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1. Introduction

The concept of Riemann-Stieltjes integralZ b

a

f (t) du (t) ;where f is called the integrand,

u is called the integrator,

plays an important role in Mathematics, for instance in the de�nition of complex
integral, the representation of bounded linear functionals on the Banach space of
all continuous functions on an interval [a; b] ; in the spectral representation of self-
adjoint operators on complex Hilbert spaces and other classes of operators such as
the unitary operators etc...

However the Numerical Analysis of this integral is quite poor as pointed out
by the seminal paper due to Michael Tortorella from 1990 [23], in which, I quote,
for the �rst time in history

"A generalization of the Newton�Cotes quadrature rules that provides a means
for numerical computation of Stieltjes integrals without using derivatives is de-
scribed. The methods �nd wide application in the numerical evaluation of many
applied probability models. Numerical convolution of life distributions is discussed
in this paper. Error analyses are provided."

Earlier results in this direction, however, with a modest in�uence in the liter-
ature were provided by Dubuc and Todor in their 1984 and 1987 papers [18] and
[19], respectively.

For recent results see the work of Diethelm [8], Liu [20], Mercer [21], Munteanu
[22], Mozyrska et al. [24] and the references therein.

In the following I will present some recent results obtained together with some
members of the RGMIA, see [1], [2], [3], [7], [5], [6], [12] and [13]. A comprehensive
list of preprints related to this subject may be found at http://rgmia.org
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2. Trapezoidal Rules

We endeavour in the following to provide sharp bounds for the error in approx-
imating the Riemann-Stieltjes integral by a trapezoidal rule under various assump-
tions for the integrand and the integrator for which the integral exists.

If we consider the error

ET (f; u; a; b)

:=
f (a) + f (b)

2
� [u (b)� u (a)]�

Z b

a

f (t) du (t)

then we have the following results:

Theorem 1. We have

(1) Let f : [a; b]! C be a p�H-Hölder type function, that is, it satis�es the
condition

(2.1) jf (x)� f (y)j � H jx� yjp for all x; y 2 [a; b] ;

where H > 0 and p 2 (0; 1] are given, and u : [a; b] ! C is a function
of bounded variation on [a; b] : Then we have the inequality (see Dragomir
[9]):

(2.2) jET (f; u; a; b)j �
1

2p
H (b� a)p

b_
a

(u)

where
Wb
a (u) denotes the total variation of u on [a; b] : The constant C = 1

on the right hand side of (2:2) cannot be replaced by a smaller quantity.
(2) Let f : [a; b] ! C be a p � H-Hölder type mapping where H > 0 and

p 2 (0; 1] are given, and u : [a; b]! C is a Lipschitzian function on [a; b] ;
this means that

(2.3) ju (x)� u (y)j � L jx� yj for all x; y 2 [a; b] ;

where L > 0 is given. Then we have the inequality (see Dragomir [11]):

(2.4) jET (f; u; a; b)j �
1

p+ 1
HL (b� a)p+1 :

(3) Let f : [a; b] ! C be a p � H-Hölder type mapping where H > 0 and
p 2 (0; 1] are given, and u : [a; b]! R a monotonic nondecreasing function
on [a; b] : Then we have the inequality (see Dragomir [11]):

jET (f; u; a; b)j(2.5)

� 1

2
H f(b� a)p [u (b)� u (a)]

�p
Z b

a

"
(b� t)1�p � (t� a)1�p

(b� t)1�p (t� a)1�p

#
u (t) dt

)

� 1

2p
H (b� a)p [u (b)� u (a)] :

The inequalities in (2.5) are sharp.
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(4) Let f , u : [a; b] ! C be of bounded variation on [a; b] : If one of them
is continuous on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) du (t)

exists and we have the inequality (see Dragomir [11]):

(2.6) jET (f; u; a; b)j �
1

2

b_
a

(f)
b_
a

(u) :

The constant 12 is best possible in (2.6).
(5) We consider the case when the function f : [a; b] ! C satis�es the end-

point Lipschitzian conditions

jf (t)� f (a)j � La (t� a)� and(2.7)

jf (b)� f (t)j � Lb (b� t)�

for any t 2 (a; b) where the constants La; Lb > 0 and �; � > �1 are given.
Assume that the function f satis�es the condition (2.7).

a) If u : [a; b]! C is Lipschitzian with the constant K > 0; then we have the
inequality (see Dragomir [11]):

jET (f; u; a; b)j(2.8)

� 1

2
K

�
La
�+ 1

(b� a)�+1 + L�
� + 1

(b� a)�+1
�
:

b) If �; � > 0 and u : [a; b] ! R is monotonic nondecreasing on [a; b] ; then
(see Dragomir [11]):

jET (f; u; a; b)j(2.9)

� 1

2
La

"
(b� a)� u (b)� �

Z b

a

(t� a)��1 u (t) dt
#

+
1

2
Lb

"
�

Z b

a

(b� t)��1 u (t) dt� (b� a)� u (a)
#

� 1

2

h
La (b� a)� + Lb (b� a)�

i
[u (b)� u (a)] :

Remark 1. Since, integrating by parts in the Riemann-Stieltjes integral we
have

ET (f; u; a; b) = �ET (u; f ; a; b)
then similar results can be stated by swapping the role of f with u in the above
theorem. The details are omitted.

