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BOUNDS FOR THE GENERALIZED (9, f)-MEAN DIFFERENCE

S. S. DRAGOMIRY2

ABSTRACT. In this paper we establish some bounds for the (®, f)-mean dif-
ference introduced in the general settings of measurable spaces and Lebesgue
integral, which is a two functions generalization of Gini mean difference that
has been widely used by economists and sociologists to measure economic in-
equality.

1. INTRODUCTION

Let (2, A,v) be a measurable space consisting of a set 2, a o -algebra A of
subsets of Q2 and a countably additive and positive measure v on A with values in
RU{o0} . For a v- measurable function w : @ — R, with w (x) > 0 for v-a.e. (almost
every) z € Q and [, w (x)dv (z) = 1, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis v-measurable and / w(x) |f (z)|dv (z) < oo}
Q

Let I be an interval of real numbers and ® : I — R a Lebesgue measurable function
on I. For f:Q — I a v-measurable function with ® o f € L, (2,v) we define the
generalized (@, f)-mean difference Rg (P, f;w) by

(11) Re (@, fiw) : // (@0 f) (@) — (@ o f) (4)| dv (z) dv (1)

and the generalized (®, f)-mean deviation Mp (P, f;w) by

(12 Mp(®, frw) = /Q w(@) (B f) (2) — B (@, f1w)|dv (x),
where
E(®, f;uw) = / (@0 f) (4)w () dv ()

the generalized (®, f)-expectation.
If & = e, where e (t) = t, t € R is the identity mapping, then we can consider the
particular cases of interest, the generalized f-mean difference

(13) R (f;w) = Re (e / / (@) = @)l dv (2)dv (y)
and the generalized f-mean deviation

(1) My (fiw) = Mp (e fiw) = [ w(@)|f @)= B (fiw)]dv @),

where E (f;w) := [, f( y) dv (y) is the generalized f-expectation.
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2 S.S. DRAGOMIRY2

If Q = [—00,00] and f = e then we have the usual mean difference

(15)  Rg(w)=Re(fw / / v) & — y| ddy
and the mean deviation
(1.6) Mp (w) == Mp (f;w) :/Qw(x) o — E (w)| da,

where w : ]R —[0,00) is a density function, this means that w is integrable on R
and [*_w(t)dt =1, and

(1.7) E (w) := /00 zw (z) dx

denote the expectation of w provided that the integral exists and is finite.

The mean difference Rg (w) was proposed by Gini in 1912 [21], after whom it
is usually named, but was discussed by Helmert and other German writers in the
1870’s (cf. H. A. David [13], see also [26, p. 48]). It has a certain theoretical
attraction, being dependent on the spread of the variate-values among themselves
and not on the deviations from some central value ([26, p. 48]). Further, its defining
integral (1.5) may converge when that of the variance o (w),

(1.8) o (w) = /oo (z — E (w))*w (z) dz,

— 00
does not. It is, however, more difficult to compute than the standard deviation.
For some recent results concerning integral representations and bounds for Rg (w)
see [5], [6], [8] and [9].
For instance, if w : R —[0,00) is a density function we define by

W (x) ::/w w(t)dt, zeR

— 00

its cumulative function. Then we have [5], [6]:

(19) Re:(w) =2Cov (e, W) = [~ (L= W () W () dy
=2/O;zw(x)W(x)da:—E(w)
=2 [ o= B@) (¥ (@) =) v @) da
—Q/Z(xé) <W(x);>w(x)dx

for any v, § € R and [6

(1.10) / / (x—y) (W (x) =W (y) w(z) w (y) dedy.

