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BOUNDS FOR THE DIFFERENCE BETWEEN FUNCTIONS OF
SELFADJOINT OPERATORS IN HILBERT SPACES AND
INTEGRAL MEANS

S.S. DRAGOMIR

ABSTRACT. Bounds for the difference between functions of selfadjoint oper-
ators in Hilbert spaces and integral mean under suitable conditions for the
functions and operators involved are given. Applications for particular in-
stances of interest are provided as well.

1. INTRODUCTION

Let U be a selfadjoint operator on the complex Hilbert space (H, (.,.)) with the
spectrum Sp (U) included in the interval [m, M] for some real numbers m < M and
let {Ex}, be its spectral family. Then for any continuous function f : [m, M] — R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral:

M

(1.1) (fU)z,y) = fA) d((Exz,y)),

m—0

for any x,y € H. The function g, , (A) := (E\x,y) is of bounded variation on the
interval [m, M] and

9,y (m - O) =0 and Ja,y (M) = (x,y)

for any x,y € H. It is also well known that g, (A\) := (E\xz, ) is monotonic nonde-
creasing and right continuous on [m, M].

The following result concerning bounds involving the spectral family holds, see
[16]:

Theorem 1. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) C [m, M] for some real numbers m < M and let {Ex}, be its spectral
family. If f : [m, M] — R is a continuous function of bounded variation on [m, M],
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2 S.S. DRAGOMIR

then we have the inequality

(1.2) | (s) (z,y) = (F (A) z,9)]|

< (Byx,2)"? (B, )"\ (f)

M
+ (L — B w.a)? (1 — By, )\ ()

) (S ] Iyll\z(f)>

Remark 1. For the continuous function with bounded variation f : [m, M] — R if
p € [m, M] is a point with the property that

S

1M 1 M
<zl vl (2\/(f) +5 V-V

m m

for any z,y € H and for any s € [m, M].

P M
V=V,
then from (1.2) we get the interesting inequality
1 M
(1.3) | (0) (2, y) = {f (D) z,9)| < 5 Nl 1yl V()

for any x,y € H.

If the continuous function f : [m,M] — R is monotonic nondecreasing and
therefore of bounded variation, then we get from (2.2) the following inequality as
well

(1.4) 1f () (z.y) — (f (A) 2, 9)]
< (Ega, )" (Eqy,9)"* (f (s) — f (m))
(g — B w, o) (L — B yo) 2 (f (M) — £ (s))
f

<Jell ol (3 (£ 00— £ + [ 9~ LT D))

< |lzl gl [f (M) = f (m)]

for any x,y € H and s € [m, M].
Moreover, if the continuous function f : [m, M] — R is nondecreasing on [m, M],
then the equation

o= Lm0

has got at least a solution in [m,M]. In his case we get from (1.4) the following
trapezoidal type inequality

s |POETOD ) e < Ll (A1) ~ £ (m)

for any x,y € H.
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In the following, we consider the problem of bounding the absolute value of the

difference between the quantities (f (A)z,y) and 37— ff f(t)dt where A is a
selfadjoint operator in the Hilbert space H with the spectrum Sp (A) C [m, M| for
some real numbers m < M,z,y € H and f : [m, M] — C is continuous on the
interval [m, M]. Applications for some particular functions are also given.

The following result holds, see [17]:

Theorem 2. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) C [m, M] for some real numbers m < M and let {Ex}, be its spectral

family. If f : [m, M] — C is a continuous function of bounded variation on [m, M],
then we have the inequality

M
(16) @) g | TG ds = (f (W)
<1M M — ) (Eyz,2)? (Epy, )/
< 3= V) e (M = 0) (B, 2)' (B )

m

(=) (L = B w,a) (L = By, )]

< el gl \/ (f)

for any x,y € H.

For other similar results, see [17].

In this paper, motivated by the above results, we establish other bounds for the
magnitude of the difference

M
@) g [ F s W)

where x,y € H. Some applications for the power and logarithmic functions are
provided as well.

