NEW HERMITE-HADAMARD-TYPE INEQUALITIES FOR
CONVEX FUNCTIONS

KUEI-LIN TSENG, SHIOW-RU HWANG, AND SEVER S. DRAGOMIR

ABSTRACT. In this paper we establish some new Hermite-Hadamard- type
inequalities for convex functions and give several applications of interest.

1. INTRODUCTION

Throughout this paper, let f : [a,b] — R be convex, a < x <y <y <z’ <b,
x4+ =y+y and Q = [z,y] U [/, 2] . We define the following functions on [0, 1]
that are associated with the well known Hermite-Hadamard inequality [1]

(1.1) (45 <o [ras < L0,
ey 1 b a+b
HO=5— | f(ts+(1—t)2)ds;
() = 5ot [ s 0= 00) + £ty = 5)+ (1= 0] ds
o) = 5o [ (s (0= 09) + 7 s/ =)+ (1= )] ds

b b
F(t):(b—laf/a/af(ts—'_(l_t)u)deU;

1
F (t):w/ﬂ [ s+ (1= 0)u) dsas

Po=gmg [ (57 (7))
A5 () )
PL(t) = 2(yz)/:[f(tx—i—(l—t)s)+f(tq;’+(1—t)(a;+x'—s))}ds;

G(t)zé[f(ta—l—(l—t)a;b)+f(tb+(1—t)a_2|—b>};

G (0)= 3 1 (lm 4+ (1= 0)9) + F (12! + (1 - 0)y')];
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Ga (1) = 5 [f (b + (1= 0)y') + f (12 + (1~ D) )]
1 b
L(t)2<b_a)/a [f (ba+ (1 —t)s) + f (tb+ (1 —t)s)]ds
and
Ll(t)4(y1_$>/ﬂ[f(tx+(1t)s)+f(tx'+(1t)s)]ds.

Remark 1. We note that 2 = [a,b] and H (t) = Hy (t) = Ha2 (t), F (t) = F1 (1),
Pt)=P (), G{t)=G1(t)=G2(t), L(t)=Li(t) on [0,]] asz =@,y =y =

‘%"b and ' = D.

For some results which generalize, improve, and extend this famous integral
inequality (1.1) see [2] — [16].

In [2], Dragomir established the following Hermite-Hadamard-type inequalities
related to the functions H, F' which refine the first inequality of (1.1).

Theorem A. Let f, H be defined as above. Then H is convex, increasing on [0,1],
and for all t € [0,1], we have

a b
wy () -rosro a0 - [
and

Theorem B. Let f, F be defined as above. Then
(1) F is conver on [0,1], symmetric about }, F is decreasing on [0,%] and
imcreasing on [%, 1] , and we have

tzE%]F(t)_F(O)_F(l)_bia/abf(s)ds
and
e () [ ()
(2) We have:
(1.3) f(a;rb) §F<;> D HO<F@),  te01].

In [12], Yang and Hong established the following Hermite-Hadamard-type in-
equality related to the function P and which refines the second inequality of (1.1).

Theorem C. Let f, P be defined as above. Then P is convez, increasing on [0,1],
and for all t € [0,1], we have

w2 [res=ro<rosrm= OO

In [7], Dragomir et al. established the following Hermite-Hadamard-type in-
equalities related to the functions H, G, L.

Theorem D. Let f, H be defined as above. Then:
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(1) The inequality

a+3b

a+b 2 1
. <
(1.5) f< 5 >_b_a/3a4+b f(s)ds
1
< / H(t) dt
0
1 a+b 1 b
< =
<! [f( )i f(s)ds]
holds.
(2) If f is differentiable on [a,b], then we have the inequalities
b
(1.6) Ogbia/f(s)ds—H(t)

b
- lf(a);f(b)_bia/ f(s)ds]

and

fla) + f(b)
2

(f"(b) = f'(a)) (b —a)

(1.7) 0< .

—H(t) <

for allt €10,1].
Theorem E. Let f, H,G be defined as above. Then:

(1) G is convex and increasing on [0,1];

(2) We have
. a+b
H,e0=60=1(%7)
and
sup G(t)=G(1) = f(a)—&—f(b)!
te[0,1] 2

(3) The inequality
(1.8) H(t) <G (t)

holds for all t € [0, 1].
(4) The inequality

a+3b

(1.9) bfa/&:b f(s)dsgi{f <3“jb>+f<“z3b)]/ola(t)dt
1

4

a+b\  f(a)+f(b)
<3 (%) -5
(5) If f is differentiable on [a,b], then we have the inequality
(1.10) 0<H(t)—f<a—2|—b><G(t)—H(t)

for allt € [0,1].

Theorem F. Let f, H,G, L be defined as above. Then:
(1) L is convex on [0,1].
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(2) We have the inequality'

(L11)  G@) < /f Vs +t - ()+f()§f(a)42rf(b)
for allt €10,1] and
sup L(t) = M_
te[0,1]
(3) One has the inequalities:
(1.12) H(1-1t) < L(t)

and

(1.13)
for allt €10,1].

In [11], Tseng et al. established the following Hermite-Hadamard-type inequali-
ties related to the functions H, P, L, G.