With the above assumptions, we have the bounds [5]:
1
(1.11) §MD (w) < Rg (w) < 25u§ |W () —~v| Mp (w) < Mp (w),
Te

for any v € [0,1], where W (+) is the cumulative distribution of w and Mp (w) is
the mean deviation.
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Consider the n-tuple of real numbers a = (ay,...,a,) and p = (p1,...,Pn) a
probability distribution, i.e. p; > 0 for each ¢ € {1,...,n} with Y ;" | p; = 1, then
by taking 2 = {1,...,n} and the discrete measure, we can consider from (1.1) and
(1.2) that (see [7])

(112) Ro (a:p) = 5 35 iy 19 (@) — @ (ay)],

i1 j=1
and
1 -
(1.13) Mp (a;p) == 5 Zpi P (a;) — ZP;“I’ (a;)
i=1 j=1

whereae I":=Ix..xTand ®: ] - R.
The quantity Rg (a;p) has been defined in [7] and some results were obtained.
In the case when ® = e, then we get the special case of Gini mean difference
and mean deviation of an empirical distribution that is particularly important for
applications,

1 n n
(1.14) R (a;p) := §Zzpipj|ar%\,

i=1 j=1
and
1 & .
(1.15) Mp (a;p) = 3 21% a; — lejaj :
i= j=

The following result incorporates an upper bound for the weighted Gini mean dif-
ference [7]:
For any a € R™ and any p a probability distribution, we have the inequality:

1 , -
(1.16) 3Mp (a;p) < R (a;p) < inf [Zpi |a; — 7|] < Mp (a;p).
=1

The constant % in the first inequality in (1.16) is sharp.
For some recent results for discrete Gini mean difference and mean deviation,
see [7], [11], [14] and [15].
2. GENERAL BOUNDS
We have:

Theorem 1. Let I be an interval of real numbers and ® : I — R a Lebesgue
measurable function on I. If w: Q — R is a v-measurable function with w (x) > 0
for v-a.e. (almost every) x € Q and [w(z)dv(z) =1 and if f: Q — T isa
v-measurable function with ® o f € L, (Q,v), then

(1) SMp(®,fiw) < Rg (8, fw) < 1(2, f;w) < Mp (®, frw),
where

(2.2) I1(®, f;w) := inf /Qw(:z:) [(Dof)(z)—7|dv(x).

yER
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Proof. Using the properties of the integral, we have
RG ‘I) f w
5/ [ue £)(@) = @0 ) ) dvz) dv (3)
>3 [w@|@ene >/Q ) = [ w @) @)dv )

:%/ﬂw(x) @Of)@c)—/QUJ(?J)(CI)OJ”)(?/)dV(y)

dv (z)

dv (x)

and the first inequality in (2.1) is proved.
By the triangle inequality for modulus we have

(2.3) (@0 f)(x) = (Pof)(y)l (@0 f) (@) —v+7— (2o f) ()
|

(@0 f) (@) =+ |(®of)(y) -l

for any z,y € Q and v € R.
Now, if we multiply (2.3) by 2w (z)w (y) and integrate, we get

(2.4) RG <I>fw
5/ [we £) (@) = (@0 f) ()l dv (z)dv ()
_i/ﬂ/gwxwy @0 1) (z) =9+ @0 ) ()~ dv (@) dv (y)

:1//Mw (@ o f) (x) — ] dv (z) dv (y)
// ) () = dv (@) dv ()
1
2/9 (@) (@0 f) (2) — ] dv () + 2/Qw(y)\(<1>0f)(y)—v|d1/(y)
:/Qw(x)\(‘POf)(w)—ﬂdV(z)

for any v € R.

Taking the infimum over v € R in (2.4) we get the second part of (2.1).
Since, obviously

I(é,f;w)éiygf/ @) (@0 1) (x) = 1] dv (2)
2~ [0 @) @) dv ) dv (2)
Q

< Jve

:MD(fbfw)

the last part of (2.1) is thus proved.
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By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if (® o f)* € Ly, (2, 1),
then we have

e

S/Qw(w) [(‘I’Of)(x)—/Qw(y)(‘POf)(y)dV(y)rdV(x)

i ()| 2

(@0 f) (x)—/ﬂw@) (@ f) (y) dv ()

- [v@ @0 @ar )
—Z/Qw(y)(%f)(y)dV(y)gzw(x)(fwa)(w)dV(x)

| [vw@enwam| [w@aw 2
- [v@@ert@aw-|[v@@enwae] .

By considering the generalized (®, f)-dispersion

o (®, Jiw) = (/Qw@c) @o ) @i - | [ w@@er) (x)du(aw]z)m,

then we have

provided (® o f)? € Ly, (2, v).
If there exists the constants m, M so that

(2.6) —co<m < ®(t) <M < oo for almost any ¢ € T

then by the reverse CBS inequality

1
(2.7) 0@ frw) < L (M —m).
by (2.1) and by (2.5) we can state the following result:

Corollary 1. Let I be an interval of real numbers and ® : I — R a Lebesgue
measurable function on I satisfying the condition (2.6) for some constants m, M.
If w: Q — R is a v-measurable function with w(xz) > 0 for v -a.e. x € Q and
Jow (z)dv(xz) =1 and if f : Q — I is a v-measurable function with (®of) e
Ly, (Q,v), then we have the chain of inequalities

(28) My (®,fiw) < Ro (®,f;w)  T(®, f;w) < Mp (2, fiw)

<o (® fiw) <

<
%(M—m).

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16)
while for the univariate case with [*_w (¢)dt = 1 we have

(2.9) S M (w) < R (w) < 1(w) < Mp (w) < 0 (&, f1u)
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where
(2.10) I (w) := inf / w(x) |z — 7| dx.
~YER o
If w is supported on the finite interval [a,d], namely f x)dx = 1, then we
have the chain of inequalities
1 1
(2.11) §MD (w) < Rg (w) < I (w) < Mp(w) <o (P, f;w) < 3 (b—a).

3. BounNDS FOR VARIOUS CLASSES OF FUNCTIONS
In the case of functions of bounded variation we have:

Theorem 2. Let @ : [a,b] — R be a function of bounded variation on the closed
interval [a,b] . Ifw Q2 — R is a v-measurable function with w(x) > 0 for v -a.e.
zeQand [w(x)dv(z) =1 and if f: Q — [a,b] is a v-measurable function with
bofel, (Ql/) then

b
(3.1) R (@, fiw) < ;\a/(fb%

where \/Z (®) is the total variation of ® on [a,b].

Proof. Using the inequality (2.4) we have

(32) Ro (@ fi0) < [ w(@)|@e f) @) =ldv @)
for any v € R.
By the triangle inequality, we have

(3.3) (@0 f) (@)~ (@) + @ (b)]]

2

<

[ (a) = @ (f ()] + 5 |2 () — (£ (2))

| —

for any z € Q.
Since @ : [a,b] — R is of bounded variation and d is a division of [a, b], namely

d e D([a,b]) :={d:={a=t) <t1 <..<t,=0>b}},
then

b
\/(q’): sup Z|‘I) (tit1) (t:)] < oo.

deD([a,b])

Taking the division dy := {a =ty < t <ty = b} we then have

b
@ (t) = @ (a)] + @ (b <V (@)

for any ¢ € [a,b] and then

b
(3-4) |2 (f (@) = (a)| + 2 (b)) — @ (f (@) < \/ (@)

for any z € Q.
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On making use of (3.3) and (3.4) we get

b
V(@)

N |

(35) @on) @) 50+ o] <

for any z € Q.
If we multiply (3.5) by w (x) and integrate, then we obtain

(3.6) [ v

Finally, by choosing v = 1 [® (a) + ® ()] in (3.2) and making use of (3.6) we
deduce the desired result (3.1). g

@0 )@ - 3@+ 0] <V @),

In the case of absolutely continuous functions we have:

Theorem 3. Let ® : [a,b] — R be an absolutely continuous function on the closed
interval [a,b]. If w: Q@ — R is a v-measurable function with w(x) > 0 for v -a.e.
zeQand [w(x)dv(z) =1 and if f: Q — [a,b] is a v-measurable function with
®ofel,(Qv), then

H(b/”[a,b],oo RG (f7 w) Zf (I)/ S LOO ([O[7B]) )

B7)  Re(® fiw) <9 g 19y, B (Fiw) if @ € Ly ([0, 8),
11
P > ]., 5 + a = ].,
where the Lebesque norms are defined by
€SSUPy¢[q,B] lg ()] if p= o0,
||9||[ Blp = 1
B /p
(g ae) " ip=1
and Ly, ([a, B]) := {g\ g measurable and |\g((, g, < oo} , D€ [l,00].

Proof. Since f is absolutely continuous, then we have

<I>(t)f<I>(s):/ & (u) du

S

for any t, s € [a,b].
Using the Holder integral inequality we have

/St & (u) du

197 [l}4,0),00 1t = | if p= 00,

(3-8) @) — @ (s)] =

IN

1 .
1|yt — sV i p>1, 2+ 1 =1

for any t, s € [a,b].
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Using (3.8) we then have
(3.9) (@0 f)(z) = (®of) ()

19110 41,00 1F (2) = F )] if p = o0,
<
1 |11, 1 (@) = F I i p>1,2+ 1 =1

for any z, y € Q.
If we multiply (3.9) by 1w (z) w (y) and integrate, then we get

(3.10) // ) (@0 f) (2) — (B o f) ()] dv () dv (y)

3 12041, fn Jow @) wy)[f (x) = f (y)ldv(z)dv(y) if p= oo,

<O N g S o w (@) w () |f (@) = £ ()] dv () dv (y)

: 1 1 _

This proves the first branch of (3.7).
Using Jensen’s integral inequality for concave function V¥ (¢) = t*, s € (0,1) we
have for s = % < 1 that

//w(x)w(y)\f(x)ff(y)ll/"dV(w)dV(y)
QJQ

< (/Q/Qw(x)w(y)lf(x)—f(y)IdV(x)dv(y))l/q,

which implies that

1., q
319 [ [ 0@ wIf @)= @I v @) )

%H(I)In[a,b],p </Q/Qw(x)w(y) \f (@) = f ()] dv (x) dv (y))l/q
=112 llja0), (qu/ﬂ/gw(m)w(y) |f () — f (y)|dv (z)dv (y)>l/q
= 119 llfa61. (2(111;/9/9“’(93)10(3/) |f (x) = f (y)]dv () dv (y)>1/q

1 / . 1/q _
= 2(1? |® ||[a,b],p (R (f;w)) 21/p H(I) ||[a b],p RG (f;w)

IN

and the second part of (3.7) is proved. O

The function ® : [a,b] — R is called of r-H-Hdlder type with the given constants
€ (0,1) and H > 0 if
@ (t) @ (s)| < Ht —s|"

for any ¢, s € [a,b].
In the case when r = 1, namely, there is the constant L > 0 such that

[ (t) =@ (s)| < Lt — s
for any t, s € [a,b], the function ® is called L-Lipschitzian on [a,b].
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‘We have:

Theorem 4. Let @ : [a,b] — R be a function of r-H-Hélder type on the closed
interval [a,b] . Ifw : 2 — R is a v-measurable function with w(z) > 0 for v-a.e.

zeQand [w(z)dv(z) =1 and if f: Q — [a,b] is a v-measurable function with
Qo felL, (Q, 1/) then

(3.11) Re (®, fiw) < o HRG (f5w)

In particular, if © is L-Lipschitzian on [a,b], then

(3.12) R (@, f;w) < LRg (f;w).

Proof. We have

(3.13) (@0 f) (@)= (o f)W < H|f (=)= f)]

for any z, y € Q.
If we multiply (3.13) by 2w (z)w (y) and integrate, then we get

(3.14) /2 / o ) (&) — (B f) ()| dv () dv (y)

< §H/Q/Qw(x)w(y)\f(x)—f(y)l”dv(:c)dv(y)~

By Jensen’s integral inequality for concave functions we also have

(3.15) /Q /Q w(@) w () |f (@) — f @) dv () dv (y)

< ([ [w@uw@lf@ - @l @)

Therefore, by (3.14) and (3.15) we get

ro @ g0 < 51 ([ [ w@wwlr@ - fwla@ ww)
— 51 (5 /Q/Qw(x)w(y)lf(x)—f(y)IdV(x)dV(y)>
= S HERG (fw)
and the inequality (3.11) is proved. O

‘We have:

Theorem 5. Let @, U : [a,b] — R be continuos functions on [a,b] and differentiable
n (a,b) with U’ (t) # 0 fort € (a,b). Ifw : Q@ — R is a v-measurable function

with w(z) > 0 for v -a.e. € Q and [w(z)dv(xz) =1 and if f: Q — [a,b] is a

v-measurable function with ® o f € L, (£, u) then

@ (1)

v (t)

' (t)
v (t)

(3.16) inf

R (¥, f;w) < Re (@, f;w) < sup
te(a,b)

te(a,b)

’Rc;(\ll,f;UJ)-

Proof. By the Cauchy’s mean value theorem, for any ¢, s € [a,b] with ¢ # s there
exists a & between ¢ and s such that

D(H)—B(s) _ ()

U(t)—V(s) W (¢
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This implies that
o' (t)

(3.17) inf | 0

t€(a,b)

\ () =¥ ()] < D) - D (s)]

R ILICR TS

< sup
t€(a,b)

for any ¢, s € [a,b].
Therefore, we have
o' (1)
W (f (2) =¥ (f W) < [@(f(x) —2(f(¥)

()
a0
G|1P G @) =¥ ()

(3.18)

1
te(a,b)

sup
t€(a,b)

for any z,y € Q.
If we multiply (3.18) by 1w (z)w(y) and integrate, we get the desired result
(3.16). O

Corollary 2. Let ® : [a,b] — R be a continuos function on [a,b] and differentiable
on (a,b). If w is as in Theorem 5, then we have

(3.19) inf @' (t)] Rg (f;w) < Rg (P, f;w) < sup | (¢)] Ra (f;w).
t€(a,b) t€(a,b)

We also have:

Theorem 6. Let ® : [a,b] — R be an absolutely continuous function on the closed
interval [a,b]. If w: Q — R is a v-measurable function with w (z) > 0 for v -a.e.
zeQand [w(x)dv(z) =1 and if f: Q — [a,b] is a v-measurable function with
bofel,(Qv), then

(3.20) R (2, f;w)
{ 19 {[{4,07,00 M (f;w) if p= o0,

IN

19 (i, MYV (f3w) ifp>1, 0+ 1 =1

L (b= ) |9y i P = 0,

IN

ﬁ (b - a)l/q ”q)/H[a,b],p ifp > 1, % + é =1,
where M (f;w) is defined by

(3.21) M (f;w) ::/Qw(:c)

Proof. From the inequality (3.8) we have

@or) @ -0 (57)

H‘I)’”[a,b],oo ‘f (w) — aTer’ if p = oo,

a+b

fla) =45

'dz/ ().

(3.22)

<

atb|l/a .
H‘I’/”[a,b],p‘f(m)—%’ 1fp>17%+§=1

for any z € Q.
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Now, if we multiply (3.22) by w (z) and integrate, then we get
b
(3.23) /w(w) (@ o f)(z) — (“; )
Q

19| a0 S w (2) [ f (2) = #F2] dv (2) i p = oo,

dv (x)

<
< ) .
||<I>’||[a’b]7pf9w(x) |f(:1c) — aTer| /qdu(x) if p > 17% + % =1.

By Jensen’s integral inequality for concave functions we have
a+b

320 [ w)|r@ -5 l/qdu<m><(/9w<x>f(x)—“§b|du<x>)l/q.

On making use of (3.2), (3.23) and (3.24) we get the first inequality in (3.20).
The last part of (3.20) follows by the fact that

r@ -5 <500

2
for any z € Q. (]

4. BOUNDS FOR SPECIAL CONVEXITY

When some convexity properties for the function & are assumed, then other
bounds can be derived as follows.

Theorem 7. Let w: Q — R be a v-measurable function with w (xz) > 0 for v -a.e.
zeQand [qw(x)dv(z) =1 and f: Q — [a,b] be a v-measurable function with
Do f e L,(Qv). Assume also that ® : [a,b] — R is a continuous function on
[a,b].

(i) If |®| is concave on [a,b], then

(4.1) Ra (@, f;w) < |®(E(f;w))],
(i) If |®| is convex on [a,b], then
(b= E(f;w)[®(a)| + (E(f;w) —a) @ |(D)]].

