Received 28/06/15

GENERALIZATION OF OSTROWSKI INEQUALITY FOR
CONVEX FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some related Ostrowski inequalities for
the case of convex functions and general Lebesgue integral on measurable
spaces. Midpoint and integral mean inequalities are provided, some partic-
ular results related to the famous Fejér’s inequality are also given.

1. INTRODUCTION

In 1938, A. Ostrowski [13] proved the following inequality concerning the distance

between the integral mean ;- f; h (t)dt and the value h (x), € [a,b] in the case
of differentiable functions on an open interval:

Theorem 1 (Ostrowski, 1938 [13]). Let h : [a,b] — R be continuous on [a, ]
and differentiable on (a,b) such that b’ : (a,b) — R is bounded on (a,b), i.e.,

|W]., = sup | (t)| < oco. Then
te(a,b)
2
1 r — atb
= 4+<b_;> 17| (b= a),

for all © € [a,b] and the constant  is the best possible.

b
(1.1) h(x)—ﬁ/ h()dt

Let (22, A, 1) be a measurable space consisting of a set 2, a o — algebra A of
parts of 2 and a countably additive and positive measure p on A with values in
RU{oc} . For a u-measurable function w : @ — R, with w (z) > 0 for p -a.e.(almost
every) x € €, consider the Lebesque space

Ly, (Qu):={f:Q—R, fis p-measurable and /Q If ()| w(x) dp (x) < oo}

For simplicity of notation we write everywhere in the sequel fQ wdp instead of
Jow (z)du(z).

In what follows we assume that w > 0 p-a.e. on Q) with fQ wdp = 1.

Let ® : I — C be an absolutely continuous functions on [a,b] C I, the interior of
I.If f: Q — [a,b] is Lebesgue pu-measurable on €2 and such that ®o f, f € L(Q,p),
then the following Ostrowski type inequality for the general Lebesgue integral on
measurable spaces holds [6]

(1.2) /Q(tbof)wd,u—q)(x)

< 0o / 1 — ol wdy
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for any x € [a,b].
In particular, we have

b b
0 |[@onuan-o (U5 < i@l [ |- 50w
and
| [ @enud—o( [ roin)| <19 [ |- [ rwds] wa

Motivated by the above results, in this paper we establish some related inequalities
for the case of ® being a convex function. Midpoint and integral mean inequalities
are provided, some particular results related to the famous Fejér’s inequality are
also given.

2. GENERAL RESULTS

Suppose that I is an interval of real numbers with interior Tand ®: 1 — R is
a convex function on I. Then @ is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z,y € [ and z < y, then @’ (z) <
' () < @' (y) < @, (y) which shows that both ®_ and @/, are nondecreasing

function on 1. It is also known that a convex function must be differentiable except
for at most countably many points.
For a convex function ® : I — R, the subdifferential of ® denoted by I is the

set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

(2.1) O (z) > P(a)+ (x —a)p(a) for any x,a € I.

It is also well known that if ® is convex on I, then 0® is nonempty, ¢’ , &, € 9P
and if p € 99, then

d (z) < (z) <@, (z) for any z € I.

In particular, ¢ is a nondecreasing function.
If ® is differentiable and convex on I, then 9% = {®'}.
The following result holds:

Theorem 2. Let ® : [m,M] C R — R be a convex function on [m,M], ¢ € 0P
and f: Q — R satisfying the condition

(2.2) —co<m< f<M<oo
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p-a.e. on Q and so that ®o f, po f, (po f)f, f € Ly (Q u). Then we have the
inequalities:

@3) 0 [ @0 Nudn-0() = o) [ (7= wds

Q
S/Q(wf—cp(S))(f—S)wdu
<essuplf sl [ o f = (s) wi
(3 (M —m)+|s — ) [ g o f—p(s)| wdp
essupg | f — s| (®_ (M) — @, (m))

M) @ a0 - @) ).

IN

(;(M—mﬂ— s

for any s € (m, M) .

Proof. By the gradient inequality (2.1) we have
(2.4) (1) - (s) = (t—s)p(s)
for any ¢ € 9® and for any t € [m, M].

