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ON SOME INEQUALITIES FOR NUMERICAL RADIUS OF
OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. By the use of inequalities for nonnegative Hermitian forms some
new inequalities for numerical radius of bounded linear operators in complex
Hilbert spaces are established.

1. INTRODUCTION

Let K be the field of real or complex numbers, i.e., K = R or C and X be a linear
space over K.

Definition 1. A functional (-,-) : X x X — K is said to be a Hermitian form on
X if

(H1) (ax+by,z) =a(z,2z) +b(y,2) fora,b e K and z,y,z € X;

(H2) (2,9) = (3,3) for all 2, € X.

The functional (-,-) is said to be positive semi-definite on a subspace Y of X if

(H3) (y,y) >0 for every y € Y,

and positive definite on Y if it is positive semi-definite on Y and

(H4) (y,y) =0,y €Y implies y = 0.

The functional (-, -) is said to be definite on Y provided that either (-,-) or — (-, )
is positive semi-definite on Y.

When a Hermitian functional (-, -) is positive-definite on the whole space X, then,

as usual, we will call it an inner product on X and will denote it by (-,-).
We use the following notations related to a given Hermitian form (-,-) on X :

Xo:={z e X|(z,2) =0}, K:={z e X|(z,z) <0}
and, for a given z € X,
X® :={zeX|(z,2) =0} and L(2):={azlacK}.
The following fundamental facts concerning Hermitian forms hold:
Theorem 1 (Kurepa, 1968 [28]). Let X and (-,-) be as above.
(1) If e € X is such that (e, e) # 0, then we have the decomposition

(1.1) X =L(e)Px,

where @ denotes the direct sum of the linear subspaces X©) and L (e);
(2) If the functional (-, ) is positive semi-definite on X (¢ for at least one e € K,
then (-,-) is positive semi-definite on XF) for each f € K;
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(3) The functional (-,-) is positive semi-definite on X'©) with e € K if and only
if the inequality
(12) (@ 9)* > (z,2) (1)

holds for all x € K and all y € X
(4) The functional (-,-) is semi-definite on X if and only if the Schwarz’s in-
equality

(1.3) [z, y)° < (2,2) (y,9)

holds for all x,y € X
(5) The case of equality holds in (1.8) for z,y € X and in (1.2), for x € K,
y € X, respectively; if and only if there exists a scalar a € K such that

y—azx € X(()x) = XoNX®@,

Let X be a linear space over the real or complex number field K and let us
denote by H (X) the class of all positive semi-definite Hermitian forms on X, or,
for simplicity, nonnegative forms on X.

If (+,-) € H(X), then the functional || = (-, -)% is a semi-norm on X and the
following equivalent versions of Schwarz’s inequality hold:

2 2 2
(1.4) ™ llyll” = [(z, )" or |yl = [(z,y)]

for any z,y € X.
Now, let us observe that H (X) is a convez cone in the linear space of all mappings
defined on X? with values in K, i.e.,

(e) ()1, (- ")y € H(X) implies that (-,-); + (-,+)y € H (X);
(ee) @ >0 and (-,-) € H(X) implies that a (+,-) € H (X).
The following simple result is of interest in itself as well:

Lemma 1. Let X be a linear space over the real or complex number field K and
(,+) a nonnegative Hermitian form on X. If y € X is such that (y,y) # 0, then

(1.5) py Hx H—K, py(z,2) = (2,2) [yl* - (=.9) (v, 2)

is also a nonnegative Hermitian form on X.
We have the inequalities

(1.6) (1 0™ = 1)) (Il 1207 = 1w =)

> |2 Il - (2.9) (v, 2)]

and

(1.7) (lle -+ 21 Iyl = (@ + 2 9)*)

< (Il 191 = 1)) + (1l 10 = 1 2)1?)

for any x,y,z € X.

(NI

Nl

Remark 1. The case when (-,-) is an inner product in Lemma 1 was obtained in
1985 by S. S. Dragomir, [2].



