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1 Introduction and main results

In what follows, we denote by A, B, C the angles of triangle ABC, let a, b, ¢ denote the lengths of its
corresponding sides, and let s, R and r denote respectively the semi-perimeter, circumradius and inradius
of a triangle. We will customarily use the symbol of cyclic sum such as

> fla) = fla)+ fb) + f(c), Y fla,b) = fla,b) + f(b,c) + f(c,a).

The fundamental triangle inequality is one of the cornerstones of geometric inequalities for triangle. It
reads as follows:

2R% + 10Rr — % — 2(R — 2r)v/ R? — 2Rr < s> < 2R? + 10Rr — r? + 2(R — 2r)\/R2 — 2Ry (1)

The equality holds in left (or right) inequality of (1) if and only if the triangle is isosceles.

As is well known, the inequality (1) is a necessary and sufficient condition for the existence of a triangle
with elements R, r and s. This classical inequality has many important applications in the theory of geometric
inequality and has received a lot of attention. There exist a large number of papers that have been written
about applying the inequality (1) to establish and prove the geometric inequalities for triangle, e.g., see [1-9]
and the references cited in them.

The objective of this paper is to give an equivalent form of the fundamental triangle inequality. As
applications, we shall apply our results to a new proof of Garfunkel-Bankoff inequality and the improvement of
the Leuenberger’s inequality, it will be shown that our new inequality can efficaciously reduce computational
complexity in the proof of certain inequalities for triangle. We state the main result in the following theorem:

Theorem 1. For any triangle ABC' the following inequalities hold true:
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where 6 =1 — - %. Furthermore, the equality holds in left (or right) inequality of (2) if and only if
the triangle is isosceles.
2 Proof of Theorem 1
We write the fundamental triangle inequality (1) as
SRy SR DY (RN PP U SR Y A (3)
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By the Euler’s inequality R > 2r (see [1]), we observe that
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Also, the identity (4) is equivalent to the following identity:
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By applying identities (4) and (5) to inequality (3), we obtain that
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<2410(6-50%) = (6-507) +2(1-2(5- 8] | (1-9),
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After factoring out common factors, the above inequality can be transformed into the desired inequality
(2). This completes the proof of Theorem 1.

that is

3 Application to new proof of Garfunkel-Bankoff inequality

Theorem 2. Let A, B, C be angles of an arbitrary triangle, then we have the inequality

A A B
Ztan2§ > 2—8sin§sin§sin%. (6)

The equality holds in (6) if and only if the triangle ABC' is equilateral.



Inequality (6) was proposed by Garfunkel as a conjecture in [10], it was first proved by Bankoff in [11].
In this section, we give a simplified proof of Garfunkel-Bankoff inequality by means of the equivalent form
of fundamental triangle inequality.

Proof. From the identities for triangle (see [2]):

A (4R +7)?
Ztan2 CE 2, (7)
sin — sin — sin c_r (8)
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it is easy to see that the Garfunkel-Bankoff inequality is equivalent to the following inequality:
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By applying inequality (2) and identity (5) to inequality (9), it follows that
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< 0

which implies the required inequality (9). The Garfunkel-Bankoff inequality is proved.

4 Application to the improvement of Leuenberger’s inequality

In 1960, Leuenberger presented the following inequality concerning the sides and the circumradius of a
triangle (see [1])

yisve (10)

After three years, Steining sharpened inequality (10) in the following form (see also [1]):

e
a” 2(R+71)
Mitrinovi¢ et al [2, p.173] showed another sharpened form of (10), as follows
1 SR—r
2 a” + (3V3 —4)Rr (12)
Recently, a unified improvement of the inequalities (11) and (12) was given by Wu [12], that is,

(11)

Zl> 113
a” BR+12r +ko(2r — R)’

where kg = 0.02206078402 - - - | it is the root on the interval (0, %) of the following equation

(13)

405k° + 6705k 4+ 129586k3 + 1050976k> + 2795373k — 62181 = 0.



We show here a new improvement of the inequalities (11) and (12), which is stated in the Theorem 3 below.

Theorem 3. For any triangle ABC' the following inequality holds true:

— 9,2
212 vV25Rr — 2r , (14)
a 4Rr

with equality holding if and only if the triangle ABC' is equilateral.

Proof. By using the identities for triangle (see [2]):

Z ab=s*+4Rr + 1, abc = 4sRr, (15)
and the identity (5), we have
3 1\* 25Rr—2%  (s°+4Rr+r%)?  25Rr—2°
a 16R?r2 1652 R?r2 16R?*r2
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Note that the inequality (2):
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and 1 1 25 15 23 1
Z5(4 — 3_ - _s4 4 3 _ Y52 1 — oY a2 3 ~ 54
46( 0) 2((5+(5 2(5+75) 5(2 45)—1—5 +45 > 0,

then, from the monotonicity of the function f(z) = 2?—(—6* + 46% — 262 + 170) 2+ 1 (4—6)(4—6%)%62,
we deduce that
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The above inequality with the identity (16) lead us to that

1\? 25Rr— 212
) S BE A
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The Theorem 3 is thus proved.



Remark. The inequality (14) is stronger than the inequalities (10), (11) and (12) because from the
Euler’s inequality R > 2r it is easy to verify that the following inequalities hold for any triangle.

— 2 _
Zl . V25Rr —2r > 5R—r S ﬁ’ (17)
a 4Rr 2R2+ (3V3—-4)Rr ~ R
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In addition, it is worth noticing that the inequality (13) and the inequality (14) are incomparable in
general, which can be observed by the following fact.
Lettinga=+/3,b=1, c=1,then R=1, r =+/3 — %, direct calculating gives

V25Rr —2r2 11v3 _ V25Rr =22 11v3 011934 > 0
4Rr 5R+12r + ko(2r — R) 4Rr 5R+12r +0.023(2r — R) '
Letting a =2, b = \/5, c= \/5, then R=1, r = V2 — 1, direct calculating gives
V25Rr — 22 113 _ V25Rr —2® 113 000183 < 0
4Rr 5R+ 127 + ko(2r — R) 4Rr 5R+12r +0.022(2r — R) '

As a further improvement of the inequality (14), we propose the following significant problem.
Open Problem. Determine the best constant k for which the inequality below holds

1 1 2r\ r3
i — — 92 N — .
> > oy [25Rr -2 +kz(l ) (19)
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