2. VECTOR INEQUALITIES VIA OSTROWSKI’'S TYPE BOUNDS

The following result holds:

Theorem 3. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) C [m, M] for some real numbers m < M and let {Ex}, be its spectral
family. If f : [m, M] — R is a continuous function on [m,M], then we have the
inequality

M
(21) %ﬂmam—mmMim/ () ds
M M
§£m%f@Mileﬂwky«&mw)

] lll

1 M
g£ﬁJﬂﬂ—M_mllﬂ@®

for any x,y € H.
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Proof. Utilising the spectral representation (1.1) we have the following equality of
interest

(22) () w0) ~ (o) 5 [ £(5)ds

—Lilﬂﬂ—Mimlfﬂﬁﬁ

for any z,y € H.
It is well known that if p : [a,b] — C is a continuous function and v : [a,b] — C is

d((Erz,y))

of bounded variation, then the Riemann-Stieltjes integral f; p(t)dv (t) exists and
the following inequality holds

b

(2.3) < max [p(t)|\/ (v),

b
/pmmw

t€la,b]

b
where \/ (v) denotes the total variation of v on [a, b].

a
Applying this property and the equality (2.2) we deduce the first inequality in
(2.1).
If P is a nonnegative operator on H, i.e., (Pz,z) > 0 for any « € H, then the
following inequality is a generalization of the Schwarz inequality in H
2
(2.4) [(Pz,y)|” < (Pz,z) (Py,y) ,

for any z,y € H.

Now, ifd:m =1ty <t; < ..<tph_1 <t, =M is an arbitrary partition of the
interval [m, M], then we have by Schwarz’s inequality for nonnegative operators
that

25  V({(EByzv))

_ p{z (B —En>x,y>!}

=0

< Sl;p {nzl [<(Eti+1 - Eti) x,x>1/2 <(Eti+1 - Eti) yay>1/2:| } =1

i=0
By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

__— 12 0y 1/2
(2.6) I< SI;p lz <(Eti+1 — Eti) T, x>] [Z <(Eti+1 — Eti) Y, y>]
n—1 1/2 n—1 1/2
<o |- )| (S (B - 2 )
o 12 oy 1/2
- V| [Viceonm]| =i
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for any z,y € H.
Making use of (2.5) and (2.6) we deduce then the last part of (2.1). O

For particular classes of continuous functions f : [m, M] — C we are able to
provide simpler bounds as incorporated in the following corollary:

Corollary 1. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) C [m, M| for some real numbers m < M, {Ex}, be its spectral family
and f : [m, M] — C a continuous function on [m, M].

1. If f is of bounded variation on [m, M|, then

M
(27) (Do) = o) 5y [ 1 (5)ds

M

OV (Eoza)) < el 1V ()

m

<

3<x

for any x,y € H.
2. If f : [m,M] — C is of r — H—Hélder type, i.e., for a given r € (0,1] and
H > 0 we have

(2.8) lf(s)—f(@t)| < Hl|s—t|" for any s,t € [m, M],

then we have the inequality:

M
29)  |(f (M) — (oy) / £ (s)ds

1
<
T r+1

HM —m)"\] (Egya.y)) < ——H (M —m) |Jz] ]

T r+1

3<xz

for any x,y € H.
In particular, if f: [m, M| — C is Lipschitzian with the constant L > 0, then

M
(210) (D))~ (o) 5 [ F(5)ds
_1 M 1
< s L= m)\ (Epyw.w)) < LT~ m) ] o]

for any x,y € H.
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3. If f : [m, M] — C is absolutely continuous, then

M
Q1) W) o) g [ o)

M
<V (Bz.y))
3 (M —m) |1 f'll if f' € Lo [m, M]
q | g if [ e Ly [m, M
<3 b @ —my ey, I E A

111y
5 (M —m) |1 f']|. if f € Lo [m, M]

1 NN VR if ' € Ly [m, M|
< ||x|| Hy” X (q+1)1/q (M m) ||f Hp p > 1, 1/p+ 1/q — 1;

1f1ly

for any x,y € H, where || f'||,, are the Lebesgue norms, i.e., we recall that

€8s Supse[m,,M] |f/ (5)‘ pr = OQ;

11, = 1
/p )

(L2 1re)ras) ™ ip=.

