AN EVEN EASIER PROOF ON MONOTONICITY OF STOLARSKY MEANS

ALFRED WITKOWSKI

ABSTRACT. A new, very simple proof of monotonicity of Stolarsky means is presented in the paper

1. INTRODUCTION

The Extended Mean Values (many authors call them Stolarsky means) appeared in the literature for the first time in Stolarsky's paper [13]. They are defined for positive x, y and real r, s by (1.1)

$$E(r,s) = E(r,s;x,y) = \begin{cases} \left(\frac{s}{r}\frac{x^r - y^r}{x^s - y^s}\right)^{1/(r-s)} & sr(s-r)(x-y) \neq 0, \\ \left(\frac{1}{r}\frac{x^r - y^r}{\log x - \log y}\right)^{1/r} & r(x-y) \neq 0, s = 0, \\ e^{-1/r}\left(x^{x^r}/y^{y^r}\right)^{1/(x^r - y^r)} & r = s, r(x-y) \neq 0, \\ \sqrt{xy} & r = s = 0, x - y \neq 0, \\ x & x = y \end{cases}$$

and attract attention of many mathematicians, because they contain well-known means such as power means $M_r(x, y) = E(2r, r; x, y)$, the logarithmic mean $L(x, y) = E(1, 0; x, y) = \frac{x-y}{\log x - \log y}$ and Heronian means $H_n(x, y) = E(1 + 1/n, 1/n; x, y)$. Monotonicity of E is one of the first subjects to deal with.

Theorem 1.1. For arbitrary $r, s \in \mathbf{R}$ E(r, s; x, y) strictly increases in x and y. For fixed $x \neq y$ E(r, s; x, y) strictly increases in r and s.

The first part was discovered by Stolarsky ([13]), Leach and Sholander ([5]) were the first to show the second part. Over last 30 years mathematicians have made serious progress investigating properties of Stolarsky means, arriving at many new proofs.

Date: November 20, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 26B25.

Key words and phrases. Stolarsky means, monotonicity, convexity.

Observe that in case $r \neq s$ we can represent E as

(1.2)
$$E(r,s;x,y) = \left(\frac{L(x^r,y^r)}{L(x^s,y^s)}\right)^{1/(r-s)} = \left(\frac{\int_y^x t^{r-1}dt}{\int_y^x t^{s-1}dt}\right)^{1/(r-s)}$$

which leads to

(1.3)

$$\log E(r,r;x,y) = \lim_{s \to r} \frac{\log L(x^r,y^r) - \log L(x^s,y^s)}{r-s} = \frac{d}{dr} \log L(x^r,y^r),$$

and this, in turn, yields

(1.4)

$$\log E(r, s; x, y) = \frac{\log L(x^r, y^r) - \log L(x^s, y^s)}{r - s} = \frac{\int_s^r \log E(t, t; x, y) dt}{r - s}.$$

Thus, we see that means E(t, t; x, y) (known as *identric means*) are of particular importance.

The easiest way to prove monotonicity in r, s is by the following, elementary characterisation of convex functions (see e.g. [1, p. 26]).

Lemma 1.2. A function f is convex if and only if the divided difference

$$g(x,y) = \frac{f(x) - f(y)}{x - y}$$
 for $x \neq y$

increases in both variables.

As a matter of fact, all known direct proofs use some version of the above lemma.

Stolarsky ([13]) proved monotonicity in r, s using (1.4) and showing by straightforward differentiation that $\log E(t, t; x, y)$ is strictly increasing in t.

In 1983 Leach and Sholander ([6]) and later Páles and Czinder ([7, 4]) found sufficient and necessary conditions for

$$E(a, b; x, y) \le E(c, d; x, y)$$
 for every x, y

to hold. Monotonicity in r, s is a simple corollary of their results.

Proofs in [11, 17, 9] base on convexity (demonstrated by more or less complicated calculations) of the function $\varphi(t) = \log \frac{x^t - y^t}{t}$ and Lemma 1.2.

The first proof of monotonicity in x, y (by Leach and Sholander [5]) uses the fact that if a + b + c = 0 and $a\alpha + b\beta + c\gamma = 0$, then for $0 < \theta \neq 1$

$$\operatorname{sgn}(a\theta^{\alpha} + b\theta^{\beta} + c\theta^{\gamma}) = -\operatorname{sgn}(abc)$$

Recently, several proofs of monotonicity in x, y have been published using differentiation of specially selected functions ([9, 3]). In [14] the author represented E(r, s; x, 1) as the composition of four strictly monotone functions: x^s , $\frac{x^{r/s}-1}{x-1}$, $\frac{s}{r}x$, $x^{1/(r-s)}$ and applied the Chain Rule.

Qi used the integral representation (1.2) introducing generalized weighted mean values

$$M_{p,f}(r,s;x,y) = \left(\frac{\int_{x}^{y} p(t)f^{r}(t)dt}{\int_{x}^{y} p(t)f^{s}(t)dt}\right)^{1/(r-s)},$$

where p is nonnegative and f is a positive continuous function. They are always inceasing in r, s and monotone in x, y if and only if f is monotone. Several proofs of this fact can be found in [8, 12, 10, 2, 14].

