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1 Introduction

In a recent paper, Athreya (2009) has shown that every probability density function is the

unique maximizer of relative entropy in an appropriate class of probability density functions.

We extend this result to λ-Renyi entropy studied by Lutwak et al.(2005). Lutwik et al.

(2004) have considered the problem of maximizing the λ-Renyi entropy for probability density

functions on Rn. We prove the result for general measure spaces.

2 Preliminaries

Entropy :

Let (Ω,F , µ) be a measure space where µ is σ-fintie. A nonnegative F-measurable function

such that ∫
Ω
f dµ = 1

is called a probability density function. For such an f , let

Pf (A) =
∫
A
f dµ,A ∈ F .
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Then Pf is a probaility measure on the measurable space (Ω,F). The Shannon entropy of

the probability measure Pf with respect to the measure µ is defined by

h(f) ≡ −
∫

Ω
f log f dµ(2. 1)

provided the integral exists. We define 0 log 0 = 0.

For λ > 0, the λ-Renyi entropy power of the probability measure Pf with respect to the

measure µ is defined to be

Nλ(f) = [
∫

Ω
fλ dµ]1/(1−λ) if λ 6= 1,(2. 2)

= eh(f) if λ = 1

provided that the integral defined above exists. The λ-Renyi entropy of the probability

measure Pf with respect to the measure µ is defined to be

hλ(f) = logNλ(f).(2. 3)

Relative Entropy :

Given two probability densities f and g with respect to the measure µ, their relative

Shannon entropy or Kullback-Leibler information is defined by

h1(f, g) =
∫

Ω
f log(

f

g
) dµ(2. 4)

provided the integral exists.

λ-Renyi Relative Entropy :

For λ > 0, the relative λ-Renyi entropy power of the probability measures Pf and Pg with

respect to the measure µ is defined to be

Nλ(f, g) =
[
∫

Ω g
λ−1f dµ]1/(1−λ)[

∫
Ω g

λ dµ]1/λ

[
∫

Ω f
λ dµ]1/λ(1−λ)

if λ 6= 1,(2. 5)

= eh1(f,g) if λ = 1
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provided the integrals on the right side exist. The λ-Renyi relative entropy of the probability

measures Pf and Pg with respect to the measure µ is defined to be

hλ(f, g) = logNλ(f, g).(2. 6)

The following Theorem is due to Lutwak et al. (2005)

Theorem 2.1: If f and g are probabiliy densities with respect to a measure µ such that

hλ(f), hλ(g) and hλ(f, g) are finite, then

hλ(f, g) ≥ 0(2. 7)

equality holds if and only if f = g a.e [µ] for any λ > 0.

The theorem stated above is well known if λ = 1 and Ω is the real line and µ is the

Lebesgue measure (cf. Cover and Thomas (1999), p.234). For λ > 0, λ 6= 1, the theorem

was proved by Lutwak et al. (2005) applying the Holder’s inequality when Ω is the real line

and µ is the Lebesgue measure. The same arguments will prove Theorem 2.1 when f and

g are probability densities with respect to a measure µ on a measurable space (Ω,F) by

applying the Holder’s inequality for a measure space (Ω,F , µ). We give the proof here for

completeness.

Proof : Case (i) Suppose λ = 1. Following Athreya (2009) and observing that the function

h(x) = x− 1− log x is nonnegative and has a unique minimum at x = 1, it follows that

f(ω) log g(ω)− f(ω) log f(ω) ≤ g(ω)− f(ω), ω ∈ Ω.

Integrating with repect to the measure µ, we get that∫
Ω
f(ω) log g(ω)µ(dω)−

∫
Ω
f(ω) log f(ω)µ(dω) ≤

∫
Ω

[g(ω)− f(ω)]µ(dω) = 0

since f and g are probability density functions with respect to the measure µ. This proves

that

h1(f, g) ≥ 0

equality occuring if and only if f = g a.e. [µ].

Case (ii) Suppose λ > 1. Applying the Holder’s inequality, we get that∫
Ω
gλ−1fdµ ≤ [

∫
Ω
gλdµ]

λ−1
λ [

∫
Ω
fλdµ]

1
λ
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equality occuring if and only if f = g a.e. [µ] since f and g are probability density functions

with respect to the measure µ. Hence Nλ(f, g) ≥ 1 or equivalently hλ(f, g) ≥ 0 for any two

probability density functions with repect to the measure µ equality occuring if and f = g

a.e. [µ].

