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INEQUALITIES OF LIPSCHITZ TYPE FOR POWER SERIES IN
BANACH ALGEBRAS

S.S. DRAGOMIR!»2

ABSTRACT. Let f(2) = > 02 j anz™ be a function defined by power series with
complex coefficients and convergent on the open disk D (0, R) C C, R > 0. For
any z,y € B, a Banach algebra, with ||z],|ly]| < R we show among others
that

1
I (v) = f (@)l < Hy*va/O fa (11— t) z + ty])) dt

where fo (2) =307 lan| 2™
Inequalities for the commutator such as

If (@) f () = F () f @)l < 2fa (M) fo (M) |ly — =],

if ||z]], [|lyll £ M < R, as well as some inequalities of Hermite-Hadamard type
are also provided.

1. INTRODUCTION

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0,c0) such that
(B, ||-]) is a normed space, and, further:

[labll < lall |jo]

for any a,b € B. The normed algebra (B, ||-]|) is a Banach algebra if ||-|| is a complete
norm.

We assume that the Banach algebra is unital, this means that B has an identity
1 and that ||1]] = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written a~! or % The set of invertible elements of B is denoted by Inv. If

a,b €lnvB then ab €lnvB and (ab) ™' =bla" 1.
For a unital Banach algebra we also have:

(i) If @ € B and lim,, ||a"H1/n

)

(ii) {a € B: |1 = b|| < 1} CInv5;
(iii) InvB is an open subset of B;
(iv) The map InvB 3 a — a~! €InvB is continuous.

For simplicity, we denote z1, where z € C and 1 is the identity of B, by z. The
resolvent set of a € B is defined by

< 1, then 1 — a €InvB;

pla) ={z€C: z—a e InvB};
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the spectrum of a is o (a), the complement of p (a) in C, and the resolvent function
of ais R, : p(a) —InvB,
Ry (2):=(z—a)"".
For each z,w € p(a) we have the identity
Ry (w) — Ry (2) = (2 —w) Ry (2) Ry (w) .

We also have that
o(a) C{ze€C: |z] <al}.
The spectral radius of a is defined as
v(a) =sup{|z|:z2€0(a)}.
If a,b are commuting elements in B, i.e. ab = ba, then
v(ab) <v(a)v(b) and v(a+b) <v(a)+v (D).
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functionals A : B —C, the function Ao R, is analytic
on p(a);
(iii) The spectrum o (a) is compact and nonempty in C;
(iv) For each n € N and r > v (a), we have

1 —1
n_ _— n _ d .
=i ] €€ s
(v) We have
v(a)= lim [la"|"".
n—oo
Let f be an analytic functions on the open disk D (0, R) given by the power
series

f(z):= Zozjzj (lz2| < R).
=0

If v (a) < R, then the series > 7 aja’ converges in the Banach algebra B because
> im0 eyl la?|| < oo, and we can define f (a) to be its sum. Clearly f (a) is well
defined and there are many examples of important functions on a Banach algebra
B that can be constructed in this way. For instance, the exponential map on B
denoted exp and defined as

oo

1
expa := Z _—'aJ for each a € B.

j=0""

If B is not commutative, then many of the familiar properties of the exponential
function from the scalar case do not hold. The following key formula is valid,
however with the additional hypothesis of commutativity for a and b from 5B

exp (a +b) = exp (a)exp (b) .

In a general Banach algebra B it is difficult to determine the elements in the range of
the exponential map exp (B), i.e. the element which have a "logarithm". However,
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it is easy to see that if a is an element in B such that ||1 —a| < 1, then a is in
exp (B) . That follows from the fact that if we set

Zi 1—a)",

3

then the series converges absolutely and, as in the scalar case, substituting this
series into the series expansion for exp (b) yields exp (b) = a.
In this paper we establish some upper bounds for the following quantities

1F ) = f @I 1f @) f () = f ) @)

Hf(””‘;y) —/Olf((l—S):Hsy)ds

Hf+f /f (1 —s)x+ sy)ds

that can naturally be associated with the analytic functions f (z) := >272, a;2/
defined on the open disk D (0, R) and the elements x and y of the unital Banach
algebra B. Some applications for functions of interest such as the exponential map
on B are provided as well.

and

2. LipscHITZ TYPE INEQUALITIES

Now, by the help of power series f (z) = > ", @, 2" we can naturally construct
another power series which will have as coeflicients the absolute values of the coef-
ficients of the original series, namely, fq (2) := >_," |on| 2" It is obvious that this
new power series will have the same radius of convergence as the original series.
We also notice that if all coefficients «,, > 0, then f, = f.

