ON ACZÉL’S TYPE INEQUALITY FOR GRAMIANS IN 2-INNER PRODUCT SPACES

SEONG Sik Kim*, YEOL Je Cho† AND SEVER S. DRAGOMIR

ABSTRACT. In this paper, some results related to Aczél’s type inequality for Gramians in terms of Kurepa’s and Hadamard’s inequality in 2-inner product spaces are given.

I. Introduction

In 1956, J. Aczél proved the following inequality, known in literature as Aczél’s inequality ([10]):

Theorem A. Let \(a = (a_1, a_2, \ldots, a_m) \) and \(b = (b_1, b_2, \ldots, b_m) \) be two sequences of real numbers such that

\[
a_1^2 - a_2^2 - \cdots - a_m^2 > 0 \quad \text{or} \quad b_1^2 - b_2^2 - \cdots - b_m^2 > 0.
\]

Then we have the inequality

\[
(a_1^2 - a_2^2 - \cdots - a_m^2)(b_1^2 - b_2^2 - \cdots - b_m^2) \leq (a_1b_1 - a_2b_2 - \cdots - a_mb_m)^2
\]

with the equality if and only if the sequences \(a \) and \(b \) are proportional.

In [9], S. Kurepa proved the following inequality of Aczél type which holds in Hilbert spaces:

Theorem B. Let \(X \) be a real Hilbert space and \(c \) a unit vector in \(X \). Suppose that \(a, b \in X \) are given vectors such that

\[
(u^2 - \|a_u\|^2)(v^2 - \|b_v\|^2) \geq 0
\]

†: Corresponding author: Y.J. Cho
2000 Mathematics Subject Classification: Primary 46B05, 46C05; Secondary 26D15, 26D10
Key words and Phrases: Aczél inequality, Kurepa’s inequality, Hadamard’s inequality, Gramians
*This work was supposed from from Dongeui University, 2009

Typeset by \(\LaTeX \)
where \(u = (a, c), v = (b, c), a_o = a - uc \) and \(b_o = b - vc \). Then

\[
(1.2) \quad \left(u^2 - \|a_o\|^2 \right) \times \left(v^2 - \|b_o\|^2 \right) \geq (uv - (a_o, b_o))^2.
\]

If \(a \) and \(b \) are independent and strict inequality holds in (1.2), then strict inequality also holds in (1.2).

S.S. Dragomir ([6]) proved the generalization results of Aczél’s inequality:

Theorem C. Let \((X, (\cdot, \cdot))\) be an inner product space over the real and complex numbers field \(K \) and \(a, b, c \in R \) satisfy the following condition:

\[
a, c > 0 \quad \text{and} \quad b^2 \geq ac.
\]

Then, for all \(x, y \in X \) with \(a \geq \|x\|^2 \) or \(c \geq \|y\|^2 \), we have the inequality

\[
(1.3) \quad (a - \|x\|^2)(c - \|y\|^2) \leq \min \left\{ \left(b \pm \Re(x, y) \right)^2, \left(b \pm |\Re(x, y)| \right)^2, \left(b \pm \Im(x, y) \right)^2, \left(b \pm |\Im(x, y)| \right)^2, \left(b \pm |(x, y)| \right)^2 \right\}.
\]

Let \(X \) be a linear space of dimension greater than 1 and \((\cdot, \cdot|\cdot)\) be a real-valued function on \(X \times X \times X \) satisfying the following conditions:

\[
(2I_1) \quad (x, x|z) \geq 0,
\]

\[
(2I_2) \quad (x, x|z) = 0 \quad \text{if and only if} \quad x \quad \text{and} \quad z \quad \text{are linearly dependent},
\]

\[
(2I_3) \quad (x, y|z) = (y, x|z),
\]

\[
(2I_4) \quad (\alpha x, y|z) = \alpha(x, y|z) \quad \text{for any real number} \quad \alpha,
\]

\[
(2I_5) \quad (x + x', y|z) = (x, y|z) + (x', y|z).
\]

\((\cdot, \cdot|\cdot)\) is called a 2-inner product and \((X, (\cdot, \cdot|\cdot))\) a 2-inner product space ([2]).

