
ON THE SUPERADDITIVITY AND MONOTONICITY OF

MAPPINGS ASSOCIATED WITH CAUCHY-SCHWARZ’S

INEQUALITY IN 2-INNER PRODUCT SPACES I

Seong Sik Kim*, Yeol Je Cho† and Sever S. Dragomir

Abstract. Superadditivity and monotonicity of some mappings associated with the refinements of
Cauchy-Schwarz’s inequality in 2-inner product spaces are given.

1. Introduction

The concepts of 2-inner products and 2-inner product spaces have been intensively studied by
many authors in the last three decades. A systematic presentation of the recent results related
to the theory of 2-inner product spaces as well as an extensive list of the related references can
be found in the book ([4]). Here we give the basic definitions and the elementary properties of
2-inner product spaces.

Let X be a linear space of dimension greater than 1 and (·, ·|·) be a real-valued function on
X ×X ×X satisfying the following conditions:

(2I1) (x, x|z) ≥ 0,
(x, x|z) = 0 if and only if x and z are linearly dependent,

(2I2) (x, x|z) = (z, z|x),
(2I3) (x, y|z) = (y, x|z),
(2I4) (αx, y|z) = α(x, y|z) for any real number α,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).

(·, ·|·) is called a 2-inner product and (X, (·, ·|·)) is called a 2-inner product space. Some basic
properties of the 2-inner product (·, ·|·) can be obtained as follows ([4]):

(1) For all x, y, z ∈ X,
|(x, y|z)| ≤

√
(x, x|z)

√
(y, y|z).

(2) For all x, y ∈ X, (x, y|y) = 0 and (x, y|0) = 0.
(3) If (X, (·|·)) is an inner product space, then the 2-inner product (·, ·|·) is defined on X by

(x, y|z) =
∣∣∣∣
(x|y) (x|z)
(y|z) (z|z)

∣∣∣∣ = (x|y)‖z‖2 − (x|z)(y|z)
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for all x, y, z ∈ X.

Under the same assumptions over X, the real-valued function ‖·, ·‖ on X ×X satisfying the
following conditions:

(2N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(2N2) ‖x, y‖ = ‖y, x‖,
(2N3) ‖αx, y‖ = |α|‖x, y‖ for all real number α,
(2N4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

‖·, ·‖ is called a 2-norm on X and (X, ‖·, ·‖) is called a linear 2-normed space ([7]). Some of the
basic properties of the 2-norms are that they are non-negative and ‖x, y +αx‖ = ‖x, y‖ for every
x, y in X and every real number α. Whenever a 2-inner product space (X, (·, ·|·)) is given, we
consider it as a linear 2-normed space on (X, ‖·, ·‖) with the norm defined by ‖x, z‖ =

√
(x, x|z)

for all x, z ∈ X and for any nonzero x1, x2, ..., xn in X, let V (x1, x2, ..., xn) denote the subspace
of X generated by x1, x2, ..., xn.

Let (X, (·, ·|·)) be a 2-inner product space. If (ei)1≤i≤n are linearly independent vectors in X
and, for a given z ∈ X, (ei, ej |z) = δij for all i, j ∈ {1, ..., n} where δij is the Kronecker delta (we
say that the family (ei)1≤i≤n is z-orthonormal), then the following inequality is the corresponding
Bessel’s inequality for the z-orthonormal family (ei)1≤i≤n in X

(1.1)
n∑

i=1

|(x, ei|z)|2 ≤ ‖x, z‖2

for any x ∈ X. For more details on this inequality, see [1], [3], [5]-[6], [8], [9].

For a 2-inner product space (X, (·, ·|·)), Cauchy-Schwarz’s inequality

(1.2) |(x, y|z)| ≤ (x, x|z)1/2(y, y|z)1/2 = ‖x, z‖‖y, z‖,

a 2-dimensional analogue of Cauchy-Schwarz’s inequality, holds ([4]). The following refinements
of Cauchy-Schwarz’s inequality in 2-inner product spaces has been obtains in [2]:

(1.3) |(x, y|z)| ≤ |(x, y|z)− (x, e|z)(e, y|z)|+ |(x, e|z)(e, y|z)| ≤ ‖x, z‖‖y, z‖,

|(x, y|z)− (x, e|z)(e, y|z)| ≤
(

(‖x, z‖2 − |(x, e|z)|2)(‖y, z‖2 − |(y, e|z)|2)
)1/2

≤
(
‖x, z‖‖y, z‖ − |(x, e|z)(e, y|z)|

)
,

(1.4)

|(x, y|z)− (x, e|z)(e, y|z)|2 ≤ (‖x, z‖2 − |(x, e|z)|2)(‖y, z‖2 − |(y, e|z)|2)
≤ ‖x, z‖2‖y, z‖2 − |(x, y|z)|2,