Theorem G. Let f, H, P be defined as above. Then we have the following results:
(1) The inequality

1P 2
(1.14) b—a/a f(s)ds < P ST f(s)ds

holds.
(2) The inequalities

(1.15) L)< P(t

and
(1.16) 0<Pt)—G((t) <

hold for all t € [0,1].
(3) If f is differentiable on [a,b], then we have the inequalities

(1.17) 0<tlb_ /f d—f<a+b> ia/abf(s)ds

(1.18) 0<P@t)—f <“;Fb> < (f" (b) —f’4(a)) (b—a)
and
(1.19) 0<P(t)—H(t)< (f'(b) = f'(a)) (b—a)

4
for allt €10,1].



HERMITE-HADAMARD-TYPE INEQUALITIES 5
In [5], Dragomir established the following Hermite-Hadamard-type inequality
related to the functions H, F, L.
Theorem H. Let f, F, H, L be defined as above. Then we have the inequalities
(1.20) 0<F{#)—-H@)<L(1-t)—F(t)
for allt €10,1].

In this paper, we shall establish some new Hermite-Hadamard-type inequalities
which generalize Theorems A — H and give several applications.

2. MAIN RESULTS
In order to prove our main results, we need the following lemmas:

Lemma 1 (see [9]). Let f be defined as above and let a < A< C <D< B<b
with A+ B =C + D. Then

fO+ (D)< f(A)+f(B).
The assumptions in Lemma 1 can be weakened as in the following lemma:

Lemma 2. Let f be defined as above and let a < A< C < B<banda <A<
D<B<bwithA+ B=C+ D. Then

F(C)+ (D)< f(A)+f(B).
Now, we are ready to state and prove our new results.

Theorem 1. Let x,y,y',2',Q, f, H1, Hy be defined as above. Then:

(1) Hy and Hy are convex on [0, 1].
(2) H; is increasing on [0,1] and the following inequalities

(2.1) NM+“M=HM®§m@hﬂhm=:léf@@,

2 2(y —z)
Hy(t) < )/f s)ds+ (1 —1t)- fy )J;f(y’)
(2.2) / s)ds < m)ﬂ;f(ﬂc’)
f(yzy)<ﬂﬂ>
. I
<t Q(y_x)/gf()ds—l—(l t) 5
(2.3) <2(y1_x)/ﬂf(s)ds
and

24) Hy (1) < Hy (1

hold for all t € [0,1].
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(3) The inequalities

f+rf) 1
(2.5) < f(s)ds
2 -z /[T-H/ y]u[y',“/;’”']

IN
\
F

§2[ J;f( )+2(y1—x)/nf(8)ds]

and
(2.6) f(y;y) yiz/+ £ (s)ds
< 1H2 (t)dt
0
LI f(y)+f) 1
§2[ 5 +2(y7$)/ﬂ (s)ds}
hold.
(4) If f is differentiable on [a,b], then the inequalities
(2.7) < _m/f )ds — Hy (t)
<(1-t) {f );f( ) Q(yl_x)/ﬂf(s)ds],
28) 0< T g < gy L)
and
(2.9) OSHl(t)_MS@_@f/(/)Q_f/()

hold for all t € [0,1].

Proof. (1) It is easily observed from the convexity of f that H; and Hj are convex
on [0,1].
(2) Let ¢ < tg in [0,1]. By Lemma 2, the following inequality holds for all
€ [z,9]

flis+ M —t)y+ftly+y —s)+(1—t1)y)
Sfltas+ (1 —to)y) +ft2a(y+y' —s)+(1—t2)y').

Integrating the above inequality over s on [z, y], and dividing both sides by 2 (y — z),
we have

Hi (t1) < Hy (ta).
Thus, H; is increasing on [0,1] and (2.1) holds. Using the convexity of f, the
inequality (2.1) and the substitution rule for integration, we obtain the first and
second inequalities of (2.2) and the inequality (2.3). Using simple techniques of
integration, we have the following identitiy

! ! ’ /—S S
o 1@ as = s [ r sy - ol
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By Lemma 2, the inequality
f&)+fly+y —s) < f(@)+f(@)

holds for all s € [z,y]. Integrating the above inequality over s on [z,y], dividing
both sides by 2 (y — ) and using the above identities, we derive the last inequality

of (2.2).

Again, using Lemma 2, the inequality

fls+(Q-)y)+ftly+y —s)+(1-1)y)
Sfls+ (A -y)+fty+y —s)+1—t)y)

holds for all ¢t € [0,1] and s € [z,y]. Integrating this inequality over s on [z,y],
dividing both sides by 2 (y — «) and using the definitions of H; and Ha, we derive
(2.4).

(3) Using simple techniques of integration, we have the following identities

f<>+2f _ —:c/A (/)] dtds.
1

o f(s)ds
y—x /[TJE’U]U[”T?]

