
ON SOME INEQUALITIES FOR NUMERICAL RADIUS OF
OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR1;2

Abstract. By the use of inequalities for nonnegative Hermitian forms some
new inequalities for numerical radius of bounded linear operators in complex
Hilbert spaces are established.

1. Introduction

Let K be the �eld of real or complex numbers, i.e., K = R or C and X be a linear
space over K.

De�nition 1. A functional (�; �) : X �X ! K is said to be a Hermitian form on
X if

(H1) (ax+ by; z) = a (x; z) + b (y; z) for a; b 2 K and x; y; z 2 X;
(H2) (x; y) = (y; x) for all x; y 2 X:

The functional (�; �) is said to be positive semi-de�nite on a subspace Y of X if

(H3) (y; y) � 0 for every y 2 Y;
and positive de�nite on Y if it is positive semi-de�nite on Y and

(H4) (y; y) = 0; y 2 Y implies y = 0:

The functional (�; �) is said to be de�nite on Y provided that either (�; �) or � (�; �)
is positive semi-de�nite on Y:
When a Hermitian functional (�; �) is positive-de�nite on the whole spaceX; then,

as usual, we will call it an inner product on X and will denote it by h�; �i :
We use the following notations related to a given Hermitian form (�; �) on X :

X0 := fx 2 Xj (x; x) = 0g ; K := fx 2 Xj (x; x) < 0g
and, for a given z 2 X;

X(z) := fx 2 Xj (x; z) = 0g and L (z) := fazja 2 Kg :
The following fundamental facts concerning Hermitian forms hold:

Theorem 1 (Kurepa, 1968 [28]). Let X and (�; �) be as above.
(1) If e 2 X is such that (e; e) 6= 0; then we have the decomposition

(1.1) X = L (e)
M

X(e);

where
L
denotes the direct sum of the linear subspaces X(e) and L (e) ;

(2) If the functional (�; �) is positive semi-de�nite on X(e) for at least one e 2 K;
then (�; �) is positive semi-de�nite on X(f) for each f 2 K;
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(3) The functional (�; �) is positive semi-de�nite on X(e) with e 2 K if and only
if the inequality

(1.2) j(x; y)j2 � (x; x) (y; y)

holds for all x 2 K and all y 2 X;
(4) The functional (�; �) is semi-de�nite on X if and only if the Schwarz�s in-

equality

(1.3) j(x; y)j2 � (x; x) (y; y)

holds for all x; y 2 X;
(5) The case of equality holds in (1.3) for x; y 2 X and in (1.2), for x 2 K;

y 2 X; respectively; if and only if there exists a scalar a 2 K such that

y � ax 2 X(x)
0 := X0 \X(x):

Let X be a linear space over the real or complex number �eld K and let us
denote by H (X) the class of all positive semi-de�nite Hermitian forms on X; or,
for simplicity, nonnegative forms on X:
If (�; �) 2 H (X) ; then the functional k�k = (�; �)

1
2 is a semi-norm on X and the

following equivalent versions of Schwarz�s inequality hold:

(1.4) kxk2 kyk2 � j(x; y)j2 or kxk kyk � j(x; y)j

for any x; y 2 X:
Now, let us observe thatH (X) is a convex cone in the linear space of all mappings

de�ned on X2 with values in K, i.e.,
(e) (�; �)1 ; (�; �)2 2 H (X) implies that (�; �)1 + (�; �)2 2 H (X) ;
(ee) � � 0 and (�; �) 2 H (X) implies that � (�; �) 2 H (X) :
The following simple result is of interest in itself as well:

Lemma 1. Let X be a linear space over the real or complex number �eld K and
(�; �) a nonnegative Hermitian form on X: If y 2 X is such that (y; y) 6= 0; then

(1.5) py : H �H ! K; py (x; z) = (x; z) kyk2 � (x; y) (y; z)

is also a nonnegative Hermitian form on X.
We have the inequalities�

kxk2 kyk2 � j(x; y)j2
��
kyk2 kzk2 � j(y; z)j2

�
(1.6)

�
���(x; z) kyk2 � (x; y) (y; z)���2

and �
kx+ zk2 kyk2 � j(x+ z; y)j2

� 1
2

(1.7)

�
�
kxk2 kyk2 � j(x; y)j2

� 1
2

+
�
kyk2 kzk2 � j(y; z)j2

� 1
2

for any x; y; z 2 X:

Remark 1. The case when (�; �) is an inner product in Lemma 1 was obtained in
1985 by S. S. Dragomir, [2].
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Remark 2. Putting z = �y in (1.7), we get:

(1.8) 0 � kx+ �yk2 kyk2 � j(x+ �y; y)j2 � kxk2 kyk2 � j(x; y)j2

and, in particular,

(1.9) 0 � kx� yk2 kyk2 � j(x� y; y)j2 � kxk2 kyk2 � j(x; y)j2

for every x; y 2 H:
We note here that the inequality (1.8) is in fact equivalent to the following state-

ment

(1.10) sup
�2K

h
kx+ �yk2 kyk2 � j(x+ �y; y)j2

i
= kxk2 kyk2 � j(x; y)j2

for each x; y 2 H:

The following result holds (see [11, p. 38] for the case of inner product):

Theorem 2. Let X be a linear space over the real or complex number �eld K
and (�; �) a nonnegative Hermitian form on X: For any x; y; z 2 X; the following
re�nement of the Schwarz inequality holds:

kxk kzk kyk2 �
���(x; z) kyk2 � (x; y) (y; z)���+ j(x; y) (y; z)j(1.11)

� j(x; z)j kyk2 :

Corollary 1. For any x; y; z 2 X we have

(1.12)
1

2
[kxk kzk+ j(x; z)j] kyk2 � j(x; y) (y; z)j :

The inequality (1.12) follows from the �rst inequality in (1.11) and the triangle
inequality for modulus���(x; z) kyk2 � (x; y) (y; z)��� � j(x; y) (y; z)j � kyk2 j(x; z)j
for any x; y; z 2 X:

Remark 3. We observe that if (�; �) is an inner product, then (1.12) reduces to
Buzano�s inequality obtained in 1974 [1] in a di¤erent way.

For some inequalities in inner product spaces and operators on Hilbert spaces
see [3]-[26] and the references therein.
The numerical radius w (T ) of an operator T on H is given by [27, p. 8]:

(1.13) w (T ) = sup fj�j ; � 2W (T )g = sup fjhTx; xij ; kxk = 1g :

It is well known that w (�) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H ! H: This norm is equivalent with the operator norm. In
fact, the following more precise result holds [27, p. 9]:

Theorem 3 (Equivalent norm). For any T 2 B (H) one has

(1.14) w (T ) � kTk � 2w (T ) :

Utilising Buzano�s inequality we obtained the following inequality for the numer-
ical radius [12] or [13]:
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Theorem 4. Let (H; h�; �i) be a Hilbert space and T : H ! H a bounded linear
operator on H: Then

(1.15) w2 (T ) � 1

2

h
w
�
T 2
�
+ kTk2

i
:

The constant 12 is best possible in (1.15).

The following general result for the product of two operators holds [27, p. 37]:

Theorem 5. If U; V are two bounded linear operators on the Hilbert space (H; h�; �i) ;
then w (UV ) � 4w (U)w (V ) : In the case that UV = V U; then w (UV ) � 2w (U)w (V ) :
The constant 2 is best possible here.

The following results are also well known [27, p. 38].

Theorem 6. If U is a unitary operator that commutes with another operator V;
then

(1.16) w (UV ) � w (V ) :

If U is an isometry and UV = V U; then (1.16) also holds true.

We say that U and V double commute if UV = V U and UV � = V �U: The
following result holds [27, p. 38].

Theorem 7. If the operators U and V double commute, then

(1.17) w (UV ) � w (V ) kUk :

As a consequence of the above, we have [27, p. 39]:

Corollary 2. Let U be a normal operator commuting with V: Then

(1.18) w (UV ) � w (U)w (V ) :

For a recent survey of inequalities for numerical radius, see [21] and the references
therein.
Motivated by the above facts we establish in this paper some new numerical

radius inequalities concerning four operators A;B;C and P on a Hilbert space
with P nonnegative in the operator order. Some particular cases of interest that
generalize and improve an earlier result are also provided.

2. Main Results

The following result holds for (H; h:; :i) a Hilbert space over the real or complex
numbers �eld K.

