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SCALES AND SOME INTEGRAL INEQUALITIES VIA THE
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Abstract. The aim of this paper is to establish some extensions of subdivid-

ing of Holder’s inequality, Minkowski’s inequality and Qi’s inequality to iso-
tonic linear functionals taking into account that the time scale Cauchy delta,

Cauchy nabla, α-diamond, multiple Riemann, and multiple Lebesque integrals

all are isotonic linear functionals.

1. Introduction

In this paper we adopt the notations from the monograph [3] of Bohner and
Peterson. For further information concerning time scales, see [3]. The following
results will be useful below in order to establish the main results of this paper,
and can be found in [3], in [12] and in [2]. The following two results present two
important properties of the time scale Cauchy delta integrals.

Lemma 1. ([6], Corollary 3.3) If f is ∆- integrable on [a, b) then for an arbitrary
positive number α the function |f |α is ∆-integrable on [a, b).

Lemma 2. ([6], Theorem 3.6) Let f and g be ∆-integrable functions on [a, b). then
their product fg is ∆-integrable on [a, b).

In the following we need to recall Holder’s inequality on time scales and two
refinements of them which will be used below.

Lemma 3. ([3],p. 259, Theorem 6.13) Let a, b ∈ T. If f, g ∈ Crd(T,R), then

(1)

∫ b

a

|f(x)g(x)|∆x ≤

[∫ b

a

|f(x)|p∆x

] 1
p
[∫ b

a

|g(x)|q∆x

] 1
q

,

where p > 1 and 1
p + 1

q = 1.
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Lemma 4. ([12], Theorem 5) Let f, g, h ∈ Crd([a, b],R) and 1
p + 1

q = 1 with p > 1;

then

(2)

(∫ b

a

|h(x)||f(x)|p∆x

) 1
p
(∫ b

a

|h(x)||g(x)|q∆x

) 1
q

≥
∫ b

a

|h(x)||f(x)g(x)|∆x.

Lemma 5. ([12], Theorem 6) Let f, g, h ∈ Crd([a, b],R) and 1
p + 1

q = 1 with p < 0

or q < 0; then

(3)

(∫ b

a

|h(x)||f(x)|p∆x

) 1
p
(∫ b

a

|h(x)||g(x)|q∆x

) 1
q

≤
∫ b

a

|h(x)||f(x)g(x)|∆x.

The following definition is given in [2], [5] and it is necessary to recall it here.

Definition 1. Let E be a nonempty set and L be a class of real-valued functions
f : E → R having the following properties:

(L1) If f, g ∈ L and a, b ∈ R, then (af + bg) ∈ L.
(L2) If f(t) = 1 for all t ∈ E, then f ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) If f, g ∈ L and a, b ∈ R, then A(af + bg) = aA(f) + bA(g).
(A2) If f ∈ L and f(t) ≥ 0 for all t ∈ E, then A(f) ≥ 0.

Now we will recall Holder’s inequality for isotonic linear functionals as it appears
in [8].

Theorem 1. ([2]) Let E,L, and A such that (L1), (L2), (A1) and (A2) are sat-
isfied. For p 6= 1, define q = p

p−1 . Assume |w||f |p, |w||g|q, |wfg| ∈ L. If p > 1,

then

(4) A(|wfg|) ≤ A
1
p (|w||f |p)A

1
q (|w||g|q).

Then inequality is reversed if 0 < p < 1 and A(|w||g|q) > 0, and it is also reversed
if p < 0 and A(|w||f |p) > 0.

2. Subdividing of Holder’s inequalities on time scales

The following result is a subdividing of Holder’s inequality given on time scales
as an analogue of Theorem 1.2 from [11].

