
ON A GEOMETRIC INEQUALITY OF OPPENHEIM

JIAN LIU

Abstract. In this paper we give a simple proof of an Oppenheim’s geo-
metric inequality by using a new lemma, we also prove a refinement of the
Oppenheim inequality. Some related conjectures which have been checked
by the computer are put forward.

1. Introduction

Let P be an arbitrary interior point of the triangle ABC. Denote by R1, R2, R3

the distances from P to the vertices A,B,C, and r1, r2, r3 the distances from
P to the sidelines BC,CA,AB respectively. Then

R2R3 + R3R1 + R1R2 ≥ 4(r2r3 + r3r1 + r1r2). (1.1)

with equality if and only if △ABC is equilateral and P is its center. This
inequality was first published by J.M.Child [1]. In 1964, L.Carlitz [2] established
the following stronger inequality:

R2R3 + R3R1 + R1R2 ≥ 4(w2w3 + w3w1 + w1w2), (1.2)

where w1, w2, w3 are the internal angle-bisectors of ∠BPC,∠CPA,∠APB re-
spectively. The author [3] generalized further Carlitz’s result in 1996:

x2(R2R3)
k + y2(R3R1)

k + z2(R1R2)
k

≥ 2k

[

yz(w2w3)
k + zx(w3w1)

k + xy(w1w2)
k

]

. (1.3)

where x, y, z are arbitrary real numbers and exponent k satisfies 0 < k ≤ 1.
On the other hand, A.Oppenheim [4] considered the stronger version of (1.1)
from another viewpoint as early as 1961, and he concluded that the following
inequality holds without proof at the end of the reference:

Theorem 1.1. For any arbitrary point P of △ABC, we have

R2R3 + R3R1 + R1R2

≥ (r1 + r2)(r3 + r1) + (r2 + r3)(r1 + r2) + (r3 + r1)(r2 + r3), (1.4)

with equality if and only if △ABC is equilateral and P is its center.

Inequality (1.4) is equivalent to

R2R3 + R3R1 + R1R2 ≥ r2
1 + r2

2 + r2
3 + 3(r2r3 + r3r1 + r1r2). (1.5)

It is easy to show that the combination coefficients of the right hand side is
the best possible. In other words, (1.5) is the strongest in the following type
inequality:

R2R3 + R3R1 + R1R2 ≥ m(r2
1 + r2

2 + r2
3) + n(r2r3 + r3r1 + r1r2), (1.6)
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where m,n are positive constants.
Oppenheim tried to prove his inequality in another paper [5] in the same

year. His method is as follows: First suppose that a ≥ b ≥ c, then make use of
the well known inequalities

aR1 ≥ cr2 + br3, (1.7)

aR1 ≥ br2 + cr3, (1.8)

(where a = BC, b = CA, c = AB)to prove respectively that the inequality holds
in the following six cases:

(i) r1 ≥ r2 ≥ r3; (ii) r1 ≥ r3 ≥ r2; (iii) r2 ≥ r3 ≥ r1;

(iv) r2 ≥ r1 ≥ r3; (v) r3 ≥ r1 ≥ r2; (vi) r3 ≥ r2 ≥ r1.

However, he only discussed amply the two cases of (i) and (vi), and also pointed
out the other four cases can be proved by the same way. The author thinks this
proof is not faultless. Every case should be considered respectively. In a recent
paper [6], J.M.Hamiton by using Oppenheim’s method, finished the proof of all
six cases. But his proof is very complicated.

The purpose of this note is to give a simple proof of the Oppenheim inequality
(1.4), also prove the following refinement result:

Theorem 1.2. For an arbitrary interior point P of the triangle ABC, we have

R2R3 + R3R1 + R1R2

≥ har1 + hbr2 + hcrc + r2r3 + r3r1 + r1r2

≥ (r1 + r2)(r3 + r1) + (r2 + r3)(r1 + r2) + (r3 + r1)(r2 + r3), (1.9)

where ha, hb, hc are three altitudes of the triangle ABC. Both equalities in (1.9)
hold if and only if △ABC is equilateral and P is its center.