(1.5)

|(x, y|z)− (x, e|z)(e, y|z)|2 ≤ (‖x, z‖2 − |(x, e|z)|2)(‖y, z‖2 − |(y, e|z)|2)

≤
(
‖x, z‖‖y, z‖ − |(x, e|z)(e, y|z)|

)2

(1.6)



ON THE SUPERADDITIVITY AND MONOTONICITY OF MAPPINGS 3

for all x, y, z, e ∈ X with ‖e, z‖ = 1 and z /∈ V (x, y, e).

In this paper, superadditivity and monotonicity of some mappings associated with the refine-
ments of Cauchy-Schwarz’s inequality in 2-inner product spaces are given.

2. Refinements of Cauchy-Schwarz’s inequality

In this section, we shall establish some results on the refinements of Cauchy-Schwarz’s inequal-
ity in 2-inner product spaces.

Lemma 2.1([2]). Let X be a linear 2-normed spaces and x, y, z, u, v ∈ X with z /∈ V (x, y, u, v)
be such that

‖u, z‖2 ≤ 2(x, u|z) and ‖v, z‖2 ≤ 2(y, v|z).

Then we have the inequality:

(2.1)

(
2(x, u|z)− ‖u, z‖2

)1/2(
2(y, v|z)− ‖v, z‖2

)1/2

+
∣∣∣∣(x, y|z)− (x, v|z)− (u, y|z) + (u, v|z)

∣∣∣∣
≤ ‖x, z‖‖y, z‖.

Theorem 2.2. Let X be a linear 2-normed space, x, y, z ∈ X with z /∈ V (x, y) and (ei)1≤i≤n

be a family of z-orthonomal vectors in X. Then we have the following inequality:

(2.2)
|(x, y|z)| ≤

∣∣∣∣(x, y|z)−
n∑

i=1

(x, ei|z)(ei, y|z)|+
n∑

i=1

|(x, ei|z)(ei, y|z)
∣∣∣∣

≤ ‖x, z‖‖y, z‖.
Proof. Let u =

∑n
i=1(x, ei|z)ei and v =

∑n
i=1(y, ei|z)ei. Then we have

2(x, u|z)− ‖u, z‖2 =
n∑

i=1

|(x, ei|z)|2 ≥ 0 and 2(y, v|z)− ‖v, z‖2 =
n∑

i=1

|(y, ei|z)|2 ≥ 0.

We also have
∣∣∣∣(x, y|z)− (x, v|z)− (u, y|z) + (u, v|z)

∣∣∣∣ =
∣∣∣∣(x, y|z)−

n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣.

Thus, by the inequality (2.1) and triangle inequality, we have the desired inequality (2.2). This
completes the proof. ¤

Theorem 2.3. With the assumptions of Theorem 2.2, we have the following inequality:

(2.3)

0 ≤
∣∣∣∣(x, y|z)−

n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣
2

≤
(
‖x, z‖2 −

n∑

i=1

|(x, ei|z)|2
)(

‖y, z‖2 −
n∑

i=1

|(y, ei|z)|2
)

≤
(
‖x, z‖‖y, z‖ −

n∑

i=1

|(x, ei|z)(ei, y|z)|
)2
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Proof. By Cauchy-Schwarz’s inequality (1.2) in a 2-inner product space X, we have

∣∣∣∣
(

x−
n∑

i=1

(x, ei|z)ei, y −
n∑

i=1

(y, ei|z)ei

∣∣∣ z

)∣∣∣∣
2

≤
∥∥∥∥x−

n∑

i=1

(x, ei|z)ei z

∥∥∥∥
2∥∥∥∥y −

n∑

i=1

(y, ei|z)ei, z

∥∥∥∥
2

,

which is equivalent with

∣∣∣∣(x, y|z)−
n∑

i=1

(x, ei|z)(y, ei|z)
∣∣∣∣
2

≤
(
‖x, z‖2 −

n∑

i=1

|(x, ei|z)|2
)(

‖y, z‖2 −
n∑

i=1

(y, ei|z)‖2
)

from where we have the first part of inequality (2.3).
In order to prove the second part of inequality (2.3), using Aczél’s inequality ([10]) we get