Theorem 2. Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 . We consider a, b ∈ T and

f, g, h ∈ Crd([a, b],R).
(i) If s < 1 < t or s > 1 > t, then∫ b

a

|h(x)||f(x)g(x)|∆x ≤

(∫ b

a

|h(x)||f(x)|sp∆x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq∆x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp∆x ·
∫ b

a

|h(x)||g(x)|sq∆x

) 1
pq
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(ii) If s > t > 1 or < 1 < t; t > s > 1 or t < s < 1, then∫ b

a

|h(x)||f(x)g(x)|∆x ≥

(∫ b

a

|h(x)||f(x)|sp∆x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq∆x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp∆x ·
∫ b

a

|h(x)||g(x)|sq∆x

) 1
pq

Proof. (i) Taking into account that hypothesis s < 1 < t or s > 1 > t implies
p = s−t

1−t > 1, q = s−t
s−1 and Lemma 1, by using Holder’s inequality on time scales

we have∫ b

a

|h(x)||f(x)g(x)|∆x =

∫ b

a

[|h(x)||(fg)(x)|s]
1−t
s−t
[
|(fg)(x)|t

] s−1
s−t ∆x ≤

≤

[∫ b

a

|h(x)||(fg)(x)|s∆x

] 1−t
s−t
[∫ b

a

|h(x)||(fg)(x)|t∆x

] s−1
s−t

.

As in [11], using again Holder’s inequality from Lemma 4 for s−t
1−t > 1 and Lemma

1 we get,∫ b

a

|h(x)||(fg)(x)|s∆x ≤

(∫ b

a

|h(x)||f(x)|s
s−t
1−t ∆x

) 1−t
s−t
(∫ b

a

|h(x)||g(x)|s
s−t
s−1 ∆x

) s−1
s−t

and∫ b

a

|h(x)||(fg)(x)|t∆x ≤

(∫ b

a

|h(x)||f(x)|t
s−t
1−t ∆x

) 1−t
s−t
(∫ b

a

|h(x)||g(x)|t
s−t
s−1 ∆x

) s−1
s−t

.

Conclusion from (i) holds from last three inequalities.
(ii) From s > t > 1 or s < t < 1 we have s−t

1−t < 0 and t > s > 1 or t < s < 1

involves 0 < s−t
1−t < 1. Using now Holder’s inequality from Lemma 5 for 0 < s−t

1−t < 1

or s−t
1−t < 0, we find ∫ b

a

|h(x)||f(x)g(x)|∆x ≥

≥

(∫ b

a

|h(x)||f(x)|s
s−t
1−t ∆x

) 1−t
s−t
(∫ b

a

|h(x)||g(x)|s
s−t
s−1 ∆x

) s−1
s−t


1−t
s−t

·

·

(∫ b

a

|h(x)||f(x)|t
s−t
1−t ∆x

) 1−t
s−t
(∫ b

a

|h(x)||g(x)|t
s−t
s−1 ∆x

) s−1
s−t


s−1
s−t

.
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3. Subdividing of Holder’s inequalities for isotonic linear functionals

Starting from results given in [4], in [11], in [10] and in [1] we can state the
following inequalities for isotonic linear functionals.

Theorem 3. Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 . Let L satisfying the condi-
tions L1, L2 and A satisfying the conditions A1, A2 on the set E. We assume
|w||f |tp, |w||f |sp, |w||g|tq, |w||g|sq, |wfg|, |wfg|s, |wfg|t ∈ L.

(i) If s < 1 < t or s > 1 > t, then

A(|wfg|) ≤ A
1
p2 (|w||fsp)A

1
q2 (|w||g|tq) · [A(|w||f |tp)A(|w||g|sq)]

1
pq .

(ii) If s > t > 1 or s < 1 < t; t > s > 1 or t < s < 1, then

A(|wfg|) ≥ A
1
p2 (|w||f |sp)A

1
q2 (|w||g|tq) · [A(|w||f |tp)A(|w||g|sq)]

1
pq ,

when A(|w||fg|s) > 0, A(|w||fg|t) > 0, A(|w||f |tp) > 0, A(|w||f |sp) > 0, A(|w||g|tq) >
0, A(|w||g|sq) > 0.

Proof. (i) By inequality (4) from Theorem 1, applied for p = s−t
1−t > 1, q = s−t

s−1 we
have

A(|wfg|) = A
(

[|wfg|s]
1−t
s−t [|wfg|t]

s−1
s−t

)
≤ A

1−t
s−t (|w||fg|s) ·A

s−1
s−t (|w||fg|t).

Applying again Theorem 1 for s−t
1−t > 1 we get

A(|w||fg|s) ≤ A
1−t
s−t (|w||f |s

s−t
1−t )A

s−1
s−t (|w||g|s

s−t
s−1 )

and
A(|w||fg|t) ≤ A

1−t
s−t (|w||f |t

s−t
1−t )A

s−1
s−t (|w||g|t

s−t
s−1 ).