3. Applications for Functions of Selfadjoint Operators

Let U be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the
spectrum Sp (U) included in the interval [m;M ] for some real numbers m < M and
let fE�g� be its spectral family. Then for any continuous function f : [m;M ]! R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral :

(3.1) hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;
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for any x; y 2 H: The function gx;y (�) := hE�x; yi is of bounded variation on the
interval [m;M ] and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi

for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ].

Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its spectral
family.

Consider the partition In : m = t0 < t1 < ::: < tn�1 < tn = M of the interval
[m;M ] ; and de�ne hi := ti+1�ti (i = 0; :::; n� 1), � (h) := max fhiji = 0; :::; n� 1g
and the generalized trapezoidal quadrature rule associated to the continuous func-
tion f : [m;M ]! C, selfadjoint operator A and the vectors x; y 2 H

Tn (f;A; In;x; y)(3.2)

:=

n�1X
i=0

f (ti) + f (ti+1)

2


�
Eti+1 � Eti

�
x; y

�
:

Theorem 2. Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) � [m;M ] for some real numbers m < M and let fE�g� be its
spectral family.

a) If f : [m;M ] ! C is continuous and with bounded variation on [m;M ] ;
then for any x; y 2 H

hf (A)x; yi = Tn (f;A; In;x; y)(3.3)

+Rn (f;A; In;x; y)

and the remainder Rn (f;A; In;x; y) satis�es the error bounds (see Dragomir
[11]):

jRn (f;A; In;x; y)j(3.4)

� 1

2
max

i2f0;:::;n�1g

(
ti+1_
ti

(f)

)
M_
m

�

E(�)x; y

��
� 1

2
max

i2f0;:::;n�1g

(
ti+1_
ti

(f)

)
kxk kyk :

b) Let f : [m;M ] ! C be a p �H-Hölder continuous function on [m;M ] ;
then for any x; y 2 H we have the equality (3.3) and the remainder
Rn (f;A; In;x; y) satis�es the error bounds (see Dragomir [11]):

jRn (f;A; In;x; y)j(3.5)

� 1

2p
H [� (h)]

p
M_
m

�

E(�)x; y

��
� 1

2p
H [� (h)]

p kxk kyk :
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4. Ostrowski Type Rules

Now de�ne the error in approximating the Riemann-Stieltjes integral by the
generalized mid-point rule as

EO (f; u; a; b; x) := [u(b)� u(a)] f(x)�
Z b

a

f(t)du(t)

where x 2 [a; b] : Bounds for EO (f; u; a; b; x) in the case when u (t) = t; t 2 [a; b]
are known in the literature as Ostrowski type inequalities.

Theorem 3. We have

(1) If f : [a; b]! R is a function of bounded variation and u : [a; b]! R is of
r-H-Hölder type, then (see Dragomir [10]):

jEO (f; u; a; b; x))j(4.1)

� H
"
(x� a)r

x_
a

(f) + (b� x)r
b_
x

(f)

#

�

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

H [(x� a)r + (b� x)r]

�
�
1

2

Wb
a(f) +

1

2

���Wxa(f)�Wbx(f)���� ;
H [(x� a)qr + (b� x)qr]

1
q

�
h
(
Wx
a(f))

p
+
�Wb

x(f)
�pi 1p

if p > 1;
1

p
+
1

q
= 1 ;

H

�
1

2
(b� a) +

����x� a+ b2
�����rWba(f) ;

(2) Let f : [a; b] ! R be a function of r-H-Hölder type with r 2 (0; 1] and
H > 0, and u : [a; b]! R be a monotonic nondecreasing function on [a; b].
Then (see Chung & Dragomir [4]):

jEO (f; u; a; b; x))j(4.2)

� H
"
(b� x)ru(b)� (x� a)ru(a)

+ r

(Z x

a

u(t)

(x� t)1�r dt�
Z b

x

u(t)

(t� x)1�r dt
)#

� H f(b� x)r [(u(b)� u(x)] + (x� a)r [u(x)� u(a)]g

� H
�
1

2
(b� a) +

����x� a+ b2
�����r [u(b)� u(a)] ;

for any x 2 [a; b].
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(3) Let f : [a; b] ! R be monotonic nondecreasing on [a; b] and u : [a; b] ! R
of r-H-Hölder type. Then (see Chung & Dragomir [4])

jEO (f; u; a; b; x))j(4.3)

� H [[(x� a)r � (b� a)r] f(x)

+r

(Z b

x

f(t)dt

(b� t)1�r �
Z x

a

f(t)dt

(t� a)1�r

)#
� H f(b� x)r [f(b)� f(x)] + (x� a)r [f(x)� f(a)]g

� H
�
1

2
(b� a) +

����x� a+ b2
�����r [f(b)� f(a)] :

(4) Let f : [a; b] ! C be a r � H�Hölder continuous function on [a; b] ; and
u : [a; b]! C is an L�Lipschitzian function on [a; b] ; then (see Chung &
Dragomir [4]) for any x 2 [a; b] we have:

jEO (f; u; a; b; x))j(4.4)

� LH

r + 1

h
(x� a)r+1 + (b� x)r+1

i
;

Remark 2. The case x = a+b
2 provides the best error bounds in the above results

and the corresponding mid-point quadrature rule is also the simplest to numerically
implement for applications.

