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A THREE-POINT QUADRATURE RULE FOR THE
RIEMANN-STIELTJES INTEGRAL WITH APPLICATIONS

M.W. ALOMARI! AND S.S. DRAGOMIR?:3

ABSTRACT. In this paper, three point quadrature rules for the Riemann-—
Stieltjes integral are introduced. Applications to numerical integration are
provided as well.

1. INTRODUCTION

In 2000, Dragomir [17] introduced the following quadrature rule:

t/famwﬁ%funww—uwnwxemm

For several error bounds for this quadrature under various assumptions to the func-
tion involved the reader may refer to |7, [8], [10]-[17], [24] [25], [27]-[29], and the
references therein, as well as the recent work [3].

From a different point of view, the authors of [18] considered the problem of ap-

proximating the Riemann-Stieltjes integral f: f (t) du (t) via the generalized trape-
zoid rule [u (x) —wu(a)] f (a) + [u (b) —u(x)] f (b), i.e.,

/ f @) du(t) = [u(z) —u(a)] f(a) +[u(b) —u(@)]f (), Ve € la,b].

For various bounds of the above generalized trapezoid rule the reader may refer to
[18]-[22] and the references therein. For new quadrature rules regarding Riemann—
Stieltjes integral see [1], [2] and [4].

In order to approximate the Riemann—Stieltjes integral f: f(z)du(x) by the

Riemann integral f: f (t) dt, Dragomir and Fedotov [23], introduced the following
functional:

b —ula) [P
(1) D)= [ f@dute) - 0= [rgyan

provided that the Riemann—Stieltjes integral f: f () du(x) and the Riemann inte-
gral f; f(t) dt exist.

In the same paper [23], the authors have proved the following inequality:

Date: February 6, 2013.

2000 Mathematics Subject Classification. 26D10, 26D15.

Key words and phrases. Ostrowski’s inequality, Hermite-Hadamard inequality, Stieltjes
integral.

1


sever
Typewriter
Received 06/02/13


2 ALOMARI AND DRAGOMIR

Theorem 1. Let f,u : [a,b] — R be such that u is of bounded variation on [a,b]
and f is Lipschitzian with the constant K > 0. Then we have

b

(1.2) D (i)l < 5K (b—a)\/ (u).

a

The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
In [21], Dragomir has obtained the following inequality as well:
Theorem 2. Let f,u: [a,b] — R be such that u is Lipschitzian on [a,b], i.e.,
lu(y) —u(z)| < Lz —y|,Vo,y € la,b], (L>0)
and f is Riemann integrable on [a,b)].
If m, M € R, are such that m < f(x) < M, for any x € [a,b], then
1
(13) D (fru)] < S LM —m) (b a).
The constant % s sharp in the sense that it cannot be replaced by a smaller quantity.

In [26], Mercer has introduced new midpoint and trapezoid type rules for the
Riemann—Stieltjes integral which engender a natural generalization of Hadamard’s
integral inequality, as follows:

Theorem 3. Let g be continuous and increasing on [a,b], let ¢ € [a,b] which
satisfies

b
/gwﬁzw—@mw+w—@ww

If f” > 0, then we have
b
(1.4) f(e) g (b) —g(a)] S/ fdg <G —g(a)] f(a)+[g(b) —G]f(b)

where, G := ;- f:g(t) dt.

However, it seems that Mercer didn’t notice that the following relation between
the right-hand side of (1.4) and D (g; f), exists

b
(1.5) / f(#)dg (t) =[G =g (a)l f(a) = [g(b) = G] f (D)

f(bl))_i:()/a g(t)dtf/a g@)df (t) :==—-D(g;f).

This follows by integration by parts formula
b

b
/f@MMﬂ=ﬂ®M@—ﬂ@M@—/g@Mﬂw

a
Motivated by [26], in this paper several new inequalities of Hermite-Hadamard
type and new approximations for the Riemann—Stieltjes integral via three point
quadrature rules are established. The idea of the results and the analysis of the
proofs follows in a similar manner to that one used in [26]. However, the obtained
results in this work, are completely different and independent from those established
in [26].
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2. INTRODUCING QUADRATURE RULES FOR RIEMANN—STIELTJES INTEGRAL

To establish a three-point quadrature rule for the Riemann—Stieltjes integral, let
us seek numbers A, B, C' and D such that

(2.1) /fdg /fdy /fdg

with
(2.2) / " F(t)dg (1) = Af (a) + B (2)
and
b
(2.3) / f(t)dg(t) = Cf (x) + Df (b)

for all z € (a,b).
To find the scalars A, B,C and D, let f(t) = 1 and then f(t) = ¢ in (2.2) and
(2.3); respectively. By simple calculations we get

_ ! /E(t)dt—g(a), B=g(a)- — /xga)dt

r—a r—a

b b
Czbix/xg(t)dt—g(a:), ng(b)—bix/xg(t)dt

and therefore we have

/f )dg (¢ e[b x/bga)dt—xia/jg(t)dt]f(x)

[ [ova-e] e

b
g~ [ g<t>dt]f<b>.