Taking into account these three inequalities we obtain the desired inequality.
For (ii) we use a similary motivation and the reverse inequality from Theorem

1.

Taking into account Remark 2.5 from [4], we can state the following improve-
ments of Minkowski’s inequality for isotonic linear functionals.

Theorem 4. (i) Let p > 0, s, t ∈ R − {0}, and s 6= t. We consider p, s, t ∈ R
different numbers, such that s, t > 1, s−tp−t > 1, L satisfy conditions L1, L2 and A

satisfy A1, A2 on the set E . If w, f, g ≥ 0 on E with w(f + g)p, w(f + g)s, w(f +
g)t, wfs, wgs, wf t, wgt ∈ L then

A(w(f + g)p) ≤ [A
1
s (wfs) +A

1
s (wgs)]

s(p−t)
s−t · [A 1

t (wf t) +A
1
t (wgt)]

t(s−p)
s−t .

(ii) Let p > 0, s, t ∈ R−{0}, and s 6= t.. If we consider now p, s, t ∈ R different
numbers, such that s, t < 1, s−t

p−t < 1, L satisfy conditions L1, L2 and A satisfy

conditions A1, A2 on the set E and if w, f, g ≥ 0 on E with w(f + g)p, w(f +
g)s, w(f + g)t, wfs, wgs, wf t, wgt ∈ L then

A(w(f + g)p) ≥ [A
1
s (wfs) +A

1
s (wgs)]

s(p−t)
s−t · [A 1

t (wf t) +A
1
t (wgt)]

t(s−p)
s−t .

In this case we need the additional conditions A(w(f + g)s) > 0, A(w(f + g)t) >
0, A(wfs) > 0, A(wgs) > 0, A(wf t) > 0, A(wgt) > 0.
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Proof. (i) We will use first Holder’s inequality, Theorem 1, page 136 and then
Minkowski’s inequality, Theorem 2, on the same page, from [7]. For Holder’s in-
equality we use indices s−t

p−t and s−t
s−p obtaining:

A(w(f + g)p) = A(w(f + g)s
p−t
s−t (f + g)t

s−p
s−t ) ≤ A

p−t
s−t (w(f + g)s)A

s−p
s−t (w(f + g)t).

We use first time s > 1 for Minkowski’s inequality and the second time t > 1,
obtaining:

A
p−t
s−t (w(f + g)s)A

s−p
s−t (w(f + g)t) ≤

≤
[
A

1
s (wfs) +A

1
s (wgs)

]s p−t
s−t
[
A

1
t (wf t) +A

1
t (wgt)

]t s−p
s−t

.

(ii) We will use the same reason like before.

We continue by giving a refinement of the subdividing of Holder’s inequality
from Theorm 3 for isotonic linear functionals, but first enunciate Theorem 2.2 fom
[1] in the case of these functionals.

Theorem 5. Let 1 < p < ∞ and let q = p
p−1 be its conjugate exponent, L satisfy

conditions L1, L2 and A satisfy A1, A2 on the set E. If |f |p, |g|q, |fg|, |f |
p
2 |g|

q
2 ∈

L
and if 1 < p ≤ 2, then

A
1
p (|f |p)A

1
q (|g|q)

(
1− 1

p
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
])

+

≤ A(|fg|) ≤

≤ A
1
p (|f |p)A

1
q (|g|q)

(
1− 1

q
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
])

while if 2 ≤ p < ∞, the terms 1
p and 1

q exchange their positions in the preceeding

inequalities.

Proof. We take in Lemma 2.1( [1]) u = |f |

A
1
p (|f |p)

and v = |g|

A
1
q (|g|q)

and by replacing

in inequality 1
q (u

p
2 − v

q
2 )2 ≤ up

p + vq

q − uv ≤
1
p (u

p
2 − v

q
2 )2 we obtain

1

q

(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2

≤ |f |p

pA(|f |p)
+

|g|q

qA(|g|q)
− |f ||g|
A

1
p (|f |p)A

1
q (|g|q)

≤

≤ 1

p

(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2

.

Using hypothesis and condition A2 we have:

1

q
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
]
≤ A(|f |p)
pA(|f |p)

+
A(|g|q)
qA(|g|q)

− A(|f ||g|)
A

1
p (|f |p)A

1
q (|g|q)

≤

≤ 1

p
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
]
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or by calculus,

1

q
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
]
≤ 1− A(|f ||g|)

A
1
p (|f |p)A

1
q (|g|q)

≤

≤ 1

p
A

[(
|f |

p
2

A
1
2 (|f |p)

− |g|
q
2

A
1
2 (|g|q)

)2
]

which leads to our conclusion.

Theorem 6. Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 such that s < 1 < t or s > 1 > t,
and L satisfy conditions L1, L2 and A satisfy conditions A1, A2 on the set E. If

fsp, f tp, gsq, gtq, (fg)t, (fg)s, f
sp
2 g

sq
2 f

tp
2 g

tq
2 , (fg)

s+t
2 ∈ L and f, g are positive

functions then

A(fg) ≤ A
1
p2 (fsp)A

1
q2 (gtq)

[
A(f tp)A(gsq)

] 1
pq ·

[
1−min{1

q
,

1

p
}A

[(
f

sp
2

A
1
2 (fsp)

− g
sq
2

A
1
2 (gsq)

)2
]] 1

p

·

·

1−min{1

q
,

1

p
}A

( f
tp
2

A
1
2 (f tp)

− g
tq
2

A
1
2 (gtq)

)2
 1

q

·

1−min{1

q
,

1

p
}A

( (fg)
t
2

A
1
2 ((fg)t)

− (fg)
s
2

A
1
2 ((fg)s)

)2
 ,

and

A(fg) ≥ A
1
p2 (fsp)A

1
q2 (gtq)

[
A(f tp)A(gsq)

] 1
pq ·

[
1−max{1

q
,

1

p
}A

[(
f

sp
2

A
1
2 (fsp)

− g
sq
2

A
1
2 (gsq)

)2
]] 1

p

+

·

·

1−max{1

q
,

1

p
}A

( f
tp
2

A
1
2 (f tp)

− g
tq
2

A
1
2 (gtq)

)2
 1

q

+

·

1−max{1

q
,

1

p
}A

( (fg)
t
2

A
1
2 ((fg)t)

− (fg)
s
2

A
1
2 ((fg)s)

)2


+

.

Proof. By inequality given in Theorem 5, applied for p = s−t
1−t > 1, q = s−t

s−1 we
have

A(fg) = A
(

[(fg)s]
1−t
s−t [(fg)t]

s−1
s−t

)
≤

≤ A
1−t
s−t ((fg)s) ·A

s−1
s−t ((fg)t)

1−min{1

q
,

1

p
}A

( (fg)
t
2

A
1
2 ((fg)t)

− (fg)
s
2

A
1
2 ((fg)s)

)2
 .

Applying again Theorem 5 for s−t
1−t > 1 we get

A((fg)s) ≤ A
1−t
s−t (fs

s−t
1−t )A

s−1
s−t (gs

s−t
s−1 )

(
1−min{1

q
,

1

p
}A

[(
f

sp
2

A
1
2 (fsp)

− g
sq
2

A
1
2 (gsq)

)2
])

and

A((fg)t) ≤ A
1−t
s−t (f t

s−t
1−t )A

s−1
s−t (gt

s−t
s−1 )

1−min{1

q
,

1

p
}A

( f
tp
2

A
1
2 (f tp)

− g
tq
2

A
1
2 (gtq)

)2
 .

Taking into account these three inequalities we obtain the desired inequality.
For second inequality we taking into account the first inequality from Theorem

5 and use the same reason like before.
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Remark 1. (i) It is known that the time-scale integral is an isotonic linear func-
tional as is given in Definition 1. Multiple Riemann delta time-scale integral is also
an isotonic linear functional, see Theorem 3.6, [2].

(ii) The multiple Lebesque delta time-scale integral is also an isotonic linear
functional, see Theorem 3.7, [2].

(iii) The Cauchy nabla time-scales integral is an isotonic linear functional, see
Theorem 3.4, [2].

(iv) The Cauchy α-diamond time scale integral is an isotonic linear functional,
see Theorem 3.5, [2].

Therefore these inequalities from Theorem 3, Theorem 4, Theorem 5 and Theo-
rem can be rewritten for these kind of specific isotonic linear functionals.