(‖x, z‖2 −
n∑

i=1

|(x, ei|z)|2)(‖y, z‖2 −
n∑

i=1

|(y, ei|z)|2)

≤
(
‖x, z‖‖y, z‖ −

n∑

i=1

|(x, ei|z)||(y, ei|z)|
)2

,

and so the second part of inequality (2.3) holds. This completes the proof. ¤

Corollary 2.4. With the assumptions of Theorem 2.2, we have the following inequality:

(2.4)

(
‖x + y, z‖2 − |

n∑

i=1

(x + y, ei|z)|2
)1/2

≤
(
‖x, z‖2 −

n∑

i=1

|(x, ei|z)|2
)1/2

+
(
‖y, z‖2 −

2∑

i=1

|(ei, y|z)2
)1/2

Theorem 2.5. With the assumptions of Theorem 2.2, we have the following inequality:

(2.5)

‖x, z‖‖y, z‖ − |(x, y|z)|

≥
( n∑

i=1

|(x, ei|z)|2
)1/2( n∑

i=1

|(ei, y|z)|2
)1/2

−
∣∣∣∣

n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣ ≥ 0.

Proof. By the first part of inequality (2.3),

(2.6)

∣∣∣∣(x, y|z)−
n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣
2

≤
(
‖x, z‖2 −

n∑

i=1

|(x, ei|z)|2
)(

‖y, z‖2 −
n∑

i=1

|(y, ei|z)|2
)

and using the elementary inequality

(a2 − c2)(b2 − d2) ≤ (ac− bd)2
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for all a, b, c, d ∈ R, we have

(2.7)

(
‖x, z‖2 −

n∑

i=1

|(x, ei|z)|2
)(

‖y, z‖2 −
n∑

i=1

|(y, ei|z)|2
)

≤
[
‖x, z‖‖y, z‖ −

( n∑

i=1

|(x, ei|z)|2
)1/2( n∑

i=1

|(y, ei|z)|2
)1/2]2

.

By Bessel’s inequality (1.1), we also have

‖x, z‖‖y, z‖ ≥
( n∑

i=1

|(x, ei|z)|2
)1/2( n∑

i=1

|(y, ei|z)|2
)1/2

and by the inequalities (2.6) and (2.7), we yield the following inequality:

(2.8)

∣∣∣∣(x, y|z)−
n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣

≤ ‖x, z‖‖y, z‖ −
( n∑

i=1

|(x, ei|z)|2
)1/2( n∑

i=1

|(y, ei|z)|2
)1/2

.

Since

|(x, y|z)| −
∣∣∣∣

n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣ ≤

∣∣∣∣(x, y|z)−
n∑

i=1

(x, ei|z)(ei, y|z)
∣∣∣∣,

we obtain the desired inequality (2.5). This completes the proof. ¤

Corollary 2.6. With the assumptions of Theorem 2.2, we have the following inequality:

(2.9)

(‖x, z‖+ ‖y, z‖)2 − ‖x + y, z‖2

≥
[( n∑

i=1

|(x, ei|z)|2
)1/2

+
( n∑

i=1

|(ei, y|z)|2
)1/2]2

−
n∑

i=1

|(x, ei|z) + (ei, y|z)|2 ≥ 0.

3. Superadditivity and monotonicity of some mappings

In this section, we shall derive striking superadditivity and monotonicity properties of map-
pings associated with the refinements (2.3) and (2.5) of Cauchy-Schwarz’s inequality in 2-inner
product spaces.

Let X be a 2-inner product space and P (N) denote the class of all finite indices of N . Fixed
a family (ei)i∈N of a z-orthonormal vectors in X. We can consider the index set mappings
α, β : P (N)×X3 → R defined by

α(I, x, y, z) =
(∑

i∈I

|(x, ei|z)|2
∑

i∈I

|(y, ei|z)|2
)1/2

−
∣∣∣∣
∑

i∈I

(x, ei|z)(ei, y|z)
∣∣∣∣
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and

β(I, x, y, z) =
[(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2
)(

‖y, z‖2 −
∑

i∈I

|(y, ei|z)|2
)]1/2

−
∣∣∣∣(x, y|z)−

∑

i∈I

(x, ei|z)(ei, y|z)
∣∣∣∣.

for all x, y, z ∈ X with z /∈ V (x, y) and I ∈ P (N).

