
BOUNDS FOR THE DIFFERENCE BETWEEN FUNCTIONS OF
SELFADJOINT OPERATORS IN HILBERT SPACES AND

INTEGRAL MEANS

S.S. DRAGOMIR

Abstract. Bounds for the di¤erence between functions of selfadjoint oper-
ators in Hilbert spaces and integral mean under suitable conditions for the
functions and operators involved are given. Applications for particular in-
stances of interest are provided as well.

1. Introduction

Let U be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the
spectrum Sp (U) included in the interval [m;M ] for some real numbers m < M and
let fE�g� be its spectral family. Then for any continuous function f : [m;M ]! R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral:

(1.1) hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

for any x; y 2 H: The function gx;y (�) := hE�x; yi is of bounded variation on the
interval [m;M ] and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi

for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ].
The following result concerning bounds involving the spectral family holds, see

[16]:

Theorem 1. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its spectral
family. If f : [m;M ]! R is a continuous function of bounded variation on [m;M ],
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then we have the inequality

jf (s) hx; yi � hf (A)x; yij(1.2)

� hEsx; xi1=2 hEsy; yi1=2
s_
m

(f)

+ h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2
M_
s

(f)

� kxk kyk
 
1

2

M_
m

(f) +
1

2

�����
s_
m

(f)�
M_
s

(f)

�����
! 

� kxk kyk
M_
m

(f)

!
for any x; y 2 H and for any s 2 [m;M ] :

Remark 1. For the continuous function with bounded variation f : [m;M ]! R if
p 2 [m;M ] is a point with the property that

p_
m

(f) =

M_
p

(f) ;

then from (1.2) we get the interesting inequality

(1.3) jf (p) hx; yi � hf (A)x; yij � 1

2
kxk kyk

M_
m

(f)

for any x; y 2 H:
If the continuous function f : [m;M ] ! R is monotonic nondecreasing and

therefore of bounded variation, then we get from (2.2) the following inequality as
well

jf (s) hx; yi � hf (A)x; yij(1.4)

� hEsx; xi1=2 hEsy; yi1=2 (f (s)� f (m))

+ h(1H � Es)x; xi1=2 h(1H � Es) y; yi1=2 (f (M)� f (s))

� kxk kyk
�
1

2
(f (M)� f (m)) +

����f (s)� f (m) + f (M)2

�����
� kxk kyk [f (M)� f (m)]

for any x; y 2 H and s 2 [m;M ] :
Moreover, if the continuous function f : [m;M ]! R is nondecreasing on [m;M ] ;

then the equation

f (s) =
f (m) + f (M)

2

has got at least a solution in [m;M ] : In his case we get from (1.4) the following
trapezoidal type inequality

(1.5)

����f (m) + f (M)2
hx; yi � hf (A)x; yi

���� � 1

2
kxk kyk (f (M)� f (m))

for any x; y 2 H:
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In the following, we consider the problem of bounding the absolute value of the
di¤erence between the quantities hf (A)x; yi and 1

M�m
RM
m
f (t) dt where A is a

selfadjoint operator in the Hilbert space H with the spectrum Sp (A) � [m;M ] for
some real numbers m < M;x; y 2 H and f : [m;M ] ! C is continuous on the
interval [m;M ] : Applications for some particular functions are also given.
The following result holds, see [17]:

Theorem 2. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its spectral
family. If f : [m;M ]! C is a continuous function of bounded variation on [m;M ],
then we have the inequality�����hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi
�����(1.6)

� 1

M �m

M_
m

(f) max
t2[m;M ]

h
(M � t) hEtx; xi1=2 hEty; yi1=2

+(t�m) h(1H � Et)x; xi1=2 h(1H � Et) y; yi1=2
i

� kxk kyk
M_
m

(f)

for any x; y 2 H:

For other similar results, see [17].
In this paper, motivated by the above results, we establish other bounds for the

magnitude of the di¤erence

hx; yi 1

M �m

Z M

m

f (s) ds� hf (A)x; yi

where x; y 2 H: Some applications for the power and logarithmic functions are
provided as well.