Theorem 8. Let P be a nonnegative operator on H and A;B;C three bounded
operators on H: Then for any e 2 H we have the inequalities

(2.1) kA�PCek kB�PCek � 1

2




P 1=2Ce


2 h


P 1=2A





P 1=2B


+ kB�PAki :
Moreover, we have

(2.2) w (C�PAB�PC) � 1

2




P 1=2C


2 h


P 1=2A





P 1=2B


+ kB�PAki :
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Proof. We observe that if P � 0; then the mapping (:; :) : H �H ! K de�ned by
(x; y)P := hPx; yi

is a hermitian form on H and by (1.12) we have the inequality

(2.3)
1

2
[kxkP kykP + j(x; y)P j] kek

2
P � j(x; e)P (y; e)P j

for any x; y; e 2 H:
This can be written as

(2.4)
1

2

h
hPx; xi1=2 hPy; yi1=2 + jhPx; yij

i
hPe; ei � jhPx; ei hPy; eij

for any x; y; e 2 H:
Now if we replace x by Ax; y by By and e by Ce we get

1

2

h
hPAx;Axi1=2 hPBy;Byi1=2 + jhPAx;Byij

i
hPCe;Cei(2.5)

� jhPAx;Cei hPBy;Ceij
for any x; y; e 2 H; which is equivalent to

1

2

h
hA�PAx; xi1=2 hB�PBy; yi1=2 + jhB�PAx; yij

i
hC�PCe; ei(2.6)

� jhx;A�PCei hy;B�PCeij
for any x; y; e 2 H:
Taking the supremum over x; y 2 H with kxk = kyk = 1 we have

kA�PCek kB�PCek(2.7)

= sup
kxk=1

jhx;A�PCeij sup
kyk=1

jhy;B�PCeij

= sup
kxk=kyk=1

fjhx;A�PCei hy;B�PCeijg

� 1

2
hC�PCe; ei

� sup
kxk=kyk=1

h
hA�PAx; xi1=2 hB�PBy; yi1=2 + jhB�PAx; yij

i
� 1

2
hC�PCe; ei

�
"
sup
kxk=1

hA�PAx; xi1=2 sup
kyk=1

hB�PBy; yi1=2 + sup
kxk=kyk=1

jhB�PAx; yij
#

=
1

2
hC�PCe; ei

h
kA�PAk1=2 kB�PBk1=2 + kB�PAk

i
for any e 2 H:
Since

A�PA =
���P 1=2A���2 , B�PB = ���P 1=2B���2

and

C�PC =
���P 1=2C���2

then by (2.7) we get the desired inequality in (2.1).
By Schwarz inequality we have

(2.8) jhC�PBA�PCe; eij � kA�PCek kB�PCek
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for any e 2 H:
Using inequality (2.1) we then have

(2.9) jhC�PBA�PCe; eij � 1

2




P 1=2Ce


2 h


P 1=2A





P 1=2B


+ kB�PAki
for any e 2 H:
Taking the supremum over e 2 H; kek = 1 in (2.9) we get

(2.10) w (C�PBA�PC) � 1

2




P 1=2C


2 h


P 1=2A





P 1=2B


+ kB�PAki
and since

w (C�PBA�PC) = w (C�PAB�PC)

then by (2.10) we get the desired result (2.2). �

The following result also holds.

Theorem 9. Let P be a nonnegative operator on H and A;B;C three bounded
operators on H such that B�PC = C�PA; then

(2.11) w2 (C�PA) � 1

2




P 1=2C


2 h


P 1=2A





P 1=2B


+ w (B�PA)i
and

(2.12) w2 (C�PA) � 1

2




P 1=2C


2 "





��P 1=2A��2 + ��P 1=2B��2

2






+ w (B�PA)
#
:

Proof. From the inequality (2.6) we have

1

2

h
hA�PAe; ei1=2 hB�PBe; ei1=2 + jhB�PAe; eij

i
hC�PCe; ei(2.13)

� jhe;A�PCei he;B�PCeij

for any e 2 H:
Since

B�PC = C�PA = (A�PC)
�

then

jhe;A�PCei he;B�PCeij =
��he;A�PCei 
e; (A�PC)� e���(2.14)

= jhA�PCe; eij2 = jhC�PAe; eij2

for any e 2 H:
By (2.13) and (2.14) we then have

jhC�PAe; eij2(2.15)

� 1

2

h
hA�PAe; ei1=2 hB�PBe; ei1=2 + jhB�PAe; eij

i
hC�PCe; ei

for any e 2 H: This inequality is of interest in itself.
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Taking the supremum over e 2 H; kek = 1 in (2.15) we have
w2 (C�PA)

