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SOME ADDITIVE INEQUALITIES FOR HEINZ OPERATOR
MEAN

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some new additive inequalities for Heinz
operator mean.

1. INTRODUCTION

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, (-,-)) . We use the following notations for operators and v € [0, 1]

AV,B:=(1-v)A+vB,
the weighted operator arithmetic mean, and

Af B = A2 (A’I/QBA’1/2>VA1/2,

the weighted operator geometric mean [14]. When v = % we write AVB and AfB
for brevity, respectively.
Define the Heinz operator mean by

1
H,(A,B):= 3 (Af,B + Af1_,B).
The following interpolatory inequality is obvious
(1.1) AtB < H, (A,B) < AVB

for any v € [0, 1].
We recall that Specht’s ratio is defined by [16]
1
— B < ifhe(0,1)U(1,00),
eln( hA-T
(1.2) S (h):= ( )

lifh=1.
It is well known that lim,—1 S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The

function is decreasing on (0, 1) and increasing on (1, 00) .
The following result provides an upper and lower bound for the Heinz mean in
terms of the operator geometric mean AfB :

Theorem 1 (Dragomir, 2015 [6]). Assume that A, B are positive invertible oper-
ators and the constants M > m > 0 are such that
(1.3) mA < B < MA.
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Then we have
(1.4) wy (m, M) AfB < H, (A, B) < Q, (m, M) A4B,
where
S (mPv=1) if M < 1,
(1.5) Q, (m, M) := ¢ max{S (mp”_”) S (M'QV_H)} ifm<1<M,

S (M=) i1 <m
and

s (M|V*%|) if M < 1,
(1.6) w, (m,M):=< 1ifm<1<M,

S (m|”7%|> if 1 <m,
where v € [0, 1].
We consider the Kantorovich’s constant defined by

(h+1)°
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K () for any h > 0.

We have:

(1.7) K (h) =

, h>0.

Theorem 2 (Dragomir, 2015 [7]). Assume that A, B are positive invertible opera-
tors and the constants M > m > 0 are such that the condition (1.3) is valid. Then
for any v € [0,1] we have

(18) (AﬁB S) H, (AvB) < exp [@V (va) - 1] AﬁB
where
K (mP2=1) if M < 1,

(1.9) O, (m, M) :=< max{K (m‘z”_”) K (M‘Q”_”)} fm<1<M,

K (M*=1) if1<m
and

1
1.1 <)H,(A,B)— AfB< ——— D(z> 1A
(1.10) (0<)H, (A, B) ~ MB < 15y max D («7") A,

where the function D : (0,00) — [0, 00) is defined by D (z) = (z — 1) Inz.

The following bounds for the Heinz mean H, (A, B) in terms of AV B are also
valid:

Theorem 3 (Dragomir, 2015 [7]). With the assumptions of Theorem J we have
(1.11) (0<)AVB—-H, (A,B)<v(1—-v)Y (m,M)A,
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where
(m—1lnm if M <1,
(1.12) YT (m,M):=¢ max{(m—1)lnm,(M —1)InM} ifm <1< M,
(M—1)InM ifl <m
and
(1.13) AVBexp|[—4v (1 —v) (F (m,M)—1)] < H, (A, B) (< AVB)
where
K(m) if M <1,
(1.14) F(m,M):=<¢ max{K (m),K (M)} ifm<1< M,

K (M) if1<m.

For other recent results on geometric operator mean inequalities, see [2]-[13], [15]
and [17]-[18].

Motivated by the above results, we establish in this paper some inequalities for
the quantities

H,(A,B) — AB and AVB — H, (A, B)

under various assumptions for positive invertible operators A, B.

2. BOUNDS FOR H, (A, B) — AtB
First we notice the following simple result:

Theorem 4. Assume that A, B are positive invertible operators and the constants
M > m > 0 are such that the condition (1.3) holds. If we consider the function
fv :]0,00) = R for v € [0,1] defined by

fule) =5 (@ +a).

then we have

(2.1) f (m) A < H, (A, B) < f, (M) A.
Proof. We observe that

which is positive for z € (0,00).
Therefore f, is increasing on (0, 00) and
fo(m) = min fo(@) < folz) < max fo(z)=f (M)

zE€[m, z€[m,M

for any = € [m, M].
Using the continuous functional calculus, we have for any operator X with mI <
X < M1 that

(2:2) fom) < 3 (X7 4 X) < [, ().
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From (1.3) we have, by multiplying both sides with A=*/2 that
ml < A"V2BATY2 < MI.
Now, writing the inequality (2.2) for X = A=/2BA~1/2, we get

(23) fy (m)I < % |:(A1/2BA1/2)” i <A1/2BA1/2)1—V:| < fu (M) I

Finally, if we multiply both sides of (2.3) by A'/? we get the desired result (2.1). O

Corollary 1. Let A, B be two positive operators. For positive real numbers m, m’,
M, M', put h:=2 k=2 and let v € [0,1].
(1) If0<mI<A<m'I<M’I<B<MI then

(2.4) fu(W)A<H,(AB)<f, (h)A
(1) If 0 <mI < B<m'I<MI<A<LMI, then

(2.5) f”( For ) 4 < h, (4, B) < f”]E,h/)A.

Proof. If the condition (i) is valid, then we have for X = A=1/2BA~1/2

M’ M
I<—I h’I<X<hI——I

which, by (2.2) gives the desired result (2.4).
If the condition (ii) is valid, then we have

1 1
I< <
O<hI—X—h’I<I’
which, by (2.2) gives
1
|- |A<H,(AB)<f,|=]A

that is equivalent to (2.5), since

We need the following lemma:

Lemma 1. Consider the function g, : [0,00) — R for v € (0,1) defined by

1
(2.6) gv (@) =5 (@ +217") = V& = 0.
Then g, (0) = g, (1) =0, g, is increasing on (0,x,) with a local maximum in
2.7 v\ 1
(2.7) xu.—<1_y> € (0,1),

is decreasing on (x,,1) with a local minimum in x = 1 and increasing on (1,00)
with lim, .o g, () = 00.
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Proof. (i). If v € (0,1), then
1 v 1—v 1
/ — _
9v (ZL’) - 2 <$1—y + xVv $1/2>

v+ (Q-v)at -z
_2 xl-v

If we denote u = z =, then we have

1—2v

v+(1-—v)a'™ -z 2 =1-v)u® —u+v.

:(1—u)(u—1” >(u—1)

=(1-v) (xlf” - 1:}) (xlfv _ 1>.

2
We observe that ¢, (z) = 0 only for x = 1 and z, = ( L )17% € (0,1). Also

1-v
g, (x) > 0for z € (0,z,) U (1,00) and g, () < 0 for x € (x,,1). These imply the
desired conclusion.
(i) If v € (3,1), then

11— v +pa2v-l — g%
gu(x) = 5

:I:D
2v—1
If we denote z = 72 , then we have

_ 2v—1
lovtwve? g2 =22 —241—v

2
We observe that g/, (z) = 0 only for z = 1 and z, = (%) 77 = (L) e

(0,1). Also g/, (z) > 0 for z € (0,z,) U (1,00) and g, (z) < 0 for x € (x,,1). These
imply the desired conclusion. (|

The above lemma allows us to obtain various bounds for the nonnegative quantity
H,(A,B)— AtB
when some conditions for the involved operators A and B are known.

Theorem 5. Assume that A, B are positive invertible operators with B < A. Then
forv e (0,1) we have

where g, is defined by (2.6) and x, by (2.7).
Proof. From Lemma 1 we have for v € (0,1) that
1
O S 5 (xy +x1—y) - \/5 S gl/ (ny)

for any z € [0,1].
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Using the continuous functional calculus, we have for any operator X with 0 <
X < I that

(2.9) 0<

< % (Xl/ +X1—l/) _X1/2 S g (xu)

for v € (0,1).
By multiplying both sides of the inequality 0 < B < A with A~/ we get

0< A 12BA Y2 <.

If we use the inequality (2.9) for X = A=/2BA~'/2, then we get

v 1-v 1/2
(2.10) 0< % [(A1/2BA1/2) n (A*1/2BA*1/2> } _ (A*WBA*W)
<gv (@)l
for v € (0,1).
Finally, if we multiply both sides of (2.10) with A'/2) then we get the desired
result (2.8). O

Theorem 6. Assume that A, B are positive invertible operators and the constants
M >m >0 are such that the condition (1.3) holds. Let v € (0,1).
(i) If 0 <m < M <1, then
(2.11) v, (m,M)A<H, (A, B)— A{B <T, (m,M) A,
where
gy (m) if0<m< M <z,
(212) 4, (m, M) = { min{g, (m),g, (M)} f0<m<az, <M<,
gy (M) ifxz, <m< M
and
9 (M) if0<m< M <a,,
(2.13) T, (m, M) =4 g, (5,) f0<m<m, <M<,

gy (m) ifz, <m< M <1,

where g, is defined by (2.6) and z, by (2.7).
(i1) If 1 <m < M < oo, then

(2.14) g, (m) A < H, (A,B) ~ A{B < g, (M) A.
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Proof. (i) If 0 <m < M <1 then by Lemma 1 we have for v € (0,1) that
gy (m) f0<m<M<uz,
min{g, (m),g9, (M)} f0<m<z, <M<1
gy (M) if z, <m <M

ng(x)
gy (M) if0<m <M<z,

<9 g(x) if0<m<er, <ML
gy (m) ifx, <m< M<1
for any x € [m, M].
Now, on making use of a similar argument to the one in the proof of Theorem