Theorem 3.1. Let X be a 2-inner product space and (ei)i∈N be a family of z-orthonormal
vectors in X. Then we have

(3.1) ‖x, z‖‖y, z‖ − |(x, y|z)| ≥ α(I, x, y, z) + β(I, x, y, z) ≥ 0

for all x, y, z ∈ X with z /∈ V (x, y) and I ∈ P (N).
Proof. Using elementary inequalities

0 ≤ ab + cd ≤ (a2 + c2)1/2(b2 + d2)1/2 for a, b, c, d ≥ 0

and by triangle inequality, we have

α(I, x, y, z) + β(I, x, y, z)

= (
∑

i∈I

|(x, ei|z)|2
∑

i∈I

|(y, ei|z)|2)1/2

+
[(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2
)(

‖y, z‖2 −
∑

i∈I

|(y, ei|z)|2
)]1/2

−
∣∣∣∣
∑

i∈I

|(x, ei|z)(y, ei|z)
∣∣∣∣−

∣∣∣∣(x, y|z)−
∑

i∈I

(x, ei|z)(ei, y|z)
∣∣∣∣

≤
{[

(
∑

i∈I

|x, ei|z)|2)1/2

]2

+
[
(‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2)1/2

]2}

×
{[

(
∑

i∈I

|(y, ei|z)|2)1/2

]2

+
[
(‖y, z‖2 −

∑

i∈I

|(y, ei|z)|2)1/2

]2}

−
∣∣∣∣
∑

i∈I

(x, ei|z)(ei, y|z) + (x, y|z)−
∑

i∈I

(x, ei|z)(ei, y|z)
∣∣∣∣

= ‖x, z‖‖y, z‖ − |(x, y|z)|

for all x, y, z ∈ X with z /∈ V (x, y) and I ∈ P (N). Thus, the inequality (3,1) is holds. This
completes the proof. ¤

Theorem 3.2. With the assumptions of Theorem 3.1, we have
(i) For all I, J ∈ P (N) with I ∩ J = φ

(3.2) α(I ∪ J, x, y, z) ≥ α(I, x, y, z) + α(J, x, y, z) ≥ 0

for all x, y, z ∈ X with z /∈ V (x, y), i.e., the mapping α(·, x, y, z) is superadditivie on P (N).
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(ii) For all I, J ∈ P (N) with I ⊃ J(6= φ)

(3.3) α(I, x, y, z) ≥ α(J, x, y, z) ≥ 0

for all x, y, z ∈ X with z /∈ V (x, y), i.e., the mapping α(·, x, y, z) is monotonic nondecreasing on
P (N).

Proof. (i) Suppose that I, J ∈ P (N) with I ∩ J = φ. Then we have

α(I ∪ J, x, y, z)

= (
∑

k∈I∪J

|(x, ek|z)|2
∑

k∈I∪J

|(y, ek|z)|2)1/2 − |
∑

k∈I∪J

(x, ek|z)(ek, y|z)|

= (
∑

i∈I

|(x, ei|z)|2 +
∑

j∈J

|(x, ej |z)|2)1/2(
∑

i∈I

|(y, ei|z)|2
∑

j∈J

|(y, ej |z)|2)1/2

− |
∑

i∈I

(x, ei|z)(ei, y|z) +
∑

j∈J

(x, ej |z)(ej , y|z)|

≥ (
∑

i∈I

|(x, ei|z)|2)1/2(
∑

i∈I

|(y, ei|z)|2)1/2 + (
∑

j∈J

|(x, ej |z)|2)1/2(
∑

j∈J

|(y, ej |z)|2)1/2

− |
∑

i∈I

(x, ei|z)(ei, y|z)|+ |
∑

j∈J

(x, ej |z)(ej , y|z)|

= α(I, x, y, z) + α(J, x, y, z)

for all x, y, z ∈ X and z /∈ V (x, y), and so the inequality (3.2) is proved.
(ii) Suppose that I, J ∈ P (N) with I ⊃ J(6= φ) and I 6= J . Then, by (i) we have

α(I, x, y, z) = α((I \ J) ∪ J, x, y, z) ≥ α(I \ J, x, y, z) + α(J, x, y, z),

which gives
α(I, x, y, z)− α(J, x, y, z) ≥ α(I \ J, x, y, z) ≥ 0

for all x, y, z ∈ X with z /∈ V (x, y), and so the inequality (3.3) is proved. This completes the
proof. ¤

Corollary 3.3. Let {ei}i∈N be a z-orthonormal sequence of vectors in a 2-inner product space
X. Put

αn(x, y, z) = α(In, x, y, z)

where In = {1, 2, . . . , n} ∈ P (N). Then we have:
(i) For n ≥ 2 and x, y, z ∈ X with z /∈ V (x, y)

αn(x, y, z) ≥ max
1≤i<j≤n

[(
|(x, ei|z)|2 + |(x, ej |z)|2

)1/2(
|(y, ei|z)|2 + |(y, ej |z)|2

)1/2

− |(x, ei|z)(ei, y|z) + (x, ej |z)(ej , y|z)|
]
≥ 0.

