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REFINEMENTS OF HADAMARD-TYPE INEQUALITIES FOR
CO-ORDINATED QUASI-CONVEX FUNCTIONS

M. A. LATIF, S. HUSSAIN, AND S. S. DRAGOMIR

ABSTRACT. In this paper, some inequalities of Hermite-Hdamard type for co-
ordinated quasi-convex functions in two variables are given. The obtained re-
sults give refimenets of the Hermite-Hdamard type inequalities for co-ordinated
quasi convex functions proved in [21].

1. INTRODUCTION

Let f: I - R, 0 #1CRbeaconvex on I, a,b € I with a < b. Then the
inequalities:

(1.1) f(a;b>§bla/abf(g;)dx§f(a);f(b)’

hold. The inequalities in (1.1) is known as the Hermite-Hadamard’s inequalities for
convex mappings. The inequalities in (1.1) hold in reversed order if f is a concave
function.

In recent years, many authors have established several inequalities connected
to Hermite-Hadamard’s inequality. For recent results, refinements, counterparts,
generalizations and new Hermite-Hadamard type inequalities see [12], [13], [17] and
[24].

We recall that the notion of quasi-convex functions generalizes the notion of
convex functions. More precisely, a function f : [a,b] — R is said to be quasi-
convex on [a, b] if

fAz+ (1= Ny) < max{f(z), f(y)},

for any x,y € [a,b] and A € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex
(see [16]). For several results concerning inequalities for quasi-convex functions we
refer the interested reader to [1]-[5], [16], [25, 26] and [28, 29].

Let us consider now a bidimensional interval A =: [a,b] X [c,d] in R? with a < b
and ¢ < d, a mapping f : A — R is said to be convex on A if the inequality

FOr+ (1 =)z, Ay + (1= Nw) < Af(z,y) + (1= N f(zw),

holds for all (x,y), (z,w) € A and X € [0,1] .
A modification for convex functions on A, which are also known as co-ordinated
convex functions, was introduced by S. S. Dragomir [11] as follows:
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A function f : A — R is said to be convex on the co-ordinates on A if the partial
mappings fy : [a’ﬂb] - R, fy(u) = f(ua y) and f; : [C, d} - R)fr(v) = f(:L',’U) are
convex where defined for all = € [a,b],y € [c,d].

Clearly, every convex mapping f : A — R is convex on the co-ordinates. Fur-
thermore, there exists co-ordinated convex function which is not convex, (see for
example [11]).

The following Hermite-Hadamrd type inequality for co-ordinated convex func-
tions on the rectangle from the plane R? was also proved in [11]:

Theorem 1. [11] Suppose that f : A — R is co-ordinated convex on A. Then one
has the inequalities:

a+b c+d
(555
b d
et 15
=) 70//fmydydx
<411[b /fxcdx—l—i/fxd

e = [ 10 dy]

IN

1
2
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(& C

fla,0)+ fla,d)+ f(bc) + [ (b,d)
1 :

The above inequalities are sharp.

(1.2) <

In a recent paper [23], M. E. Ozdemir et al. give the notion of co-ordinated quasi-
convex functions which generalize the notion of co-ordinated convex functions as
follows:

Definition 1. [23] A function f: A = [a,b] X [¢c,d] — R is said to be quasi-convex
on A if the inequality

fOz+ (1 =Xz y+ (1 - Mw) < max{f(z,y), f(z,w)},
holds for all (z,y),(z,w) € A and X € [0,1] .

A function f: A — R is said to be quasi-convex on the co-ordinates on A if the

partial mappings f, : [a,b] — R, f,(u) = f(u,y) and f, : [c,d] — R, f(v) = f(z,0)
are quasi-convex where defined for all x € [a,b],y € [c,d].
A formal definition of co-ordinated quasi-convex functions may be stated as:

Definition 2. A function f : A — R is said to be quasi-convex on the co-ordinates
on A if

fltz+ (1 =1)z,sy+ (1 - s)w) < max{f (z,y), f (z,w), f (z,9), f (z,0)},
for all (z,y), (z,w) € A and s,t € [0,1] .
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The class of co-ordinated quasi-convex functions on A is denoted by QC(A).
It has been also proved in [23] that every quasi-convex functions on A is quasi-
convex on the co-ordinates on A. For further results on several new classes of
co-ordinated convex functions and related results we refer the interested reader to
[6]-[9], [11], [15], [18]-[23] and [27]. Motivated by the results proved in [21, 27],
the main purpose of the present paper is to establish some new inequalities for
co-ordinated quasi-convex functions which are related to the rightmost terms of the
Hermite-Hadamard type inequality (1.2) and to get refinements of the results for
co-ordinated quasi-convex functions proved in [21].