ON SOME INEQUALITIES FOR NUMERICAL RADIUS 3

Remark 2. Putting z = Ay in (1.7), we get:

20 12 2 2112 2
(1.8) 0 < flz+ Myl lyll” = (= + Ay, »)” < (=] ylI” — [(z,9)]
and, in particular,

2012 2 20 112 2
(1.9) 0<llzyl"lyl” ==ty 9" < 2" lyll” - [(z,y)]

for every x,y € H.
We note here that the inequality (1.8) is in fact equivalent to the following state-
ment

(1.10) Sup lz + Xy 17 Jyl® = | + Ay, )| = ll=l® [ly)* = |2, )|

for each z,y € H.
The following result holds (see [11, p. 38] for the case of inner product):

Theorem 2. Let X be a linear space over the real or complex number field K
and (+,-) a nonnegative Hermitian form on X. For any x,y,z € X, the following
refinement of the Schwarz inequality holds:

(1.11) 2 1] lyl* = | (2, 2) gl = (2,9) (v, 2)| + (z,9) (9. 2)]
> |(z, 2)| llyll* -

Corollary 1. For any z,y,z € X we have

(1.12) % [zl 1] + Iz, )] Iyl > |, y) (4. 2)]

The inequality (1.12) follows from the first inequality in (1.11) and the triangle
inequality for modulus

(,2) [yl1* = (2.9) (9, 2)| > [(2,) (4, 2)] = |yl |(z, 2)]
for any z,y,z € X.

Remark 3. We observe that if (-,-) is an inner product, then (1.12) reduces to
Buzano’s inequality obtained in 1974 [1] in a different way.

For some inequalities in inner product spaces and operators on Hilbert spaces
see [3]-[26] and the references therein.
The numerical radius w (T') of an operator T on H is given by [27, p. 8]:

(1.13) w(T) = sup {|Al, A € W(T)} = sup {[(T, z), [|l=|| = 1} .

It is well known that w (-) is a norm on the Banach algebra B (H) of all bounded
linear operators T' : H — H. This norm is equivalent with the operator norm. In
fact, the following more precise result holds [27, p. 9]:

Theorem 3 (Equivalent norm). For any T € B(H) one has
(1.14) w(T) <||T| < 2w (T).

Utilising Buzano’s inequality we obtained the following inequality for the numer-
ical radius [12] or [13]:
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Theorem 4. Let (H;(-,-)) be a Hilbert space and T : H — H a bounded linear
operator on H. Then

1
(1.15) w? (T) < 3 [w (T2) + HTﬂ .
The constant % is best possible in (1.15).

The following general result for the product of two operators holds [27, p. 37]:

Theorem 5. IfU,V are two bounded linear operators on the Hilbert space (H, (-,-)),
then w (UV) < 4w (U)w (V). In the case that UV = VU, thenw (UV) < 2w (U) w (V).
The constant 2 is best possible here.

The following results are also well known [27, p. 38].

Theorem 6. If U is a unitary operator that commutes with another operator V,
then

(1.16) w(UV) <w (V).
If U is an isometry and UV = VU, then (1.16) also holds true.

We say that U and V' double commute if UV = VU and UV* = V*U. The
following result holds [27, p. 38].

Theorem 7. If the operators U and V' double commute, then
(1.17) wUV)<wV)|U].

As a consequence of the above, we have [27, p. 39]:
Corollary 2. Let U be a normal operator commuting with V. Then
(1.18) wOV)<w @) w(V).

For a recent survey of inequalities for numerical radius, see [21] and the references
therein.

Motivated by the above facts we establish in this paper some new numerical
radius inequalities concerning four operators A, B,C and P on a Hilbert space
with P nonnegative in the operator order. Some particular cases of interest that
generalize and improve an earlier result are also provided.

2. MAIN RESULTS

The following result holds for (H, (.,.)) a Hilbert space over the real or complex
numbers field K.

