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Abstract

A monotonicity result for the ratio between two Stolarsky means is established.
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Given two real parameters r, s, if a, b are positive numbers, then their Stolarsky
mean Er,s(a, b) (cf. [24, 25]) is defined by

Er,s(a, b) =
(

r

s
· bs − as

br − ar

)1/(s−r)

, rs(r − s)(a− b) 6= 0;

Er,0(a, b) =
(

1
r
· br − ar

ln b− ln a

)1/r

, r(a− b) 6= 0;

Er,r(a, b) =
1

e1/r

(
aar

bbr

)1/(ar−br)

, r(a− b) 6= 0;

E0,0(a, b) =
√

ab, a 6= b;

Er,s(a, a) = a, a = b.

K. B. Stolarsky [24], Leach and Sholander [13] showed that Er,s(a, b) are for a 6= b
increasing with both r and s. Leach and Sholander [14] and Páles [18] solved the
problem of comparison of Stolarsky mean.

Since Er,s(a, b) are for a 6= b strictly increasing with both r and s, for the
particular choices of the parameters r and s, we obtain the following chain of
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inequalities:

E0,0(a, b) < E1,0(a, b) < E1,1(a, b) < E2,1(a, b) for a 6= b,

that is,
G(a, b) < L(a, b) < I(a, b) < A(a, b) for a 6= b,

where G, L, I and A are the geometric, logarithmic, identric and arithmetic means,
respectively.

The main result of this article is the following theorem:

Theorem 1. Let a, b, c, d be positive numbers with a 6= b, c 6= d and r, s be real
numbers, and let

Rr,s(a, b, c, d) =
Er,s(a, b)
Er,s(c, d)

. (1)

Then the function Rr,s(a, b, c, d) are strictly
increasing
decreasing with both r and s according

as
min{a, b}
max{a, b}

≶
min{c, d}
max{c, d}

. (2)

In order to prove Theorem 1, we need following Lemma.

Lemma 1 ([19]). If f is an increasing (decreasing) integrable function on I, then
the arithmetic mean of the function f ,

F (r, s) =


1

s− r

∫ s

r

f(t) dt, r 6= s,

f(r), r = s,

is also increasing (decreasing) with both r and s on I.

Proof of Theorem 1. Since Stolarsky mean is symmetric in its variables, without
loss of generality, assume that a < b and c < d. By integral representation [12, 24]

lnEr,s(a, b) =
1

s− r

∫ s

r

ln It(a, b)dt, (3)

where
It(a, b) = Et,t(a, b), (4)

we obtain

lnRr,s(a, b, c, d) =
1

s− r

∫ s

r

p′(t)dt, (5)

where

p(t) = p(t; a, b, c, d) =


ln

(c− d)(at − bt)
(a− b)(ct − dt)

, t 6= 0;

(c− d) ln(a/b)
(a− b) ln(c/d)

, t = 0.

Easy computation reveals

p(−t) = p(t) + +t ln
cd

ab
, (6)

which implies that p′′(−t) = p′′(t), and then p(t) has the same convexity (concav-
ity) on both (−∞, 0) and (0,∞). Now we are in position to consider convexity
(concavity) of p(t) for t ∈ (0,∞).
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A simple computation yields

t2p′′(t) = − (a/b)t[ln(a/b)t]2

[(a/b)t − 1]2
+

(c/d)t[ln(c/d)t]2

[(c/d)t − 1]2
.

Define for 0 < u < 1,

ω(u) =
u(lnu)2

(1− u)2
,

easy calculation gives(
u

u + 1
ln

1
u

)
· ω′(u)

ω(u)
=

lnu

u− 1
− 2

u + 1
=

1
L(u, 1)

− 1
A(u, 1)

> 0.

Hence, ω′(u) > 0 and ω(u) is strictly increasing for 0 < u < 1. Thus, for t > 0,

p′′(t) ≷ 0 according as
a

b
≶

c

d
.

Further, for t ∈ (−∞,∞),

p′′(t) ≷ 0 according as
a

b
≶

c

d
, (7)

since p(t) has the same convexity (concavity) on both (−∞, 0) and (0,∞). Now,
Lemma 1 combined with (5) and (7), imply that the function Rr,s(a, b, c, d) are

strictly
increasing
decreasing with both r and s according as a

b ≶ c
d . The proof of Theorem

1 is complete. �

Remark 1. It was shown in [2, 16] that let n be a positive integer, then for r > 0,

n

n + 1
<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
. (8)

We call the left-hand side of (8) Alzer’s inequality [2], and the right-hand side of
(8) Martins’ inequality [16]. Several easy proofs of Alzer’s inequality have been
published by different authors, see [6, 23, 26]. In [4, 8, 10, 11] Alzer’s inequality is
extended to all real r. In [3, 9] it was proved that Martins’ inequality is reversed
for r < 0. There have been a lot of literature about these two inequalities and their
history, background, extensions and generalizations. For more detailed information,
refer to [1, 5] and the references therein.

Let b > a > 0 and δ > 0, by Theorem 1, the function r 7→ E1,r+1(a,b)
E1,r+1(a,b+δ) is

strictly decreasing with r ∈ (−∞,+∞), and then, we present an integral version of
Alzer-Martins’ inequality (8) as follows:

b

b + δ
<

(
1

b−a

∫ b

a
xrdx

1
b+δ−a

∫ b+δ

a
xrdx

)1/r

for all real r, (9)

(
1

b−a

∫ b

a
xrdx

1
b+δ−a

∫ b+δ

a
xrdx

)1/r

≶
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
according as r ≷ 0. (10)

This extends a result given by F. Qi and B.-N. Guo [20, 21], who established the
inequalitis (9) and (10) for r > 0. In [7, 22], the monotonicity of the function
r 7→ E1,r+1(a,b)

E1,r+1(a,b+δ) has been shown. For the generalizations of the inequalitis (9) and
(10) the reader is referred to [15, 17].
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