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ON STRONGLY ¢;,-CONVEX FUNCTIONS IN INNER PRODUCT
SPACES

MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, we introduce the notion of strongly ¢;,-convex func-
tions with respect to ¢ > 0 and present some properties and representation of
such functions. We obtain a characterization of inner product spaces involv-
ing the notion of strongly ¢;-convex functions. Finaly, a version of Hermite
Hadamard-type inequalities for strongly ¢;,-convex functions are established.

1. INTRODUCTION

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very important in the literature (see, e.g.,[4],[8, p.137]). These inequalities state
that if f : I — R is a convex function on the interval I of real numbers and a,b € I
with a < b, then

(1.1) f<a;b>§b1a/abf(x)dx§W'

The inequality (1.1) has evoked the interest of many mathematicians. Especially
in the last three decades numerous generalizations, variants and extensions of this
inequality have been obtained, to mention a few, see ([3]-[10]) and the references
cited therein.

Let I be an interval in R and A : (0,1) — (0, 00) be a given function. A function
f: 1 —10,00) is said to be h-convex if

(1.2) fz+ (1 =1t)y) <h(@)f(x) +h(1—1)[f(y)

for all z,y € I and ¢ € (0,1) [20]. This notion unifies and generalizes the known
classes of functions, s-convex functions, Gudunova-Levin functions and P-functions,
which are obtained by putting in (1.2), h(t) = ¢, h(t) = t5, h(t) = %, and
h(t) = 1, respectively. Many properties of them can be found, for instance, in
[6],[7],[14],[16],[17],[19],[20].

Let us consider a function ¢ : [a,b] — [a,b] where [a,b] C R. Youness have
defined the ¢-convex functions in [15]:

Definition 1. A function f : [a,b] — R is said to be - convex on [a,b] if for every
two points x € [a,b],y € [a,b] and t € [0, 1] the following inequality holds:

flto(@) + (1 —t)p(y) < tf(p()) + 1 —1)f(e(y))-
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Obviously, if function ¢ is the identity, then the classical convexity is obtained
from the previous definition. Many properties of the (p-convex functions can be
found, for instance, in [1], [2],[15],[18],[19].

Recall also that a function f : I — R is called strongly convex with modulus
c>0,if

fltz+ (1 =t)y) <tf(z)+ 1 —1)f(y) —ct(l = t)(z —y)?
for all z,y € I and t € (0,1). Strongly convex functions have been introduced
by Polyak in [11] and they play an important role in optimization theory and
mathematical economics. Various properties and applicatins of them can be found
in the literature see ([11]-[14]) and the references cited therein.

In this paper, we introduce the notion of strongly ¢,-convex functions defined
in normed spaces and present some properties of them. In particular, we obtain
a representation of strongly ¢;,-convex functions in inner product spaces and, us-
ing the methods of [13],[14] and [18], we give a characterization of inner product
spaces, among normed spaces, that involves the notion of strongly ¢;,-convex func-
tion. Finally, a version of Hermite-Hadamard-type inequalities for strongly ¢, -
convex functions is presented. This result generalizes the Hermite-Hadamard-type
inequalities obtained by Sarikaya in [18] for strongly ¢-convex functions, and for
¢ = 0, coincides with the Hermite-Hadamard inequalities for ¢;,-convex functions
proved by Sarikaya in [19].

2. MAIN RESULTS

In what follows (X, ||.||) denotes a real normed space, D stands for a convex
subset of X, ¢ : D — D is a given function and c is a positive constant. Let
h:(0,1) — (0,00) be a given function. We say that a function f : D — [0,00) is
strongly ¢;,-convex with modulus c if

(2.1) flte(z) + (1 =1)e(y))
< R (@) +h(1 = 1) f(e(y) — ct(l — 1) [lp(x) — p(y)|I”

for all z,y € D and ¢t € (0,1). In particular, if f satisfies (2.1) with h(t) = ¢t
h(t) = t° (s € (0,1)), h(t) = 1, and h(t) = 1, then f is said to be strongly
p-convex, strongly ¢.-convex, strongly (p-Gudunova-Levin function and strongly
-P-function, respectively. The notion of ¢;-convex function corresponds to the
case ¢ = 0. We start with the following lemma which give some relationships
between strongly ¢,,-convex functions and ¢;-convex functions in the case where
X is areal inner product space (that is, the norm ||.|| is induced by an inner product:
Il :=< z|x >).
Remark 1. Let h: (0,1) — (0,00) be a given function such that h(t) >t for all

€ (0,1). If f is strongly p-convex on I, then for z,y € I and t € (0,1)

Flo(@) + (1= p(y) < tflp@) + 1 =) f(e(y) —ct(l = 1) [p(x) = p(y)]*

< RO f(p@) +h(1 = 1) fe(y) — ct(l — 1) [[p() — p(y)]|”
i.e f: 1 —[0,00) is strongly py,-conve.
Lemma 1. Let hy, hs : (0,1) — (0,00) be a given functions such that ho(t) < hy(t)

for allt € (0,1). If f is strongly ¢y, -convex on I, then for x,y € I, f is strongly
©p, -convex on I.
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Proof. Since f is strongly ¢;,,-convex on I, thus for z,y € I and t € (0,1), we have

Flto(@) + (1 —p(y) < hao(t)flp(a) + ha(l — 1) f(p(y) — ct(l — ) |o(z) — o(v)|?