Some basic properties of the 2-inner product \((\cdot, \cdot|\cdot)\) are as follows ([2]):

1. For all \(x, y, z \in X \),

\[
|(x, y|z)| \leq \sqrt{(x, x|z)(y, y|z)}.
\]

2. For all \(x, y \in X \), \((x, y|y) = 0\).

3. If \((X, (\cdot|\cdot))\) is an inner product space, then the 2-inner product \((\cdot, \cdot|\cdot)\) is defined on \(X \) by

\[
(x, y|z) = \begin{vmatrix} (x|y) & (x|z) \\ (y|z) & (z|z) \end{vmatrix} = (x|y)\|z\|^2 - (x|z)(y|z)
\]

for all \(x, y, z \in X \).
Under the same assumptions over X, the real-valued function $\left\| \cdot, \cdot \right\|$ on $X \times X$ satisfying the following conditions:

\begin{enumerate}[(2N_1)]
 \item $\left\| x, y \right\| = 0$ if and only if x and y are linearly dependent,
 \item $\left\| x, y \right\| = \left\| y, x \right\|$,
 \item $\left\| \alpha x, y \right\| = |\alpha| \left\| x, y \right\|$ for all real number α,
 \item $\left\| x, y + z \right\| \leq \left\| x, y \right\| + \left\| x, z \right\|$.
\end{enumerate}

$\left\| \cdot, \cdot \right\|$ is called a 2-norm on X and $(X, \left\| \cdot, \cdot \right\|)$ a linear 2-normed space ([8]). Some of the basic properties of the 2-norms are that they are non-negative and $\left\| x, y + \alpha x \right\| = \left\| x, y \right\|$ for every x, y in X and every real number α.

For any nonzero x_1, x_2, \ldots, x_n in X, let $V(x_1, x_2, \ldots, x_n)$ denote the subspace of X generated by x_1, x_2, \ldots, x_n. Whenever the notation $V(x_1, x_2, \ldots, x_n)$ is used, by it will understood x_1, x_2, \ldots, x_n to be linearly independent.

Let $(X, (\cdot, \cdot))$ be a 2-inner product space. For any elements $x_1, \ldots, x_m, z \in X$ we define the Gram’s matrix $G_z(x_1, \ldots, x_m)$ of x_1, \ldots, x_m with respect to z by

$$G_z(x_1, \ldots, x_m) = \begin{pmatrix}
 (x_1, x_1|z) & \cdots & (x_1, x_m|z) \\
 \vdots & \ddots & \vdots \\
 (x_m, x_1|z) & \cdots & (x_m, x_m|z)
\end{pmatrix}$$

and Gram’s determinant $\Gamma_z(x_1, \ldots, x_m)$ of x_1, \ldots, x_m with respect to z by

$$\Gamma_z(x_1, \ldots, x_m) = \det G_z(x_1, \ldots, x_m)$$

$$= \det \begin{pmatrix}
 (x_1, x_1|z) & \cdots & (x_1, x_m|z) \\
 \vdots & \ddots & \vdots \\
 (x_m, x_1|z) & \cdots & (x_m, x_m|z)
\end{pmatrix}.$$

Then we have the following inequality:

(1.4) \[\Gamma_z(x_1, \ldots, x_m) \geq 0. \]

The equality holds in (1.4) if and only if x_1, \ldots, x_m, z are linearly dependent. The inequality (1.4) is said to be Gram’s inequality in 2-inner product spaces.

In the inequality (1.4), if $n = 2$, then

\[(x_1, x_1|z)(x_2, x_2|z) - |(x_1, x_2|z)|^2 \geq 0\]

with the equality if and only if x_1, x_2, z are linearly dependent. This inequality can be regards as a generalization of Cauchy-Buniakowski-Schwarz’s inequality in 2-inner product spaces.