This inequality implies that
(2.5) O (f(x)) =P (s)+ (f(x) =)o (s)
for any z € Q.

If we multiply (2.5) by w > 0 p-a.e and integrate on §2, we get the first inequality
in (2.3).

By the gradient inequality (2.1) we also have

p(t)(t—s) =P (t)—D(s)

for any ¢ € 9P and for any ¢t € (m, M).

This inequality is equivalent to

(@) —¢(s) (t—5) =P (t) =P (s) =@ (s) (t — )

for any ¢ € 0P and for any ¢t € (m, M).

This inequality implies that
26) U @) -0 (@)= 20 @)= 2(s) — () (f (@)~
for p-a.e x € Q.

If we multiply (2.6) by w > 0 p-a.e and integrate on 2, we get

(2.7) [ oo f =) (7 = 5) wi
> [[@ofuwdu—0() =) [ (7= 5)win

which proves the second inequality in (2.3).
Now, since ¢ is monotonic nondecreasing on [m, M], then for any s € (m, M)

(pof—w(s)(f—s)=0

p-a.e. on €.
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‘We then have

(pof—@s)(f—s)wdp=|[ (pof—¢(s)) (f—s) wdu
J J |
< [ oo = ¢ = )lwdu

gessup|f—$|/ lpo f—w(s)|wdn
Q Q

and the third inequality in (2.3) is proved.
Since for any ¢ € 0® we have @', (m) < ¢ (t) < ®_ (M) for any ¢t € (m, M),
then @ (m) < ¢ (s) < ®_ (M) and

(2.8) oo f—¢(s)| <@L (M) -2 (m)
p-a.e. on ).
If we multiply (2.8) by w > 0 p-a.e and integrate on 2, we get

/Qlchf—so(S)\wdu§<I>’_(M)—‘1>’+(m)-

Also, for any s € (m, M)

m+M m+M m+ M m+ M
o] — _ _sl < _ _
ool =|r - 2R M o |y M M),
which implies that
M M
essup|f —s| < essup f—m+ ‘—F‘s—m_l— ‘
Q Q 2 2
1 M
< Q(M—m)—i—’s—m—; ’
and the last part in (2.3) is proved. (]

We have the following result:

Corollary 1. Let ® : [m, M] C R — R be a convex function on [m,M], ¢ € 0P
and f: Q — R satisfying the condition (2.2) p-a.e. on Q and so that o f, po f,
(po ) f, f € Ly (Q, ). Then we have the inequalities:

(2.9) osA(¢of)wdu—¢(Afwdu> < [or-x (f—/gfwdu>wdu

f—/ﬂfwdu‘/glef—Alwdu

M
< B(M—mw | pwdn =" H/QIsDOf—Adeu

Proof. 1t follows by Theorem 2 on observing that

/Q<<pof—so</gfwdﬂ>> <f_/ﬂfwdu>wd#
o (1= [ swdn)win= [ oo 5= (5= [ rudu) win

for any A € R. (]

< essup
Q

for any A € R.
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Remark 1. From the inequality (2.9) we have

210) 0< [ (@o)udu- @(/ fwdu) | @on (f/wadu>wdu
/fwdu‘/ 9o flwdy

< [2<M—m>+ [ fuwan =52 [ o fludn

Since for any ¢ € 0P we have &' (m) < ¢ (t) < @ (M) for any t € (m, M), then
from (2.9) we have

(2.11) 0§/Q(<I>of)wdu<l></ﬂfwdﬂ>
[ (o= ST (1 f g
o [ oo = SR
{ [%(M*m)+|fn M}fn o f— w‘“’dﬂ
s essupg |f — [o fwdp| (@7 (M) — &, (m))
<5 [s0r-m+| [ ruau- "2 @ 00 - 2t ().

