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1. Introduction
A general f+1)-point weighted quadrature formula is denoted by

Jwe) £ dk =Y w, £06)+ R[], ()

where w(x) is a positive weight function ofia,b , {x}:., and {w,}.., are respectively
nodes and weight coefficients ai],,[ f is}the corresponding error [7].

Let IT, be the set of algebraic polynomials of degree @stmh The quadrature formula (1)
has degree of exactnesdd for every pLII, we haveR ,[p] = 0In addition, ifR ,,[p] # O
for somell ,,,, formula (1) has precise degree of exactuess

The convergence order of quadrature rule (1) dependhe smoothness of the functibnas
well as on its degree of exactness. It is well kndwat for givenn+ 1mutually different
nodes{x,}.., we can always achieve a degree of exactmess by interpolating at these

nodes and integrating the interpolated polynomiatead of f . Namely, taking the node
polynomial
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Woa(x) = H (X=X,
by integrating the Lagrange interpolation formula

0= 3 )L K * T (£,

where
l'IJn+1(X)

HGX) = G - %)

(k = 01,...,n),

we obtain (1), with

W=t [P CIW) e m0n ),
W .(x) 72 x=x

and
Roal 1= T (F1) w00 o

Note that for eachf O II,, we haver,,,(f;x) = Oand thereforeR ,,[f]= O

Quadrature formulae obtained in this way are kn@asnnterpolatory. Usually the simplest
interpolatory quadrature formula of type (1) witheqetermined node$x, },., O[a,b i
called a weighted Newton-Cotes formula. Faev(x) = dnhd the equidistant nodes
{x} o { atkh ., with h=(b-a)/n, the classical Newton-Cotes formulas are derived.

One of the important cases of the classical New@otes formulas is the well-known
Simpson’s rule

j:f(t)dt:b%;"(f(a)wf(%bﬁf(b)j+E(f). )

In this way, Simpson inequality [1-6] gives an ertmund for the above quadrature rule.
There are few known ways to estimate the residligevia (2). The main aim of this paper is

to give three new estimations f&(f) in L'[a,b] and L"[a,b ] spaces. For this purpose, we
should first consider some notations and ineqealiti

Let LP[a,b] (1< p<o) denote the space @fpower integrable functions on the interval
[a,b] with the standard norm

I, =([] rore)



and L"[a,b ] the space of all essentially bounded function§aph] with the norm
|f], =esssug f ).
xa,b]
If fOL'[ab] andgOL"[a,b], the following inequality is well known

“:f(x)g(x)dx

<[ t].l9l.-

Recently in [8], a main inequality has been introslili that can estimate the error of Simpson
quadrature rule. In other words we have:

Theorem A.Let f:I -~ R,where | isaninterval, be a differentiable function in the interior

1°0f I, and let [a,b] O1°.If a,, B, aretwo real constantssuchthat a, < f'(t) < 3, for all

a+(2A-)b b+(21-Da
21 ’ 21

tO[a,b], thenfor any A0[1/2,1] and all xO][ ] O[a,b] we have

1 Ibf(t)olt_f(b)—f(a)x+(2)|—1)a+bf(b)_wf
Ak b-a 21 (b-a) 21 p-a)

,30—0'0 /12"'(1_/])2 2 2
s4(b_a) 5 ((x-a)*+(b-%?).

f(x)— (a)

3)

As we observe, replacing=(a+b)/2 and A = 2/3in (3) gives an error bound for the
Simpson rule as

b-a

‘j:f(t)dt—T(f(a)+4f(a+b

2

)+ f (b)j

5 20m
= 72(b_ a) (IBO 0’0).

To introduce three new error bounds for the Simpgoedrature rule in'[a,b hnd L"[a,b]
spaces we first consider the following kernellarb : ]

t_5a+b t0[a, a+b]’
KB = af5b a+b2 )
t- t 0 (——,b].
6 2

After some calculations, it can be directly coneddhat



j f(t)K(t)dt—b—Ga(f()+4f(—)+f(b)j j f(t)dt, (5)

and

\——co a).

tD[a b]

2. Main Results

Theorem 1. Let f :1 - R,where | isaninterval, be a function differentiable in the interior
1%f I, and let [a,b] O1°. If a(x) < f'(X) < B(X) for any a,0C[a,b] and xO[a,b] then
the following inequality holds

m=f, ¢ @20 j ;b,,(t 20 awa
+I:fb(t—
b6a(f()+4f( )+f(b)j [IRICLE ©6)
M=[ o -2 ;bb - 220 gy
j:f:b(t— aOd+ ot~ 25D g0t

Proof. By referring to the kernel (4) and identity (5) Wust have
j:K(t)(f'(t)—det
b

:%a(f(a)ﬂf (ib)+ f(b)]—j'b f (t)dt—l(ij(t)(a(t)+,g(t))dt)

