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INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF
MIDPOINT SEPARATED FUNCTIONS WITH APPLICATIONS

S.S. DRAGOMIR!:2

ABSTRACT. For A € R, we say that the function f : [a,b] — R is A-separated
t 4t if

-1 () 2a(s-15)
for any s € [a,b].

In this paper we show amongst other that

/abf(t)dU(t) > (“F) ) - )
A {w(bfa)f/abu(t)dt}

provided that f : [a,b] — R is A-separated in the midpoint and w is monotonic
nondecreasing on [a, b] .

Some particular cases for the weighted integrals in connection with the
Fejér inequalities are also provided.

in the midpoin

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) (b—a)f <“+b> /f ) < ( )f();f(),

where a,b € R with a < b.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see
[22]). But this result was nowhere mentioned in the mathematical literature and
was not widely known as Hermite’s result [25].

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [22]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality [25].

For related results, see for instance the research papers [1], [3]-[15], [17], [19],
[20], [24], [23], [26], [27], [28], the monograph online [14] and the references therein.

In 1906, Fejér [16], while studying trigonometric polynomials, obtained inequal-
ities which generalize that of Hermite & Hadamard:
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Theorem 1. Consider the integral f; h(xz)w (x) dz, where h is a convex function
in the interval (a,b) and w is a positive function in the same interval such that

w(a+t)=w(b-1t), OStS%(a—i-b),

i.e., y=w(x) is a symmetric curve with respect to the straight line which contains
the point (5 (a+b),0) and is normal to the x—awxis. Under those conditions the
following inequalities are valid:

(1.2) h(a;b> /abw(x)d:c</abh(a:)w(x)dm<h(a);h(b)/abw(x)dx.

If h is concave on (a,b), then the inequalities reverse in (1.2).

Clearly, for w (z) =1 on [a, b] we get 1.1.
Motivated by these classical results and their impact in the literature, it is natural
to ask when inequalities for the Riemann-Stieltjes integral of the following type

(1.3 () ww @< [ wa

holds.

In order to address this question, we have introduced in this paper the concept
of functions A-separated in the midpoint point ‘LTH’ on a closed interval [a, b] , which
generalizes the concept of convex function on [a, b] and established some fundamen-
tal inequalities for the Riemann-Stieltjes integral for various classes of integrands
and integrators. Some particular cases for the weighted integrals in connection with
the Fejér first inequality (1.2) are provided.

2. TRAPEZOID AND MIDPOINT TYPE FUNCTIONS

Following the recent paper [11], we consider the class of function defined as
follows:

Definition 1. We say that the Lebesque integrable function f : [a,b] — R is sub-
trapezoidal if
f(a)+ f(b)

b
(2.1) f(bfa)z/ F(t)dt.

We denote this by f € Teu [a,b].

As above, we observe that Tg.p [a,b] is a closed convex cone in the uniform
convergence topology of the space of all Lebesgue integrable functions defined on
[a,b] denoted, as usual, by L [a,b].

As in the case of convex-concave functions, we can say that f is super-trapezoidal
if —f € Tgup[a,b]. We denote this by f € Zgy, [a,b]. Moreover, we say that f is
trapezoidal if f and —f € Tgup [a,b], ie.

b
(2.2) M (b—a) = / £ ) dt.
We denote this by f € T [a,b]. We observe that T [a, ] is a closed linear subspace
of L [a,b] with the uniform convergence topology.

If we denote by C, [a, b] the closed convex cone of all convex functions defined on
[a, b] then we can state the following result:
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Proposition 1. We have the strict inclusion
(2.3) Cuvla,b] G Tsup [a,b].
Proof. If f is convex on [a, b] then for any A € [0,1] and z,y € [a, b] we have
(2.4) M@ +A=N)f@=fQz+1-N)y).
Taking = a and y = b in (2.4) and integrating over A € [0, 1] we have
®) /bf()\a+(1—)\)b)d)\.

Changing the variable ¢ := Aa + (1 — X) b, A € [0, 1] we have

/abf()\a—&—(l— \)b) b_a/f

and the inequality is proved.
Consider the function

f1:10,27] = R, f1(t) =sint,

then we observe that f1 € 7 [0,27] and a fortiori f1 € Tgu [0,27], but it is easy
to see that fi is not convex on the interval [0, 27]. O

Definition 2. We say that the function f : [a,b] — R is symmetric (or anti-
symmetric) on the interval [a, b] if

F() = fla+b—1)(or—f(a+b—1)

for any t € [a,b]. We denote this by f € Sy[a,b] (or f € As[a,b]).
The following result holds:

Proposition 2. We have the strict inclusion

(2.5) As[a, 0] N L[a,b] G T [a,b].