Some inequalities which involve Gram’s determinants are given ([5]):

(1.5) \[\frac{\Gamma_z(x_1, \ldots, x_m)}{\Gamma_z(x_1, \ldots, x_k)} \leq \frac{\Gamma_z(x_2, \ldots, x_m)}{\Gamma_z(x_2, \ldots, x_k)} \leq \cdots \leq \frac{\Gamma_z(x_{k+1}, \ldots, x_m)}{\Gamma_z(x_{k+1}, \ldots, x_k)} \]
\[\Gamma_z(x_1, \ldots, x_k, x_{k+1}, \ldots, x_m) \leq \Gamma_z(x_1, \ldots, x_k) \Gamma_z(x_{k+1}, \ldots, x_m), \]

\[\Gamma_z(x_1 + y_1, x_2, \ldots, x_m)^{1/2} \leq \Gamma_z(x_1, x_2, \ldots, x_m)^{1/2} + \Gamma_z(y_1, x_2, \ldots, x_m)^{1/2}. \]

For further details on some properties of Aczél’s and Gram’s inequalities of 2-inner product spaces are given by [1], [3] - [5], [7] - [9].

In this paper, some results related to Aczél’s type inequality for Gramians in terms of Kurepa’s and Hadamard’s inequality, which generalize and extend the corresponding results of S.S. Dragomir [6] to 2-inner product spaces are given.

II. Aczél’s type inequality and Kurepa’s inequality

Let \(X \) be a 2-inner product space and \(x_1, \ldots, x_m, y_1, \ldots, y_m, z \in X \). We can define the determinant \(\tilde{\Gamma}_z(x_1, y_1, \ldots, x_m, y_m) \) by

\[\tilde{\Gamma}_z(x_1, y_1, \ldots, x_m, y_m) = \det \begin{pmatrix} (x_1, y_1 | z) & \ldots & (x_1, y_m | z) \\ \vdots & \ddots & \vdots \\ (x_m, y_1 | z) & \ldots & (x_m, y_m | z) \end{pmatrix} \]

for \(z \notin V(x_1, \ldots, x_m, y_1, \ldots, y_m) \). Note that if \(y_1 = x_1, \ldots, y_m = x_m \), then

\[\tilde{\Gamma}_z(x_1, y_1, \ldots, x_m, y_m) = \Gamma_z(x_1, \ldots, x_m). \]

In [5], Y.J. Cho, M. Matić and J.E. Pečarić proved the following inequality of Kurepa:

Theorem D. Let \(X \) be a 2-inner product space and \(x_1, \ldots, x_m, y_1, \ldots, y_m, z \) are vectors in \(X \) such that \(\{x_1, \ldots, x_m\}, \{y_1, \ldots, y_m\} \) are two sets of linearly independent and \(z \notin V(x_1, \ldots, x_m, y_1, \ldots, y_m) \). Then we have the inequality

\[|\tilde{\Gamma}_z(x_1, y_1, \ldots, x_m, y_m)|^2 \leq \Gamma_z(x_1, \ldots, x_m) \Gamma_z(y_1, \ldots, y_m). \]

The equality occurs in (2.1) if and only if \(V(x_1, \ldots, x_m) \) spans the same subspace as \(V(y_1, \ldots, y_m) \) does. In the case, the inequality (2.1) is said to be **Kurepa’s inequality** in 2-inner product spaces.

In this section, we shall give some inequality of Aczél type inequality for Gramians which generalize the results of Kurepa’s inequality (2.1).

Theorem 2.1. Let \(X \) be a 2-inner product space and \(a, b, c \in R \) satisfy the following condition:

\[a, c > 0 \quad \text{and} \quad b^2 \geq ac. \]
Then for all $x_i, y_i \in X (i = 1, \ldots, m)$ and $z \notin V (x_1, \ldots, x_m, y_1, \ldots, y_m)$ with

$$a \geq \Gamma_z (x_1, \ldots, x_m) \quad \text{or} \quad c \geq \Gamma_z (y_1, \ldots, y_m),$$

we have the inequality

$$[a - \Gamma_z (x_1, \ldots, x_m)] [c - \Gamma_z (y_1, \ldots, y_m)] \leq [b - \Gamma_z (x_1, y_1, \ldots, x_m, y_m)]^2. \quad (2.2)$$