_x// { <s+y>+f<y+22y/_s>}dtds,
/olHl(”‘” —x//% (ty+ (1= 1)) + f (15 + (1~ 1) )] deds

735//5% ty+y —s)+(1 -1
+f @ty + (1 —1t) (y+y —s))dtds

and

[f(y)Jrf(y’)Jr 1 )/f(s)ds}

1
2 2 2(y—x

1

2

(y)] dtds

i / /; y')+ f(y+y —s)]dtds.

By Lemma 2, the following 1nequaht1es hold for all ¢ € [0,1] and s € [z,y]

e f < (S5 e (U,

59:

tly+ v =)+ A=)y )+ fty +A—t)(y+y —s))],

[f Gy + (L —t)s)+ fts+ (1 —1)y)],

[\3\»— )
N =

()
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fs)+f®)

g+ (1= 0)5)+ £ (ts+ (1= )] < =

N =

and

Sy )+ (L= 0Y) + W+ (1) (o — )

W)+ fly+y —s)
5 .

Integrating the above inequalities over ¢ on [0, %] , over s on [z,y], dividing both
sides by (y — «) and using the above identities, we derive (2.5).
Again, using simple techniques of integration we have the following identities

f(y+y> —av/ / 2f<y+y>dtd
L et L L ) (2
/OIHQ“)‘“ — / / Flty + (1 —t)s)+ f (ts+ (1 — ) y/)] dtds

1
+<y_$)/z/0 Sy —9)+1-0y)
+f(ty+ (1 —1t) (y+y —s))]dtds

<

;[f(y)J;f(y’)Jr 1_36 /fsds}
_]:// )] dtds
_x//é y)+ fy+y —s)]dtds.

By Lemma 2, the following 1nequaht1es hold for all ¢ € [0,%] and s € [z,y] :

()< () (),

F(5E) 5l e =09+ £ -0,

2
f<3/+23/—3> S%[f(t(w Y =)+ A=ty +flty+ A=)y +y -9,

f(s)+ [ ()
2

%[f(t?/-i-(l—t)s)+f(ts+(1—t)y’)]g
S Ew+y =9+ =0+ fty+ (-0 +y )

< f(y)+f(g+y’—8)_
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Integrating the above inequalities over ¢t on [0, 1], over s on [z,y], dividing both
sides by (y — x) and using the above identities, we derive (2.6).
(4) By integration by parts, we have the following identity

! )/zy[(s—y)f’(s)+(y—s)f’(y+y’—s)]ds

2(y—=
NICEICI s
N 2 2(y—w)/szf()d'

Now, using the convexity of f, the inequalities

fl)=fls+1=t)y) <A —=t)(s—y)f'(s)

and

fty =)= flt+y -s)+ A=)y )<A=t (y—s)f (y+y —s)
hold for all ¢t € [0,1] and s € [z,y]. Integrating the above inequalities over s on
[x,y], dividing both sides by 2 (y — ) and using the above identity and (2.1), we
derive (2.7).

On the other hand, we have

f@)—f)

and

and taking their sum:

i) O TWHIW Ly @ t@ - r @)
yn L=t )

Finally, (2.8) and (2.9) follow from (2.1), (2.2)and (2.10).
This completes the proof. O

Remark 2. Letx = a, y =y = ”%rb and ' = b in Theorem 1. Then Hy (t) =
Hy (t) = H (t) (t €10,1]) and Theorem 1 reduces to Theorems A and D.

Theorem 2. Let z,y,y',x',Q, f, Hi, Py be defined as above. Then we have the
following results:

(1) Py is convex on [0,1].

(2) Py is increasing on [0,1] and the following inequalities

(2.11) Q(yl_x)/ﬂf(s)ds —P(0)<P(t)<P(1)= M
and
L f(z)+f ()
P (t) < (l—t)-m/ﬂf(s)ds—&—t-f
(2.12) < M

hold for all t € [0,1].



10 KUEI-LIN TSENG, SHIOW-RU HWANG, AND SEVER S. DRAGOMIR

(3) The inequalities

1 1
01 g OS5 e O

1

S/o Py (t)dt
11f(2)+f(2)) 1 o) ds
_2[ 2 +2(yw)/nf()d]
and
(2.14) Hy (t) < Py (t) (te0,1))
hold.
(4) If f is differentiable on [a,b], then the mequalztzes
(y) + 1)
(219) Ogt[ —w/f 2 }
<P1() m‘/gf(s)ds,
(2.16) 0< P (t) — f(y) ;f(y/) < (y— 1) 1 (") 2_ f! (;U)7
ey 0 IEHE gy LS
and
(2.18) 0< P (t)—Hy(t) < (y—x) (@) — f' (o)

hold for all t € [0,1].

Proof. (1) Tt is easily observed from the convexity of f that P; is convex on [0,1].
Let t1 < tg in [0, 1]. By Lemma 2, the following inequality holds for all s € [z, ]
fliz+ (1 —t1)s)+ ftax' + (1 —t1) (x + 2" — 5))

< fltaw+ (1 —t2)s) + f (t22’ + (1 —t2) (x + 2" — s)).

Integrating the above inequality over s on [z, y], and dividing both sides by 2 (y — z),
we have

Py (t1) < Py (t2).

Thus, P; is increasing on [0,1] and (2.11) holds.

