
POWER SERIES INEQUALITIES RELATED TO
YOUNG�S INEQUALITY AND APPLICATIONS
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Abstract. On utilising a re�menent and a reverse of Young�s inequality, in
this paper, we establish new inequalities for functions de�ned by power series
with positive coe¢ cients, which improve the famous Hölder�s inequality for
power series. Some applications for special functions such as polylogarithm,
hypergeometric and Bessel functions are presented as well.

1. Introduction

The classical Young inequality for two scalars is the ��weighted arithmetic-
geometric mean inequality, which is a fundamental relation between two nonnega-
tive real numbers. This inequality says that for a; b are positive real numbers and
0 � � � 1,
(1.1) a�b1�� � �a+ (1� �) b

with equality if and only if a = b. If p; q > 1 such that
1

p
+
1

q
= 1, then the

inequality (1.1) can be written as

(1.2) xy � xq

q
+
yp

p

for any x; y � 0. In this form, the inequality (1.1) was used to prove the celebrated
Hölder inequality, see (1.9) below.

The inequalities (1.1) and (1.2) have been re�ned by several authors (see [3], [4],
[9], [10], [11], [13], [16] and the references cited therein). For instance, Hirzallah
and Kittaneh [13] obtained the re�nement of the scalar Young�s inequality (1.1) as
follows:

(1.3) [�a+ (1� �) b]2 �
�
a�b1��

�2 � r2 (a� b)2
for a; b � 0, 0 � � � 1 and r = min f�; 1� �g. Notice that, in [16] Kittaneh and
Manasrah provided the re�nement of the Young inequality (1.1) in the following
form,

(1.4) �a+ (1� �) b� a�b1�� � r
�p
a�

p
b
�2
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for a; b � 0, 0 � � � 1.
For all x; y � 0 and 1 < p � 2 with 1

p
+
1

q
= 1, Aldaz [3] proved the following

inequality,

(1.5)
1

q

�
x
q
2 � y

p
2

�2
� xq

q
+
yp

p
� xy � 1

p

�
x
q
2 � y

p
2

�2
;

which provided a re�nement and a reverse of the Young�s inequality (1.2). The
inequality (1.5) can be written in the same notation as above when we change the

variables in (1.5) as a = xq; b = yp; � =
1

q
and 1� � = 1

p
; i.e.,

(1.6) 2�

�
a+ b

2
�
p
ab

�
� �a+ (1� �) b� a�b1�v � 2 (1� �)

�
a+ b

2
�
p
ab

�
for any a; b � 0 and � 2

�
0;
1

2

�
. This inequality (1.6) has appeared in [4] (also in

[5], [9]).
A generalization of the Young inequality (1.1) was given by Furuichi in [11],

that is

(1.7)
nX
j=1

pjaj �
nQ
j=1

a
pj
j � npmin

0@ 1
n

nX
j=1

aj �
nQ
j=1

a
1=n
j

1A
for aj ; pj � 0, j 2 f1; 2; : : : ; ng with

Pn
j=1 pj = 1 and pmin = min fp1; p2; : : : ; png.

The equality holds in (1.7) if and only if a1 = a2 = : : : = an. Note that, for n = 2,
the inequality (1.7) reduces to (1.4).

Other generalizations of Young�s inequality can be found in [1] and [2]. See
also [8], [12], [17], [18] and the references cited therein for some improvements and
their recent advances on Young�s inequality.

If, now we consider an analytic function de�ned by power series

(1.8) f(x) =
1X
n=0

anx
n

with positive coe¢ cients and convergent on the interval (0; R) and utilizing the
weighted version of Hölder�s inequality, namely

(1.9)
nX
k=1

pkakbk �
 

nX
k=1

pka
p
k

! 1
p
 

nX
k=1

pkb
q
k

! 1
q

where pk; ak; bk � 0, k 2 f1; 2; : : : ; ng and p > 1 with
1

p
+
1

q
= 1, then we can state

that

(1.10) f (xy) =
1X
n=0

anx
nyn �

 1X
n=0

anx
pn

! 1
p
 1X
n=0

any
qn

! 1
q

= f
1
p (xp) f

1
q (yq)

for x; y > 0 with xy; xp; yq < R.
In [14], the authors provided some related results to the Hölder�s inequality

(1.10) via Young�s inequality (1.1) for the functions de�ned by complex power
series with real coe¢ cients. In this paper, we re�ne the Young�s inequality (1.1)
and (1.4), and utilizing these results, we derive new inequalities for functions de�ned
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by real power series with positive coe¢ cients and convergent on the interval (0; R),
which improve the Hölder type inequality (1.10) for power series. In particular, we
improve the re�nements of Hölder�s type inequalities from the the paper [14] for
the real power series with positive coe¢ cients. Some applications for fundamental
functions of interest are also presented.