We can give below an improvement of Holder’s inequality like in [1] for integral
n time scales and then a refinement of Theorem 3 , the subdividing of Holder’s
inequality for integrals on time scales.

Remark 2. (i) Let a, b ∈ T. If f, g ∈ Crd(T,R), are two psitive functions then[∫ b

a

f(x)p∆x

] 1
p
[∫ b

a

g(x)q∆x

] 1
q

·

·

[
1− 2

min{p, q}

(
1−

∫ b
a
f(x)

p
2 g(x)

q
2 ∆x

(
∫ b
a
f(x)p∆x

∫ b
a
g(x)q∆x)

1
2

)]
+

≤

≤
∫ b

a

f(x)g(x)∆x ≤

[∫ b

a

f(x)p∆x

] 1
p
[∫ b

a

g(x)q∆x

] 1
q

·

·

[
1− 2

max{p, q}

(
1−

∫ b
a
f(x)

p
2 g(x)

q
2 ∆x

(
∫ b
a
f(x)p∆x

∫ b
a
g(x)q∆x)

1
2

)]
where p > 1 and 1

p + 1
q = 1.

(ii) Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 . We consider a, b ∈ T and f, g ∈
Crd([a, b],R) two positive functions such that if s < 1 < t or s > 1 > t, then∫ b

a

f(x)g(x)∆x ≤

(∫ b

a

f(x)sp∆x

) 1
p2

·

(∫ b

a

g(x)tq∆x

) 1
q2

·

·

(∫ b

a

f(x)tp∆x ·
∫ b

a

g(x)sq∆x

) 1
pq
[

1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x)∆x

(
∫ b
a
fsp(x)∆x

∫ b
a
gsq(x)∆x)

1
2

)] 1
p

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x)∆x

(
∫ b
a
f tp(x)∆x

∫ b
a
gtq(x)∆x)

1
2

)] 1
q

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 ∆x

(
∫ b
a

(f(x)g(x))s∆x
∫ b
a

(f(x)g(x))t∆x)
1
2

)]
,

and ∫ b

a

f(x)g(x)∆x ≥

(∫ b

a

f(x)sp∆x

) 1
p2

·

(∫ b

a

g(x)tq∆x

) 1
q2

·
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·

(∫ b

a

f(x)tp∆x ·
∫ b

a

g(x)sq∆x

) 1
pq
[

1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x)∆x

(
∫ b
a
fsp(x)∆x

∫ b
a
gsq(x)∆x)

1
2

)] 1
p

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x)∆x

(
∫ b
a
f tp(x)∆x

∫ b
a
gtq(x)∆x)

1
2

)] 1
q

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 ∆x

(
∫ b
a

(f(x)g(x))s∆x
∫ b
a

(f(x)g(x))t∆x)
1
2

)]
+

.

Remark 3. Using previous Remark 1, (iii) we can give the following subdividing
of Holder’s inequalities for the Cauchy nabla time-scales integral :

Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 . We consider a, b ∈ T and f, g, h ∈
Cld([a, b],R).

(a) If s < 1 < t or s > 1 > t, then∫ b

a

|h(x)||f(x)g(x)|∇x ≤

(∫ b

a

|h(x)||f(x)|sp∇x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq∇x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp∇x ·
∫ b

a

|h(x)||g(x)|sq∇x

) 1
pq

.

(b) If s > t > 1 or < 1 < t; t > s > 1 or t < s < 1, then∫ b

a

|h(x)||f(x)g(x)|∇x ≥

(∫ b

a

|h(x)||f(x)|sp∇x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq∇x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp∇x ·
∫ b

a

|h(x)||g(x)|sq∇x

) 1
pq

.