(2.4) +

for all a < = < b.

Theorem 4. Fiz x € (a,b). Let g be continuous on [a,b] and monotonic nonde-
creasing on [a,x] and [x,b] (it may not be monotonic nondecreasing on the whole
of [a,b]). Let ¢; € [a, :17] and cg € [a; b], be such that

bg (b) — zg (x) — [V g (t)
g(b)—g(x)

g (z) —ag(a) = [ g(t
g (x) —g(a)
If f" > 0, then we have

l9() — g (@] f (e1) + g () — g @)  (c2)
(2.5) / £ () dg (¢

G(a,2) —g(a)] f(a) +[G (2,0) = G (a,2)] f (z)
+[g(b) G (,0)] f(b),

for all a < z < b, where G (o, 8) := B%rxf

c1 = and c¢g =

B g(t)dt.

[e3%
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Proof. The argument of the proof is similar to the proof of Theorem [3] We first
prove the right-hand inequality. Fix = € (a,b), so that

/f@@w=/ﬂm@m+/fm@w

Let hy (t) = g(t) — G (a,x) and Hy (t) := f; h(u)du, t € [a,z]. Using integration
by parts twice, and the fact that Hy (a) = H; () = 0, we get that

x

f@)dg ()= f(t)[g () — G (a,2)]l;

a

Now, since f” > 0, its enough to show that H; < 0, so that the right-hand inequality
is proved, i.e.,

(2.6) /5ﬂw@uyaﬂwwm—Gmezsu

To do this, since g is increasing on [a, ] then by the First Mean Value Theorem for
integrals there exists a unique 7 € (a,z) such that ¢g (1) = G (a,z). For s € [a, 7],
we have Hi (s) = [ [g(t) — G (a,x)]dt <0 and for s € [r,z], we also have

S

me)= [0 -Galas [ 06

T
S

[ s -Glamidts [ 90~ lom)
=— | gt)dt+ (z—s5)G(a,x)

=—(x—s5)g(s)+(x—5)G(a,xz) <0,

which proves that H; < 0.
Now, for the integral f; f(t)dg(t), we may define hs (t) = g (t) — G (z,b) and
H (t) := f: h(u)du, t € [x,b]. By repeating the above argument we get that

b
(2.7) / F()dg(t) = f (1) [g(t) = G (@b, <0

and thus by adding (2.6)) and (2.7)), the right-hand side of (2.5) is proved.



A THREE-POINT QUADRATURE RULE FOR RIEMANN-STIELTJES INTEGRAL 5

To prove the left-hand side of (2.5)), fix = € (a,b) and define the mapping
g(t)—g(a), te[avcl]
hy (t) =

gt) —g(x), te(a,]

and therefore we observe that for Hy(t) = fat h(u)du, where t € [a,z], we have
Hi(a) = 0 and since

@) = [ hwde= [ g -g@)dut [ o) d

=/ g (u)du— (e — a) g (a) — (3 — 1) g () = 0

by our choice of c;.
Now, using integration by parts (twice) we may write

(2.8) / " F @) dg(t) —f (e1) [g (@) — g (a)] = / CHL (1) £ (1) d.

Claiming that H; > 0, then by given hypothesis f” > 0 and so

(2.9) / " £ () dg (6)—F (e1) [g (2) — g (@)] > 0

which therefore, prove the left-hand inequality.
To prove our claim, let y € [a, ¢;], since g is monotonic nondecreasing on [a, z],
then we have

Hy (y) = /y (9 (u) — g (a))du.

Also, for y € (¢1, ], we have

m = [ @ -g@dut [ o) —g@)du

C1

:/yg(u)du—(clfa)g(a)*(yfcl)g(x)

:/zgw)du—(q—a)g(a)—/ g (w)du—(y— 1) g ()

:/Z(u)du—(«:ﬁa)g(a)f/ g (w)du—(y—c1)g ()