— 2|2
‘We have:

< ebsup

Ses%up f= po f

<

Theorem 3. Let @ : [m, M] C R — R be a convex function on [m, M], ¢ € 0P and
[ Q — R satisfying the condition (2.2) p-a.e. on  and so that ® o f, (po f)?,
fP € Ly (Qu), forp, g > 1 with % + % = 1. Then we have the inequalities:

(2.12) OS/Q(d)of)wd,u—q)(s)—ga(s)/ﬂ(f—s)wdu
< [ (oo s —o ) (= 5w

([ 1= st wan) " </Q|<p0f—¢(5)qwdu>1/q

(£ = 242 wae) " 252 o
< (Joleo s o) wdu) '

IN

IA

(" (M) = &', (m)) (Jo, | — s[” wdp)"?

I 1/p
< </ wd,u) +
L Q

(1 M

m+ M

-5
2

] (O (M) — @', (m))

o] @ o — ot )

for any s € (m, M) .
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Proof. By Holder’s integral inequality we have for p,q > 1 with % + i =1 that

/(wOffsa(S))(f*S)wduﬁ/I(wOfst(S))(f*S)lwdu
Q Q

1/p 1/q
7Spw o] — S qw
§</Qf | du) </Q|s0 f—e(s) du)

for any s € (m, M), which proves the third inequality in (2.12).
Also, by Minkowski’s inequality we have

1/p P 1/p
M M
(/|f—s|pwdu) _</ f—er +m+ -5 wd,u)
Q Q 2 2
MIP 1/p M P 1/p
S(/ f—er wd,u) —|—</ mt —s wd,u)
Q 2 Q
</ m+ M|P >1/p ‘erM
= f- wdp + -5
o 2 2
1 m+ M
< (M- -
<3 ( m) + ‘ 5 s‘
and
1/q . 1/q
([1oor=corua) < (@ 000, o) [ wa)
= & (M) - ¥, (m)
for any s € (m, M) that proves the last part of (2.12). O

Remark 2. In a similar way, the inequality (2.12) can be extended for p =1 and
q = 00 to obtain the result:

(2.13) OS/Q(<I>of)wdu—<l>(s)—Lp(s)/Q(f—s)wdu
< [or—o @) (=5 win

Sessup|<p0f—<p(s)\/|f—s|wdu
Q Q
{ Ualf = =55 fwdu + [s — =55 ] essupg o o f = o ()

(B (M) — &, (m)) fo|f — | wdlp

<

< UQ JERLE P sm;MH (@~ (M) — @, (m))
< |5 00—yt s = "2 @ ar) - @t )

for any s € (m, M) provided that ¢ o f is essentially bounded on .
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Corollary 2. Under the assumptions of Theorem 8 and if we take s = fQ fwdp,
then we have the simpler inequalities

210 o< [ @ puda—o ([ fua) < [ wor-n(r- [ fud)uas

p 1/p 1/q
g(/ﬂ f—/ﬂfwdu wdu) (/Qlchf—/\lqwdu>
for any A € R.
In particular we have

(2.15) OS/Q(@of)wdu—fD(/wadu) S/Q(gpof) (f—/ﬂfwdu) wdp
p 1/p 1/q
< (/Q f—/ﬂfwdu wdu) (/Q|<P°f|qUJdM>
and

(2.16) 0</Q(<I>of)wd,u—<1></ﬂfwd,u>
S/Q<<p0fq)l‘ (M)f“m)) <f/wadu> wd

p 1/p
S(/Qf/ﬂfwdu wdu)
(M) +®, (m)|* \M*
([ )

o (M)+®' (m) |9 1/q
(M—m)(fg‘goof—if( )2 £t )‘ wdu)
<

5 (ol = 250 w) " (@ (01) — @ (m)
< 5 (M —m) (L (M) ~ &, (m)) .

If f satisfies the condition (2.2), then by Schwarz and Griiss’ inequality [6] we
1/2

have
/Q f/ﬂfwdu‘wdué </Qf2wdu</gfwdu)2> < 3 (M —m).

