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1 Introduction and main results

In what follows, we denote by A, B, C the angles of triangle ABC, let a, b, c denote the lengths of its
corresponding sides, and let s, R and r denote respectively the semi-perimeter, circumradius and inradius
of a triangle. We will customarily use the symbol of cyclic sum such as∑

f(a) = f(a) + f(b) + f(c),
∑

f(a, b) = f(a, b) + f(b, c) + f(c, a).

The fundamental triangle inequality is one of the cornerstones of geometric inequalities for triangle. It
reads as follows:

2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr 6 s2 6 2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr. (1)

The equality holds in left (or right) inequality of (1) if and only if the triangle is isosceles.
As is well known, the inequality (1) is a necessary and su�cient condition for the existence of a triangle

with elements R, r and s. This classical inequality has many important applications in the theory of geometric
inequality and has received a lot of attention. There exist a large number of papers that have been written
about applying the inequality (1) to establish and prove the geometric inequalities for triangle, e.g., see [1-9]
and the references cited in them.

The objective of this paper is to give an equivalent form of the fundamental triangle inequality. As
applications, we shall apply our results to a new proof of Garfunkel-Banko� inequality and the improvement of
the Leuenberger's inequality, it will be shown that our new inequality can e�caciously reduce computational
complexity in the proof of certain inequalities for triangle. We state the main result in the following theorem:

Theorem 1. For any triangle ABC the following inequalities hold true:
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1
4
δ(4− δ)3 6

s2

R2
6

1
4
(2− δ)(2 + δ)3, (2)

where δ = 1−
√

1− 2r
R . Furthermore, the equality holds in left (or right) inequality of (2) if and only if

the triangle is isosceles.

2 Proof of Theorem 1

We write the fundamental triangle inequality (1) as

2 +
10r

R
− r2

R2
− 2

(
1− 2r

R

) √
1− 2r

R
6

s2

R2
6 2 +

10r

R
− r2

R2
+ 2

(
1− 2r

R

) √
1− 2r

R
. (3)

By the Euler's inequality R > 2r (see [1]), we observe that

0 6 1− 2r

R
< 1.

Let √
1− 2r

R
= 1− δ, 0 < δ 6 1. (4)

Also, the identity (4) is equivalent to the following identity:

r

R
= δ − 1

2
δ2. (5)

By applying identities (4) and (5) to inequality (3), we obtain that

2 + 10
(

δ − 1
2
δ2

)
−

(
δ − 1

2
δ2

)2

− 2
[
1− 2

(
δ − 1

2
δ2

)]
(1− δ) 6

s2

R2

6 2 + 10
(

δ − 1
2
δ2

)
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(
δ − 1

2
δ2

)2

+ 2
[
1− 2

(
δ − 1

2
δ2

)]
(1− δ),

that is

16δ − 12δ2 + 3δ3 − 1
4
δ4 6

s2

R2
6 4 + 4δ − δ3 − 1

4
δ4.

After factoring out common factors, the above inequality can be transformed into the desired inequality
(2). This completes the proof of Theorem 1.

3 Application to new proof of Garfunkel-Banko� inequality

Theorem 2. Let A, B, C be angles of an arbitrary triangle, then we have the inequality∑
tan2 A

2
> 2− 8 sin

A

2
sin

B

2
sin

C

2
. (6)

The equality holds in (6) if and only if the triangle ABC is equilateral.
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Inequality (6) was proposed by Garfunkel as a conjecture in [10], it was �rst proved by Banko� in [11].
In this section, we give a simpli�ed proof of Garfunkel-Banko� inequality by means of the equivalent form
of fundamental triangle inequality.

Proof. From the identities for triangle (see [2]):∑
tan2 A

2
=

(4R + r)2

s2
− 2, (7)

sin
A

2
sin

B

2
sin

C

2
=

r

4R
, (8)

it is easy to see that the Garfunkel-Banko� inequality is equivalent to the following inequality:(
4− 2r

R

)
s2

R2
−

(
4 +

r

R

)2

6 0. (9)

By applying inequality (2) and identity (5) to inequality (9), it follows that

(
4− 2r

R

)
s2

R2
−

(
4 +

r

R

)2

6
1
4
(4− 2δ + δ2)(2− δ)(2 + δ)3 − 1

4
(4− δ)2(2 + δ)2

= −1
4
δ2(2 + δ)2(1− δ)2

6 0,

which implies the required inequality (9). The Garfunkel-Banko� inequality is proved.