In studying Oppenheim inequality, a lot of geometric inequalities were found
by the author. We will state some related conjectures in the last section of this
note.

2. Proofs of the theorems

The proofs of the two theorems are both need the following key lemma:

Lemma 2.1. For any point P of △ABC, we have

R2 + R3 ≥ 2r1 +
(r2 + r3)

2

R1

, (2.1)

with equality if and only if b = c and P is the circumcenter of △ABC.

Proof. Inequality (1.9) is equivalent to

R1(R2 + R3 − 2r1) − (r2 + r3)
2 ≥ 0.

Note that R2 + R3 > 2r1, by inequality (1.7) and its two analogues bR2 ≥

ar3 + cr1, cR3 ≥ br1 + ar2, it is suffice to prove that

cr2 + br3

a

(

ar3 + cr1

b
+

br1 + ar2

c
− 2r1

)

≥ (r2 + r3)
2,

Namely,
(ar2r3 + br3r1 + cr1r2)(b − c)2

abc
≥ 0, (2.2)
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which is obviously true. We have known that if AO (O is the circumcenter of
△ABC) cuts BC at X then the equality in (1.7) holds if and only if P lies
on the segment AX. According to this conclusion and (2.2), we conclude that
the equality in (2) occurs if and only if b = c and P is its circumcenter. This
completes the proof of Lemma 2.1. �

Remark 2.1. By the arithmetic-geometric mean inequality, we can easily see
that inequality (2) is stronger than the following inequality:

R1(R2 + R3)
2 ≥ 8r1(r2 + r3)

2. (2.3)

In fact, we have the more stronger inequality:

R1(R2 + R3)
2 ≥ 8w1(w2 + w3)

2, (2.4)

which was first posed by the author and proved by Zhi-Hua Zhang and Yu-Dong
Wu [7].

Remark 2.2. The famous Erdös-Mordell inequality (see [8]-[20]):

R1 + R2 + R3 ≥ 2(r1 + r2 + r3) (2.5)

can be deduced from Lemma 2.1 as follows: According to (1.9) and Cauchy
inequality, we have that

2(R1 + R2 + R3)

≥ 2(r1 + r2 + r3) +
(r2 + r3)

2

R1

+
(r3 + r1)

2

R2

+
(r1 + r2)

2

R3

≥ 2(r1 + r2 + r3) +
4(r1 + r2 + r3)

2

R1 + R2 + R3

.

Therefore

(R1 + R2 + R3)
2 − (R1 + R2 + R3)(r1 + r2 + r3) − 2(r1 + r2 + r3)

2 ≥ 0.

Namely,

(R1 + R2 + R3 + r1 + r2 + r3)[R1 + R2 + R3 − 2(r1 + r2 + r3)] ≥ 0,

So we have inequality (2.5).
The proofs about the Erdös-Mordell inequality has been giving constantly

(see [10]-[20]). Recently, the author gave an alternative proof in [20].

2.1. Proof of Theorem 1.1.

Proof. By Lemma 2.1, we have

R1(R2 + R3) + R2(R3 + R1) + R3(R1 + R2)

≥ 2(R1r1 + R2r2 + R3r3) + (r2 + r3)
2 + (r3 + r1)

2 + (r1 + r2)
2,

which is equivalent to

R2R3 + R3R1 + R1R2 ≥ R1r1 + R2r2 + R3r3

+
1

2

[

(r2 + r3)
2 + (r3 + r1)

2 + (r1 + r2)
2
]

. (2.6)

It is easy to see that the equality in (2.6) holds if and only if a = b = c and P

is the circumcenter.