We observe that, under the assumptions of Remark 2, we have

(2.17) OS/Q(‘bof)wdu—<I>(/wadu> < [or- <f—/ﬂfwdu>wdu

Sessup|300f—/\/’f—/fwd,u‘wd,u
Q Q Q

o\ 1/2
Ses%uplef—M (/Qwidu— (/wadu> )

<

N |

(M —m)essup|p o f — A
Q
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for any A € R.
In particular, we have

(2.18) OS/Q@Of)wd/i—‘I’(/wadﬂ) < [won (f—/ﬂfwdﬂ> wdy

<eswplo f| [ ‘f/fwdu‘wdu
Q Q Q

o\ 1/2
< essuppo f (/Q Produ — (/ﬂ fwdu> )

1
< 5 (M —m)essupleo f)

and

(2.19) 0</Q(<I>of)wdu—<1></ﬂfwdu)
s/ﬂ(saof—q’/—(M)f/*(m)) (f—/fwd#>wdl~b

(M) + <I>’
fwdu wdp

<p0f—¢/_(M )+ 24 ( ‘(/ widu—</ fwdu) )

§ (@0 (1) — @) (m)) (Jy FPudu — (f fudn)?)

IN

essup |po f —
Q

IN

essup
Q

IN

%(M—m)essupg)goof— W‘

IN

© M —m) (L (M) — ®, (m))

We observe that, if @ is differentiable on (m, M) then we can replace in all inequal-
ities above ¢ by ®'. We omit the details.

3. MIDPOINT INEQUALITIES

If we take in (2.3) s = 252 then we get

(3.1) OS/Q(%f)wdu—@(m;M)—w(m;M>/Q<f—mJ;M>wdu
o (252) -2

2 (5

{ 3 (M —m) [o|pof—¢(5)|wdn

essupg, | f — 2EM| (@7 (M) — @/, (m))

< essup
Q

IN

5 (M —m) (8 (M) — &, (m)) .
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If we take in (2.12) s = 2EM  then we get

(3.2) os/ﬂ(@of)wducb(m;M)so<m;M)/Q(fm;M>wdu
o (259) (-5
(=52 )™ (f oo (5)

2
q /
LM =m) (folpo f - o (2520)] wdu)l '

IN

q 1/q
wdu)

(@ (1) = @ () (fo £~ 2524 )"

< 2 (M —m) (8 (M)~ @, (m)).

IN
[N I —

If we take in (2.13) s = M then, we get

(3.3) 0</Q(<I>of)wdu—<1>(m—;M>—w(m—;M)/Q<f—m—;M>wdu

o (5)) ()

m+ M m+ M
w0f¢< 5 >/f 5 ‘wdu
Q

{ %(M—m)essupghpof—‘ﬂ(%H

(2L (M) = @', (m) Jo | f — =5 | wdp

< 5 (M —m) (L (M) ~ &, (m)) .

< essup
Q

<

Now, if f and w are such that

(3.4 (7= 252 Y wau =

then
/< of (m—i—M))(}c m—l—M)wd
Q 2 2

:/Q(<P°f*’Y) (fm;M)wdu

for any v € R.
By making use of the first part of (3.1)-(3.3) we get

(3.5) OS/Q(%J”)wdu—@(m;M)S/ﬂ(wf—v) (f—m+2M>wdu

m+ M

1
Sessup|<pof—'y/’f— 5 wd,ug§(M—m)essup|<pof—q/|7
Q Q Q
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(3.6) OSA(@Of)wdu—®<m;M> s/(soof—w(f—mM)wdu
( lpof— v|p>1/p (/ ‘f— 5 wdu>1/q

1 1/17
<5 (M—m </<p0f vl”)
and

(3.7) os/g(cboﬁwdu—cb(m;M) S/Q(<p0f—v)<f—m+M> wap
m+ M

<essup |f —
Q

‘/Q<p0f—7|wdu§;(M—m)/Q<pOf—vl,

for any v € R.
In particular, we have

38 o [(@opuau-o("EHM) < [ on (-5 ) v
m+ M

Ses?‘zuprfl/Q‘f—
(39) os/ﬂ@of)wdu—@(m;M) < [on(r-"5H) wan

S(/Q|900f|deM> ( 'f— wdu>1/q

1 1/10
<5 0r=m) ( [ oo 1 wan)
Q
and

(3.10) os/ﬂ@of)wdu—q><m+2M)s/( f)(f—m+M>wdu
m+ M

1
wdﬂgi(M—m)essuphpof\,
Q

f_

< essup
Q

oo studn < o0r—m) [ oo fludn

We also have

(3.11) OS/Q(CIJOf)wdu(I)(m;M)