2. MAIN RESULTS

Throughout in this section, for convenience, we will use the notations:

2 82 82 82

L= | o] M =| 2 s wa| N = | 2 0| 0=| Znr 6,
9?2 c+d 0? c+d 0?2 a+b

P= Bsatf(a’ 2 > ’Q_‘asatf<b’ 2 ) ’R_'asatf< 2 ’C) ’
02 a+b 02 a+b c+d

5= 838tf( 2 ’d)‘andT‘asatf( 2 2 >

The following lemma is necessary and plays an important role in establishing
our main results:

Lemma 1. Let f : A C R?2 — R be a partial differentiable mapping on A :=

[a, b] x

b rd
Wl(d*@/ / f(z,y) dydx + fla,c) + f(a,d) +
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Proof. By integration by parts, we have

// 6528tf<1;rta+lgtb71;5‘3+125d)dsdt
1
—w—w—@““’@w—af}d—@/o Frgter e @
<b—a>4<d 5 (o e 150 a
22+ a0 —c// (Ht 1;tba1;86+1gsd>dsdt.

Setting z = %a + %b and y = %c + %d7 we get from (2.2) the following
inequality:

02 1+t 1—t, 1+s 1—s
// c')satf< 5 a+ 5 b, 5 c+ 3 d)dsdt

a+b
2

f(a,c)fQ—/a f(z,c)dx

c+d a+b c+d
2

(b—a);(zd—c)Q/aQ/c f (x,y) dyda.

_(b—a)ézd—c)2/c 2 f(a,y)dy +

In a similar way, we can have the following inequalities:

02 141 1—-t 1-—s 1+s
// S 5e01 ( 5 a+ 5 b, 5 c+ 5 d)dsdt

a+b
2

<(b_a)(d_c)f(a’d)_(b—a)2(d—c)/a f(z,d)dx

M/;f(a,y)dw(b / / f (.y) dyd,

02 1—t 1+t 1+s 1—-s
// 838t ( 5 a+ 5 b, 5 c+ 7 d)dsdt

< Gmaa—g! o- (b_a_c/ f@ed
(2.5)

ct+d L+d

(b—a)ézd—c)Q/c 2 f(b’y)der(b—a / / () dute




INEQUALITIES FOR CO-ORDINATED QUASI-CONVEX FUNCTIONS 5

and

0?2 1—t 14t 1+s
//tsasat ( 5 a -+ 5 b 2 c+ 5 d)dsdt

< rmaa=g! b Gy *c/ (@ dd)d
(2.6)

—(b_a/C Fedyt / /fxy)dyd:c

Substituting (2.3)-(2.6) in (2.2), simplifying and multiplying the resulting inequality

by %éd*c), we get (2.1). Hence the proof of the Lemma is complete. O

Now we begin with the following result:

Theorem 2. Let f : A C R? — R be a partial differentiable mapping on A =
2

[a,b] X [¢,d] witha <b, c<d. If gséft

then the following inequality holds:

S T L f(a,e) + f(a,d) + £ (bo) + f (b,d)
b—a)(d—c)/a/af(xay)dydﬂﬁ—l- 4

is quasi-convex on the co-ordinates on A,

( 4
S % [Sup {07 Q7 Sv T} + sup {N7 Q7 R? T} + sup {L7 P7 R’ T}
(2.7)

+sup{M, P,S,T}|,

where A is defined as in Lemma 1.

Proof. From Lemma 1, we have

b pd
(b_ald_c//f(mjy)dydwrf(a>C)+f(a7d)+f(b,0)+f(b,d)_A

o[ [

2 o _
(1 t 1+tb], sc+_1+sd>‘d&ﬁ

0sat 2 2 2

bt -t 1-s  1s
Jﬁ Jﬁ o 838t ( b, d) dsdt
1-— 1+t 1+5
+A A st 838tf< 2 b, d) dsdt
(2.8)
+/1/1t fl L _bHS “d )| dsdt
o Jo s 0s0t ) s
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o*f
dsot

By the quasi-convexity of

on A := [a, b] X [¢, d], we observe that the following

dsdt

0? f a+b
0s0t 5 ¢

0? a+b
858tf< 2 ’d>

inequality holds:
o 1+t 1—t 1 1—
f( RPN S} N L 2Sd)

1 p1
//St 9sot’ \ 2 2 2
0? c+d
//stsup{‘aatf( O ogi? (550
f a+b c+d
8581& 2 72
1 2 02 c+d
_4S“p{asatf(b’d)‘ asatf(b’ 2 >'
0? a+b c+d
(29) 858tf< 2 72 >}
Analogously, we also have that the following inequalities:
1,1 2
0 14+t 11—t 1-—s 1+s
/O/Ost 858tf< 5 a+ 5 b, 5 c+ > d)‘dsdt
1 0? 0? c+d 0? a+b
< Z _—
—4S“p{asatf(“’d)” asatf<“’ 2 )"‘asatf( 2 ’d>"

