
BOUNDS FOR THE GENERALIZED (�; f)-MEAN DIFFERENCE

S. S. DRAGOMIR1;2

Abstract. In this paper we establish some bounds for the (�; f)-mean dif-
ference introduced in the general settings of measurable spaces and Lebesgue
integral, which is a two functions generalization of Gini mean di¤ erence that
has been widely used by economists and sociologists to measure economic in-
equality.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a � -algebra A of
subsets of 
 and a countably additive and positive measure � on A with values in
R[f1g : For a �-measurable function w : 
! R, with w (x) � 0 for �-a.e. (almost
every) x 2 
 and

R


w (x) d� (x) = 1; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

Let I be an interval of real numbers and � : I ! R a Lebesgue measurable function
on I. For f : 
! I a �-measurable function with � � f 2 Lw (
; �) we de�ne the
generalized (�; f)-mean di¤erence RG (�; f ;w) by

(1.1) RG (�; f ;w) :=
1

2

Z



Z



w (x)w (y) j(� � f) (x)� (� � f) (y)j d� (x) d� (y)

and the generalized (�; f)-mean deviation MD (�; f ;w) by

(1.2) MD (�; f ;w) :=

Z



w (x) j(� � f) (x)� E (�; f ;w)j d� (x) ;

where

E (�; f ;w) :=

Z



(� � f) (y)w (y) d� (y)

the generalized (�; f)-expectation.
If � = e; where e (t) = t; t 2 R is the identity mapping, then we can consider the

particular cases of interest, the generalized f -mean di¤erence

(1.3) RG (f ;w) := RG (e; f ;w) =
1

2

Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)

and the generalized f -mean deviation

(1.4) MD (f ;w) :=MD (e; f ;w) =

Z



w (x) jf (x)� E (f ;w)j d� (x) ;

where E (f ;w) :=
R


f (y)w (y) d� (y) is the generalized f -expectation.
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2 S. S. DRAGOMIR1;2

If 
 = [�1;1] and f = e then we have the usual mean di¤erence

(1.5) RG (w) := RG (f ;w) =
1

2

Z 1

�1

Z 1

�1
w (x)w (y) jx� yj dxdy

and the mean deviation

(1.6) MD (w) :=MD (f ;w) =

Z



w (x) jx� E (w)j dx;

where w : R![0;1) is a density function, this means that w is integrable on R
and

R1
�1 w (t) dt = 1; and

(1.7) E (w) :=

Z 1

�1
xw (x) dx

denote the expectation of w provided that the integral exists and is �nite.
The mean di¤erence RG (w) was proposed by Gini in 1912 [21], after whom it

is usually named, but was discussed by Helmert and other German writers in the
1870�s (cf. H. A. David [13], see also [26, p. 48]). It has a certain theoretical
attraction, being dependent on the spread of the variate-values among themselves
and not on the deviations from some central value ([26, p. 48]). Further, its de�ning
integral (1.5) may converge when that of the variance � (w) ;

(1.8) � (w) :=

Z 1

�1
(x� E (w))2 w (x) dx;

does not. It is, however, more di¢ cult to compute than the standard deviation.
For some recent results concerning integral representations and bounds forRG (w)

see [5], [6], [8] and [9].
For instance, if w : R![0;1) is a density function we de�ne by

W (x) :=

Z x

�1
w (t) dt; x 2 R

its cumulative function. Then we have [5], [6]:

RG (w) = 2Cov (e;W ) =

Z 1

�1
(1�W (y))W (y) dy(1.9)

= 2

Z 1

�1
xw (x)W (x) dx� E (w)

= 2

Z 1

�1
(x� E (w)) (W (x)� 
)w (x) dx

= 2

Z 1

�1
(x� �)

�
W (x)� 1

2

�
w (x) dx

for any 
; � 2 R and [6]:

(1.10) RG (w) =

Z 1

�1

Z 1

�1
(x� y) (W (x)�W (y))w (x)w (y) dxdy:

With the above assumptions, we have the bounds [5]:

(1.11)
1

2
MD (w) � RG (w) � 2 sup

x2R
jW (x)� 
jMD (w) �MD (w) ;

for any 
 2 [0; 1] ; where W (�) is the cumulative distribution of w and MD (w) is
the mean deviation.
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Consider the n-tuple of real numbers a = (a1; :::; an) and p = (p1; :::; pn) a
probability distribution, i.e. pi � 0 for each i 2 f1; :::; ng with

Pn
i=1 pi = 1; then

by taking 
 = f1; :::; ng and the discrete measure, we can consider from (1.1) and
(1.2) that (see [7])

(1.12) RG (a; p) :=
1

2

nX
i=1

nX
j=1

pipj j� (ai)� � (aj)j ;

and

(1.13) MD (a; p) :=
1

2

nX
i=1

pi

������� (ai)�
nX
j=1

pj� (aj)

������
where a 2 In := I � :::� I and � : I ! R.
The quantity RG (a; p) has been de�ned in [7] and some results were obtained.
In the case when � = e; then we get the special case of Gini mean di¤erence

and mean deviation of an empirical distribution that is particularly important for
applications,

(1.14) RG (a; p) :=
1

2

nX
i=1

nX
j=1

pipj jai � aj j ;

and

(1.15) MD (a; p) :=
1

2

nX
i=1

pi

������ai �
nX
j=1

pjaj

������ :
The following result incorporates an upper bound for the weighted Gini mean dif-
ference [7]:
For any a 2 Rn and any p a probability distribution, we have the inequality:

(1.16)
1

2
MD (a; p) � RG (a; p) � inf


2R

"
nX
i=1

pi jai � 
j
#
�MD (a; p) :

The constant 12 in the �rst inequality in (1.16) is sharp.
For some recent results for discrete Gini mean di¤erence and mean deviation,

see [7], [11], [14] and [15].

2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and � : I ! R a Lebesgue
measurable function on I: If w : 
! R is a �-measurable function with w (x) � 0
for �-a.e. (almost every) x 2 
 and

R


w (x) d� (x) = 1 and if f : 
 ! I is a

�-measurable function with � � f 2 Lw (
; �) ; then

(2.1)
1

2
MD (�; f ;w) � RG (�; f ;w) � I (�; f ;w) �MD (�; f ;w) ;

where

(2.2) I (�; f ;w) := inf

2R

Z



w (x) j(� � f) (x)� 
j d� (x) :
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Proof. Using the properties of the integral, we have

RG (�; f ;w)

=
1

2

Z



Z



w (x)w (y) j(� � f) (x)� (� � f) (y)j d� (x) d� (y)

� 1

2

Z



w (x)

����(� � f) (x)Z



w (y) d� (y)�
Z



w (y) (� � f) (y) d� (y)
���� d� (x)

=
1

2

Z



w (x)

����(� � f) (x)� Z



w (y) (� � f) (y) d� (y)
���� d� (x)

=
1

2
MD (�; f ;w)

and the �rst inequality in (2.1) is proved.
By the triangle inequality for modulus we have

j(� � f) (x)� (� � f) (y)j = j(� � f) (x)� 
 + 
 � (� � f) (y)j(2.3)

� j(� � f) (x)� 
j+ j(� � f) (y)� 
j

for any x; y 2 
 and 
 2 R.
Now, if we multiply (2.3) by 1

2w (x)w (y) and integrate, we get

RG (�; f ;w)(2.4)

=
1

2

Z



Z



w (x)w (y) j(� � f) (x)� (� � f) (y)j d� (x) d� (y)

� 1

2

Z



Z



w (x)w (y) [j(� � f) (x)� 
j+ j(� � f) (y)� 
j] d� (x) d� (y)

=
1

2

Z



Z



w (x)w (y) j(� � f) (x)� 
j d� (x) d� (y)

+
1

2

Z



Z



w (x)w (y) j(� � f) (y)� 
j d� (x) d� (y)

=
1

2

Z



w (x) j(� � f) (x)� 
j d� (x) + 1
2

Z



w (y) j(� � f) (y)� 
j d� (y)

=

Z



w (x) j(� � f) (x)� 
j d� (x)

for any 
 2 R.
Taking the in�mum over 
 2 R in (2.4) we get the second part of (2.1).
Since, obviously