The following result is valid.

Theorem 1. Let f(z) = Y o0 anz™ be a function defined by power series with
complez coefficients and convergent on the open disk D (0, R) C C, R > 0. For any
x,y € B with ||z||, |y < R we have

1
(2.1) I (y) = f ()] < Hy*wH/O fa (1L =) + tyl]) dt

Proof. We use the identity (see for instance [1, p. 254])
n—1

(2.2) a” —b" = Z a" ' (a— b)Y
=0

that holds for any a,b € B and n > 1.
For x,y € B we consider the function ¢ : [0,1] — B defined by ¢ (t) =
[(1—t)x+ty]". Fort € (0,1) and € # 0 with ¢+ € (0,1) we have from (2.2) that

plt+e)—p)=[1-t-c)z+t+e)y" —[1-t)z+ty]"

e (=t at () (- 2) [(1 - D)+ gl
7=0
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Dividing with ¢ # 0 and taking the limit over ¢ — 0 we have in the norm
topology of B that

(2:3) ¢ () = lim —[p(t+e) — ¢ (1))

n

m | =

H
L

[(1—t)z+ty]" " (y—2) [(1- )z +ty) .

.
Il
=)

Integrating on [0, 1] we get from (2.3) that

[ewa=X [a-nerar7 w-o0-ne )

and since

then we get the following equality of interest
n-l 1 . .
yroat = Z/ A=tz +ty]" " (y—2) [(1— )z + ty) dt
j=0 "0

for any z,y € B and n > 1.
Taking the norm and utilising the properties of Bochner integral for vector valued
functions (see for instance [2, p. 21]) we have

2y - <S
Jj=0
sZ/ [0 =na+ 6" =) (1= )+ 1y | at
< 2/ [ =ty ey = 2|l - ) + 1| at
. Z/ I0 =8+l "y =l |0 -+ eyl e
=n||y—m||/01|<1—t>w+ty||"ldt

for any z,y € B and n > 1.
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Now, for any m > 1, by making use of the inequality (2.2) we have
m

=2

n=1

m
- E anpx”
n=0

m

Z lanl [ly" — ="

m

—1
<ly=#l 3 on |an|/ =ty +ty de

=y — || / (an (1 —t)z+tyl| ) dt.
n=1

Moreover, since [|z|, |ly|| < R, then the series > ° ja,y™, > .7 a,z™ and

oo

n—1
Yo nlan| (1= t)z +ty|

n=1

are convergent and

Zanyn =f (y) ) Z apr" = f (.ﬁ)
n=0 n=0

while

oo

S nlaall(0—ta+tyl = £ (10— t)a+ tyl)).

n=1

Therefore, by taking the limit over m — oo in the inequality (2.4) we deduce the

desired result (2.1).

Remark 1. We observe that f. is monotonic nondecreasing and convexr on the
interval [0, R) and since the function i (t) := ||[(1 — t) z + ty|| is convex on [0,1] we
have that f! o is also convex on [0,1]. Utilising the Hermite-Hadamard inequality
for convex functions (see for instance [4, p. 2]) we have the sequence of inequalities

1
20 IF @)~ @l <ly—al [ £00-0o+wld
< Ly [ (2] + Sl S

2
5 IIy = [fo (=D + fa (lyl)]
Hy — x| max {f, ([l[), fo ()} -

T+y
2

| /\

IN
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We also have

27 lf)-f@)l< ||y—96||/0 fo (1L =)@ + ty|]) dt

IA

Iy =l [ 7= 0l +elol) as
0
1yﬁﬁﬁ@m+mw+nmmwnmm>

IN

5” 2 2

IN

2 lly —ll 175 () + 72 ()]

ly — @l max {f, (lzI)), fo (lyl)} -

We observe that if ||y|| # ||z|, then by the change of variable s = (1 —t) ||z|| +¢]|y]|
we have

1
A S (= 1) [zl + ¢yl de

If llyll = llz|l, then

IN

L Fu () = £ ()
e — s)ds = .
Tl =Tl Sy o Tl [l

/0 fa (=)l + tllyll) dt = f5 (1)) -

Utilising these observations we then get the following divided difference inequality

forz#y

1S (y) = ()]l

28) v =<l

1
< Afuwr¢m+wmﬁ

Lol folliel) g7 |y £ o],

fa (l=l)) if Nyl = ll=ll-

If |lz||, lyll < M < R, then from either of the inequalities (2.6) or (2.7) we have
the Lipschitz type inequality