2. Some inequalities via a re�nement of Young�s inequality

Before we state our results, we �rst re�ne and provide a reverse for the Young�s
inequality as follows.

Lemma 1. For any a; b � 0 and � 2 [0; 1], we have

2min f�; 1� �g
�
a+ b

2
�
p
ab

�
� �a+ (1� �) b� a�b1��(2.1)

� 2max f�; 1� �g
�
a+ b

2
�
p
ab

�
:

Proof. We recall the following result obtained by Dragomir in [8] that pro-
vides a re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
j2f1;2;:::;ng

fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35(2.2)

� 1

Pn

nX
j=1

pj� (xj)� �

0@ 1

Pn

nX
j=1

pjxj

1A
� n max

j2f1;2;:::;ng
fpjg

24 1
n

nX
j=1

� (xj)� �

0@ 1
n

nX
j=1

xj

1A35 ;
where � : C ! R is a convex function de�ned on convex subset C of the linear space
X; fxjgj2f1;2;:::;ng are vectors in C and fpjgj2f1;2;:::;ng are nonnegative numbers
with Pn =

Pn
j=1 pj > 0.

We notice that Furuichi�s result (1.7) is a particular case of (2.2) applied for
the convex function f(t) = exp(t) and denoting exp(xj) as aj for j 2 f1; : : : ; ng.

For n = 2, we deduce from (2.2) that

2min f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
(2.3)

� �� (x) + (1� �) � (y)� � [�x+ (1� �) y]

� 2max f�; 1� �g
�
�(x) + �(y)

2
� �

�
x+ y

2

��
for any x; y 2 R and � 2 [0; 1].

If we take � (x) = exp (x), then we get from (2.3)

2min f�; 1� �g
�
exp (x) + exp (y)

2
� exp

�
x+ y

2

��
(2.4)

� � exp(x) + (1� �) exp(y)� exp [�x+ (1� �) y]

� 2max f�; 1� �g
�
exp (x) + exp (y)

2
� exp

�
x+ y

2

��
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for any x; y 2 R and � 2 [0; 1].
Further, denote exp(x) = a, exp(y) = b with a; b > 0, then from (2.4) we obtain

the desired result (2.1). �

From the re�nement of the Young�s inequality (2.1), we have the following
corollary:

Corollary 1. For any x; y � 0 and p > 1 with 1
p
+
1

q
= 1, we have

2min

�
1

q
;
1

p

��
xq + yp

2
� x

q
2 y

p
2

�
(2.5)

� xq

q
+
yp

p
� xy

� 2max
�
1

q
;
1

p

��
xq + yp

2
� x

q
2 y

p
2

�
:

Proof. The proof follows by choosing a = xq, b = yp, � =
1

q
, 1 � � = 1

p
in

Lemma 1. �

Remark 1. The �rst inequality in (2.1) provides the Kittaneh and Manasrah
result in (1.4) as well as a reverse of that result. It is also more general than the
Aldaz result (1.5) since no restriction on p is assumed.

First, utilizing the inequality (1.1) for the real power series with positive coef-
�cients, the following result holds.

Theorem 1. Let f(x) =
P1

n=0 pnx
n be a power series with positive coe¢ cients

and convergent on (0; R). Then for � 2 [0; 1], x; y � 0 such that y; xy; x�y; x1��y 2
(0; R), we have

(2.6) f (x�y) f
�
x1��y

�
� f(xy)f(y):

Proof. The proof follows by choosing in (1.1) a = xj , b = xk, j; k 2 f0; 1; : : : ; ng.
Thus, we have

(2.7) x�jx(1��)k � �xj + (1� �)xk

for any x � 0 and � 2 [0; 1].
If now we multiply this inequality (2.7) with pjyjpkyk � 0, y 2 (0; R) and

summing over j and k from 0 to n, then we get

nX
j=0

pj (x
�y)

j
nX
k=0

pk
�
x1��y

�k
(2.8)

� �
nX
j=0

pj (xy)
j

nX
k=0

pky
k + (1� �)

nX
j=0

pjy
j

nX
k=0

pk (xy)
k
:

Since all the series whose partial sums are involved in inequality (2.8) are convergent
on the interval (0; R) by taking the limit as n!1 in (2.8), we deduce the desired
inequality (2.6). �
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Remark 2. (a) If xy = z in (2.6), then we have

(2.9) f
�
y�z1��

�
f
�
y1��z�

�
� f(y)f(z)

for y; z; y�z1�� ; y1��z� 2 (0; R) and � 2 [0; 1].
(b) If y = x in (2.6), then we also have

(2.10) f
�
x1+�

�
f
�
x2��

�
� f(x2)f(x)

for x; x2; x1+� ; x2�� 2 (0; R) and � 2 [0; 1].