_b—;‘(f() 4f(—) f(b)j j f (t)dt

a+Eb

—%[ J.2 - 5a+b) (a()+BM)dt+ j o (1= (a(t) + BD) dtj

On the other hand, the given assumptidi) < f'(t) < S(t results in



‘ ft) - 90 ;ﬂ(t) ‘ < BO ;a(t) |

Therefore, one can conclude from (7) and (8) that

b-a

T(f() 4f(—) f(b)j j f(t)dt

—%Uaz (- 222 (@) + A ot + Jeo j

b , t)+ B(t t)—a(t
:‘LK(t)(f (t)_a()zﬁ()jdt ()‘ﬁ()za()dt

SL K (t
:%[I?)t—SaTm|(,8(t)—a(t))dt+j:;bt—a D

After re-arranging (9) we obtain

ab Sa+b Sa+bl|)A(t) Ba+b B+b
=| 2| |t- —|t- + t- +t-
m j (( 6 ‘ 6 2 6 ‘

+I ( a+5b‘ a+5bD,8(t)+(t_a+Eb+‘t_a+L’ODG_) ot
a+b 6 6 2

=J‘5a6b( 5a +b

) BOX) dx-+ j5a+b(x— ) ar(x) dx

a+5b

Ia b (

%;‘nb(x_ 5 Dy a(x)dx,

and

_ M((t_5a+b_‘t_5a+b ja_(t)+[t_ 5a+b+‘t_ B+b jM)Jdt
6 6 2 6 6 2

b _a+bb | a+S|lalt) (,_a+tD | _a+D|)|4()
s e ey

S - “D)a(dxs j:b(x—

= ) B(x) cx

a+5b

+jam (X_

s )a(x)dx+ja+;b(x—

(8)

9)



The advantage of theorem 1 is that necessary catimsg in boundsn and M, are just in
terms of the pre-assigned functiomé), S(t) (not f").

Special case 1. Substitutinga(x) = a,x+a, %0 and B(x) = B x+ 5, %0 in (6) gives

5(b-a)?
144

‘j: f (t)dt—b;;‘(f(a)wf A2y 1 <b)]‘s (B-a)a+b)+2(8,-a,).

In particular, replacingr, = 8, =0 in above inequality leads to one of the result®bés

‘j:f(t)dt——(f() at @ )+f(b)j

5 2rm
572(b_a) (ﬂo ao)-

Remark 1. Although a(x) < f'(X) < B(x) is a straightforward condition in theorem 1,
however sometimes one might not be able to eabiigio both bounds ofr(x and £(x) for
f'. In this case, we can make use of two analoguareéhes. The first one would be helpful
when f' is unbounded from above and the second one woeldchdipful when f' is
unbounded from below.

Theorem 2. Let f ;1 - R,where | isaninterval, be a function differentiable in the interior
1%f I ,andlet [a,b] O1°. If a(x) < f'(X) for any a OC[a,b] and x[O[a,b] then

ji%t—56 E%E(fan—f(m—j:aa)m)
< b- a(f() 4fe——q f(mj—j:faﬁﬂs (10)
ij b;a(fag—f(m—j:aa)m)
Proof. Since
[Tk -am) t————(f() 4f@——0 f(mj—j:fayn—“:K(Qaa)m)
_5%59(f( a)+4f @ )+f(bi) j f(t)dt

_(J-:;b (t- S5a+ b) a(t)dt+ .[a"b (t- )a(t) dt] ,



SO we have

u[1=(a)+41‘(—) f(b)j j f(t)dt

aJZrb_ b _a+5b
{72

‘ j (f'(t)-a())dt

(11)
j [K(E)|(f'®)-a()dt

b-a
< max K U (f'¢)- a(t)dt——(f(n) f@)- ja(t)dt)
After re-arranging (11), the main inequality (10)l\Wwe derived. [

Special case 2. If a(x) =a,x+a,# 0 then (10) becomes

S(b—a)z(f(b)—f(a)_(ao a+balj]’
3 b-a 2

‘j:f(t)dt—b;;‘(f(a)wf (izb)+ f (b)j

if and only if a, x+a,< f'(x) OxO[a b]. In particular, replacingr, =0 in above inequality
leads to theorem 1, relation (4) of [10] as

‘j:f(t)dt—b;;‘(f(a)+4f(i2b)+f(b)j <

(b—a)z(f(b)—f(a)_aj
3 b-a °)

13. Theorem 3. Let f:1 - R, where | is an interval, be a function differentiable in the
interior 1%of | ,andlet [a,b] O1°. If f'(X) < B(X) for any SOC[a,b] and xO[a,b] then

b a+9
-
<D~

Ga(f(a)+4f(ib)+f(b)j—j"f(t)dts (12)

b
dl
2

a+b

J’z(t_

b;;(j:/z(t)dt— f (b) + f(a))

a+b

J’z(t_

Proof. Since

(j B(t)dt - f (b)+ f(a))



[T () (0 -B0)dt
b

:%a(f(a)+4f(ib)+f(b)j—jbf(t)dt—(I:K(t),B(t)dt)

_b—;‘(f() 4f(—) f(b)j [7f©at

—U ash +Ib2 _a+65b ]

So we have
‘be (f()+4f( )+f(b)j j f (t)ct
_Uaz(t—5a+b)ﬁ(t)dt [ j
(13)
“ )(F'(®) - B(t))dt |< )|(B®) - ')t
<max K (1)| [ (B0)- f(t)dt——(j BOR-1 0+ @),
After re-arranging (13), the main inequality (12)l\we derived. ]

Special case 3. If B(x) = Sx+5,%0 in (12), then

‘jb f(t)dt—b;Ba(f(a)+4f (izb)+ f (b)j

(b a) (,80 a+b’81_f(bk))—f(a)).
—a

if and only if f'(X)< Bx+ B, OxO[ab]. In particular, replacings, =0 in above inequality
leads to theorem 1, relation (5) of [10] as

‘j f(t)dt——(f()+4f( )+f(b)j

<(b- a)(

B, - f(b)—f(a)j.

b-a
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