5. Grüss Type Rules

In 1998, S.S. Dragomir and I. Fedotov [16], in order to approximate the Riemann-
Stieltjes integral

R b
a
f (t) du (t) with the simpler expression

1

b� a [u (b)� u (a)]
Z b

a

f (t) dt

introduced the following error functional

EG (f; u; a; b)(5.1)

:=

Z b

a

f (t) du (t)� 1

b� a [u (b)� u (a)]
Z b

a

f (t) dt

provided that both the Riemann-Stieltjes integral
R b
a
f (t) du (t) and the Riemann

integral
R b
a
f (t) dt exist.

Theorem 4. We have:

(1) If u is L�Lipschitzian on [a; b] and f is Riemann integrable on [a; b] ; then
(see Dragomir & Fedotov) [16]:

jEG (f; u; a; b)j(5.2)

� L
Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The inequality (5.2) is sharp. Moreover, if there exist the constantsm;M 2
R such that

(5.3) m � f (t) �M for any t 2 [a; b] ;
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then:

(5.4) jEG (f; u; a; b)j �
1

2
L (M �m) (b� a) :

The constant 12 is sharp in (5.4).
(2) Let f; u : [a; b]! R be such that u is (l; L)-Lipschitzian on [a; b] ; i.e., the

function u� l+L
2 � e; where e (t) = t; t 2 [a; b] is 1

2 (L� l)�Lipschitzian.
(i) If f is of bounded variation, then (see Dragomir [14]):

(5.5) jEG (f; u; a; b)j �
1

4
(L� l) (b� a)

b_
a

(f) :

The constant 14 is best possible in (5.5).
(ii) If f is K�Lipschitzian on [a; b] ; then (see Dragomir [14]):

(5.6) jEG (f; u; a; b)j �
1

6
K (L� l) (b� a)2 :

(iii) If f is monotonic nondecreasing, then (see Dragomir [14]):

(5.7) jEG (f; u; a; b)j � 2 �
L� l
b� a

Z b

a

�
t� a+ b

2

�
f (t) dt

�

8>>>>>><>>>>>>:

1
2 (L� l)max fjf (a)j ; jf (b)jg (b� a) ;

1

(q+1)
1
q
(L� l) kfkp (b� a)

1
q

if p > 1; 1
p +

1
q = 1;

(L� l) kfk1 ;

where kfkp :=
�R b

a
jf (t)jp dt

� 1
p

; p � 1 are the Lebesgue norms. The constants 2

and 1
2 are best possible in (5.7).

The following results also holds:

Theorem 5. We have

(1) If u is of bounded variation on [a; b] and f is continuous on [a; b] ; then:

jEG (f; u; a; b)j(5.8)

�
b_
a

(u) max
t2[a;b]

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� :
The inequality (5.8) is sharp. Moreover, if f is K�Lipschitzian, then (see
Dragomir & Fedotov [17]):

(5.9) jEG (f; u; a; b)j �
1

2
K (b� a)

b_
a

(u) :

The constant 12 is best possible in (5.9).
(2) Let u : [a; b]! R be a continuous convex function on [a; b] :
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(i) If f : [a; b] ! R is a function of bounded variation on [a; b] ; then (see
Dragomir [13]):

jEG (f; u; a; b)j(5.10)

� 1

4

�
u0� (b)� u0+ (a)

�
(b� a)

b_
a

(f) :

The constant 14 is best possible in (5.10).
(ii) If f : [a; b] ! R a nondecreasing function on [a; b] : Then (see Dragomir

[13]):

(5.11) 0 � EG (f; u; a; b)

� 2 �
u0� (b)� u0+ (a)

b� a

Z b

a

�
t� a+ b

2

�
f (t) dt

�
�
u0� (b)� u0+ (a)

�
�

8>>>>>><>>>>>>:

1
2 max fjf (a)j ; jf (b)jg (b� a) ;

1

(q+1)
1
q
kfkp (b� a)

1
q

if p > 1; 1
p +

1
q = 1;

kfk1 :

The constants 2 and 1
2 are best possible.

(iii) If f an L�Lipschitzian function on [a; b] ; then (see Dragomir [13]):

jEG (f; u; a; b)j(5.12)

� 1

6
L
�
u0� (b)� u0+ (a)

�
(b� a)2 :

Remark 3. For other similar results, see the survey paper [15].

Remark 4. Applications of the above results for functions of sefadjoint opera-
tors in Hilbert spaces may be found in the recent book due to the author "Inequal-
ities for Functions of Selfadjoint Operators in Hilbert Spaces", RGMIA
Monographs, 2011:

[ONLINE : http : ==rgmia:org=monographs:php]:
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