Proof. If f € As[a,b] N L][a,b] then obviously f(a) = —f (b) and f f(t
and the equality (2.2) is trivially satisfied.
Now, if we consider the function fy : [-27, 27] — R defined by
0 ifte[-2r,0]
fo(t) =
sint if ¢t € (0,27,

then we observe that fo € 7 [—27,2x] but fy is not anti-symmetric on [—27, 27].
O

Proposition 3. Let w : [a,b] — R be a Lebesgue integrable function. Define
fila,b) = R by

(2.6) f<t>=/:w<s>ds—§/abw<s>ds=;(/;w<s>ds—/tbw<s>ds>.

Ifwe S, la,b] then f € Ala,b)].
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Proof. Let t € [a,b]. We have by the definition of f that

a+b—t b
(2.7) f(a—l—b—t)z/ w(s)ds—%/ w(s)ds.

If we make the change of variable u = a + b — s, then we have

(2.8) /;er_tw(s)ds——/btw(a—kb—u)du—/tbw(a—f—b—u)du.

Since w € Sy [a, b], then

(2.9) /tbw(a—l-b—u)du:/tbw(u)du

for any ¢ € [a,b].
On making use of (2.7)-(

2.9)
a+b—t) :/ u/abw(S)ds
_;</t w(s)ds/atw(S)d5>—f(t)

) we have

for any t € [a,b].
The proof is complete.

The following result also holds:
Proposition 4. Let w : [a,b] — R be a Lebesgue integrable function.

filab] — R by

t
(2.10) f@)= / w(s)ds.
The following statements are equivalent:

(i) f(or —f) € Tsup [a,0];
(ii) We have the inequality:

b b
b
(2.11) / tw () dt > (or g)%/ w (¢) dt.
Proof. Utilising the integration by parts for the Riemann integral we have:
S () + f(a) /
t)d
: 7
:§(b—a/ /(/w )dt

() e
s

:/abtw(t)dt—a;rb/a w (t) dt,

which proves the desired statement.

Define
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Remark 1. We observe that, by Proposition 4 we have f € T [a,b], where f is
defined by (2.10), if and only if

(2.12) /btw(t)dt:aer/bw(t)dt.

2

We denote in the following the closed convex cone of monotonic nondecreasing
functions defined on [a,b] by M~ [a,b] and by C [a,b] the Banach space of contin-
uous functions on the interval [a, b] .

We have the following result:

Corollary 1. Ifw (or —w) € M~ [a,b], then the function f (—f) defined by (2.10)
belongs to Tgup [a, b].

Proof. We use the Cebysev inequality that state that

: / dt_a/G

b
b_a/ F(1)G(#)de > (<)

provided F' and G have the same (opposite) monotonicity on [a, b] .
Writing this inequality for F'(t) = t and G (t) = w (t) we obtain the desired
result. O

Definition 3. We say that the Lebesgue integrable function f : [a,b] — R is of
sub(supper)-midpoint type if

(2.13) /f t)dt > ( )f<a+b>(b—a).
We denote this by f € Mgup(sup) [a,b] .

Moreover, we say that f is of midpoint type if
f S MSub [a7 b} N MSup [av b} 5

ie.

(2.14) /f t)dt = <a+b>(b—a).

We denote this by f € M[a,b]. We observe that if f € A;[a,b] then obviously
f € Mla,b] and there are functions which are of midpoint type but not anti-
symmetric. Indeed, if we consider the function fy : [—27, 27] — R defined by

0 ifte[-2m,0]

fo(t) =
sint if ¢t € (0,27,

then we observe that fo € M [—2m, 27| but fy is not anti-symmetric on [—27, 27].
It is obvious that Mgy [a,b] is a closed convex cone and it contains strictly the
convex cone of convex functions defined on [a, b], i.e

Co [CL, b] & Msub [CL, b] .