Proof. Suppose that $a \geq \Gamma_z (x_1, \ldots, x_m)$ and consider the polynomial $p(t)$ defined by

$$p(t) = at^2 - 2bt + c, \quad \text{for all} \quad t \in R.$$

Since $a > 0$ and $b^2 \geq ac$, there exists $t_o \in R$ such that $p(t_o) = 0$. We put the polynomials

$$q(t) = p(t) - (\Gamma_z (x_1, \ldots, x_m)t^2 + 2\Gamma_z (x_1, y_1, \ldots, x_m, y_m)t + \Gamma_z (y_1, \ldots, y_m))$$

for all $t \in R$. A simple calculation gives

$$q(t) = [a - \Gamma_z (x_1, \ldots, x_m)]t^2 - 2[b \pm \Gamma_z (x_1, y_1, \ldots, x_m, y_m)]t + [c - \Gamma_z (y_1, \ldots, y_m)]$$

for all $t \in R$. Since

$$q(t_o) = -\left[\Gamma_z (x_1, \ldots, x_m)t_o^2 + 2\Gamma_z (x_1, y_1, \ldots, x_m, y_m)t_o + \Gamma_z (y_1, \ldots, y_m)\right] \leq 0$$

and from Kurepa’s inequality (2.1) in Theorem C, we have

$$\Gamma_z (x_1, \ldots, x_m)t^2 + 2\Gamma_z (x_1, y_1, \ldots, x_m, y_m)t + \Gamma_z (y_1, \ldots, y_m) \geq 0$$

for all $t \in R$. Then we obtain that $q(t)$ has at least one solution in R, that is, the discriminant Δ of $q(t)$ must be non-negative. Therefore we have

$$0 \leq [b \pm \Gamma_z (x_1, y_1, \ldots, x_m, y_m)]^2 - [a - \Gamma_z (x_1, \ldots, x_m)][c - \Gamma_z (y_1, \ldots, y_m)]. \quad (2.3)$$

Next, suppose that $c \geq \Gamma_z (y_1, \ldots, y_m)$. Then we can be proved similarly by considering polynomials:

$$p_1(t) = at^2 - 2bt + a, \quad \text{for all} \quad t \in R$$

and

$$q_1(t) = p_1(t) - (\Gamma_z (y_1, \ldots, y_m)t^2 + 2\Gamma_z (x_1, y_1, \ldots, x_m, y_m)t + \Gamma_z (x_1, \ldots, x_m)).$$

This completes the proof. □
Corollary 2.2. Let X be a 2-inner product space and $M_1, M_2 \in R$. Then for all $x_i, y_i \in X (i = 1, ..., m)$ and $z \notin V(x_1, ..., x_m, y_1, ..., y_m)$ such that

$$\Gamma_z(x_1, ..., x_m) \leq |M_1| \text{ or } \Gamma_z(y_1, ..., y_m) \leq |M_2|$$

we have the inequality:

$$[M_1^2 - \Gamma_z(x_1, ..., x_m)][M_2^2 - \Gamma_z(y_1, ..., y_m)] \leq [M_1M_2 - \Gamma_z(x_1, y_1, ..., x_m, y_m)]^2. \tag{2.4}$$

Proof. Note that $(m^2 - n^2)(p^2 - q^2) \leq (mp - nq)^2$ for every $m, n, p, q \in R$. Using the above inequality and Kurepa’s inequality in the 2-inner product space, then the desired results follows. This completes the proof. □

Corollary 2.3. Let $a, b, c, x_i, y_i (i = 1, ..., m), z$ be as in Theorem 2.1. Then we have the inequality:

$$0 \leq \Gamma_z(x_1, ..., x_m)\Gamma_z(y_1, ..., y_m) - \Gamma_z(x_1, y_1, ..., x_m, y_m)^2 \leq b^2 - ac + a\Gamma_z(y_1, ..., y_m) + c\Gamma_z(x_1, ..., x_m) - 2b\Gamma_z(x_1, y_1, ..., x_m, y_m). \tag{2.5}$$

Proof. The first inequality in (2.5) follows from the Kurepa’s inequality (2.1), while the second we can be just rewritten as the inequality (2.2). This completes the proof. □