Proof. We use the Ostrowski type inequalities in order to provide upper bounds for
the quantity

max
te[m,M]

M
O - 5y [ TG)ds

m

where f : [m, M] — C is a continuous function.
The following result may be stated (see [4]) for functions of bounded variation:

Lemma 1. Assume that [ : [m,M] — C is of bounded variation and denote by

< |ty
2

for all t € [m,M]. The constant } is the best possible.

M
\ (f) its total variation. Then

m

_ m+4+M
¢ 2

M—-—m

M
(212) P@_Mim/ () ds

]\A?(f)

m

Now, taking the maximum over z € [m, M] in (2.12) we deduce (2.7).
If f is Holder continuous, then one may state the result (see for instance [18]
and the references therein for earlier contributions):
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Lemma 2. Let f : [m,M] — C be of r — H—Holder type, where r € (0,1] and
H > 0 are fized, then, for all x € [m, M], we have the inequality:

(2.13)

M
O - 5 [ F)ds

(i) ()

H
r+1

<

The constant w%l 18 also sharp in the above sense.

Note that if » = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)

(see for instance [8])
1 ¢ mia 2
<zt —2 ) | (M-m)L,

M
A — / £ (s)ds

2.14 —
(2.14) |

M—m

for any x € [m, M]. Here the constant 1 is also best.
Taking the maximum over = € [m, M] in (2.13) we deduce (2.9) and the second

part of the corollary is proved.
The following Ostrowski type result for absolutely continuous functions holds

(see [22] — [24)).

Lemma 3. Let f : [a,b] — R be absolutely continuous on [a,b]. Then, for all
t € [a,b], we have:

M
(215) Pw—Mim/ () ds

b () - myg # 1€ Lo, M);
4 M—m o] o] ) )

IN

1 t—m at1 M—t at1 % L / : /
() (AR | T, e Lyl M,
1 1 _ .
5+5—1,p>1,

f_m+M
2
M—m

3+ J s,

1
I
(pt1)?

The constants i, and % respectively are sharp in the sense presented above.

The above inequalities can also be obtained from the Fink result in [25] on
choosing n = 1 and performing some appropriate computations.
Taking the maximum in these inequalities we deduce (2.11). O

For other scalar Ostrowski’s type inequalities, see [1]-[2] and [9].

3. OTHER VECTOR INEQUALITIES

In [19], the authors have considered the following functional

b b
BY DW= [ FEdu) - ) -] 5 [ foa
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provided that the Stieltjes integral ff f(s)du(s) exists.

This functional plays an important role in approximating the Stieltjes integral
f; f(8) du (s) in terms of the Riemann integral f: f (t) dt and the divided difference
of the integrator u.

In [19], the following result in estimating the above functional D (f;u) has been
obtained:

(32) D (fu)] < 3L —m) (b a),

provided u is L— Lipschitzian and f is Riemann integrable and with the property
that there exists the constants m, M € R such that

(3.3) m< f(t) <M forany tE€|a,bl.
The constant % is best possible in (3.2) in the sense that it cannot be replaced by
a smaller quantity.

If one assumes that u is of bounded variation and f is K— Lipschitzian, then
D (f,u) satisfies the inequality [20]

b
(3.4) D (i)l < K - a)\/ (w).

Here the constant % is also best possible.
Now, for the function u : [a,b] — C, consider the following auxiliary mappings
@, T and A [10]:

(t—a)ud)+(b-t)u(a)

(I)(t):: b—a _u(t)v tG[aJ)},
L)=0t-a)fu®)—u@®)]—-0-1)[ul)-ula)], telab,
A (t) := [u; b, t] — [ust, a] t € (a,b),

where [u; «, (] is the divided difference of v in «, 3, i.e.,

u(a) —u(B)

[u; v, B] := P

The following representation of D (f,«) may be stated, see [10] and [11]. Due to
its importance in proving our new results we present here a short proof as well.

Lemma 4. Let f,u: [a,b] — C be such that the Stieltjes integral f: f(@t)du(t) and
the Riemann integral f[f f(t)dt exist. Then

b 1 b
(35) Difw= [ @) - [ T@d

b
i [ t-0e-na0@ 0.
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Proof. Since f; f(t) du (t) exists, hence f; ® (t) df (t) also exists, and the integra-
tion by parts formula for Riemann-Stieltjes integrals gives that

/ab@(t)df(t)_/ab {@—a)u(b)ﬂb—t)“(a) u<t>] df (t)

b—a

_ {(ta)u(bZJ_r((th)u(a) u(t)} £

_/a’)f(t)d{(t—a>u<b>+<b—t>u<a>_u(t)}

b—a

/abf(t) O duo| = (.

proving the required identity. ([l

For recent inequalities related to D (f;u) for various pairs of functions (f,u),
see [12].