(ii) For n ≥ 2 and x, y, z ∈ X with z /∈ V (x, y)

0 = α1(x, y, z) ≤ α2(x, y, z) ≤ · · · ≤ αn(x, y, z) ≤ αn+1(x, y, z) ≤ · · ·

≤
(∑

n

|(x, en|z)|2
∑

n

|(y, en|z)|2
)1/2

−
∣∣∣∣
∑

n

(x, en|z)(y, en|z)
∣∣∣∣

= sup
n≥1

αn(x, y, z) = lim
n→∞

αn(x, y, z)

≤ ‖x, z‖‖y, z‖ − |(x, y|z)|,
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which gives another type of refinement of Cauchy-Schwarz’s inequality.

Theorem 3.4. With the assumptions of Theorem 3.1,
(i) For all I, J ∈ P (N) with I ∩ J = φ we have the inequality

(3.4) 0 ≤ β(I ∪ J, x, y, z) +
1
2
[α(I, x, y, z) + α(J, x, y, z)] ≤ 1

2
[β(I, x, y, z) + β(J, x, y, z)]

for all x, y, z ∈ X with z /∈ V (x, y).
(ii) For all I, J ∈ P (N) with I ⊃ J(6= φ) we have the inequality

(3.5) 0 ≤ β(I, x, y, z) ≤ β(J, x, y, z)

for all x, y, z ∈ X with z /∈ V (x, y), i.e., the mapping β(·, x, y, z) is monotonic noninecreasing on
P (N).

Proof. Let I, J ∈ P (N) with I ∩ J = φ. Using a similar argument as in Theorem 3.1, we have

(3.6)

β(I ∪ J, x, y, z)

=
(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2 −
∑

j∈J

|(x, ej |z)|2
)1/2

×
(
‖y, z‖2 −

∑

i∈I

|(y, ei|z)|2 −
∑

j∈J

|(y, ej |z)|2
)1/2

−
∣∣∣∣(x, y|z)−

∑

i∈I

(x, ei|z)(ei, y|z)−
∑

j∈J

(x, ej |z)(ej , y|z)
∣∣∣∣

≤
[(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2
)(

‖y, z‖2 −
∑

i∈I

|(y, ei|z)|2
)]1/2

−
(∑

j∈J

|(x, ej |z)|2
)1/2(∑

j∈J

|(y, ej |z)|2
)1/2

−
∣∣∣∣(x, y|z)−

∑

i∈I

|(x, ei|z)(ei, y|z)
∣∣∣∣ +

∣∣∣∣
∑

j∈J

|(x, ej |z)(ej , y|z)
∣∣∣∣

≤ β(I, x, y, z)− α(J, x, y, z)

for all x, y, z ∈ X with z /∈ V (x, y). By interchanging I and J in the inequality (3.6),

(3.7) β(J ∪ I, x, y, z) ≤ β(J, x, y, z)− α(I, x, y, z).

Thus, by addition these inequalities (3.6) and (3.7) we can deduce the inequality (3.4).
(ii) Suppose that I ⊃ J(6= φ) and J 6= I. Then, by the inequality (3.6) we have

β((I \ J) ∪ J, x, y, z) + α(I \ J, x, y, z) ≤ β(J, x, y, z),

which gives
β(J, x, y, z)− β(I, x, y, z) ≥ α(I \ J, x, y, z) ≥ 0
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for all x, y, z ∈ X with z /∈ V (x, y). Thus, the inequality (3.5) holds. This completes the proof.
¤

Remark. From the inequality (3.6), we have

α(I, x, y, z) ≤ β(J, x, y, z)

for all I, J ∈ P (N) with I ∩ J = φ and x, y, z ∈ X with z /∈ V (x, y).