Corollary 2.4. Let X be a 2-inner product space and $M > 0$. If $x_i, y_i, z \in X$ and $z \notin V(x_1, ..., x_m, y_1, ..., y_m)$ are such that

$$\Gamma_z(x_1, ..., x_m) \leq M^2 \text{ or } \Gamma_z(y_1, ..., y_m) \leq M^2,$$

then we have the inequality:

$$0 \leq \Gamma_z(x_1, ..., x_m)\Gamma_z(y_1, ..., y_m) - \Gamma_z(x_1, y_1, ..., x_m, y_m)^2 \leq M^2[\Gamma_z(x_1, ..., x_m) - 2\Gamma_z(x_1, y_1, ..., x_m, y_m) + \Gamma_z(y_1, ..., y_m)]. \tag{2.6}$$

Proof. We apply Corollary 2.3 with $a = b = c = M$ and the inequality (2.5) reduces to the inequality (2.6). This completes the proof. □

Next, we shall give the similar result of Theorem 2.1 can also be stated:

Theorem 2.5. Let X be a 2-inner product space and $\alpha, \beta, \gamma \in R$ satisfy the following condition:

$$\alpha, \gamma > 0 \text{ and } \beta^2 \geq \alpha \gamma.$$
Then for all $x_i, y_i \in X (i = 1, \ldots, m)$ and $z \notin V (x_1, \ldots, x_m, y_1, \ldots, y_m)$ with
\[
\alpha \geq \Gamma_z (x_1, \ldots, x_m)^{1/2} \quad \text{or} \quad \gamma \geq \Gamma_z (y_1, \ldots, y_m)^{1/2},
\]
we have the inequality:
\begin{equation}
\tag{2.7}
[\alpha - \Gamma_z (x_1, \ldots, x_m)^{1/2}] [\gamma - \Gamma_z (y_1, \ldots, y_m)^{1/2}] \\
\leq [\beta - \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m)^{1/2}]^2.
\end{equation}

Proof. Consider the polynomial
\[
\tilde{q}(t) = \tilde{p}(t) - (\Gamma_z (x_1, \ldots, x_m)^{1/2} t^2 + 2 \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m) t \\
+ \Gamma_z (y_1, \ldots, y_m)^{1/2})
\]
where $\tilde{p}(t) = at^2 - 2bt + c$ for all $t \in R$. By a similar argument to that in proof of Theorem 2.1, we obtain the inequality (2.7). This completes the proof. \qed

Using Theorem 2.5, we can obtain the following corollaries:

Corollary 2.6. Let $x_i, z \in X (i = 1, 2, \ldots, m)$, $\alpha, \beta, \gamma \in R$ be as in Theorem 2.5. Then we have the inequality:
\begin{equation}
\tag{2.8}
0 \leq \Gamma_z (x_1, \ldots, x_m)^{1/2} \Gamma_z (y_1, \ldots, y_m)^{1/2} - \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m) \\
\leq \beta^2 - \alpha \gamma + \alpha \Gamma_z (y_1, \ldots, y_m)^{1/2} + \gamma \Gamma_z (x_1, \ldots, x_m)^{1/2} \\
- 2 \beta \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m).
\end{equation}

Corollary 2.7. Let X be a 2-inner product space and $M > 0$. If $x_i, y_i, z \in X$ are such that $\Gamma_z (x_1, \ldots, x_m)^{1/2} \leq M$ or $\Gamma_z (y_1, \ldots, y_m)^{1/2} \leq M$, then we have the inequality:
\begin{equation}
\tag{2.9}
0 \leq \Gamma_z (x_1, \ldots, x_m)^{1/2} \Gamma_z (y_1, \ldots, y_m)^{1/2} - \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m) \\
\leq M [\Gamma_z (x_1, \ldots, x_m)^{1/2} + \Gamma_z (y_1, \ldots, y_m)^{1/2}] \\
- 2 \tilde{\Gamma}_z (x_1, y_1, \ldots, x_m, y_m)^{1/2}].
\end{equation}

Remark 1. Using the inequality (1.6)
\[
\Gamma_z (x_1, \ldots, x_k, x_{k+1}, \ldots, x_m) \leq \Gamma_z (x_1, \ldots, x_k) \Gamma_z (x_{k+1}, \ldots, x_m)
\]
and Corollary 2.3 and 2.4, we have the following:

(i) If $a, b, c \in R$ with $a, c > 0$ and $b^2 \geq ac > 0$, then for all $a \geq \Gamma_z (x_1, \ldots, x_k)^2$ or $c \geq \Gamma_z (x_{k+1}, \ldots, x_m)^2$, we have the inequality
\[
[a - \Gamma_z (x_1, \ldots, x_k)^2] [c - \Gamma_z (x_{k+1}, \ldots, x_m)^2] \leq [b - \Gamma_z (x_1, \ldots, x_m)]^2.
\]
from which we easily obtains
\[
0 \leq \Gamma_z(x_1, \ldots, x_k)^2 \Gamma_z(x_{k+1}, \ldots, x_m)^2 - \Gamma_z(x_1, \ldots, x_m)^2
\]
(2.10)
\[
\leq b^2 - ac + a\Gamma_z(x_{k+1}, \ldots, x_m)^2 + c\Gamma_z(x_1, \ldots, x_k)^2 + 2b\Gamma_z(x_1, \ldots, x_m),
\]

(ii) Let \(M > 0 \). If \(\Gamma_z(x_1, \ldots, x_k) \leq M \) or \(\Gamma_z(x_{k+1}, \ldots, x_m) \leq M \), then
\[
0 \leq \Gamma_z(x_1, \ldots, x_k)^2 \Gamma_z(x_{k+1}, \ldots, x_m)^2 - \Gamma_z(x_1, \ldots, x_m)^2
\]
(2.11)
\[
\leq M^2[\Gamma_z(x_1, \ldots, x_k)^2 + \Gamma_z(x_{k+1}, \ldots, x_m)^2 - 2\Gamma_z(x_1, \ldots, x_m)].
\]

Remark 2. Next, from the inequality (1.6) and Corollary 2.6 and 2.7, we obtain the following:
(i) If \(\alpha, \beta, \gamma \in R \) with \(\alpha, \gamma > 0 \) and \(\beta^2 \leq \alpha\gamma \), then for all \(x_i \in X \) \((i = 1, \ldots, m)\) with \(\alpha \geq \Gamma_z(x_1, \ldots, x_k) \) or \(\gamma \geq \Gamma_z(x_{k+1}, \ldots, x_m) \), we have the inequality
\[
[\alpha - \Gamma_z(x_1, \ldots, x_k)][\gamma - \Gamma_z(x_{k+1}, \ldots, x_m)] \leq [\beta - \Gamma_z(x_1, \ldots, x_m)^{1/2}]^2,
\]
which gives
\[
0 \leq \Gamma_z(x_1, \ldots, x_k) \Gamma_z(x_{k+1}, \ldots, x_m) - \Gamma_z(x_1, \ldots, x_m)
\]
(2.12)
\[
\leq \beta^2 - \alpha\gamma + \alpha\Gamma_z(x_{k+1}, \ldots, x_m)
\]
\[
+ \gamma\Gamma_z(x_1, \ldots, x_k) + 2\beta\Gamma_z(x_1, \ldots, x_m)^{1/2},
\]

(ii) Let \(M > 0 \). If \(\Gamma_z(x_1, \ldots, x_k) \leq M \) or \(\Gamma_z(x_{k+1}, \ldots, x_m) \leq M \), then
\[
0 \leq \Gamma_z(x_1, \ldots, x_k) \Gamma_z(x_{k+1}, \ldots, x_m) - \Gamma_z(x_1, \ldots, x_m)
\]
(2.13)
\[
\leq M[\Gamma_z(x_1, \ldots, x_k) + \Gamma_z(x_{k+1}, \ldots, x_m) - 2\Gamma_z(x_1, \ldots, x_m)^{1/2}].
\]

3. Aczél’s type inequality and Hadamard’s inequality

Let \(X \) be a 2-inner product space, \(x_1, x_2, \ldots, x_m \) be the nonzero vectors in \(X \) and \(z \in X \) such that \(z \notin V(x_1, \ldots, x_m) \). Then we have
\[
\Gamma_z(x_1, \ldots, x_m) \leq \prod_{i=1}^{m} \|x_i, z\|^2.
\]
(3.1)

For \(m \geq 2 \), the equality in (3.1) holds if and only if \((x_i, x_j|z) = \delta_{ij}\|x_i, z\|\|x_j, z\| \) for all \(1 \leq i, j \leq m \). Then the inequality (3.1) is said to be Hadamard’s inequality for the Gram determinant in 2-inner product spaces.
In this section, we shall give some inequality of Aczél’s type inequality for Gramians which generalize the results of Hadamard’s inequality (3.1).