Another approach to the subject can be found in [16], where H-Z. Yang considered means of the form $\mathcal{H}_f(r,s;x,y) = \left(\frac{f(x^r,y^r)}{f(x^s,y^s)}\right)^{1/(r-s)}$ and found sufficient conditions for f to guarantee monotonicity of \mathcal{H}_f . Needless to say, the logarithmic mean satisfies these conditions.

In our proof we shall need Lemma 1.2, Cauchy-Schwarz inequality and the integral representation (1.4).

Proof. To show monotonicity in r, s, we adapt the proof from [15]. By the Cauchy-Schwarz inequality

$$\left(\int_{y}^{x} t^{(r+s)/2} dt\right)^{2} \leq \int_{y}^{x} t^{r} dt \int_{y}^{x} t^{s} dt,$$

which shows that $\log \left| \int_{y}^{x} t^{r} dt \right|$ is convex, and Lemma 1.2 yields monotonicity of $\log E(r, s; x, y)$.

For the second part, note that since for fixed $r \neq 0$ the function e^{-tr} is strictly convex, $\frac{e^{-rt}-1}{t}$ strictly increases by Lemma 1.2, hence so does $\frac{t}{1-e^{-rt}}$. ON the other hand

$$\log E(r,r;e^t,1) = -\frac{1}{r} + \frac{te^{rt}}{e^{rt}-1} = -\frac{1}{r} + \frac{t}{1-e^{-rt}},$$

and homogeneity of Stolarsky means in x, y implies that identric means are strictly increasing (case r = 0 is trivial). Employing (1.4), we see that this property extends to all parameters r, s.

References

P. S. Bullen. Handbook of means and their inequalities, volume 560 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003. Revised from the 1988 original [P. S. Bullen, D. S. Mitrinović and P. M. Vasić, it Means and their inequalities, Reidel, Dordrecht; MR0947142].

ALFRED WITKOWSKI

- [2] Chao-Ping Chen and Feng Qi. A new proof for monotonicity of the generalized weighted mean values. Adv. Stud. Contemp. Math. (Kyungshang), 6(1):13–16, 2003.
- [3] Chao-Ping Chen and Feng Qi. An alternative proof of monotonicity for the extended mean values. Aust. J. Math. Anal. Appl., 1(2):Art. 11, 4 pp. (electronic), 2004.
- [4] Péter Czinder and Zsolt Páles. Local monotonicity properties of two-variable Gini means and the comparison theorem revisited. J. Math. Anal. Appl., 301(2):427–438, 2005.
- [5] E. B. Leach and M. C. Sholander. Extended mean values. Amer. Math. Monthly, 85(2):84-90, 1978.
- [6] E. B. Leach and M. C. Sholander. Extended mean values. II. J. Math. Anal. Appl., 92(1):207–223, 1983.
- [7] Zsolt Páles. Inequalities for differences of powers. J. Math. Anal. Appl., 131(1):271-281, 1988.
- [8] Feng Qi. Generalized weighted mean values with two parameters. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2723-2732, 1998.
- [9] Feng Qi and Qiu-Ming Luo. A simple proof of monotonicity for extended mean values. J. Math. Anal. Appl., 224(2):356–359, 1998.
- [10] Feng Qi, Jia-Qiang Mei, Da-Feng Xia, and Sen-Lin Xu. New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values. *Math. Inequal. Appl.*, 3(3):377–383, 2000.
- [11] Feng Qi, Sen-Lin Xu, and Lokenath Debnath. A new proof of monotonicity for extended mean values. Int. J. Math. Math. Sci., 22(2):417–421, 1999.
- [12] Feng Qi and Shi-Qin Zhang. Note on monotonicity of generalized weighted mean values. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1989):3259-3260, 1999.
- [13] Kenneth B. Stolarsky. Generalizations of the logarithmic mean. Math. Mag., 48:87–92, 1975.
- [14] Alfred Witkowski. Monotonicity of generalized weighted mean values. Colloq. Math., 99(2):203-206, 2004.
- [15] Alfred Witkowski. Weighted extended mean values. Colloq. Math., 100(1):111-117, 2004.
- [16] Zhen-Hang Yang. On the homogeneous functions with two parameters and its monotonicity. JIPAM. J. Inequal. Pure Appl. Math., 6(4), 2005.
- [17] Su-Ling Zhang, Chao-Ping Chen, and Feng Qi. Another proof of monotonicity for the extended mean values. *Tamkang J. Math.*, 37(3):207–209, 2006.

UNIVERSITY OF TECHNOLOGY AND LIFE SCIENCES, INSTITUTE OF MATHE-MATICS AND PHYSICS, AL. PROF. KALISKIEGO 7, 85-796 BYDGOSZCZ, POLAND *E-mail address*: alfred.witkowski@utp.edu.pl, a4karo@gmail.com

4