Proof. (i) If |®| is concave on [a, b], then by Jensen’s inequality we have
an  [e@i@en@lwe<e([wws@aw)|
From (3.2) for v = 0 we also have

(1.4 Ro (@, f0) < [ w(@)|(@o /) @]dv (@),

This is an inequality of interest in itself.

On utilizing (4.3) and (4.4) we get (4.1).
(ii) Since |®| is convex on [a, ], then for any ¢ € [a,b] we have

1@ (1)] = q><(b‘t)‘;j2(t—“)> < (b—t)|<I>(a)b|1LC(Lt—a)q>|(b)\
This implies that

(4.5) (@0 f)(2)] <

(42)  Ro(® fiw)< =

—a

(b—f(2)|®(a)| + (f (z) —a) P|(b)]
b—a
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for any z € Q.
If we multiply (4.5) by w (x) and integrate, then we get

/w<x>|<<1>of> ()| dv (z)
Q

| [r@ae- [vwi@ew)ew)
H([o@s@aw-af v@iw)eiel],

which, together with (4.4), produces the desired result (4.2). O

In order to state other results we need the following definitions:

Definition 1 ([19]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x,y € I and t € [0, 1] we have

flz+ (1 —t)y) < f(2)+ f(y).

It is important to note that P (I) contains all nonnegative monotone, convex
and quasi convex functions, i.e. functions satisfying

[t + (1 —t)y) <max{f(z),f(y)}

forall z, y € I and t € [0,1].
For some results on P-functions see [19] and [28] while for quasi convex functions,
the reader can consult [18].

Definition 2 ([3]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00)
is said to be s-convex (in the second sense) or Breckner s-convex if

fllz+(1-t)y) <t°f(z)+ (1 1) f(y)
for all x,y € [0,00) and t € [0,1].

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25],
[27] and [29].

Theorem 8. Let w: Q — R be a v-measurable function with w (xz) > 0 for v -a.e.
zeQand [qw(x)dv(z) =1 and f: Q — [a,b] be a v-measurable function with
Do fe Ly,(Qv). Assume also that @ : [a,b] — R is a continuous function on
[a,b] .

(i) If |®| belongs to the class P on [a,b], then

(4.6) Ra (@, fiw) <@ (a)] + [(b)];
(i) If |®| is quasi convex on [a,b], then

(4.7) Ra (P, f;w) < max{|® (a)], ®|(b)]};
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(iii) If |®| is Breckner s-convex on [a,b], then

(48)  Re(® friw) < [ ) / ) dv ()

Lo (0 |/ du()]

Sﬁ[@( a) (b= E(f;w))" dv (x)
+@|(0)| (B (f3w) — a)” dv (z)].

Proof. (i) Since |®| belongs to the class P on [a,b], then for any ¢ € [a,b] we have

o) = |0 (S5 <o+ @)
This implies that

(4.9) (@0 f) (@) < [®(a)] + [(D)]

for any z € Q.
If we multiply (4.9) by w («) and integrate, then we get

(4.10) /Qw(x)|(<I>of)(x)|dV(ac)§|<I>(a)|+@|(b)|,
which, together with (4.4), produces the desired result (4.6).

(ii) Goes in a similar way.
(iii) By Breckner s-convexity we have

(I)((b—t)aer(t—a)) < <§_2)S|¢(G)|+ <Z_Z>S<I>|(b)|

b—a
[(b—F (@)@ @)+ (f (z) —a)” ()]

@ (1) =

for any ¢ € [a,b].
This implies that

(4.11) (@0 f)(z)] <

1
(b—a)’
for any z € Q.