2. Vector Inequalities Via Ostrowski�s Type Bounds

The following result holds:

Theorem 3. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its spectral
family. If f : [m;M ] ! R is a continuous function on [m;M ], then we have the
inequality �����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(2.1)

� max
t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

�����
M_
m

�

E(�)x; y

��
� max

t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� kxk kyk
for any x; y 2 H:
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Proof. Utilising the spectral representation (1.1) we have the following equality of
interest

hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds(2.2)

=

Z M

m�0

"
f (t)� 1

M �m

Z M

m

f (s) ds

#
d (hEtx; yi)

for any x; y 2 H:
It is well known that if p : [a; b]! C is a continuous function and v : [a; b]! C is

of bounded variation, then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and

the following inequality holds

(2.3)

�����
Z b

a

p (t) dv (t)

����� � max
t2[a;b]

jp (t)j
b_
a

(v) ;

where
b_
a

(v) denotes the total variation of v on [a; b] :

Applying this property and the equality (2.2) we deduce the �rst inequality in
(2.1).
If P is a nonnegative operator on H; i.e., hPx; xi � 0 for any x 2 H; then the

following inequality is a generalization of the Schwarz inequality in H

(2.4) jhPx; yij2 � hPx; xi hPy; yi ;
for any x; y 2 H:
Now, if d : m = t0 < t1 < ::: < tn�1 < tn = M is an arbitrary partition of the

interval [m;M ] ; then we have by Schwarz�s inequality for nonnegative operators
that

M_
m

�

E(�)x; y

��
(2.5)

= sup
d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= I:

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

I � sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;(2.6)

� sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2
sup
d

"
n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

=

"
M_
m

�

E(�)x; x

��#1=2 "M_
m

�

E(�)y; y

��#1=2
= kxk kyk
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for any x; y 2 H:
Making use of (2.5) and (2.6) we deduce then the last part of (2.1). �

For particular classes of continuous functions f : [m;M ] ! C we are able to
provide simpler bounds as incorporated in the following corollary:

Corollary 1. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) � [m;M ] for some real numbers m < M; fE�g� be its spectral family
and f : [m;M ]! C a continuous function on [m;M ] :
1. If f is of bounded variation on [m;M ] ; then

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(2.7)

�
M_
m

(f)
M_
m

�

E(�)x; y

��
� kxk kyk

M_
m

(f)

for any x; y 2 H:
2. If f : [m;M ] �! C is of r �H�Hölder type, i.e., for a given r 2 (0; 1] and

H > 0 we have

(2.8) jf (s)� f (t)j � H js� tjr for any s; t 2 [m;M ] ;

then we have the inequality:

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(2.9)

� 1

r + 1
H (M �m)r

M_
m

�

E(�)x; y

��
� 1

r + 1
H (M �m)r kxk kyk

for any x; y 2 H:
In particular, if f : [m;M ] �! C is Lipschitzian with the constant L > 0; then

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(2.10)

� 1

2
L (M �m)

M_
m

�

E(�)x; y

��
� 1

2
L (M �m) kxk kyk

for any x; y 2 H:
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3. If f : [m;M ] �! C is absolutely continuous, then�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(2.11)

�
M_
m

�

E(�)x; y

��

�

8>>>>>><>>>>>>:

1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
(q+1)1=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ]

p > 1; 1=p+ 1=q = 1;

kf 0k1

� kxk kyk �

8>>>>>><>>>>>>:

1
2 (M �m) kf 0k1 if f 0 2 L1 [m;M ]

1
(q+1)1=q

(M �m)1=q kf 0kp
if f 0 2 Lp [m;M ]

p > 1; 1=p+ 1=q = 1;

kf 0k1

for any x; y 2 H; where kf 0kp are the Lebesgue norms, i.e., we recall that

kf 0kp :=

8><>:
ess sups2[m;M ] jf 0 (s)j if p =1;

�RM
m
jf (s)jp ds

�1=p
if p � 1:

Proof. We use the Ostrowski type inequalities in order to provide upper bounds for
the quantity

max
t2[m;M ]

�����f (t)� 1

M �m

Z M

m

f (s) ds

�����
where f : [m;M ] �! C is a continuous function.
The following result may be stated (see [4]) for functions of bounded variation:

Lemma 1. Assume that f : [m;M ] ! C is of bounded variation and denote by
MW
m
(f) its total variation. Then

(2.12)

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� �
"
1

2
+

����� t� m+M
2

M �m

�����
#
M_
m

(f)

for all t 2 [m;M ]. The constant 12 is the best possible.