Some applications of the inequality (2.9) for particular functions of interest are
as follows:

(1) If we apply the inequality (2.9) for the function f(x) =
1

1� x =
1P
n=0

xn,

x 2 (0; 1), then we get

(2.11) (1� y) (1� z) �
�
1� y�z1��

� �
1� y1��z�

�
for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].

(2) If we consider the function f(x) = ln
�

1

1� x

�
=

1P
n=0

xn

n
, x 2 (0; 1) and

applying the inequality (2.9), then we get

(2.12) ln
�
1� y�z1��

�
ln
�
1� y1��z�

�
� ln (1� y) ln (1� z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].
Next, based on re�nement and a reverse of the Young�s inequality (2.1), we

prove the following inequality.

Theorem 2. Let f(x) be as in Theorem 1. Then, one has the inequality

2min f�; 1� �g
h
f (xy) f(y)� f2

�
x
1
2 y
�i

(2.13)

� f(xy)f(y)� f (x�y) f
�
x1��y

�
� 2max f�; 1� �g

h
f (xy) f(y)� f2

�
x
1
2 y
�i

for x; y � 0 such that xy; y; x
1
2 y; x�y; x1��y 2 (0; R) and � 2 [0; 1].

Proof. We use the inequality (2.1) for a = xj , b = xk, j; k 2 f0; 1; : : : ; ng to
get

2min f�; 1� �g
�
xj + xk

2
� x

j
2x

k
2

�
(2.14)

� �xj + (1� �)xk � x�jx(1��)k

� 2max f�; 1� �g
�
xj + xk

2
� x

j
2x

k
2

�
:

for any x; y � 0 and � 2 [0; 1] :



6 ALAWIAH IBRAHIM1;3, SEVER S. DRAGOMIR1;2, AND MASLINA DARUS3

Then, multiplying the inequality (2.14) with pjyjpkyk � 0 and summing over
j and k from 0 to n, we have

2t

241
2

0@ nX
j=0

pjx
jyj

nX
k=0

pky
k +

nX
j=0

pjy
j

nX
k=0

pkx
kyk

1A(2.15)

�
nX
j=0

pjx
j
2 yj

nX
k=0

pkx
k
2 yk

35
� �

nX
j=0

pjx
jyj

nX
k=0

pky
k + (1� �)

nX
j=0

pjy
j

nX
k=0

pkx
kyk

�
nX
j=0

pjx
�jyj

nX
k=0

pkx
(1��)kyk

� 2T

241
2

0@ nX
j=0

pjx
jyj

nX
k=0

pky
k +

nX
j=0

pjy
j

nX
k=0

pkx
kyk

1A
�

nX
j=0

pjx
j
2 yj

nX
k=0

pkx
k
2 yk

35
where t = min f�; 1� �g and T = max f�; 1� �g.

Since all the series whose partial sums are involved in inequality (2.15) are
convergent on the interval (0; R) by taking the limit as n!1 in (2.15), we deduce
the desired result (2.13). �

Remark 3. (a) If xy = z in (2.13), then we have

2min f�; 1� �g
�
f(y)f (z)� f2 (pyz)

�
(2.16)

� f(y)f(z)� f
�
yvz1��

�
f
�
y1��z�

�
� 2max f�; 1� �g

�
f(y)f (z)� f2 (pyz)

�
for y; z; z�y1�� ; z1��yv 2 (0; R) and � 2 [0; 1]. This result provides somehow a
symmetric form for (2.13) and has some nice applications as well, see (2.18).

(b) If y = x in (2.13), then we also have

2min f�; 1� �g
h
f(x)f

�
x2
�
� f2

�
x
3
2

�i
(2.17)

� f(x)f(x2)� f
�
x1+�

�
f
�
x2��

�
� 2max f�; 1� �g

h
f(x)f

�
x2
�
� f2

�
x
3
2

�i
:

for x; x2; x
3
2 ; x1+� ; x2�� 2 (0; R) and � 2 [0; 1].

Now, if we consider the function f(x) = exp(x), x 2 R and applying the
inequality (2.16), then we get

2min f�; 1� �g [exp(y + z)� exp (2pyz)](2.18)

� exp(y + z)� exp
�
yvz1�� + y1��z�

�
� 2max f�; 1� �g [exp(y + z)� exp (2pyz)]
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for any y; z � 0 and � 2 [0; 1].
The second improvement of the Hölder�s inequality (1.10) via a re�nement and

a reverse of the Young�s inequality (2.5) is incorporated in the following results.

Theorem 3. Let f(x) be as in Theorem 1. If p > 1,
1

p
+
1

q
= 1 and x; y � 0

such that xy, xq, yp, x
q
2 y

p
2 2 (0; R), then

2t

�
1

2
[f (xq) + f (yp)]� f

�
x
q
2 y

p
2

��
(2.19)

� 1

q
f (xq) +

1

p
f (yp)� f (xy)

� 2T
�
1

2
[f (xq) + f (yp)]� f

�
x
q
2 y

p
2

��
where t = min

�
1

q
;
1

p

�
and T = max

�
1

q
;
1

p

�
.

Proof. If we choose x = xj , y = yj , j 2 f0; 1; 2; : : : ; ng, then we have from
(2.5)

2t

�
xqj + ypj

2
� x

q
2 jy

p
2 j

�
� xqj

q
+
ypj

p
� (xy)j(2.20)

� 2T
�
xqj + ypj

2
� x

q
2 jy

p
2 j

�
for any x; y � 0 and p > 1 with 1

p
+
1

q
= 1.

If we multiply this inequality (2.20) with positive quantities pj , j 2 f0; 1; 2; : : : ; ng
and summing over j from 0 to n, then we get

2t

0@1
2

24 nX
j=0

pjx
qj +

nX
j=0

pjy
pj

35� nX
j=0

pj

�
x
q
2 y

p
2

�j1A(2.21)

� 1

q

nX
j=0

pjx
qj +

1

p

nX
j=0

pjy
pj �

nX
j=0

pj (xy)
j

� 2T

0@1
2

24 nX
j=0

pjx
qj +

nX
j=0

pjy
pj

35� nX
j=0

pj

�
x
q
2 y

p
2

�j1A :
Since all the series whose partial sums are involved in inequality (2.21) are

convergent on the interval (0; R) by taking the limit as n!1 in (2.21), we deduce
the desired inequality (2.19). �

Corollary 2. If y = x in (2.19), then for any x2; xq; xp; x
pq
2 2 (0; R) and

p > 1 with
1

p
+
1

q
= 1 we have

2t

�
1

2
[f (xq) + f (xp)]� f

�
x
pq
2

��
� 1

q
f (xq) +

1

p
f (xp)� f

�
x2
�

(2.22)

� 2T
�
1

2
[f (xq) + f (xp)]� f

�
x
pq
2

��
:
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Some applications of the inequality (2.22) for particular functions of interest
are as follows:

(1) If we apply the inequality (2.22) for the function f(x) =
1

1� x , x 2 (0; 1),
then we get

t

�
1

1� xq +
1

1� xp �
2

1� x pq
2

�
(2.23)

� 1

q (1� xq) +
1

p (1� xp) �
1

1� x2

� T
�

1

1� xq +
1

1� xp �
2

1� x pq
2

�
for x2; xq; xp; x

pq
2 2 (0; 1), p > 1.

(2) If we apply the inequality (2.22) for the function f(x) = ln

�
1

1� x

�
,

x 2 (0; 1), then we get �
1� x pq

2

�2
(1� xq) (1� xp)

!t
� 1� x2

(1� xq)
1
q (1� xp)

1
p

(2.24)

�
 �

1� x pq
2

�2
(1� xq) (1� xp)

!T
;

for x2; xq; xp; x
pq
2 2 (0; 1), p > 1 with 1

p
+
1

q
= 1.

(3) If we consider the function f(x) = sinh(x) =
1P
n=0

1

(2n+ 1)!
x2n+1, x 2 R

and applying the inequality (2.22), then we get

(2.25) t
h
sinh (xq) + sinh (xp)� 2 sinh

�
x
pq
2

�i

� 1

q
sinh (xq) +

1

p
sinh (xp)� sinh

�
x2
�

� T
h
sinh (xq) + sinh (xp)� 2 sinh

�
x
pq
2

�i
;

for any x � 0, p > 1 with 1
p
+
1

q
= 1.

Similar result can be obtained for cosh(x) as well.
Further, we utilize the inequality (2.5) to improve the results from ([14]), giving

the re�nements and the reverses of the Hölder�s inequality for two functions de�ned
by power series with positive coe¢ cients. First, the following result holds.

Theorem 4. Let f(x) =
P1

n=0 pnx
n and g(x) =

P1
n=0 qnx

n be two power

series with positive coe¢ cients and convergent on (0; R). If p > 1,
1

p
+
1

q
= 1 and

x; y � 0 such that xy, xp, xq, yp, yq; x
q
2 y

p
2 ; x

p
2 y

q
2 ; (xy)

q
2 ; (xy)

p
2 ; xyq�1; xyp�1 2
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(0; R), then

t
h
f(xq)g(yq) + g(xp)f(yp)� 2f

�
x
q
2 y

p
2

�
g
�
x
p
2 y

q
2

�i
(2.26)

� 1

q
f(xq)g(yq) +

1

p
g(xp)f(yp)� f (xy) g (xy)

� T
h
f(xq)g(yq) + g(xp)f(yp)� 2f

�
x
q
2 y

p
2

�
g
�
x
p
2 y

q
2

�i
and

t
h
f(xq)g(yp) + g(xp)f(yq)� 2f(x

q
2 y

q
2 )g(x

p
2 y

p
2 )
i

(2.27)