(2.9) If () = f @) < fo (M) [ly — =]

Remark 2. We observe that the integral fol FE((L = t) x + ty||) d¢, which might
be difficult to compute in various examples of Banach algebras, has got the simpler

pouns el + 72 (ol
ey fo () + fo (ly
(=)

2
Jollpli=fallleD i iy # |12,

By (z,y) = % [

and

By (z,y) =
Ja (l) if llyll = [l -
It is natural then to ask which of these bounds is better?
Let us consider the simple examples of powers, namely f (z) = 2™ with m > 1.
Then
1

Bl (.’E,y) = Em

m—1 m—1 m—1
z+y =l + iy
2 2
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and

m—1 m—2 m—1 .
lgl™ " + g™~ Nzl + - 4 [l if llyll # [l
BQ (.’E,y) = 1
m ||| if llyll = llll-

If we take y = tx with ||z|| =1 and |t| # 1 then we get

1+1¢
2

m—1 N 1+ |t|7n—1
2

and
By (t) = [t|™ " + .. 4]t + 1.
If we take m = 4 and plot the difference

d(t):=2 (‘t—;l

3

2

1+ [t
L LI )—(|t|3+|t|2+|t|+1)

on the interval [—8, 8], then we can conclude that some time the first bound is better
than the second, while other time the conclusion is the other way around.
The plot for the function d is depicted in the Figure 1 below:

Figure 1: Variation of the difference d (t) for t € [-8,8].

It is natural now to consider some examples of interest.
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oo 1
n=0 n!

If we consider the exponential function exp (z) = > 2", then for any =,y €

B we have the inequalities

1
(2.10)  lexp (y) — exp (@)[| < [ly —SEII/O exp ([|(1 =)z + tyl]) de

b [oxp (|52 4 tielipolb |,

<y =l el it y) # |,

exp ([[=[l) i flyll = [l] -

Now, if we consider the functions (1 — 2) ™' = 32 2" and (1 +2) " = 32°° , (=1)" 2",
then for any z,y € B with ||z|, |||l < 1 we have the inequalities

(2.11) H(l:l:y)_l —(lzl:x)_lH

1
< ||y—x||/ (1= (1 =ty + tyl)) "2 dt
0

. -2 ]2 _ -2
%[(1*”%”) + (=l +C-llvl)

Sly==lq a1y @ =l if fyll # ll2],

—92 .
(L= lzl)" if [yl = fl=] .
3. INEQUALITIES FOR COMMUTATORS

By the use of Lipschitz type inequalities obtained before we can establish some
upper bounds for the commutator

f@)g(y) =g f(x)
where z,y € B with ||z||, ||ly|| < R.

Theorem 2. Let f(z) = Y .o anz™ and g(z) = > oo B,2" be two functions
defined by power series with complex coefficients and convergent on the open disk
D(0,R) C C, R>0. For any z,y € B with ||z||, |ly]| < R we have

(3.1) 1f (@) g(y) —g() f (@)
< ly — =] Hlilfl{fa(II!L"II),fa(Hyll)}/0 9o (1L =) + tyl]) dt

+min {ga (|z[]), ga (Hyll)}/O fo (I =t) 2 + ty]]) dt]

S ||y _ 37|| fa (”.’II”) —2|— fa (HyH) ‘/O g(/l (”(1 —t)ZE +ty||)dt

a (1) ;ga (Ul /0 U=+ tyl) dt} :

Proof. Let n,m € N. Then we have

w’ny’"b _ ynl,’m — x’llym _ ‘,L,nx’fﬂ + xTLa;Jn _ yn.,L,’m
) m

= ™)+ @ )
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Utilising the properties of the norm, we have
la"y™ —y" ™| < fla™ (g™ — 2™ + (2" —y") ™|
™[ ly™ = 2™ [ + [l = y" || [l

™ fly™ = 2™+ [l [l2" = "

