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Abstract. In present note, firstly we give the Riemann-Liouville fractional
integrals definitions. Secondly we use this Riemann-Liouville fractional inte-
grals to establish some new integral inequalities for quasi-convex functions.
Also, some applications for special means of real numbers are provided.

1. INTRODUCTION

Let real functions f be defined on some nonempty interval I of real line R. The
function f is said to be quasi-convex on I if inequality

f (tx+ (1− t)y) ≤ max {f(x), f(y)} , (QC)

holds for all x, y ∈ I and t ∈ [0, 1] (see [9]).
Let f : I ⊂ R→ R be a convex function on the interval of I of real numbers and

a, b ∈ I with a < b. The following double inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

is well-known in the literature as Hadamard’s inequality. For several recent re-
sults concerning the inequality (1.1) we refer the interested reader to ([1], [2], [8],
[9], [11]-[15]). Clearly, any convex function is quasi-convex function. Furthermore,
there exist quasi-convex functions which are not convex. For example, consider the
following:
Let f : R+ → R,

f(x) = lnx, x ∈ R+.
This function is quasi-convex. However f is not convex functions.
In [9], Dragomir and Pearce proved the following results connected with the

inequality (1.1):

Theorem 1. Let f : I → R be a Wright-quasi-convex map on I and suppose
a, b ∈ I ⊆ R with a < b and f ∈ L1[a, b]. Then we have the inequality

(1.2)
1

b− a

∫ b

a

f(t)dt ≤ max {f(a), f(b)} .
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Theorem 2. Let WQC(I) denote the class of Wright-quasi-convex functions on
I ⊆ R. Then

QC(I) ⊂WQC(I) ⊂ JQC(I).

In [11], Ion proved the following results connected with quasi-convex function:

Theorem 3. Assume a, b ∈ R with a < b and f : [a, b] → R is a differentiable
function on (a, b). If |f ′| is quasi-convex on [a, b] then the following inequality holds
true

(1.3)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

max {|f ′(a)| , |f ′(b)|} .

Theorem 4. Assume a, b ∈ R with a < b and f : [a, b] → R is a differentiable
function on (a, b). Assume p ∈ R with p > 1. If |f ′|p/(p−1) is quasi-convex on [a, b]
then the following inequality holds true
(1.4)∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
2(p+ 1)1/p

[
max

{
|f ′(a)|

p
p−1 , |f ′(b)|

p
p−1
}] p−1

p

.

In [15], Alomari et al. proved the following theorem for quasi-convex function:

Theorem 5. Let f : I◦ ⊂ R→ R be a differentiable mapping on I◦ , a, b ∈ I◦ with
a < b. If |f ′|q is quasi-convex on [a, b], q ≥ 1, then the following inequality holds:

(1.5)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q .

In [12], Liu has generalized above results to the case that |f ′|q is quasi-convex
as:

Theorem 6. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ , a, b ∈ I◦

with a < b and f ′ ∈ L[a, b]. If |f ′|q is quasi-convex on [a, b], q ≥ 1, then for any
λ ∈ [0, 1] and x ∈

[
a+ λ b−a2 , b− λ b−a2

]
we have∣∣∣∣∣(1− λ)f(x) + λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣2λ2 − 2λ+ 1

4
(b− a) +

1

b− a

(
x− a+ b

2

)2∣∣∣∣∣max {|f ′(a)| , |f ′(b)|} .

It should be noticed that this inequality has a uniform bound independent of q,
and if we take λ = 1 then x = a+b

2 which implies that

(1.6)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

max {|f ′(a)| , |f ′(b)|} .

Now we give some necessary definitions and mathematical preliminaries of frac-
tional calculus theory which are used throughout this paper.

Definition 1. (see [10])Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and
Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1 f(t)dt, x > a



3

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively where Γ(α) =
∞∫
0

e−uuα−1du. Here is J0a+f(x) = J0b−f(x) = f(x).

In the case of α = 1, the fractional integral reduces to the classical integral.
For some recent results connected with fractional integral inequalities see ([3]-

[7]).
In [13], Sarıkaya et al. proved the following Lemma and established some in-

equalities for fractional integrals

Lemma 1. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

=
b− a

2

1∫
0

[(1− t)α − tα] f ′(ta+ (1− t)b)dt.

The aim of this paper is to establish Hadamard type inequalities for quasi-convex
functions via Riemann-Liouville fractional integral.

2. MAIN RESULTS

Theorem 7. Let f : [a, b]→ R, be positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a quasi-convex function on [a, b], then the following inequality for fractional
integrals hold:

Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ max {f(a), f(b)}

with α > 0.

Proof. Since f is quasi-convex function on [a, b], we have

f (ta+ (1− t)b) ≤ max {f(a), f(b)}

and

f ((1− t)a+ tb) ≤ max {f(a), f(b)} .

By adding these inequalities we get

(2.1)
1

2
[f (ta+ (1− t)b) + f ((1− t)a+ tb)] ≤ max {f(a), f(b)}
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Then multiplying both sides of (2.1) by tα−1 and integrating the resulting inequality
with respect to t over [0, 1], we obtain

1∫
0

tα−1f (ta+ (1− t)b) dt+

1∫
0

tα−1f ((1− t)a+ tb) dt

=

a∫
b

(
b− u
b− a

)α−1
f(u)

du

a− b +

b∫
a

(
v − a
b− a

)α−1
f(v)

dv

b− a

≤ 2

α
max {f(a), f(b)} ,

i.e.
Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ max {f(a), f(b)} .

The proof is complete. �

Remark 1. If we choose α = 1 in Theorem 7 with properties of gamma functions,
we have the inequality (1.2).

Theorem 8. Let f : [a, b] → R, be a dfferentiable mapping on (a, b) with a < b.
If |f ′| is quasi-convex on [a, b], α > 0, then the following inequality for fractional
integrals hold: ∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(2.2)

≤ b− a
α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .

Proof. Using Lemma 1 and the quasi-convex of |f ′| with properties of modulus, we
have ∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a
2

1∫
0

|(1− t)α − tα|max {|f ′(a)| , |f ′(b)|} dt

=
b− a

2
max {|f ′(a)| , |f ′(b)|}


1
2∫
0

[(1− t)α − tα] dt+

1∫
1
2

[tα − (1− t)α] dt


=

b− a
α+ 1

(
1− 1

2α

)
max {|f ′(a)| , |f ′(b)|} .

where we use the fact that
1∫
0

|(1− t)α − tα| dt =

1
2∫
0

[(1− t)α − tα] dt+

1∫
1
2

[tα − (1− t)α] dt =
2

α+ 1

(
1− 1

2α

)
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which completes the proof. �
Remark 2. If we choose α = 1 in (2.2), then the inequality (2.2) reduce to the
inequality (1.3) of Theorem 3.

Theorem 9. Let f : [a, b]→ R, be a dfferentiable mapping on (a, b) with a < b such
that f ′ ∈ L1[a, b]. If |f ′|q is quasi-convex on [a, b], and p > 1, then the following
inequality for fractional integrals hold:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(2.3)

≤ b− a
2(αp+ 1)

1
p

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

where 1
p + 1

q = 1 and α ∈ [0, 1].

Proof. From Lemma 1 and using Hölder inequality with properties of modulus, we
have ∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a
2

 1∫
0

|(1− t)α − tα|p dt


1
p
 1∫

0

|f ′(ta+ (1− t)b)|q dt


1
q

.

We know that for α ∈ [0, 1] and ∀t1, t2 ∈ [0, 1],

|tα1 − tα2 | ≤ |t1 − t2|
α
,

hence
1∫
0

|(1− t)α − tα|p dt ≤
1∫
0

|1− 2t|αp dt

=

1
2∫
0

[1− 2t]
αp
dt+

1∫
1
2

[2t− 1]
αp
dt

=
1

αp+ 1
.

Since |f ′|q is quasi-convex on [a, b],we get∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2(αp+ 1)
1
p

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

which completes the proof. �
Remark 3. If in Theorem 9, we choose α = 1, then the inequality (2.3) become
the inequality (1.4) of Theorem 4.
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Theorem 10. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L1[a, b]. If |f ′|q is quasi-convex on [a, b] and q ≥ 1, then the following
inequality for fractional integrals hold:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣(2.4)

≤ b− a
α+ 1

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

with α > 0.

Proof. From Lemma 1 and using power-mean inequality with properties of modulus,
we can write∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2

1∫
0

|(1− t)α − tα| |f ′(ta+ (1− t)b)| dt

≤ b− a
2

 1∫
0

|(1− t)α − tα| dt

1− 1
q
 1∫

0

|(1− t)α − tα| |f ′(ta+ (1− t)b)|q dt


1
q

.

Since |f ′|q is quasi-convex on [a, b], we have∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)]

∣∣∣∣
≤ b− a

2

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q

 1∫
0

|(1− t)α − tα| dt


=

b− a
2

(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q


1
2∫
0

[(1− t)α − tα] dt+

1∫
1
2

[tα − (1− t)α] dt


=

b− a
α+ 1

(
1− 1

2α

)(
max

{
|f ′(a)|q , |f ′(b)|q

}) 1
q ,

which completes the proof. �

Remark 4. If in Theorem 10, we choose α = 1, then the inequality (2.4) become
the inequality (1.5) of Theorem 5.

3. APPLICATIONS TO SPECIAL MEANS

We now consider the means for arbitrary real numbers α, β (α 6= β). We take

(1) Arithmetic mean :

A(α, β) =
α+ β

2
, α, β ∈ R+.

(2) Logarithmic mean:

L(α, β) =
α− β

ln |α| − ln |β| , |α| 6= |β| , α, β 6= 0, α, β ∈ R+.
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(3) Generalized log −mean:

Ln(α, β) =

[
βn+1 − αn+1

(n+ 1)(β − α)

] 1
n

, n ∈ Z\{−1, 0}, α, β ∈ R+.

Now using the results of Section 2, we give some applications for special means
of real numbers.

Proposition 1. Let a, b ∈ R+, a < b, and n ∈ Z. Then, we have

|A(an, bn)− Lnn(a, b)| ≤ b− a
4

max {|a|n , |b|n} .

Proof. The assertion follows from Theorem 8 applied to the quasi-convex mapping
f(x) = xn, x ∈ R, and α = 1. �

Proposition 2. Let a, b ∈ R+, a < b, and n ∈ Z. Then, for all q ≥ 1, we have

|A(an, bn)− Lnn(a, b)| ≤ b− a
4

(
max

{
(|a|n)

q
, (|b|n)

q}) 1q .
Proof. The assertion follows from Theorem 10 applied to the m-convex mapping
f(x) = xn, x ∈ R, and α = 1. �
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