� 1

q
f(xq)g(yp) +

1

p
g(xp)f(yq)� f(xyq�1)g(xyp�1)

� T
h
f(xq)g(yp) + g(xp)f(yq)� 2f(x

q
2 y

q
2 )g(x

p
2 y

p
2 )
i
:

Proof. If we choose in (2.5) x = xjyk; y = xkyj ; j; k 2 f0; 1; 2 : : : ; ng ; then
we have

2t

�
xqjyqk + xpkypj

2
� x

q
2 jy

p
2 jx

p
2 ky

q
2k

�
(2.28)

� 1

q

�
xqjyqk

�
+
1

p

�
xpkypj

�
� (xy)j (xy)k

� 2T
�
xqjyqk + xpkypj

2
� x

q
2 jy

p
2 jx

p
2 ky

q
2k

�
for any x; y � 0 and p > 1 with 1

q
+
1

p
= 1.

Multiplying this inequality (2.28) with pjqk � 0 and summing over j and k
from 0 to n, we get

2t

0@1
2

24 nX
j=0

pjx
qj

nX
k=0

qky
qk +

nX
k=0

qkx
pk

nX
j=0

pjy
pj

35(2.29)

�
nX
j=0

pjx
q
2 jy

p
2 j

nX
k=0

qkx
p
2 ky

q
2k

1A
� 1

q

0@ nX
j=0

pjx
qj

nX
k=0

qky
qk

1A+ 1
p

0@ nX
k=0

qkx
pk

nX
j=0

pjy
pj

1A
�

nX
j=0

pj (xy)
j

nX
k=0

qk (xy)
k

� 2T

0@1
2

24 nX
j=0

pjx
qj

nX
k=0

qky
qk +

nX
k=0

qkx
pk

nX
j=0

pjy
pj

35
�

nX
j=0

pjx
q
2 jy

p
2 j

nX
k=0

qkx
p
2 ky

q
2k

1A
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where p > 1;
1

q
+
1

p
= 1.

Further, if we choose in (2.5) x =
xj

yj
, y =

xk

yk
; y 6= 0, j; k 2 f0; 1; 2; : : : ; ng and

repeating the same method as above, then we get

2t

0@1
2

24 nX
j=0

pjx
qj

nX
k=0

qky
pk +

nX
k=0

qkx
pk

nX
j=0

pjy
qj

35(2.30)

�
nX
j=0

pjx
q
2 jy

q
2 j

nX
k=0

qkx
p
2 ky

p
2 k

1A
� 1

q

nX
j=0

pjx
qj

nX
k=0

qky
pk +

1

p

nX
k=0

qkx
pk

nX
j=0

pjy
qj

�
nX
j=0

pjx
jy(q�1)j

nX
k=0

qkx
ky(p�1)k

� 2T

0@1
2

24 nX
j=0

pjx
qj

nX
k=0

qky
pk +

nX
k=0

qkx
pk

nX
j=0

pjy
qj

35
�

nX
j=0

pjx
q
2 jy

q
2 j

nX
k=0

qkx
p
2 ky

p
2 k

1A
where p > 1;

1

q
+
1

p
= 1.

Since all the series whose partial sums are involved in inequalities (2.29) and
(2.30) convergent on the interval (0; R) by taking the limit as n!1 in (2.29) and
(2.30) respectively, we deduce the desired inequalities (2.26) and (2.27). �

Corollary 3. If g(x) = f(x) in (2.26) and (2.27), then we have

t
h
f(xq)f(yq) + f(xp)f(yp)� 2f

�
x
q
2 y

p
2

�
f
�
x
p
2 y

q
2

�i
(2.31)

� 1

q
f(xq)f(yq) +

1

p
f(xp)f(yp)� f2 (xy)

� T
h
f(xq)f(yq) + f(xp)f(yp)� 2f

�
x
q
2 y

p
2

�
f
�
x
p
2 y

q
2

�i
and

t
h
f(xq)f(yp) + f(xp)f(yq)� 2f(x

q
2 y

q
2 )f(x

p
2 y

p
2 )
i

(2.32)

� 1

q
f(xq)f(yp) +

1

p
f(xp)f(yq)� f(xyq�1)f(xyp�1)

� T
h
f(xq)f(yp) + f(xp)f(yq)� 2f(x

q
2 y

q
2 )f(x

p
2 y

p
2 )
i

:

respectively, for any x; y � 0 such that xy; xp; xq; yp; yq 2 (0; R) and p > 1 with
1

p
+
1

q
= 1.
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The above results (2.31) and (2.32) have some natural applications for partic-
ular functions of interest. For example, if we apply the inequality (2.31) and (2.32)
for the function f(x) = exp (x), x 2 R, then we get the following inequalities

t
h
exp(xq + yq) + exp(xp + yp)� 2 exp

�
x
q
2 y

p
2 + x

p
2 y

q
2

�i
(2.33)