The following representation for a continuous function of selfadjoint operator
may be stated:

Lemma 5. Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp(A) C [m, M] for some real numbers m < M, {E\}, be its spectral family and
f:[m,M] — C a continuous function on [m,M]. If x,y € H, then we have the
representation

M
(3:6) (F(A)ag) = o) g [ )

1 M
i [ = m) (= By = 01 =0 Bl 47 ().

Proof. Utilising Lemma 4 we have

M M
(3.7) / £ (8 du(t) = [u (M) — u(m)] - ~—— / £ (s)ds

o [“m)““%*g”m”“m) —ulo)]ar 0.

for any continuous function f : [m, M| — C and any function of bounded variation
w: [m, M] — C.

Now, if we write the equality (3.7) for u (t) = (Fiz,y) with z,y € H, then we
get

M M
68 [ pwdBes) =) e [ Feds

M—m

* /,nMO [“‘]J”Ei:” — (B, y>} af (1),

which, by the spectral representation (1.1), produces the desired result (3.6). O
The following result may be stated:

Theorem 4. Let A be a selfadjoint operator in the Hilbert space H with the spec-
trum Sp (A) C [m, M] for some real numbers m < M {E\}, be its spectral family
and f : [m, M] — C a continuous function on [m, M].
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1. If f is of bounded variation, then

M
(3.9) VNme—mmMﬁ | s

m
M
<yl \/ (f)
2 9 1/2
t—m 2 M—t 2
1y — F E
xgﬁﬁd(M_m)n<H Dall + (=) I
M
<l lyll \/ ()
for any x,y € H.
2. If f is Lipschitzian with the constant L > 0, then
1 M
1 A -
(310) |(f(A)z,) @Wwam/ () ds
M 571/2
<L T [ N = B el + 0 = )]
1 V2
<5 |1+ 5 m(V2+1) | (M =m) Lyl 2]
for any x,y € H.
3. If f : [m, M] — R is monotonic nondecreasing, then
1 M
1) (e = o) g [ S5
||y|| /M 2 211/2
< (1g — FE E
< [ (=m0 = Bl + 0 — 07 |Eal?] a0

sM|m|:lK§;jJ2+ij;frﬂ#u>

< lyl =l [f (M) = f (m)]*/?

x[ﬂwaww—MmefQ—m;M)ﬂwﬂUQ

<yl Il [f (M) = £ (m)]

for any x,y € H.
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Proof. If we assume that f is of bounded variation, then on applying the property
(2.3) to the representation (3.6) we get

m

M
G12)|(f ey~ o) g [ TG)ds

1
< T mterf},?}&]K[(t_m)(lH_Et)_(M_t)Et]$7y>‘\/(f)

Now, on utilizing the Schwarz inequality and the fact that F; is a projector for
any t € [m, M], then we have

(3.13) ([(t =m)(1g — E¢) — (M —t) Ey] . y)]
<t =m) Qg — Ey) — (M —t) E]z| [y

1/2
= [(t —m)?||(lg — E) z|” + (M =) | El|*| [yl

< [t =m?+ 127" ol Iyl

for any z,y € H and for any ¢ € [m, M].
Taking the maximum in (3.13) we deduce the desired inequality (3.9).
It is well known that if p : [a,b] — C is a Riemann integrable function and
v : [a,b] — C is Lipschitzian with the constant L > 0, i.e.,
F(5)= ()] < LIs—t| for any t,5 € [a,b],

then the Riemann-Stieltjes integral fab p(t) dv (t) exists and the following inequality

holds
/p(t>dv(t) SL/ lp (t)] dt.

Now, on applying this property of the Riemann-Stieltjes integral to the repre-
sentation (3.6), we get

m

(314) %ﬂMam—mle | reds

M
< 1 E M-t E dt
S — [ i — B — (M~ t) B ay)
L M
< Ll (e — B al® + (M — 02 | Eval?