N

o [ o SO0 O,

< essup
Q

0o f B tIL(]M);-tI)Jr(m) wdu

%(M*m)fsz

3 (@ (M) — @', (m)) essupg, | f — ™M |

IN
"’;“—‘/—/ﬁ

(M —m) (2 (M) — @, (m)),
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(3.12) OS/Q(Cbof)wdu—(I)(

S/Q<900fq)/_(M);L(I)/+(m)> (fm+M)wd#

([ hor ooy

& (M)+, (m 1/p
{5<Mm>(f9soof”§+” wip)
1
4

m+ M
2

1/q
wdu)

IN

L@ () — @, (m) (Jo | — 252 wap)

< (M —m) (¥ (M) — &, (m))
and
m+ M
(3.13) 0</Q(<I>of)wdu—<1>< 3 )

S/Q(soOf—@/_(M);@,*(m)> <f_m+M)wdﬂ

fm;M'/ ‘(pofqﬂ_(Mch;(m)‘wdu
Q

2
(M—m)fg‘@of—W‘Wdﬂ

< essup
Q

1
2

IN

L(®L (M) — @, (m)) essupg | f — mEM |
1O —m) (2L (M) — @) (m)

IN

4. INEQUALITIES FOR INTEGRAL MEANS

We have the following result as well:

Theorem 4. Let @ : [m,M] C R — R be a convex function on [m,M], ¢ € 0P
and f: Q — R satisfying the condition (2.2) p-a.e. on Q2 and so that o f, po f,
(po /) f, f € Ly (Q,u). Then we have the inequalities:

(4.1) ()g;(/g)(@of)wdu+‘1>(M)]\]\j—i(m)m>
1 M 10 (M
e RO e e R
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We have the bounds

(4.3) B(m,M,p, f)
<g@—m) [ { esup |(gon) (@)~ ) duo)
-3 Q \ se[m,M]

+%(M—m)

f @) — =) *
<[ (Sg?ig5]|<soof> (@) - ¢ (5) (M_m) )w(w)du(x),

(4.4) B (m, M, e, )

1/p
S et | [(/ (oo ) >|Pds>

(0 = £ @)™ 4 (F (@) - m)‘”l)”q} w (@) dp (x)

and

(4.5) B(m,M,p, f)

i/(/ (@) >|ds> (2) di ()

M
0-"5= [ I(@Of)(a?)—w(S)d8>w($)du(l‘)-

Proof. If we take the integral mean in the first two inequalities in (2.3) we have
1 M 1 M
(4.6) 0</(¢'of)wd,ufM_m/m @(s)dsfMi_m/m cp(s)ds/ﬂfwdu
M
/ s) sds
-m

<y [ ([eor—ee - suan)as

— (/ (pof—el(s ))(f—S)d8>wdu~

We also have
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M
1 1
sds = P (s
M—m ) *G M—m |2

<I>(M(I>m/mM<I>]

M
and by (4.6) we get
M _
(4.7) 0</(<I>of)wd,u—7/ ® (s dsW/wadu
<I>(M)M o (m 1
—-m CM-m/,

—M m (/ (pof—w(s ))(f—S)d8>wdu,

which is equivalent to (4.1).

13

Since ® is convex, then for any ¢ € 9P we have (po f — ¢ (s)) (f — s) > 0 u-a.e.

on €2 then

(4.8) B(m,M,p, f) ;M - </ (pof—(s ))(f—s)ds)wdu

1 M

2‘ ( (pof—pl(s (fs)ds)wdlu
M

_2M mQ< lpof—w(s |f—s|ds>wdﬂ

=C(m,M,p,f).

We have for each z € Q that

(4.9) /wo ()] 1 (x) — s| ds
M
< essup |(o /) |/ f (@) — sl ds
s€[m,M] m

f(=) M
= essup [(¢o f)(z) — ¢ (s)| [/ (f (= )—S)d8+/f( )(S—f(w))dé‘]

s€[m,M]

(f (@) —m)® + (M — f (2))°

= essup [(po f)(z) —¢(s)]

s€[m,M] 2
= essu o xT) — S 1 me fﬂ*m—'—M i
= sup g0 )0 ¢<>|L<M e (rw- )]
= =) esup (9o f) () = o (s)
s€[m,M)]
m+ M\?
# (10 =5 e [ ) @) = o (0]
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Then

(4.10) C(m,M,qp, f)
<3 Or=m) [ esup [(p0 ) (@) = o ()] w (o) du (@)
-8 Q s€[m,M]
+ % (M —m)

) — mtM 2
x/ <f()2> essup |(po f)(z) — o (s)|w (z)du (x)
Q

M—-m s€[m,M]

and the inequality (4.3) is proved.
Using Holder’s inequality for p,q > 1 with zlv + % =1 we have

/ (9o f) @) — ¢ ()]|f (@) — sl ds

M 1/p M 1/q

(/ (o f >|”ds) (/ 1/ (@) —s|qczs)
1/p 1/q
B » (M = £ (@) + (f (z) —m)™!
_</ (0o f) (5)] ds) ( o ) :
which implies that
C(m, M, o, f)

1 1 M ) 1/p
200 —m) <q+1>1/q/ﬂ [(fm (@0 f) (@)= ¢ ()] ds>

(0= £ @ (¢ @ - m ™) o @) dute)

and the inequality (4.4) is proved.
We also have

[ 10 D@ - 217 @) slas

< o [ —s|/ (o) (@) — p(s)|ds

= max {M — f (z m}/ (9o f) (s)lds
[(M m) ]f ””MH/ (0o f) @) — () ds
S - m/ (o f) (@)~ ¢ ()] ds

'f ””M\/Wo (5)lds

for each z € Q.
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and the inequality (4.5) is proved.

Remark 3. We observe that

(4.11) ;(/@Of)wdu+q>(M)M  (m )m>

M—m
5) ds HW/wadM

—m m m

_5
_;</Q(<I)of)wdu+q)(M)]\]\j :;( )m)

e (e
‘I’m))(m+M)

and

4(M —m)

- 1

~ 4(M —m)

B 1 . & (M) + ® (m)
4(M —m)

[® (M) M — & (m)m — & (M)m + & (m) M]

and by (4.11) we get

(4.12) ;(/Q(<I>of)wdu+q)(M)]]\\j i( m)m )
)

1 M (M (m)
M—m/m ®(s)ds — 2—‘/wadu

M —
:;(/Q@of)wd +<>;<>)
o (M

T By R

15
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Therefore, by (4.1) we have

(413)  0< % (/Q(q)of)wdqu

e [N 1RO [ (i),

SB(m7M7LP7f)

<I>(M)+<I>(m)>
2

with B (m, M, @, f) defined by (4.2).

Corollary 3. With the assumptions of Theorem 4 and if the condition (3.4) is
satisfied, then we have the simpler inequality

(4.14) 0<1(/(@of)wdu+q)(M)+q)(m))—M1 /M<1>(s)ds

2 -m S,

5. APPLICATIONS FOR FUNCTIONS OF A REAL VARIABLE

Let h : [a,b] — R be a convex function and g : [a,b] — [0,00) an integrable
weight with fabg (x)dx = 1. Then by taking Q = [a,b], D =h, f(x) =z, x € [a, D]
and w = ¢ in the inequalities above we can get some inequalities of interest for
convex functions of a real variable.