Using the convexity of f, the inequality (2.11) and the substitution rule for
integration, the inequality (2.12) holds.

(3) Using simple techniques of integration, we have the following identities

ﬁ/gf —x// [f (s) + f (x4 2’ — s)]dtds,

P L O [ (5 o (25 e
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1
2

/OlPl(t)dt: %[f(ts—i—(l—t)x)ﬁ—f(tx—&—(l—t)s)]dtds
//§% (tz' + (1 —t) (x + 2" — s))
+f(t(z+a’ —s)+ (1—t)a)]dtds
and
1[f(z)+ f(a') 1 ) ds
2[ 2 +2<y—m>/f”d}

1

N

(s)] dtds

//%[f(x—l—x’—s)—i—f(x’)]dtds.

By Lemma 2, the following mequahtles hold for all ¢t € [0 ] and s € [z, y]
27 —
PO e o < £ (T50) 4 g (T2,

f<$+s) S%[f(ter(1—t)%‘)+f(m+(1_’5)5)]’

0

—LE

f<x+2m,8) Sl[f(tac’+(1—lf)(36+x'—5))—I-JC(15(~T+x/_3)4'(1_”:5,)]’

f )+ £ (s)

[flts+(L—t)z)+ f(te+ (1 —1t)s)] < ;

and
U (L) (@t a =)+ f (@t a’ =)+ (1 1))

St s+ (@)
< 5 .
Integrating the above inequalities over ¢ on [O, %] , over s on [z,y|, dividing both
sides by (y — x) and the above identities, we derive (2.13).
Finally, (2.14) follows from (2.1) and (2.11).
(4) Integrating by parts, we have the following identitiy

1 v / / /
g(y_x)/w [(z—s)f' (s)+ (s —a) f' (x4 —s)]ds

L [ e J@EHIW)

_2(y—w)/9f()d 2 '

Now, using the convexity of f, the inequalities

flz+ (1 —t)s)—f(s) =t(@—s)f (s)

and
fr'+Q-t)(z+a" —s)—fz+a —s)>t(s—z) f (x+2' —3)

hold for all ¢t € [0,1] and s € [z,y]. Integrating the above inequalities over s on
[x,y], dividing both sides by 2 (y — =) and using the above identity and (2.1), we
derive (2.15).
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Finally, (2.16) — (2.18) follow from (2.1), (2.10), (2.11) and (2.14).
This completes the proof. ([l

Theorem 3. Let x,y,y',x',Q, f, H1, Ha, F be defined as above. Then we have the
following results:
(1) Fy is convez on [0,1] and symmetric about 3.

(2) Fy is decreasing on [0, %] and increasing on [%, 1] ,

1
(2.19) s B = RO =R (0) = 5ot /Q F(s)ds

and

. B 1 - 1 s+u

(3) We have:

Hl (t) + H2 (t) < F1 (t)

(2.21) 5 <

and

(222 fy)+2f (%) +f ) - <1>

4
for allt €10,1].
Proof. (1) It is easily observed from the convexity of f that Fj is convex on [0,1].
By changing variables, we have
Fl(f):F1(1—t)7 tE[O,l}
from which we get that F is symmetric about %
(2) Let t; < tg in [0 1] . Using the symmetry of F7, we have

]
(2.23) Fy (t1)=%[F1 (t1) + F1 (1 —t1)],
(2.24) Fy (tg) = % [F1 (t2) + F1 (1 — t2)]

and, by Lemma 2, we obtain
1 1
(2.25) 5 [Fi (t2) + F1 (1 —19)] < 3 [Fi(t1)+ F1 (1 —1ty)].

From (2.23)—(2.25), we obtain that F is decreasing on [0, 1] . Since F} is symmetric
about % and F3 is decreasing on [O, %], we get that F} is increasing on [%, 1] . Using
the symmetry and monotonicity of Fy, we derive (2.19) and (2.20).

(3) Using the substitution rules for integration, we have the following identities:

Fi(t) = {/y/y [F(ts+ (L—t)u) + f(ts+ (1 — ) (y + ¢/ — w))] dsdu

L
A(y— =)
w [ [ ewry -9+ a-nu

+ f<t<y+y's)+<1t><y+y'u>>]dsdu}
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and

Hi(t)+Hy(t) 1
2 4(y )’

+/:/xy[f<t<y+y's>+<1t>y>

{/:/:[f(ter(l—t)y)+f(ts+(1_t)yf)]dsdu

+fty+y —s)+ (1 —-1)y)] dsdu}

for all ¢ € [0,1]. By Lemma 2, the following inequalities hold for all ¢ € [0,1],
s € [z,y] and u € [z, Y]

fls+ @ =t)y)+fts+ 1 -0)y) < flts+ (1 —u)+f(ts+ (1 —1) (y+y —u),

fly+y —s)+ A=)y +f(t@+y —s)+1-1)y)
<Sfly+y =)+ A-tu)+fEy+y —s)+ 1=ty +y —u)).
Dividing the above inequalities by 4 (y — m)2 , integrating them over s on [z, y|, over

w on [z,y] and using the above identities, we derive the inequality (2.21).
From the inequalities (2.3), (2.21) and the monotonicity of Hy, we have

fy)+2f (%) +1 ) _ H1(0)+ Hs (3)
4 - 2
< Hy (3) + H2 (5)

1
S Fl <2) ’
from which we derive the inequality (2.22).
This completes the proof. ([l

Remark 3. Letz = a,y =y = “E* anda’ = b in Theorem 3. Then F (t) = F (t),
H, (t)=Hy(t)=H (t) (t € [0,1]) and Theorem 3 reduces to Theorem B.