1/2

mn 2+ M-t dt
m M—m ’

for any z,y € H.
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t—m
M—m

Now, if we change the variable in the integral by choosing u = then we get

[ Gy )]
- (M—m)/ol {u%(l—u)ﬂmdu

= L (M —m)

1+§1n(\/§+1)

)

which together with (3.14) produces the desired result (3.10).
From the theory of Riemann-Stieltjes integral is well known that if p : [a,b] — C
is of bounded variation and v : [a,b] — R is continuous and monotonic nondecreas-

ing, then the Riemann-Stieltjes integrals fabp (t) dv (t) and fub |p (¢)| dv (t) exist and

b
/pmmw

Now, on applying this property of the Riemann-Stieltjes integral, we have from the
representation (3.6)

b
g/mwmuw

m

M
(315) %ﬂm@w—wwMim/ f (s)ds

M
! / ([t —m) (1 — Ey) — (M — ) B 2. 5) df (1

—M-m m—0

M
[yl
M—-m m—0

[ m)? 0 — Bl + 1~ 02 Bal?] a0
1/2

nymwleLj2f+(ﬁ;;f] @),

for any xz,y € H and the proof of the first and second inequality in (3.11) is
completed.

For the last part we use the following Cauchy-Buniakowski-Schwarz integral in-
equality for the Riemann-Stieltjes integral with monotonic nondecreasing integrator

b 1/2 b
< V p(t)|2dv(t)] V Iq(t)lzdv(t)l

where p, q : [a,b] — C are continuous on [a, b] .
By applying this inequality we conclude that

1/2

(3.16) /mM l(]\’}__”;lf + (Aj\j__;)zl df (t)
sllfwmrﬂ[:W(Lf;f+<ﬁ;;fyﬁwr@

IN

1/2

/pwqu@
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Further, integrating by parts in the Riemann-Stieltjes integral we also have that

(3.17) /M [(]\Z__”;)QJF (&4__;)2] df (1)
—ran - - g [ (- ") r o a

< £ (M)~ £ (m) ’

where for the last part we used the fact that by the Cebysev integral inequality for
monotonic functions with the same monotonicity we have that

/mM (t—m;M>f(t)dt

1 M m+ M M
Zm/m (t— : )dt/ F#)dt=o.

m

4. SOME APPLICATIONS FOR PARTICULAR FUNCTIONS

1. Consider the function f : (0,00) — R given by f(¢) = t" with » € (0, 1].
This function is r-Holder continuous with the constant H > 0. Then, by applying
Corollary 1 we can state the following result

Proposition 1. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) C [m, M| for some real numbers 0 < m < M and {E\}, be its
spectral family. Then for all r with r € (0,1] we have the inequality

MT-‘rl _ mr+1

(4.1) (A"z,y) — (z,y) m
< g (=" (B ) < g O =)

for any x,y € H.
The case of p > 1 is incorporated in the following proposition:

Proposition 2. With the same assumptions from Proposition 1 and if p > 1, then
we have

MPtl _ gppt1

(4.2) (APz,y) — m <~T7y>‘
1 v 1
< opMP M =m)\/ ((Byz,y)) < 5pMP (M —m) |l ly]

m
for any x,y € H.
The case of negative powers except p = —1 goes likewise and we omit the details.

Now, if we apply Corollary 1 for the function f(¢) = f% with ¢ > 0, then we
can state the following proposition:
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Proposition 3. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) C [m, M] for some real numbers 0 < m < M and let {E\}, be its
spectral family. Then for any x,y € H we have the inequalities

InM —1
(43) (A7) = =5 @)

m

2. Now, if we apply Corollary 1 to the function f : (0,00) — R, f(¢) = Int,
then we can state

Proposition 4. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) C [m, M] for some real numbers 0 < m < M and let {E\}, be its
spectral family. Then for any x,y € H we have the inequalities

(4.4) [(In Az, y) — (z,y) In I (m, M)|
<3 (Anf - 1) \,,{ (o) < 5 (Aﬂf - 1) [

where I (m, M) is the identric mean of m and M and is defined by

L/ M M )
1o = (5 .

e \mm
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