(c) If s < 1 < t or s > 1 > t, and f, g are two positive functions then∫ b

a

f(x)g(x)∇x ≤

(∫ b

a

f(x)sp∇x

) 1
p2

·

(∫ b

a

g(x)tq∇x

) 1
q2

·

·

(∫ b

a

f(x)tp∇x ·
∫ b

a

g(x)sq∇x

) 1
pq
[

1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x)∇x

(
∫ b
a
fsp(x)∇x

∫ b
a
gsq(x)∇x)

1
2

)] 1
p

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x)∇x

(
∫ b
a
f tp(x)∇x

∫ b
a
gtq(x)∇x)

1
2

)] 1
q

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 ∇x

(
∫ b
a

(f(x)g(x))s∇x
∫ b
a

(f(x)g(x))t∇x)
1
2

)]
,

and ∫ b

a

f(x)g(x)∇x ≥

(∫ b

a

f(x)sp∇x

) 1
p2

·

(∫ b

a

g(x)tq∇x

) 1
q2

·
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·

(∫ b

a

f(x)tp∇x ·
∫ b

a

g(x)sq∇x

) 1
pq
[

1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x)∇x

(
∫ b
a
fsp(x)∇x

∫ b
a
gsq(x)∇x)

1
2

)] 1
p

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x)∇x

(
∫ b
a
f tp(x)∇x

∫ b
a
gtq(x)∇x)

1
2

)] 1
q

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 ∇x

(
∫ b
a

(f(x)g(x))s∇x
∫ b
a

(f(x)g(x))t∇x)
1
2

)]
+

.

Remark 4. Using previous Remark 1, (iv) we can give the following subdividing
of Holder’s inequalities for the Cauchy α-diamond time-scales integral :

Let s, t ∈ R, p = s−t
1−t , and q = s−t

s−1 . We consider a, b ∈ T and f, g, h : [a, b]→ R
be three �α-integrable functions.

(i) If s < 1 < t or s > 1 > t, then∫ b

a

|h(x)||f(x)g(x)|�αx ≤

(∫ b

a

|h(x)||f(x)|sp �α x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq �α x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp �α x ·
∫ b

a

|h(x)||g(x)|sq �α x

) 1
pq

(ii) If s > t > 1 or < 1 < t; t > s > 1 or t < s < 1, then∫ b

a

|h(x)||f(x)g(x)|�αx ≥

(∫ b

a

|h(x)||f(x)|sp �α x

) 1
p2

·

(∫ b

a

|h(x)||g(x)|tq �α x

) 1
q2

·

·

(∫ b

a

|h(x)||f(x)|tp �α x ·
∫ b

a

|h(x)||g(x)|sq �α x

) 1
pq

(iii) If s < 1 < t or s > 1 > t, and f, g are two positive functions then∫ b

a

f(x)g(x) �α x ≤

(∫ b

a

f(x)sp �α x

) 1
p2

·

(∫ b

a

g(x)tq �α x

) 1
q2

·

·

(∫ b

a

f(x)tp �α x ·
∫ b

a

g(x)sq �α x

) 1
pq
[

1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x) �α x

(
∫ b
a
fsp(x) �α x

∫ b
a
gsq(x) �α x)

1
2

)] 1
p

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x) �α x

(
∫ b
a
f tp(x) �α x

∫ b
a
gtq(x) �α x)

1
2

)] 1
q

·

·

[
1− 2 min{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 �α x

(
∫ b
a

(f(x)g(x))s �α x
∫ b
a

(f(x)g(x))t∇x)
1
2

)]
,

and ∫ b

a

f(x)g(x) �α x ≥

(∫ b

a

f(x)sp �α x

) 1
p2

·

(∫ b

a

g(x)tq �α x

) 1
q2

·
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·

(∫ b

a

f(x)tp �α x ·
∫ b

a

g(x)sq �α x

) 1
pq
[

1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

sp
2 (x)g

sq
2 (x) �α x

(
∫ b
a
fsp(x) �α x

∫ b
a
gsq(x) �α x)

1
2

)] 1
p

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a
f

tp
2 (x)g

tq
2 (x) �α x

(
∫ b
a
f tp(x) �α x

∫ b
a
gtq(x) �α x)

1
2

)] 1
q

+

·

·

[
1− 2 max{1

p
,

1

q
}

(
1−

∫ b
a

(f(x)g(x))
s+t
2 �α x

(
∫ b
a

(f(x)g(x))s �α x
∫ b
a

(f(x)g(x))t �α x)
1
2

)]
+

.

Remark 5. We can also consider Example 3.3, from [2] when T = R, when T = Z,
and when T = hZ, h > 0 in Theorem 3.2, and to rewrite inequalities from Theorem
3 and 4.