= sup
kek=1

jhC�PAe; eij2

� 1

2
sup
kek=1

nh
hA�PAe; ei1=2 hB�PBe; ei1=2 + jhB�PAe; eij

i
hC�PCe; ei

o
� 1

2
sup
kek=1

h
hA�PAe; ei1=2 hB�PBe; ei1=2 + jhB�PAe; eij

i
sup
kek=1

hC�PCe; ei

� 1

2

"
sup
kek=1

hA�PAe; ei1=2 sup
kek=1

hB�PBe; ei1=2 + sup
kek=1

jhB�PAe; eij
#

� sup
kek=1

hC�PCe; ei

=
1

2

h
kA�PAk1=2 kB�PBk1=2 + w (B�PA)

i
kC�PCk ;

which proves the inequality (2.11).
Using the arithmetic mean - geometric mean inequality we also have

hA�PAe; ei1=2 hB�PBe; ei1=2 � 1

2
[hA�PAe; ei+ hB�PBe; ei]

=

�
A�PA+B�PB

2
e; e

�
for any e 2 H:
By (2.15) we then have

(2.16) jhC�PAe; eij2 � 1

2

��
A�PA+B�PB

2
e; e

�
+ jhB�PAe; eij

�
hC�PCe; ei

for any e 2 H:
Taking the supremum over e 2 H; kek = 1 in (2.16) we obtain the desired result

(2.12). �

3. Some Particular Inequalities

In this section we explore some particular inequalities of interest that can be
obtained from the main results stated above.
If we take in (2.1) and (2.2) B = A�; then we get

(3.1) kA�PCek kAPCek � 1

2




P 1=2Ce


2 h


P 1=2A





AP 1=2


+ kAPAki
for any e 2 H and

(3.2) w
�
C�PA2PC

�
� 1

2




P 1=2C


2 h


P 1=2A





AP 1=2


+ kAPAki ;
where A;C are bounded operators on H and P is a nonnegative operator on H:
If we put in (2.1) and (2.2) P = 1H ; then we have

(3.3) kA�Cek kB�Cek � 1

2
kCek2 [kAk kBk+ kB�Ak]

for any e 2 H and

(3.4) w (C�AB�C) � 1

2
kCk2 [kAk kBk+ kB�Ak]
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where A;B;C are bounded operators on H:
Choosing B = A� in (3.3) and (3.4), we get

(3.5) kA�Cek kACek � 1

2
kCek2

h
kAk2 +



A2

i
for any e 2 H and

(3.6) w
�
C�A2C

�
� 1

2
kCk2

h
kAk2 +



A2

i :
If we take in (2.1) and (2.2) C = 1H ; then we get

(3.7) kA�Pek kB�Pek � 1

2




P 1=2e


2 h


P 1=2A





P 1=2B


+ kB�PAki
for any e 2 H and

(3.8) w (PAB�P ) � 1

2
kPk

h


P 1=2A





P 1=2B


+ kB�PAki ;
where A;B are bounded operators on H and P is a nonnegative operator on H:
Moreover, if in (3.7) and (3.8) we take B = A�, then we get the inequalities

(3.9) kA�Pek kAPek � 1

2




P 1=2e


2 h


P 1=2A





AP 1=2


+ kAPAki
for any e 2 H and

(3.10) w
�
PA2P

�
� 1

2
kPk

h


P 1=2A





AP 1=2


+ kAPAki :
Further, if we assume that APC = C�PA; then by taking B = A� in (2.11) and

(2.12) we get

(3.11) w2 (APC) � 1

2




P 1=2C


2 h


P 1=2A





AP 1=2


+ w (APA)i
and

(3.12) w2 (APC) � 1

2




P 1=2C


2 "





��P 1=2A��2 + ��P 1=2A���2

2






+ w (APA)
#
:

If AC = C�A; then by taking P = 1H in (3.11) and (3.12) we have

(3.13) w2 (AC) � 1

2
kCk2

h
kAk2 + w

�
A2
�i

and

(3.14) w2 (AC) � 1

2
kCk2

"




 jAj2 + jA�j22






+ w �A2�
#
:

Since 




 jAj2 + jA�j22






 � 1

2

h


jAj2


+ 


jA�j2


i = kAk2 ;
then the inequality (3.14) is better than (3.13).
If AP = PA; then by taking C = 1H in (3.11) and (3.12) we also have

(3.15) w2 (AP ) � 1

2
kPk

h


P 1=2A





AP 1=2


+ w �PA2�i
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and

(3.16) w2 (AP ) � 1

2
kPk

"





��P 1=2A��2 + ��P 1=2A���2

2






+ w �PA2�
#
:

Taking into account the above results, we can state the following two inequalities
for an operator T; namely

(3.17) w2 (T ) � 1

2

h
kTk2 + w

�
T 2
�i
; see (1.15),

and

(3.18) w2 (T ) � 1

2

"




 jT j2 + jT �j22






+ w �T 2�
#
:

The inequality (3.18) is better than (3.17).
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