Case (iii) Suppose λ < 1. Then∫
Ω
fλdµ =

∫
Ω

(gλ−1f)λgλ(1−λ)dµ(2. 8)

≤ [
∫

Ω
(gλ−1f)dµ]λ[

∫
Ω
gλdµ](1−λ)

equality occuring if and only if f = g a.e. [µ] since f and g are probability density functions

with respect to the measure µ. Hence Nλ(f, g) ≥ 1 or equivalently hλ(f, g) ≥ 0 for any two

probability density functions with repect to the measure µ equality occuring if and f = g

a.e. [µ].

As a consequence of Theorem 2.1, we get that

[
∫

Ω
gλ−1f dµ]1/(1−λ)[

∫
Ω
gλ dµ]1/λ ≥ [

∫
Ω
fλ dµ]1/[λ(1−λ)]

whenever λ > 0, λ 6= 1, and equality occurs if and only if f = g a.e. [µ].

Let f0 be a probability density function with repect to the measure µ such that γ =

[
∫

Ω f
λ
0 dµ]

1
λ(1−λ) <∞. Let

ζγ ≡ {g :
∫

Ω
gdµ = 1 and

∫
Ω
gfλ−1

0 dµ = γλ(1−λ)}.

For any g ∈ ζγ ,

Hλ(g) ≡ [
∫

Ω
gλ dµ]1/λ(1−λ) ≤ [

∫
Ω
gfλ−1

0 dµ]1/(1−λ)[
∫

Ω
fλ0 dµ]1/λ = γ = [

∫
Ω
fλ0 dµ]

1
λ(1−λ) <∞.

We have the following theorem generalizing Corollary 1 in Athryea (2009).

Theorem 2.2:

sup{Hλ(g); g ∈ ζλ} = Hλ(f0)

and f0 is the unique maxiimizer.
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3 Examples

For the case λ = 1, Athreya (2009) has discussed several examples as applications of his

result. He showed that, in the class of all probability density functions f that satisfy the

conditions ∫
Ω
fhidµ = γi, i = 1, 2, . . . , k,

the maximizer of entropy is a probability density f0 that is proportional to the function

exp{
k∑
i=1

cihi}

for some choice of ci, i = 1, 2, . . . , k. Suppose 0 < λ 6= 1. Let h be a real valued measurable

function defined on the measurable space (Ω,F), such that

ψ(c) =
∫

Ω
echdµ <∞;

∫
Ω
echλdµ <∞

for some real γ and c such that

f0 =
ech

ψ(c)
is a probability density fnction and

∫
Ω
fλ0 dµ = γλ(1−λ).

We ilustrate our results on λ-Renyi entropy by two examples.

Example 1: Suppose Ω = {1, 2, . . . , N} where µ is the counting measure. Let h ≡ 1.

Suppose γ > 0 such that γλ is a positive integer. Let f0 be the uniform distribution on the

integers {1, 2, . . . , N} where N = γλ. It is easy to check that, f0 is the unique maximizer

among all discrete distributions with support contained in Ω with N = γλ.

Example 2: Suppose Ω = R, F is the Borel σ-algebra and µ is the Lebesgue measure.

Suppose λ > 1. Let h(x) = x2. It is easy to see that
∫
R e

cx2
dx <∞ for any c < 0. Let

f0(x) =
ecx

2

ψ(c)

where ψ(c) =
∫
R e

cx2
dx. Observe that f0 is the Gaussian probability density function with

mean zero and variance (-c/2). For any γ > 0, the density f0 is the unique maximizer among

all probability density functions g satisfying the confition∫
R
g(x)e(λ−1)cx2

dx = [ψ(c)]λ−1γλ(1−λ).
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Suppose λ < 1. Let h(x) = −x2. It is easy to see that
∫
R e

−cx2
dx <∞ for any c > 0. Let

f0(x) =
e−cx

2

ψ(c)

where ψ(c) =
∫
R e

−cx2
dx. Observe that f0 is the Gaussian probability density function with

mean zero and variance (c/2). For any γ > 0, the density f0 is the unique maximizer among

all probability density functions g satisfying the confition∫
R
g(x)e−(λ−1)cx2

dx = [ψ(c)]λ−1γλ(1−λ).
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