IAINA ]

for any n,m € N.
We also have

n, m n ., .m n

Y™ —y ™ =y (ym _ xm) + (‘,L,n _ yn) ym
which gives
le™y™ =y 2™ < [yl ly™ — ™[ + [y 1™ [l=" — 3" |

for any n,m € N.
Therefore

(3.2) lz"y™ — g™ || < min {2, [[ylI"} ly™ — 2™
+min |z [y} [ly" — 2"

for any n,m € N.
For any k£ > 1 we then have

k k k k
Z apz" Z Bmym - Z any"” Z ﬂmxm
n=0 m=0 n=0 m=0

k k

n=0m=0

k k
<D laal Bl llzy™ =y ™|

n=0m=0

(3.3)

k k
<D lag|min{llz]", 1"} D 1Bl ly™ — =™
n=0 m=0

k k
+ 3 1B min ™ ™S el 157 — 27

n=0 m=0

k k k
< min {Z e |2, D e ||y||"} D 1Bl lly™ =™
n=0 n=0 m=0
k k k
+ min {Z Bl 2™ 1B IIyIIm} D lanllly" — 2"
n=0 m=0

n=0

for any z,y € B with [lz]|, |ly[| < R.
From (2.4) we have

k

k
B4 D 1Ballly™ =™ =Y 1Bl ly™ — 2™

m=0 m=1

1 k A
< Hy—x\l/ (Zmlﬁmlll(l—t)w%yll )dt
0 m=1
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and

k 1 k -1
(3.5) Z o] [ly"™ — 2" < IIy—JCII/0 (Zn|ﬁn|||(1—t)w+tyll >dt
=0 n=1

for any x,y € B with ||z, ||y|| < R.
From ( 3) (3.5) we have

k k
Z 0" 3 B = 3 3 B
n=0 m=0

m=0

< ly — =]

k

x {min{2|an| ||xu",2|an| ||y"}/ <Zmlﬁm| ||<1—t>x+ty||"”> i

m=1

k
+mm{z|g el ,anyn }/ (Zn|ﬂn|||(1t)a:+ty||nl>dt}

n=0

for any x,y € B with ||x|| ) ||y|| < Rand k> 1.

Since all the series whose partial sums are involved in (3.6) are convergent, then
by letting m — oo in (3.6) we deduce the first inequality in (3.1).

The second inequality is obvious. O

Remark 3. If g = f in (3.1), then we have the following sequence of inequalities

(3.7) 1 (@) f (y) = [ () f (@)

< 2|y — af|min {fo ([|2)) , fa (Hyll)}/0 fo (1L =)@ + ty|]) dt
< ly = ([ min {fa ([l=]]) , fa (lyl)}

« {fé( w;yH) N fé(llzl);fé,(yll)}

< |ly = @l min {fa (lz]]) , fa Uy} If2 Alzl) + fo (i)
< 2|ly — | min{fa (l2]]), fa (ly])} max {£o (2], fo (lyl)}

(3-8) 1f (@) f () = f () f (@)
< 2lly — 2| min {fa (|lz]]), fa (Ily\l)}/O fa (I =)z + ty||) dt

< 2|y — ffmin {fo ([J2]) , fa (Ily\l)}/O fa (U =t) [l + ¢ [lyll) dt

< ly — 2 min {fa (Ilz]1) , fa (¥}
o Nl 1yl | fa izl + 2 lylD
e () - |

2 2
< ly = @l min {fa (1)), fa (lyID} [fa Uzl + fa (lylD]

< 2|y — 2l min {f (=), f (i)} max {fe (], fa (lylD} -

for any x,y € B with ||z||, |ly|]| < R.
Since

fa (l2l)) + fa (lyl)

min { fa ([[z]]), fa ([lyl)} < 2
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and

Lol =fall=) - gf g ) # |12

1
[ @ =0 ke + eyl =
’ IACED if ol =l

then by the second inequality in (3.8) we have for x # y that

IS () f(y) = f () f (@)
ly — |

S2min{fa(Ile),fa(llyll)}/O £l =ty + ty]) e

2 —2()2 .
JfalylD—fa Ul=1D if Iyl # ||zl

llyll ==l

(3.9)

2fa (lll) fo (lell) i llyll =l -
If |||, lyll £ M < R, then we can state the simpler inequality

(3.10) If @) f () = f ) f (@) <2fa (M) fo (M)]ly—=|.