If we multiply (4.11) by w (x) and integrate then we get

@12 [w@|@o ) (a)dv(e) < [ |/ ) dv ()

(b |/ du<>],

which, together with (4.4), produces the first part of (4.8).
The last part follows by Jensen’s integral inequality for concave functions, namely

/Qw(x) (b— f(2) dv(z) < (b—Aw(w)f(x)dV(x)>s

[ wie) @) -0 av o) < (Aw(w)f(w)dV(w)—a>s,

where s € (0,1). O

and
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5. SOME EXAMPLES

Let f:Q — [0,00) be a v-measurable function and w : & — R a v-measurable
function with w (z) > 0 for v -a.e. € Q and [, w(z)dv(xz) = 1. We define, for
the function @ (t) = t?, p > 0, the generalized (p, f)-mean difference Rg (p, f;w)

by

60 o fiw)=3 [ [w@uwlf @ -1 @l @)
and the generalized (p, f)-mean deviation Mp (p, f;w) by

(52) Mo (i) = [ w(@) |7 (2) — B (o i)l v (2),
where

(5.3) B fiw)= [ £ )wwdv ()

is the generalized (p, f)-expectation.
If f:Q — [a,b] C[0,00) is a v-measurable function, then by (3.1) we have

1

(54) (p7 fa ) 5 (bp - ap) .
By (3.7) we have
(55) Rg (p7 f; ’U}) < pap (CL, b) Rg (f7 U}) ;
where

bifp>1,

0p (a,b) ==

aif pe(0,1)

and
1/«

(5.6) Re (p, fw)

P ba(pfl)%»l _ aoc(pfl)qtl
_21/“[ a(p—1)+1 }

where a > 1, é—l—%:l.
From (3.20) we also have

(5.7)  Ra(p, fiw)
dp (a,b) M (f;w),

<

B a(p—1)+1_ a(p—1)+1 1/«
p(b a(p—1)+1 ) MYB (fiw) if a>1, 1+ﬁ_1
%(b_a')dp(a)b)7

<

_ _ 1/«
1 1/ per(p—1)+1_ ja(p—1)+1 . 1 1
m(b—a)/p( alp—1)7T ) ifa>1,24+4=1,

where M (f;w) is defined by (3.21).
If p € (0,1), then the function |® ()| = t* is concave on [a,b] C [0,00) and by
(4.1) we have

(5.8) Re (p, fiw) < EP (fiw).
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For p > 1 the function |® (¢)| = tP is convex on [a,b] C [0,00) and by (4.2) we have

69  Rel fiw) < s [b—E(fu)a +(B(fw) - )],

Let f: Q — [0,00) be a v-measurable function and w : 2 — R a v-measurable
function with w (z) > 0 for v -a.e. © € Q and [, w (z)dv (z) = 1. We define, for
the function ® (t) = Int, the generalized (ln, f)-mean dzﬁer@nce R¢ (In, f;w) by
5:10)  Renfiw) = [ [ w@)w)inf @) ~Inf @) dv o) v o)
and the generalized (p, f)-mean deviation Mp (In, f;w) by
G.11) Mp(nfiw)i= [ wi@)ing @) - En,fiw)ldv (@),
where "

(5.12) B(n. fiw)i= [ w)nf @)dv (o)

is the generalized (In, f)-expectation.
If f:9Q — [a,b] C[0,00) is a v-measurable function, then by (3.1) we have

(5.13) Rg (In, f;w) < % (Inb—1Ina).
By (3.7) we have
(5.14) R¢ (In, f;w)
LRe (f;w),
<

1 p1 /p .
57 ((pbjmp%) R (f;w) ifp>1,2+1 =1
By (3.20) we have
(5.15) Re (In, f;w)
LM (f;w),

< 1/p

p—1_,p—1 .
(i) MY (fw) itp> 1,14+ 1 =1

1(b
2@ —1),
= 1/p
-1 -1 .
5172 (b—a)/t ((pbfl)b;#) ifp>1,+0=1
Now, observe that the function |® ()| = |Int| is convex on (0, 1) and concave on

[1,00). If f:Q — [a,b] C(0,1) is a v-measurable function, then by (4.2) we have

(516)  Ro(in, fw) < [0~ B(f;w)) Il + (B (f5w) ~ ) b
and if f:Q — [a,b] C [1,00), then by (4.1) we have
(5.17) Re (In, f;w) <In(E(f;w)).

The interested reader may state similar bounds for functions ® such as ® (t) =
expt,t € Ror @ (t) =tlnt, t > 0. We omit the details.
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