� 1

q
exp(xq + yq) +

1

p
exp(xp + yp)� exp (2xy)

� T
h
exp(xq + yq) + exp(xp + yp)� 2 exp

�
x
q
2 y

p
2 + x

p
2 y

q
2

�i
and

t
h
exp(xq + yp) + exp(xp + yq)� 2 exp(x

q
2 y

q
2 + x

p
2 y

p
2 )
i

(2.34)

� 1

q
exp(xq + yp) +

1

p
exp(xp + yq)� exp(xyq�1 + xyp�1)

� T
h
exp(xq + yp) + exp(xp + yq)� 2 exp(x

q
2 y

q
2 + x

p
2 y

p
2 )
i
:

respectively, for any x � 0; y > 0 and p > 1 with 1
p
+
1

q
= 1.

Theorem 5. Let f(x) and g(x) be as in Theorem 4. Then one has the inequality

t
h
f(xp)g(yq) + g(xp)f(yq)� 2g

�
x
p
2 y

q
2

�
f
�
x
p
2 y

q
2

�i
(2.35)

� 1

q
f(xp)g(yq) +

1

p
g(xp)f(yq)� f

�
xp�1yq�1

�
g (xy)

� T
h
f(xp)g(yq) + g(xp)f(yq)� 2g

�
x
p
2 y

q
2

�
f
�
x
p
2 y

q
2

�i
and

t
h
g
�
x2
�
f (yq) + f (xp) g

�
y2
�
� 2f

�
x
p
2 y

q
2

�
g (xy)

i
(2.36)

� 1

q
g
�
x2
�
f (yq) +

1

p
f (xp) g

�
y2
�
� f (xy) g

�
x
2
q y

2
p

�
� T

h
g
�
x2
�
f (yq) + f (xp) g

�
y2
�
� 2f

�
x
p
2 y

q
2

�
g (xy)

i
:

Proof. Also, if we choose in (2.5) x =
yk

yj
, y =

xk

xj
; x; y 6= 0 and x = x

2
q kyj ,

y = xjy
2
pk, j; k 2 f0; 1; 2; : : : ; ng, then we have the following inequalities:

t
�
xpjyqk + xpkyqj � 2x

p
2 ky

q
2kx

p
2 jy

q
2 j
�

(2.37)

� 1

q
xpjyqk +

1

p
xpkyqj � x(p�1)jy(q�1)jxkyk

� T
�
xpjyqk + xpkyqj � 2x

p
2 ky

q
2kx

p
2 jy

q
2 j
�
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and

t
�
x2kyqj + xpjy2k � 2x

p
2 jy

q
2 jxkyk

�
(2.38)

� 1

q
x2kyqj +

1

p
xpjy2k � xjyjx

2
q ky

2
pk

� T
�
x2kyqj + xpjy2k � 2x

p
2 jy

q
2 jxkyk

�
respectively, for any x; y � 0 and p > 1 with 1

p
+
1

q
= 1.

Now, repeating the same method as Theorem 4, we obtain the desired inequal-
ities (2.35) and (2.36). �

Corollary 4. If g(x) = f(x) in (2.35) and (2.36), then we have

2t
h
f(xp)f(yq)� f2

�
x
p
2 y

q
2

�i
� f(xp)f(yq)� f

�
xp�1yq�1

�
f (xy)(2.39)

� 2T
h
f(xp)f(yq)� f2

�
x
p
2 y

q
2

�i
and

t
h
f
�
x2
�
f (yq) + f (xp) f

�
y2
�
� 2f (xy) f

�
x
p
2 y

q
2

�i
(2.40)

� 1

q
f
�
x2
�
f (yq) +

1

p
f (xp) f

�
y2
�
� f (xy) f

�
x
2
q y

2
p

�
� T

h
f
�
x2
�
f (yq) + f (xp) g

�
y2
�
� 2f (xy) f

�
x
p
2 y

q
2

�i
:

The above inequalities (2.39) and (2.40) also provide some natural applications
for particular functions of interest. We give here some examples as follows:

(1) If we apply the inequality (2.35) for the function f(x) = sinh(x) and
g(x) = cosh(x), x 2 R, then we get

t
h
sinh(xp + yq)� sinh

�
2x

p
2 y

q
2

�i
(2.41)

� 1

q
sinh(xp) cosh(yq) +

1

p
cosh(xp) sinh(yq)

� sinh
�
xp�1yq�1

�
cosh (xy)

� T
h
sinh(xp + yq)� sinh

�
2x

p
2 y

q
2

�i
for any x; y � 0 and p > 1 with 1

p
+
1

q
= 1.