Corollary 3.5. Let {ei}i∈N be a z-orthonormal sequence of vectors in a 2-inner product space
X. Put

βn(x, y, z) = β(In, x, y, z)

where In = {1, 2, . . . , n} ∈ P (N). Then we have
(i) For n ≥ 2 and x, y, z ∈ X with z /∈ V (x, y)

βn(x, y, z) ≤ min
1≤i<j≤n

[(
‖x, z‖2 − |(x, ei|z)|2 − |(x, ej |z)|2

)1/2

×
(
‖y, z‖2 − |(y, ei|z)|2 − |(y, ej |z)|2

)1/2

−
∣∣∣∣(x, y|z)− (x, ei|z)(ei, y|z)− (x, ej |z)(ej , y|z)

∣∣∣∣
]
.

(ii) For n ≥ 2 and x, y, z ∈ X with z /∈ V (x, y)

‖x, z‖‖y, z‖ − |(x, y|z)| ≥ β1(x, y, z) ≥ · · · ≥ βn(x, y, z) ≥ βn+1(x, y, z) ≥ · · ·
≥ inf

n≥1
βn(x, y, z) = lim

n→∞
βn(x, y, z)

=
(
‖x, z‖2 −

∑
n

|(x, ei|z)|2
)1/2(

‖y, z‖2 −
∑

n

|(y, ei|z)|2
)1/2

− |(x, y|z)−
∑

n

(x, ei|z)(ej , y|z)|,

which gives another type of refinement of Cauchy-Schwarz’s inequality.

Theorem 3.6. With the assumptions of Theorem 3.1, we have the following inequality:

(3.8)
‖x, z‖‖y, z‖+ β(I ∪ J, x, y, z)

≤ 1
2

[
β(I, x, y, z) + β(J, x, y, z)

]
+

1
2

[
α(I, x, y, z) + α(J, x, y, z)

]

for all x, y, z ∈ X with z /∈ V (x, y) and I, J ∈ P (N) with I ∩ J = φ.
Proof. Let I, J ∈ P (N) with I ∩J = φ. From the inequality (3.6) and the following inequality

(a− b)
1
2 ≥ a

1
2 − b

1
2 ≥ 0 for a ≥ b ≥ 0,

we have
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β(I ∪ J, x, y, z)

=
(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2 −
∑

j∈J

|(x, ej |z)|2
)1/2

×
(
‖y, z‖2 −

∑

i∈I

|(y, ei|z)|2 −
∑

j∈J

|(y, ej |z)|2
)1/2

−
∣∣∣∣(x, y|z)−

∑

i∈I

(x, ei|z)(ei, y|z)−
∑

j∈J

(x, ej |z)(ej , y|z)
∣∣∣∣

≥
[(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2
)1/2

−
(∑

j∈J

|(x, ej |z)|2
)1/2]

×
[(
‖y, z‖2 −

∑

i∈I

|(y, ei|z)|2
)1/2

−
(∑

j∈J

|(y, ej |z)|2
)1/2]

−
∣∣∣∣(x, y|z)−

∑

i∈I

|(x, ei|z)(ei, y|z)
∣∣∣∣ +

∣∣∣∣
∑

j∈J

|(x, ej |z)(ej , y|z)
∣∣∣∣

≥ β(I, x, y, z) + α(J, x, y, z)− µ(I, J, x, y, z)

where

µ(I, J, x, y, z) =
(
‖y, z‖2 −

∑

i∈I

|(y, ei|z)|2
)1/2(∑

j∈J

|(x, ej |z)|2
)1/2

+
(
‖x, z‖2 −

∑

i∈I

|(x, ei|z)|2
)1/2(∑

j∈J

|(y, ej |z)|2
)1/2

.

for all x, y, z ∈ X with z /∈ V (x, y). Hence, we have

(3.9) β(I ∪ J, x, y, z) + µ(I, J, x, y, z) ≥ β(I, x, y, z) + α(J, x, y, z).

By interchanging I and J in the inequality (3.9), we have

(3.10) β(J ∪ I, x, y, z) + µ(J, I, x, y, z) ≥ β(J, x, y, z) + α(I, x, y, z).

Adding these inequalities (3.9) and (3.10), we have

(3.11)
2β(I ∪ J, x, y, z) + µ(I, J, x, y, z) + µ(J, I, x, y.z)

≥ β(I, x, y, z) + β(J, x, y, z) + α(I, x, y, z) + α(J, x, y, z).

Now, from Cauchy-Schwarz’s inequality in a 2-inner product space X we have

(3.12) µ(I, J, x, y, z) + µ(J, I, x, y, z) ≤ (2‖y, z‖2)1/2(2‖x, z‖2)1/2 = 2‖x, z‖‖y, z‖.

Thus, the inequalities (3.11) and (3.12) reduces to the desired inequality (3.8). This completes
the proof. ¤
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