According to [2], when the time scale is the set of all real numbers the time-scale
integral is an ordinary integral, when the time-scale is the set of all integers the
time-scale integral is a sum, when the time scale is the set of all integer powers of
a fixed number the time-scale integral is a Jackson integral.

4. Several inequalities and Qi’s inequalities for isotonic linear
functionals

Next results reprezent variants of several results given in [9] in Lemma 2.5,
Lemma 2.6, Lemma 2.7, Theorem 3.1 and Theorem 3.3 in the case of isotonic
linear functionals.

Lemma 6. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, g, fp

g
p
q
∈

L are positive functions then

A

(
fp

g
p
q

)
≥ Ap(f)

A
p
q (g)

,

where p > 1 or p < 0 while 1
p + 1

q = 1.

Proof. We apply Holder’ s inequality from Theorem 1 when p > 1 and f, g, fp

g
p
q
∈ L

are positive functions, obtaining:

A(f) = A

(
f

g
1
q

g
1
q

)
≤ A

1
p

(
fp

g
p
q

)
A

1
q (g).

Then we take the p-th power on both sides of the inequalities and have:

Ap(f) ≤ A
(
fp

g
p
q

)
A

p
q (g).

When p < 0 we take into account the inverse of Holder’s inequality, Theorem 1.
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Lemma 7. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, g, f
1
p g

1
q ∈

L are positive on E such that m ≤ f(x)
g(x) ≤M on E, where m > 0 and M <∞ then

we have

A
1
p (f)A

1
q (g) ≤

(
M

m

) 1
pq

A(f
1
p g

1
q ),

where p > 1 and 1
p + 1

q = 1.

Proof. Using the hypothesis f(x)
g(x) ≤M , as in Lemma 2.6, [9], we find

f
1
p (x)g

1
q (x) ≥M−

1
q f

1
q (x)f

1
p (x) = M−

1
q f(x),

on E . Therefore by Definition 1, A2 and L1 we have

(5) A(f
1
p g

1
q ) ≥M−

1
qA(f) ≥ 0 or A

1
p (f

1
p g

1
q ) ≥M−

1
pqA

1
p (f) ≥ 0.

If we consider now f(x)
g(x) ≥ m by the same reason we find that

A(f
1
p g

1
q ) ≥ m

1
pA(g) ≥ 0 or A

1
q (f

1
p g

1
q ) ≥ m

1
pqA

1
q (g) ≥ 0. (6)

From inequalities (5) and (6) we obtain

A(f
1
p g

1
q ) ≥

(m
M

) 1
pq

A
1
p (f)A

1
q (g).

Theorem 7. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, fp ∈
L, f is positive and A(f) ≥ Ap−1(1) then

A(fp) ≥ Ap−1(f).

Proof. By Lemma 6 and hypothesis we have,

A(fp) = A

(
fp

1
p
q

)
≥ Ap(f)

A
p
q (1)

=
Ap−1(f)A(f)

Ap−1(1)
≥ Ap−1(f).

Remark 6. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If

fp, gq, fq ∈ L are positive on E such that m ≤ fp(x)
gq(x) ≤ M on E, where m > 0

and M <∞ then we have

A
1
p (fp)A

1
q (gq) ≤

(
M

m

) 1
pq

A(fg),

where p > 1 and 1
p + 1

q = 1.

Theorem 8. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If

f, f
1
p , fp ∈ L are such that m ≤ fp(x) ≤M on E, where m > 0 and M <∞ then

we have

A
1
p (fp) ≤

(
M

m

) 2
pq

A−
p+1
q (1)Ap(f

1
p ),

where p > 1 and 1
p + 1

q = 1.
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Proof. Taking g(x) = 1 on E in Remark 6 we get

(6) A
1
p (fp)A

1
q (1) ≤

(
M

m

) 1
pq

A(f) or A
1
p (fp) ≤

(
M

m

) 1
pq

A−
1
q (1)A(f).

Now putting g(x) = 1 in Lemma 7 we will obtain

(7) A
1
p (f) ≤ A−

1
q (1)

(
M

m

) 1
p2q

A(f
1
p ) or A(f) ≤ A−

p
q (1)

(
M

m

) 1
pq

Ap(f
1
p )

using the hypothesis that m
1
p ≤ f(x) ≤ M

1
p . By using inequalities (6) and (7) we

find

A
1
p (fp) ≤

(
M

m

) 2
pq

A−
1
q−

p
q (1)Ap(f

1
p ).