5, we obtain the desired result (2.13).
(ii) Obvious by the properties of function g, . O

The interested reader may obtain similar bounds for other locations of 0 < m <
M < 00. The details are omitted.
The following particular case holds:

Corollary 2. Let A, B be two positive operators. For positive real numbers m, m/’,
M, M', put h := %7 h o= %—, and let v € (0,1).
(1) fOo<mI <A<m'I<MI<B<MI, then
(2.15) g9v (W) A< H, (A, B) — AfB < g, (h) A.
(1) If 0 <mI < B<m'I<M'I<A<MI, then
(2.16) 7, (h,h'YA < H, (A,B) — AtB <T, (h,}) A,

where

. v (R .
(2.17) 3y (hy ') = mm{g"ff‘), z ,( )} f0< 3 <m, < <1,
g”,(:) if x, < }1L < }},
and
w0 o<t <b<a,
(2.18) Ly (h) =1 g,(2,) if0<t<w, <k <1,
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3. BounDps FOR AVB — H, (A, B)
In order to provide some upper and lower bounds for the quantity
AVB - H, (A, B)
where A, B are positive invertible operators, we need the following lemma.
Lemma 2. Consider the function h, : [0,00) — R for v € (0,1) defined by

L A )

(3.1) hy (@) = ———3

Then h,, is decreasing on [0,1) and increasing on (1,00) with x = 1 its global
minimum. We have h, (0) = %, limy_.o0 by (z) = 00 and hy, is convez on (0,00).

Proof. We have

and
1
R (z) = ¥ (I—v) (2" 2 +2" ")
for any = € (0,00) and v € (0,1).
We observe that k), (1) = 0 and Al (z) > 0 for any = € (0,00) and v € (0,1).
These imply that the equation A/, () = 0 has only one solution on (0, 00), namely

x = 1. Since k!, () < 0 for z € (0,1) and A/, (z) > 0 for z € (1, 00), then we deduce
the desired conclusion. O

Theorem 7. Assume that A, B are positive invertible operators, the constants
M >m >0 are such that the condition (1.3) holds and v € (0,1). Then we have

(3.2) 8, (m, M)A < AVB — H, (A, B) < A, (m, M) A,

where
hy, (M) if M <1,
(3-3) oy (m, M) := ¢ 0if m<1<M,
hy, (m) if 1 <m

and

hy (m) if M <1,
(3.4) A, (m,M):= ¢ max{h, (m),h, (M)} ifm<1<M,
hy, (M) if 1 <m,

where h, is defined by (3.1).
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Proof. Using Lemma 2 we have
hy, (M) if M <1,

0ifm<1<M, <h,(z)

hy (m) if 1 <m,
h, (m) if M <1,

<< max{h, (m),h, (M)} if m <1< M,

hy, (M) if 1 <m

for any x € [m, M] and v € (0,1).
Using the continuous functional calculus, we have for any operator X with m/I <
X < M that

X+1 1
2
From (1.3) we have, by multiplying both sides with A~1/2 that

mI < A™Y2BA7Y2 < MI.
Now, writing the inequality (3.5) for X = A=Y/2BA~1/2 we get
(3.6) 4, (m,M)I
—1/23 A—1/2 v —v
< AY2BA-Y2 4 1 <(A1/2BA1/2> n (A’I/ZBA’1/2>1 )
- 2 2
<A, (m,M)I.

(3.5) 8, (m, M) < (XV 4+ X'7%) < A, (m, M) 1.

Finally, if we multiply both sides of (3.6) by A'/? we get the desired result (3.2). O

Corollary 3. Let A, B be two positive operators. For positive real numbers m, m’,
M, M', put h:=2 p/:= 2 gnd let v € (0,1).

m’

(i) If0<mI < A<m'I<M1I<B<MI, then
(3.7) h, (M)A < AVB — H, (A, B) < h, (h) A.
(i) If0<mI < B<m'I<MI<A<MI, then
hy, (R)

hl

hy (h)
h

(3.8) A< AVB - H, (A B) < A
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