

∫ x

0

f(t)dt

is also continuous on [0, a) and geometrically convex on (0, a).

Theorem C(see [11]). Let f : I → (0,∞) be a differentiable function de-
fined on a subinterval of (0,∞). then the following assertions are equivalent:

i) f is geometrically convex(or concave, resp.);
ii) The function xf ′(x)/f(x) is increasing(or decreasing, resp.);
iii) f verifies the inequality

f(x)

f(y)
≥ (or ≤, resp.)

(
x

y

)yf ′(y)/f(y)

for every x, y ∈ I.

If moreover f is twice differentiable, then f is geometrically convex (or
concave, resp.) if and only if

x(f(x)f ′′(x)− f ′2(x)) + f(x)f ′(x) ≥ (or ≤, resp.)0, for all x ∈ I.

The main purpose of this paper is to prove the following two theorems.

Theorem 1. Suppose that f : [a, b] ⊆ (0,∞) → (0,∞) is a geometrically

concave function. If g(x) =
∫ b

x
f(t)dt and h(x) =

∫ x

a
f(t)dt, then both g and

h are geometrically concave on [a, b].

Theorem 2. Suppose that f : [a, b] ⊆ (0,∞) → (0,∞) be a twice dif-
ferentiable geometrically convex function, p(x) =

∫ x

a
f(t)dt+ af 2(a)/(f(a) +

af ′(a)). If xf ′(x) + f(x) > 0 for all x ∈ [a, b], then p(x) is geometrically
convex on [a, b].

2 Lemmas and the Proof of Theorems

For the sake of readability, we shall first give the following lemmas, they
will be used to predigest the proof of theorem 1.
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Lemma 1(see [14]). For each convex function f : [a, b] → R, there
exist infinitely differentiable convex function sequences fn : [a, b] → R, n =
1, 2, 3, · · · , such that {fn} converge uniformly to f on [a, b].

From definition 1, definition 2, theorem A and lemma 1 we can get the
following lemma 2 immediately.

Lemma 2. For each geometrically convex(or concave, resp.) function
f : [a, b] ⊆ (0,∞) → (0,∞), there exist infinitely differentiable geometrically
convex (or concave, resp.) function sequences fn : [a, b] → (0,∞), n =
1, 2, 3, · · · , such that {fn} converge uniformly to f on [a, b].

The following lemma 3 can be derived from the definition of geometrically
convex(or concave, resp.) function directly.

Lemma 3. Let fn : I ⊆ (0,∞) → (0,∞), n = 1, 2, 3, · · · , be geometri-
cally convex(or concave, resp.) function sequences. If lim

n→∞
fn(x) = f(x) for

all x ∈ I, then f : I → (0,∞) is also a geometrically convex(or concave,
resp.) function.

Proof of theorem 1. By lemma 2 and lemma 3 we may assume that
f ∈ C∞[a, b]. For x ∈ [a, b], the expression of g(x) leads to

x(g(x)g′′(x)− g′2(x)) + g(x)g′(x)

= −(xf ′(x) + f(x))

∫ b

x

f(t)dt− xf 2(x). (1)

To prove that g(x) is geometrically concave on [a, b] we need only to prove

−(xf ′(x) + f(x))

∫ b

x

f(t)dt− xf 2(x) ≤ 0 (2)

for all x ∈ [a, b] by theorem C and (1).
Set

E = {x ∈ [a, b] : xf ′(x) + f(x) ≥ 0}

= {x ∈ [a, b] :
xf ′(x)

f(x)
≥ −1}.

Then since xf ′(x)/f(x) is decreasing, the following three cases will com-
plete the proof.
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Case 1. b ∈ E. Then E = [a, b], and (2) is true.
Case 2. a 6∈ E. Then E = ∅, this implies that xf ′(x) + f(x) < 0 for all

x ∈ [a, b]. For x ∈ [a, b], taking

g1(x) = −
∫ b

x

f(t)dt− xf 2(x)

xf ′(x) + f(x)
. (3)

Then the geometrical concavity of f and theorem C lead to

g1(x) = xf(x)
x(f(x)f ′′(x)− f ′2(x)) + f(x)f ′(x)

(xf ′(x) + f(x))2
≤ 0. (4)

(4) yields

g1(x) ≥ g1(b) = − bf 2(b)

bf ′(b) + f(b)
≥ 0 (5)

for all x ∈ [a, b], and (2) follows from (3) and (5).
Case 3. a ∈ E and b 6∈ E. Then there exists x0 ∈ [a, b) such that E =

[a, x0] and xf ′(x)+f(x) < 0 for x ∈ (x0, b] since xf ′(x)/f(x) is decreasing on
[a, b]. By the similar proof as in case 2 we know that (2) is true for x ∈ (x0, b].
This and E = [a, x0] imply that (2) is true for all x ∈ [a, b].

Making use of the parallel proof as above we can prove that h(x) is a
geometrically concave function on [a, b].

Proof of theorem 2. For x ∈ [a, b], the expression of p(x) leads to

x(p(x)p′′(x)− p′2(x)) + p(x)p′(x)

= (xf ′(x) + f(x))

∫ x

a

f(t)dt− xf 2(x) +
af 2(a)

f(a) + af ′(a)
(xf ′(x) + f(x)). (6)

Let

p1(x) =

∫ x

a

f(t)dt− xf 2(x)

xf ′(x) + f(x)
+

af 2(a)

af ′(a) + f(a)
, (7)

then the geometrical convexity of f and theorem C lead to

p′1(x) = xf(x)
x(f(x)f ′′(x)− f ′2(x)) + f(x)f ′(x)

(xf ′(x) + f(x))2
≥ 0. (8)

(8) yields
p1(x) ≥ p1(a) = 0 (9)
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for all x ∈ [a, b].
Theorem 2 follows from (6), (7), (9) and theorem C.
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