4 Application to the improvement of Leuenberger's inequality

In 1960, Leuenberger presented the following inequality concerning the sides and the circumradius of a
triangle (see [1])

∑ 1
a

>

√
3

R
. (10)

After three years, Steining sharpened inequality (10) in the following form (see also [1]):

∑ 1
a

>
3
√

3
2(R + r)

. (11)

Mitrinovi¢ et al [2, p.173] showed another sharpened form of (10), as follows∑ 1
a

>
5R− r

2R2 + (3
√

3− 4)Rr
. (12)

Recently, a uni�ed improvement of the inequalities (11) and (12) was given by Wu [12], that is,

∑ 1
a

>
11
√

3
5R + 12r + k0(2r −R)

. (13)

where k0 = 0.02206078402 · · · , it is the root on the interval (0, 1
15 ) of the following equation

405k5 + 6705k4 + 129586k3 + 1050976k2 + 2795373k − 62181 = 0.
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We show here a new improvement of the inequalities (11) and (12), which is stated in the Theorem 3 below.

Theorem 3. For any triangle ABC the following inequality holds true:

∑ 1
a

>

√
25Rr − 2r2

4Rr
, (14)

with equality holding if and only if the triangle ABC is equilateral.

Proof. By using the identities for triangle (see [2]):∑
ab = s2 + 4Rr + r2, abc = 4sRr, (15)

and the identity (5), we have

(∑ 1
a

)2

− 25Rr − 2r2

16R2r2
=

(s2 + 4Rr + r2)2

16s2R2r2
− 25Rr − 2r2

16R2r2
,

=
1

16R6s2r2

[
s4

R4
−

(
17r

R
− 4r2

R2

)
s2

R2
+

(
4r

R
+

r2

R2

)2
]

=
1

16R6s2r2

[
s4

R4
−

(
−δ4 + 4δ3 − 25

2
δ2 + 17δ

)
s2

R2
+

1
16

(4− δ)2(4− δ2)2δ2

]
. (16)

Note that the inequality (2):

s2

R2
>

1
4
δ(4− δ)3

and
1
4
δ(4− δ)3 − 1

2

(
−δ4 + 4δ3 − 25

2
δ2 + 17δ

)
= δ(

15
2
− 23

4
δ) + δ3 +

1
4
δ4 > 0,

then, from the monotonicity of the function f(x) = x2−
(
−δ4 + 4δ3 − 25

2 δ2 + 17δ
)
x+ 1

16 (4−δ)2(4−δ2)2δ2,
we deduce that

s4

R4
−

(
−δ4 + 4δ3 − 25

2
δ2 + 17δ

)
s2

R2
+

1
16

(4− δ)2(4− δ2)2δ2

>
1
16

δ2(4− δ)6 − 1
4
δ(4− δ)3

(
−δ4 + 4δ3 − 25

2
δ2 + 17δ

)
+

1
16

(4− δ)2(4− δ2)2δ2

=
1
8
(4− δ)2(1− δ)2(6− δ)δ3

> 0.

The above inequality with the identity (16) lead us to that(∑ 1
a

)2

− 25Rr − 2r2

16R2r2
> 0.

The Theorem 3 is thus proved.
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Remark. The inequality (14) is stronger than the inequalities (10), (11) and (12) because from the
Euler's inequality R > 2r it is easy to verify that the following inequalities hold for any triangle.

∑ 1
a

>

√
25Rr − 2r2

4Rr
>

5R− r

2R2 + (3
√

3− 4)Rr
>

√
3

R
, (17)

∑ 1
a

>

√
25Rr − 2r2

4Rr
>

3
√

3
2(R + r)

>

√
3

R
. (18)

In addition, it is worth noticing that the inequality (13) and the inequality (14) are incomparable in
general, which can be observed by the following fact.

Letting a =
√

3, b = 1, c = 1, then R = 1, r =
√

3− 3
2 , direct calculating gives

√
25Rr − 2r2

4Rr
− 11

√
3

5R + 12r + k0(2r −R)
>

√
25Rr − 2r2

4Rr
− 11

√
3

5R + 12r + 0.023(2r −R)
= 0.11934 · · · > 0.

Letting a = 2, b =
√

2, c =
√

2, then R = 1, r =
√

2− 1, direct calculating gives

√
25Rr − 2r2

4Rr
− 11

√
3

5R + 12r + k0(2r −R)
<

√
25Rr − 2r2

4Rr
− 11

√
3

5R + 12r + 0.022(2r −R)
= −0.00183 · · · < 0.

As a further improvement of the inequality (14), we propose the following signi�cant problem.
Open Problem. Determine the best constant k for which the inequality below holds

∑ 1
a

>
1

4Rr

√
25Rr − 2r2 + k

(
1− 2r

R

)
r3

R
. (19)
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