(2) Further, if we consider the function f(x) = exp (x), x 2 R and applying
the inequality (2.39), then we get

2t
h
exp(xp + yq)� exp

�
2x

p
2 y

q
2

�i
(2.42)

� exp(xp + yq)� exp
�
xp�1yq�1 + xy

�
� 2T

h
exp(xp + yq)� exp

�
2x

p
2 y

q
2

�i
for any x; y � 0 and p > 1 with 1

p
+
1

q
= 1.

Finally, the following result holds.
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Theorem 6. Let f(x) and g(x) be as in Theorem 4. Then one has the inequality

t
h
f (xp) g

�
y2
�
+ g

�
x2
�
f (yq)� 2f

�
x
p
2 y

q
2

�
g (xy)

i
(2.43)

� 1

q
f (xp) g

�
y2
�
+
1

p
g
�
x2
�
f (yq)� f

�
xp�1yq�1

�
g
�
x
2
p y

2
q

�
� T

h
f (xp) g

�
y2
�
+ g

�
x2
�
f (yq)� 2f

�
x
p
2 y

q
2

�
g (xy)

i
and

t
h
f
�
x2
�
g (yq) + g

�
x2
�
f (yp)� 2f

�
xy

p
2

�
g
�
xy

q
2

�i
(2.44)

� 1

q
f
�
x2
�
g (yq) +

1

p
g
�
x2
�
f (yp)� f

�
x
2
q y
�
g
�
x
2
p y
�

� T
h
f
�
x2
�
g (yq) + g

�
x2
�
f (yp)� 2f

�
xy

p
2

�
g
�
xy

q
2

�i
:

Proof. Again, the proof follows by using the same method as in Theorem 4

on choosing in (2.5) as x =
y
2
q k

yj
, y =

x
2
pk

xj
; x; y 6= 0 and x = x

2
q jyk, y = x

2
pkyj ,

j; k 2 f0; 1; 2; : : : ; ng respectively. �

Corollary 5. If g(x) = f(x) in (2.43) and (2.44), then we have

t
h
f (xp) f

�
y2
�
+ f

�
x2
�
f (yq)� 2f (xy) f

�
x
p
2 y

q
2

�i
(2.45)

� 1

q
f (xp) f

�
y2
�
+
1

p
f
�
x2
�
f (yq)� f

�
xp�1yq�1

�
f
�
x
2
p y

2
q

�
� T

h
f (xp) f

�
y2
�
+ f

�
x2
�
f (yq)� 2f (xy) f

�
x
p
2 y

q
2

�i
and

t
h
f
�
x2
�
[f (yq) + f (yp)]� 2f

�
xy

p
2

�
f
�
xy

q
2

�i
(2.46)

� f
�
x2
� �1
q
f (yq) +

1

p
f (yp)

�
� f

�
x
2
q y
�
f
�
x
2
p y
�

� T
h
f
�
x2
�
[f (yq) + f (yp)]� 2f

�
xy

p
2

�
f
�
xy

q
2

�i
:

3. Applications for special functions

In this section, we provide some inequalities for special functions such as poly-
logarithm, hypergeometric and modi�ed Bessel functions for the �rst kind by uti-
lizing the inequality (2.9). Before that, we recall here some basic concepts of these
functions that will be used in the sequal.

The polylogarithm Lin (x), also known as the de Jonquières function is the
function de�ned by

(3.1) Lin(x) =
1X
k=1

xk

kn
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for all values of order n and x 2 (0; 1) : When n = 1, the polylogarithm involves

the ordinary logarithm, i.e., Li1 (x) = ln
�

1

1� x

�
, x 2 (0; 1) and for n = 2;

(3.2) Li2(x) =
1X
k=1

xk

k2

is known as the dilogarithm or Spence�s function.
The polylogarithm (3.1) reduces to the ratio of a polynomial in x for some

integer values of n. For instance

Li0 (x) =
x

1� x; Li�1 (x) =
x

(1� x)2
;

Li�2 (x) =
x (x+ 1)

(1� x)3
; Li�3 (x) =

x
�
1 + 4x+ x2

�
(1� x)4

:

The hypergeometric functions 2F1 (a; b; c;x) are de�ned by the Gauss series,
that is,

(3.3) 2F1 (a; b; c;x) =
1X
k=0

(a)k (b)k
(c)k

xn

k!

for a; b; c are real numbers with c 6= 0;�1;�2; : : : and x 2 (0; 1) ; while the (t)k is
known as Pochhammer symbol which is de�ned by

(t)k =

�
1 if k = 0;
t (t+ 1) � � � (t+ k � 1) if k = 1; 2; 3; : : : .