Proposition 5. Let w : [a,b] — R be a Lebesgue integrable function. Define
filab] — R by

fw:fw@m

The following statements are equivalent:
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(1) f(O?” _f) € Msup [a7b] ;
(ii) We have the inequality:
(2.15) /btw (t)dt < (or >)(b— 1)/(12 w(s)ds—i—b[f w (s)ds.

atb
2

Proof. Utilising the integration by parts for the Riemann integral we have:

[f(t)dt—f(“;b)
/ab </atw(s)ds)dt/aa;bw(t)dt
b

—/abtw(t)dt

_ </abw(s)ds)b—/abtw(t)dt—/aQw(t)dt

| I
|
—
wlt
p
S
—
~
=
u
=~

a+b

Eh b b o5t
= / w(s)ds+b/ w(s)ds—/tw(t)dt—/ w (t) dt
a+b
a 5 a a
ath b b
:(bfl)/ w(s)derb/ w(s)dsf/tw(t)dt,
a+b
a 2 a
which proves the desired result. (I

We can introduce now the following class of functions:
Definition 4. For A € R, we say that the function f : [a,b] — R is A\-separated in
the midpoint point “T'H’ and we write that as f € S, atv [a,b] if
)

FER 1@ fO-1 (=)

2.16
(210 Co -

foranya <1< ’IT“’ <t < b, or equivalently

(2.17) f(s)—f(“‘;b)m(s—“;b)

for any s € [a,b].

We observe that if f1, fo € S/\)aTer [a,b] and « € [0,1] then afi + (1 —«) f2 €
S)HHTH» [a,b] which shows that SA’aTH [a,b] is a convex subset in the space of all
functions defined on [a, b] . It is also closed in the uniform topology.

Proposition 6. If f is convex on [a,b] then f € S)\,aTer [a,b] for any

el () 1 (222

where f' and f'. are the left and right derivatives of the convex function f. There
are functions in S, otv [a,b] for some A € R which are not convex on [a,b].
)
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Proof. Since f is convex, then for any x,y € (a,b) we have the gradient inequality
(2.18) f@) = fy) 2y, (x-y)

where v, € 9, = |f" (y), fi (y)| , the subdifferential of the function f in the point
’Yy Yy +

Y

Taking z = s and y = %t in (2.18) we conclude that f € S, axt [a,b] with

)\:’}/QTM.
Take A =0, a=—1,b=1 and fy (t) = \/|t|]- We observe that

fo<s)—f0(0>=JM>0=0(s—“;b)

for any s € [—1,1], which shows that fy € Sp o [—1,1]. However, it is clear that fo
is not convex on [—1,1]. O

Proposition 7. If there exists A € R such that f € SA7GTH, [a,b], then f €
Mg [a, D] .

Proof. If f € SA’QT% [a, b] then

for any s € [a,b].
Integrating on [a, b] we have

/abf(s)ds—f<a;b> (b—a)>>\/ab (s—a;_b>ds=0

and the statement is proved. [l

Remark 2. Let w : [a,b] — R be a Lebesgue integrable function on [a,b]. Define
f:]a,b] = R by f(t) = f;w(s) ds. We observe that, by (2.16) we have f €
SA’HTM [a,b] if and only if

a+b
1 R 1 K
(219) E/ W(S)dsg)\ét_@/l+bw(s)ds
2 T 2 2

a+b
foranya <71 < %52 <t <b.

3. MIDPOINT TYPE INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL

The following result holds:
Theorem 2. Let A€ R. If f € S, ase [a,b] N C[a,b] and u € M~ [a,b], then

(3.) [ 10wz (5w -

u(a);ru(b)(ba)/abu(t)dt]

+ A
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or, equivalently

s [wowosfro-s (G| eo () 1@

b
/ u(t)dt—M(b—a) .

+ A

Proof. Since f is continuous and u monotonic nondecreasing, then the Riemann-
Stieltjes integral f; f(t) du (t) exists.
Since f € S, ats [a,b] then
)

f(S)-f(a;_b> Z>\<s—a_2|_b>
for any s € [a,b].

Integrating over the nondecreasing integrator u on the interval [a, b], we have

89 [ 10wo-7 () ue -uw)

[ o5 55

:)\[u(a);_u(b)(b—a)—/abu(t)dt},

which is equivalent with (3.1).
Integrating by parts in the Riemann-Stieltjes integral we have

o s(z35)]
_ [f(8>_f<a;b)]u<t>:—/abuu)df(t)
- [f(b)—f(a;bﬂ u(b) + [f(a;rb) —f(a)} u(a)

b
f/ w(t)df (t).