9? f a+b c+d
0s0t 2 7 2 ’

/’/
B

0? a+b c+d
1) ’%mf< ek

and

1 1

//ts

0 0

82

< g {| 2 0.0)

02 a+b c+d
(2.12) ‘858tf< 2 72 >'}

Substitution of (2.9)-(2.12) in (2.8) gives the desired inequality (2.7). This com-
pletes the proof. O

)

7

(2.10)

dsdt

0?2 1—t 14+¢ 1 1—
(e e 5

asot’ \ 2 2 2
02 c+d 0? a+b
asatf(b 2 ) ’ 358tf( 2 ’c>

)

0?
0s0t (b:<)|

950t 2 2 9 9 dsd

0? c+d 02 a+b
asﬁtf(b’ 2 >’638tf< 2 7d>

2 _ _
0 f(l ta+1+tbl sc+1+sd>

)

Corollary 1. Suppose the conditions of the Theorem 2 are satisfied. Additionally,
if
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2
(1) ‘gsﬁft is increasing on the co-ordinates on A, then
b pd
el B L e

(2.13)

< (b—a)(d—rc)
64

O+Q+S+T].

o f

2) 0sot

is decreasing on the co-ordinates on A, then

b pd
(b—a)l(d—c)//f(fﬂvy)dydx+f(a’c)Jrf(avd)If(b,C)+f(b,d)_A
(2.14)
cb-a)ld=0

64

[L+R+P+T).

Proof. Tt follows directly from Theorem 2. ([

Theorem 3. Let f : A C R? — R be a partial differentiable mapping on A =
o%f |
[a,b] X [¢,d] with a < b, ¢ < d. If‘ /

901 is quasi-convex on the co-ordinates on A
s

and p, ¢ > 1, % + % =1, then the following inequality holds:

1 b f(a,e) + f(a,d) + f (b,c) + £ (b, d)
(b_a)(d_c)/(l/llf(m,y)dydx—i— 1 —A
< w [sup {L9, P9, R9, T} + sup { M9, P?, 5% T}

16(p+1)7
(2.15)

+sup {N?, Q7 R, T} + sup {O?,Q*, 59, T}].

where A is as given in Lemma 1.



8 M. A. LATIF, S. HUSSAIN, AND S. S. DRAGOMIR

Proof. Suppose p > 1. From Lemma 1 and well-known Hélder inequality for double
integrals, we obtain

16

b pd
(z)_a;m/ / f (2,y) dyda + 12O F (@)

< (b—a)(d—rc)

([ [o)

+ f(b,c) + f (b, d)

—A
4

14t 1—-t 1+4s 1—s \|* “
l//a%%(z 2b2+2d>d3dt>
N a2f Lt 1=t 1-s  1ds, qddta
asot’ \ 2 2 72 T i
9 (1—t 14t 14+s 1—s \| “
* asatf ( 2 2 2 2 d) dsczt)
216
P (1—t 1+t 1-s 1+s\[7, \7
<// 836tf< 5 a—+ > b, 5 5 d> dsdt) .
o%f |
Now by the quasi-convexity of 550t| ™ A, we have that the following inequalities
s
hold:
1+1¢ 1-t¢ 1+s 1-—s
/ / 950t ( 2 2 2 2 d> dsdt
T 92 c+d 0? a+b a
<
S“p{‘a il (@9 88tf< 2 ) 858tf< 2 76) ’
0? a+b c+d\|*
2.1
(2.17) Bsatf< 2 7 2 > }’
ot t 1—t 1-—s 1+s \|*
/0/0 838tf< 5 a+ 5 b, 5 5 d) dsdt
T 92 c+ad\|* | 92 a+b a
<
—S“p{asat (a,d) ’asatf<“’ 2 ) ’asatf( 2 ’d> ’
0? a+b c+d\|?
2.18
(2.18) 358tf< 2 72 ) }’
1—t 14t 1+s 1-s \|*
/0/0836t(2a2 2+2d>d5dt
o) 1 02 c+d 0? a+b \|*
<
—b“p{‘asatf(b’c) ’asatf<b 2 ) 658tf< 2 ’C> ’
0? a+b c+d\|?
2.1
e [ (550 )
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and
1 1) a2 q
0 1-—t 1+t 1-—s 1+s
b d || dsdt
/(J/(Jésﬁtf(2a+2 Ty Tty > s
0? T 92 c+d\|* | 9? a+b e
< b,d b d
max{’@s@tf(7 )| asatf(’ 2 ) ’ 858tf( 2 ) 7
0? a+b c+d\|?
2.2 .
(220) ‘&satf( 2 72
Also, we notice that
11 1
(2.21) / / tPsPdsdt = 5
o Jo (p+1)
Utilizing the inequalities (2.17)-(2.21) in (2.16), we get the required inequality
(2.15), which completes the proof of the theorem. O