I (�; f ;w) = inf

2R

Z



w (x) j(� � f) (x)� 
j d� (x)

�
Z



w (x)

����(� � f) (x)� Z



w (y) (� � f) (y) d� (y)
���� d� (x)

=MD (�; f ;w) ;

the last part of (2.1) is thus proved. �
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By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if (� � f)2 2 Lw (
; �) ;
then we have�Z




w (x)

����(� � f) (x)� Z



w (y) (� � f) (y) d� (y)
���� d� (x)�2

�
Z



w (x)

�
(� � f) (x)�

Z



w (y) (� � f) (y) d� (y)
�2
d� (x)

=

Z



w (x) (� � f)2 (x) d� (x)

� 2
Z



w (y) (� � f) (y) d� (y)
Z



w (x) (� � f) (x) d� (x)

+

�Z



w (y) (� � f) (y) d� (y)
�2 Z




w (x) d� (x)

=

Z



w (x) (� � f)2 (x) d� (x)�
�Z




w (x) (� � f) (x) d� (x)
�2
:

By considering the generalized (�; f)-dispersion

� (�; f ;w) :=

 Z



w (x) (� � f)2 (x) d� (x)�
�Z




w (x) (� � f) (x) d� (x)
�2!1=2

;

then we have

(2.5) MD (�; f ;w) � � (�; f ;w)

provided (� � f)2 2 Lw (
; �).
If there exists the constants m; M so that

(2.6) �1 < m � � (t) �M <1 for almost any t 2 I

then by the reverse CBS inequality

(2.7) � (�; f ;w) � 1

2
(M �m) ;

by (2.1) and by (2.5) we can state the following result:

Corollary 1. Let I be an interval of real numbers and � : I ! R a Lebesgue
measurable function on I satisfying the condition (2.6) for some constants m; M:
If w : 
 ! R is a �-measurable function with w (x) � 0 for � -a.e. x 2 
 andR


w (x) d� (x) = 1 and if f : 
 ! I is a �-measurable function with (� � f)2 2

Lw (
; �) ; then we have the chain of inequalities

1

2
MD (�; f ;w) � RG (�; f ;w) � I (�; f ;w) �MD (�; f ;w)(2.8)

� � (�; f ;w) � 1

2
(M �m) :

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16)
while for the univariate case with

R1
�1 w (t) dt = 1 we have

(2.9)
1

2
MD (w) � RG (w) � I (w) �MD (w) � � (�; f ;w)
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where

(2.10) I (w) := inf

2R

Z 1

�1
w (x) jx� 
j dx:

If w is supported on the �nite interval [a; b] ; namely
R b
a
w (x) dx = 1; then we

have the chain of inequalities

(2.11)
1

2
MD (w) � RG (w) � I (w) �MD (w) � � (�; f ;w) �

1

2
(b� a) :

3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:

Theorem 2. Let � : [a; b] ! R be a function of bounded variation on the closed
interval [a; b] : If w : 
 ! R is a �-measurable function with w (x) � 0 for � -a.e.
x 2 
 and

R


w (x) d� (x) = 1 and if f : 
! [a; b] is a �-measurable function with

� � f 2 Lw (
; �) ; then

(3.1) RG (�; f ;w) �
1

2

b_
a

(�) ;

where
Wb
a (�) is the total variation of � on [a; b] :

Proof. Using the inequality (2.4) we have

(3.2) RG (�; f ;w) �
Z



w (x) j(� � f) (x)� 
j d� (x)

for any 
 2 R.
By the triangle inequality, we have����(� � f) (x)� 12 [� (a) + � (b)]

����(3.3)

� 1

2
j� (a)� � (f (x))j+ 1

2
j� (b)� � (f (x))j

for any x 2 
:
Since � : [a; b]! R is of bounded variation and d is a division of [a; b] ; namely

d 2 D ([a; b]) := fd := fa = t0 < t1 < ::: < tn = bgg ;
then

b_
a

(�) = sup
d2D([a;b])

n�1X
i=0

j� (ti+1)� � (ti)j <1:

Taking the division d0 := fa = t0 < t < t2 = bg we then have

j� (t)� � (a)j+ j� (b)� � (t)j �
b_
a

(�)

for any t 2 [a; b] and then

(3.4) j� (f (x))� � (a)j+ j� (b)� � (f (x))j �
b_
a

(�)

for any x 2 
:
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On making use of (3.3) and (3.4) we get

(3.5)

����(� � f) (x)� 12 [� (a) + � (b)]
���� � 1

2

b_
a

(�)

for any x 2 
:
If we multiply (3.5) by w (x) and integrate, then we obtain

(3.6)
Z



w (x)

����(� � f) (x)� 12 [� (a) + � (b)]
���� � 1

2

b_
a

(�) :

Finally, by choosing 
 = 1
2 [� (a) + � (b)] in (3.2) and making use of (3.6) we

deduce the desired result (3.1). �

In the case of absolutely continuous functions we have:

Theorem 3. Let � : [a; b]! R be an absolutely continuous function on the closed
interval [a; b] : If w : 
 ! R is a �-measurable function with w (x) � 0 for � -a.e.
x 2 
 and

R


w (x) d� (x) = 1 and if f : 
! [a; b] is a �-measurable function with

� � f 2 Lw (
; �) ; then

(3.7) RG (�; f ;w) �

8>>>>><>>>>>:

k�0k[a;b];1RG (f ;w) if �0 2 L1 ([�; �]) ;

1
21=p

k�0k[a;b];pR
1=q
G (f ;w) if �0 2 Lp ([�; �]) ;

p > 1; 1p +
1
q = 1;

;

where the Lebesgue norms are de�ned by

kgk[�;�];p :=

8><>:
essupt2[�;�] jg (t)j if p =1;�R �

�
jg (t)jp dt

�1=p
if p � 1

and Lp ([�; �]) :=
n
gj g measurable and kgk[�;�];p <1

o
; p 2 [1;1] :

Proof. Since f is absolutely continuous, then we have

� (t)� � (s) =
Z t

s

�0 (u) du

for any t; s 2 [a; b] :
Using the Hölder integral inequality we have

j� (t)� � (s)j =
����Z t

s

�0 (u) du

����(3.8)

�

8><>:
k�0k[a;b];1 jt� sj if p =1;

k�0k[a;b];p jt� sj
1=q if p > 1; 1p +

1
q = 1

for any t; s 2 [a; b] :
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Using (3.8) we then have

j(� � f) (x)� (� � f) (y)j(3.9)

�

8><>:
k�0k[a;b];1 jf (x)� f (y)j if p =1;

k�0k[a;b];p jf (x)� f (y)j
1=q if p > 1; 1p +

1
q = 1

for any x; y 2 
:
If we multiply (3.9) by 1

2w (x)w (y) and integrate, then we get

1

2

Z



Z



w (x)w (y) j(� � f) (x)� (� � f) (y)j d� (x) d� (y)(3.10)

�

8>>>>><>>>>>:

1
2 k�

0k[a;b];1
R



R


w (x)w (y) jf (x)� f (y)j d� (x) d� (y) if p =1;

1
2 k�

0k[a;b];p
R



R


w (x)w (y) jf (x)� f (y)j1=q d� (x) d� (y)

if p > 1; 1p +
1
q = 1:

This proves the �rst branch of (3.7).
Using Jensen�s integral inequality for concave function 	(t) = ts; s 2 (0; 1) we

have for s = 1
q < 1 thatZ




Z



w (x)w (y) jf (x)� f (y)j1=q d� (x) d� (y)

�
�Z




Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�1=q

;

which implies that

1

2
k�0k[a;b];p

Z



Z



w (x)w (y) jf (x)� f (y)j1=q d� (x) d� (y)

� 1

2
k�0k[a;b];p

�Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�1=q

= k�0k[a;b];p
�
1

2q

Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�1=q

= k�0k[a;b];p
�

1

2q�1
1

2

Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�1=q

=
1

2
q�1
q

k�0k[a;b];p (RG (f ;w))
1=q

=
1

21=p
k�0k[a;b];pR

1=q
G (f ;w)

and the second part of (3.7) is proved. �

The function � : [a; b]! R is called of r-H-Hölder type with the given constants
r 2 (0; 1] and H > 0 if

j� (t)� � (s)j � H jt� sjr

for any t; s 2 [a; b] :
In the case when r = 1; namely, there is the constant L > 0 such that

j� (t)� � (s)j � L jt� sj
for any t; s 2 [a; b] ; the function � is called L-Lipschitzian on [a; b] :
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We have:

Theorem 4. Let � : [a; b] ! R be a function of r-H-Hölder type on the closed
interval [a; b] : If w : 
 ! R is a �-measurable function with w (x) � 0 for �-a.e.
x 2 
 and

R


w (x) d� (x) = 1 and if f : 
! [a; b] is a �-measurable function with

� � f 2 Lw (
; �) ; then

(3.11) RG (�; f ;w) �
1

21�r
HRrG (f ;w) :

In particular, if � is L-Lipschitzian on [a; b] ; then

(3.12) RG (�; f ;w) � LRG (f ;w) :

Proof. We have

(3.13) j(� � f) (x)� (� � f) (y)j � H jf (x)� f (y)jr

for any x; y 2 
:
If we multiply (3.13) by 1

2w (x)w (y) and integrate, then we get

1

2

Z



Z



w (x)w (y) j(� � f) (x)� (� � f) (y)j d� (x) d� (y)(3.14)

� 1

2
H

Z



Z



w (x)w (y) jf (x)� f (y)jr d� (x) d� (y) :

By Jensen�s integral inequality for concave functions we also haveZ



Z



w (x)w (y) jf (x)� f (y)jr d� (x) d� (y)(3.15)

�
�Z




Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�r
:

Therefore, by (3.14) and (3.15) we get

RG (�; f ;w) �
1

2
H

�Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�r

=
1

21�r
H

�
1

2

Z



Z



w (x)w (y) jf (x)� f (y)j d� (x) d� (y)
�r

=
1

21�r
HRrG (f ;w)

and the inequality (3.11) is proved. �
We have:

Theorem 5. Let �; 	 : [a; b]! R be continuos functions on [a; b] and di¤erentiable
on (a; b) with 	0 (t) 6= 0 for t 2 (a; b) : If w : 
 ! R is a �-measurable function
with w (x) � 0 for � -a.e. x 2 
 and

R


w (x) d� (x) = 1 and if f : 
 ! [a; b] is a

�-measurable function with � � f 2 Lw (
; �) ; then

(3.16) inf
t2(a;b)

�����0 (t)	0 (t)

����RG (	; f ;w) � RG (�; f ;w) � sup
t2(a;b)

�����0 (t)	0 (t)

����RG (	; f ;w) :
Proof. By the Cauchy�s mean value theorem, for any t; s 2 [a; b] with t 6= s there
exists a � between t and s such that

� (t)� � (s)
	 (t)�	(s) =

�0 (�)

	0 (�)
:
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This implies that

inf
t2(a;b)

�����0 (t)	0 (t)

���� j	(t)�	(s)j � j� (t)� � (s)j(3.17)

� sup
t2(a;b)

�����0 (t)	0 (t)

���� j	(t)�	(s)j
for any t; s 2 [a; b] :
Therefore, we have

inf
t2(a;b)

�����0 (t)	0 (t)

���� j	(f (x))�	(f (y))j � j� (f (x))� � (f (y))j(3.18)

� sup
t2(a;b)

�����0 (t)	0 (t)

���� j	(f (x))�	(f (y))j
for any x; y 2 
:
If we multiply (3.18) by 1

2w (x)w (y) and integrate, we get the desired result
(3.16). �

Corollary 2. Let � : [a; b]! R be a continuos function on [a; b] and di¤erentiable
on (a; b) : If w is as in Theorem 5, then we have

(3.19) inf
t2(a;b)

j�0 (t)jRG (f ;w) � RG (�; f ;w) � sup
t2(a;b)

j�0 (t)jRG (f ;w) :

We also have:

Theorem 6. Let � : [a; b]! R be an absolutely continuous function on the closed
interval [a; b] : If w : 
 ! R is a �-measurable function with w (x) � 0 for � -a.e.
x 2 
 and