< () f(p(@) + ha(1 =) f (o)) = ct(l = 1) o) = o)l

O

Lemma 2. Let h: (0,1) — (0,00) be a given functions. If f,g : I — [0,00) are
strongly o, -convex function on I and « > 0, then for allt € (0,1). f+ g and af
are strongly @, -convex on I.

Proof. By definition of strongly ¢, -convexity, the proof is obvious. O

Lemma 3. Let (X, ||.||) be a real inner product space, D be a convex subset of X
and ¢ be a positive constant and ¢ : D — D. Assume that h : (0,1) — (0,00) be a
gwen function.

i) If h(t) < t, t € (0,1) and a function f : D — [0,00) is strongly ¢,,-conver
with modulus ¢, then the function g = f — c||.|* is @y,-convex.

i) If h(t) < t, t € (0,1) and the function g = f —c||.||* is @},-conve, then the
function f: D — [0,00) is strongly @-convex with modulus c.

i) If h(t) > t, t € (0,1) and a function f: D — [0,00) is strongly ¢;,-convex
with modulus ¢, then the function g = f — c||.||* is ¢y,-convez.

Proof. 1) Assume that f is strongly ¢;,-convex with modulus c. Using properties of
the inner product and assumption h(t) <t, ¢t € (0,1), we obtain

IN

IN

IN

g(te(z) + (1= t)e(y))

Flte(@) + (1= e W) — clte(@) + (1 = W)l

RS (@) + (1 =D (p(y) - et = 1) p(@) = o) = cllte(@) + (1~ D)
RO F(e(@) + (1 =0 (p(y) — ¢ (H1 = 1) [le@I* =2 < e(@)le() > + W)
~ [E @I + 2601 = 1) < p(@)le() > +1 = 1) o))

B0 (@) + h(1 = D) (p(y)) = et lp(@)|* = e(1 = 1) llp(w)

RS (@(@) + (L= D) (p(y)) = ch(®) [ p(@)|* = ch(1 = &) W)

h(t)g(p(2)) + h(1 = t)g(#(y))

which gives that g is ¢;-convex function.
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ii) Since g is pj-convex function and by using assumption h(t) < ¢, t € (0,1),
then we get

flto@) + (1—t)e(y) = glte(@)+ 1 —t)e®)) +clitel@) + (1 - t)e()|?
< ht)g(e(x)) +h(1 = t)gley)) + cllte(z) + (1 - t)p(y)]®
<

t[F(e@) + clle@IP] + Q=8 [ Few) +clle@)I’]
—et(1 = 1) @I’ = 2 < p(@)le() > + llpv)I’]
= H(p@) + (1= Of (o) - b1 = 1) (@) = o)

< tf(p(x) + (1= t) f(p(y)) — ct(l — t) [ p(z) — o)

which shows that f is strongly ¢-convex with modulus c.
iii) In a similar way we can prove it. This completes to proof. ([

The following example shows that the assumption that X is an inner product
space is essentials in the above lemma.

Example. Let X = R? and h(t) = ¢, t € (0,1). Let us consider a function
¢ : R? — R? defined by ¢(x) = z for every z € R? and ||z|| = max {|z1|, |72} for
@ = (z1,x3). Take f = ||.||>. Then g = f—||.||* is ¢},~convex being the zero function.
However, f is not strongly ¢;,-convex with modulus 1. Indeed, for x = (1,0) and
y = (0,1), we have

f(x+y) _1,3_ S+l

- -
- 2 Ly

which this contradicts (2.1).

The assumption that X is an inner product space in Lemma 3 is essential. More-
over, it appears that the fact that for every ¢;-convex function g : X — R the func-
tion f =g-+c¢ ||||2 is strongly ,-convex characterizes inner product spaces among
normed spaces. Similar characterizations of inner product spaces by strongly con-
vex, strongly h-convex and strongly ¢-convex functions are presented in [13], [14]
and [18], respectively.

Theorem 1. Let (X,|.||) be a real normed space, D be a convex subset of X and
¢ : D — D. Assume that h : (0,1) — (0,00) and h(3) = . Then the following
conditions are equivalent:

i) (X, ]|-]]) be a real inner product;

i1) For every ¢ > 0, f : D — [0,00) defined on a convex subset D of X, the
function f = g+ c|.|* is strongly o,,-convex with modulus c;

iii) ||.|* : X — [0, 00) is strongly ¢, -convex with modulus 1.

Proof. The implication i)=-ii) follows by Lemma 3. To see that ii)=-ii) take g = 0.
Clearly, g is ¢,-convex function, whence f = c¢||.|? is strongly @,-convex with
modulus ¢. Consequently, H||2 is strongly ¢;-convex with modulus 1. Finaly, to
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prove iii)=i) observe that by the strongly ,-convexity of |.||> and assumption

h(3) = %, we obtain

2 2 2
H@(x);rw(y) < HSO(;U)H n I\@(;/)H B i lo(@) + o)
and hence
(2.2) le(@) + o)1 < 2[le@)1* + 2 [l

for all z,y € X. Now, putting u = ¢(z) + ¢(y) and v = ¢(z) — ¢(y) in (2.2), we
have

2 2 2 2
(2.3) 2Jull” + 2 vlI” < flu+vl” + [lu = v]|

for all u,v € X.

Conditions (2.2) and (2.3) mean that the norm |.||* satisfies the parallelogram
law, which implies, by the classical Jordan-Von Neumann theorem, that (X, ||.||) is
an inner product space. This completes to proof. ([l

Now, we give a new Hermite-Hadamard-type inequalities for strongly ¢;,-convex
functions with modulus ¢ as follows:

Theorem 2. Let h : (0,1) — (0,00) be a given function. If a function f : I —
[0,00) is Lebesgue integrable and strongly ¢, - convex with modulus ¢ > 0 for the
continuous function ¢ : [a,b] — [a,b], then

1 w(a) + p(b) c 2
(24 ! (B2 ) + g ot = 500
) ©(b)
< w(b)—w(a)(/) fw)dw
< [flela) /h 1t — & (pla) — o)

0
Proof. From the strongly ¢;,- convexity of f, we have

pla) + o(0) fol@) + (L= )p(b) (1= D)e(a) + (D)
() - (e )

IA

h(%) [f (tp(a) + (1 = 1)e(b)) + f (1 = t)p(a) + te(b))]

_2 (1—2t)% (p(a) — p(b))*.

Integrating the above inequality over the interval (0, 1), we obtain

; (W) 2 (pla) o)

1

/ F (bp(a) + (1 — (b)) dt + / F((1— t)p(a) + to(b) dt

0
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In the first integral, we substitute x = t¢(a) + (1 —t)¢(b). Meanwhile, in the second
integral we also use the substitution z = (1 — t)p(a) + te(b), we obtain

N »(b)
f(ﬂwgﬂm)+é@ﬁ0ﬂ@yﬁwé%ﬁw%/ﬂ@m'

»(a)

In order to prove the second inequality, we start from the strongly ¢, - convexity
of f meaning that for every ¢ € (0,1) one has

Flte(a) + (1= 1)p(d)) < () f((a)) + h(1 = 1) f(p(b)) — ct(1 — t) (p(a) — ¢(b))* .
Integrating the above inequality over the interval (0, 1), we get
/f(tw(a)ﬂl—t)w(b))dt < [f(p(a)) + fe(b))] /h(t)dt—ff(s@(a) —p(b))? /t(l—t)dt-
0 0 0

The previous substitution in the first side of this inequality leads to

w(a) 1
1 e B ,
COETEO) (/b) f (@) dz < [f(p(a)) + fe(b))] 0/h(t)dt < (@) = p(v))
©
which gives the second inequality of (2.4). This completes to proof. O

Remark 2. If h(t) = t, t € (0,1), then the inequalities (2.4) coincide with the
Hermite-Hadamard type inequalities for strongly p- convex functions proved by
Sarikaya in [18].

Corollary 1. Under the assumptions of Theorem 2 with h(t) =t* (s € (0,1)), t €
(0,1), we have

ot (HOEEE) 4 B ot - o)

2 24

(b)
1
: MM¢w>Af””$
R EOES R

s+ 1

These inequalities are associated Hermite-Hadamard type inequalities for strongly
4 -convex functions.

Corollary 2. Under the assumptions of Theorem 2 with h(t) = %, t e (0,1), we
have

@(b)
1o(e@+e)) ¢ v 2 1 e (< o
v ( )+ 55 (o) =) < s [ s (<)

»(a)

This inequality is associated Hermite-Hadamard type inequalities for strongly
¢—Godunova—Levin functions.
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Corollary 3. Under the assumptions of Theorem 2 with h(t) =1, t € (0,1), we
have

o (90(“) FE) 4 5 el - o)
s | o

#(a)
< fe(@) + £(p) £ (pla) — ()

IN

These inequalities are associated Hermite-Hadamard type inequalities for strongly
w-P-convex functions.