Theorem 8. Let P be a nonnegative operator on H and A, B,C three bounded
operators on H. Then for any e € H we have the inequalities

1 2
2.1 A*PCell||B*PCel| < = ||[PY?Ce PY2A||PYV2B|| + ||B*PA]| .
2

Moreover, we have

(22)  w(C*PAB*PC) < % HP1/20H2 [[|Pr72a]| | P28 + 18P -
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Proof. We observe that if P > 0, then the mapping (.,.) : H x H — K defined by

(x7y)P = <P$,y>
is a hermitian form on H and by (1.12) we have the inequality

(2.3) % [zl 9l p + 1@ y) pll el = (2, €)p (y,€) pl

for any z,y,e € H.
This can be written as

@4) 3 [(Pra) 2 (Pyy) 2+ (Pay)] (Pese) > |(Pre) (Pyc)
for any z,y,e € H.
Now if we replace z by Az, y by By and e by Ce we get
(2.5) % [(PAm, Az)'? (PBy, By)"? + |(P Az, By)ﬂ (PCe, Ce)
> |(PAz,Ce) (PBy, Ce)|

for any x,y,e € H, which is equivalent to

(2.6) % (4P Az, )2 (B* PBy,u)"/* + |(B" P Az, y)|] (0" PCe )
> |{(z, A*PCe) (y, B*PCle)]
for any x,y,e € H.

Taking the supremum over z,y € H with ||z| = ||y|| = 1 we have
(2.7) ||A*PCel ||B*PCe||

= sup |(z, A*PCe)| sup [{y, B*PCe)]
llzll=1 lyll=1

= sup {[{z, A*PCe) (y, B*PCe)|}
lzll=llyll=1

1
< B (C*PCe,e)

X sup [(A*PAm, 2)'/? (B*PBy,y)"/* + |(B* P Az, y>|}
llzll=llyllI=1

< % (C*PCe,e)

X

[sup <A*PA$,$>1/2 sup (B*PBy,y>1/2+ sup |(B*PAz,y)]|
llzll=1 llyll=1 llzll=lyll=1

1
= 3 (C"PCe,e) [|A"PA|"? | B*PB|'? + | B PA||

for any e € H.

Since

2 2
A*PA = ‘Pl/QA‘ B*PB = ‘P”QB‘
and )
C*PC = |P'2C|

then by (2.7) we get the desired inequality in (2.1).

By Schwarz inequality we have

(2.8) (C*PBA*PCe,e)| < || A*PCel| | B*PCe||
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for any e € H.
Using inequality (2.1) we then have

(29)  |(C*PBA*PCe,e)| < P1/206H2 [HPI/QAH HPl/QBH—i—HB*PAH}

5

for any e € H.
Taking the supremum over e € H, |le]| = 1 in (2.9) we get

(2.10)  w(C*PBA*PC) < P1/20H2 [HP1/2AH HPV?BH + 1B P

2
and since

w (C*PBA*PC) = w (C*PAB*PC)
then by (2.10) we get the desired result (2.2). O

The following result also holds.

Theorem 9. Let P be a nonnegative operator on H and A, B,C three bounded
operators on H such that B*PC = C*PA, then

(2.11) w? (C*PA) < HPWC’ [HPWAH HPV?BH +w (B*PA)]

and

|P1/2A|2 + ‘Pl/QB‘Q
2

(212)  w?(C*PA) < HPl/QCH +w (B*PA)

Proof. From the inequality (2.6) we have

(2.13) % (4" PAe, )" (B*PBe, )/ +|(B* PAe,e)]|| (C* PCe,c)
> |(e, A*PCe) (e, B*PCe)]
for any e € H.
Since
B*PC = C*PA = (A*PC)*
then
(2.14) |(e, A*PCe) (e, B*PCe)| = |(e, A*PCe) (e, (A*PC)" ¢)|
= [(A*PCe,e)|* = |(C*PAe,e)|?
for any e € H.