From the inequality (2.3) we have for each ¢ € 9h, the subdifferential of i on
[a, b] , that

b b
(5.1) OS/ h(x)g(:z:)dxfh(s)fgo(s)/ (z—s5)g(x)de
. \
< [ @ -¢() @99
¢ b
Smw&—mb—ﬂélﬂ@—w@ﬂﬂww

:(;@_@+%—ajﬂ)lﬁmw—wwnww¢r

for any s € [a,b].
From (2.9) we have

b b
(5.2) OS/ h(:c)g(a:)dm—@(/ xg(x)d:zc)

b b
§/ (o (x) =) <w—/ yg(y)dy>g(x)dx

b
b
/ xg(m)dm—a;

1
< [2(b—a)+

/hﬂ@—Mg@Mz
Q

for any A € R.
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In particular, we have

(5.3) 0</ h(z) g (z)dz — B (/abxg(m)dx>
S/a ¢ (2) (w—/cfyg(y)dy>g(w)dw

b a
<[;(b—a)+/umg(x)da:— —;b

/Q o (@)] g (x) da

and

(5.4) Og/abh(x)g(x)dx@(/abxg(x)dx>
S/ab <¢(w)w> (I/abyg(y)dy>g(w)dx

b
S[;(b—a)—l—/xg( )dx—a;rb
« [ Jota - = g 0y as
b
g;[;b—aw/mg( i~ 2N ()~ K, ()

From (3.1) we also have
(5.5) o</ h(z) g (z)dz —h(a;b)—gp(a;b)/ab<x—a_2|_b)g(x)dx
S/a (w(@—w(a;rb)) <w—a;b)g(fﬂ)dw

<y0-a [ lo@-o ("o

Assume that g is a positive function in [a, b] and such that

() dx.

1
g(a—l—t):g(b—t), 0<t< i(b_a),
ie., y = g(x) is a symmetric curve with respect to the straight line which contains
the point (l (a+0b), 0) and is normal to the z-axis. Under those conditions and if
f g () dz =1, then the following inequalities are valid:

(5.6) <a+b> / M h(a);h(b).

This result is well known in the literature as Fejér’s inequality.
We observe that if ¢ is symmetric on [a, b], then

(5.7) /ab<z—a;rb>g(m)dx20.

However the converse is not true.
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From (3.5), if we assume that the condition (5.7) is satisfied, then we have

(5.5) 0</bh<x>g<x>dx—h<“§b) g/abuo(x)—v) (a5 ) s as

2
*—a/lso —7lg(z)dx

for any A € R.
The inequality (5.8) provides both a generalization for weights satisfying the
condition (5.7) of the left Fejér’s inequality as well as a reverse of this inequality.
In particular we have

(5.9) 0</bh( Vg () da —h(a;—b)</abcp(x) (x—a;_b)g(x)dm

S —a/|<p g (x
and

(5.10) O§Lbh(m)g(z)dxh<a;rb>

< [ (ot - EOTEOY (o0 e
Lo /b W (b) + M, (a)
2 a

2
HEDICEUEVAGE

From (5.10) we also have the dual inequality

(5.11) Og/abh(x)g(x)dzh(a;b)

S/ab(go(x)—h )+ R ( )(m a+b> (2) di
s€la,b]

hZ (b) + Ky (a) h’ b a+b
o (z) - z -
1 I !
< 3 06— a) (W () ~ 1, ().
Moreover, if g (z) < K for a.e. = € [a,b], then we also have

(5.12) Og/abh(x)g(w)dx—h<a;b>

S/ab<<p(x)—h )+ R ( )(m a+b> ) di

o(z) — n( +h’ /” a+b

IN

e () — g (z)dx,

IN

< essup

+| o0

< essup
s€la,b]

< 30— 0P K (H(8) ~ 1, (0)

T —

‘ (z) da
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The other inequalities from Section 2 and 3 have similar forms for functions of a
real variable. The details are not provided here.
From the inequality (4.1) we have

b Chla)a b
(5.13) OS% /Qh(x)g(x)dac—&—h(b)z_z() _bia/a h(s)ds
BUCECY

b b
<o [ [ e@-ee)@-sas)g@ i

If g satisfies the condition (5.7), then from (4.14) we have

(5.14) /h 2)do +h(b);h(”) —bia/bh(s)ds
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