Yy

g(x)(x—cn—/$g<u>du—<y—c1>g<y>
=g<x><x—y>—/xg<u>duzo7

again since g is increasing. So that the claim is proved.
In a similar way, define the mapping

gt)—g(z), te[r,co

g) —g(),  te(e,]
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and therefore we observe that for Hy(¢ f ; ha(u)du, where t € [z,b], Ha(x) =0
and Ho(b) = 0. Similarly as above we have

b b
(2.10) /1f®dﬂﬂ—f@ﬂwaﬁ—g@ﬂ=/mHﬂﬂf%ﬂﬁ

Claiming that Hs > 0, then by given hypothesis f” > 0,

b
(2.11) /,ﬂwwuw—f@awa»—g@nzo

By repeating the above argument we can prove last claim. So that adding (2.9)
and (2.12)), we get

b
(2.12) / f(®)dg (t) —{lg (x) —g(a)] f (c1) +[g (b) — g (x)] f (c2)} 2 0,
which therefore, prove the left-hand side of . O
Corollary 1. In Theorem[]} choose g (t) =t, t € [a,b], then we have the inequality:

e femor (55 - (55)

(2.13) < b_la/abf(t) dt
S;[f(IH (z a)f(agiréb—x)f(b)]
for all a < x <'b. Moreover, if we choose x = “E>, then we get
) o (52 52 o
(2.14) <;{f (a;b)Jrf(a);f(b)}

3. REPRESENTATION OF THE ERROR FOR DIFFERENTIABLE ¢

3.1. A. Consider the quadrature rule

(31)  R(f.g:2) /f (G (a,x) - g (a)] f (a)
xm G (a,2)] £ (z) — [g (b) — G (z,B)] £ (B),
where, G (o, 8) : fﬁ

Theorem 5. Suppose that f" and ¢’ are continuous on [a,b] and that g is mono-
tonic on [a,z] and [x,b]. Then there exist &1,m € (a,z) and &2,m2 € (x,b) such
that

/f (t)dt — [G (a,2) — g (a)] £ (a) — [G (2,b) — G (a,2)] f (x)
—lg(b) — G (@.b)]  (b)
(3.2 =S [ @) -0t @) g ) -0

for alla <z < b, where G (a, B) := 525 ffg (t)dt
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Proof. Fix x € (a,b), so that

T b
(33 [rodwa=["sogwas [ rodow
a xT
For the first integral on the rlght hand side of ([3.3)), consider the functions h; (t) =
g(t) —G(a,z) and Hy (¢ f h(u)du, t € [a,z]. As we pointed out previously,

/ fit dt—f()[g(t%G(a,x)Hz:/GCHl(t)f'(t)dt

and since g is monotonic on [a,z] then H; does not change sign on [a,x]. So by the
First Mean Value Theorem for integrals, there is £ € (a,x) such that

/ £ dt—f(>[g<t>—G(aw)ﬂi:f"<§1>/zH1<t>dt

Applying the classical Trapezoid Rule to f Hy(t)dt, on the right side above we
have

/ g () dt— £ (1) g () — C ()]

2”51/H1

:f,,@[ );H()

3
(e —a) — " () T2 ]

for some m € (a, ). Since H{ = ¢' and H;(a) = Hy(z) = 0, then

3
) rd @ £@la0 - 6l = - € ) T5
Now, for the second integral on the right hand side of , consider the functions
he (t) = g (t) — G (x,b) and Hy (t f h (u) du, t € [z,b]. By repeating the above
argument we get that

— )

b
85) [ 10d 0@ 100 Enl = @4 o P
and thus by adding (3.4]) and , the right-hand side of is proved. O

Corollary 2. Suppose that f” and g’ are continuous on [a,b] and that g is mono-
tonic on [a, ‘%rb} and [%rb,b}. Then there exist 1,11 € (a, “;b) and &a,m2 €
(“TH’,I)) such that

a0 [Ls0swa-[o(*30) -0 (5325 (45
~lo(e ) -s@] r@ - s - (“510) | s

- (&) g" (m) + [ (&2) 9" ()],

where G (a, §) := ﬁ_% ffg (t) dt.
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Corollary 3. In Corollary[d let g(t) =t, for all t € [a,b], then we have:

6 [ a7 @ e (C50) + s o)

2
(b—a)®

= =T @) + £ (€).