Theorem 3.1. Let X be a 2-inner product space and $a, b, c \in R$ satisfying the following condition:

$$a, c > 0 \quad \text{and} \quad b^2 \geq ac.$$

Then for all $x_i \in X \ (i = 1, 2, ..., m, \ m \geq 2)$ and $z \notin V(x_1, ..., x_m)$ with

$$a \geq \prod_{i=1}^{k} \|x_i, z\|^4 \quad \text{or} \quad c \geq \prod_{i=k+1}^{m} \|x_i, z\|^4,$$

where $1 \leq k \leq m$, we have the inequality:

$$(3.2) \quad (b \pm \Gamma_z(x_1, ..., x_m))^2 \geq \left(a - \prod_{i=1}^{k} \|x_i, z\|^4 \right) \left(c - \prod_{i=k+1}^{m} \|x_i, z\|^4 \right).$$

Proof. Suppose that $a \geq \prod_{i=1}^{k} \|x_i, z\|^4$ and fixed $k \in \{1, ..., m\}$. Let us consider the polynomial

$$\psi(t) = at^2 - 2bt + c \quad \text{for all} \quad t \in R.$$

Then, since $a > 0$ and $b^2 \geq ac$, there exists $t_o \in R$ such that $\psi(t_o) = 0$. Now, put

$$\phi(t) = \psi(t) - \left[\left(\prod_{i=1}^{k} \|x_i, z\|^4 \right) t^2 \mp 2b \Gamma_z(x_1, ..., x_m) t + \prod_{i=k+1}^{m} \|x_i, z\|^4 \right]$$

for all $t \in R$. Then we have

$$\phi(t) = \left(a - \prod_{i=1}^{k} \|x_i, z\|^4 \right) t^2 \mp 2(b \pm \Gamma_z(x_1, ..., x_m)) t + \left(c - \prod_{i=k+1}^{m} \|x_i, z\|^4 \right)$$

for all $t \in R$. By the Hadamard’s inequality, we have

$$\Gamma_z(x_1, ..., x_m)^2 \leq \prod_{i=1}^{m} \|x_i, z\|^2 = \left(\prod_{i=1}^{k} \|x_i, z\|^4 \right) \left(\prod_{i=k+1}^{m} \|x_i, z\|^4 \right),$$

which gives

$$\left(\prod_{i=1}^{k} \|x_i, z\|^4 \right) t^2 \mp 2\Gamma_z(x_1, ..., x_m) t + \prod_{i=k+1}^{m} \|x_i, z\|^4 \geq 0.$$
for all $t \in R$. Since $\phi(t_0) \geq 0$, $\phi(t) = 0$ has at least one solution in R. By the discriminant we have

$$0 \leq \left(b + \Gamma_z(x_1, ..., x_m) \right)^2 - \left(a - \prod_{i=1}^{k} \|x_i, z\|^4 \right) \left(c - \prod_{i=k+1}^{m} \|x_i, z\|^4 \right).$$

Thus, by the inequalities (3.3), we have the inequality (3.2).

Next, suppose that $c \geq \prod_{i=k+1}^{m} \|x_i, z\|^4$. Then we have the same conclusion by considering polynomials

$$\psi_1(t) = ct^2 - 2bt + a, \quad \text{for all } \quad t \in R$$

and

$$\phi_1(t) = \psi_1(t) - \left[\left(\prod_{i=k+1}^{m} \|x_i, z\|^4 \right) t^2 + 2b\Gamma_z(x_1, ..., x_m)t + \prod_{i=1}^{k} \|x_i, z\|^4 \right].$$

This completes the proof. □

Using Theorem 3.1, we can state the following corollaries:

Corollary 3.2. Let a, b, c, x_i, z be as in Theorem 3.1. Then we have the inequality:

$$0 \leq \prod_{i=1}^{m} \|x_i, z\|^4 - \Gamma_z(x_1, ..., x_m)^2$$

$$\leq b^2 - ac + a \prod_{i=k+1}^{m} \|x_i, z\|^4 + c \prod_{i=1}^{k} \|x_i, z\|^4 \pm 2b\Gamma_z(x_1, ..., x_m).$$

Corollary 3.3. Let X be a 2-inner product space and $M > 0$. If $x_i \in X(i = 1, ..., m)$ and $z \notin V(x_1, ..., x_m)$ with $\prod_{i=1}^{k} \|x_i, z\|^2 \leq M$ or $\prod_{i=k+1}^{m} \|x_i, z\|^2 \leq M$, then we have the inequality:

$$0 \leq \prod_{i=1}^{m} \|x_i, z\|^4 - \Gamma_z(x_1, ..., x_m)^2$$

$$\leq M^2 \left(\prod_{i=1}^{k} \|x_i, z\|^4 - 2\Gamma_z(x_1, ..., x_m) + \prod_{i=k+1}^{m} \|x_i, z\|^4 \right).$$

Theorem 3.4. Let X be a 2-inner product space and $\alpha, \beta, \gamma \in R$ satisfy the following condition:

$$\alpha, \gamma > 0 \quad \text{and} \quad \beta^2 \geq \alpha \gamma.$$

Then for all $x_i \in X(i = 1, ..., m)$ and $z \notin V(x_1, ..., x_m)$ with

$$\alpha \geq \prod_{i=1}^{k} \|x_i, z\|^2 \quad \text{or} \quad \gamma \geq \prod_{i=k+1}^{m} \|x_i, z\|^2$$
where $1 \leq k \leq m$, we have the inequality:

\begin{equation}
(3.6) \quad \left[\alpha - \prod_{i=1}^{k} \|x_i, z\|^2 \right] \left[\gamma - \prod_{i=k+1}^{m} \|x_i, z\|^2 \right] \leq \left[\beta - [\Gamma_z(x_1, ..., x_m)]^{1/2} \right]^2.
\end{equation}

By the use of the above theorem, we can also give the following corollaries:

Corollary 3.5. Let $\alpha, \beta, \gamma \in \mathbb{R}, x_i, z \in X$ ($i = 1, ..., m$) be as in Theorem 3.4. Then we have

\begin{equation}
0 \leq \prod_{i=1}^{m} \|x_i, z\|^2 - \Gamma_z(x_1, ..., x_m)
\end{equation}

\begin{equation}
\leq \beta^2 - \alpha \gamma + \alpha \prod_{i=k+1}^{m} \|x_i, z\|^2 + \gamma \prod_{i=1}^{k} \|x_i, z\|^2 - 2\beta \Gamma_z(x_1, ..., x_m)^{1/2}.
\end{equation}

Corollary 3.6. Let X be a 2-inner product space and $M > 0$. If $x_1, x_2, ..., x_m \in X$ and $z \notin V(x_1, ..., x_m)$ with

\begin{equation}
\prod_{i=1}^{k} \|x_i, z\|^2 \leq M \quad \text{or} \quad \prod_{i=k+1}^{m} \|x_i, z\|^2 \leq M,
\end{equation}

then we have the inequality:

\begin{equation}
0 \leq \prod_{i=1}^{m} \|x_i, z\|^2 - \Gamma_z(x_1, ..., x_m)
\end{equation}

\begin{equation}
\leq M \left(\prod_{i=1}^{k} \|x_i, z\|^2 + \prod_{i=k+1}^{m} \|x_i, z\|^2 - 2\Gamma_z(x_1, ..., x_m)^{1/2} \right).
\end{equation}

References

Seong Sik Kim
Department of Mathematics
Dongeui University
Pusan 614-714, Korea
e-mail:sskim@deu.ac.kr

Yeol Je Cho
Department of Mathematics Education and RINS
Gyeongsang National University
Chinju 660-701, Korea
e-mail:mathyjcho@yahoo.com

Sever S. Dragomir
School of Communication and informatics
Victoria University of Technology
PO Box 14428
Melbourne Vic. 8001, Australia
e-mail:sever.dragomir@vu.edu.au