Corollary 2. Suppose the conditions of the Theorem & are satisfied. Additionally,
if

2, |4
(1) ‘gsaft is increasing on the co-ordinates on A, then
1 " fla,c)+ f(ad)+f(bo)+ f(bd)
(b_a)(d_c)/(l/llf(x,y)dydx—i— 1 —A
(2.22)
<O0-dld=9h . grs4].
16 (p+1)7
o*f |*
(2) ‘&sat is decreasing on the co-ordinates on A, then
1 " fla,0) + f(ad)+ f(bo)+ f(bd)
(b_a)(d_c)/a/af(m,y)dydm—i— 1 —A
(2.23)
< W[L+R+P+T].
16(p+1)»
Proof. It is a direct consequence of Theorem 3. (]

Our next result gives an improvement of the constant of the result given in
Theorem 3.

Theorem 4. Let f : A C R? — R be a partial differentiable mapping on A =
2 (4
[a,b] X [c,d] with a <b, ¢ <d. If‘ggt

18 quasi-convexr on the co-ordinates on A
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and q > 1, then the following inequality holds:

S S A f(a,¢)+ f(a,d)
b*a)(dfc)‘/a [ f(x,y)dydx+

+ f(b,c)+ f (b, d)

( 1

b—a)(d— . .

< % [sup{Lq,PQ,Rq,Tq}é + sup { M9, P9,89, T} a
(2.24)

+sup {N9,Q7, R", T"}7 +sup {0,Q7, 59, T}

where A is as given in Theorem 1.

- A

Proof. Suppose ¢ > 1. From using Lemma 1 and the power mean inequality, we

have
1 e fla.c)+ f(a,d) + f (b.c) + f (b,d)
(b_a)(d_c)/a/af(x,y)dydx—F 1 —A
. . 1 1 1-
g ([
bt 2 1+t 1—t 14+4s 1—s \|* .
l//ots Bsatf( 5 5 b, 5 + 5 d> dsdt)
N //t 82f Lt 1t 1-s  lds, qddt E
“losot! T2 YT T2 T T °
0? 1—t 14t 1+s 1—s \|* “
+(//ts Bsatf< 5 5 b5 5 d) dsdt)
(2.25)
1 2 q 3
0 1—1t 1+t 1-—s 1+s a
+</O/Ots asatf( 5 a+ > b, 5 5 d) dsdt) 1
2 |4
Now by the quasi-convexity of 90t ™ A, we have that the following inequalities
hold:
Lot 2 1+t 1—t 1+s 1-s\|*
/O/Ots 838tf< 5 5 b, 5 c+ 7 d) dsdt
1 02 92 c+ad\|* | 92 a+b e
< Z —
—4SUP{asatf(a’c) ’asatf<“’ 2 ) ’asatf< 2 ’C) ’
0? a+b c+d\|?
2.2
(2:26) ‘838tf( 2 72 ) }7
bt 2 1+t 1—-t 1-s 1+s \|*
/O/Otsasatf< 5 a+ 5 05 c+ 5 d> dsdt
T 0? c+d\|* | 62 a+b 1
< -
b“p{aatf( ) ’asatf<“’ 2 ) ’asatf< 2 ’d> ’
0? a+b c+d\|?
2.2
(227) ‘8s8tf< 2 72 ) }’
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0?2 1—¢ 14+t 1+s 1—s
//tsasat<2“+2b2+2d)

0 0? a+b
_4max{‘838tf(b °) asatf< 2 ’C>

0? c+d
asﬁtf(b 2 )
(2.28) ‘ 0? f<a+b c+d>

q
dsdt

q

}

q

)

050t )
and

/Ol/olts a‘z;f<1;ta+I;tb,lgsc+1;sd)qudt

< {0 |t (05 o ()
o ()}

Also, we notice that

»Jk\)—‘

/ / tsdsdt =

Making use of the inequalities (2.26)-(2.29) in (2.25), we obtain the required in-
equality (2.24). This completes the proof. |

[\

Remark 1. Since 2P > p+1 if p > 1 and accordingly
1 1

g . —
8 ap+1)r
and hence we have that the following inequality:
1 _11_ 1 11
6178 8 4+ 4p+1)F  16(p+1)
and as a consequence we get an improvement of the constant in Theorem 3.

)

Improvements of the inequalities of Corollary 2 are given in the following result:

Corollary 3. Suppose the conditions of the Theorem 4 are satisfied. Additionally,

82
(1) ‘8 8ft is increasing on the co-ordinates on A, then (2.13) holds.
s
o*f | . . .
(2) 5501 | decreasing on the co-ordinates on A, then (2.14) holds.
s
Proof. Tt follows from Theorem 4. O
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