4 JIAN LIU

Now observe that

R1r1 + R2r2 + R3r3 +
1

2

[

(r2 + r3)
2 + (r3 + r1)

2 + (r1 + r2)
2
]

− [(r1 + r2)(r3 + r1) + (r2 + r3)(r1 + r2) + (r3 + r1)(r2 + r3)]

= R1r1 + R2r2 + R3r3 − 2(r2r3 + r3r1 + r1r2)

and the well known result (see [4],[8],[9]):

R1r1 + R2r2 + R3r3 ≥ 2(r2r3 + r3r1 + r1r2), (2.7)

Oppenheim inequality (1.4) follows from (2.6) at once. Clearly, the equality in
(1.4) holds is the same as (2.6). Theorem 1.1 is proved. �

2.2. Proof of Theorem 1.2.

Proof. We first prove the first inequality of (1.9)

R2R3 + R3R1 + R1R2 ≥ har1 + hbr2 + hcrc + r2r3 + r3r1 + r1r2. (2.8)

According to the known inequality (1.8) and its two analogues, we get

R1r1 + R2r2 + R3r3 +
1

2

[

(r2 + r3)
2 + (r3 + r1)

2 + (r1 + r2)
2
]

≥
(br2 + cr3)r1

a
+

(cr3 + ar1)r2

b
+

(ar1 + br2)r3

c

+
1

2

[

(r2 + r3)
2 + (r3 + r1)

2 + (r1 + r2)
2
]

= r2r3 + r3r1 + r1r2

+r1

(

r1 +
br2 + cr3

a

)

+ r2

(

r2 +
cr3 + ar1

b

)

+ r3

(

r3 +
ar1 + br2

c

)

= r2r3 + r3r1 + r1r2 + (ar1 + br2 + cr3)
(r1

a
+

r2

b
+

r3

c

)

= har1 + hbr2 + hcr3 + r2r3 + r3r1 + r1r2,

where we used the identity ar1 + br2 + cr3 = 2S = aha = bhb = chc(S is the
area of △ABC). Therefore, inequality (2.8) follows from (2.6). Clearly, the
equality condition in (2.8) is the same as (2.6).

It is easy to check that the second inequality of (1.9) is equivalent to

har1 + hbr2 + hcr3 ≥ (r1 + r2 + r3)
2, (2.9)

which follows from Cauchy inequality and the simple identity:
r1

ha

+
r2

hb

+
r3

hc

= 1. (2.10)

The proof of Theorem 1.2 is completed. �

Remark 2.3. In [5], A.Oppenheim pointed out a set of inequalities equivalent to
(1.4) by using various geometric transformations (see [4],[9],[21]). If we apply
these transformations to the stronger inequality (2.8), then we can get some
new results. For example, applying reciprocation transformation to (2.8), one
obtain the following inequality:

1

r2r3

+
1

r3r1

+
1

r1r2

−
1

R2R3

−
1

R3R1

−
1

R1R2

≥
ha

r1R
2
1

+
hb

r2R
2
2

+
hc

r3R
2
3

. (2.11)
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3. Some related conjectures

In this section we will give some related conjectures which all have been
checked by the computer.

First considering the stronger inequality of Lemma 2.1, we propose the fol-
lowing conjecture:

Conjecture 3.1. For any interior point P of △ABC, we have

R2 + R3 ≥ 2w1 +
(w2 + w3)

2

R1

. (3.1)

If the above equality is valid, using the same way to deduce Erdös-Mordell
inequality, we can prove Barrow’s inequality:

R1 + R2 + R3 ≥ 2(w1 + w2 + w3). (3.2)

In addition, if (3.1) holds true, then using it we can easily prove that

4R2
1 + (R2 + R3)

2 ≥ 8R1w1 + 4(w2 + w3)
2. (3.3)

This inequality inspires the author to put forward the following inequality:

Conjecture 3.2. For any interior point P of △ABC, we have

R2
1 + R2R3 ≥ 2(R1w1 + 2w2w3). (3.4)

When the author considered the proof of Conjecture 3.1, we conjectured the
following:

Conjecture 3.3. For any interior point P of △ABC, we have

a2

(w2 + w3)2
−

(w2 + w3)
2

R2
1

≥
4w1

R1

. (3.5)

In deed, inequality (3.5) is stronger than (2.10). The following similar in-
equality has not yet been proved:

Conjecture 3.4. For any interior point P of △ABC, we have

a2

(r2 + r3)2
−

(r2 + r3)
2

R2
1

≥
4r1

R1

. (3.6)

In [22], the author obtained the inequality:

R2R3 + R3R1 + R1R2 ≥

(

aR1 + bR2 + cR3

R1 + R2 + R3

)2

. (3.7)

This inequality prompts the author again to pose the following stronger inver-
sion of Oppenheim inequality (1.5):

Conjecture 3.5. For any interior point P of △ABC, we have
(

aR1 + bR2 + cR3

R1 + R2 + R3

)2

≥ r2
1 + r2

2 + r2
3 + 3(r2r3 + r3r1 + r1r2). (3.8)

In addition, it is possible that the Oppenheim inequality (1.4) has a stronger
version:

R2R3 + R3R1 + R1R2 ≥ (w1 + w2)(w3 + w1) + (w2 + w3)(w1 + w2)

+(w3 + w1)(w2 + w3). (3.9)

We also think it has the following exponential generalization:
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Conjecture 3.6. If real number k satisfies 0 < k ≤ 2, then we have

(R2R3)
k + (R3R1)

k + (R1R2)
k ≥ (w1 + w2)

k(w3 + w1)
k

+(w2 + w3)
k(w1 + w2)

k + (w3 + w1)
k(w2 + w3)

k. (3.10)

When −0.35 ≤ k < 0 the inequality is reverse.

On the other hand, we also suppose that the equivalent form of (3.9) can be
generalized to the case involving two points:

Conjecture 3.7. For any interior point P of △ABC and arbitrary point Q,
we have

(R2 + R3)D1 + (R3 + R1)D2 + (R1 + R2)D3

≥ 2(w2
1 + w2

2 + w2
3) + 6(w2w3 + w3w1 + w1w2), (3.11)

where D1,D2,D3 denote distances from Q to the vertices A,B,C respectively.

It seems to be very hard even to prove the following much weaker inequality:

(R2 + R3)D1 + (R3 + R1)D2 + (R1 + R2)D3 ≥ 8(r2r3 + r3r1 + r1r2), (3.12)

which is similar the following inequality proved by the authors of [23]:

R1D1 + R2D2 + R3D3 ≥ 4(r2r3 + r3r1 + r1r2). (3.13)

When the author studied inequality (3.9), the following interesting inequality
was found:

Conjecture 3.8. For any interior point P of △ABC, we have

R2
1 + 2R2R3 ≥ w2

1 + w2
2 + w2

3 + 3(w2w3 + w3w1 + w1w2), (3.14)

Note that inequality (2.8), we also propose the conjecture:

Conjecture 3.9. For any interior point P of △ABC holds:

R2
1 + 2R2R3 ≥ har1 + hbr2 + hcr3 + r2r3 + r3r1 + r1r2. (3.15)

For inequality (2.8), we pose the following stronger inequality:

Conjecture 3.10. For any interior point P of △ABC holds:

R2R3 + R3R1 + R1R2 ≥ waw1 + wbw2 + wcw3 + w2w3 + w3w1 + w1w2. (3.16)

where wa, wb, wc are the angle bisectors of the △ABC.

Comparing with (3.15) and (1.2), we suggest that again:

Conjecture 3.11. For any interior point P of △ABC holds:

waw1 + wbw2 + wcw3 ≥ 3(w2w3 + w3w1 + w1w2). (3.17)

If this inequality holds, then it shows that (3.16) is stronger than (1.2).
Finally, we are going to put forward a conjecture involving six segments

R1, R2, R3 and r1, r2, r3. It is easy to prove that the following inequality which
is similar to the preceding inequality (2.3):

R1(R2 + R3) > 2r1(r2 + r3), (3.18)

where the constant 2 of the right hand side is the best possible. It is equivalent
to

R2 + R3

r2 + r3

−
2r1

R1

> 0. (3.19)

The above strict inequality motivates us to find the following stronger conjec-
ture:
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Conjecture 3.12. For any interior point P of △ABC holds:

R2 + R3

r2 + r3

−
2r1

R1

≥ 1. (3.20)

It is very interesting that the equality in (3.20) seems to be special. We
conjectured that the equality holds if and only if b = c and P coincide with a
fixed point of the altitude drawn from vertex A to the side BC. But we do not
know what the fixed point is.
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