Theorem 3. Let h : (0,1) — (0,00) be a given function. If f : I — [0,00) is
Lebesgue integrable and strongly ;- convex with modulus ¢ > 0 for the continuous
function ¢ : [a,b] — [a,b], then

©(b)

1
(2.5) DR (/)f(x)f(a—I—b—x)da:
< [P B(OA(L — t)dt + 2 (p(a)) F(p(0)) [ R2(t)dt
! !
1
—2¢ (pla) — (6))* [£( / 10— bt + «p(a) — o).
0

Proof. Since f is strongly ¢;-convex with respect to ¢ > 0, we have that for all
€(0,1)

(2.6) f(tp(a)+(1-t)p(b) < h(t)f(p(a)+h(1=1) f(p(B) —ct(1—1) (o(a) — ¢(b))”

and
(2.7)

F((L = t)p(a) + to(b)) < h(1 = 1) f(p(a)) + h(t) f (b)) — ct(1 — 1) (p(a) — (b))*.

Multiplying both sides of (2.6) by (2.7), it follows that

(2.8)  fltp(a) + (1 = t)p(d)f((1 - t)p(a) + tp(b))
< h(ORA =) [£2(e(a) + F2(p0)] + (R*(t) + h*(1 = 1)) F(e(a) f (b))
—ct(L = t) (p(a) = ¢(8)* [f(w(a) + fp®)] [(t) + h(L = 1)]

+EE (1= 1) (p(a) — (b))
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Integrating the inequality (2.8) with respect to ¢ over (0, 1), we obtain

1

/f(tw(a) + (L =1)p(b)) f((1 = t)p(a) + tp(b))dt

0

IN

(e / R(E)A(L — )t + 2 (p(a)) F(0(5)) / B2 (1)t

1

~2¢(p(a) — p(b)* [f o(0)] [t1 -t
0

02

+55 (0l0) - ()"

If we change the variable x := ty(a) + (1 — t)p(b), t € (0,1), we get the required
inequality in (2.5). This proves the theorem. O

Theorem 4. Let h : (0,1) — (0,00) be a given function. If f,g : I — [0,00) is
Lebesgue integrable and strongly ¢, - convex with modulus ¢ > 0 for the continuous
function ¢ : [a,b] — [a,b], then

»(b) 1 1
1 , -
29— (/) F(@)dz < M(a,b) 0/ B2(#)dt + N(a, b) 0/ h(®)R(1 — b)dt
—c (¢ t(1—t)h dt+—(<p(a) —(b))!
st [
where

M(a,b) = f(p(a))g(p(a)) + f((b))g(p (b))
N(a,b) = f(p(a))g(p (b)) + fp(b))g(p(a))

S(a,b) = f(p(a)) + [ (#(0) + g (p(a) + g (p(b)) -

Proof. Since f,g: 1 — [0,00) is strongly ¢,- convex with modulus ¢ > 0, we have
(2.10)

f (bp(a) + (1 = 1)e(b)) < (D) f (w(a) + AL = )f (p(b)) — ct (1 = 1) (2(a) — (b))’

(2.11)
g (te(a) + (1= 1)p(b)) < h(t)g (p(a) + h(1—1t)g (p(b)) — ct (1 — 1) (p(a) — p(b))*.
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Multiplying both sides of (2.10) by (2.11), it follows that
f(tp(a) + (1 = t)p(b)) g (tp(a) + (1 = £)p(b))

IN

() (p(a) g (9(a)) + B (1 = 1) f(2(b) £ (0(b)
+hOA(1 = 1) [f(p(a))g(p (b)) + f(p(b))g(¢(a))]

—ct (1= 1) h(t) (p(a) — ¢(b))* [f (¢(a)) + g (¢(a))]
—ct (1 =) h(1 = t) (p(a) = ¢(6)* [f (¥(5) + g (0 (b))]
+E22 (1= 1)° (p(a) = (b))

Integrating the above inequality over the interval (0, 1), we get
1

/f (to(a) + (1 = t)p(b) g (tp(a) + (1 — t)p(b)) dt

0
< [f (@) g (@) + f(o(0) Fe(b)] [ h*(t)dt
0
+ [£(0(a))g(e (b)) + (0 (b)) g(p(a))] /h(t)h(l —t)dt
0

1
—c(p(a) — (1)) [f (p(a)) + g (p(a)) + f (p(b)) + g (¢(b))] /t (1 —1t)h(t)dt
0

1
e (pla) — p(b)"* / £2(1— 1) dt.
0

In the first integral, we substitute x = tp(a) + (1 — t)p(b) and simple integrals
calculated, we obtain the required inequality in (2.9). O
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