Theorem 4. Let z,y,y', 2, f, H1, P1,G1,Gy be defined as above. Then we have
the following results:

(1) G1 and Gy are convex on [0,1].
(2) G is increasing on [0,1], Go is decreasing on {O, %} and increasing

on [%, 1} , and the inequalities

) T g g <oim <o = LDELED
and
e 1(5E) - (355 ) <G G - L)

hold for all t € [0,1].
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(3) The inequalities
(2.28) H (t) <G (t) < P (1)
and
(2.29) Gs (t) <Gy (b)

hold for all t € [0,1].
(4) The inequalities

(2.30) yix /[”,y]u[y/,w,;y/] f(s)ds < % [f ($;y> +f (x';y/ﬂ

2

< | G
< fo(w) +f@)+f )+ W)
and | !
ol s (55 (222
< 1 Gs (t) dt
< fo(w) +f@)+f W+ )
hold. : '
(5) The inequalities
(2.32) 0< (- LW +2f W) — ) — m )
and
(2.33) 0< P () -G (1) < L) ;f @) _ p )

hold for all t € [0,1].

Proof. (1) It is easily observed from the convexity of f that G; and G5 are convex
on [0,1].

(2)Let0§t1<t2§1and0§u1<u2§Q(y;,__yz)§31<52§1.ByLemma2,

the following inequalities hold:
1
Gi(t) = If (he+ (1 =t)y) + f (2’ + (1 = t)y)]

< Lt + (1= t2)y) + £ (ba’ + (1 — 12) ¢)]

2
= G (t2),
G (1) = 5[] (wna” + (1 — w2) ) + f (s + (1~ ) ')
< 3 (na + (1= w)y) + f z + (1~ w)y)]
= G2 (u1)
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and

Ga(s1) =5 [f(s1z+ (1 =s1)y) + f (512" + (1 = 51) y)]

el

< S (s2 4+ (1= s82)y) + [ (520 + (1 = 52) y)]
= GQ (82) .

Thus, G is increasing on [0, 1] and G is decreasing on [0, %} and increasing

[\]

on {%7 1} . From the monotonicity of G; and G2, we get the inequalities

M=01(O)SG1@)§G1(1):M
and
T g, (Y oy
f( 5 )GQ(Q(y’—x)>SG2(t)
< max {G> (0),G> (1)} = M

for all t € [0,1].

(3) By Lemma 2, the following inequalities hold for all ¢ € [0,1] and s € [z,y] :

flts+ 1=ty +fty+y —s)+(1-1)y)

<flz+(@-ty) +fta'+(1-1t)y)
and
flz+ A=ty +ftd’+ (1 —=t)y) < fltz+ (1 —t)s)+f (ta' + (1 —t) (x + 2" — s)).
Integrating the above inequalities over s on [z,y], and dividing both sides by
2 (y — x), we have
Hy(t) < Gi(t) < Pi(t)

for all t € [0,1].

Again, using Lemma 2, the inequality

flz+ Q=)+ fta'+(Q1—-t)y) < fla+ 1 —t)y)+ f(ta'+ (1 —-1)y)

holds for all t € [0,1]. Using the above result, we get Ga (t) < G1 (t) on [0, 1].
Using simple techniques of integration, we have the following identities

yix /[w;yyy]u[y, oy f(s)ds

*w// [ (S+y>+f<wndtds,
;[f<$;ry>+f<$+y>] _x// {<z+’y>+f<z+y>}dtds,
/OlGl(t)dt—

N

[N

[f (ty+ (1 —t)z) + f (tz + (1 — t) y)] dtds

e //1 F '+ (1= 6)y)) + f (ty' + (1~ t)2)] deds
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f(y)+f(y’)}
2

5@ @) f )+ ) dis

By Lemma 2, the followmg inequalities hold for all ¢ € [0, 1] and s € [z,y] :
S+ z+x' +y —s r+y '+
TP TI T <
P() o () = () o (50),

f(“y> LUy (=0 a) + f e+ (1 1)),
1
2

—ZC

L) <5l a0+ -0,

[f(ty+(1-1) )—i—f(ta:—i—(l—t)y)]gw
and
%[f(tm/+(l_t)y/)+f(ty/+(1—t)x')] < W

Integrating the above inequalities over ¢ on [0, 1], over s on [z,y], dividing both
sides by (y — x) and using the above identities, we derive (2.30).
Again, using simple techniques of integration, we have the following identities

"ty 2’4y

]. I2 1 3
S 1O
1|: x+y’ x/+y
L (557) o (57)

1 z 3 T4y 24y
_yx/wgy//o {f< 2 )+f< )}dtds,

! 2
/[)Gg(t)dt:yix e / %[f(t:r—i—(l—t)y')—|—f(ty'—|—(1—t)£c)]dtds

/ [ (8)+ f (x+ ' — )] dtds,

[f (tz' + (1 —t)y) + f (ty + (1 — t) ') dtds

and

f(x)+f(w’);rf()+f _x/m / (@) + f(y) + F ()] dtds.

By Lemma 2, the following inequalities hold for all ¢ € [0 7] and s € [zﬂ’ , x;ﬂ} :

Fe v =< £ (TR 11 (52,

f<“2y'>§

[f (' + (L =t)z)+ f(tz+ (1= 1)y)],

N |
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f(f;y)givaf+u—ww+fay+a—wf»
fy+1 =)+ fta+1-1)y) < f2)+ )
and
fla'+ A -t)y)+fty+1-1)a") < fy) + f ().

oty a'+y
2 0 2

both sides by (y — ) and using the above identities, we derive (2.31).
(5) Using simple techniques of integration, we have the following identities

Integrating the above inequalities over ¢ on [O, %] , OVer s on [ } , dividing

2HMﬂ:Q?aw/%;U@s+ﬂ—ﬂy%ﬁﬂﬂx+y—@+%1—ww
T fty+y =)+ A=)y )+ f(t @ —z+s)+(1—-t)y)]ds
and
2P1(t)_(yi$)/y;[f(tx+(lt)s)+f(tx+(1t)(z+ys))

H '+ (L=t (@ta’—s)+ f(ta'+(1—t)(y —2+s))]ds

for all ¢t € [0,1]. By Lemma 2, the following inequalities hold for all ¢ € [0,1] and
s € [z,y]:

L s -0y @ty —s) -1y < 2 [f(tr+ (10— 0y + F W),

2

N =

FE@+y =)+ A =0)y)+fEW —z+s)+ (1 -1t)y)

<SU) -+ + -0y,

DN | =

[f (@) + [tz + (1 = 1) y)]

S+ (=) + f(w+ (1—0) @ty —s)] < 5

and
%[f(tm'Jr(lft)(:c+x'fs))+f(t:c'+(lft)(y'—x+s))]

< S+ (= 0y)+ 1 @),

Integrating the above inequalities over s on [z,y], dividing both sides by (y — x)
and using the above identities, we obtain

(2.34) 2H, (t) < Gy (t) + M
and
(2.35) 2P (t) <Gy (t) + M
Using (2.1), (2.28), (2.34) and (2.35), we derive (2.32) and (2.33).
This completes the proof. (I

Remark 4. Let x = a,y =y = “T'H’ and ' = b in Theorem 4. Then H, (t) =
H(t), G1(t) =G2(t) =G(t) (t€][0,1]) and Theorem 4 reduces to Theorem E.
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Theorem 5. Letz,y,y,z',9Q, f, L1, P1,G1,Gs, Hi, Ho, F} be defined as above. Then
we have the following results:

(1) Ly is convez on [0,1].
(2) The following inequalities

G (t) + G2 (1)

(2.36) 5 <Li<P@®)  (telo1)
and
(237) sup L (t) =1, (1) _ / ({IJ) _; f(.%")
tel0,1]
hold.

(3) The following inequalities
Hi(1-t)+Hy(1-1¢)

(2.38) . <F () <Li(1),
(2.39) w <P ()< Ly (1)
and
(2.40) Hy(t)+ Hy (t) + Hi(l —t)+ Ha(1—-1) <P <L (t)

hold for all t € [0,1].
(4) The following inequality
Hy (t) + Ha (t)

(2.41) 0< F(t) — :

<Li(1-t)—F(t)
holds for all t € ]0,1] .

Proof. (1) It is easily observed from the convexity of f that L; is convex on [0,1].
(2) Using simple techniques of integration, we have the following identities

Gl(t);Gz(t):Myl_x)/m [f(tz+ (1 =)y) + f (tz+ (1 =) y)
+ ftr + (1 —=t)y)+ fta' + (1 —t)y)]ds
and
1 Y ,
Ll(t):m/z [flz+ (1 —=8)s)+ fltz+(1—1t)(z+2" —9))

+fts’' +(1—t)s)+ f(tx' + (1 —t)(z + 2" —s))]ds

1 4 ,
4(y—$)/$ [f (' +(1—1)s)

+ ftr+ (1 —t)(z+2" —s))]ds

1

for all t € [0,1].
By Lemma 2, the following inequalities hold for all ¢ € [0,1] and s € [z, y] :

flz+ A=)y +flz+ 1 -)y)< flla+ 1 —-t)s)+f(tz+ (1 —1t)(z+2" —3)),
Jx + A —t)y)+fta’ + (1 —t)y) < fta' + (1 —t)s)+f(ta' + (1 —t) (z + 2" —s))
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and

flta' +(1—t)s)+ f(to+ (1) (e +a' — )
<fhx+Q—-t)s)+fta' +(1—t)(z+2" —9)).
Integrating the above inequalities over s on [z,y], dividing both sides by 4 (y — x)

and using the above identities and (2.12), we derive (2.36) and (2.37).
(3) Using simple techniques of integration, we have the following identity

1 v ’
Fl(t)w/g/x [ (bt (1= ) 8) + f (t (x4 2" — ) + (1 — 1) 5)] duds

for all t € [0,1].

By Lemma 2, the following inequality holds for all ¢ € [0,1],u € [z,y] and s € Q.
fu+ (1 —=t)s)+ft(x+a —u)+ (1 —t)s) < fltz+ (1 —t)s)+f(ts' + (1 —1t)s).
Integrating the above inequality over u on [z,y], over s on 2, dividing both sides
by 4 (y — m)2 and the above identity and the definition of L;, we obtain
(2.42) Fi(t) < Ly (1)
for all ¢ € [0,1]. Using (2.21), (2.42) and the symmetry of Fy, we derive (2.38) —

(2.40) .
(4) Using simple techniques of integration, we have the following identity

T+u

Fl(t)f 2 // fls+ QA —-tu)+fts+(1—¢) (z+y—u))

+f(t8+ 1-t)(@ —y+u)+fts+1—1t)(y+y —u))]duds

for all t € [0,1].

By Lemma 2, the following inequalities hold for all ¢ € [0,1], s € Q and u €
531
fls+ (A -tu)+fts+(1—-t)(x+y—u) < fts+(1—-t)a)+f(ts+(1—1)y)

and

fls+A—=t) (@ —y+u)+fts+(1—1)(y+y —u)
<fls+A—=t)y)+ fts+(1—-t)2").

Integrating the above inequalities over s on €2, over u on [x M] dividing both

sides by 4 (y — :1c)2 and the above identity and the definitions of Hy, Ho and L, we
obtain

Hiy (t) + Hs (t)
2

for all ¢ € [0,1]. Using (2.39) and (2.43), we derive (2.41).
This completes the proof.

(2.43) F(t) < % Li(1—t)+

O

Remark 5. Letz = a, y =y = %2 and 2’/ = b in Theorem 5. Then H (t)
Hy (1) = Hy (1), F(t) = Fi (t), P() = P (), G(t) = G1 (t) = Ga (1), L(1)
Ly (t) (t €[0,1])) and we have the following results:
(1) Theorem & and the inequality (2.12) reduce to Theorem F and (2.36),
(2.39) — (2.40) refine (1.11) — (1.13), respectively.
(2) Theorem 2 and the inequality (2.36) reduce to Theorem G.
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(3) The inequality (2.41) reduces to Theorem H.
The following corollary is a natural consequence of Theorems 1 — 5.

Corollary 1. The following inequalities hold for all t € [0, 1]

f)+ 1) 1
fﬁfﬁ(t)ﬁ 2(y—x)/9f(s)d8
(2.44) <P (t) < M;
(245) : [f (y;y/) -~ f(y)zf(y/)} <M (t);HQ W < ),
(2.46) Fy(t) < m /Q f(s)ds <Py (f) < M
(2.47) ;{f<y+2y’)+f<y>+2f<y'>] §H1(1—t)—2FH2(1—t) <R
Fi(t) < % {Hl(l_t);Hz(l_t) +L1(t)]
(2.48) SLi(t) SP(t) < M;
w3 [ () 00 GG
(2.50) M <H (1) < % {f(y);f(y') L (t)} <610
and
(2.51) G1 (t) <P (t) < % |:G1 (t) + f(l‘) ‘;f(x')] < f(x) ‘;f(x’)

3. APPLICATIONS
Using Corollary 1, we have the following propositions:

Proposition 1. Let 0 < a < b < oo, p € R\{0,—-1,-2}, t € (0,1) and let

z,y,y ,x’ be defined as above. Define

Pt e+ (L) )P+ (L - )y et

a 2t(p+1) (y — ) ’

P — (L=t z+ty)" "+ (L=t + )" =yt
20-t)(p+1)(y —=) ’

(ty+ (L= y)" =tz + (1 —t)y)""
2t(p+1)(y — )
N 1) L G (O ) il
2t(p+1)(y — ) ’

H,

H =

Hy =
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(L=ty+ty)"" — (L= +ty)""

= 20—+ 1) (-
L@=ta’+ ty)" " — (L=t y +ty)"
21=t)(p+1)(y — =) ’
po_ (tzt(1-t) y)P T — gt (g (1) )P
' 21=t)(p+1)(y — =) 7
B PPy =)o) e+ (=) - (o (=0 y)"

w1 -t)(p+1)(p+2) (y—2)°
(tx+ 1=ty —aPT2 4 (to+ (1 —t)2)""? = (to+ (1 — 1)y )"
A1 —t)(p+1)(p+2) (y— )
G Clat) Y = (4 (=)o) 2P (4 (L) y)
A1 —t)(p+1)(p+2) (y—x)?
(ty + (=" =ty + (L= 2)" 7+ (ty + (1 —t)a)""> — y»+2
A1 -t)(p+1)(p+2) (y—x)’

)

Gy = % [tz + (1= t)y)" + (k' + (1 =) y")"],
Go = % [tz + (1= t)y)" + (ta' + (1 = 1) y)"]
and
L (te+ (1= t)y)P™ — 2Pt 4+ (tr+ (1 — )2/ )PT — (te + (1 — 1)y )P+

41-t)(p+1)(y—=)
L (=0 (-2 et (- )
A1-t)(p+1)(y—2) '
Then we have the following results:
(1) Letp € (—o00,0)U[1,00) (p # —1,—2). Then the following inequalities hold:

D /p p+1 _ .p+1 mp+1 _ /p+1 p /D
(3.1) VY g <Y vt vt p T
2 2(p+1)(y—x) 2
1 +y'\' P +yP H, + H
(3.2) 2[(3, 2y) e e 2t
(3.3) P yp+1 — gPtl 4 g+l y/p+1 P + 'P
' ' 2(p+1) (y— ) ST
1 + I\ P p+ /D HI+H/
(3.4) 2[(‘” 2y) + S <22 c R,
1 H/ H/ p /p
(3.5) F1§2[ 1; 2+L1:|<L1<P1 z —gm )
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D 4 o/P 1 [P 4 /P
(3.7) Y —|2-y §H1§2|:y —|2-y +G1} <Gy
and
1 p 1p p Ip
(38) G1<P1<2|:G1+x —;x :|<$(} —‘;.’E

(2) Let p € (0,1). Then the inequalities (3.1) — (3.8) are reversed.
The proof of Proposition 1 follows from Corollary 1 applied to

f(S) _ sP asp e (7OO,O)U[].,OO) (p7é 71’72)
Tl —s? aspe(0,1)

for all s € (0,00).

Proposition 2. Let 0 < a < b < oo, t € (0,1) and let z,y,y, 2" be defined as

above. Define

o, = Iny(te' + (1 —-t)y)—Iny tz+ (1 —1)y)

2t (y — x) ’

g = my(@ -’ +ty) —Iny' (L -t) +ty)

’ 2(1—1)(y — =) ’
H, = In(ty+(1—-t)y)(ta'+(1-t)y) WlEz+1-t)y) @ty +1—-1)y)
2t (y — ) 2t (y — ) ’
g mA -y +ty) (A -t)a'+ty) (@ -tz +ty)(L-t)y +1y)

! 2(1=1) (y— =) 2(1=1)(y— =)
P Inz' (tx+ (1 —¢t)y) —lnzx (ta' + (1 —t)y')
’ 2(1-1)(y — ) ’
p— iy =1 —(y+ A —ta)fnlty + (1 —t)z) —1]

a1 —t)(y— =)’
(ty+ (A -t)a)Inty+(1-)a") -1 -(ty+ (1 -t)y)In{ty+ 1 -t y) —1]
41 —1t) (y—=)?
(tz+(1—-t)y)[Intz+(1—-t)y)—1] —a(lnxz —1)
4t(1—1t) (y — z)*
(tz+(1—-t)2)Intz+(1—-t)a")—1]-(z+ (1 —-2t)y) [Intz+ (1 —1¢)y') —1]
a1 —t)(y—=)°
(@ (=0 y) It + (1= 0)y) — 1]~ (t2' + (L= t)2) (12’ + (1 = )z) — 1]
4t(1—t) (y—z)?
L@ (ina’ —1) — (ta' + (L= 1)y) [ (2’ + (1= 1)y/) — 1]
4t (1—1t) (y — z)*
ty + (1 -y iy +(1-y) —1-(ty+A-t)z)[Inlty + (1 -t)z)—1]
a1 —t)(y—=)°
(ty' + (1 —a) Ity + (1 -ta') -1 —y'[lny —1]
a(1—1t)(y—=)°
Gy = y+y
2(tr+ (1 —t)y) (ta’ + (1 =) y')’

+

)
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_ y+v
2tz + (1 —0)y) (ta’ + (1 —1t)y)

Ga

and
In(te+(1-t)y) (tz+(1—t)z')—Inz(tz+(1—1)y)
4(1—-1)(y—=)
N Ina’ (te' + (1 —t)y) —In(tz’ + (1 —t)x) (tz' + (1 = t)y/)
4(1-1)(y—=) '

Then we have the following inequalities

Lo

y—&—y’S 3§lnx’y—lnxy’§ z+a’
2yy’ 2(y—z)
1{ 2 y+y’}<H3+H4
2ly+y 2yy | T
Inz'y — Inxy’ x4z
20y —z) 77 2mwa’’
1r 2 y+y’_<H§—|—H’
2 ly+y 2uy" | T 2 -
1{H§+H§1

<

B 5| =

=9

1] 2 y+y’_<G3+G4
2 ly+y  2yy | T
y+y 1[y+y’

< Hs < =
gy~ T2 2y -

+L2} <L <P<

and

2z’ 2ux’

The proof of Proposition 2 follows from Corollary 1 applied to f (s) = 1 (s € (0,00)).

The interested reader may obtain various particular inqualities of interest by
utilising other convex functions such as f(¢) = —Int or f(¢) = tlnt,¢ > 0. The
details are omitted.

!/ !
G3§P2§;{G3+x+m} <ZET
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