By (2.13) and (2.14) we then have
(2.15) (C*PAe,e)|
1
< = |(A*PAe,e)/? (B*PBe,e)'/? + |(B*PAe,e)|| (C*PCe,e)

for any e € H. This inequality is of interest in itself.
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Taking the supremum over e € H, |le|]| =1 in (2.15) we have
w? (C*PA)
= sup [(C*PAe,e)

llell=1

IN

% el {[(a"Pae,e)* (B PBe,e)'/? + |(B*PAe,e)|| (C*PCe,e)}

IN

1
— sup [(A*PA@7 6)1/2 (B*PBe, e>1/2 + |(B*PAe, e>|} sup (C*PCe,e)

llell=1 flell=1

IN

1
3 [Sup (A*PAe,e>1/2 sup (B*PBe,e>1/2+ sup [(B*PAe,e)|
llell=1 llell=1 flell=1

X

sup (C*PCe,e)

llell=1
1
= 3 |14 PA| "2 |B*PB|" +w (B*PA)| | PC

which proves the inequality (2.11).
Using the arithmetic mean - geometric mean inequality we also have

1
(A*PAe,e)"/* (B*PBe,e)'/? < 5 [(A"PAe.e) + (B"PBe,e)]
<A*PA + B*PB >
=(———F—e¢,¢
2
for any e € H.
By (2.15) we then have

1 K A*PA+ B*PB

(2.16) |[(C*PAe,e))* < = e,e> + |<B*PA6,6>|] (C*PCe,e)

2 2
for any e € H.
Taking the supremum over e € H, ||e|| = 1 in (2.16) we obtain the desired result
(2.12). O

3. SOME PARTICULAR INEQUALITIES

In this section we explore some particular inequalities of interest that can be
obtained from the main results stated above.
If we take in (2.1) and (2.2) B = A*, then we get

2
(31)  |A*PCe| || APCe|| < % le/chH [HPWAH HAP”QH +14PA|]
for any e € H and
2
(32)  w(C*PAPC) < % le/‘é’cH [HPWAH HAPWH +ll4P4]],

where A, C' are bounded operators on H and P is a nonnegative operator on H.
If we put in (2.1) and (2.2) P = 1g, then we have

* * 1 2 *
(3.3) 1A Cel| | B*Cel| < 5 [|Ce[" [l | Bl + | B"Al]
for any e € H and

* * 1 *
(3.4) w(C"AB™C) < 5 ICI* (LAl BIl + 1B+ Al
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where A, B, C are bounded operators on H.
Choosing B = A* in (3.3) and (3.4), we get

1
(3.5) |A*Cel [ ACe]l < 5 lICell® [I1AI° + ]| 4%
for any e € H and

1
(36) w(Ca20) < SO 14l + 42
If we take in (2.1) and (2.2) C' = 1p, then we get

1
3.7)  [[A"Pe|||[B"Pe|| < 5

sl (e al s + e pai]

for any e € H and
(3.8) w(PAB*P) < % 1P| [HPWAH HPWBH n |\B*PA||} :

where A, B are bounded operators on H and P is a nonnegative operator on H.
Moreover, if in (3.7) and (3.8) we take B = A*, then we get the inequalities

2
(39)  ||A*Pe|| |APe| < % HP1/2eH [le/Z’AH HAP1/2H +14PA]]
for any e € H and
(3.10) w (PA2P) < % 1PI[|[P2a|| [apr2| + 1apay] .

Further, if we assume that APC' = C*PA, then by taking B = A* in (2.11) and
(2.12) we get

(311)  w?(APC) < %HPWCH [HPWAH HAP1/2H+w (4PA)]
and

|P12A] | P 2ar?
2

(3.12)  w?(APC) < HPI/QCH +w (APA)

If AC = C*A, then by taking P = 1 in (3.11) and (3.12) we have

1
(3.13) w? (AC) < SICIP [IAP +w (42)]
and
Lo ||| A+ 4%
(3.14) w? (AC) < S |IC° ||| =—— || +w (4%)
Since
AP + A%

< ]+ ] =

then the inequality (3.14) is better than (3.13).
If AP = PA, then by taking C' = 1y in (3.11) and (3.12) we also have

2

(3.15) w? (AP) < %HPH [HPI/QAH HAPVZH +uw (PA?)]
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and

|P12A)" 4 | P24
2

| 2

(3.16) w? (AP) < % |1 Pl +w (PA?)

Taking into account the above results, we can state the following two inequalities
for an operator T, namely

1 -
(3.17) w? (1) < 5 {HTH2 +w (T2)], see (1.15),
and

1 2 *12
(3.18) w? (T) < 5 w +w (T?)

The inequality (3.18) is better than (3.17).
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