Now, if for instance we use the first part of the inequality (3.7) for the exponential
function, then we get

(3.11) |exp (z) exp (y) — exp (y) exp (v)]|

1
< 2|ly — @[/ min {exp (||]]) , exp (Ilyll)}/O exp ([|(1 = 1)z +tyl]) di

< [ly — (| min {exp (||z[]) , exp ([[y])}

« [exp (Hw—;y ) L e (i) +eXp<||y||>]

2
while from the first part of (3.12) we have

(3.12) |exp (z) exp (y) — exp (y) exp (@)]|

1
< 2|ly — @[/ min {exp (||]]) , exp (Ilyll)}/O exp ([|(1 =)z +tyl|) di

exp2lyl) —expllz])
PCRD— b CILD it ly|| # ||,

< ly — =]
2exp (2z]]) if [lyll = ll=ll,

for any z,y € B.

4. APPLICATIONS FOR HERMITE-HADAMARD TYPE INEQUALITIES

The following result is well known in the Theory of Inequalities as the Hermite-
Hadamard inequality

(550) <5t [ o< L0

for any convez function f : [a,b] — R. For numerous results related to this inequal-
ity, see the monograph [4].
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The distance between the middle and the left term for Lipschitzian functions
with the constant L > 0 has been estimated in [3] to be

/ £t dt— <a+b>

while the distance between the right term and the middle term satisfies the inequal-
ity [5]

(4.1)

a b b
(12) |f()§f”—bia/f<)dtsi (bh—a).
In the following, we use the inequality
(4.3) 1f (y) = f (@) < % ly =l 1fa (1) + fa (lylD]

to derive some simple refinements of the Hermite-Hadamard type inequalities (4.1)
and (4.2) for power series of elements in a unital Banach algebra.

Theorem 3. Let f(z) = Y07 janz" be a function defined by power series with
complez coefficients and convergent on the open disk D (0, R) C C, R > 0. For any
x,y € B with ||z||, |yl < R we have

(4.4) Hf <”’;y> /Olf((ls)z+sy)ds
sl [32 ([Z52]) + [ s3] - o+ sunras
1w—ﬂﬂm(:“HW)+lmumn+ﬂmwﬂ
Syl 072 )+ 22 (D) < &y = e mace 2, Ll . £ o}

IN

| A

| /\

Proof. From the inequality (4.3) we have

(15) \V(x+y)f«1@x+ww

A A

for any z,y € B with ||z||, |ly|| < R and s € [0,1].

m;y'D (1 = 8) 2+ syl)

<
-2
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Integrating on [0, 1] we have

o) [r(552) - [ ria-gas s

1
< [ (5Y) - e as
1
<Ly-af
r 1 1 1
la (|52 [ - 5]ass [ -3 maa-9o sl
1
—Ly—al
r 1
< (J55) + [l gl maa =90 anal

and the first inequality in (4.4) is proved.
Since the function g (s) := f. (||(1 — s)  + sy||) is convex on [0, 1], then we have

an [

1
< [ o= 5= a0 + s uinnas

ﬂumwﬂl
/01 s;‘(ls)ds/ol

then by (4.7) we have
1
J

and the second inequality in (4.4) is proved.
The last part is obvious. O

L= s)e + syl ds

S — —

s — —| sds.
2

o= -t gawn [

Since

s— —|sds=—,
2 8

s — —

5| fa (I(L =)z +syll)ds < é [fa () + fo (lyID]

Remark 4. If z,y € B with ||z||, ||y|| < M < R, then by the inequality (4.4) we
have

(4.8) Hf(gc—;y>—/Olf((l—s)x—i—sy)ds

The trapezoidal version is as follows:

1 !/
SSYACHIPEET

Theorem 4. Let f(z) = Y07 jan2" be a function defined by power series with
complez coefficients and convergent on the open disk D (0, R) C C, R > 0. For any
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x,y € B with ||z||, |ly|| < R we have

Hf

IIy—xII

+Als{f;<‘

1
< ly—zal

IIy—xII[

/ f(l=s)z+sy)d

[ fa l=lD + fa (lyl)

2
’(1—8)1‘+S$;LyH)+f;< sZ

+y
2

o]

o=+ fallyl) 1, (|z+y
e ()
(llll) + f2 (D] < % ly = al| max {f; (l[)), fo (lylD)} -

Proof. From the inequality (4.3) we have

(4.10) Hf(w)—f<(1_3 o 5= >H

< 3oy =21 |72 (lal) + (k1—$x+s 1))
and
(4.11) Hf(y)f<sxzﬂ/+(1s)y>H

_4

for any z,y € B with

Utilising the triangle inequality, (4.10) and (4.1

412
<7
_2W

1
+2Hf(
< Loly—ap s
=3 Y

+ Slly*xll

for any z,y € B with

R A CIRA

.

e

SR

llzll, lyl| < R and s € [0,1].

1) we have

1

ERAISE D]

{f((ls)w+5 3

(0-0er527)
o)

22l + 12
EACIRA(E

Tty

+
2

z y

(1—s)x+sx;—y

)
-]

]l lyll < R and s € [0, 1] .

T+
2
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Integrating on [0, 1] we have

) [0

;/01 {f ((1s)x+sx;y>+f(8x;ry+(1S)yﬂ ds

S/01 W;[f((ls)zwx; >+f< Ty, (15)y>] ds
<Ly [f(i(llmll) + fa (llylD
<3 ;

R WA SRRt

By the convexity of the functions h (s) := f, (||(1 —s)z + s=F2||) and k(s) :=
1 (||3z+y +(1-s yH) on the interval [0, 1] we have

R R )
< ['s[a=omen=or (| 552])] o
v [ (|52 ]) + a -9z as

1
=ﬂﬂmmljﬂl—$%+ﬂﬁ<:”;yD[;ﬁm

r+y
5 .
Therefore

l ’ 1
(415) JS iHy_xH |:fa(x||)_:|):fa(”y”) +3f¢;<

Now, using the change of variable ¢ = 2s we have

(1—s)x+sx;

(1—8)964—396;_

AU RTERE
ACIRSATEETA

=

Ealll

1 1/2
;/Of<(1—t) +t‘;y>dt= -9 ds

and by the change of variable t =1 — v we have

1/t z+y 1t z+y
2/0f<t 5 +(1—t)x>dt:2/0f<(1—v)2—|—Uy)dv.

Moreover, if we make the change of variable v = 2s — 1 we also have

1 1
%/0 f((l—v)ac;:g—i—vy)dv: 1/2f((1—5)33+5y)ds.
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;/01 [f((l—S)ersx; >+f< Ty (1—5)y>}d8

1/2

= F((1=98)z+sy)dt+ f((l—=s)z+sy)ds
0 1/2

:/0 F(1=8)x+ sy)dt.

Utilising (4.13) and (4.15) we deduce the first two inequalities in (4.9). The rest is
obvious. g

Therefore

Remark 5. If z,y € B with ||z||, ||y|| < M < R, then by the inequality (4.9) we
have

(4.16) / F(U=s)a+ sy)yds|| < 32 (M) g — 2]

Hf z)+ f(y

For any x,y € B we have the following sequence of midpoint inequalities for the
exponential function

417)  |lexp (“y> /lexp((ls)ﬂchsy)d

2

< % ly — | {exp <H H>

< gy — i foup ([ Z2]) + § oo Q) + exp 1]

s Hesp (I - )z + syl)d ]

< g ly — 2| lexp (ll]]) + exp ([|y]])]

< % ly — 2| max {exp ([[z]]) , exp ([lyl)} -

We also have the trapezoid type inequalities

exp (z) + exp (y) . /O exp ((1 — s)x + sy) ds

(4.18) 5

exp ([l]]) + exp ([lyl)

< glly-al | y
) v

(1—13s) z+ 52
1
Ly - [l e ol Lo

NERNR

=)

IN

é ly — 2| [exp (|l|]) + exp (|[y])]

IN

i Iy — 2| max {exp ([[z]]), exp ([ly[)} -

It is known that if z and y are commuting, i.e. xy = yx, then the exponential
function satisfies the property

exp (z) exp (y) = exp (y) exp (z) = exp (z + y) .
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Also, if z is invertible and a,b € R with a < b then

b
/ exp (tx) dt = 2! [exp (bx) — exp (ax)] .

Moreover, if  and y are commuting and y — x is invertible, then

1 1
/ exp((1—s)x+ sy)ds = / exp (s (y — z))exp (x) ds
0 0

-(/ Cexp (s (y — 2)) is) exp (2)

=(y—=) ' lexp(y —z) — I]exp (2)

= (y—2) " exp (y) — exp ()]
In this case the first term in (4.17) may be replaced by

while the first term in (4.18), by

exp (z) + exp (y)

o (T52) = =) fexp 1)~ exp ()]
5 —(y—2)"" [exp (y) — exp ()]

The interested reader may apply the above inequalities to other important func-
tions such as (1—2)"" = 3% 2" and (142)"" = 3.°°,(~1)" 2" defined on
D (0,1) . However, the details are omitted.
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