ON STRONGLY $\varphi_h\text{-}\mathrm{CONVEX}$ FUNCTIONS IN INNER PRODUCT SPACES

MEHMET ZEKI SARIKAYA

ABSTRACT. In this paper, we introduce the notion of strongly φ_h -convex functions with respect to c > 0 and present some properties and representation of such functions. We obtain a characterization of inner product spaces involving the notion of strongly φ_h -convex functions. Finally, a version of Hermite Hadamard-type inequalities for strongly φ_h -convex functions are established.

1. INTRODUCTION

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g., [4], [8, p.137]). These inequalities state that if $f: I \to \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with a < b, then

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}.$$

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the last three decades numerous generalizations, variants and extensions of this inequality have been obtained, to mention a few, see ([3]-[10]) and the references cited therein.

Let I be an interval in \mathbb{R} and $h: (0,1) \to (0,\infty)$ be a given function. A function $f: I \to [0,\infty)$ is said to be h-convex if

(1.2)
$$f(tx + (1-t)y) \le h(t)f(x) + h(1-t)f(y)$$

for all $x, y \in I$ and $t \in (0, 1)$ [20]. This notion unifies and generalizes the known classes of functions, s-convex functions, Gudunova-Levin functions and P-functions, which are obtained by putting in (1.2), h(t) = t, $h(t) = t^s$, $h(t) = \frac{1}{t}$, and h(t) = 1, respectively. Many properties of them can be found, for instance, in [6],[7],[14],[16],[17],[19],[20].

Let us consider a function $\varphi : [a, b] \to [a, b]$ where $[a, b] \subset \mathbb{R}$. Youness have defined the φ -convex functions in [15]:

Definition 1. A function $f : [a, b] \to \mathbb{R}$ is said to be φ - convex on [a, b] if for every two points $x \in [a, b], y \in [a, b]$ and $t \in [0, 1]$ the following inequality holds:

$$f(t\varphi(x) + (1-t)\varphi(y)) \le tf(\varphi(x)) + (1-t)f(\varphi(y)).$$

²⁰⁰⁰ Mathematics Subject Classification. 26D10, 26A51,46C15.

Key words and phrases. Hermite-Hadamard's inequalities, φ -convex functions, h-convex functions, strongly convex with modulus c > 0.

Obviously, if function φ is the identity, then the classical convexity is obtained from the previous definition. Many properties of the φ -convex functions can be found, for instance, in [1], [2], [15], [18], [19].

Recall also that a function $f: I \to \mathbb{R}$ is called strongly convex with modulus c > 0, if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) - ct(1 - t)(x - y)^{2}$$

for all $x, y \in I$ and $t \in (0, 1)$. Strongly convex functions have been introduced by Polyak in [11] and they play an important role in optimization theory and mathematical economics. Various properties and applications of them can be found in the literature see ([11]-[14]) and the references cited therein.

In this paper, we introduce the notion of strongly φ_h -convex functions defined in normed spaces and present some properties of them. In particular, we obtain a representation of strongly φ_h -convex functions in inner product spaces and, using the methods of [13],[14] and [18], we give a characterization of inner product spaces, among normed spaces, that involves the notion of strongly φ_h -convex function. Finally, a version of Hermite–Hadamard-type inequalities for strongly φ_h convex functions is presented. This result generalizes the Hermite–Hadamard-type inequalities obtained by Sarikaya in [18] for strongly φ -convex functions, and for c = 0, coincides with the Hermite–Hadamard inequalities for φ_h -convex functions proved by Sarikaya in [19].

2. Main Results

In what follows $(X, \|.\|)$ denotes a real normed space, D stands for a convex subset of $X, \varphi : D \to D$ is a given function and c is a positive constant. Let $h: (0,1) \to (0,\infty)$ be a given function. We say that a function $f: D \to [0,\infty)$ is strongly φ_h -convex with modulus c if

(2.1)
$$f(t\varphi(x) + (1-t)\varphi(y)) \\ \leq h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2$$

for all $x, y \in D$ and $t \in (0, 1)$. In particular, if f satisfies (2.1) with h(t) = t, $h(t) = t^s$ ($s \in (0, 1)$), $h(t) = \frac{1}{t}$, and h(t) = 1, then f is said to be strongly φ -convex, strongly φ_s -convex, strongly φ -Gudunova-Levin function and strongly φ -P-function, respectively. The notion of φ_h -convex function corresponds to the case c = 0. We start with the following lemma which give some relationships between strongly φ_h -convex functions and φ_h -convex functions in the case where X is a real inner product space (that is, the norm $\|.\|$ is induced by an inner product: $\|.\| := \langle x | x \rangle$).

Remark 1. Let $h: (0,1) \to (0,\infty)$ be a given function such that $h(t) \ge t$ for all $t \in (0,1)$. If f is strongly φ -convex on I, then for $x, y \in I$ and $t \in (0,1)$

$$\begin{aligned} f(t\varphi(x) + (1-t)\varphi(y)) &\leq tf(\varphi(x)) + (1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2 \\ &\leq h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2 \end{aligned}$$

i.e $f: I \to [0, \infty)$ is strongly φ_h -convex.

Lemma 1. Let $h_1, h_2 : (0, 1) \to (0, \infty)$ be a given functions such that $h_2(t) \le h_1(t)$ for all $t \in (0, 1)$. If f is strongly φ_{h_2} -convex on I, then for $x, y \in I$, f is strongly φ_{h_1} -convex on I.

Proof. Since f is strongly φ_{h_2} -convex on I, thus for $x, y \in I$ and $t \in (0, 1)$, we have

$$f(t\varphi(x) + (1-t)\varphi(y)) \leq h_2(t)f(\varphi(x)) + h_2(1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2$$

$$\leq h_1(t)f(\varphi(x)) + h_1(1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2$$

Lemma 2. Let $h: (0,1) \to (0,\infty)$ be a given functions. If $f,g: I \to [0,\infty)$ are strongly φ_h -convex function on I and $\alpha > 0$, then for all $t \in (0,1)$. f + g and αf are strongly φ_h -convex on I.

Proof. By definition of strongly φ_h -convexity, the proof is obvious.

Lemma 3. Let $(X, \|.\|)$ be a real inner product space, D be a convex subset of X and c be a positive constant and $\varphi : D \to D$. Assume that $h : (0,1) \to (0,\infty)$ be a given function.

i) If $h(t) \leq t$, $t \in (0,1)$ and a function $f : D \to [0,\infty)$ is strongly φ_h -convex with modulus c, then the function $g = f - c \|.\|^2$ is φ_h -convex.

ii) If $h(t) \leq t$, $t \in (0,1)$ and the function $g = f - c \|\cdot\|^2$ is φ_h -convex, then the function $f: D \to [0,\infty)$ is strongly φ -convex with modulus c.

iii) If $h(t) \ge t$, $t \in (0,1)$ and a function $f : D \to [0,\infty)$ is strongly φ_h -convex with modulus c, then the function $g = f - c \|.\|^2$ is φ_h -convex.

Proof. i) Assume that f is strongly φ_h -convex with modulus c. Using properties of the inner product and assumption $h(t) \leq t, t \in (0, 1)$, we obtain

$$g(t\varphi(x) + (1-t)\varphi(y))$$

$$= f(t\varphi(x) + (1-t)\varphi(y)) - c \left\| t\varphi(x) + (1-t)\varphi(y) \right\|^2$$

$$\leq h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^{2} - c \|t\varphi(x) + (1-t)\varphi(y)\|^{2}$$

$$\leq h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - c\left(t(1-t)\left[\|\varphi(x)\|^{2} - 2 < \varphi(x)|\varphi(y) > + \|\varphi(y)\|^{2}\right] - \left[t^{2}\|\varphi(x)\|^{2} + 2t(1-t) < \varphi(x)|\varphi(y) > + (1-t)\|\varphi(y)\|^{2}\right]\right)$$

$$= h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - ct\|\varphi(x)\|^{2} - c(1-t)\|\varphi(y)\|^{2}$$

$$\leq h(t)f(\varphi(x)) + h(1-t)f(\varphi(y)) - ch(t)\|\varphi(x)\|^{2} - ch(1-t)\|\varphi(y)\|^{2}$$

$$= h(t)g(\varphi(x)) + h(1-t)g(\varphi(y))$$

which gives that g is φ_h -convex function.

ii) Since g is φ_h -convex function and by using assumption $h(t) \leq t, t \in (0, 1)$, then we get

$$\begin{aligned} f(t\varphi(x) + (1-t)\varphi(y)) &= g(t\varphi(x) + (1-t)\varphi(y)) + c \|t\varphi(x) + (1-t)\varphi(y)\|^2 \\ &\leq h(t)g(\varphi(x)) + h(1-t)g(\varphi(y)) + c \|t\varphi(x) + (1-t)\varphi(y)\|^2 \\ &\leq t \left[f(\varphi(x)) + c \|\varphi(x)\|^2 \right] + (1-t) \left[f(\varphi(y)) + c \|\varphi(y)\|^2 \right] \\ &\quad -ct(1-t) \left[\|\varphi(x)\|^2 - 2 < \varphi(x)|\varphi(y) > + \|\varphi(y)\|^2 \right] \\ &= tf(\varphi(x)) + (1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2 \\ &\leq tf(\varphi(x)) + (1-t)f(\varphi(y)) - ct(1-t) \|\varphi(x) - \varphi(y)\|^2 \end{aligned}$$

which shows that f is strongly φ -convex with modulus c.

iii) In a similar way we can prove it. This completes to proof.

The following example shows that the assumption that X is an inner product space is essentials in the above lemma.

Example. Let $X = \mathbb{R}^2$ and h(t) = t, $t \in (0, 1)$. Let us consider a function $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$, defined by $\varphi(x) = x$ for every $x \in \mathbb{R}^2$ and $||x|| = \max\{|x_1|, |x_2|\}$ for $x = (x_1, x_2)$. Take $f = ||.||^2$. Then $g = f - ||.||^2$ is φ_h -convex being the zero function. However, f is not strongly φ_h -convex with modulus 1. Indeed, for x = (1, 0) and y = (0, 1), we have

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2} \ge \frac{3}{4} = \frac{f(x)+f(y)}{2} - \frac{1}{4} \left\|x-y\right\|^2$$

which this contradicts (2.1).

The assumption that X is an inner product space in Lemma 3 is essential. Moreover, it appears that the fact that for every φ_h -convex function $g: X \to \mathbb{R}$ the function $f = g + c \|.\|^2$ is strongly φ_h -convex characterizes inner product spaces among normed spaces. Similar characterizations of inner product spaces by strongly convex, strongly *h*-convex and strongly φ -convex functions are presented in [13], [14] and [18], respectively.

Theorem 1. Let $(X, \|.\|)$ be a real normed space, D be a convex subset of X and $\varphi : D \to D$. Assume that $h : (0,1) \to (0,\infty)$ and $h(\frac{1}{2}) = \frac{1}{2}$. Then the following conditions are equivalent:

i) $(X, \|.\|)$ be a real inner product;

ii) For every c > 0, $f : D \to [0, \infty)$ defined on a convex subset D of X, the function $f = g + c \|.\|^2$ is strongly φ_h -convex with modulus c;

iii) $\|.\|^2 : X \to [0,\infty)$ is strongly φ_h -convex with modulus 1.

Proof. The implication i) \Rightarrow ii) follows by Lemma 3. To see that ii) \Rightarrow iii) take g = 0. Clearly, g is φ_h -convex function, whence $f = c \|.\|^2$ is strongly φ_h -convex with modulus c. Consequently, $\|.\|^2$ is strongly φ_h -convex with modulus 1. Finally, to

4

prove iii) \Rightarrow i) observe that by the strongly φ_h -convexity of $\|.\|^2$ and assumption $h(\frac{1}{2}) = \frac{1}{2}$, we obtain

$$\left\|\frac{\varphi(x) + \varphi(y)}{2}\right\|^{2} \leq \frac{\|\varphi(x)\|^{2}}{2} + \frac{\|\varphi(y)\|^{2}}{2} - \frac{1}{4}\left\|\varphi(x) + \varphi(y)\right\|^{2}$$

and hence

(2.2)
$$\|\varphi(x) + \varphi(y)\|^2 \le 2 \|\varphi(x)\|^2 + 2 \|\varphi(y)\|^2$$

for all $x, y \in X$. Now, putting $u = \varphi(x) + \varphi(y)$ and $v = \varphi(x) - \varphi(y)$ in (2.2), we have

(2.3)
$$2 \|u\|^2 + 2 \|v\|^2 \le \|u+v\|^2 + \|u-v\|^2$$

for all $u, v \in X$.

Conditions (2.2) and (2.3) mean that the norm $\|.\|^2$ satisfies the parallelogram law, which implies, by the classical Jordan-Von Neumann theorem, that $(X, \|.\|)$ is an inner product space. This completes to proof.

Now, we give a new Hermite–Hadamard-type inequalities for strongly φ_h -convex functions with modulus c as follows:

Theorem 2. Let $h: (0,1) \to (0,\infty)$ be a given function. If a function $f: I \to [0,\infty)$ is Lebesgue integrable and strongly φ_h - convex with modulus c > 0 for the continuous function $\varphi: [a,b] \to [a,b]$, then

(2.4)
$$\frac{1}{2h(\frac{1}{2})}f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c}{24h(\frac{1}{2})}\left(\varphi(a)-\varphi(b)\right)^{2}$$
$$\leq \frac{1}{\varphi(b)-\varphi(a)}\int_{\varphi(a)}^{\varphi(b)}f(x)dx$$
$$\leq \left[f(\varphi(a))+f(\varphi(b))\right]\int_{0}^{1}h(t)dt - \frac{c}{6}\left(\varphi(a)-\varphi(b)\right)^{2}.$$

Proof. From the strongly φ_h - convexity of f, we have

$$\begin{split} f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) &= f\left(\frac{t\varphi(a)+(1-t)\varphi(b)}{2} + \frac{(1-t)\varphi(a)+t\varphi(b)}{2}\right) \\ &\leq h(\frac{1}{2})\left[f\left(t\varphi(a)+(1-t)\varphi(b)\right) + f\left((1-t)\varphi(a)+t\varphi(b)\right)\right] \\ &- \frac{c}{4}\left(1-2t\right)^2\left(\varphi(a)-\varphi(b)\right)^2. \end{split}$$

Integrating the above inequality over the interval (0, 1), we obtain

$$\begin{split} & f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c}{12}\left(\varphi(a)-\varphi(b)\right)^2 \\ & \leq \quad h(\frac{1}{2})\left[\int\limits_0^1 f\left(t\varphi(a)+(1-t)\varphi(b)\right)dt + \int\limits_0^1 f\left((1-t)\varphi(a)+t\varphi(b)\right)dt\right]. \end{split}$$

In the first integral, we substitute $x = t\varphi(a) + (1-t)\varphi(b)$. Meanwhile, in the second integral we also use the substitution $x = (1-t)\varphi(a) + t\varphi(b)$, we obtain

 $\langle 1 \rangle$

$$f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c}{12}\left(\varphi(a)-\varphi(b)\right)^2 \le \frac{2h(\frac{1}{2})}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(x)dx.$$

In order to prove the second inequality, we start from the strongly φ_h - convexity of f meaning that for every $t \in (0, 1)$ one has

$$f(t\varphi(a) + (1-t)\varphi(b)) \le h(t)f(\varphi(a)) + h(1-t)f(\varphi(b)) - ct(1-t)(\varphi(a) - \varphi(b))^2.$$

Integrating the above inequality over the interval (0, 1), we get

$$\int_{0}^{1} f(t\varphi(a) + (1-t)\varphi(b))dt \le [f(\varphi(a)) + f(\varphi(b))] \int_{0}^{1} h(t)dt - c\left(\varphi(a) - \varphi(b)\right)^{2} \int_{0}^{1} t(1-t)dt.$$

The previous substitution in the first side of this inequality leads to

$$\frac{1}{(\varphi(a)-\varphi(b))} \int_{\varphi(b)}^{\varphi(a)} f(x) \, dx \le \left[f(\varphi(a))+f(\varphi(b))\right] \int_{0}^{1} h(t) \, dt - \frac{c}{6} \left(\varphi(a)-\varphi(b)\right)^2$$

which gives the second inequality of (2.4). This completes to proof.

Remark 2. If h(t) = t, $t \in (0,1)$, then the inequalities (2.4) coincide with the Hermite-Hadamard type inequalities for strongly φ - convex functions proved by Sarikaya in [18].

Corollary 1. Under the assumptions of Theorem 2 with $h(t) = t^s$ $(s \in (0,1)), t \in (0,1)$, we have

$$2^{s-1}f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c2^s}{24}\left(\varphi(a)-\varphi(b)\right)^2$$

$$\leq \frac{1}{\varphi(b)-\varphi(a)}\int_{\varphi(a)}^{\varphi(b)}f(x)dx$$

$$\leq \frac{f(\varphi(a))+f(\varphi(b))}{s+1} - \frac{c}{6}\left(\varphi(a)-\varphi(b)\right)^2.$$

These inequalities are associated Hermite-Hadamard type inequalities for strongly φ_s -convex functions.

Corollary 2. Under the assumptions of Theorem 2 with $h(t) = \frac{1}{t}$, $t \in (0,1)$, we have

$$\frac{1}{4}f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c}{48}\left(\varphi(a)-\varphi(b)\right)^2 \le \frac{1}{\varphi(b)-\varphi(a)}\int_{\varphi(a)}^{\varphi(b)} f(x)dx \ (\le\infty)\,.$$

This inequality is associated Hermite-Hadamard type inequalities for strongly φ -Godunova-Levin functions.

Corollary 3. Under the assumptions of Theorem 2 with $h(t) = 1, t \in (0,1)$, we have

$$\frac{1}{2}f\left(\frac{\varphi(a)+\varphi(b)}{2}\right) + \frac{c}{24}\left(\varphi(a)-\varphi(b)\right)^{2}$$

$$\leq \frac{1}{\varphi(b)-\varphi(a)}\int_{\varphi(a)}^{\varphi(b)}f(x)dx$$

$$\leq f(\varphi(a)) + f(\varphi(b)) - \frac{c}{6}\left(\varphi(a)-\varphi(b)\right)^{2}.$$

These inequalities are associated Hermite-Hadamard type inequalities for strongly φ -P-convex functions.

Theorem 3. Let $h : (0,1) \to (0,\infty)$ be a given function. If $f : I \to [0,\infty)$ is Lebesgue integrable and strongly φ_h - convex with modulus c > 0 for the continuous function $\varphi : [a,b] \to [a,b]$, then

$$(2.5) \quad \frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(x) f(a + b - x) dx$$

$$\leq \left[f^2(\varphi(a)) + f^2(\varphi(b)) \right] \int_0^1 h(t) h(1 - t) dt + 2f(\varphi(a)) f(\varphi(b)) \int_0^1 h^2(t) dt$$

$$-2c \left(\varphi(a) - \varphi(b)\right)^2 \left[f(\varphi(a)) + f(\varphi(b)) \right] \int_0^1 t(1 - t) h(t) dt + \frac{c^2}{30} \left(\varphi(a) - \varphi(b)\right)^4.$$

Proof. Since f is strongly φ_h -convex with respect to c > 0, we have that for all $t \in (0, 1)$

$$(2.6) \quad f(t\varphi(a) + (1-t)\varphi(b)) \le h(t)f(\varphi(a)) + h(1-t)f(\varphi(b)) - ct(1-t)\left(\varphi(a) - \varphi(b)\right)^2$$

and
(2.7)

$$f((1-t)\varphi(a) + t\varphi(b)) \le h(1-t)f(\varphi(a)) + h(t)f(\varphi(b)) - ct(1-t)(\varphi(a) - \varphi(b))^2.$$

Multiplying both sides of (2.6) by (2.7), it follows that

$$(2.8) \quad f(t\varphi(a) + (1-t)\varphi(b))f((1-t)\varphi(a) + t\varphi(b)) \\ \leq \quad h(t)h(1-t) \left[f^2(\varphi(a)) + f^2(\varphi(b)) \right] + \left(h^2(t) + h^2(1-t) \right) f(\varphi(a))f(\varphi(b)) \\ - ct(1-t) \left(\varphi(a) - \varphi(b) \right)^2 \left[f(\varphi(a)) + f(\varphi(b)) \right] \left[h(t) + h(1-t) \right] \\ + c^2 t^2 (1-t)^2 \left(\varphi(a) - \varphi(b) \right)^4.$$

Integrating the inequality (2.8) with respect to t over (0, 1), we obtain

$$\begin{split} & \int_{0}^{1} f(t\varphi(a) + (1-t)\varphi(b))f((1-t)\varphi(a) + t\varphi(b))dt \\ \leq & \left[f^{2}(\varphi(a)) + f^{2}(\varphi(b)) \right] \int_{0}^{1} h(t)h(1-t)dt + 2f(\varphi(a))f(\varphi(b)) \int_{0}^{1} h^{2}(t)dt \\ & -2c\left(\varphi(a) - \varphi(b)\right)^{2} \left[f(\varphi(a)) + f(\varphi(b)) \right] \int_{0}^{1} t(1-t)h(t)dt \\ & + \frac{c^{2}}{30} \left(\varphi(a) - \varphi(b)\right)^{4}. \end{split}$$

If we change the variable $x := t\varphi(a) + (1-t)\varphi(b), t \in (0,1)$, we get the required inequality in (2.5). This proves the theorem.

Theorem 4. Let $h: (0,1) \to (0,\infty)$ be a given function. If $f, g: I \to [0,\infty)$ is Lebesgue integrable and strongly φ_h - convex with modulus c > 0 for the continuous function $\varphi: [a, b] \to [a, b]$, then

(2.9)
$$\frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(x) dx \le M(a, b) \int_{0}^{1} h^{2}(t) dt + N(a, b) \int_{0}^{1} h(t) h(1 - t) dt$$
$$-c \left(\varphi(a) - \varphi(b)\right)^{2} S(a, b) \int_{0}^{1} t \left(1 - t\right) h(t) dt + \frac{c^{2}}{30} \left(\varphi(a) - \varphi(b)\right)^{4}$$

where

$$\begin{split} M(a,b) &= f(\varphi(a))g(\varphi(a)) + f(\varphi(b))g(\varphi(b)) \\ N(a,b) &= f(\varphi(a))g(\varphi(b)) + f(\varphi(b))g(\varphi(a)) \end{split}$$

$$S(a,b) = f(\varphi(a)) + f(\varphi(b)) + g(\varphi(a)) + g(\varphi(b)).$$

Proof. Since $f, g: I \to [0, \infty)$ is strongly φ_h - convex with modulus c > 0, we have (2.10) $f(t\varphi(a) + (1-t)\varphi(b)) \le h(t)f(\varphi(a)) + h(1-t)f(\varphi(b)) - ct(1-t)(\varphi(a) - \varphi(b))^2$

$$(2.11)$$

$$g\left(t\varphi(a) + (1-t)\varphi(b)\right) \le h(t)g\left(\varphi(a)\right) + h(1-t)g\left(\varphi(b)\right) - ct\left(1-t\right)\left(\varphi(a) - \varphi(b)\right)^2.$$

Multiplying both sides of (2.10) by (2.11), it follows that

$$\begin{split} f\left(t\varphi(a) + (1-t)\varphi(b)\right)g\left(t\varphi(a) + (1-t)\varphi(b)\right) \\ &\leq h^{2}(t)f\left(\varphi(a)\right)g\left(\varphi(a)\right) + h^{2}(1-t)f(\varphi(b))f(\varphi(b)) \\ &+ h(t)h(1-t)\left[f(\varphi(a))g(\varphi(b)) + f(\varphi(b))g(\varphi(a))\right] \\ &- ct\left(1-t\right)h(t)\left(\varphi(a) - \varphi(b)\right)^{2}\left[f\left(\varphi(a)\right) + g\left(\varphi(a)\right)\right] \\ &- ct\left(1-t\right)h(1-t)\left(\varphi(a) - \varphi(b)\right)^{2}\left[f\left(\varphi(b)\right) + g\left(\varphi(b)\right)\right] \\ &+ c^{2}t^{2}\left(1-t\right)^{2}\left(\varphi(a) - \varphi(b)\right)^{4}. \end{split}$$

Integrating the above inequality over the interval (0, 1), we get

$$\begin{split} &\int_{0}^{1} f\left(t\varphi(a) + (1-t)\varphi(b)\right) g\left(t\varphi(a) + (1-t)\varphi(b)\right) dt \\ &\leq \left[f\left(\varphi(a)\right) g\left(\varphi(a)\right) + f(\varphi(b))f(\varphi(b))\right] \int_{0}^{1} h^{2}(t) dt \\ &+ \left[f(\varphi(a))g(\varphi(b)) + f(\varphi(b))g(\varphi(a))\right] \int_{0}^{1} h(t)h(1-t) dt \\ &- c\left(\varphi(a) - \varphi(b)\right)^{2} \left[f\left(\varphi(a)\right) + g\left(\varphi(a)\right) + f\left(\varphi(b)\right) + g\left(\varphi(b)\right)\right] \int_{0}^{1} t\left(1-t\right)h(t) dt \\ &+ c^{2} \left(\varphi(a) - \varphi(b)\right)^{4} \int_{0}^{1} t^{2} \left(1-t\right)^{2} dt. \end{split}$$

In the first integral, we substitute $x = t\varphi(a) + (1-t)\varphi(b)$ and simple integrals calculated, we obtain the required inequality in (2.9).

References

- G. Cristescu and L. Lupşa, Non-connected convexities and applications, Kluwer Academic Publishers, Dordrecht / Boston / London, 2002.
- [2] G. Cristescu, Hadamard type inequalities for φ convex functions, Annals of the University of Oradea, Fascicle of Management and Technological Engineering, CD-Rom Edition, III(XIII), 2004.
- [3] M. K. Bakula and J. Pečarić, Note on some Hadamard-type inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.
- [4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [5] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.

MEHMET ZEKI SARIKAYA

- [6] S. S. Dragomir and S. Fitzpatrik, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math. 32(4), (1999), 687-696.
- [7] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21(1995), 335-241.
- [8] J.E. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- [9] E. Set, M. E. Özdemir, and S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.
- [10] E. Set, M. E. Özdemir, and S. S. Dragomir, On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010.
- [11] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl. 7 (1966), 72–75.
- [12] N. Merentes and K. Nikodem, *Remarks on strongly convex functions*, Aequationes Math. 80 (2010), no. 1-2, 193-199.
- [13] K. Nikodem and Zs. Pales, Characterizations of inner product spaces be strongly convex functions, Banach J. Math. Anal. 5 (2011), no. 1, 83–87.
- [14] H. Angulo, J. Gimenez, A. M. Moros and K. Nikodem, On strongly h-convex functions, Ann. Funct. Anal. 2 (2011), no. 2, 85–91.
- [15] E. A. Youness, E Convex Sets, E Convex Functions and E Convex Programming, Journal of Optimization Theory and Applications, 102, 2(1999), 439-450.
- [16] M. Z. Sarikaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for hconvex functions, Jour. Math. Ineq. 2(3),335-341, 2008.
- [17] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Mathematica Universitatis Comenianae, Vol. LXXIX, 2(2010), pp. 265-272.
- [18] M. Z. Sarikaya, On Hermite Hadamard-type inequalities for strongly φ -convex functions, Studia Universitatis Babes-Bolyai Mathematica, in press.
- [19] M. Z. Sarikaya, On Hermite Hadamard-type inequalities for φ_h -convex functions, Submitted
- $\left[20\right]$ S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326
(2007), 303-311.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, DÜZCE UNIVERSITY, DÜZCE-TURKEY

E-mail address: sarikayamz@gmail.com

10