Remark 7. The multiple Lebesque delta time-scale integral, the Cauchy nabla time-
scales integral and the Cauchy α-diamond time scale integral are also isotonic linear
functionals, therefore these inequalities from Lemma 6, Lemma 7, Theorem 7 and
Theorem 8 can be rewritten for these kind of special isotonic linear functionals.

Remark 8. (i) Let f, g ∈ Cld([a, b],R) be two positive functions. Then the following
inequality holds: ∫ b

a

fp(x)

g
p
q (x)
∇x ≥

[
∫ b
a

(x)∇x]p

[
∫ b
a
g(x)∇x]

p
q

,

where p > 1 or p < 0 while 1
p + 1

q = 1.

(ii) Let a, b ∈ T and f, g : [a, b] → R be two �α-integrable functions. Then we
have ∫ b

a

fp(x)

g
p
q (x)

�α x ≥
[
∫ b
a

(x) �α x]p

[
∫ b
a
g(x) �α x]

p
q

,

where p > 1 or p < 0 while 1
p + 1

q = 1.

The following two results will help us to present a refimement of inequality from
Theorem 7.

Lemma 8. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, g, fp

g
p
q
, f

p
2

g
p
2q
g

1
2 ∈

L are positive functions then1−min{1

p
,

1

q
}A



(
fp

g
p
q

) 1
2

A
1
2

(
fp

g
p
q

) − g
1
2

A
1
2 (g)


2

p

A

(
fp

g
p
q

)
≥ Ap(f)

A
p
q (g)

,

where p > 1 or p < 0 while 1
p + 1

q = 1.
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Proof. We apply Holder’ s inequality from Theorem 5 when p > 1 and f, g, fp

g
p
q
, f

p
2

g
p
2q
g

1
2 ∈

L are positive functions, obtaining:

A(f) = A

(
f

g
1
q

g
1
q

)
≤ A

1
p

(
fp

g
p
q

)
A

1
q (g)

1−min{1

p
,

1

q
}A



(
fp

g
p
q

) 1
2

A
1
2

(
fp

g
p
q

) − g
1
2

A
1
2 (g)


2
 .

Then we take the p-th power on both sides of the inequalities and have:

Ap(f) ≤ A
(
fp

g
p
q

)
A

p
q (g)

1−min{1

p
,

1

q
}A



(
fp

g
p
q

) 1
2

A
1
2

(
fp

g
p
q

) − g
1
2

A
1
2 (g)


2

p

.

Theorem 9. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If
f, fp, f

p
2 ∈ L, f is positive and A(f) ≥ Ap−1(1) then

A(fp)

[
1−min{1

p
,

1

q
}A

[(
f

p
2

A
1
2 (fp)

− 1

A
1
2 (1)

)2
]]p
≥ Ap−1(f).

Proof. By Lemma 8 and hypothesis we have,

A(fp)

[
1−min{1

p
,

1

q
}A

[(
f

p
2

A
1
2 (fp)

− 1

A
1
2 (1)

)2
]]p

=

= A

(
fp

1
p
q

)[
1−min{1

p
,

1

q
}A

[(
f

p
2

A
1
2 (fp)

− 1

A
1
2 (1)

)2
]]p
≥

≥ Ap(f)

A
p
q (1)

=
Ap−1(f)A(f)

Ap−1(1)
≥ Ap−1(f).

Next results present some improvements of some integral inequalities given by Qi
and Yin, [9], in the cases of delta time-scale integral, the Cauchy nabla time-scales
integrals and the Cauchy α-diamond time scale integrals.

Remark 9. (i) Let a, b ∈ T. If f ∈ Crd(T,R) is positive and∫ b

a

f(x)∆x ≥ (b− a)p−1

then∫ b

a

fp(x)∆x

[
1− 2

max{p, q}

(
1−

∫ b
a
f(x)

p
2 ∆x

(b− a)
1
2 (
∫ b
a
f(x)p∆x)

1
2

)]
≥

[∫ b

a

f(x)∆x

]p−1
,

where p > 1.
(ii) In the case of the Cauchy nabla time-scales integrals and the Cauchy α-

diamond time scale integrals similary inequalities can be stated as above.
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