Now, taking the maximum over x 2 [m;M ] in (2.12) we deduce (2.7).
If f is Hölder continuous, then one may state the result (see for instance [18]

and the references therein for earlier contributions):
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Lemma 2. Let f : [m;M ] ! C be of r � H�Hölder type, where r 2 (0; 1] and
H > 0 are �xed, then, for all x 2 [m;M ] ; we have the inequality:�����f (t)� 1

M �m

Z M

m

f (s) ds

�����(2.13)

� H

r + 1

"�
M � t
M �m

�r+1
+

�
t�m
M �m

�r+1#
(M �m)r :

The constant 1
r+1 is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski�s inequality for Lipschitzian functions (with L instead of H)
(see for instance [8])

(2.14)

�����f (t)� 1

M �m

Z M

m

f (s) ds

����� �
241
4
+

 
t� m+M

2

M �m

!235 (M �m)L;

for any x 2 [m;M ] : Here the constant 14 is also best.
Taking the maximum over x 2 [m;M ] in (2.13) we deduce (2.9) and the second

part of the corollary is proved.
The following Ostrowski type result for absolutely continuous functions holds

(see [22] �[24]).

Lemma 3. Let f : [a; b] ! R be absolutely continuous on [a; b]. Then, for all
t 2 [a; b], we have:

(2.15)

�����f (t)� 1

M �m

Z M

m

f (s) ds

�����

�

8>>>>>>>>>><>>>>>>>>>>:

�
1
4 +

�
t�m+M

2

M�m

�2�
(M �m) kf 0k1 if f 0 2 L1 [m;M ] ;

1

(q+1)
1
q

��
t�m
M�m

�q+1
+
�
M�t
M�m

�q+1� 1q
(M �m)

1
q kf 0kp if f 0 2 Lp [m;M ] ;

1
p +

1
q = 1; p > 1;h

1
2 +

��� t�m+M
2

M�m

���i kf 0k1 :
The constants 1

4 ,
1

(p+1)
1
p
and 1

2 respectively are sharp in the sense presented above.

The above inequalities can also be obtained from the Fink result in [25] on
choosing n = 1 and performing some appropriate computations.
Taking the maximum in these inequalities we deduce (2.11). �

For other scalar Ostrowski�s type inequalities, see [1]-[2] and [9].

3. Other Vector Inequalities

In [19], the authors have considered the following functional

(3.1) D (f ;u) :=

Z b

a

f (s) du (s)� [u (b)� u (a)] � 1

b� a

Z b

a

f (t) dt;
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provided that the Stieltjes integral
R b
a
f (s) du (s) exists.

This functional plays an important role in approximating the Stieltjes integralR b
a
f (s) du (s) in terms of the Riemann integral

R b
a
f (t) dt and the divided di¤erence

of the integrator u:
In [19], the following result in estimating the above functional D (f ;u) has been

obtained:

(3.2) jD (f ;u)j � 1

2
L (M �m) (b� a) ;

provided u is L�Lipschitzian and f is Riemann integrable and with the property
that there exists the constants m;M 2 R such that

(3.3) m � f (t) �M for any t 2 [a; b] :

The constant 1
2 is best possible in (3.2) in the sense that it cannot be replaced by

a smaller quantity.
If one assumes that u is of bounded variation and f is K�Lipschitzian, then

D (f; u) satis�es the inequality [20]

(3.4) jD (f ;u)j � 1

2
K (b� a)

b_
a

(u) :

Here the constant 12 is also best possible.
Now, for the function u : [a; b] ! C; consider the following auxiliary mappings

�;� and � [10]:

� (t) :=
(t� a)u (b) + (b� t)u (a)

b� a � u (t) ; t 2 [a; b] ;

� (t) := (t� a) [u (b)� u (t)]� (b� t) [u (t)� u (a)] ; t 2 [a; b] ;
�(t) := [u; b; t]� [u; t; a] ; t 2 (a; b) ;

where [u;�; �] is the divided di¤erence of u in �; �; i.e.,

[u;�; �] :=
u (�)� u (�)

�� � :

The following representation of D (f; u) may be stated, see [10] and [11]. Due to
its importance in proving our new results we present here a short proof as well.

Lemma 4. Let f; u : [a; b]! C be such that the Stieltjes integral
R b
a
f (t) du (t) and

the Riemann integral
R b
a
f (t) dt exist. Then

D (f; u) =

Z b

a

� (t) df (t) =
1

b� a

Z b

a

� (t) df (t)(3.5)

=
1

b� a

Z b

a

(t� a) (b� t)� (t) df (t) :
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Proof. Since
R b
a
f (t) du (t) exists, hence

R b
a
� (t) df (t) also exists, and the integra-

tion by parts formula for Riemann-Stieltjes integrals gives thatZ b

a

� (t) df (t) =

Z b

a

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�
df (t)

=

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�
f (t)

����b
a

�
Z b

a

f (t) d

�
(t� a)u (b) + (b� t)u (a)

b� a � u (t)
�

= �
Z b

a

f (t)

�
u (b)� u (a)

b� a dt� du (t)
�
= D (f; u) ;

proving the required identity. �
For recent inequalities related to D (f ;u) for various pairs of functions (f; u) ;

see [12].
The following representation for a continuous function of selfadjoint operator

may be stated:

Lemma 5. Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) � [m;M ] for some real numbers m < M; fE�g� be its spectral family and
f : [m;M ] ! C a continuous function on [m;M ] : If x; y 2 H; then we have the
representation

hf (A)x; yi = hx; yi 1

M �m

Z M

m

f (s) ds(3.6)

+
1

M �m

Z M

m�0
h[(t�m) (1H � Et)� (M � t)Et]x; yi df (t) :

Proof. Utilising Lemma 4 we haveZ M

m

f (t) du (t) = [u (M)� u (m)] � 1

M �m

Z M

m

f (s) ds(3.7)

+

Z M

m

�
(t�m)u (M) + (M � t)u (m)

M �m � u (t)
�
df (t) ;

for any continuous function f : [m;M ]! C and any function of bounded variation
u : [m;M ]! C.
Now, if we write the equality (3.7) for u (t) = hEtx; yi with x; y 2 H; then we

get Z M

m�0
f (t) d hEtx; yi = hx; yi �

1

M �m

Z M

m

f (s) ds(3.8)

+

Z M

m�0

�
(t�m) hx; yi
M �m � hEtx; yi

�
df (t) ;

which, by the spectral representation (1.1), produces the desired result (3.6). �
The following result may be stated:

Theorem 4. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) � [m;M ] for some real numbers m < M fE�g� be its spectral family
and f : [m;M ]! C a continuous function on [m;M ] :
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1. If f is of bounded variation, then

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.9)

� kyk
M_
m

(f)

� max
t2[m;M ]

"�
t�m
M �m

�2
k(1H � Et)xk2 +

�
M � t
M �m

�2
kEtxk2

#1=2

� kxk kyk
M_
m

(f)

for any x; y 2 H:
2. If f is Lipschitzian with the constant L > 0, then

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.10)

� L kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
dt

� 1

2

"
1 +

p
2

2
ln
�p
2 + 1

�#
(M �m)L kyk kxk

for any x; y 2 H:
3. If f : [m;M ]! R is monotonic nondecreasing, then

�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.11)

� kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
df (t)

� kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t)

� kyk kxk [f (M)� f (m)]1=2

�
"
f (M)� f (m)� 4

M �m

Z M

m

�
t� m+M

2

�
f (t) dt

#1=2
� kyk kxk [f (M)� f (m)]

for any x; y 2 H:
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Proof. If we assume that f is of bounded variation, then on applying the property
(2.3) to the representation (3.6) we get�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.12)

� 1

M �m max
t2[m;M ]

jh[(t�m) (1H � Et)� (M � t)Et]x; yij
M_
m

(f) :

Now, on utilizing the Schwarz inequality and the fact that Et is a projector for
any t 2 [m;M ] ; then we have

jh[(t�m) (1H � Et)� (M � t)Et]x; yij(3.13)

� k[(t�m) (1H � Et)� (M � t)Et]xk kyk

=
h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
kyk

�
h
(t�m)2 + (M � t)2

i1=2
kxk kyk

for any x; y 2 H and for any t 2 [m;M ] :
Taking the maximum in (3.13) we deduce the desired inequality (3.9).
It is well known that if p : [a; b] ! C is a Riemann integrable function and

v : [a; b]! C is Lipschitzian with the constant L > 0, i.e.,

jf (s)� f (t)j � L js� tj for any t; s 2 [a; b] ;

then the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists and the following inequality

holds �����
Z b

a

p (t) dv (t)

����� � L
Z b

a

jp (t)j dt:

Now, on applying this property of the Riemann-Stieltjes integral to the repre-
sentation (3.6), we get�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.14)

� L

M �m

Z M

m�0
jh[(t�m) (1H � Et)� (M � t)Et]x; yij dt

� L kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
dt

� L kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
dt;

for any x; y 2 H:
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Now, if we change the variable in the integral by choosing u = t�m
M�m then we get

Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
dt

= (M �m)
Z 1

0

h
u2 + (1� u)2

i1=2
du

=
1

2
(M �m)

"
1 +

p
2

2
ln
�p
2 + 1

�#
;

which together with (3.14) produces the desired result (3.10).
From the theory of Riemann-Stieltjes integral is well known that if p : [a; b]! C

is of bounded variation and v : [a; b]! R is continuous and monotonic nondecreas-
ing, then the Riemann-Stieltjes integrals

R b
a
p (t) dv (t) and

R b
a
jp (t)j dv (t) exist and�����

Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :

Now, on applying this property of the Riemann-Stieltjes integral, we have from the
representation (3.6)�����hf (A)x; yi � hx; yi 1

M �m

Z M

m

f (s) ds

�����(3.15)

� 1

M �m

Z M

m�0
jh[(t�m) (1H � Et)� (M � t)Et]x; yij df (t)

� kyk
M �m

Z M

m�0

h
(t�m)2 k(1H � Et)xk2 + (M � t)2 kEtxk2

i1=2
df (t)

� kyk kxk
Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t) ;

for any x; y 2 H and the proof of the �rst and second inequality in (3.11) is
completed.
For the last part we use the following Cauchy-Buniakowski-Schwarz integral in-

equality for the Riemann-Stieltjes integral with monotonic nondecreasing integrator
v �����

Z b

a

p (t) q (t) dv (t)

����� �
"Z b

a

jp (t)j2 dv (t)
#1=2 "Z b

a

jq (t)j2 dv (t)
#1=2

where p; q : [a; b]! C are continuous on [a; b] :
By applying this inequality we conclude thatZ M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#1=2
df (t)(3.16)

�
"Z M

m

df (t)

#1=2 "Z M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#
df (t)

#1=2
:



DIFFERENCE BETWEEN FUNCTIONS OF OPERATORS AND INTEGRAL MEANS 13

Further, integrating by parts in the Riemann-Stieltjes integral we also have thatZ M

m

"�
t�m
M �m

�2
+

�
M � t
M �m

�2#
df (t)(3.17)

= f (M)� f (m)� 4

M �m

Z M

m

�
t� m+M

2

�
f (t) dt

� f (M)� f (m)

where for the last part we used the fact that by the µCeby�ev integral inequality for
monotonic functions with the same monotonicity we have thatZ M

m

�
t� m+M

2

�
f (t) dt

� 1

M �m

Z M

m

�
t� m+M

2

�
dt

Z M

m

f (t) dt = 0:

�

4. Some Applications for Particular Functions

1. Consider the function f : (0;1) ! R given by f (t) = tr with r 2 (0; 1]:
This function is r-Hölder continuous with the constant H > 0: Then, by applying
Corollary 1 we can state the following result

Proposition 1. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M and fE�g� be its
spectral family. Then for all r with r 2 (0; 1] we have the inequality����hArx; yi � hx; yi Mr+1 �mr+1

(r + 1) (M �m)

����(4.1)

� 1

r + 1
(M �m)r

M_
m

�

E(�)x; y

��
� 1

r + 1
(M �m)r kxk kyk

for any x; y 2 H:

The case of p > 1 is incorporated in the following proposition:

Proposition 2. With the same assumptions from Proposition 1 and if p > 1; then
we have ����hApx; yi � Mp+1 �mp+1

(p+ 1) (M �m) hx; yi
����(4.2)

� 1

2
pMp�1 (M �m)

M_
m

�

E(�)x; y

��
� 1

2
pMp�1 (M �m) kxk kyk

for any x; y 2 H.

The case of negative powers except p = �1 goes likewise and we omit the details.
Now, if we apply Corollary 1 for the function f (t) = � 1

t with t > 0; then we
can state the following proposition:
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Proposition 3. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M and let fE�g� be its
spectral family. Then for any x; y 2 H we have the inequalities����
A�1x; y�� lnM � lnm

M �m hx; yi
����(4.3)

� 1

2

M �m
m2

M_
m

�

E(�)x; y

��
� 1

2

M �m
m2

kxk kyk :

2. Now, if we apply Corollary 1 to the function f : (0;1) ! R, f (t) = ln t,
then we can state

Proposition 4. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) � [m;M ] for some real numbers 0 < m < M and let fE�g� be its
spectral family. Then for any x; y 2 H we have the inequalities

jhlnAx; yi � hx; yi ln I (m;M)j(4.4)

� 1

2

�
M

m
� 1
� M_

m

�

E(�)x; y

��
� 1

2

�
M

m
� 1
�
kxk kyk ;

where I (m;M) is the identric mean of m and M and is de�ned by

I (m;M) =
1

e

�
MM

mm

�1=(M�m)

:
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