R


w (x) d� (x) = 1 and if f : 
! [a; b] is a �-measurable function with

� � f 2 Lw (
; �) ; then
RG (�; f ;w)(3.20)

�

8<:
k�0k[a;b];1M (f ;w) if p =1;

k�0k[a;b];pM1=q (f ;w) if p > 1; 1p +
1
q = 1

�

8><>:
1
2 (b� a) k�

0k[a;b];1 if p =1;

1
21=q

(b� a)1=q k�0k[a;b];p if p > 1; 1p +
1
q = 1;

where M (f ;w) is de�ned by

(3.21) M (f ;w) :=

Z



w (x)

����f (x)� a+ b2
���� d� (x) :

Proof. From the inequality (3.8) we have����(� � f) (x)� ��a+ b2
�����(3.22)

�

8><>:
k�0k[a;b];1

��f (x)� a+b
2

�� if p =1;
k�0k[a;b];p

��f (x)� a+b
2

��1=q if p > 1; 1p + 1
q = 1

for any x 2 
:
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Now, if we multiply (3.22) by w (x) and integrate, then we getZ



w (x)

����(� � f) (x)� ��a+ b2
����� d� (x)(3.23)

�

8><>:
k�0k[a;b];1

R


w (x)

��f (x)� a+b
2

�� d� (x) if p =1;
k�0k[a;b];p

R


w (x)

��f (x)� a+b
2

��1=q d� (x) if p > 1; 1p + 1
q = 1:

By Jensen�s integral inequality for concave functions we have

(3.24)
Z



w (x)

����f (x)� a+ b2
����1=q d� (x) � �Z




w (x)

����f (x)� a+ b2
���� d� (x)�1=q :

On making use of (3.2), (3.23) and (3.24) we get the �rst inequality in (3.20).
The last part of (3.20) follows by the fact that����f (x)� a+ b2

���� � 1

2
(b� a)

for any x 2 
: �

4. Bounds for Special Convexity

When some convexity properties for the function � are assumed, then other
bounds can be derived as follows.

Theorem 7. Let w : 
! R be a �-measurable function with w (x) � 0 for � -a.e.
x 2 
 and

R


w (x) d� (x) = 1 and f : 
 ! [a; b] be a �-measurable function with

� � f 2 Lw (
; �) : Assume also that � : [a; b] ! R is a continuous function on
[a; b] :
(i) If j�j is concave on [a; b] ; then

(4.1) RG (�; f ;w) � j� (E (f ;w))j ;
(ii) If j�j is convex on [a; b] ; then

(4.2) RG (�; f ;w) �
1

b� a [(b� E (f ;w)) j� (a)j+ (E (f ;w)� a)� j(b)j] :

Proof. (i) If j�j is concave on [a; b] ; then by Jensen�s inequality we have

(4.3)
Z



w (x) j(� � f) (x)j d� (x) �
������Z




w (x) f (x) d� (x)

����� :
From (3.2) for 
 = 0 we also have

(4.4) RG (�; f ;w) �
Z



w (x) j(� � f) (x)j d� (x) :

This is an inequality of interest in itself.
On utilizing (4.3) and (4.4) we get (4.1).
(ii) Since j�j is convex on [a; b] ; then for any t 2 [a; b] we have

j� (t)j =
������ (b� t) a+ b (t� a)b� a

����� � (b� t) j� (a)j+ (t� a) � j(b)j
b� a :

This implies that

(4.5) j(� � f) (x)j � (b� f (x)) j� (a)j+ (f (x)� a) � j(b)j
b� a
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for any x 2 
:
If we multiply (4.5) by w (x) and integrate, then we getZ




w (x) j(� � f) (x)j d� (x)

� 1

b� a

��
b

Z



w (x) d� (x)�
Z



w (x) f (x) d� (x)

�
j� (a)j

+

�Z



w (x) f (x) d� (x)� a
Z



w (x) d� (x)

�
� j(b)j

�
;

which, together with (4.4), produces the desired result (4.2). �

In order to state other results we need the following de�nitions:

De�nition 1 ([19]). We say that a function f : I ! R belongs to the class P (I)
if it is nonnegative and for all x; y 2 I and t 2 [0; 1] we have

f (tx+ (1� t) y) � f (x) + f (y) :

It is important to note that P (I) contains all nonnegative monotone, convex
and quasi convex functions, i.e. functions satisfying

f (tx+ (1� t) y) � max ff (x) ; f (y)g

for all x; y 2 I and t 2 [0; 1] :
For some results on P -functions see [19] and [28] while for quasi convex functions,

the reader can consult [18].