Some of the basic properties of the hypergeometric functions are

2F1 (a; b; c;x) = 2F1 (b; a; c;x) ;

2F1 (a; b; c;x) = (1� x)c�a�b 2F1 (c� a; c� b; c;x) ;

2F1 (a; b; c;x) =
1

(1� x)a 2F1

�
c; c� b; c; x

x� 1

�
;

2F1 (a; b; b;x) =
x

(1� x)a ;

c2F
0
1 (a; b; b;x) = ab2F1 (a+ 1; b+ 1; c+ 1;x) :

Hypergeometric functions (3.3) with particular values of a; b and c reduce to ele-
mentary functions, such as

2F1 (1; 1; 1;x) = 2F1 (1; 2; 2;x) =
1

1� x;

2F1 (1; 2; 1;x) =
1

(1� x)2
;

2F1 (1; 1; 2;x) =
1

x
ln

�
1

1� x

�
;

2F1 (1; 1; 2;�x) =
1

x
ln (1 + x) :

Further, the Bessel functions of the �rst kind, denoted as J� (x) are de�ned by the
power series

(3.4) J� (x) =
1X
k=0

(�1)k

k! (�+ k)!

�x
2

�2k+�
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for any �; x 2 R such that x 2 (0; 1). If x is replaced by the arguments �ix, then
from (3.4) we have

(3.5) I� (x) = i
��J� (ix) =

1X
k=0

1

k! (�+ k)!

�x
2

�2k+�
for any �; x 2 R such that x 2 (0; 1). These functions (3.5) are called the modi�ed
Bessel functions of the �rst kind.

In the following, we state some particular values of I� (x) for � 2 R and x > 0:

I 1
2
(x) =

r
2

�x
sinh (x) ; I� 1

2
(x) =

r
2

�x
cosh (x) ;

I 3
2
(x) =

r
2

�x

�
cosh (x)� sinh (x)

x

�
;

I� 3
2
(x) =

r
2

�x

�
sinh (x)� cosh (x)

x

�
:

It is clearly seen that from (3.1), (3.3) and (3.5), that is, Lin (x) ; 2F1 (a; b; c;x)
and I� (x) are power series functions with positive coe¢ cients and convergent on
the interval (0; 1). Therefore, all the results in the above section hold true. For
instance, from (2.9) we have the following inequalities.

Corollary 6. If Lin (x) is the polylogarithm function, then we have

(3.6) Lin
�
y�z1��

�
Lin

�
y1��z�

�
� Lin(y)Lin(z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) ; � 2 [0; 1] and n 2 Z = f: : :� 2;�1; 0; 1; 2; : : :g .
In particular, if n = 0 in (3.6), then we get the inequality (2.11): Also, if

n = 1 in (3.6), then we get the inequality (2.12). Further, we obtain the following
inequality by choosing n = 2 in (3.6)

(3.7) Li2
�
x�y1��

�
Li2

�
x1��y�

�
� Li2(x)Li2(y)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1] ; where Li2 (x) is the dilogarithm
function which is di�ned in (3.2).

Corollary 7. If 2F1 (a; b; c;x) is the hypergeometric function, the we have

(3.8) 2F1
�
a; b; c; y�z1��

�
2
F1
�
a; b; c; y1��z�

�
� 2F1 (a; b; c; y)2 F1 (a; b; c; z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].
In particular, if we choose a = b = c = 1, then the inequality (3.8) reduces to

(2.11). In fact, the inequality (3.8) reduces to (2.11) for any a; b; c 2 R such that
c = b 6= 0;�1;�2; : : :.

Corollary 8. If I� (x) is the modi�ed Bessel function for the �rst kind, then
we have

(3.9) I�
�
y�z1��

�
I�
�
y1��z�

�
� I�(y)I�(z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].
In particular, if � = 0, then from (3.9) we get

(3.10) I0
�
y�z1��

�
I0
�
y1��z�

�
� I0(y)I0(z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1] ; where I0 (x) =
1P
k=0

x2k

4k (k!)
2 :
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If in (3.9) we choose � =
1

2
, the we obtain

(3.11) sinh
�
y�z1��

�
sinh

�
y1��z�

�
� sinh (y) sinh (z)

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].
If we take � =

3

2
; the we get from (3.9)�
y�z1�� cosh

�
y�z1��

�
� sinh

�
y�z1��

��
(3.12)

�
�
y1��z� cosh

�
y1��z�

�
� sinh

�
y1��z�

��
� [y cosh (y)� sinh (y)] [z cosh (z)� sinh (z)]

for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].

Remark 4. For � = �1
2
and �3

2
in (3.9), we get the dual results, namely

(3.13) cosh
�
y�z1��

�
cosh

�
y1��z�

�
� cosh (y) cosh (z)

and �
y�z1�� sinh

�
y�z1��

�
� cosh

�
y�z1��

��
(3.14)

�
�
y1��z� sinh

�
y1��z�

�
� cosh

�
y1��z�

��
� [y sinh (y)� cosh (y)] [z sinh (z)� cosh (z)]

respectively, for y; z; y�z1�� ; y1��z� 2 (0; 1) and � 2 [0; 1].

Other inequalities connected to these special functions for further reading can
be found in the literature, see [6], [7], [15], [19], [20] and the references cited
therein.
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