Utilising the inequality (3.3) we deduce the desired result (3.2). O

Corollary 2. Let f € C, [a,b] and u € M~ [a,b], then

B0 [ r0w0zr () e - )
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or, equivalently

55 [wowo<[ro-7 (D) eo [r(F) - r@]uw
FAaps Vabu(t)dtW(ba)l,

where Xags € [£7 (542)  £1 (542)]

The following midpoint type inequality for the Riemann-Stieltjes integral holds:

Corollary 3. Let f € S/\’aTH, [a,b] N C[a,b] for some A € R and u € M~ [a,b] N
T [a,b] then

(36) [ 10wz (5 uw -t

or, equivalently

a0 [woaosfro-r (D) eo () - 1@,

Remark 3. Let w: [a,b] — R be a Lebesgue integrable function. If w > 0 and

b b
/tw(t)dt:a;b/ w (¢) dt,

then the function u (t) := f(f w (s)ds is in M7 [a,b]NT [a,b] and by (3.6) we deduce
that

(3.) /abf(ww(t)dtzf(“;b) /:w@)dt,

where f € S, ats [a,b] NC [a,b] for some X € R, which provides a generalization of
)2
the first Fejér’s inequality in (1.2).

The following corollary also holds:

Corollary 4. Let f € S/\’aTer [a,b] N C [a,b] for some A € R and u € M~ [a,b]. If
A >0 and u € Tgyp[a,b] or A < 0 and u € Tgyyp [a,b] then (3.6) or, equivalently
(3.7) holds true.

Remark 4. Let w : [a,b] — R be a Lebesgue integrable function with w > 0 and
f€ S/VLTM [a,b] N C [a,b] for some A € R. If A >0 and

b b
/tw(t)dtza;b/ w(t) dt,

b b b
/tw(t)dtga;r /w(t)dt,

or A< 0 and

then (3.8) holds true.

The second general result is as follows:
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Theorem 3. Let A\eR. If f € SA,QT% [a,b] NC[a,b] and u € M~ [a,b], then

b b
1 + f(a) lb—la/au(t)dt_u(a)]

39) 10 [ )
(55 ) - uta)

zA[W(b-@-/ﬂbu(wdt]

w (t)dt

and

[ b
(3.10)  f(b) bia/ w(t) dt —u (a)

1 b

+ f(a) [u b)——— | u(¥) dt]

b—a J,

>\ /bu(t)dtu(a)—;u(b)(ba)].

Proof. If f € 8, ags [a,b] N C[a,b], then

(3.11) f<b>—f(“;b> > A (b-a)
and
(3.12) f(a)—f(“‘;b) > IAb—a).

If we multiply the inequality (3.11) by ¢t — a and (3.12) by b — ¢t and add the
obtained inequalities, then we get

Foe-a+f@e-0-7 ("5 0-a

>\ (b—a) <t—a;rb>

for any ¢ € [a,b].
Integrating over the nondecreasing integrator u on the interval [a, b], we have

b b
(3.13) f(b)/ (t—a)du(t)+f(a)/ (b t)du (t)
1 (*5) -0 - ulw)

zA(b—a)/ab <t—a—;b>du(t).

Utilising the integration by parts rule for the Riemann-Stieltjes integral, we have

b b
/(t—a)du(t):(b—a)u(b)—/ u (t) dt,

b b
/(b—t)du(t):/u(t)dt—(b—a)u(a)
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and

/ab <t a§b> du(t)W(b@/j“(t)dt'

Therefore by (3.13) we get the desired result (3.9).
Further, if we multiply the inequality (3.11) by b—t and (3.12) by ¢ — a and add
the obtained inequalities, then we get

f(b)(b—t>+f<a><t—a>—f(““’) (b a)

2
> -A(b—a) <t—“;rb>

for any ¢ € [a,b].
Integrating over the nondecreasing integrator u on the interval [a, b], we deduce
the desired result (3.10). O

Corollary 5. Let f € C, [a,b] and u € M~ [a,b], then

b
+ f(a) [bia/ u(t)dt—u(a)}

S
—~
=
~—~
|

b
(3.14) f(b)[ bia/ u(t)dt

where Xgs € 77 (#52) £} (442)]

Corollary 6. Let f € SA7H,TM; [a,b] N C[a,b] for some A € R and u € M~ [a,b]. If
A>0 and u € Tgyp [a,b] or A < 0 and u € Tgyy [a,b], then

b
1 + £ (a) [b_la/u(t)dt—u(a)l

b
(3.16)  f(b) [u (b)—m/ u(t)dt

> (%57 o - uGl.
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If A <0 and u € Tgyup [a,b] or A >0 and u € Tgyp [a,b], then

1 b

b 1
(3.17) Q! 7a/ u(t)dt —u(a)| + f(a) |u(d) — —— [ w(t)dt

b—a /,

> 1 (%50 w - uo)

Remark 5. Similar weighted inequalities may be stated. However the details are
not presented here.