De�nition 2 ([3]). Let s be a real number, s 2 (0; 1]: A function f : [0;1)! [0;1)
is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y)

for all x; y 2 [0;1) and t 2 [0; 1] :

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25],
[27] and [29].

Theorem 8. Let w : 
! R be a �-measurable function with w (x) � 0 for � -a.e.
x 2 
 and

R


w (x) d� (x) = 1 and f : 
 ! [a; b] be a �-measurable function with

� � f 2 Lw (
; �) : Assume also that � : [a; b] ! R is a continuous function on
[a; b] :
(i) If j�j belongs to the class P on [a; b] ; then

(4.6) RG (�; f ;w) � j� (a)j+� j(b)j ;

(ii) If j�j is quasi convex on [a; b] ; then

(4.7) RG (�; f ;w) � max fj� (a)j ;� j(b)jg ;
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(iii) If j�j is Breckner s-convex on [a; b] ; then

RG (�; f ;w) �
1

(b� a)s
�
j� (a)j

Z



w (x) (b� f (x))s d� (x)(4.8)

+� j(b)j
Z



w (x) (f (x)� a)s d� (x)
�

� 1

(b� a)s [j� (a)j (b� E (f ;w))
s
d� (x)

+� j(b)j (E (f ;w)� a)s d� (x)] :

Proof. (i) Since j�j belongs to the class P on [a; b] ; then for any t 2 [a; b] we have

j� (t)j =
������ (b� t) a+ b (t� a)b� a

����� � j� (a)j+� j(b)j :
This implies that

(4.9) j(� � f) (x)j � j� (a)j+� j(b)j
for any x 2 
:
If we multiply (4.9) by w (x) and integrate, then we get

(4.10)
Z



w (x) j(� � f) (x)j d� (x) � j� (a)j+� j(b)j ;

which, together with (4.4), produces the desired result (4.6).
(ii) Goes in a similar way.
(iii) By Breckner s-convexity we have

j� (t)j =
������ (b� t) a+ b (t� a)b� a

����� � � b� tb� a

�s
j� (a)j+

�
t� a
b� a

�s
� j(b)j

for any t 2 [a; b] :
This implies that

(4.11) j(� � f) (x)j � 1

(b� a)s [(b� f (x))
s j� (a)j+ (f (x)� a)s � j(b)j]

for any x 2 
:
If we multiply (4.11) by w (x) and integrate, then we getZ




w (x) j(� � f) (x)j d� (x) � 1

(b� a)s
�
j� (a)j

Z



w (x) (b� f (x))s d� (x)(4.12)

+� j(b)j
Z



w (x) (f (x)� a)s d� (x)
�
;

which, together with (4.4), produces the �rst part of (4.8).
The last part follows by Jensen�s integral inequality for concave functions, namelyZ




w (x) (b� f (x))s d� (x) �
�
b�

Z



w (x) f (x) d� (x)

�s
and Z




w (x) (f (x)� a)s d� (x) �
�Z




w (x) f (x) d� (x)� a
�s
;

where s 2 (0; 1) : �
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5. Some Examples

Let f : 
 ! [0;1) be a �-measurable function and w : 
 ! R a �-measurable
function with w (x) � 0 for � -a.e. x 2 
 and

R


w (x) d� (x) = 1. We de�ne, for

the function � (t) = tp; p > 0, the generalized (p; f)-mean di¤erence RG (p; f ;w)
by

(5.1) RG (p; f ;w) :=
1

2

Z



Z



w (x)w (y) jfp (x)� fp (y)j d� (x) d� (y)

and the generalized (p; f)-mean deviation MD (p; f ;w) by

(5.2) MD (p; f ;w) :=

Z



w (x) jfp (x)� E (p; f ;w)j d� (x) ;

where

(5.3) E (p; f ;w) :=

Z



fp (y)w (y) d� (y)

is the generalized (p; f)-expectation.
If f : 
! [a; b] � [0;1) is a �-measurable function, then by (3.1) we have

(5.4) RG (p; f ;w) �
1

2
(bp � ap) :

By (3.7) we have

(5.5) RG (p; f ;w) � p�p (a; b)RG (f ;w) ;
where

�p (a; b) :=

8<: b if p � 1;

a if p 2 (0; 1)
and

(5.6) RG (p; f ;w) �
p

21=�

�
b�(p�1)+1 � a�(p�1)+1

� (p� 1) + 1

�1=�
R
1=�
G (f ;w) ,

where � > 1; 1� +
1
� = 1:

From (3.20) we also have

RG (p; f ;w)(5.7)

�

8><>:
�p (a; b)M (f ;w) ,

p
�
b�(p�1)+1�a�(p�1)+1

�(p�1)+1

�1=�
M1=� (f ;w) if � > 1; 1� +

1
� = 1

�

8><>:
1
2 (b� a) �p (a; b) ;

1
21=�

(b� a)1=� p
�
b�(p�1)+1�a�(p�1)+1

�(p�1)+1

�1=�
if � > 1; 1� +

1
� = 1;

where M (f ;w) is de�ned by (3.21).
If p 2 (0; 1) ; then the function j� (t)j = tp is concave on [a; b] � [0;1) and by

(4.1) we have

(5.8) RG (p; f ;w) � Ep (f ;w) :
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For p � 1 the function j� (t)j = tp is convex on [a; b] � [0;1) and by (4.2) we have

(5.9) RG (p; f ;w) �
1

b� a [(b� E (f ;w)) a
p + (E (f ;w)� a) bp] :

Let f : 
 ! [0;1) be a �-measurable function and w : 
 ! R a �-measurable
function with w (x) � 0 for � -a.e. x 2 
 and

R


w (x) d� (x) = 1. We de�ne, for

the function � (t) = ln t; the generalized (ln; f)-mean di¤erence RG (ln; f ;w) by

(5.10) RG (ln; f ;w) :=
1

2

Z



Z



w (x)w (y) jln f (x)� ln f (y)j d� (x) d� (y)

and the generalized (p; f)-mean deviation MD (ln; f ;w) by

(5.11) MD (ln; f ;w) :=

Z



w (x) jln f (x)� E (ln; f ;w)j d� (x) ;

where

(5.12) E (ln; f ;w) :=

Z



w (y) ln f (y) d� (y)

is the generalized (ln; f)-expectation.
If f : 
! [a; b] � [0;1) is a �-measurable function, then by (3.1) we have

(5.13) RG (ln; f ;w) �
1

2
(ln b� ln a) :

By (3.7) we have

RG (ln; f ;w)(5.14)

�

8><>:
1
aRG (f ;w) ;

1
21=p

�
bp�1�ap�1

(p�1)bp�1ap�1

�1=p
R
1=q
G (f ;w) if p > 1; 1p +

1
q = 1:

By (3.20) we have

RG (ln; f ;w)(5.15)

�

8><>:
1
aM (f ;w) ;

�
bp�1�ap�1

(p�1)bp�1ap�1

�1=p
M1=q (f ;w) if p > 1; 1p +

1
q = 1

�

8><>:
1
2

�
b
a � 1

�
;

1
21=q

(b� a)1=q
�

bp�1�ap�1
(p�1)bp�1ap�1

�1=p
if p > 1; 1p +

1
q = 1:

Now, observe that the function j� (t)j = jln tj is convex on (0; 1) and concave on
[1;1): If f : 
! [a; b] � (0; 1) is a �-measurable function, then by (4.2) we have

(5.16) RG (ln; f ;w) �
1

b� a [(b� E (f ;w)) jln aj+ (E (f ;w)� a) jln bj]

and if f : 
! [a; b] � [1;1); then by (4.1) we have
(5.17) RG (ln; f ;w) � ln (E (f ;w)) :
The interested reader may state similar bounds for functions � such as � (t) =

exp t; t 2 R or � (t) = t ln t; t > 0: We omit the details.
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