Theorem 6. Suppose that " and g" are continuous on [a,b] and that g is mono-
tonic on [a,x] and [x,b]. Then there exist £1,m1, 71,01 € (a,x) and &a,12, 72,09 €
(z,b) such that

b
(3.8) / f () g (1) dt
) [g () - g(a)
2

= 7@ (00 E D () g7 (o) P
1

-5 [ €@ g ) @@ + £ (&) g () (b —2)°]

Proof. Apply the classical Trapezoid rule to get

G((Ll’): 1 /wg(t)dtzw_gﬂ(al) (.’L’—a>2

Tr—a 2

for some o1 € (a,x), and

b _ )2
Gt = [ o= 10 0=

for some o9 € (z,b). Therefore, by Theorem 5| we have

b

[ togwa

=[G (a,2) = g(@)) f (a) + G (2.) = G (a.0)] f (2) +[g () = G ()] f ()
@ ) @ -+ @) ) - 2)7]

2

_ [g @@ gy om0 (Q)] f(a)
N IR0 Y Ut IO R TG0 BN ] f (@)
b ot - L8290 | ) 0= ]f(b)

1

3 £ € m) (@ = a) 4 £ (&) (m2) (b~ 2)’]
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= 5 a) + 5 fz)+ 5 f(b)
1 (z - a)2 _ 7 (b— x)Q _
+ 9" (01) D [f (x) = f(a)] +¢" (02) B [f (b) = f(2)]
- %2 F(E) g (m) (@ —a)’ + 1" (&) g (n2) (b 95)3}
_ g(w);g(a)f(aHg(b);g(a)f(m)Jrg(b);g(fﬂ)f(b)
2 )2
+ (1) g" (01) (= I;) + f'(12) ¢ (02) b B )
1

-5 [ @) g ) (@ =)’ + £ (&) (1) (b= )’
which follows by the Mean Value Theorem, for some 71 € (a,x) and 75 € (z,b). O

Corollary 4. In Theorem@ choose g(t) =t, to get

b —a r—a a —x
(3.9) /f(t)dt—(l’Z){f(x)+( )@+ 6 )f(b)}

=S [E -+ @ -0,

for all z € (a,b).

3.2. B. Consider the quadrature rule

(310) L(f.g:7) /f Bydt— (g () — g (@)] f (1) — 9 () — g (@)] f (e2)

where, ¢1 € [a, 2] and ¢ € [z,b], are given by

zg(z) —ag(a)— [Tg(t and ¢ _bg(b) —zg(x — [Pyt
g(w)—g(a) 2 g(b)—g(fﬂ) ’

C1 —

for all a < = < b.

Theorem 7. Suppose that f" and ¢ are continuous on [a,b] and that g is mono-
tonic on [a,z] and [x,b]. Then there exist &1,m € (a,z) and &2,m2 € (x,b) such
that

(311)  L(fga) = [/ @) m) (@ —a)* + 7" (€) () 6 2)"],
foralla < x <b.

Proof. Fix x € (a,b), so that

(3.12) /f )dt:/mf(t)g’(t)dt—i—/ f@) g (t)dt

For the first integral on the right hand side of (3.12]), consider the functions
{g(t)_g(a)7 tE[a,Cl]

gt)—g(x),  te(c,a]
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and therefore we observe that for Hi(¢ f h(u)du, where t € [a,z], we have
Hy (a) = Hy (z) = 0; as we pointed out prev1oubly

/ F()g (t)dt— f (e >[g<x>—g<a>]=/1Hl<t>f"<t>dt

and since g is monotonic on [a, z] then H; does not change sign on [a,z]. So by the
First Mean Value Theorem for integrals, there is £; € (a,x) such that

/zf(t)y’ (1) dt — £ (e1) g () — g (a) = f" (&)/m H, (1) di

Applying the classical Trapezoid Rule to f H,(t)dt, on the right side above

/ F) g &) dt— f (1) g (@) — g (a)

-t | "L (1)t

= 17(&) [W (x —a) — H! (1) (z 5 ) ‘|

for some 11 € (a, ). Since H{ = ¢' and H;(a) = Hy(z) = 0, then

3
T —a
B13) [ 709 @i fela) - o] =1 €)d ) T
Now, for the second integral on the right hand side of (3.12]), consider the functions
g(t)—g(a:), tE[JI,CQ}
ha () =
gt)—g®), 1€ (c2,0]
and therefore we observe that for Ho(t f ho(u)du, where t € [x,b], we have

Hy (z) = Hs (b) = 0. By repeating the above argument we get that

b — )3
G [ HOg @ f()l0) -9 @) =1 ) (r) e

and thus by adding (3.13]) and (3.14)), the right-hand side of (3.11)) is proved. O

In particular, for

(222 [ 100
- H“j”) —g<a>] rlen= a0 - (5] ree.

so that, we have the following bound:

15 £(rs50) = -E5 @ )+ 1 @) ).

where, ¢1,&1,m € [a, 22 and e, &, m0 € [222,0].
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Corollary 5. In Theorem[], let g(t) = t, for all t € [a,b], then we have:

16) /abf(t)dt_ (b;a) [f (:m:b) +f(a—&;13b)]

(b—a)’

=" 95 F7 (&) + 7 (&2)].
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