(1]

)
=7

REFERENCES

A. G. Azpeitia, Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28
(1994), no. 1, 7-12.

| E. F. Beckenbach and R. Bellman, Inequalities, 4th Edition, Springer-Verlag, Berlin, 1983.

P. Cerone, S. S. Dragomir, J. Roumeliotis and J. Sunde A new generalization of the trapezoid
formula for n-time differentiable mappings and applications. Demonstratio Math. 33 (2000),
no. 4, 719-736.

S. S. Dragomir, A mapping in connection to Hadamard’s inequalities, An. Oster. Akad. Wiss.
Math.-Natur., (Wien), 128(1991), 17-20. MR 934:26032. ZBL No. 747:26015.

S. S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal.
Appl., 167(1992), 49-56. MR:934:26038, ZBL No. 758:26014.

S. S. Dragomir, On Hadamard’s inequalities for convex functions, Mat. Balkanica, 6(1992),
215-222. MR: 934: 26033.

S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure
Appl. Math. 3 (2002), no. 3, Article 35, 8 pp.

S. S. Dragomir, Inequalities of Griiss type for the Stieltjes integral and applications, Kragu-
jevac J. Math. 26 (2004), 89-122.

S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc.
74(3)(2006), 471-476.

S. S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications,
Appl. Math. Lett. 20 (2007), 123-130.

S. S. Dragomir, Inequalities for the Riemann-Stieltjes integral of under the chord functions
with applications, Preprint, RGMIA Res. Rep. Coll. 16(2013), Art. 34.

S. S. Dragomir and I. Gomm, Some applications of Fejér’s inequality for convex functions (I),
Austral. J. Math. Anal. & Appl. 10(2013), Issue 1, Article 9, pp. 1-11.

S. S. Dragomir, D. S. Milogevi¢ and J. Sdndor, On some refinements of Hadamard’s inequal-
ities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4(1993), 21-24.

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard In-
equalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online
http://rgmia.org/monographs/hermite_hadamard.html].

S. S. Dragomir and C. E. M. Pearce, Some inequalities relating to upper and lower bounds
for the Riemann-Stieltjes integral. J. Math. Inequal. 3 (2009), no. 4, 607-616.

L. Féjer, Uber die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24(1906),
369-390. (In Hungarian).

A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type. J.
Approx. Theory 115 (2002), no. 2, 260-288.

G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc. -New
York, 1969.

E. Kikianty and S. S. Dragomir, Hermite-Hadamard’s inequality and the p-HH-norm on the
Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13 (2010), no. 1,
1-32.

M. Merkle, Remarks on Ostrowski’s and Hadamard’s inequality. Univ. Beograd. Publ. Elek-
trotehn. Fak. Ser. Mat. 10 (1999), 113-117.

P. R. Mercer, Hadamard’s inequality and trapezoid rules for the Riemann—Stieltjes integral,
J. Math. Anal. Applic. 344 (2008), 921-926.



INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL 13

[22] D. S. Mitrinovi¢ and I. B. Lackovié¢, Hermite and convexity, Aequationes Math. 28 (1985),

229-232.

[23] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard

type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.

[24] J. Pecari¢ and A. Vukeli¢, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae

and convex functions. Functional equations, inequalities and applications, 105-137, Kluwer
Acad. Publ., Dordrecht, 2003.

[25] J. Pecari¢, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical

Applications, Academic Press Inc., San Diego, 1992.

[26] G. Toader, Superadditivity and Hermite-Hadamard’s inequalities. Studia Univ. Babes-Bolyai

[27]

(28]

ME

Math. 39 (1994), no. 2, 27-32.

G.-S. Yand and M.-C. Hong, A note on Hadamard’s inequality. Tamkang J. Math. 28 (1997),
no. 1, 33-37.

G.-S. Yang and K.-L. Tseng, On certain integral inequalities related to Hermite-Hadamard
inequalities. J. Math. Anal. Appl. 239 (1999), no. 1, 180-187.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
LBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2ScHo0L OF COMPUTATIONAL & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-

SRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA



